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Abstract
We consider a finite number of N statistically equal agents, each moving on a finite set
of states according to a continuous-time Markov Decision Process (MDP). Transition
intensities of the agents and generated rewards depend not only on the state and action
of the agent itself, but also on the states of the other agents as well as the chosen action.
Interactions like this are typical for a wide range of models in e.g. biology, epidemics,
finance, social science and queueing systems among others. The aim is to maximize
the expected discounted reward of the system, i.e. the agents have to cooperate as a
team. Computationally this is a difficult task when N is large. Thus, we consider the
limit for N → ∞. In contrast to other papers we treat this problem from an MDP
perspective. This has the advantage that we need less regularity assumptions in order
to construct asymptotically optimal strategies than using viscosity solutions of HJB
equations. The convergence rate is 1/

√
N . We show how to apply our results using

two examples: a machine replacement problem and a problem from epidemics. We
also show that optimal feedback policies from the limiting problem are not necessarily
asymptotically optimal.

Keywords Continuous-time Markov decision process · Mean field problem · Process
limits · Pontryagin’s maximum principle
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1 Introduction

We consider a finite number of N statistically equal agents, each moving on a finite
set of states according to a continuous-time Markov Decision Process. Transition
intensities of the agents and generated rewards can be controlled and depend not only
on the state and action of the agent itself, but also on the states of the other agents.
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Interactions like this are typical for a wide range of models in e.g. biology, epidemics,
finance, social science and queueing systems among others. The aim is to maximize
the expected discounted reward of the system, i.e. the agents have to cooperate as a
team. This can be implemented by a central controller who is able to observe the whole
system and assigns actions to the agents. Though this system itself can be formulated
as a continuous-time Markov Decision Process, the established solution procedures
are not really practical since the state space of the system is complicated and of high
cardinality. Thus, we consider the limit N → ∞ when the number of agents tends to
infinity and analyze the connection between the limiting optimization problem, which
is a deterministic control problem, and the N agents problem.

Investigations like this are well-known under the nameMean-field approximation,
because the mean dynamics of the agents can be approximated by differential equa-
tions for a measure-valued state process. This is inspired by statistical mechanics and
can be done for different classes of stochastic processes for the agents. In our paper we
restrict our investigation to continuous-time Markov chains (CTMC). Earlier, more
practical studies in this spirit with CTMC, butwithout control are e.g. [1, 2] which con-
sider illustrating examples to discuss how the mean-field method is used in different
application areas. The convergence proof there is based on the law of large numbers
for centred Poisson processes, see also [3]. The authors of [4] look at so-called reac-
tion networks which are chemical systems involving multiple reactions and chemical
species. They take approximations of multiscale nature into account and show that
’slow’ components can be approximated by a deterministic equation. Reference [5]
formulates some simple conditions under which a CTMC may be approximated by
the solution to a differential equation, with quantifiable error probabilities. They give
different applications. Reference [6] explores models proposed for the analysis of
BitTorrent P2P systems and provide the arguments to justify the passage from the
stochastic process, under adequate scaling, to a fluid approximation driven by a differ-
ential equation. A more recent application is given in [7] where a multi-type analogue
of Kingman’s coalescent as a death chain is considered. The aim is to characterize the
behaviour of the replicator coalescent as it is started from an initial population that is
arbitrarily large. This leads to a differential equation called the replicator equation. A
similar control model as ours is considered in [8]. However, there the author uses a
finite time horizon and solves the problemwith HJB equations. This requires a consid-
erable technical overhead like viscosity solutions and more assumptions on the model
data like Lipschitz properties which we do not need here.

A related topic are fluid models. Fluid models have been introduced in queueing
network theory since there is a close connection between the stability of the stochastic
network and the corresponding fluid model, [9]. They appear under ’fluid scaling’
where time in the CTMC for the stochastic queueing network is accelerated by a
factor N and the state is compressed by factor 1/N . Fluid models have also been
used to approximate the optimal control in these networks, see e.g. [10–14]. In [15]
different scales of time are treated for the approximation and some components may
be replaced by differential equations. But there is no mean-field interaction in all of
these fluid models.

There are also investigations about controlled mean-field Markov decision pro-
cesses and their limits in discrete time. An early paper is [16] where the mean-field
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limit for increasing number of agents is considered in a model where only the cen-
tral controller is allowed to choose one action. However, in order to get a continuous
limit the authors have to interpolate and rescale the original discrete-time processes.
This implies the necessity for assumptions on the transition probabilities. The authors
show the convergence of the scaled value functions and derive asymptotically opti-
mal strategies. The recent papers [17–20] discuss the convergence of value functions
and asymptotically optimal policies in discrete time. In contrast to our paper they
allow a common noise. The limit problem is then a controlled stochastic process in
discrete-time.

Another strand of literature considers continuous-time mean-field games on a finite
number of states [21–25]. These papers among others considers the construction of
asymptotically optimal Nash-equilibria from a limiting equation. The exception is
[24] where it is shown that any solution of the limiting game can be approximated
by εN -Nash equilibria in the N player game. However, all these papers deal with the
convergence of the HJB equations which appear in the N player game to a limiting
equation, called the Master equation ( [26]) which is a deterministic PDE for the value
function. This approach needs sufficient regularity of the value functions and many
assumptions. Reference [25] considers the problem with common noise and reduces
the mean field equilibrium to a system of forward-backward systems of (random)
ordinary differential equations.

The contribution of our paper is first to establish and investigate the limit of the
controlled continuous-time Markov decision processes. In contrast to previous litera-
ture which works with the HJB equation this point of view requires less assumptions
e.g. we do not need Lipschitz conditions on the model data. Second, we are also able
to construct an asymptotically optimal strategy for the N agents model. Our model is
general, has only a few, easy to check assumptions and allows for various applications.
The advantage of our limiting optimization problem is that we can apply Pontryagin’s
maximum principle easily which is often more practical than deterministic dynamic
programming. Further, we show that an optimal feedback policy in the deterministic
problem does not necessarily imply an asymptotically optimal policy for the N agents
problems. Third, we obtain a convergence rate in a straightforward way. Fourth, we
can consider finite and infinite time horizon at the same time. There is essentially no
difference. We restrict the presentation mainly to the infinite time horizon.

Our paper is organized as follows: In the next section we introduce our N agents
continuous-time Markov decision process. The aim is to maximize the expected dis-
counted reward of the system. In Sect. 3 we introduce a measure-valued simplification
which is due to the symmetry properties of the problem and which reduces the car-
dinality of the state space. The convergence theorem if the number of agents tends to
infinity can be found in Sect. 4. It is essentially based on martingale convergence argu-
ments. In Sect. 5 we construct a sequence of asymptotically optimal strategies from the
limiting model for the N agents model. We also show that different implementations
may be possible and that the rate of convergence is at most 1/

√
N . Finally in Sect. 6

we discuss three applications. The first one is a machine replacement problem when
we have many machines, see e.g. [27]. The second one is the spreading of malware
which is based on the classical SIR model for spreading infections, [16, 28]. The last
example shows that one has to be careful with feedback policies.
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2 The N Agents Continuous-TimeMarkov Decision Process

We consider a finite number of N statistically equal agents, each moving on a finite
set of states S according to a continuous-time Markov Decision Process. The vector
xt = (x1t , ..., x

N
t ) ∈ SN describes the state of the system at time t ∈ [0,∞), where

xkt is the state of agent k = 1, . . . , N . The action space of one agent is a compact
Borel set A. The action space of the system is accordingly AN . We denote an action
of the system by a = (a1, ..., aN ) ∈ AN where ak is the action chosen by agent
k = 1, . . . , N .
Let D(i) ⊂ A be the set of actions available for an agent in state i ∈ S which we again
assume to be compact. Then the set of admissible actions for the system in state x ∈ SN

is given by D(x) := D(x1) × · · · × D(xN ) ⊂ AN . The set of admissible state-action
combinations for one agent is denoted by D := {(i, a) ∈ S× A | a ∈ D(i), ∀ i ∈ S}.

For the construction of the system state process we follow the notation of [29].
The state process of the system is defined on the measurable space (�,F) := (

(SN ×
R+)∞,B((SN ×R+)∞)

)
.We denote an element of� byω = (x0, t1, x1, t2, ...). Now

define

X̃n : � → SN , X̃n(ω) = xn, n ∈ N0,

τn : � → R+, τn(ω) = tn, n ∈ N,

Tn :=
n∑

k=1

τk, T0 := 0.

