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A B S T R A C T

The nonlocal strain gradient elasticity theory is used to address mechanical problems at small scales where size
effects and regularization cannot be neglected. In this work, dislocations are investigated in the framework of
nonlocal simplified first strain gradient elasticity. It is shown that nonlocal simplified strain gradient elasticity
is the unification of the theories of Eringen’s nonlocal elasticity of Helmholtz type and simplified first strain
gradient elasticity. Nonlocal simplified strain gradient elasticity contains two characteristic lengths, namely
the characteristic length of nonlocal elasticity of Helmholtz type and the characteristic length of simplified
first strain gradient elasticity. The advantage of nonlocal simplified first strain gradient elasticity is that
the displacement, elastic distortion, plastic distortion, total stress, Cauchy stress and double stress fields of
screw and edge dislocations which are calculated here are nonsingular and finite everywhere. Moreover,
the Peach-Koehler force of two screw dislocations and two edge dislocations is derived and it is shown that
the Peach-Koehler force is also nonsingular. Numerical examples for all dislocation fields of screw and edge
dislocations in aluminum are given.
1. Introduction

A dislocation is the most important crystal defect causing plas-
ticity and breaking the translation symmetry of a crystal within the
dislocation core. Generalized continuum field theories (nonlocal and
gradient theories) of dislocations are a challenging field of research
in order to find nonsingular dislocation fields and to describe the
mechanics at small scales. Classical continuum theories, which are
scale-free continuum theories, are not valid at small scales and lead for
dislocations to unphysical singularities in the dislocation core region.
Therefore, a nonsingular dislocation field theory based on generalized
continuum field theories is of high relevance in order to describe the
physical behavior of dislocations at small scales without singularities.
There exist two main classes of generalized continuum theories, namely
nonlocal elasticity and strain gradient elasticity (see, e.g., [1–4]). In
the framework of nonlocal elasticity, effects of nonlocal long–range
interactions are expressed by the integral convolution form of Hooke’s
law using a nonlocal kernel. In first strain gradient elasticity, the first
gradient of the elastic strain tensor is also taken into account in the
strain energy density in addition to the elastic strain tensor.

The first success was achieved by Eringen [1,5,6,7,8] using nonlo-
cal elasticity to find nonsingular stress fields of straight dislocations
(see also [9,10]). Solutions of straight screw and edge dislocations
within nonlocal elasticity based on Gaussian kernels have been given
by Eringen [5,6]. Using a scalar nonlocal kernel, which is the Green
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function of the Helmholtz equation, nonlocal elasticity has been studied
by Eringen [1,7]. Such a framework can be called nonlocal elasticity
of Helmholtz type [10], where one characteristic length scale param-
eter, namely the characteristic length of nonlocal elasticity enters the
Helmholtz operator. Solutions of straight screw and edge dislocations
within nonlocal elasticity of Helmholtz type have been given by Eringen
[1,7], Lazar [9] and Lazar et al. [10]. The main feature of these
solutions is the regularization of the stress field singularities at the
dislocation line towards nonsingular stress fields. The main advantage
of nonlocal elasticity of Helmholtz type is that the integral equation
for the stress tensor is reduced to a Helmholtz equation for the stress
tensor where the inhomogeneous part is given by the singular Cauchy
stress tensor of classical elasticity. Therefore, if the scalar nonlocal
kernel function is a Green function, then the integral constitutive
relation can be reduced to a partial differential equation and in this
way strong nonlocal elasticity is reduced to weak nonlocal elasticity
(see [11]). It has been shown that nonlocal elasticity of Helmholtz
type is valid down to the Ångström-scale (see [1,4,7]). However, in
Eringen’s nonlocal elasticity, the displacement, elastic strain and plastic
distortion of straight dislocations are still the classical singular fields.

Later, in the framework of simplified strain gradient elasticity pro-
posed by Aifantis [12] (see also [13]), Gutkin and Aifantis [14,15]
found nonsingular fields for the displacement and elastic strain of
straight dislocations. Lazar and Maugin [16], Lazar et al. [10], Lazar
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[17,18] completed the framework of simplified strain gradient elastic-
ity including double stresses and showed that even the Cauchy stress
tensor and the plastic distortion tensor are nonsingular and that the dis-
location density is regularized and possesses a weaker singularity than
in classical dislocation theory. Gutkin and Aifantis [14,15] mentioned
that the stress tensor appearing in the simplified gradient elasticity in
a ‘‘generalized Hooke law’’ is still singular and identical to the classical
stress tensor. Lazar and Po [19] have proven that this singular stress
tensor has the physical meaning of the so-called total stress tensor
in simplified strain gradient elasticity. In addition, double stresses of
dislocations are singular in the framework of simplified strain gradient
elasticity [16]. It is important to note that the nonsingular stress fields
of screw and edge dislocations obtained in the framework of simplified
strain gradient elasticity coincide with the stress fields calculated in
nonlocal elasticity of Helmholtz type. Moreover, simplified first strain
gradient elasticity theory [13,16] is a particular version of Mindlin’s
first strain gradient elasticity theory [2,20] (see also [18,21]) with one
length scale parameter, namely the characteristic length of simplified
strain gradient elasticity in addition to the two Lamé parameters. It
allows eliminating singularities and discontinuities and to interpret size
effects. Aspects of nonsingular cracks in the framework of simplified
first strain gradient elasticity can be found in [22]. Since a disloca-
tion is the building block of a crack, nonsingular crack fields can be
computed in the framework of dislocation based fracture mechanics
using nonlocal and gradient elasticity theories. Using the nonsingular
stress fields of screw and edge dislocations, nonsingular stress fields of
cracks of mode III, mode II and mode I were given by Mousavi and
Lazar [23] in the framework of nonlocal elasticity of Helmholtz type
and by Mousavi and Aifantis [24,25] in the framework of simplified
strain gradient elasticity. In nonlocal elasticity of Helmholtz type, the
stress fields of cracks are nonsingular and in simplified strain gradi-
ent elasticity, the stress, elastic strain and plastic distortion fields of
cracks are nonsingular and finite. An overview on simplified gradient
theory and its extensions to fractional/fractal media and applications to
various disciplines of science and engineering can be found in Aifantis
[26,27,28]. Aspects of gradient electrodynamics can be found in Lazar
[17,29]. A gradient generalization of the Newton law was first sug-
gested by Aifantis [27]. The field theoretical framework of the gradient
modification of Newtonian gravity including nonsingular gravitational
fields (nonsingular Newtonian potential and nonsingular gravitational
force) and its relation to quantum gravity have been given in Lazar
[30].

In order to eliminate the singularities in both the elastic strain
and stress fields of dislocations, Gutkin and Aifantis [31] postulated a
generalized Hooke law with two different Helmholtz operators and two
different length scales, one Helmholtz operator acts on the stress and
the other Helmholtz operator acts on the elastic strain. No variational
derivation of such a generalized Hooke law was used by Gutkin and
Aifantis [31] and it was a postulated law aimed to regularize both
the elastic strain and stress fields. Using the generalized Hooke law
with two different Helmholtz operators and two different length scales,
Gutkin and Aifantis [31] and Gutkin [32,33] found nonsingular stress
and elastic strain fields of screw and edge dislocations in terms of
the two length scales, namely one length scale for the stress fields
and the other length scale for the elastic strain fields. Later, Aifantis
[34] connected the generalized Hooke law with the framework of
implicit constitutive equations. Furthermore, Aifantis [35] derived the
generalized Hooke law from a particular form of second strain gradient
elasticity using a generalized Hu–Washizu variational principle.

