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ABSTRACT
Feedback control systems utilised in car body construction cause process time variance when com-
pensating for external disturbances. By considering these in robotic assembly line balancing, the
risk of cycle time violations can be controlled. This requires knowledge of the underlying process
time distributions, which are not known in advance. Therefore, a simulation method is proposed to
assess the impact of varying process time distributions on the balancing of robotic assembly lines.
The initial step involves acquiring the process times of existing production processes. In the subse-
quent simulation, these are randomly and repeatedly selected as substitutes for the process times in
the balancing of a new robotic assembly line. The impact of process time distribution variations on
the result is investigated, and a single solution can be selected. The proposed method is evaluated
based on the balancing of a robotic assembly line for a body-in-white rear compartment. Results
are compared to normally distributed process times, which is a common assumption for modelling
uncertain process times. Both approaches are evaluated utilising actual process time distributions.
It is demonstrated that the proposedmethod yields fewer and less severe underestimations of cycle
times, thereby reducing the number of uncontrolled violations of cycle times.
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1. Introduction

In car body construction, the vehicle’s skeletal structure
is formed by joining various components. This process
is essential for ensuring the vehicle’s structural integrity,
safety, and durability.

The production schema in car body construction is
largely uniform across the automotive industry (Spieck-
ermann et al. 2000). It is segmented into several main
assemblies, e.g. the front and rear compartments as well
as side frames. The main assemblies are manufactured
in distinct blocks, frequently decoupled by buffers. Each
block is divided into numerous assembly lines.

Figure 1 shows a representative assembly line in car
body construction, which consists of two sequential
workstations. Each workstation is standardised and com-
prises two handling robots (HR1 to HR3), highlighted in
green, which load and unload parts. The components are
joined by four distinct robots per workstation, namely
JR1 to JR8. At the beginning of a cycle, loading robots
HR1 and HR2 place parts on the workstations. Subse-
quently, the respective joining robots establish a connec-
tion between the components by performing a series of
joints.
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Joining robotswork simultaneously. Therefore, unload-
ing can only be performed once all robots have fin-
ished their tasks. Ultimately, HR2 and HR3 unload both
stations. Operations must be completed before a pre-
determined cycle time is reached, which is calculated
based on the expected output of the line (Spieckermann
et al. 2000).

During the planning of car body construction, sev-
eral decisions must be made. One of these problems
involves the combinatorial optimisation of assigning a
set of product assembly operations, such as joining pro-
cesses, to workstations and robots. Operation allocation
is subject to technical restrictions, such as precedence
constraints, that result from the assembly sequence, and
their process times. This problem is known in the liter-
ature as the Robotic Assembly Line Balancing Problem
(RALBP), which was first introduced by Rubinovitz and
Bukchin (1991). It is an extension to the more general
Assembly Line Balancing Problem by also selecting a
tool required to perform the joining operation (Kim and
Park 1995).

In car body construction, various joining techniques
are utilised. These are, among other factors, selected
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Figure 1. A typical car body construction assembly line consists of several workstations, here arranged sequentally, each equippedwith
tools such as handling and joining robots, which pick, place or join parts.

based on the materials of the joining partners. Similar
materials can be welded utilising techniques like resis-
tance spot welding (RSW) or laser welding. Adhesive
bonding and mechanical fastening, on the other hand,
are especially used to join diverse materials. To allow
for fixing interior parts to the body in the final assem-
bly, standard elements such as bolts and nuts have to
be attached in car body construction. Arc stud welding
(ASW) is frequently employed for this purpose.

All joining techniques in car body construction
require highly specialised equipment, which often
employs feedback control systems (FCS) to ensure pro-
cess stability in the event of external disturbances. The
FCS keeps process variables close to their intended val-
ues. Although they respond quickly to changes, adap-
tation takes time. An assembly line in car body con-
struction of Mercedes-Benz is examined by Stade and
Manns (2023a).Weld control systems for RSW and ASW
contain several process steps that are driven by FCS and
result in varying process times. In the case of RSW, the
process step of closing the weld gun and welding, vary in
time. This is especially cumulative inworkstations, where
multiple robots process a series of joints per cycle. The
analysis of 194 production cycles of an RSWworkstation
used in car body construction shows that process times
affect cycle time, which, in turn, fluctuates within a 5- to
95-percentile range of 0.94 s. As the welding equipment
is utilised globally across all manufacturing plants of the
company, and RSW is the most extensively used join-
ing technique (see Stavropoulos et al. 2022), the impact
of varying process times is substantial. This demon-
strates the importance of considering varying processing
times in the planning of car body construction. However,

knowledge of the underlying process time distributions
is required.

As 80% of the tools and equipment utilised in
automotive production is standardised (Al-Zaher and
ElMaraghy 2014), it is likely that joining equipment that
is meant to be used in a new assembly line has already
been utilised in ongoing production. Therefore, histor-
ical data can be employed to predict process time dis-
tributions during planning of car body construction. A
distribution model may be parametrised with the help of
historical planning data, e.g. material pairings and sheet
thicknesses, as well as the respective process time distri-
butions. In the RSWprocess under investigation, the shift
and range of process time distributions can be predicted
utilising planning data; however, it was not feasible for
the shape of the distributions.

In practice, various suppliers are responsible for the
welding setup. Although the company provides stan-
dard welding parameters as a starting point, the fur-
ther course of action is unstandardised. Therefore, each
supplier or even weld engineer may act differently. Fur-
thermore, during production setup, requirements fre-
quently change, which requires some weld controls to
be repeatedly adapted. This may account for the chal-
lenges encountered in predicting process time distribu-
tions based on planning data.

Apparently, standardisation of the setup process could
help address this issue, but is challenging and long-lasting
to impose. Alternatively, the engineer in charge and the
setup procedure could be documented and included in
the distribution model. However, this has to be known
already at the planning stage, which is not possible in
practice.
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Thus, the main contribution of this work is a simula-
tionmethod that allows for assessing the effects of various
process time distributions gathered from ongoing pro-
duction on the balancing of robotic assembly lines. Based
on the simulation results, it is possible to select a suitable
balancing solution with a certain degree of confidence.
The method enables the decision maker to determine an
appropriate compromise between the risk of cycle time
violations and cost reduction. It comprises three steps:

(1) For data acquisition and preprocessing, process
times of a joining technique are collected fromongo-
ing production. An outlier elimination, resampling,
normalisation, and standardisation is conducted.

(2) In the simulation, samples are randomly selected
from collected data. These are utilised as substi-
tutes for process time distributions and used to solve
the RALBP. The process is repeated if the balancing
results alter beyond a predetermined threshold.

(3) The balancing results obtained from the simulation
are used to investigate the impact of varying pro-
cess time distributions on the RALBP. With a cer-
tain level of confidence, this allows for the selection
of one of the outcomes and finding a compromise
between elevated risks of cycle time violations and
cost reduction.

The proposed method is evaluated utilising process
data obtained from a car body construction plant of
Mercedes-Benz during the summer of 2023. It contains
process times and planning data for approx. 4000 RSW
joints that are spread over 25 assembly lines, 115 work-
stations and 255 robots.