The controlled state process of the system is then given by

Xt :=
∑

n∈N0

1{Tn≤t<Tn+1}X̃n, t ∈ [0,∞).

The construction of the process can be interpreted as follows: The random variables
τn describe the sojourn times of the system in states X̃n−1. Based on the sojourn times,
Tn describes the time of the n-th jump of the process and X̃n the state of the process
on the interval [Tn, Tn+1). By construction the continuous-time state process (Xt ) has
piecewise constant càdlàg-paths and the embedded discrete-time process is (X̃n).
The system is controlled by policies. W.l.o.g. we restrict here to Markovian stationary
policies. Further, we allow for randomized decisions, i.e. each agent can choose a
probability distribution on A as its action. Hence a policy for the system is given by a
collection of N stochastic kernels π(da | x) = (πk(da | x))k=1,...,N , where

πk : SN × B(A) → [0, 1], (x,A) 	→ πk(A | x) (kernel for agent k).

πk(A | x) is the stochastic kernel (it is here considered as a relaxed control) with
which agent k chooses an action, given the state x of the system. Naturally, it should
hold that the kernel is concentrated on admissible actions, i.e. πk(D(xk) | x) = 1 for
all agents k = 1, ..., N .
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The action process is thus defined by

πt :=
∑

n∈N0

1{Tn<t≤Tn+1}π(· | X̃n), t ∈ [0,∞).

In contrast to the state process, the action process has piecewise constant càglàd-
paths. This means that a new decision can only be taken after a change of state has
already occurred. The general theory on continuous-time Markov decision processes
states that the optimal policy can be found among the piecewise constant, determin-
istic, stationary policies. In particular, varying the action continuously on the interval
[Tn, Tn+1) does not increase the value of the problem. Also randomization does not
increase the value, but in view of the sections to come, we already allowed for ran-
domization (relaxation) here.
To prepare the description of the transition mechanism in our model, we define the
empirical distribution of the agents over the states, i.e.

μ[x] := 1

N

N∑

k=1

δxk .

where δxk is the Dirac measure in point xk . The transition intensities for one agent
are given by a signed kernel

q : S × A × P(S) × P(S) → R, (i, a, μ, �) 	→ q(� | i, a, μ) =
∑

j∈�

q({ j} | i, a, μ).

Here P(S) is the set of all probability distributions on S and P(S) is the power set
of S. Note that the transition of an agent depends not only on its own state and action,
but also on the empirical distribution of all agents over the states.
We make the following assumptions on q:

(Q1) q({ j}|i, a, μ) ≥ 0 for all i, j ∈ S, j �= i, a ∈ D(i), μ ∈ P(S).

(Q2)
∑

j∈S q({ j}|i, a, μ) = 0 for all (i, a) ∈ D, μ ∈ P(S).

(Q3) supi,a, j,μ |q({ j}|i, a, μ)| =: qmax < ∞.

(Q4) μ 	→ q({ j}|i, a, μ) is continuous w.r.t. weak convergence for all i, j ∈ S, a ∈
D(i).

(Q5) a 	→ q({ j}|i, a, μ) is continuous for all i, j ∈ S, μ ∈ P(S).

Note that (Q3) follows from (Q4) and (Q5), but since it is important we list it here.
Based on the transition intensities for one agent, the transition intensities of the system
are given by

q({(x1, . . . , xk−1, j, xk+1, . . . xN )}|x, a) := q({ j}|xk, ak, μ[x]) (2.1)
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for all (x, a) ∈ D(x), j ∈ S, j �= xk and

q({x}|x, a) :=
N∑

k=1

q({xk}|xk, ak, μ[x]).

All other intensities are zero. The intensity in Eq. (2.1) describes the transition of
agent k from state xk ∈ S to state j ∈ S, while all other agents stay in their current
state. Since only one agent can change its state at a time, this definition is sufficient
to describe the transition mechanism of the system.
Further we set (in a relaxed sense) for a decision rule πk(da|x)

q({(x1, . . . , xk−1, j, xk+1, . . . , xN )}|x, π) =
∫

A
q({ j}|xk, a, μ[x])πk(da|x).

Note that in a certain sense there is abuse of notation here since we use the letter q
both for the agent transition intensity and for the system transition intensity. It should
always be clear from the context which one is meant.
The probabilitymeasure of the N agent process is nowgiven by the following transition
kernels

P
π (τn ≤ t, X̃n ∈ B|X̃n−1) =

∫ t

0
q(B|X̃n−1, π)es·q({X̃n−1}|X̃n−1,π)ds

for all t ≥ 0 and B ∈ P(SN ). In particular, the sojourn times τn are exponentially
distributed with parameter −q({X̃n−1}|X̃n−1, π) respectively. Note that by using this
construction, the probability measure depends on the chosen policy. This construction
is more convenient when the transition intensities are given. In case the system is
described by transition functions and external noise it is easier to use a common
probability space which does not depend on the policy. Of course these two points of
view are equivalent.

Returning to the model’s control mechanism, keep in mind that the policy of an
agent πk(da | x) is allowed to depend on the state of the whole system, i.e. we assume
that each agent has information about the position of all other agents. Therefore, we
can interpret our model as a centralized control problem, where all information is
collected and shared by a central controller.
The goal of the central controller is to maximize the social reward of the system. In
order to implement this, we introduce the (stationary) reward function for one agent
as

r : D × P(S) → R, (i, a, μ) 	→ r(i, a, μ),

which does not only depend on the state and action of the agent, but also on the
empirical distribution of the system.Wemake the following assumptions on the reward
function:

(R1) For all (i, a) ∈ D the function μ 	→ μ(i)r(i, a, μ) is continuous w.r.t. weak
convergence.
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(R2) For all i ∈ S and μ ∈ P(S) the function a 	→ r(i, a, μ) is continuous.

Since the set of admissible actions D(i) is compact, (R1) and (R2) imply that the
following expression is bounded:

sup
(i,a)∈D, μ∈P(S)

|μ(i)r(i, a, μ)| < ∞. (2.2)

The (social) reward of the system is the average of the agents’ rewards

r(x, a) := 1

N

N∑

k=1

r(xk, ak, μ[x]), (2.3)

or, in a relaxed sense for a decision rule πk(da | x)

r(x, π) := 1

N

N∑

k=1

∫

A
r(xk, a, μ[x])πk(da | x).

The aim is now to find the social optimum, i.e. to maximize the joint expected
discounted reward of the system over an infinite time horizon. For a policy π , a
discount rate β > 0 and an initial configuration x ∈ SN define the value function

Vπ (x) = E
π
x

[ ∫ ∞

0
e−βt r(Xt , πt )dt

]

V (x) = sup
π

Vπ (x). (2.4)

We are not discussing solution procedures for this optimization problem here since we
simplify it in the next section and present asymptotically optimal solution methods in
Sect. 5.

3 TheMeasure-Valued Continuous-TimeMarkov Decision Process

As N is getting larger, so does the state space SN , which couldmake themodel increas-
ingly complex and impractical to solve. Therefore, we seek for some simplifications.
An obvious approach which is common for these kind of models, is to exploit the sym-
metry of the system by capturing not the state of every single agent, but the relative
or empirical distribution of the agents across the |S| states.
Thus, let μN

t := μ[Xt ] and define as new state space the set of all distributions which
are empirical measures of N atoms

PN (S) := {μ ∈ P(S) | μ = μ[x], for x ∈ SN }.
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It holds that the new state process μN
t is the same as

μN
t =

∑

n∈N0

1{Tn≤t<Tn+1}μ[X̃n], t ∈ [0,∞).