More than 10 years later, Fafalis et al. [36] (see also [37]) have
proposed the theory of nonlocal simplified strain gradient elasticity,
where nonlocal elasticity is combined with simplified strain gradient
elasticity. Fafalis et al. [36] combined in a unique theory both the
nonlocal elasticity theory of Eringen and the simplified strain gradient
elasticity. The resulting approach, called nonlocal simplified strain
2

gradient elasticity, contains two characteristic length scales (the length
scale of nonlocal elasticity and the length scale of simplified strain
gradient elasticity). In this way, nonlocal simplified strain gradient
elasticity is nothing but the nonlocal version or extension of simplified
strain gradient elasticity. In a popular way, one may say:

nonlocal simplified strain gradient elasticity = Eringen meets Aifantis.

In this sense, nonlocal simplified strain gradient elasticity represents
the unification of the theories of Eringen’s nonlocal elasticity [1,4,7]
and Aifantis’ simplified strain gradient elasticity [13,16,38].

Although, nonlocal strain gradient elasticity is an active research
field (see, e.g., [36,37,39–41]), so far, no single work exists for dislo-
cations in nonlocal simplified strain gradient elasticity in the literature.
For that reason, the aim of the present work is to study screw and edge
dislocations in the framework of nonlocal simplified strain gradient
elasticity. The results demonstrate the elimination of singularities.

The paper is organized as follows. In Section 2, the theoretical
framework of nonlocal simplified strain gradient elasticity is presented.
In Section 3, we derive for screw and edge dislocations exact analytical
solutions for the displacement, elastic distortion, plastic distortion, total
stress, Cauchy stress and double stress fields within this framework.
The Peach-Koehler force of screw and edge dislocations is computed
in Section 4. Conclusions are given in Section 5. In Appendix, the
boundary conditions of nonlocal first strain gradient elasticity are
given.

2. Nonlocal simplified strain gradient elasticity

In this section, we present the theoretical framework and the mate-
rial parameters of nonlocal simplified strain gradient elasticity.

2.1. Theoretical framework

In nonlocal simplified strain gradient elasticity (NSSGE), the strain
energy density for isotropic materials is given by (see [36])

(𝒆,𝛁𝒆, 𝛼) = 1
2
C𝑖𝑗𝑘𝑙𝑒𝑖𝑗𝑒𝑘𝑙 ∗ 𝛼 + 1

2
𝓁2
𝐺 C𝑖𝑗𝑘𝑙𝜕𝑚𝑒𝑖𝑗𝜕𝑚𝑒𝑘𝑙 ∗ 𝛼, (1)

where the isotropic constitutive tensor of rank four reads

C𝑖𝑗𝑘𝑙 = 𝜆 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

. (2)

Here 𝜆 and 𝜇 are the Lamé moduli (elastic constants), 𝓁𝐺 is the
characteristic length of simplified strain gradient elasticity (or gradient
elasticity of Helmholtz type), 𝛿𝑖𝑗 denotes the Kronecker symbol and
∗ denotes the spatial convolution.1 𝛼 is the so-called nonlocal kernel
function. Therefore, Eq. (1) gives the nonlocal form of simplified strain
gradient elasticity due to the convolution with the nonlocal kernel
function 𝛼. Note that we use the following abbreviation for the par-
tial derivative: 𝜕𝑚 = 𝜕∕𝜕𝑥𝑚. Like in Eringen’s nonlocal micropolar
elasticity [1,43] and in nonlocal micromorphic elasticity [44], only
one nonlocal kernel function appears in nonlocal simplified strain
gradient elasticity. This ensures a mathematical simplicity of a nonlocal
microcontinuum field theory. On the other hand, Lim et al. [39] have
proposed nonlocal gradient elasticity with two different nonlocal kernel
functions leading to more complicated field equations (see also [37]).
Furthermore, as in Eringen’s nonlocal elasticity [1,4,7], the scalar
nonlocal kernel function 𝛼 is the Green function (fundamental solution)
of the linear differential operator 𝐿𝑁

𝐿𝑁𝛼 = 𝛿(𝒙). (3)

Here, we choose 𝐿𝑁 as Helmholtz operator according to

𝐿𝑁 = 1 − 𝓁2
𝑁𝛥, (4)

1 The following notation for the spatial convolution is used: 𝐴(𝒙) ∗ 𝐵(𝒙) =
𝐴(𝒙 − 𝒚)𝐵(𝒚)d𝒚 (see, e.g., [42]).
𝑉
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where 𝛥 denotes the Laplace operator. If 𝓁2
𝑁 > 0, then the nonlocal

ernel 𝛼 is positive definite that means: 𝛼 > 0. Therefore, 𝓁𝑁 is the
characteristic length of nonlocal elasticity of Helmholtz type. Strictly
speaking, using the strain energy density (1) together with the nonlocal
kernel 𝛼 as Green function of the Helmholtz operator, Eqs. (3) and (4),
we deal with nonlocal simplified strain gradient elasticity of Helmholtz
type.

The conditions for positive definiteness (for reasons of uniqueness
and stability) of the strain energy density (1) are given by

𝜇 > 0, 3𝜆 + 2𝜇 > 0, 𝓁2
𝐺 > 0, 𝓁2

𝑁 > 0. (5)

The incompatible elastic strain tensor 𝑒𝑖𝑗 reads

𝑒𝑖𝑗 =
1
2
(

𝛽𝑖𝑗 + 𝛽𝑗𝑖
)

, (6)

hich is given by the symmetric part of the incompatible elastic
istortion tensor

𝑖𝑗 = 𝜕𝑗𝑢𝑖 − 𝛽P𝑖𝑗 . (7)

he incompatible elastic distortion tensor (7) is nothing but the gra-
ient of the displacement vector 𝑢𝑖 minus the plastic distortion (or
igendistortion) tensor 𝛽P𝑖𝑗 .

In dislocation theory, the dislocation density tensor is defined in
erms of the incompatible plastic distortion tensor (see, e.g., [17,45])

𝑖𝑗 = −𝜖𝑗𝑘𝑙𝜕𝑘𝛽P𝑖𝑙 (8)

nd can also be expressed in terms of the incompatible elastic distortion
ensor

𝑖𝑗 = 𝜖𝑗𝑘𝑙𝜕𝑘𝛽𝑖𝑙 , (9)

here 𝜖𝑗𝑘𝑙 indicates the Levi-Civita tensor.
The Cauchy stress tensor 𝜎𝑖𝑗 and the double stress tensor 𝜏𝑖𝑗𝑚 are

defined as response fields to the elastic strain tensor and the gradient
of the elastic strain tensor

𝜎𝑖𝑗 =
𝜕
𝜕𝑒𝑖𝑗

= C𝑖𝑗𝑘𝑙𝑒𝑘𝑙 ∗ 𝛼, (10)

𝑖𝑗𝑚 = 𝜕
𝜕(𝜕𝑚𝑒𝑖𝑗 )

= 𝓁2
𝐺C𝑖𝑗𝑘𝑙𝜕𝑚𝑒𝑘𝑙 ∗ 𝛼, (11)

espectively. Eq. (10) is the constitutive equation between the Cauchy
tress 𝜎𝑖𝑗 and the elastic strain 𝑒𝑘𝑙 and Eq. (11) is the constitutive
quation between the double stress 𝜏𝑖𝑗𝑚 and the gradient of the elastic
train 𝜕𝑚𝑒𝑘𝑙. Due to the convolution with the nonlocal kernel function 𝛼,
he constitutive Eqs. (10) and (11) have a nonlocal form. Using Eq. (2),
he stress tensors read

𝜎𝑖𝑗 = (𝜆 𝛿𝑖𝑗𝑒𝑙𝑙 + 2𝜇 𝑒𝑖𝑗 ) ∗ 𝛼, (12)