The remainder of this work is organised as follows:
Section 2 presents an overview of existing solutions in
research. The proposed method is described in Section 3
and then evaluated based on an example from car body
construction. Therefore, the experimental setup and
application-specific method implementation are given in
Section 4. Results are presented in Section 5, which are
discussed in Section 6. Finally, Section 7 concludes the
findings of this study.

2. State of the art

2.1. Robotic assembly line balancing for the
automotive Industry

In the production planning of robotic assembly lines, bal-
ancing is an important part. As described above, this can
be formulated as an optimisation problem (Rubinovitz
and Bukchin 1991), specifically RALBP, which extends
the well-known Assembly Line Balancing Problem with

the additional assignment of robots and tools. Due to
its complexity, the exact solution of the RALBP is usu-
ally found only for small-scale problems (Chutima 2022).
Due to the size of car body construction assembly lines,
other solution techniques are also considered in the liter-
ature.

One approach is to segregate the two problems of
line balancing and equipment selection and address them
independently. An interactive three-step method is pro-
posed by Michalos et al. (2015). First, it offers a guide for
manual balancing of assembly lines. Based on this initial
configuration, either an exhaustive search or a heuristic
are employed to select equipment. A set of design alterna-
tives are generated from this step. Evaluation metrics are
determined using discrete event simulations and analytic
formulas, such as the required space and line availability.
Finally, the best design is chosen in a multi-criteria eval-
uation. The method aims to support the decision maker
by exploring design alternatives and therefore improving
assembly line configurations. A case study indicates that
a car body construction assembly line can be improved
by 15% to 60%.

Colledani et al. (2016) make use of heuristics to find
a solution for the RALBP. In a design and manage-
ment methodology comprising four individual modules,
a heuristic is employed to render numerous assembly
line configurations in a first step. Additional modules are
available to (i) detail the configurations and model the
dynamic behaviour, (ii) optimise the lot sizes and con-
firm the production plan, as well as (iii) reconfiguring
the assembly line for different production scenarios, e.g.
changes in production volume.

More recently, models have been introduced for the
RALBP with a scope on car body construction, for which
exact solutions can be found in a reasonable amount of
time. It appears that this is facilitated by the availabil-
ity of superior computational capabilities. However, both
approaches are designed to reduce complexity. Michels
et al. (2018), for instance, group operations based on
their joining techniques and treat them as copies, thereby
reducing the size of the solution space. In addition, cubic
constraints are linearised. This enables the attainment
of optimal solutions in three practical case studies in
less than one hour of computation. However, computa-
tion time may be vulnerable to the grouping of joining
operations. Therefore, various joining techniques may
increase the computational effort and hinder the practical
applicability of the model.

According to Hagemann and Stark (2020), an auto-
motive body-in-white and the corresponding car body
construction are typically organised hierarchically. This
implies that a joining step, comprising all operations to
join a minimum of two parts into a subassembly, equates
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to a single assembly line. All of these are interconnected,
so that the output of one assembly line is the input for
another. Since the number of operations per joining step
is small, the RALBP can be optimally solved for every
joining step.

None of the aforementioned publications consider
uncertain processing times. Instead, deterministic values
are required, which have to be determined by the deci-
sion maker. In the planning of manual assembly lines,
well-known methodologies such as Methods-Time Mea-
surement (MTM) can be used for this purpose. In the
industrial practice of early planning in car body construc-
tion, however, the planner utilises standard process times,
which have been established based on domain knowledge
and experiments (seeHagemann 2022). Standard process
times are valid only for a specific context, e.g. the joining
technique, a group of material pairings, and the struc-
tural importance of the joint. The context of the standard
process times is established by domain experts and is con-
stantly updated. In each context, standard process times
are calculated based on average process times gathered
from experiments or similar production systems. Addi-
tional safetymargins are usually added to compensate for
various unknown parameters. The process of updating or
introducing new contexts and standard process times is
time-consuming.

Therefore, Mucientes et al. (2008) propose a fuzzy
rule-based process time estimation method that inten-
tionally maintains domain knowledge. Information on
manufacturing contexts, originally defined by domain
experts, as well as other influencing variables can be
included. These are selected for a weighted parametriza-
tion of a polynomial that represents the process times.
A genetic algorithm is then used to find the best com-
bination of weights so that the process time can be esti-
mated using the input variables. Hence, the method can
be utilised to refine context rules. However, process times
from manufacturing may include contexts which are not
yet known. This would result in inaccurate estimates. To
identify new contexts in production, Ringsquandl, Lam-
parter, and Lepratti (2015) introduce a framework that
automatically detects context changes in production. A
regression model is constantly updated by production
data. Once, the prediction error exceeds a given limit,
a context change has been identified. The framework
utilises data from product lifecycle management, man-
ufacturing execution and enterprise resource planning
systems to identify the causes for context changes.

An alternative approach to the industrial practice is
proposed by Zwicker and Reinhart (2016) that adopts the
concept of MTM by dividing assembly operations into
several steps. Unlike MTM, it does not exclusively rely
on empirical data to determine the process times of each

step. Instead, the usage of analytic models and simula-
tions is also suggested. Another method is introduced
by Denkena, Dittrich, and Settnik (2022), which propose
a data-driven similarity-based process time estimation
method that neglects any predefined contexts. Instead,
process and setup times of a workpiece to be planned are
estimated based on feedback data from other workpieces.
Feedback data includes information on the workpieces
that are also available in planning, such as dimensions
and materials. Furthermore, it encompasses actual pro-
cess and setup times from the past. The attribute impact is
calculated using a feature importance analysis. Based on
these, the similarity between a workpiece to be planned,
and all other workpieces is computed. A group of the
most similar workpieces is selected from this. The mean
process time of the neighbours is used as the estimated
process time for planning.

2.2. Uncertain process times in assembly line
balancing

In the more general field of assembly line balancing,
uncertain process times are modelled by stochastic,
fuzzy, and interval representations (Boysen, Schulze, and
Scholl 2022). Each of the approaches requires differ-
ent levels of information and results in correspond-
ing levels of details. Joslyn and Fersont (2004) suggest
modelling uncertainty by consuming the exact amount
of information that is available. The selection of an
adequate approach, therefore, heavily depends on its
application.

In stochastic approaches, uncertain process times
are modelled by probability distributions. As a result,
the parametrised class of distribution has to be known
in advance, which may be difficult in certain set-
tings. Most contributions therefore assume normally dis-
tributed process times, defined by their respective means
and standard deviations (see Ağpak and Gökçen 2007;
Fathi et al. 2019; Özcan 2018; Şahin and Tural 2023;
Tiacci 2017). This reduces the required level of infor-
mation, but also makes an assumption that may not be
adequate in practice. The genetic algorithm proposed by
Stade and Manns (2023b) considers any probability dis-
tribution to represent process times in RALBP. It adds a
decoding procedure to the original algorithm of Levitin,
Rubinovitz, and Shnits (2006) that determines the risk
of cycle time violations and allows controlling it using
a predefined probability limit. This approach requires
knowledge of the underlying probability distributions.