As action space take the |S|-fold Cartesian product P(A)|S| of P(A). Hence, an
action is given by |S| probability measures α(da) = (αi (da))i∈S with αi (D(i)) = 1.
Hereby the i-th component indicates the distribution of the agents’ actions in state
i ∈ S. The set of admissible state-action combinations of the new model is given by
D̂ := PN (S) × P(A)|S|.
For the policieswe restrict again toMarkovian, stationary policies given by a collection
of |S| stochastic kernels π̂(da|μ) = (π̂ i (da|μ))i∈S , where

π̂ i : PN (S) × B(A) → [0, 1], (μ,A) 	→ π̂ i (A | μ) (kernel for state i).

where π̂ i (D(i) | μ) = 1. In what follows we denote μ̃N
n := μ[X̃n]. Then we can

express the action process by setting

π̂t :=
∑

n∈N0

1{Tn<t≤Tn+1}π̂(·|μ̃N
n ), t ∈ [0,∞). (3.1)

The transition intensities of the process (μN
t )t≥0 are given by

q({μi→ j }|μ, α) = Nμ(i)
∫

A
q({ j}|i, a, μ)αi (da), μ ∈ PN (S), α ∈ P(A)|S|,

(3.2)

with μi→ j := μ − 1
N δi + 1

N δ j for all i, j ∈ S, i �= j if μ(i) > 0. This intensity
describes the transition of one arbitrary agent in state i ∈ S to state j ∈ S, while
all other agents stay in their current state. Note that the intensity follows from the
usual calculations for continuous-time Markov chains, in particular from the fact that
if X ,Y are independent random variables with X ∼ Exp(λ),Y ∼ Exp(ν), then
X ∧ Y ∼ Exp(λ + ν). In the situation in Eq. (3.2) we have Nμ(i) agents in state i .
Further we set for all μ ∈ PN (S) and α ∈ P(A)|S|

q({μ}|μ, α) := −
∑

i,μ(i)>0

∑

j �=i

q({μi→ j }|μ, α).

All other intensities are zero, since again only one agent can change its state at a
time.
The probability distribution of the measure-valued process under a fixed policy π̂ is
now given by the following transition kernels

P
π̂ (τn ≤ t, μ̃N

n ∈ B|μ̃N
n−1) =

∫ t

0
q(B|μ̃N

n−1, π̂)es·q({μ̃N
n−1}|μ̃N

n−1,π̂)ds
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for all t ≥ 0 and B ⊂ PN (S) measurable, where the random variables (τn) are the
same as before.
The reward function of the system is derived from the reward for one agent:

r(μ, α) :=
∑

i∈S

∫
r(i, a, μ)αi (da)μ(i).

In view of Eq. (2.2) r(μ, α) is bounded. The aim in this model is again to maximize
the joint expected discounted reward of the system over an infinite time horizon. For
a policy π̂ , a discount rate β > 0 and an initial configuration μ ∈ PN (S) define the
value function

V N
π̂

(μ) = E
π̂
μ

[ ∫ ∞

0
e−βt r(μN

t , π̂t )dt
]

V N (μ) = sup
π̂

V N
π̂

(μ). (3.3)

We can now show that both formulations in Eqs. (2.4) and (3.3) are equivalent
in the sense that the optimal values are the same. Of course, an optimal policy in
the measure-valued setting can directly be implemented in the original problem. The
advantage of the measure-valued formulation is the reduction of the cardinality of the
state space. Suppose for example that S = {0, 1}, i.e. all agents are either in state 0 or
state 1. Then |SN | = 2N in the original formulation whereas |PN (S)| = N + 1 in the
second formulation. A proof of the next theorem can be found in the appendix.

Theorem 3.1 It holds that V (x) = V N (μ) for μ = μ[x] for all x ∈ SN .

Remark 3.2 It is possible to extend the previous result to a situation where reward
and transition intensity both also depend on the empirical distribution of actions, see
e.g. [18]. However, due to the definition of the Young topology which we use later it
is not possible to transfer the convergence results to this setting.

The problem we have introduced is a classical continuous-time Markov Decision
Process and can be solved with the established theory accordingly. Thus, we obtain:

Theorem 3.3 There exists a continuous function v : PN (S) → R satisfying

βv(μ) = sup
α∈P(A)|S|

{
r(μ, α) +

∫
v(ν)q(dν|μ, α)

}

for all μ ∈ PN (S) and there exists a maximizer π̂(·|μ) of the r.h.s. such that v = V N

and π̂ determines the optimal policy by Eq. (3.1).

The theorem follows from Theorem 4.6, Lemma 4.4 in [30] or Theorem 3.1.2 in [29].
Theorem 3.3 implies a solutionmethod for problem (3.3). It can e.g. be solved by value
or policy iteration. However, as already discussed, even in this simplified setting, the
computation may be inefficient if N is large, since this leads to a large state space.
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4 Convergence of the State Process

In this section we discuss the behaviour of the system when the number of agents
tends to infinity. In this case we obtain a deterministic limit control model which
serves as an asymptotic upper bound for our optimization problem with N agents.
Moreover, an optimal control of the limit model can be used to establish a sequence
of asymptotically optimal policies for the N agents model.

In what follows we consider (μN
t ) as a stochastic element of DPN (S)[0,∞), the

space of càdlàg paths with values in PN (S) equipped with the Skorokhod J1-topology
and metric dJ1 . On PN (S) we choose the total variation metric ‖ · ‖T V .

Further, we consider π̂ i as a stochastic element in
R := {ρ : R+ → P(A) | ρ measurable} endowed with the Young topology (cf.
[31]). It is possible to show thatR is compact and metrizable. Measurability and con-
vergence inR can be characterized as in Lemma 4.1. These statements follow directly
from the fact that the Young topology is the coarsest topology such that the mappings

ρ 	→
∫ ∞

0

∫

A
ψ(t, a)ρt (da)dt

are continuous for all real functionsψ onR+× Awhereψ is a Carathéodory function,
i.e. ψ is continuous in a and measurable in t where ψ is integrable in the sense that∫ ∞
0 supa |ψ(t, a)|dt < ∞.

Lemma 4.1 (a) ρ : R+ → P(A) is measurable if and only if ρ is a transition proba-
bility from R+ into A.

(b) Let ρn, ρ ∈ R. ρn → ρ for n → ∞ if and only if

∫ ∞

0

∫

A
ψ(t, a)ρn

t (da)dt →
∫ ∞

0

∫

A
ψ(t, a)ρt (da)dt

for allmeasurable functionsψ : R+×A → R such that a 	→ ψ(t, a) is continuous
for all t ≥ 0 and

∫ ∞
0 supa |ψ(t, a)|dt < ∞.

In a first step we define for N ∈ N, a fixed policy π̂N and arbitrary j ∈ S, the
one-dimensional process

MN
t ( j) := μN

t ( j) − μN
0 ( j) −

∫ t

0

∑

ν∈PN (S)

(ν( j) − μN
s ( j))q({ν}|μN

s , π̂s)ds.

Then (MN
t ( j)) are martingales w.r.t. the filtration FN

t = σ(μN
s , s ≤ t). This follows

from the Dynkin formula, see e.g. [31], Proposition 14.13. Next we can express the
process (MN

t ( j)) a bit more explicitly. Note that the difference ν( j) − μN
s ( j) can

either be −1/N if an agent changes from state j to a state k �= j or it could be 1/N
if an agent changes from state i �= j to state j . Since by (Q2)

∑

k �= j

∫
q({k}| j, a, μN

s )π̂
N , j
s (da) = −

∫
q({ j}| j, a, μN

s )π̂
N , j
s (da) (4.1)
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we obtain by inserting the intensity in Eq. (3.2) and by using Eq. (4.1)

MN
t ( j) =μN

t ( j) − μN
0 ( j) −

∫ t

0

∑

k �= j

− 1

N
NμN

s ( j)
∫

q({k}| j, a, μN
s )π̂

N , j
s (da)ds

−
∫ t

0

∑

i �= j

1

N
NμN

s (i)
∫

q({ j}|i, a, μN
s )π̂N ,i

s (da)ds

=μN
t ( j) − μN

0 ( j) −
∫ t

0

∑

i∈S
μN
s (i)

∫
q({ j}|i, a, μN

s )π̂N ,i
s (da)ds. (4.2)

With this representation we can prove that the sequence of stochastic processes
(MN ( j)) converges weakly (denoted by ⇒) in the Skorokhod J1-topology to the
zero process. The proof of this lemma together with the proof of the next theorem can
be found in the appendix.

Lemma 4.2 We have for all j ∈ S that

(MN
t ( j))t≥0 ⇒ 0, N → ∞.

Next we show that an arbitrary state-action process sequence is relatively compact
which implies the existence of converging subsequences.