𝑖𝑗𝑚 = 𝓁2
𝐺(𝜆 𝛿𝑖𝑗𝜕𝑚𝑒𝑙𝑙 + 2𝜇 𝜕𝑚𝑒𝑖𝑗 ) ∗ 𝛼. (13)

s in simplified strain gradient elasticity [16], the double stress tensor
an be written as gradient of the Cauchy stress tensor (10)

𝑖𝑗𝑚 = 𝓁2
𝐺𝜕𝑚𝜎𝑖𝑗 . (14)

ow, using the constitutive Eqs. (10) and (11), the strain energy
ensity (1) can be rewritten in the form

= 1
2
𝜎𝑖𝑗𝑒𝑖𝑗 +

1
2
𝜏𝑖𝑗𝑚𝜕𝑚𝑒𝑖𝑗 . (15)

Applying the differential operator 𝐿𝑁 to the nonlocal constitutive
Eqs. (10) and (11) and using Eq. (3), we get the constitutive equations
in differential form as inhomogeneous Helmholtz equations

𝐿𝑁𝜎𝑖𝑗 = C𝑖𝑗𝑘𝑙𝑒𝑘𝑙 , (16)

𝐿𝑁𝜏𝑖𝑗𝑚 = 𝓁2
𝐺C𝑖𝑗𝑘𝑙𝜕𝑚𝑒𝑘𝑙 . (17)

The equilibrium condition is given by the Euler–Lagrange equation
of the strain energy density (1)
𝛿 ∶= 𝜕 − 𝜕𝑗

𝜕 + 𝜕𝑚𝜕𝑗
𝜕 = 0, (18)
3

𝛿𝑢𝑖 𝜕𝑢𝑖 𝜕(𝜕𝑗𝑢𝑖) 𝜕(𝜕𝑚𝜕𝑗𝑢𝑖)
where the left hand side is the functional or variational derivative (see,
e.g., [46]). In terms of the Cauchy stress tensor (10) and double stress
tensor (11), the equation of equilibrium (18) takes the following form

𝜕𝑗
(

𝜎𝑖𝑗 − 𝜕𝑚𝜏𝑖𝑗𝑚
)

= 0, (19)

which is the same as in first strain gradient elasticity (see also [2]).
Using the relation (14), the equation of equilibrium (19) reduces to

𝜕𝑗𝐿𝐺𝜎𝑖𝑗 = 0 (20)

with the Helmholtz operator 𝐿𝐺 to be given in terms of the character-
istic length of simplified gradient elasticity as

𝐿𝐺 = 1 − 𝓁2
𝐺𝛥 (21)

with 𝓁2
𝐺 > 0 and

𝐿𝐺𝐺
𝐿𝐺 = 𝛿(𝒙), (22)

where 𝐺𝐿𝐺 denotes the Green function of the Helmholtz operator 𝐿𝐺.
It is noted for the interested reader that the boundary conditions of
nonlocal first strain gradient elasticity, which are not needed in this
work, were given by Lim et al. [39] (see also [40]) and can be found
in Appendix.

If we substitute Eq. (12) into Eq. (20), then the equation of equilib-
rium reads in terms of the elastic strain tensor

C𝑖𝑗𝑘𝑙𝜕𝑗𝐿𝐺𝑒𝑘𝑙 ∗ 𝛼 = 0 . (23)

Furthermore, using Eqs. (6) and (7), the equation of equilibrium reads
in terms of the displacement vector and the plastic distortion tensor

𝐿𝑖𝑘𝐿𝐺𝑢𝑘 ∗ 𝛼 = C𝑖𝑗𝑘𝑙𝜕𝑗𝐿𝐺𝛽
P
𝑘𝑙 ∗ 𝛼, (24)

where the Navier operator 𝐿𝑖𝑘 is defined by

𝐿𝑖𝑘 = C𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑙 . (25)

Applying the differential operator 𝐿𝑁 to Eq. (24), it gives

𝐿𝑁𝐿𝑖𝑘𝐿𝐺𝑢𝑘 ∗ 𝛼 = C𝑖𝑗𝑘𝑙𝜕𝑗𝐿𝑁𝐿𝐺𝛽
P
𝑘𝑙 ∗ 𝛼 . (26)

Using the property (3) that the nonlocal kernel function 𝛼 is the Green
function of 𝐿𝑁 , Eq. (26) simplifies to

𝐿𝑖𝑘𝐿𝐺𝑢𝑘 = C𝑖𝑗𝑘𝑙𝜕𝑗𝐿𝐺𝛽
P
𝑘𝑙 . (27)

Eq. (27) is the field equation for 𝑢𝑘 in simplified first strain gradi-
ent elasticity, namely an inhomogeneous Helmholtz-Navier equation,
which is a partial differential equation of fourth order (see, e.g., [17,
47]).

Thus, all the analysis and techniques of simplified strain gradi-
ent elasticity like operator split, bifield ansatz and ‘‘Ru-Aifantis tech-
nique’’ (see, e.g., [17,38,47]) can be taken over in nonlocal simplified
strain gradient elasticity. For that reason, the plastic distortion tensor
in NSSGE fulfills the inhomogeneous Helmholtz equation with the
operator 𝐿𝐺

𝐿𝐺𝛽
P
𝑘𝑙 = 𝛽P,0𝑘𝑙 , (28)

where the right hand side is given by the classical plastic distor-
tion tensor 𝛽P,0𝑘𝑙 . Then the displacement vector satisfies the following
Helmholtz-Navier equation

𝐿𝑖𝑘𝐿𝐺𝑢𝑘 = C𝑖𝑗𝑘𝑙𝜕𝑗𝛽
P,0
𝑘𝑙 , (29)

where the right hand side is given by the gradient of the classical
plastic distortion tensor. Moreover, the displacement vector fulfills the
inhomogeneous Helmholtz equation

0
𝐿𝐺𝑢𝑘 = 𝑢𝑘, (30)
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where the right hand side is given by the classical displacement vector
𝑢0𝑘. The elastic distortion tensor fulfills the inhomogeneous Helmholtz
equation

𝐿𝐺𝛽𝑘𝑙 = 𝛽0𝑘𝑙 , (31)

where the right hand side is given by the classical elastic distortion
tensor. The elastic strain tensor fulfills the inhomogeneous Helmholtz
equation

𝐿𝐺𝑒𝑘𝑙 = 𝑒0𝑘𝑙 , (32)

where the right hand side is given by the classical elastic strain
tensor 𝑒0𝑘𝑙. The dislocation density tensor fulfills the inhomogeneous
Helmholtz equation

𝐿𝐺𝛼𝑘𝑙 = 𝛼0𝑘𝑙 , (33)

where the right hand side is given by the classical dislocation density
tensor 𝛼0𝑘𝑙.

It can be seen in the Eqs. (30)–(33) that the kinetic quantities
such as the displacement vector 𝑢𝑘, the plastic distortion tensor 𝛽P𝑘𝑙,
the elastic distortion tensor 𝛽𝑘𝑙, the elastic strain tensor 𝑒𝑘𝑙 and the
islocation density tensor 𝛼𝑘𝑙 are determined by the Helmholtz operator
𝐺 including the gradient length scale 𝓁𝐺 like in simplified strain
radient elasticity (see also [15–17,47]).