Fuzzy approaches do not require a distribution
assumption but a given membership function, which,
to a limited extent, allows adjusting the level of
information. Triangular fuzzy numbers, for instance, are
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represented by three parameters, which are the low-
est expected, most likely, and highest expected values
(see Zacharia and Nearchou 2013; Zacharia, Xidias,
and Nearchou 2024). Trapezoidal fuzzy numbers, as
employed by Salehi, Maleki, and Niroomand (2018),
utilise one more parameter.

In robust assembly line balancing, the level of infor-
mation on process times is the lowest. Numerous contri-
butions adhere to the definition of robustness suggested
by Bertsimas and Sim (2003) (see Gurevsky et al. 2013;
Meng et al. 2023; Pereira and Álvarez-Miranda 2018).
Each operation has a minimum, nominal, andmaximum
process time. The level of uncertainty is determined by
�, which is the number of operations per workstation
that need their maximum processing time. A high value
of � therefore translates to a more risk-averse balanc-
ing. In contrast, � = 0 does not account for any vari-
ability. However, according to Hazır and Dolgui (2013),
an increase in the number of operations per worksta-
tion is associated with a higher probability of process
time deviation. Hence, a proportion of uncertainty θ is
proposed, which establishes the number of deviated pro-
cess times in relation to the number of operations in a
workstation.

Other robust approaches are also considered in the lit-
erature. Instead of searching for a robust balance given
deviating process times and a degree of uncertainty,
a stability analysis is conducted. A stability radius is
employed, which is the maximum independent process
time deviation that any task can witness before a given
assembly line configuration becomes unstable, i.e. a given
cycle time cannot bemet (see Sotskov et al. 2015; Sotskov,
Dolgui, and Portmann 2006). Rossi et al. (2016) intro-
duce a model for maximising the stability radius in line
balancing, which is a special case of this approach. A liter-
ature review on the field of robust assembly line balancing
is conducted by Hazır and Dolgui (2019).

3. Method

Given a robotic assembly line balancing problem, it is
necessary to allocate tasks of size T to workstations and
robots in an assembly line in such a way that a min-
imum number of workstations and robots is required.
Each task t represents the process of one joining element
being completed, for example, a welding joint or adhe-
sive seam. A precedence matrix P restricts the order in
which tasks can be accomplished, with pij = 1 indicating
that task imust precede task j.

Each task requires a varying process time, expressed
by the random variable Xt , which is not yet known in
the planning stage. The proposed method uses produc-
tion data from existing assembly lines filledwith the same

Table 1. Variables of the proposed method.

Variable Description

t Task of the balancing problem, t ∈ {1, . . . , T}
j Joining element, j ∈ {1, . . . , J}
n(j) Number of process time samples of joining element j, n(j) ∈ N

Y(j) Set of process times of joining element j, Y(j) = {y(j)1 , . . . , y(j)
n(j) }

DJ×J Distance matrix, dij maps the distance from joining element i
to j, dij ∈ R

Q(j) Number of bins for process time histogram of joining element
j, Q(j) ∈ N

q(j) Bin of process time histogram of joining element j,
q(j) ∈ {1, . . . ,Q(j)}

H(j) Process time histogram of joining element j,
H(j) = {h(j)

1 , . . . , h(j)
Q(j) }

U Multiset of balanced joining elements j, U = {1u(1) , . . . , Ju(J)}
ȳ(j) Mean process time for joining element j, ȳ(j) ∈ R

+
Ŷ(j) Normalized and standardised set of process times of joining

element j
z Objective of the RALBP, z ∈ R

+
s Number of workstations in balancing result, s ∈ N

�s Relative utilisation of last workstation, 0 ≤ �s ≤ 1
w Workstation,w ∈ {1, . . . ,W}
r Robot, r ∈ {1, . . . , R}
xtrw Binary variable, xtrw = 1 assigns task t to robot r and

workstationw
frw(u) Probability density function of cycle time u for robot r in

stationw
Frw(v) Cumulative distribution function of cycle time v on robot r in

stationw
F̃w(v) Cumulative distribution function of maximum cycle time v on

stationw
sw Variable, sw = 1 means at least one task being assigned to

stationw
B Sequence of balancing solutions
t′ Substitute for task t
Z Sequence of objective values, Z = {zb | b ∈ B}
i∗ Index of selected balancing solution, i∗ ∈ N

b∗ Selected balancing solution

Note: Table of symbols and corresponding descriptions of the proposed
method.

kind of equipment to simulate their effect on the balanc-
ing of a new robotic assembly line. All relevant variables
are listed in Table 1. Relevant parameters for the method
are given by Table 2. The proposed method is presented
in Figure 2. It consists of three steps:

Data preparation Process data from ongoing produc-
tion, utilising the same kind of equipment as the
tasks of the balancing issue, is collected. In the out-
lier elimination, process data in the area of substan-
tial low density is removed from the dataset. Then,
the dataset is balanced using rejection sampling, fol-
lowed by normalisation and standardisation. The
collected data represents the dataset for themethod.

Simulation of process time distributions Based on the
dataset from the previous step, a simulation to assess
the impact of varying process time distributions
on the RALBP is conducted. In each replication,
process time distributions are randomly chosen to
replace the tasks’ process times of the balancing
problem. The RALBP is then solved by using these
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Figure 2. Illustration of the proposed simulation method.
Long Description. Based on collected and preprocessed data, the proposed simulation method repeatedly substitutes process time
distributions with samples from the dataset. A stability analysis is conducted to terminate the simulation once its results remain stable.
The method allows for assessing the impact of process time distribution variance on the RALBP and select an appropriate solution for
further planning.

Table 2. Parameters of the proposed method.

Parameter Description

T Number of tasks, T ∈ N

Xt Random variable to represent process times of task t, Xt ∈ R
+

[s]
PT×T Precedence matrix, pij = 1 means that task i precedes j,

pij ∈ {0, 1}
J Number of joining elements in the dataset, J ∈ N

MinPts Minimum number of neighbours in a cluster,MinPts ∈ N

Eps Radius to search for neighbours, Eps ∈ R

N Size of the balanced dataset, N ∈ N

t̂ Deterministic standard time, t̂ ∈ R
+ [s]

r̂ Deterministic standard range, r̂ ∈ R
+ [s]

R Number of robots per workstation, R ∈ N

α Probability limit for cycle time violations, 0 ≤ α ≤ 1
C Predetermined cycle time, C ∈ R

+ [s]
W Maximum number of workstations,W ∈ N

rinit Initial replications of simulation, rinit ∈ N

rinc Increment in replications, rinc ∈ N

Perc Percentiles for stability analysis,
Perc = {perc ∈ R | 0 ≤ perc ≤ 100}

rwin Window size for stability analysis, rwin ∈ N

�percmin Minimum relative change of percentile, 0 ≤ �percmin ≤ 1
rmax Maximum number of replications in simulation, rmax ∈ N

π Confidence level for solution selection, 0 ≤ π ≤ 100

Note: Table of parameters and corresponding descriptions of the proposed
method.

substitutes. A stability analysis on the simulation
results decides whether additional replications are
carried out or the simulation is terminated.

Solution analysis and selection The results of the sim-
ulation are examined. Given a degree of confidence,
the decision maker can select one solution of the
simulation.