Theorem 4.3 A sequence of arbitrary state-action processes (μN , π̂N )N is relatively
compact. Thus, there exists a subsequence (Nk) which converges weakly

(μNk , π̂Nk ) ⇒ (μ, π̂), for k → ∞.

Moreover, the limit (μ, π̂) satisfies

(a) (μt ) has a.s. continuous paths,
(b) and for each component j we have

μt ( j) = μ0( j) +
∫ t

0

∑

i∈S
μs(i)

∫
q({ j}|i, a, μs)π̂

i
s (da)ds.

5 The Deterministic Limit Model

Consider the following deterministic optimization problem:

(F) sup
π̂

∫ ∞

0
e−βt r(μt , π̂t )dt,

s.t . μ0 ∈ P(S), π̂ i
t ∈ P(A), π̂ i

t (D(i)) = 1,
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μt ( j) = μ0( j) +
∫ t

0

∑

i∈S
μs(i)

∫
q({ j}|i, a, μs)π̂

i
s (da)ds, ∀t ≥ 0, j = 1, . . . , |S|.

Note that the theory of continuous-timeMarkov processes implies thatμt is automati-
cally a distribution. Hence one of the |S| differential equations in (F)may be skipped.
Also note that when the transition intensity and the reward are linear in the action,
relaxation of the control is unnecessary. We denote the maximal value of this problem
by V F (μ0). We show next, that this value provides an asymptotic upper bound to the
value of problem (3.3).

Theorem 5.1 For all (μN
0 ) ⊂ PN (S), μ0 ∈ P(S)withμN

0 ⇒ μ0 and for all sequences
of policies (π̂N

t ) we have

lim sup
N→∞

V N
π̂N
t

(μN
0 ) ≤ V F (μ0).

Proof According to Theorem 4.3 we can choose a subsequence (Nk) of corresponding
state and action processes such that

(μNk , π̂Nk ) ⇒ (μ, π̂), for k → ∞.

For convenience we still denote this sequence by (N ). We show that

lim
N→∞ V N

π̂N (μN
0 ) = lim

N→∞E

[ ∫ ∞

0
e−βt r(μN

t , π̂N
t )dt

]

= E

[ ∫ ∞

0
e−βt r(μt , π̂t )dt

]
≤ V F (μ0).

The last inequality is true due to the fact that by Theorem 4.3 the limit process (μ, π̂)

satisfies the constraints of problem (F).
Let us show the second equality. We obtain by bounded convergence (r is bounded)

lim
N→∞E

[ ∫ ∞

0
e−βt r(μN

t , π̂N
t )dt

]
= E

[ ∫ ∞

0
e−βt lim

N→∞ r(μN
t , π̂N

t )dt
]
.

Further we have

∣
∣∣
∣∣

∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μN

t )π̂
N ,i
t (da)μN

t (i)dt

−
∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μt )π̂

i
t (da)μt (i)dt

∣∣
∣∣
∣
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≤
∣
∣∣
∣∣

∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μN

t )π̂
N ,i
t (da)μN

t (i)dt

−
∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μt )π̂

N ,i
t (da)μt (i)dt

∣∣
∣∣
∣

+
∣
∣∣
∣∣

∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μt )π̂

N ,i
t (da)μt (i)dt

−
∫ ∞

0
e−βt

∑

i∈S

∫

A
r(i, a, μt )π̂

i
t (da)μt (i)dt

∣∣
∣∣
∣
.

The second expression tends to zero for N → ∞ due to the definition of the Young
topology and the fact that a 	→ r(i, a, μ) is continuous by (R2). The first expression
can be bounded from above by

∫ ∞

0
e−βt

∑

i∈S

∫

A

∣∣
∣r(i, a, μN

t )μN
t (i) − r(i, a, μt )μt (i)

∣∣
∣ π̂N ,i

t (da)dt

≤
∫ ∞

0
e−βt

∑

i∈S
sup

a∈D(i)

∣∣∣r(i, a, μN
t )μN

t (i) − r(i, a, μt )μt (i)
∣∣∣ dt

which also tends to zero for N → ∞ due to (R1), (R2), Lemma 7.1 and dominated
convergence. Thus, the statement follows. ��

On the other hand we are now able to construct a strategy which is asymptotically
optimal in the sense that the upper bound in the previous theorem is attained in the
limit. Suppose that (μ∗, π̂∗) is an optimal state-action trajectory for problem (F).
Then we can consider for the N agents problem the strategy

π̂
N ,i
t := π̂

∗,i
t

which applies at time t the kernel π̂
∗,i
t irrespective of the state μN

t the process is in.
More precisely, the considered strategy is deterministic and not a feedback policy.

Theorem 5.2 Suppose π̂∗ is an optimal strategy for (F) where the corresponding
differential equation in (F) has a unique solution and let (μN

0 ) ⊂ PN (S) be such that
μN
0 ⇒ μ0 ∈ P(S). Then if we use strategy π̂∗ for problem (3.3) for any N we obtain

lim
N→∞V N

π̂∗(μN
0 ) = V F (μ0).

Thus, we call π̂∗ asymptotically optimal.

Proof First note that π̂∗ is an admissible policy for any N . Further let (μN
t ) be the

corresponding state process when N agents are present. Since the corresponding
differential equation in (F) has a unique solution, every subsequence (Nk) is such
that

μNk ⇒ μ∗, for k → ∞
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holds (Theorem 4.3). Using the same arguments as in the last proof we obtain

lim
N→∞E

[ ∫ ∞

0
e−βt r(μN

t , π̂∗
t )dt

]
= E

[ ∫ ∞

0
e−βt r(μ∗

t , π̂
∗
t )dt

]
= V F (μ0).

Together with the previous theorem, the statement is shown. ��
Remark 5.3 (a) In order to guarantee the unique solvability, it is sufficient to assume

Lipschitz continuity for μ 	→ q({ j}|i, a, μ). More precisely, instead of (Q4) we
have to assume (Q4’) which is given below. The proof follows from the Theorem of
Picard-Lindelöf. Example 5.4 shows what may happen if the differential equation
for (μt ) in (F) has multiple solutions.

(b) Note that the construction of asymptotically optimal policies which we present
here, works in the same way when we consider control problems with finite time
horizon. I.e. instead of Eq. (3.3) we consider

sup
π̂

E
π̂
μ

[ ∫ T

0
e−βt r(μN

t , π̂t )dt + g(μN
T )

]
(5.1)

with possibly a terminal reward g(·) for the final state. In this case (F) is given
with a finite time horizon

sup
π̂

∫ T

0
e−βt r(μt , π̂t )dt + g(μT )

s.t . μ0 ∈ P(S), π̂ i
t ∈ P(A), π̂ i

t (D(i)) = 1,

μt ( j) = μ0( j) +
∫ t

0

∑

i∈S
μs(i)

∫
q({ j}|i, a, μs)π̂

i
s (da)ds,

∀t ∈ [0, T ], j = 1, . . . , |S|. (5.2)

Theorem 5.2 holds accordingly.
(c) General statements about the existence of optimal controls in (F) can only be

made under additional assumptions. A classical result is the Theorem of Filipov-
Cesari (see [32] Theorem 8 in Chapter II.8 for the finite time horizon problem
and Theorem 15 in Chapter III.7 for the infinite horizon problem). It states the
existence of an optimal control (for the finite horizon problem) under the following
assumptions:

(i) There exist admissible pairs (π̂, μ), (for example by assuming Lipschitz con-
tinuity like in (a))

(ii) A is closed and bounded (which we assume here)
(iii) μ is bounded for all controls (which we have here)
(iv) For fixed μ the set {(r(μ, α) + γ, f1(μ, α)), γ ≤ 0, α ∈ A} is convex where

f1 is the r.h.s. of the differential equation in (F).

(d) Suppose we obtain for problem (F) an optimal feedback rule π̂t (·) = π̂(·|μt ).

If μ 	→ π̂(·|μ) is continuous, this feedback rule is also asymptotically optimal
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for problem Eq. (3.3). The proof can be done in the same way as before. If the
mapping is not continuous, the convergence may not hold (see application 6.3).

(e) Natural extensions of our model that we have not included in the presentation are
resource constraints. For example the total sum of fractions of a certain action may

be limited, i.e. we restrict the set P(A)|S| by requiring that
∑

i∈S π̂ i
t ({a0}|μ) ≤

c < |S| for a certain action a0 ∈ A. As long as the constraint yields a compact
subset of P(A)|S| our analysis also covers this case.