Moreover, the total stress tensor 𝑡𝑖𝑗 can be defined as the functional
r variational derivative of the strain energy density  with respect to
he elastic strain tensor 𝑒𝑖𝑗 (see, e.g., [19,48])

𝑖𝑗 ∶=
𝛿
𝛿𝑒𝑖𝑗

= 𝜕
𝜕𝑒𝑖𝑗

− 𝜕𝑘
𝜕

𝜕(𝜕𝑘𝑒𝑖𝑗 )
. (34)

Using Eqs. (10) and (11), Eq. (34) reads (see also [19,21,49,50])

𝑡𝑖𝑗 = 𝜎𝑖𝑗 − 𝜕𝑚𝜏𝑖𝑗𝑚. (35)

If we substitute the relation (14) into Eq. (35), then it reduces to

𝑡𝑖𝑗 = 𝐿𝐺𝜎𝑖𝑗 (36)

and the equilibrium equation (19) simplifies to

𝜕𝑗 𝑡𝑖𝑗 = 0 . (37)

Moreover, substituting the constitutive relation (10) into the total stress
tensor (36), it becomes

𝑡𝑖𝑗 = C𝑖𝑗𝑘𝑙𝐿𝐺𝑒𝑘𝑙 ∗ 𝛼. (38)

Note that the form (38) of the total stress tensor 𝑡𝑖𝑗 is an integro-
partial differential equation due to the differential operator 𝐿𝐺 and
he convolution with the nonlocal kernel 𝛼. Using the convolution
f the total stress tensor (38) with the Green function 𝐺𝐿𝐺 and the

property (22), we obtain the relation between the total stress tensor
and the Cauchy stress tensor

𝜎𝑖𝑗 = 𝑡𝑖𝑗 ∗ 𝐺𝐿𝐺 , (39)

which means that the Cauchy stress tensor 𝜎𝑖𝑗 is nothing but the
convolution of the total stress tensor 𝑡𝑖𝑗 with 𝐺𝐿𝐺 and is smoother than
the total stress tensor due to this convolution.

In general, constitutive equations involve a set of constitutive pa-
rameters and a set of constitutive operators. The constitutive operators
may be linear and integro-differential operators (see, e.g., [51]). In this
sense, the integro-partial differential equation (38) is a ‘‘constitutive
equation’’ between the total stress tensor 𝑡𝑖𝑗 and the elastic strain tensor
𝑒𝑘𝑙 in form of an integro-partial differential equation involving the con-
stitutive tensor C𝑖𝑗𝑘𝑙, the differential operator 𝐿𝐺 and the convolution
with the nonlocal kernel 𝛼.

In order to connect Eq. (38) with the ‘‘generalized Hooke law’’ pos-
tulated by Gutkin and Aifantis [31], we apply the differential operator
𝐿 together with the property (3) to the total stress tensor (38) and
4

𝑁 b
obtain from the integro-partial differential equation (38) the following
equation in differential form

𝐿𝑁 𝑡𝑖𝑗 = C𝑖𝑗𝑘𝑙𝐿𝐺𝑒𝑘𝑙 , (40)

where on the left hand side the Helmholtz operator 𝐿𝑁 acts on the total
stress tensor and on the right hand side the Helmholtz operator 𝐿𝐺
acts on the elastic strain tensor. In this way, Eq. (40) represents the
‘‘constitutive equation’’ between the total stress and the elastic strain
in differential form. If we substitute the Helmholtz operators (4) and
(21) into Eq. (40), we recover Aifantis’ postulated ‘‘generalized Hooke
law’’ [31,52] with the Helmholtz operators 𝐿𝑁 and 𝐿𝐺 acting on the
stress tensor and the elastic strain tensor,2 respectively, namely

(1 − 𝓁2
𝑁𝛥)𝑡𝑖𝑗 = C𝑖𝑗𝑘𝑙(1 − 𝓁2

𝐺𝛥)𝑒𝑘𝑙 . (41)

One can say that Eq. (41) has the physical meaning of a ‘‘generalized
Hooke law’’ between the total stress and the elastic strain having
the form of a partial differential equation in terms of the Helmholtz
operators 𝐿𝑁 and 𝐿𝐺. If we substitute the constitutive tensor (2) into
Eq. (41), we obtain the explicit form for an isotropic material

(1 − 𝓁2
𝑁𝛥)𝑡𝑖𝑗 = (1 − 𝓁2

𝐺𝛥)[𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗 ], (42)

originally postulated by Gutkin and Aifantis [31] (see also [32,52]).
However, since it was just postulated without to be derived from a
proper theoretical framework, as part of a theory, the physical meaning
of the stress tensor, 𝑡𝑖𝑗 , was lost in [31].

From arguments of physically realistic dispersion relations with
normal dispersion in NSSGE [53], the nonlocal length scale 𝓁𝑁 and
gradient length scale 𝓁𝐺 have to fulfill the constraint

𝓁2
𝑁 > 𝓁2

𝐺 . (43)

Substituting Eq. (32) into Eq. (40), it can be observed that in NSSGE
the total stress tensor satisfies the inhomogeneous Helmholtz equation
with the operator 𝐿𝑁

𝐿𝑁 𝑡𝑖𝑗 = 𝜎0𝑖𝑗 , (44)

where the right hand side is given by the classical Cauchy stress tensor
𝜎0𝑖𝑗 of classical elasticity

𝜎0𝑖𝑗 = C𝑖𝑗𝑘𝑙𝑒
0
𝑘𝑙 . (45)

The form of Eq. (44) is known from the stress tensor in Eringen’s
nonlocal elasticity of Helmholtz type (see [1,4,7,10]). Therefore, the
total stress tensor 𝑡𝑖𝑗 is determined by the Helmholtz operator 𝐿𝑁
including the nonlocal length 𝓁𝑁 . The solution of Eq. (44) reads as

𝑡𝑖𝑗 = 𝜎0𝑖𝑗 ∗ 𝛼. (46)

The total stress tensor (46) is nothing but the convolution of the
classical stress tensor 𝜎0𝑖𝑗 and the nonlocal kernel 𝛼 like in nonlocal
elasticity of Helmholtz type (see [1,4,7]).

Furthermore, applying the differential operator 𝐿𝐺 to Eq. (16)
and using Eq. (32), in NSSGE the Cauchy stress tensor satisfies the
inhomogeneous bi-Helmholtz equation with the operators 𝐿𝑁 and 𝐿𝐺

𝐿𝐺𝐿𝑁𝜎𝑖𝑗 = 𝜎0𝑖𝑗 , (47)

where the right hand side is given by the classical Cauchy stress tensor
𝜎0𝑖𝑗 of classical elasticity. The form of Eq. (47) is known from the Cauchy

2 In the notation of Gutkin and Aifantis [31]: 𝑐1 = 𝓁2
𝑁 and 𝑐2 = 𝓁2

𝐺. Then
q. (41) reads

1 − 𝑐1𝛥)𝑡𝑖𝑗 = C𝑖𝑗𝑘𝑙(1 − 𝑐2𝛥)𝑒𝑘𝑙 .

t was pointed out by Gutkin and Aifantis [31] that in order to solve the
‘generalized Hooke law’’, one can solve separately the equations:

1 − 𝑐1𝛥)𝑡𝑖𝑗 = 𝜎0
𝑖𝑗 , (1 − 𝑐2𝛥)𝑒𝑖𝑗 = 𝑒0𝑖𝑗

y utilizing the solutions 𝜎0 and 𝑒0 of classical elasticity.
𝑖𝑗 𝑖𝑗
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Table 1
Lamé moduli, characteristic lengths, equilibrium lattice parameter and Poisson ratio for
aluminum (Al).
𝜆 (eV/Å3) 𝜇 (eV/Å3) 𝓁𝐺 (Å) 𝓁𝑁 (Å) 𝓁𝑁∕𝓁𝐺 𝑎 (Å) 𝜈

0.38649 0.19704 1.1300 2.3638 2.0919 4.0495 0.3312

stress tensor in gradient elasticity of bi-Helmholtz type (see [16,54]).
The solution of Eq. (47) reads as

𝜎𝑖𝑗 = 𝜎0𝑖𝑗 ∗ 𝛼 ∗ 𝐺𝐿𝐺 . (48)

The Cauchy stress tensor (48) is nothing but the double convolution
of the classical stress tensor 𝜎0𝑖𝑗 and the nonlocal kernel 𝛼 and the
Green function 𝐺𝐿𝐺 similar to gradient elasticity of bi-Helmholtz type
(see [10]).