3.1. Data preparation

In the first step of the method, process times for J join-
ing elements are gathered from an existing assembly line
for a predetermined time span. This requires the join-
ing elements to employ the same kind of equipment as

the tasks t in the balancing problem will. As Equation (1)
shows, the collection yields a set of process times Y(j) of
n(j) samples for each joining element j ∈ {1, . . . , J}, which
is considered the dataset for the method:

Y(j) =
{
y(j)1 , y(j)2 , . . . , y(j)

n(j)

}
, j ∈ {1, . . . , J} (1)

3.1.1. Outlier elimination
To eliminate outlier process data from the dataset, the
approach introduced by Spoor (2022) is employed. The
DBSCAN algorithm, which is based on density-based
clustering, is employed to identify samples with a sig-
nificantly lower density, referred to as outliers. DBSCAN
defines a cluster by identifying the core points, which are
points with at leastMinPts neighbours within a radius of
Eps. Clusters are formed around these core points, includ-
ing all directly connected points. If a point can be reached
from a core point, it constitutes a component of the clus-
ter. Points that are not connected to any particular cluster
are marked as outliers. DBSCAN can detect clusters of
varying shapes and densities using this method.

The principle of DBSCAN can be demonstrated
through a numerical example that encompasses the
points 1, 2, 2.5, 3, and 10. UsingDBSCANwith Eps = 1.5
and MinPts = 2, points 1, 2, 2.5, and 3 form a clus-
ter. They are within distance Eps and meet the density
requirement, i.e. a minimum of two points are located
within a radius of 1.5. Point 10 is marked as an outlier
because it has no neighbours within distance Eps.

A distance matrixDJ×J is required, in which each ele-
ment dij maps the distance between the joining elements
i and j. To compute these distances, process times Y(j) are
first compressed into histograms H(j), see Equation (2).
Therefore, the data range of Y(j) is divided into Q(j) con-
secutive and non-overlapping bins, q(j) ∈ {1, . . . ,Q(j)}.
Each histogram value, h(j)

q , maps a probability density
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of all process times of a joining element, which fall into
bin q(j). To determine the appropriate number of bins
for all histograms, the median of individual bin widths
is selected, of which each is determined by the estimator
of Freedman and Diaconis (1981).

H(j) =
{
h(j)1 , h(j)2 , . . . , h(j)

Q(j)

}
, j ∈ {1, . . . , J} (2)

Consequently, the Earth Movers Distance (EMD), as
defined by Rubner, Tomasi, and Guibas (2000), is used
to compute the distances between pairs of histograms.
Information between divergent bins is considered by the
EMD, unlike bin-by-bin measures such as Minkowski-
Form distance. The EMD formalises the idea of calculat-
ing theminimal average cost to transformone probability
distribution into another using a cost function c(x, y),
which specifies the cost tomove a unitmass from x to y. It
is, therefore, a solution to the popular transport problem.
The concept can be illustrated by the example of two his-
tograms. One can be regarded as a distribution of sand
piles, whereas the other is a distribution of holes. The
EMD represents the minimal amount of work required
to fill in the gaps. The term work refers to the amount of
sand beingmovedmultiplied by a grounddistance, which
is calculated using the Manhattan metric.

3.1.2. Balancing
The distribution of process time distributions in the
dataset may vary from that of actual process times. A
dataset may have numerous bimodal distributions, for
instance. In contrast, the actual process time distributions
may mainly consist of unimodal distributions. To avoid
underrepresentation of these unimodal distributions in
simulation, a balancing of the dataset is proposed.

Therefore, a rejection sampling procedure is con-
ducted, which resamples the dataset so that the means of
process times are uniformly distributed. This approach
aims to equally represent diverse types of process time
distributions within the dataset and minimise the possi-
bility of underrepresentations. Therefore, a multiset U is
defined, in which each joining element jmay appearmul-
tiple times, e.g. u(1) = 3. Likewise, it is possible that an
element is not represented, e.g. u(2) = 0. The multiset U
is populated using the following procedure.

(S1) Calculate the mean process times ȳ(j).
(S2) Split the mean process times into bins using the

estimator of Freedman and Diaconis (1981).
(S3) Randomly select a bin. Find all joining elements

whose mean process time falls within this bin. If
there is no such element, repeat this step. Otherwise,

randomly select one and add its index to the multi-
set U. If its size equals the desired size N, stop the
procedure. Otherwise, repeat this step.

3.1.3. Normalization and standardisation
Standard process times are commonly adopted in plan-
ning of car body construction. These are typically
determined by the average of historical process times,
including additional safety margins to compensate for
unknown parameters. Uncertain process times are part
of these. Hence, the process times of the dataset are nor-
malised in such a manner that the median process time
of each joining element equals the predetermined stan-
dard process time t̂; see Equation (3). Furthermore, the
process times are standardised, so that the 5- to 95-
percentile range equals a predetermined standard range
r̂, see Equation (4).

Ẏ(j) = Y(j) +
(
t̂ −Median

(
Y(j)

))
(3)

Ŷ(j) = Ẏ(j) r̂

P95
( ˙Y(j)

)
− P5

(
Ẏ(j)

) (4)

3.2. Simulation of process time distributions

Based on the prepared dataset, a simulation algorithm
is proposed to assess the effect of varying process time
distributions on balancing robotic assembly lines. There-
fore, in each replication, the tasks’ process time distribu-
tions are replaced by a random set of distributions from
the dataset and used to solve the RALBP. The algorithm
terminates if the balancing results remain stable for a
certain number of replications.

According to Rubinovitz and Bukchin (1991) pro-
posal, the Robotic Assembly Line Balancing Problem is
assuming that a singular robot will be assigned to each
workstation. Task process times are assumed to be deter-
ministic. Both assumptions are not valid in the practice
of car body construction; therefore, the assumptions for
RALBP are modified as follows:

• The process time of a task is represented by a random
variable Xt . Tasks cannot be subdivided.

• Each workstation is equipped with R robots.
• The assignment of tasks to workstations and robots is

limited by a probability limit α for violating a prede-
termined cycle time C and precedence constraints.

• The precedence relationships for all tasks are known,
unchangeable, and represented by a precedence
matrix P.

• Material handling, setup, and tool changing times are
neglected or included in the process times.

• The assembly line is balanced for a single product.
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Table 3. Variables of the mixed-integer programming model.

Variable Description

z Objective function, z ∈ R
+

s Number of workstations, s ∈ N

�s Utilization of the last workstation, 0 ≤ �s ≤ 1
w Workstation,w ∈ {1, . . . ,W}
t Task, t ∈ {1, . . . , T}
r Robot, r ∈ {1, . . . , R}
xtrw Binary variable, xtrw = 1 assigns task t to robot r in stationw
frw(u) Probability density function of cycle time u for robot r in

stationw
Frw(v) Cumulative distribution function of cycle time v on robot r in

stationw
F̃w(v) Cumulative distribution function of maximum cycle time v on

stationw
sw Binary variable, sw = 1 means that stationw has tasks

assigned

Note: Table of symbols and corresponding descriptions of the mixed-integer
programming model.

Table 4. Parameters of the mixed-integer programming model.