Example 5.4 In this example we discuss what may happen if the differential equation
for (μt ) in (F) has multiple solutions. Suppose the state space is S = {1, 2} and the
system is uncontrolled. State 1 is absorbing, i.e. q({1}|1, μ) = q({2}|1, μ) = 0 (since
the system is uncontrolled we skip the action from the notation). So agents can only
change from state 2 to 1. The intensity of such a change is

q({1}|2, μ) =
⎧
⎨

⎩

(μt (1))
1
3

1−μt (1)
, if μt (1) ≤ 0.99

0.99
1
3

0.01 if μt (1) ≥ 0.99.

Intensities are bounded and continuous. Since the two probabilities satisfy μt (1) +
μt (2) = 1 we can concentrate on μt (1). The differential equation for μt (1) in (F) is

μ′
t (1) = μt (1)q({1}|1, μt ) + (1 − μt (1))q({1}|2, μ) = (μt (1))

1
3

as long as μt (1) ≤ 0.99. If μ0(1) = 0, there are two solutions of this initial value

problem:μt (1) ≡ 0 andμt (1) = ( 23 t)
3
2 forμt (1) ≤ 0.99.Now consider the following

sequence (μN
0 ) :For N evenwe setμN

0 = (0, 1) (all N agents start in state 2), for N odd
we setμN

0 = (1/N , N−1/N ) (exactly one agent starts in state 1). Obviously (μN
0 ) ⇒

(0, 1). However, when we consider the even subsequence we obtain μN
t (1) ≡ 0 since

the intensity to change from 2 to 1 remains 0. The uneven subsequence converges

against the second solution μt (1) = ( 23 t)
3
2 as long as μt (1) is below 0.99. Thus,

when we skip the assumption of a unique solution in Theorem 5.2 we only obtain
lim supN→∞ V N

π̂∗(μN
0 ) ≤ V F (μ0), see Theorem 5.1.

Under stricter assumptions it is possible to prove that the rate of convergence in the
finite horizon problemEq. (5.1) is 1/

√
N . In order to obtain this rate we need Lipschitz

conditions on the reward function and the intensity functions. More precisely assume

(R1’) For all (i, a) ∈ D there exists a uniform constant L1 > 0 s.t.

|r(i, a, μ) − r(i, a, ν)| ≤ L1‖μ − ν‖T V , |g(μ) − g(ν)| ≤ L1‖μ − ν‖T V
for all μ, ν ∈ P(S).

(Q4’) For all (i, a) ∈ D, j ∈ S there exists a uniform constant L2 > 0 s.t.

|q({ j}|i, a, μ) − q({ j}|i, a, ν)| ≤ L2‖μ − ν‖T V
for all μ, ν ∈ P(S).
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Fig. 1 Colourful lines: State trajectories μN
t (1) for N = 100 (red) and N = 10000 (green) agents in

Example 5.4 when one agent starts in state 1.Black line: Deterministic limit process μt (1) = ( 23 t)
3
2 (Color

figure online)

Denote by π̂∗ the optimal control of the limiting problem (5.2), V F,T (μ0) the corre-
sponding value and let

V N ,T
π̂∗ (μN

0 ) := E
π̂∗
μN
0

[ ∫ T

0
e−βt r(μN

t , π̂∗
t )dt + g(μN

T )
]
.

Then we can state the following convergence rate

Theorem 5.5 In the finite horizon setting under assumption (Q1)–(Q5) with (Q4)
replaced by (Q4’) and (R1’), (R2), suppose that E

[‖μN
0 − μ0‖T V

] ≤ L0√
N

for a

constant L0 > 0. Then

∣∣∣V N ,T
π̂∗ (μN

0 ) − V F,T (μ0)

∣∣∣ ≤ L̃√
N

for a constant L̃ > 0 which is independent of N , but depends on T .

The statement about the convergence rate can be extended to the infinite horizon
problemwhen the discount factor is large enough. Also note thatE

[‖μN
0 − μ0‖T V

] ≤
L0√
N
is satisfied if e.g. the states of the N agents are sampled i.i.d. from μ0.

A direct implementation of policy π̂∗ in the problem Eq. (3.3) might make it
necessary to update the policy continuously. This can be avoided by using the following
policy instead.We assume here that t 	→ π̂∗

t is piecewise continuous. Thus, let (tn)n∈N
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be the discontinuity points in time of π̂∗ and define the set

{T N
n , n ∈ N} ∪ {tn, n ∈ N} =: {T̃ N

1 < T̃ N
2 < . . .}

where T N
n describes the time of the n-th jump of the N agents process. Then (T̃ N

n ) is
the ordered sequence of the time points in this set. Define

π
N ,∗
t :=

∞∑

n=0

π̂∗
T̃n
1[T̃ N

n ,T̃ N
n+1)

(t). (5.3)

The idea of the action process π
N ,∗
t is to adapt it to π̂∗ only when an agent changes

its state or when π̂∗ has a jump, and to keep it constant otherwise. It can be shown
that this sequence of policies is also asymptotically optimal.

Theorem 5.6 Suppose π̂∗ is a piecewise continuous optimal strategy for (F) where the
corresponding differential equation in (F) has a unique solution and let (μN

0 ) ⊂ PN (S)

be such that μN
0 ⇒ μ0 ∈ P(S). Then if we use the strategy (π

N ,∗
t ) of Eq. (5.3) for

problem (3.3) for any N we obtain

lim
N→∞V N

π̂N ,∗(μ
N
0 ) = V F (μ0).

Proof In light of the proof of Theorem 5.2 it is enough to show that πN ,∗ ⇒ π∗.
Indeed, the convergence can be shown P-a.s. Now (πN ,∗) converges in J1-topology
against π∗ on [0,∞) if and only if (πN ,∗)|[0,T ], the restriction to [0, T ], converges
in the finite J1-topology to the restriction π∗[0,T ] for all T which are continuity points
of the limit function (see [33] Sect. 16, Lemma 1). Since π̂∗ is piecewise continuous
we can consider the convergence on each compact interval of the partition separately.
Indeed we have if t ∈ [T̃ N

n , T̃ N
n+1]

||πN ,∗
t − π̂∗

t ||T V ≤ sup
s∈[T̃ N

n ,T̃ N
n+1]

||π̂∗
s − π̂∗

t ||T V .

Since t 	→ π̂∗
t is continuous on this interval and since all |T̃ N

n+1− T̃ N
n | converge to zero

for N → ∞ uniformly (the jump intensity increases with N ) we have that the right
hand side converges to zero for N → ∞ uniformly in t which implies the statement.

��
Remark 5.7 Let us briefly discuss the main differences to [8] where a similar model is
considered. In [8] the author considers a finite horizon problem where model data is
not necessarily stationary, i.e. reward and transition intensities may depend on time.
Moreover, he solves the corresponding optimization problems (N -agents and limit
problem) via HJB equations. This requires the notion of viscosity solutions and more
regularity assumptions in terms of Lipschitz continuity of reward and transition inten-
sities. Using the MDP perspective, we can state our solution theorem for the N agents
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problem (in form of a Bellman equation) and the convergence result under weaker con-
tinuity conditions. For the convergence to hold we use randomized policies whereas
in [8] the author sticks to deterministic policies throughout. The obtained convergence
rates under Lipschitz assumptions are the same whereas our proof is simpler and more
direct. In [8] the problem is further discussed under stronger assumption. In contrast
we present some applications next in order to show how to use the results of the
previous sections.

6 Applications

In this section we discuss two applications of the previously derived theorems and one
example which shows that state processes under feedback policies do not necessarily
have to converge. More precisely we construct in two applications asymptotically
optimal strategies for stochastic N agents systems from the deterministic limit problem
(F). The advantage of our problem (F) in contrast to the master equation is that it
can be solved with the help of Pontryagin’s maximum principlewhich gives necessary
conditions for an optimal control and is in many cases easier to apply than dynamic
programming. For examples see [10, 11, 13, 34] and for the theory see e.g. [32, 35].