Applying the differential operator 𝐿𝐺 to Eq. (17) and using Eq. (32),
in NSSGE the double stress tensor satisfies the inhomogeneous bi-
Helmholtz equation with the operators 𝐿𝑁 and 𝐿𝐺

𝐿𝐺𝐿𝑁𝜏𝑖𝑗𝑚 = 𝓁2
𝐺𝜕𝑚𝜎

0
𝑖𝑗 . (49)

Therefore, the Cauchy stress tensor 𝜎𝑖𝑗 and the double stress tensor 𝜏𝑖𝑗𝑚
are determined by both the Helmholtz operators 𝐿𝐺 and 𝐿𝑁 including
the gradient length scale 𝓁𝐺 and the nonlocal length scale 𝓁𝑁 .

2.2. Material parameters of NSSGE

Like the Lamé moduli, the characteristic length scales 𝓁𝑁 and 𝓁𝐺
are also material parameters. Similar to nonlocal elasticity of Helmholtz
type [7], in nonlocal simplified strain gradient elasticity, the dispersion
curve of nonlocal simplified strain gradient elasticity can be matched
with the Born-von Kármán lattice model to get a relation between the
two characteristic lengths 𝓁𝑁 and 𝓁𝐺. The match of the dispersion rela-
tion of nonlocal simplified strain gradient elasticity with the dispersion
relation of the Born-von Karmán lattice dynamics at the end of the first
Brillouin zone 𝑘 = 𝜋∕𝑎 gives the relation between 𝓁2

𝑁 and 𝓁2
𝐺 (see [53])

𝓁2
𝑁 = 𝑎2

4

(

1 +
𝓁2
𝐺𝜋

2

𝑎2

)

− 𝑎2

𝜋2
. (50)

In first strain gradient elasticity, the gradient length scale 𝓁𝐺 and the
Lamé moduli 𝜇 and 𝜆 can be computed from a second nearest-neighbor
modified embedded-atom method (2NN MEAM) interatomic potential
as done in [55,56]. Since aluminum is nearly an isotropic material, we
will use aluminum in the numerical study of NSSGE. For aluminum,
the gradient length was computed as 𝓁𝐺 = 0.279 𝑎 (see [55]). Using
Eq. (50), the nonlocal length is obtained as 𝓁𝑁 = 0.584 𝑎. The Lamé
moduli, gradient length and nonlocal length of Al used in this work for
the numerics of dislocations in NSSGE are given in Table 1. Note that
the length scales 𝓁𝑁 and 𝓁𝐺 satisfy the constraint (43).

3. Straight dislocations in nonlocal simplified strain gradient elas-
ticity

In this section, we investigate screw and edge dislocations in the
framework of NSSGE. For the numerical study of the dislocation fields,
the elastic constants and the characteristic length scales of aluminum
given in Table 1 are used.

3.1. Screw dislocation

The screw dislocation is located at the position (𝑥, 𝑦) = (0, 0) with
Burgers vector 𝑏𝑧 and dislocation line in the 𝑧-direction of a Cartesian
coordinate system.

The classical plastic distortion of a screw dislocation given by deWit
[57] (see also [58]) reads

𝛽P,0 = 𝑏𝑧𝛿(𝑦)𝐻(−𝑥) = 𝑏𝑧𝛿(𝑦)
∞
𝛿(𝑋) d𝑋, (51)
5

𝑧𝑦 ∫𝑥
Fig. 1. Plastic distortion 𝛽P𝑧𝑦 of a screw dislocation.

which possesses a discontinuity at 𝑦 = 0 for 𝑥 < 0. Here 𝐻(.)
denotes the Heaviside step function and 𝛿(.) denotes the Dirac function.
The classical dislocation density of a screw dislocation reads (see
[57])

𝛼0𝑧𝑧 = 𝑏𝑧𝛿(𝑥)𝛿(𝑦). (52)

The classical elastic distortion and Cauchy stress fields read (see [57])

𝛽0𝑧𝑥 =
𝜎0𝑧𝑥
𝜇

= −
𝑏𝑧
2𝜋

𝑦
𝑟2
, (53)

𝛽0𝑧𝑦 =
𝜎0𝑧𝑦
𝜇

=
𝑏𝑧
2𝜋

𝑥
𝑟2
, (54)

where 𝑟 =
√

𝑥2 + 𝑦2.
Using Eq. (51), the solution of Eq. (28) gives the plastic distortion

of a screw dislocation in NSSGE

𝛽P𝑧𝑦 =
𝑏𝑧

2𝜋𝓁2
𝐺
∫

∞

𝑥
𝐾0

(

√

𝑋2 + 𝑦2∕𝓁𝐺
)

d𝑋, (55)

which is nonsingular, smooth and finite as it can be seen in Fig. 1. Here
𝐾𝑛(.) denotes the modified Bessel function of second kind and 𝑛 = 0, 1, 2.
The plastic distortion of a screw dislocation in NSSGE is in agreement
with the plastic distortion of a screw dislocation in simplified strain
gradient elasticity given in [18,55].

In NSSGE, the dislocation density of a screw dislocation is obtained
as solution of Eq. (33)

𝛼𝑧𝑧 =
𝑏𝑧

2𝜋𝓁2
𝐺

𝐾0
(

𝑟∕𝓁𝐺
)

. (56)

The dislocation density (56) is plotted in Fig. 2 and gives the shape
and size of the dislocation core of a screw dislocation. The dislocation
density of a screw dislocation in NSSGE is in agreement with the
dislocation density of a screw dislocation in simplified strain gradient
elasticity given in [18,55,59].

Substituting Eq. (51) into Eq. (29), the displacement field 𝑢𝑧 is
calculated as

𝑢𝑧 =
𝑏𝑧
2𝜋

(

arctan
𝑦
𝑥
+ 𝜋𝐻(−𝑥) sgn(𝑦) + 𝜕𝑦 ∫

∞

𝑥
𝐾0

(

√

𝑋2 + 𝑦2∕𝓁𝐺
)

d𝑋
)

.

(57)

The displacement field (57) is plotted in Fig. 3. The displacement
field (57) is nonsingular and has a smooth form due to the superposition
of the classical jump discontinuity (first term) and the gradient term
(second term). Here, sgn denotes the signum function. The displace-
ment field of a screw dislocation in NSSGE is in agreement with the
displacement field of a screw dislocation in simplified strain gradient
elasticity given in [18,55].

In NSSGE, the two non-vanishing components of the elastic distor-
tion are calculated as solution of Eq. (31)
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Fig. 2. Contour plot of the dislocation density of a screw dislocation 𝛼𝑧𝑧 (normalized
by the Burgers vector 𝑏𝑧).

Fig. 3. Displacement field 𝑢𝑧 of a screw dislocation.