Parameter Description

T Number of tasks, T ∈ N

Xt Random variable to represent process times of task t, Xt ∈ R
+

[s]
PT×T Precedence matrix, pij = 1 means that task i precedes task j,

pij ∈ {0, 1}
R Number of robots per workstation, R ∈ N

α Probability limit for cycle time violations, 0 ≤ α ≤ 1
C Predetermined cycle time, C ∈ R

+ [s]
W Maximum number of workstations,W ∈ N

Note: Table of parameters anddescriptions of themixed-integer programming
model.

• The workstations and robots are not limited in their
availability.

3.2.1. Mixed-Integer programmingmodel for the
RALBP
The variables utilised in the mathmatical problem
definition are presented in Table 3. The parameters for
the model are given by Table 4.

The planning of a car body construction assembly line
often aims to minimise the number of workstations with
a given cycle time, which is a RALBP type 1. This is rep-
resented by the objective function of the model given by
Equation (5).

min z = s+�s (5)

The first part represents the number of workstations s.
The second part refers to the utilisation of the last work-
station �s, which is affected by the probability limit α.
The alteration of this limit pertains to a modification
in the utilisation of the assembly line. Therefore, for
instance, increasing α allows for an increase in the util-
isation of the assembly line while reducing the utilisation
of the last workstation. Thus, the minimisation of �s
causes the probability limit to be exhausted without the
need to save a whole workstation. The rest of the model

is provided below:

�s ≥ F̃−1s (0.01)
C

(6)

frw (u) = T
✽
t=1

fXt (u)
xtrw (7)

xtrw ∈ {0, 1} ; ∀ t, r,w (8)

Frw (v) =
∫ v

−∞
frw (u) du (9)

F̃w (v) ≥ Frw (v) ; ∀ r (10)

F̃w (C) ≤ sw (1− α) (11)

sw ∈ {0, 1} ; ∀ w (12)

s ≥ wsw ; ∀ w (13)
W∑
w=1

R∑
r=1

xtrw = 1; ∀ t (14)

pij

( W∑
w=1

R∑
r=1

w · xirw −
W∑
w=1

R∑
r=1

w · xjrw
)
≤ 0; ∀ i, j

(15)

Constraint (6) defines the relative utilisation of the last
workstation as the first percentile of the last workstation’s
process times divided by predefined cycle time C. The
selection of the first percentile is supported by the nor-
malisation of process time distributions. Normalization
is implemented in such a way that the 95th percentile
of process times for each task equals its standard time.
Therefore, since the minimum relative utilisation is part
of the objective function, tasks with large spread widths
will be assigned to the last station. This leads to lower
cycle time variations in the assembly line, which may be
beneficial for its performance.

The utilisation of a workstation and robot is defined
by Equation (7), which stipulates the convolution of the
task times’ probability density functions that are assigned
to the respective workstations and robots by binary vari-
able x, see Equation (8). In Equation (9), this is integrated
to obtain the respective cumulative distribution function
(CDF). TheCDF is used to determine themaximumCDF
for the process time of a workstation, see Equation (10).
Constraint (11) imposes a maximum probability of pro-
cess times per workstation remaining below the speci-
fied cycle time of 1− α. It also sets the binary variable
sw, see Equation (12), which is used to determine the
maximum number of workstations s, see Equation (13).
Constraint (14) ensures that each task is allocated to
exactly one workstation and robot. The precedence con-
straints defined by the precedence matrix P are enforced
by Constraint (15).
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Algorithm 1 Simulation-Algorithm
in: Precedence matrix P; Cycle time C; Probability limit α; Multiset of the balanced dataset U; Number of tasks T,

Sequence of percentilesPerc; Initial replications rinit ;Max. replications rmax; Increment in replications rinc;Window
size rwin; Min. relative change of a percentile �percmin

out: Sequence of balancing solutions B
1: B← 〈 〉 ; r← 0
2: while r ≤ rmax do
3: if r < rinit then �r← rinit else �r← rinc end if
4: for r′ ← 0 . . . �r do
5: t′ ← 〈 random(U) for all i ∈ {1, . . . ,T} 〉
6: B← B ‖ 〈RALBP(P, t′,C,α)〉 
 Solve RALBP using substitutes t′
7: end for
8: r← r +�r
9: if r > rwin then
10: Z← 〈 zb for all b ∈ B 〉
11: for i← (|Z| − rwin) . . . |Z| do 
 Calculate change of percentiles in window
12: for all perc ∈ Perc do
13: Z′ ← subseq(Z, 0, i− 1) 
 Subsequence from 0 to (i− 1)-th element
14: Z′′ ← subseq(Z, 0, i) 
 Subsequence from 0 to i-th element
15: perc′ ← percentile(Z′, perc)
16: perc′′ ← percentile(Z′′, perc)
17: �perc← |perc′ − perc′′|/perc′ 
 Relative change of percentile
18: if �perc > �percmin then
19: goto line 2
20: end if
21: end for
22: end for
23: end if
24: end while
25: return B

3.2.2. Simulation algorithm
In the simulation, the mixed-integer programming
model of the RALBP is repeatedly solved while random
substitutes from the balanced datasetU replace the tasks’
process times. A predetermined number of replications
rinit is solved at first. Then, an additional number of repli-
cations rinc is successively added. The process is repeated
until a stability analysis on a given set of percentiles
Perc of the simulation results shows no more significant
changes. A confidence interval (CI) can be established by
providing a set of percentiles, such as the 5th and 95th. It
should be noted that this CI pertains to the distribution
of simulation results and is not a statistical estimator’s
CI. Once the results remain stable, the simulation ter-
minates and the results B of the balancing replications
can be examined. The pseudocode for the simulation
algorithm is provided in Algorithm 1. The components
of the algorithm are described below:

Solving the RALBP For each replication, the substi-
tutes t′ are created by randomly selecting process

time distributions from the multiset U. In addition
to the precedence matrix P, the probability limit α

and cycle time C are employed to solve the RALBP.
The balancing solution is added to the solution
sequence B.

Stability Analysis Once the RALBP has been solved,
the stability analysis to determine if additional repli-
cations are required is conducted. Hence, the eval-
uation of the objective value of each solution zb,
for which the objective function of the problem
definition is utilised, is performed. In the next step,
relative changes of all percentiles given by Perc
are monitored during a window of rwin replica-
tions. The last rwin fitnesses are iterated, and the
relative change of a percentile between the cur-
rent and previous iteration is computed. The sim-
ulation is augmented with additional replications
if any of the relative changes exceeds the mini-
mum threshold �percmin. Otherwise, the simula-
tion is terminated and the sequence of solutions B is
returned.
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3.3. Solution analysis and selection

As the stability of the simulation results is ensured by
the stability analysis conducted during simulation, it is
anticipated that the sequence of balancing solutions B
will accurately represent the impact of varying process
time distributions on the balancing of a robotic assem-
bly line. Hence, the decision maker can select one of the
solutions with a degree of confidence π , which is utilised
to select the solution whose objective value is closest to
the (100− π)-th percentile of all values. The confidence
level ofπ can be interpreted as the percentage of solutions
that are more conservative than the selected solution, i.e.
have a higher objective value as defined by Equation (5).
Therefore, Equation (16) first calculates the (100− π)-
th percentile of all objective values. Then, the index i∗ of
the closest solution is determined using Equation (17).
The selected solution b∗ is given by Equation (18).