6.1 Machine Replacement

The following application is a simplified version of the deterministic control problem
in [27]. A mean-field application can be found in [36]. Suppose a company has N
statistically equalmachines. Eachmachine can either be in state 0=’working’ or in state
1=’broken’, thus S = {0, 1}. Two actions are available: 0=’do nothing’ or 1=’repair’,
thus A = {0, 1}. A working machine does not need repair, so D(0) = {0}. The
transition rates are as follows: A working machine breaks down with fixed rate λwb >

0. A broken machine which gets repaired changes to the state ’working’ with rate
λbw > 0. Thus, we can summarize the transition rates of one machine by

q({1}|0, 0, μN
t ) = λwb, q({0}|1, at , μN

t ) = λbwδ{at=1}.

The diagonal elements of the intensity matrix are given by

q({0}|0, 0, μN
t ) = −λwb, q({1}|1, at , μN

t ) = −λbwδ{at=1},

and all other intensities are zero. Obviously (Q1)–(Q5) are satisfied. The initial state
of the system is μN

0 = (1, 0), i.e. all machines are working in the beginning. Each
working machine produces a reward rate g > 0 whereas we have to pay a fixed cost
of C > 0 when we have to call the service for repair, i.e.

r(i, a, μN
t ) = gδ{i=0} − Cδ{a=1}δ{i=1}

1

1 − μN
t (0)

.
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Hence we obtain an interaction of the agents in the reward. Note that (R1), (R2) are
satisfied. This yields the reward rate for the system

r(μN
t , π̂t ) = gμN

t (0) − C(1 − π̂1
t ({0}|μN

t )).

Thus, problem (F) in this setting is given by (we denote the limit by (μt (0), μt (1)) =:
(μ0

t , 1 − μ0
t ) and let α0

t := π̂1
t ({0}|μt )):

(F) sup
(αt )

∫ T

0
g · μ0

t − C · (1 − α0
t )dt,

s.t . for all t ∈ [0, T ]
μ0
t = 1 +

∫ t

0
λbw(1 − μ0

s )(1 − α0
s ) − λwbμ

0
s ds.

We briefly explain how to solve this problem using Pontryagin’s maximum principle.
The Hamiltonian function to (F) is given by

H(μ0
t , α

0
t , pt , t) = gμ0

t − C(1 − α0
t ) + pt (λbw(1 − μ0

t )(1 − α0
t ) − λwbμ

0
t )

= (1 − α0
t )(λbw pt (1 − μ0

t ) − C) + gμ0
t − λwb ptμ

0
t

where (pt ) is the adjoint function. Pontryagin’s maximum principle yields the follow-
ing sufficient conditions for optimality ( [32, 35]):

Lemma 6.1 The control (α0,∗
t )with the associated trajectory (μ

0,∗
t ) is optimal for (F)

if there exists a continuous and piecewise continuously differentiable function (pt )
such that for all t > 0:

(i) α
0,∗
t maximizes α 	→ H(μ0

t , α, pt , t) for α ∈ [0, 1],
(ii) ṗt = −g + pt (λwb + λbw(1 − α0

t )) at those points where pt is differentiable,
(iii) p(T ) = 0.

Inspecting the Hamiltonian it is immediately clear from (i) that the optimal control is
essentially ’bang-bang’. For a numerical illustration we solved (F) for the parameters
C = 1, g = 2, λwb = 1, λbw = 2 and T = 4. Here it is optimal to do nothing
until time point t∗ = ln 2. Then it is optimal to repair the fraction α0,∗ = 1/2 of
the broken machines which keeps the number of working machines at 1/2. Finally,
ln 2 time units before the end, we do again nothing and wait until the end of the time
horizon. A numerical illustration of the optimal trajectory μ

0,∗
t of the deterministic

problem together with simulated paths under this policy for different number of N can
be found in Fig. 2, left. A number of different simulations for N = 1000 are shown in
Fig. 2, right. The simulated paths are quite close to the deterministic trajectory.

Theoptimal value in the deterministicmodel isV F (1, 0) = 9
2− 3

2 ln(2) ≈ 3.4603. If
we simulate ten times the trajectory of the state process for N = 1000 machines while
following the asymptotically optimal policy and take the average of the respective
values, we obtain a mean of 3.43612 which is slightly less than the value for (F), cp.
Theorem 5.1.
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Fig. 3 Transition intensities of one device between the possible states

6.2 SpreadingMalware

This example is based on the deterministic control model considered in [28], see
resp. [16], and treats the propagation of a virus in a mobile wireless network. It is
based on the classical SIR model by Kermack-McKendrick, [37]. Suppose there are
N devices in the network. A device can be in one of the following states: Susceptible
(S), Infective (I), Dead (D) or Recovered (R).A device is in the susceptible state if it is
not contaminated yet, but prone to infection. A device is infective if it is contaminated
by the virus. It is dead if the virus has destroyed the software and recovered if the device
has already a security patchwhichmakes it immune to the virus. The states D and R are
absorbing.The joint processμN

t = (SNt , I Nt , DN
t , RN

t ) is a controlled continuous-time
Markov chain where XN

t represents the fraction of devices in state X ∈ {S, I , D, R}.
The control is a strategy of the virus which chooses the rate a(t) ∈ [0, ā], at which
infected devices are destroyed. In this model we have SNt + I Nt + DN

t + RN
t = 1 and

SNt , I Nt , DN
t , RN

t ≥ 0. The transition rates of one device are as follows: A susceptible
device gets infected with rate λSI It with λSI > 0. The rate is proportional to the
number of infected devices and we thus have an interaction of one agent with the
empirical distribution of the others. And it gets recovered with rate λSR > 0 which
is the rate the security patch is distributed. An infected device gets killed by the virus
with rate a(t) ∈ [0, ā] chosen by the attacker and gets recovered at rate λI R > 0. The
rates are shown in Fig. 3.

The intensities of one device at time t are summarized by

q({I }|S, ·, μN
t ) = λSI I

N
t , q({R}|S, ·, μN

t ) = λSR,

q({D}|I , at , μN
t ) = at , q({R}|I , ·, μN

t ) = λI R .

Thus, the diagonal elements of the intensity matrix are given by

q({S}|S, ·, μN
t ) = −λSI I

N
t − λSR, q({I }|I , at , μN

t ) = −at − λI R,

q({D}|D, ·, μN
t ) = q({R}|R, ·, μN

t ) = 0

and all other intensities are zero. Note that (Q1)–(Q5) are satisfied and that since the
intensities are linear in a, there is no need for a relaxed control. The initial state of the
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network is μN
0 = (SN0 , I N0 , DN

0 , RN
0 ) = (1 − I0, I0, 0, 0) with 0 < I0 < 1. The aim

of the virus is to produce as much damage as possible over the time interval [0, T ],
evaluated by

E

[
DN
T + 1

T

∫ T

0
(I Nt )2dt

]

which is given when we choose r(i, a, μ) = 1
T (μ(2))2 (the second component of

μ squared) and an appropriate terminal reward. (R1) and (R2) are satisfied. Thus,
problem (F) in this setting is given by (we denote the limit by μt = (St , It , Dt , Rt ))

(F) sup
(at )

DT + 1

T

∫ T

0
I 2t dt,

s.t . at ∈ [0, ā], and for all t ∈ [0, T ]
St = 1 − I0 +

∫ t

0
−λSI Is Ss − λSRSsds,

It = I0 +
∫ t

0
λSI Is Ss − λI R Is − at Isds,

Dt =
∫ t

0
at Isds.

A solution of this deterministic control problem can be found in [28]. It is shown there
that a critical time point t1 ∈ [0, T ] exists such that at = 0 on t ∈ [0, t1] and at = ā
on t ∈ (t1, T ]. Thus, the attacker is not destroying devices from the beginning because
this lowers the number of devices which can get infected. Instead, she first waits to
get more infected devices before setting the kill rate to a maximum.

A numerical illustration can be found in Fig. 4. There we can see the trajectories
of the optimal state distribution in (F) and simulated paths for N = 1000 devices for
λSI = 0.6, λSR = λI R = 0.2, ā = 1, T = 10. The optimal time point for setting at
to the maximum is here 4.9. The simulated paths are almost indistinguishable from
the deterministic trajectories.