𝛽𝑧𝑥 = −
𝑏𝑧
2𝜋

𝑦
𝑟2

[

1 − 𝑟
𝓁𝐺

𝐾1(𝑟∕𝓁𝐺)
]

, (58)

𝛽𝑧𝑦 =
𝑏𝑧
2𝜋

𝑥
𝑟2

[

1 − 𝑟
𝓁𝐺

𝐾1(𝑟∕𝓁𝐺)
]

. (59)

The two components of the elastic distortion tensor, Eqs. (58) and
(59), are plotted in Figs. 4(a) and (b). It can be seen that they are
nonsingular. The elastic distortion of a screw dislocation in NSSGE is in
agreement with the elastic distortion of a screw dislocation in simplified
strain gradient elasticity given in [14,47,59].

In NSSGE for the total stress tensor of a screw dislocation, solution
of Eq. (44) gives

𝑡𝑧𝑥 = −
𝜇𝑏𝑧
2𝜋

𝑦
𝑟2

[

1 − 𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

, (60)

𝑡𝑧𝑦 =
𝜇𝑏𝑧
2𝜋

𝑥
𝑟2

[

1 − 𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

. (61)

The two components of the total stress tensor, Eqs. (60) and (61), are
plotted in Figs. 5(a) and (b). It can be seen that they are nonsingular.
The total stress of a screw dislocation in NSSGE is in agreement with
the stress of a screw dislocation in nonlocal elasticity of Helmholtz type
given in [1,7,9,10]. Moreover, the total stress of a screw dislocation in
NSSGE is in agreement with the stress of a screw dislocation obtained
by Gutkin and Aifantis [31] using the postulated ‘‘generalized Hooke
law’’ with two different Helmholtz operators.

In NSSGE for the Cauchy stress tensor of a screw dislocation,
solution of Eq. (47) gives

𝜎𝑧𝑥 = −
𝜇𝑏𝑧 𝑦

2

[

1 − 1
2 2

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

]

, (62)
6

2𝜋 𝑟 𝓁𝐺 − 𝓁𝑁
𝜎𝑧𝑦 =
𝜇𝑏𝑧
2𝜋

𝑥
𝑟2

[

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

]

. (63)

The two components of the Cauchy stress tensor, Eqs. (62) and (63), are
plotted in Figs. 6(a) and (b). It can be seen that they are nonsingular.
The Cauchy stress of a screw dislocation in NSSGE is in agreement with
the Cauchy stress of a screw dislocation in gradient elasticity of bi-
Helmholtz type given in [54]. It can be seen in Figs. 5 and 6 that the
Cauchy stress tensor is slightly smoother than the total stress tensor.

In NSSGE, using Eq. (14), the double stress tensor of a screw
dislocation reads as

𝜏(𝑧𝑦)𝑥 = −
𝜇𝓁2

𝐺𝑏𝑧
2𝜋

[

𝑥2 − 𝑦2

𝑟4
(

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

)

− 𝑥2

𝑟2
1

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾0(𝑟∕𝓁𝐺) −𝐾0(𝑟∕𝓁𝑁 )
]

]

, (64)

𝜏(𝑧𝑥)𝑦 = −
𝜇𝓁2

𝐺𝑏𝑧
2𝜋

[

𝑥2 − 𝑦2

𝑟4
(

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

)

+
𝑦2

𝑟2
1

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾0(𝑟∕𝓁𝐺) −𝐾0(𝑟∕𝓁𝑁 )
]

]

, (65)

𝜏(𝑧𝑦)𝑦 = −
𝜇𝓁2

𝐺𝑏𝑧
2𝜋

𝑥𝑦
𝑟4

[

2
(

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

)

− 𝑟2 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾0(𝑟∕𝓁𝐺) −𝐾0(𝑟∕𝓁𝑁 )
]

]

, (66)

𝜏(𝑧𝑥)𝑥 = −𝜏(𝑧𝑦)𝑦. (67)

The components of the double stress tensor, Eqs. (64)–(67), are plotted
in Figs. 7(a)–(d). It can be seen that the stresses are nonsingular unlike
the double stresses calculated within the simplified first strain gradient
elasticity [16]. The double stress of a screw dislocation in NSSGE is
in agreement with the double stress of a screw dislocation in gradient
elasticity of bi-Helmholtz type given in [54].

3.2. Edge dislocation

The edge dislocation of glide-mode is located at the position (𝑥, 𝑦) =
(0, 0) with Burgers vector 𝑏𝑥. The dislocation line coincides with the
𝑧-axis of a Cartesian coordinate system.

The classical plastic distortion of an edge dislocation of glide-mode
given by deWit [57] (see also [58]) reads

𝛽P,0𝑥𝑦 = 𝑏𝑥𝛿(𝑦)𝐻(−𝑥) = 𝑏𝑥𝛿(𝑦)∫

∞

𝑥
𝛿(𝑋) d𝑋. (68)

The classical dislocation density of an edge dislocation reads as
(see [57])

𝛼0𝑥𝑧 = 𝑏𝑥𝛿(𝑥)𝛿(𝑦). (69)

The classical elastic distortion components are [57]

𝛽0𝑥𝑥 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑦
𝑟2
[

(1 − 2𝜈) + 2𝑥2

𝑟2
]

, (70)

𝛽0𝑦𝑦 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑦
𝑟2
[

(1 − 2𝜈) − 2𝑥2

𝑟2
]

, (71)

𝛽0𝑥𝑦 =
𝑏𝑥

4𝜋(1 − 𝜈)
𝑥
𝑟2
[

(3 − 2𝜈) −
2𝑦2

𝑟2
]

, (72)

𝛽0𝑦𝑥 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑥
𝑟2
[

(1 − 2𝜈) +
2𝑦2

𝑟2
]

(73)

and the classical stress components are [57]

𝜎0𝑥𝑥 = −
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4
(

3𝑥2 + 𝑦2
)

, (74)

𝜎0𝑦𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4
(

𝑥2 − 𝑦2
)

, (75)

𝜎0𝑥𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑥
𝑟4
(

𝑥2 − 𝑦2
)

, (76)

𝜎0 = −
𝜇𝜈𝑏𝑥 𝑦

. (77)
𝑧𝑧 𝜋(1 − 𝜈) 𝑟2
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Fig. 4. Elastic distortion components of a screw dislocation: (a) 𝛽𝑧𝑥 and (b) 𝛽𝑧𝑦.
Fig. 5. Total stress components of a screw dislocation: (a) 𝑡𝑧𝑥 and (b) 𝑡𝑧𝑦.
Fig. 6. Cauchy stress components of a screw dislocation: (a) 𝜎𝑧𝑥 and (b) 𝜎𝑧𝑦.
Substituting Eq. (68) into Eq. (28), the plastic distortion of an edge
dislocation is calculated as

𝛽P𝑥𝑦 =
𝑏𝑥

2𝜋𝓁2
𝐺
∫

∞

𝑥
𝐾0

(

√

𝑋2 + 𝑦2∕𝓁𝐺
)

d𝑋, (78)

which is nonsingular, smooth and finite as it can be seen in Fig. 8. The
plastic distortion of an edge dislocation in NSSGE is in agreement with
the plastic distortion of an edge dislocation in simplified strain gradient
elasticity given in [18,55].
7

In NSSGE, the dislocation density of a screw dislocation is obtained
as solution of Eq. (33)

𝛼𝑥𝑧 =
𝑏𝑥

2𝜋𝓁2
𝐺

𝐾0
(

𝑟∕𝓁𝐺
)

. (79)

The dislocation density (79) is plotted in Fig. 9 and gives the shape
and size of the dislocation core of an edge dislocation. The dislocation
density of an edge dislocation in NSSGE is in agreement with the
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Fig. 7. Double stress components of a screw dislocation: (a) 𝜏𝑧𝑥𝑥, (b) 𝜏𝑧𝑥𝑦, (c) 𝜏𝑧𝑦𝑥 and (c) 𝜏𝑧𝑦𝑦.
Fig. 8. Plastic distortion 𝛽P𝑥𝑦 of an edge dislocation.

dislocation density of an edge dislocation in simplified strain gradient
elasticity given in [18,55,59].