P100−π = Percentile100−π ({zb | b ∈ B}) (16)

i∗ = argmin
b∈B

|zb − P100−π | (17)

b∗ = Bi∗ (18)

4. Experimental setup

4.1. Implementation of the proposedmethod

To test the proposed method, it is implemented and used
on a dataset that has been formed based on process data
from ongoing production. Therefore, actual production
data from car body construction was gathered over a
three-month period in the summer of 2023. It contains
process times of approx. 4000 RSW spots that are dis-
tributed on 25 assembly lines, 115 workstations, and a
total of 255 robots. In the first step, a distance matrix
has to be computed. For this purpose, the Earth Movers
distance is calculated using the method proposed by Fla-
mary et al. (2021). The DBSCAN algorithm, as imple-
mented by Pedregosa et al. (2011), is then employed to
identify outliers. It requires the setup of two parameters,
for which the interactive approach by Ester et al. (1996)
is applied. Balancing, normalisation and standardisation
of the dataset are conducted according to Sections 3.1.2
and 3.1.3.

In the next step, the influence of varying process
time distributions on the robotic assembly line balanc-
ing is investigated. Therefore, the RALBP as described
in Section 3.2.1, has to be solved repeatedly as part of
the simulation algorithm, see Section 3.2.2. The genetic
algorithm proposed by Stade and Manns (2023b) is
employed for this purpose. Once, the simulation results
remain stable and the algorithm terminates, the results

are analysed, and a solution is selected according to the
procedure suggested in Section 3.3.

4.2. Design of experiments

The proposed method is compared to normally dis-
tributed process times in the planning of a resistance
spot welding assembly line for the production of a car
body rear compartment. A normal distribution assump-
tion (NDA) is made in various publications that consider
uncertain process times (see Ağpak and Gökçen 2007;
Fathi et al. 2019; Özcan 2018; Şahin and Tural 2023;
Tiacci 2017). As the station cycle times can be determined
analytically, in contrast to the convolution presented in
the model formulation of this work, the NDA facilitates
the solution computation for the RALBP. For compar-
ison, process times of the normal distribution are nor-
malised and standardised using the method suggested in
Section 3.1.3. As RSW comprises two process steps that
cause time variance, namely gun-closing andwelding, the
proposed method and NDA are applied to both.

The rear compartment has to be assembled in eight
subsequent joining steps, totalling 279 weld spots, which
are split into 65 primary and 214 secondary welds. Pri-
mary weld joints fix parts in position so that they always
need to be executed before any secondary or primary
welds of subsequent joining steps can be done. Secondary
welds are used to secure, seal, or finish the assembly, so
they can usually be processed later. Given the sequence of
joining steps and rules for processing primary and sec-
ondary welds, a precedence constraint matrix P can be
formed.

The predetermined cycle time C totals 60 s, which is
decreased by 10 s per handling operation. Assuming that
there are two parts to be loaded into and one assembly
off each workstation, this reduces the cycle time by 30 s
to C = 30 s. In the proposed definition of the RALBP, the
risk of cycle time violations can be controlled by a prede-
termined probability limit α. Increasing the limit allows
for higher utilisation of the assembly line resources,
which therefore saves capacity and reduces equipment
usage. Therefore, a good compromise between cycle time
violation risk and cost reduction is desired. As a result,
the experiments are repeated for probability limits of α =
0%, 5%, 10% and α = 50%.

The normalisation and standardisation step is exe-
cuted in both methods and requires deterministic stan-
dard times t̂ and ranges r̂. In practice, these are valid only
for a specific manufacturing context, such as material
pairings and sheet thickness ranges. The utilised contexts
and corresponding standard times are given in Table 5.
While standard times t̂ are practical values from the
industry, standard ranges r̂ are determined by the average



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 11

Table 5. Manufacturing contexts and corresponding standard
times and ranges.

Context Standard time t̂ Standard range r̂

Sheet
thickness Priority Welding Gun-closing Welding Gun-closing

Small Primary 3 s 78ms 32ms
Small Secondary 2.3 s 83ms 34ms
Medium Primary 3.2 s 110ms 40ms
Medium Secondary 2.5 s 99ms 32ms
High Primary 3.5 s 117ms 36ms
High Secondary 2.8 s 111ms 42ms

Note: Table of standard times and ranges for manufacturing contexts parti-
tioned by sheet thickness and joint priority for welding and gun-closing.

Table 6. Relevant input parame-
ters of the experiments.

Parameter Value

Population size 500
Maximum generations 1000
Crossover rate 0.2
Mutation rate 0.02
Unimproved generation limit 5

Note: Table of parameters for the
genetic algorithm that is executed
during the experiments.

5- to 95-percentile ranges of all weld joints in the dataset
allocated to a specific context.

For the simulations, rinit = 100 initial replications,
an increment of rinc = 10 replications and a maximum
of rmax = 1500 replications are selected. A window of
rwin = 10 replications is used to monitor the 5th and
95th percentiles of objective values in the stability anal-
ysis. The simulation will be terminated if all of the per-
centiles in the monitoring window change by less than
�percmin = 0.1%. In practice, the decisionmaker aims to
avert overly optimistic planning results and therefore is
likely to make conservative assumptions. Therefore, the
confidence level is set to π = 10%. Additional parame-
ters for the experiments are summarised in Table 6.

Application of the proposedmethod requires a dataset
of known RSWprocess times, and the assembly linemust
be planned to use the same equipment as in the dataset.
Both of these requirements are satisfied in these experi-
ments. Additionally, the actual process time distributions
of the car body rear compartment are known and serve as
comparison data for the experiments.

5. Experimental results

5.1. Solution analysis and selection

Variable process time distributions of the welding and
gun-closing process step of RSW can be assessed by the
simulations. The simulations of all probability limits were
completed within 100 to 130 replications with the given

parameters. Figure 3 illustrates the objective values of
each process step, probability limit, and replication in
histograms. Moreover, the objective values of confidence
level π are indicated by vertical lines. As all balanc-
ing solutions result in the same number of workstations,
changes in objective values can be interpreted as changes
in relative utilisation of the last workstation. A decrease
in the utilisation of the last workstation indicates a greater
overall utilisation of all previous workstations.

At a probability limit of α = 0%, the process time
distribution variations have the highest impact. Consid-
ering the 5- to 95-percentile range of objective values, the
impact of varying process time distributions amounts to
16.9% of relative utilisation in the scenario of welding.
The varying shapes of the distributions are the sole reason
for this effect, as they are all normalised and standardised.
In all other instances, the impact is lower, but also varies
from 5% to 2.7%.

In both scenarios, the highest capacity savings can be
achieved by a small increase in probability limit from 0%
to 5%. 16.6% and 9.5% are the respective amounts. The
capacity gains achieved by elevating the probability limit
to 10% or even 50% result in a maximum of 3.4% of sav-
ings. In the scenario of gun-closing, an increase inα from
10% to 50% does not result in any change of assembly line
utilisation. This observation is due to positively skewed
process time distributions that allow for large capacity
savings by small elevations of the probability limits.