6.3 Resource Competition

This example shows that feedback policies in the deterministic problem are not nec-
essarily asymptotically optimal when implemented in the N agents problem. The
infinite horizon problem (F) could also be solved using an HJB equation which would
provide (under sufficient regularity) a feedback control π̂(·|μ). I.e. we obtain the opti-
mal control by π̂t = π̂(·|μt ). This feedback function could also be used in the N
agents model. However, in this case convergence of the N agents model to the deter-
ministic model like in Theorem 5.2 is not guaranteed. Convergence may fail when
discontinuities in the feedback function are present. The example is an adaption of the
queuing network considered in [38, 39] to our setting. Suppose the state space is given
by S = {1, 2, 3, 4, 5, 6, 7, 8}. Agents starting in state 1 change to state 2, then 3 and
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Fig. 4 State trajectories for N = 1000 devices under optimal control for λSI = 0.6, λSR = λI R =
0.2, ā = 1, T = 10. (Color figure online)

are finally absorbed in state 4. Agents starting in state 5 change to state 6, then 7 and
are finally absorbed in state 8. The aim is to get the agents in the absorbing states as
quickly as possible by activating the intensities in states 2,3,6 and 7. The intensity for
leaving states 1 and 5 is λ1 = λ5 = 1, the full intensity for leaving states 2 and 6 is
λ2 = λ6 = 6 and finally the full intensity for leaving states 3 and 7 is λ3 = λ7 = 1.5.
The action space is A = {0, 1}where actions have to be taken in states 2, 3, 6 and 7 and
determine the activation of the transition intensity. Action a = 0 means that the inten-
sity is deactivated and a = 1 that it is fully activated. There is a resource constraint such
that the sum of the activation probabilities in states 2 and 7 as well as the sum of the
activation probabilities in states 3 and 6 are constraint by 1 (see remark on p.13).When
we denote the randomized control by π̂2

t = at , π̂7
t = 1 − at , π̂6

t = bt , π̂3
t = 1 − bt ,

at , bt ∈ [0, 1] then the intensities are given by

q({3}|2, at , μN
t ) = atλ2, q({4}|3, 1 − bt , μ

N
t ) = (1 − bt )λ3,

q({7}|6, bt , μN
t ) = btλ6, q({8}|7, 1 − at , μ

N
t ) = (1 − at )λ7.

An illustration of this model can be seen in Fig. 5.
The initial state distribution is given by μ0 = ( 5

14 ,
1
14 ,

1
14 , 0,

5
14 ,

1
14 ,

1
14 , 0) where

we assume for the simulation that we have N = 1400 agents. Now suppose further that
agents in the absorbing states 4 and 8 produce no costwhereas agents in state 3 and 7 are
the most expensive as soon as there are at least 0.01% of the population present. This
optimization criterion leads to a priority rule where agents in state 3 receive priority
(and thus full capacity) over those in state 6 (as long as there are at least 0.01% present)
and agents in state 7 receive priority (and thus full capacity) over those in state 2 (as
long as there are at least 0.01% present). In the deterministic problem the priority
rule can be implemented such that once the number of agents in state 3 and 7 fall to
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Fig. 5 Transition intensities of one agent for the resource constraint problem

the threshold of 0.01% of the population it is possible to keep this level. This is not
possible in the N agents problem. The priority switch leads to blocking the agents in
the other line, see Fig. 6. The blue line shows the state trajectories in the deterministic
model. The red line is a realization of the system for N = 1400 agents where we use
the deterministic open-loop control of Theorem 5.2. We see that the state processes
converge. Finally the green line is a realization of the N = 1400 agents model under
the priority rule. We can see that here state processes do not converge.

7 Appendix

7.1 Auxiliary Result

Lemma 7.1 Let X be a separable metric space, Y be compact metric and f : X×Y →
R continuous. Then xn → x for n → ∞ implies

lim
n→∞ sup

y∈Y
| f (xn, y) − f (x, y)| = 0.

For a proof see e.g. Lemma B.12, [40].

7.2 Proof of Theorem 3.1

First of all observe that the reward function r in Eq. (2.3) in the N agents problem
is symmetric, i.e. r(x, a) = r(s(x), s(a)) for any permutation s(·) of the vectors.
Moreover, the agent transition intensities q(·|i, a, μ[Xt ]) depend only on the own
state of the agent and on μ[Xt ]. Thus, the optimal policy in the N agents problem at
time t only depends on μ[Xt ]. Now for a decision rule π for the N agents problem
define for all states i ∈ S :

π̂ i (da|μ) := 1

Nμ(i)

N∑

k=1

πk(da|x)1{xk=i}
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where μ = μ[x]. On the right-hand side we consider all agents in state i and take a
convex combination of their action distributions as the action distribution in state i . If
π depends only on μ[x], then this is also true for π̂ .

Choosing π̂ in the measure-valued MDP yields the reward (again μ = μ[x])

r(μ, π̂) =
∑

i∈S

∫
r(i, a, μ)

1

Nμ(i)

N∑

k=1

πk(da|x)1{xk=i}μ(i)

= 1

N

N∑

k=1

∑

i∈S
1{xk=i}

∫
r(i, a, μ)πk(da|x) = r(x, π).

Thus, the reward in both formulations is the same. Finally the transition intensity in
the N agents model that one agent changes its state from i to j is given by (again
μ = μ[x])

N∑

k=1

1{xk=i}
∫

q({ j}|i, a, μ)πk(da|x)

= Nμ(i)
∫

A
q({ j}|i, a, μ)

1

Nμ(i)

N∑

k=1

πk(da|x)1{xk=i}

= Nμ(i)
∫

A
q({ j}|i, a, μ)π̂ i (da|μ) = q({μi→ j }|μ, π̂).

Thus, the empirical measure process of the N agents problem is statistically equal to
the measure-valued MDP process and they produce the same expected reward under
measure-dependent policies which implies the result. A formal proof has to be done
by induction like in [20] Thm. 3.3.

7.3 Proof of Lemma 4.2

First we show that MN
t ( j) is bounded for fixed t :

|MN
t ( j)| =

∣∣∣μN
t ( j) − μN

0 ( j) −
∫ t

0

∑

i∈S
μN
s (i)

∫
q({ j}|i, a, μN

s )π̂N ,i
s (da)ds

∣∣∣

≤ |μN
t ( j) − μN

0 ( j)| +
∫ t

0

∑

i∈S
μN
s (i)

∫
|q({ j}|i, a, μN

s )|π̂N ,i
s (da)ds

≤ 1 + qmax · t < ∞

Therefore (MN
t ( j))t≥0 are square-integrable martingales. Now we take advantage of

the fact that there are only jumps of height 1
N in our model, since no two agents change

123



Applied Mathematics & Optimization (2024) 90 :12 Page 27 of 32 12

their state simultaneously. With the quadratic variation of the process we obtain

E[(MN
t ( j))2] = E[〈MN

t ( j)〉] ≤ 1

N 2E[#jumps in [0, t]]

≤ 1

N 2 · N · qmax · t = 1

N
· qmax · t N→∞−→ 0.

Doob’s L p-inequality provides on [0, t]

E[( sup
s∈[0,t]

MN
s ( j))2] ≤ 4 · E[(MN

t ( j))2] N→∞−→ 0.

Thus for the sequence (sups∈[0,t] MN
s ( j))N∈N it holds that

sup
s∈[0,t]

MN
s ( j)

L2−→ 0.

Now we can find a suitable probability space (�,F ,P), such that for P-almost all
ω ∈ � the sequence of functions ((MN

s ( j)(ω))s∈[0,t])N∈N converges uniformly to the
zero-function.
The finite-dimensional distributions with arbitrary time-points t1, .., tk ∈ [0, t] then
obviously fulfill

(MN
t1 ( j), ..., MN

tn ( j))
a.s.−→ (0, ..., 0)

and therefore in particular

(MN
t1 ( j), ..., MN

tn ( j)) ⇒ (0, ..., 0).

Here ⇒ is the usual weak convergence of random vectors in R
n . To apply Theorem

VI.16 in [41] we check Aldous’ condition. Let (δN ) be a sequence of positive numbers
with δN → 0 and (σN ) a sequence of stopping times w.r.t. (FN

t ) with values in [0, t].
Then we have

E[(MN
σN

( j))2] ≤ E[( sup
s∈[0,t]

MN
s ( j))2] ≤ 4 · E[(MN

t ( j))2] N→∞−→ 0.