Substituting Eq. (68) into Eq. (29), the displacement fields 𝑢𝑥 and
𝑢𝑦 of an edge dislocation in NSSGE are calculated as

𝑢𝑥 =
𝑏𝑥

4𝜋(1 − 𝜈)

[

2(1 − 𝜈)
(

arctan
𝑦
𝑥
+ 𝜋𝐻(−𝑥) sgn(𝑦)

+ 𝜕𝑦 ∫

∞

𝑥
𝐾0

(

√

𝑋2 + 𝑦2∕𝓁𝐺
)

d𝑋
)

+
𝑥𝑦

(

1 −
4𝓁2

𝐺 + 2𝐾2(𝑟∕𝓁𝐺)
) ]

, (80)
8

𝑟2 𝑟2
Fig. 9. Contour plot of the dislocation density of an edge dislocation 𝛼𝑥𝑧 (normalized
by the Burgers vector 𝑏𝑥).

𝑢𝑦 = −
𝑏𝑥

4𝜋(1 − 𝜈)

[

(1 − 2𝜈)
(

ln 𝑟 +𝐾0(𝑟∕𝓁𝐺)
)

+
𝑥2 − 𝑦2

2𝑟2

(

1 −
4𝓁2

𝐺

𝑟2
+ 2𝐾2(𝑟∕𝓁𝐺)

) ]

. (81)

The displacement fields (80) and (81) are plotted in Figs. 10(a) and
(b). The displacement fields (80) and (81) are nonsingular and have a
smooth form. The displacement fields of an edge dislocation in NSSGE
are in agreement with the displacement fields of an edge dislocation in
simplified strain gradient elasticity given in [18,55].
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Fig. 10. Displacement fields of an edge dislocation: (a) 𝑢𝑥 and (b) 𝑢𝑦.
Fig. 11. Elastic distortion components of an edge dislocation: (a) 𝛽𝑥𝑥, (b) 𝛽𝑦𝑦, (c) 𝛽𝑥𝑦 and (d) 𝛽𝑦𝑥.
In NSSGE, the elastic distortion tensor components of an edge
dislocation are calculated as solution of Eq. (31)

𝛽𝑥𝑥 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑦
𝑟2

[

(1 − 2𝜈) + 2𝑥2

𝑟2
−

3𝑥2 − 𝑦2

𝑟2

(4𝓁2
𝐺

𝑟2
− 2𝐾2(𝑟∕𝓁𝐺)

)

−
2(𝑦2 − 𝜈𝑟2)

𝓁𝐺𝑟
𝐾1(𝑟∕𝓁𝐺)

]

, (82)

𝛽𝑦𝑦 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑦
𝑟2

[

(1 − 2𝜈) − 2𝑥2

𝑟2
+

3𝑥2 − 𝑦2

𝑟2

(4𝓁2
𝐺

𝑟2
− 2𝐾2(𝑟∕𝓁𝐺)

)

−
2(𝑥2 − 𝜈𝑟2)

𝐾1(𝑟∕𝓁𝐺)
]

, (83)
9

𝓁𝐺𝑟
𝛽𝑥𝑦 =
𝑏𝑥

4𝜋(1 − 𝜈)
𝑥
𝑟2

[

(3 − 2𝜈) −
2𝑦2

𝑟2
−

𝑥2 − 3𝑦2

𝑟2

(4𝓁2
𝐺

𝑟2
− 2𝐾2(𝑟∕𝓁𝐺)

)

−
2
(

𝑦2 + (1 − 𝜈)𝑟2
)

𝓁𝐺𝑟
𝐾1(𝑟∕𝓁𝐺)

]

, (84)

𝛽𝑦𝑥 = −
𝑏𝑥

4𝜋(1 − 𝜈)
𝑥
𝑟2

[

(1 − 2𝜈) +
2𝑦2

𝑟2
+

𝑥2 − 3𝑦2

𝑟2

( 4𝓁2
𝐺

𝑟2
− 2𝐾2(𝑟∕𝓁𝐺)

)

−
2
(

𝑥2 − 𝜈𝑟2
)

𝓁𝐺𝑟
𝐾1(𝑟∕𝓁𝐺)

]

. (85)

The components of the elastic distortion tensor, Eqs. (82)–(84), are
plotted in Figs. 11(a)–(d). It can be seen that they are nonsingular. The
elastic distortion of an edge dislocation in NSSGE is in agreement with
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Fig. 12. Total stress components of an edge dislocation: (a) 𝑡𝑥𝑥, (b) 𝑡𝑦𝑦, (c) 𝑡𝑥𝑦 and (d) 𝑡𝑧𝑧.
the elastic distortion of an edge dislocation in simplified strain gradient
elasticity given in [18,47,59].

For the total stress tensor produced by an edge dislocation, solution
of Eq. (44) gives

𝑡𝑥𝑥 = −
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4

[

(3𝑥2 + 𝑦2) − (3𝑥2 − 𝑦2)
(4𝓁2

𝑁

𝑟2
− 2𝐾2(𝑟∕𝓁𝑁 )

)

−
2𝑦2𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

, (86)

𝑡𝑦𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4

[

(𝑥2 − 𝑦2) − (3𝑥2 − 𝑦2)
(4𝓁2

𝑁

𝑟2
− 2𝐾2(𝑟∕𝓁𝑁 )

)

+ 2𝑥2𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

, (87)

𝑡𝑥𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑥
𝑟4

[

(𝑥2 − 𝑦2) − (𝑥2 − 3𝑦2)
(4𝓁2

𝑁

𝑟2
− 2𝐾2(𝑟∕𝓁𝑁 )

)

−
2𝑦2𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

, (88)

𝑡𝑧𝑧 = −
𝜇𝜈𝑏𝑥

𝜋(1 − 𝜈)
𝑦
𝑟2

[

1 − 𝑟
𝓁𝑁

𝐾1(𝑟∕𝓁𝑁 )
]

. (89)

The components of the total stress tensor, Eqs. (86)–(89), are plotted in
Figs. 12(a)–(d). They are nonsingular. The total stress of an edge dislo-
cation in NSSGE is in agreement with the stress of an edge dislocation
in nonlocal elasticity of Helmholtz type given in [9,10]. Additionally,
the total stress of an edge dislocation in NSSGE is in agreement with the
stress of an edge dislocation obtained by Gutkin and Aifantis [31] using
the postulated ‘‘generalized Hooke law’’ with two different Helmholtz
operators.
10
In NSSGE, the Cauchy stress tensor produced by an edge dislocation
is given by the solution of Eq. (47)

𝜎𝑥𝑥 = −
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4

[

(3𝑥2 + 𝑦2) −
4(𝓁2

𝐺 + 𝓁2
𝑁 )

𝑟2
(3𝑥2 − 𝑦2)

−
2𝑦2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

+
2(3𝑥2 − 𝑦2)
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺 𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁 𝐾2(𝑟∕𝓁𝑁 )
]

]

, (90)

𝜎𝑦𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑦
𝑟4

[

(𝑥2 − 𝑦2) −
4(𝓁2

𝐺 + 𝓁2
𝑁 )

𝑟2
(3𝑥2 − 𝑦2)

+ 2𝑥2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

+
2(3𝑥2 − 𝑦2)
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺 𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁 𝐾2(𝑟∕𝓁𝑁 )
]

]

, (91)

𝜎𝑥𝑦 =
𝜇𝑏𝑥

2𝜋(1 − 𝜈)
𝑥
𝑟4

[

(𝑥2 − 𝑦2) −
4(𝓁2

𝐺 + 𝓁2
𝑁 )

𝑟2
(𝑥2 − 3𝑦2)

−
2𝑦2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

+
2(𝑥2 − 3𝑦2)
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺 𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁 𝐾2(𝑟∕𝓁𝑁 )
]

]

, (92)

𝜎𝑧𝑧 = −
𝜇𝜈𝑏𝑥

𝜋(1 − 𝜈)
𝑦
𝑟2

[

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

]

.