5.2. Benchmarking the proposedmethod

For comparison of the results obtained by the proposed
method and the normal distribution assumption (NDA),
four evaluation metrics are introduced and described
below:

Assembly line utilisation (ALU) The assembly line util-
isation metric considers the median utilisation of
the last workstation. The value of a balancing result
b obtained by one of the approaches is compared to
the utilisation of the last workstation of the balanc-
ing result ba, which is computed using the ground
truth distributions of the rear compartment, see
Equation (19).

ALU (b, ba, s) = F̃−1b,s (0.5)− F̃−1ba,s (0.5) (19)

In practice, these are not available at the time of
planning. To minimise the risk of overly optimistic
planning results, the ALU should be positive but
close to zero, which indicates a modestly lower
anticipated utilisation of the assembly line.

Capacity savings (CS) As with the ALU, the capacity
savings metric also utilises the median utilisation of
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Figure 3. Analysis of the simulation results and solution selection.
Long Description The simulation of probability limits of α = 0%, 5%, 10% and 50% indicate an impact of varying process time distri-
butions between 2.7% and up to 16.9%. A solution selection with a confidence level of π = 10% suggest the highest capacity savings
by an elevation of the probability limit from 0% to 5%.

the last workstation and compares the result to those
obtained by the ground truth distributions. In this
case, however, the anticipated capacity savings due
to an increase of α1 to α2 are compared to the actual
savings, see Equation (20).

CS (b, ba,α2,α1, s) = F̃−1ba,α2,s (0.5)− F̃−1ba,α1,s (0.5)

− F̃−1b,α2,s (0.5)+ F̃−1b,α1,s (0.5)
(20)

As before, a positive CS is favourable but should
be close to zero, which indicates lower anticipated
capacity savings and therefore leads tomore conser-
vative results.

Probability limit violation (PLV) Once a balancing
solution is implemented in practice, actual process
time distributions apply. Therefore, the cycle times
at the workstations may differ fromwhat was antici-
pated. The specified probability limit α is not vio-
lated by the balancing solutions, but actual distri-
butions may. The probability limit violation metric
determines the probability of actual cycle times vio-
lating the given probability limit, see Equation (21).

PLV (w,α) = F̃′w (C)− α (21)

The cumulative distribution function of the
cycle times of a workstation F̃′w utilises the task

assignments of a balancing solution but replaces the
process time distributions by their actual counter-
parts. A positive PLV therefore indicates a violation
of the specified probability limit.

Cycle time estimation (CTE) The cycle time estima-
tion metric specifies the estimation error of antici-
pated cycle times in aworkstation. It is the difference
between the anticipated and actual median utilisa-
tion of a workstation, see Equation (22). A positive
CTE is desirable and indicates the overestimation of
cycle times.

CTE (w) = F̃−1w (0.5)− F̃′−1w (0.5) (22)

5.2.1. Assembly line utilisation
Table 7 presents the ALU results of the proposed simula-
tion method and the NDA. The proposed method is in
six out of eight instances closer to zero and constantly
positive. Therefore, the last workstations’ utilisation is
overestimated by a range of 0.04 s to 1.22 s. The NDA, on
the other hand, leads to constant underestimations and
therefore negativeALUs.At a probability limit ofα = 0%,
the underestimation reaches its maximum in both sce-
narios. In the scenario of welding, however, the worst
ALU of−8.28 s occurs. In the other cases, the underesti-
mation varies between −0.02 s to −1.89 s. These under-
estimations are also highlighted by Figure 4, which shows
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Figure 4. Last workstations’ utilisation obtained by the NDA as well as proposedmethod and comparison to ground truth distributions.
Long Description The utilisation of the last workstation at probability limits of 0%, 5% and 50% indicates that the proposed simulation
method well represents the ground truth distributions by showing a similar effect at an increase of α = 0% to 5%. The NDA cannot
replicate this.

Table 7. The ALU metric indicates a constant overestimation of
the assembly line utilisation by the NDA. The proposed simulation
method outperforms the NDA.

ALU

Scenario Method α = 0% α = 5% α = 10% α = 50%

Welding Simulation 0.45 s 0.61 s 0.04 s 0.75 s
NDA −8.28 s −0.84 s −0.82 s −1.0 s

Closing Simulation 1.22 s 0.29 s 0.26 s 0.59 s
NDA −1.89 s −0.92 s −0.13 s −0.02 s

Note: Table of assembly line utilisation metric values for welding and gun-
closing aswell as theproposedmethodandnormal distribution assumption.
The normal distribution assumption is consistently outperformed by the
proposed method.

the utilisation distributions of the last workstation of
both scenarios and approaches for probability limits of
α = 0%, α = 5% and α = 50%. The results obtained by
the ground truth process time distributions are also pre-
sented. In comparison to the ground truth, the spread
width of the utilisation distribution of the NDA is sig-
nificantly smaller. The spread widths of the proposed
method, in contrast, are closer to the ground truth.

5.2.2. Capacity savings
Table 8 presents CS results of both approaches and sce-
narios, as well as all probability limits. As indicated by the

results regarding the ALU metric, the anticipated capac-
ity savings of the NDA by increasing the probability limit
from 0% to 5% is significantly underestimated. This can
also be observed in Figure 4. Especially in the scenario of
welding, the CS metric amounts to 7.45 s. The proposed
simulation method yields a respective value of 0.15 s,
which is substantially closer to the ground truth. As has
been observed in the solution analysis, see Section 5.1,
the substantial capacity savings from 0% to 5% in the
ground truth and simulation results are due to positively
skewed process time distributions and possible outliers.
This cannot be reproduced by the NDA.

In all other cases, however, the NDA overestimates the
capacity savings once by 0.19 s. The proposed simulation
approach, on the other hand, results in negative CS values
in three instances.

5.2.3. Probability limit violation
The probability limit violation metric is categorised in
Table 9 into 10% wide intervals that range from 0%
to 50% of probability limit violation. The simulation
method leads in total to four probability limit violations,
of which three are in a range between 0% and 10%. In
one instance, the violation lies between 10% and 20%. All
violations are in the scenario of welding.
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Table 8. The NDA underestimates the capacity savings of the
ground truth distributions at an increase of the probability limit
from α = 0% to 5%, but partly outperforms the proposed simu-
lation method later.

CS

Scenario Method α = 0%→ 5% α = 5%→ 10% α = 10%→ 50%

Welding Simulation 0.15 s −0.57 s 0.72 s
NDA 7.45 s 0.02 s −0.19 s

Closing Simulation −0.94 s −0.02 s 0.33 s
NDA 0.97 s 0.79 s 0.12 s

Note: Table for the comparisonof the capacity savingsmetrics for theproposed
simulationmethodandnormal distribution assumption atwelding andgun-
closing scenarios. The normally distributed process times underestimate the
large capacity savings between a probability limit of 0% and 5%, but later
partly outperfom the proposed method.

Table 9. The proposed simulation method violates the given
probability limit less often and less severe.

PLV

Scenario Method 0%–10% 10%–20% 30%–40% 40%–50%

Welding Simulation 3 1 0 0
NDA 7 0 2 1

Closing Simulation 0 0 0 0
NDA 4 0 0 0

Note: Table for the comparison of probability limit violation metrics of the
proposed simulation method and normal distribution assumption. The pro-
posed method violates the specified limit less often and less severe.