Further, for N sufficiently large it holds that

E[(MN
σN+δN

( j))2] ≤ E[( sup
s∈[0,2t]

MN
s ( j))2] ≤ 4 · E[(MN

2t ( j))
2] N→∞−→ 0.

Therefore MN
σN

( j) and MN
σN+δN

( j) converge in L2 to 0 (and thus their difference).
Hence, the conditions of Theorem VI.16 in [41] are fulfilled, and the sequence
(MN

t ( j)) converges weakly on [0,∞) towards 0 in the sense of the Skorokhod J1-
metric.
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7.4 Proof of Theorem 4.3

We start by showing the relative compactness of a sequence (μN )N . We use Theorem
2.7 in [42]. The sequence (μN )N has paths in DP(S)[0,∞), where P(S) is complete
and separable with respect to the total variation distance.
In what follows let σ be an arbitrary (FN

t )-stopping time with σ ≤ T a.s.
For every ε > 0 and rational t ≥ 0 choose the compact set �t,ε ≡ P(S). Then we
obtain by construction of the model

P(μN
t ∈ �t,ε) = 1.

Moreover, for every T > 0 it holds that

lim
δ→0

lim sup
N→∞

sup
σ

E[min{1, ||μN
σ − μN

σ+δ||T V }]

≤ lim
δ→0

lim sup
N→∞

sup
σ

E[||μN
σ − μN

σ+δ||T V ]

≤ lim
δ→0

lim sup
N→∞

sup
σ

E[# state changes in [σ, σ + δ]] · 1

N

≤ lim
δ→0

lim sup
N→∞

sup
σ

N · qmax · δ · 1

N
= 0.

The second inequality holds because ||μN
s − μN

t ||T V = 1
N , provided that in [s, t]

only one state change occurs, i.e. one agent changes its state. Theorem 2.7 in [42] now
states that (μN )N is relatively compact.

Since R is compact, so is R|S| and we obtain directly the relative compact-
ness of (π̂N )N . The relative compactness of the sequence of state-action-processes
(μN , π̂N )N then follows by Proposition 3.2.4 in [43]. Thus, a converging subsequence
exists. To ease the notation we will still denote it by (N ).

To prove the continuity of the limit state process define for arbitrary μ ∈ DP(S)[0,∞)

J (μ, u) = sup
0≤t≤u

||μt − μt−||T V .

J (μ) =
∫ ∞

0
e−u J (μ, u)du.

For the sequence of state processes (μN )N we get

lim
N→∞ J (μN ) = lim

N→∞

∫ ∞

0
e−u sup

0≤t≤u
||μN

t − μN
t−||T V du ≤ lim

N→∞
1

N
= 0.

We exploit the fact that there can be at most jumps of height 1
N in the state processes

with N agents. Theorem 3.10.2 a) in [43] then implies the a.s. continuity of the limit
state process (μ∗

t )t≥0.
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In particular, due to the Skorokhod representation theorem we find a probability space
such that convergence of μN ⇒ μ∗ holds almost surely in J1 and is uniformly on
compact sets such as [0, t] since μ∗ is a.s. continuous (see p. 383 in [44]). Thus,
component-wise for almost all ω in the probability space above we obtain:

lim
N→∞ sup

0≤s≤t
||μN

s (ω) − μ∗
s (ω)||T V = 0

for every t ∈ [0,∞).
Finally we have to take the limit N → ∞ in Eq. (4.2). By the previous Lemma

4.2 we know that the martingale on the left-hand side converges to zero and that
μN
t (ω) → μ∗

t . Now consider the integral on the right-hand side:

∣∣
∣
∣
∣

∫ t

0

∑

i∈S
μN
s (i)

∫
q({ j}|i, a, μN

s )π̂N ,i
s (da)ds −

∫ t

0

∑

i∈S
μ∗
s (i)

∫
q({ j}|i, a, μ∗

s )π̂
∗,i
s (da)ds

∣∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ t

0

∑

i∈S
μN
s (i)

∫
q({ j}|i, a, μN

s )π̂N ,i
s (da)ds −

∫ t

0

∑

i∈S
μ∗
s (i)

∫
q({ j}|i, a, μ∗

s )π̂
N ,i
s (da)ds

∣
∣
∣
∣
∣

+
∣
∣∣
∣
∣

∫ t

0

∑

i∈S
μ∗
s (i)

∫
q({ j}|i, a, μ∗

s )π̂
N ,i
s (da)ds −

∫ t

0

∑

i∈S
μ∗
s (i)

∫
q({ j}|i, a, μ∗

s )π̂
∗,i
s (da)ds

∣
∣∣
∣
∣
.

The second expression tends to 0 for N → ∞ due to the definition of the Young
topology and the fact that a 	→ q({ j}|i, a, μ∗

s ) is continuous by assumption. The first
expression can be bounded by

∫ t

0

∑

i∈S

∫ ∣∣
∣μN

s (i)q({ j}|i, a, μN
s ) − μ∗

s (i)q({ j}|i, a, μ∗
s )

∣∣
∣ π̂N ,i

s (da)ds

≤
∫ t

0

∑

i∈S
sup

a∈D(i)

∣
∣∣μN

s (i)q({ j}|i, a, μN
s ) − μ∗

s (i)q({ j}|i, a, μ∗
s )

∣
∣∣ ds

which also tends to zero due to dominated convergence, (Q4),(Q5) and Lemma 7.1.
Now putting things together, Eq. (4.2) implies that the limit satisfies the stated differ-
ential equation.

7.5 Proof of Theorem 5.5

Fix π̂∗ and let (μt ) be the unique solution of

μt ( j) = μ0( j) +
∫ t

0

∑

i∈S
μs(i)

∫
q({ j}|i, a, μs)π̂

∗,i
s (da)ds, ∀t ∈ [0, T ], j = 1, . . . , |S|.

123



12 Page 30 of 32 Applied Mathematics & Optimization (2024) 90 :12

Further recall from Eq. (4.2)

μN
t ( j) = μN

0 ( j) +
∫ t

0

∑

i∈S
μN
s (i)

∫
q({ j}|i, a, μN

s )π̂
∗,i
s (da)ds + MN

t ( j),

∀t ∈ [0, T ], j = 1, . . . , |S|.

Now we obtain
∣∣∣V N ,T

π∗ (μN
0 ) − V F,T (μ0)

∣∣∣

≤ E
π̂∗
x

[ ∫ T

0
e−βt |r(μN

t , π̂∗
t ) − r(μt , π̂

∗
t )|dt + |g(μN

T ) − g(μT )|
]

≤ E
π̂∗
x

[ ∫ T

0
e−βt L3‖μN

t − μt‖T V dt + L1‖μN
T − μT ‖T V

]
.

Note that (R1’) implies the Lipschitz continuity of μ 	→ r(μ, π) with a constant
L3 > 0 since r is bounded. Next consider

|μN
t ( j) − μt ( j)|
≤ |μN

0 ( j)−μ0( j)|+
∫ t

0

∑

i∈S
μN
s (i)

∫
|q({ j}|i, a, μN

s )−q({ j}|i, a, μs)|π̂∗,i
s (da)ds

+
∫ t

0

∑

i∈S
|μN

s (i) − μs(i)|
∫

q({ j}|i, a, μs)π̂
∗,i
s (da)|ds + |MN

t ( j)|

≤ |μN
0 ( j) − μ0( j)| + (L2 + 2qmax )

∫ t

0
‖μN

s − μs‖T V ds + |MN
t ( j)|.

For the last term we have already shown in Lemma 4.2 that

E
π̂∗
x [|MN

t ( j)|] ≤
√
Eπ̂∗
x [(MN

t ( j))2] ≤
√
qmax t√
N

.

Thus, from the two previous inequalities we get with L4 := |S|√qmaxT /2 that

E
π̂∗
x

[‖μN
t − μt‖T V

] ≤ E
π̂∗
x

[‖μN
0 − μ0‖T V

] + L4√
N

+ L5

∫ t

0
E

π̂∗
x

[‖μN
s − μs‖T V

]
ds

≤ L6√
N

+ L5

∫ t

0
E

π̂∗
x

[‖μN
s − μs‖T V

]
ds.

Finally, Gronwall’s inequality implies that for all t ∈ [0, T ]

E
π̂∗
x

[‖μN
t − μt‖T V

] ≤ L7√
N
eL5T

which in turn implies the statement.
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