In the scenario of welding, the NDA results in a
higher number and more severe probability limit viola-
tions. Seven instances fall in between 0% and 10%. In
two cases, however, the probability limit is exceeded by
30% to 40% and in one instance by 40% to 50%. In the
scenario of gun-closing, four marginal violations varying
between 0% and 10% can be observed. Hence, the pro-
posed simulation method clearly outperforms the NDA
in both scenarios. This is emphasised by Figure 5, which
depicts instances of probability limit violations for both
approaches in the welding scenario, with probability lim-
its of 10% and 50%. The anticipated cycle times and
their ground truth equivalents are presented for work-
stations two, four, and five of the balancing solutions.
As previously noted in the ALU and CS metrics, the
NDA significantly underestimates the spread widths and
positive skewness of cycle times. This leads to numer-
ous breaches of probability limits, particularly at lower
probability limits. The suggested simulation approach
better captures the distinctive features of the underlying
ground truth distributions. Nevertheless, in the majority
of instances, it also underestimates the spread width and
positive skewness, although by a smaller margin.

5.2.4. Cycle time estimation
Figure 6 presents the negative values of the CTE metric
in histograms for both scenarios and approaches. It can
be observed that the NDA underestimates the median

cycle times in all instances by up to 161ms and 31ms.
Less severe and frequent underestimations of the pro-
posed simulation approach are evident. The correspond-
ing maximum underestimates are 71ms and 20ms. 13
and 7 instances are underestimated, respectively.

6. Discussion

As has been described in Section 1 on the example of
RSW, the shape of process time distributions cannot be
estimated utilising planning data. This is likely due to
the unstandardised and individual process of weld con-
trol parametrization. The proposed simulation method
allows for the evaluation of the effects of varying process
time distributions on the balancing of robotic assembly
lines.

The solution analysis of the experimental results on
the welding and gun-closing process times of RSW indi-
cates a substantial impact. A small increase in probability
limits from 0% to 5% results in large capacity savings
thanks to the positive skewness and potential outliers
of the underlying process time distributions. Further
increases of the probability limit result in significantly
diminished savings.

This can be validated by the comparative analysis con-
sidering the NDA and ground truth distributions. The
RALBP solved by utilising the actual process time dis-
tributions shows similar effects. This behaviour is not
replicated by the NDA, and the capacity enhancements
at low probability limit elevations are clearly underesti-
mated. Capacity gains induced by further increases are
better estimated, partly better than those predicted by
the simulation method. However, the utilisation of the
assembly line is consistently underestimated. Thismeans,
that the anticipated cycle times of workstations are lower
than the actual cycle times. As a result, the prespecified
probability limit is violated in numerous instances, three
of which by a considerable margin. The experimental
findings suggest that the NDA is inadequate for the pro-
cess times of welding and gun-closing, thereby limiting
its practical application.

The proposed simulation method, by contrast, under-
estimates cycle times less often and severely. Therefore,
the probability limit is violated in fewer instances, none of
which is as significant as theNDA. Themethod surpasses
the NDA by utilising historical process time distribu-
tions of the respective joining techniques, which possess
characteristics of the actual distributions. In practice, the
approach can be employed to establish an appropriate
probability limit, which serves as a compromise between
capacity reduction and the potential for cycle time vio-
lations. However, the decision maker must determine a
confidence level based on the simulation results and the
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Figure 5. Comparison of anticipated (at planning) and actual cycle times (after realisation) for the normal distribution assumption and
proposed simulation method.
LongDescription The anticipated cycle times obtained by bothmethods are compared to actual cycle times that apply after realisation
of the assembly line in workstations 2, 4 and 5 for probability limits 10% and 50%. It indicates that the NDA constantly underestimates
the cycle times, which leads to violation of cycle times and probability limits.

Figure 6. The CTEmetric showsmore andmore severe underestimations of cycle times by the NDA compared to the proposedmethod.
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use case. As a low confidence level translates to a more
conservative balancing solution, the assembly line utilisa-
tion in general is lower. Given the effect of skewness and
outliers observed in the experiments, this may increase
the sensitivity of balancing for small increases in proba-
bility limit. Therefore, a low confidence level may lead to
overly optimistic expectations for capacity savings.

The balancing of the dataset in the proposed method
greatly contributes to its improved performance. The
rejection sampling technique is employed to draw distri-
butions from the dataset to evenly distribute the mean
process times. This is important because it is not known
how the process time distributions to be predicted relate
to the dataset. The balancing mitigates the possibility of
an unfavourable ratio, which may lead to an inadequate
representation of the dataset. Although the shift and scale
of the distributions correlate with the planning data, the
shape does not. The utilisation of the mean process time
for balancing of the distributions is therefore inadequate.
Future research may therefore focus on the balancing of
the dataset considering the distributions’ shapes to fur-
ther improve the robustness of the approach. This needs
to be validated and quantified by extended experiments.

Although the proposed simulation method outper-
forms the NDA, the findings emphasise that the positive
skewness of the ground truth distributions is a contribut-
ing factor. Hence, alternative distribution assumptions
that consider skewness have the potential to yield supe-
rior outcomes. Furthermore, the computational effort
may be greatly reduced. This, however, needs to be val-
idated and may not be adequate for every joining tech-
nique and corresponding process time distributions. In
direct comparison, the proposed data-driven simulation
method, including its limitations, is robust to altering
distribution shapes and provides good results. The simu-
lations are based on historical process data, which allows
for a straightforward adaptation to other joining tech-
niques. Different balancing objectives or even assembly
line types are also possible through the adaptation of
the underlying problem formulation and the respective
solution technique.

7. Conclusion and future research

This work introduces a simulation method to assess the
impact of varying process time distributions on the bal-
ancing of robotic assembly lines. It focuses on the early
planning phases of car body construction, where many
requirements and premises, such as process times, are
still uncertain. However, as car body construction widely
employs standardised equipment, knowledge of existing
assembly lines can be transferred to planning. Based on

two practical examples, the application of the method
was demonstrated. With the help of process time distri-
butions of existing assembly lines, the impact of varying
process time distributions on the balancing of a new
assembly line is simulated. This allows for the consid-
eration of process time variance in the early planning
of car body construction before actual process times are
available.

It becomes apparent that the proposed simulation
method provides a contribution to the consideration of
uncertain process times in the early planning of car
body construction. The simulation method is compared
to normally distributed process times, which is a com-
mon assumption for process times in the literature. As
the experiments show, the balancing results of the sim-
ulation method are more stable and reliable than those
obtained by the normal distribution assumption. As a
result, costs may be reduced by improving the quality
of early planning. However, in some cases of the exper-
iments, the capacity savings by increasing the probability
limit for cycle time violations, are overestimated. This
is due to the selection of a simulation solution based
on the objective function of the balancing results, which
do not reflect the capacity savings. Further research
should be conducted to investigate and mitigate these
observations.

As car body construction is highly automated, many
process steps cause process time variance. The exper-
iments of the present work focus on resistance spot
welding for one main assembly of a car body-in-white
using production data of a single plant. Nonetheless, the
approach is capable of being adapted to other joining
techniques, assembly line types, and objective functions.
Future researchmay expand to explore and evaluate these
further research directions.
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