(93)

The components of the Cauchy stress tensor, Eqs. (90)–(93), are plotted
in Figs. 13(a)–(b). It can be seen that they are nonsingular. The Cauchy
stress of an edge dislocation in NSSGE is in agreement with the Cauchy
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Fig. 13. Cauchy stress components of an edge dislocation: (a) 𝜎𝑥𝑥, (b) 𝜎𝑦𝑦, (c) 𝜎𝑥𝑦 and (d) 𝜎𝑧𝑧.
stress of an edge dislocation in gradient elasticity of bi-Helmholtz type
given in [54]. Again, it can be seen in Figs. 12 and 13 that the Cauchy
stress tensor is slightly smoother than the total stress tensor.

In NSSGE, using Eq. (14), the double stress tensor of an edge
dislocation is given by

𝜏(𝑥𝑥)𝑥 =
𝜇𝓁2

𝐺𝑏𝑥
2𝜋(1 − 𝜈)

2𝑥𝑦
𝑟6

[

(3𝑥2 − 𝑦2) − 24
𝓁2
𝐺 + 𝓁2

𝑁

𝑟2
(𝑥2 − 𝑦2)

+
3(𝑥4 − 𝑦4)
(𝓁2

𝐺 − 𝓁2
𝑁 )𝑟

[

𝓁𝐺𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁𝐾1(𝑟∕𝓁𝑁 )
]

+
12(𝑥2 − 𝑦2)
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁𝐾2(𝑟∕𝓁𝑁 )
]

−
𝑦2𝑟2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾2(𝑟∕𝓁𝐺) −𝐾2(𝑟∕𝓁𝑁 )
]

]

, (94)

𝜏(𝑥𝑥)𝑦 = −
𝜇𝓁2

𝐺𝑏𝑥
2𝜋(1 − 𝜈)

1
𝑟6

[

(3𝑥4 − 6𝑥2𝑦2 − 𝑦4) − 12
𝓁2
𝐺 + 𝓁2

𝑁

𝑟2
(𝑥4 − 6𝑥2𝑦2 + 𝑦4)

+
2𝑦4𝑟2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾2(𝑟∕𝓁𝐺) −𝐾2(𝑟∕𝓁𝑁 )
]

+
6(𝑥4 − 6𝑥2𝑦2 + 𝑦4)

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁𝐾2(𝑟∕𝓁𝑁 )
]

−
12𝑥2𝑦2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
]

]

, (95)

𝜏(𝑦𝑦)𝑥 = −
𝜇𝓁2

𝐺𝑏𝑥
2𝜋(1 − 𝜈)

2𝑥𝑦
𝑟6

[

(𝑥2 − 3𝑦2) − 24
𝓁2
𝐺 + 𝓁2

𝑁

𝑟2
(𝑥2 − 𝑦2)

+
3(𝑥4 − 𝑦4)
(𝓁2

𝐺 − 𝓁2
𝑁 )𝑟

[

𝓁𝐺𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁𝐾1(𝑟∕𝓁𝑁 )
]

+
12(𝑥2 − 𝑦2)

2 2

[

𝓁2
𝐺𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁𝐾2(𝑟∕𝓁𝑁 )
]

11

𝓁𝐺 − 𝓁𝑁
+ 𝑥2𝑟2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾2(𝑟∕𝓁𝐺) −𝐾2(𝑟∕𝓁𝑁 )
]

]

, (96)

𝜏(𝑦𝑦)𝑦 =
𝜇𝓁2

𝐺𝑏𝑥
2𝜋(1 − 𝜈)

1
𝑟6

[

(𝑥4 − 6𝑥2𝑦2 + 𝑦4) − 12
𝓁2
𝐺 + 𝓁2

𝑁

𝑟2
(𝑥4 − 6𝑥2𝑦2 + 𝑦4)

−
2𝑥2𝑦2𝑟2

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾2(𝑟∕𝓁𝐺) −𝐾2(𝑟∕𝓁𝑁 )
]

+
6(𝑥4 − 6𝑥2𝑦2 + 𝑦4)

𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁2
𝐺𝐾2(𝑟∕𝓁𝐺) − 𝓁2

𝑁𝐾2(𝑟∕𝓁𝑁 )
]

+
2(𝑥6 − 3𝑥4𝑦2 − 3𝑥2𝑦4 + 𝑦6)

(𝓁2
𝐺 − 𝓁2

𝑁 )𝑟
[

𝓁𝐺𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁𝐾1(𝑟∕𝓁𝑁 )
]

]

, (97)

𝜏(𝑧𝑧)𝑥 =
𝜇𝜈𝓁2

𝐺𝑏𝑥
𝜋(1 − 𝜈)

𝑥𝑦
𝑟4

[

2
(

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
])

− 𝑟2 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾0(𝑟∕𝓁𝐺) −𝐾0(𝑟∕𝓁𝑁 )
]

]

, (98)

𝜏(𝑧𝑧)𝑦 = −
𝜇𝜈𝓁2

𝐺𝑏𝑥
𝜋(1 − 𝜈)

[

𝑥2 − 𝑦2

𝑟4
(

1 − 1
𝓁2
𝐺 − 𝓁2

𝑁

[

𝓁𝐺𝑟𝐾1(𝑟∕𝓁𝐺) − 𝓁𝑁 𝑟𝐾1(𝑟∕𝓁𝑁 )
])

+
𝑦2

𝑟2
1

𝓁2
𝐺 − 𝓁2

𝑁

[

𝐾0(𝑟∕𝓁𝐺) −𝐾0(𝑟∕𝓁𝑁 )
]

]

(99)

and 𝜏(𝑥𝑦)𝑥 = −𝜏(𝑦𝑦)𝑦, 𝜏(𝑥𝑦)𝑦 = −𝜏(𝑥𝑥)𝑥. The components of the double stress
tensor, Eqs. (94)–(99), are plotted in Figs. 14(a)–(f). It can be seen that
the stresses are nonsingular unlike the double stresses calculated within
the simplified first strain gradient elasticity [16]. The double stress of
an edge dislocation in NSSGE is in formal agreement with the double
stress of an edge dislocation in gradient elasticity of bi-Helmholtz type
given in [54].
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Fig. 14. Double stress components of an edge dislocation: (a) 𝜏𝑥𝑥𝑥, (b) 𝜏𝑥𝑥𝑦, (c) 𝜏𝑦𝑦𝑥, (d) 𝜏𝑦𝑦𝑦, (e) 𝜏𝑧𝑧𝑥 and (c) 𝜏𝑧𝑧𝑦.
4. Peach-Koehler force

Now, we examine the Peach-Koehler force in the framework of
nonlocal simplified strain gradient elasticity. The Eshelby stress tensor
in nonlocal strain gradient elasticity is given by

𝑃𝑘𝑗 = 𝛿𝑗𝑘 −
(

𝜎𝑖𝑗 − 𝜕𝑙𝜏𝑖𝑗𝑙
)

𝛽𝑖𝑘 − 𝜏𝑖𝑙𝑗𝜕𝑙𝛽𝑖𝑘, (100)

which is similar to the Eshelby stress tensor in strain gradient elasticity
given in Lazar and Kirchner [21] (see also [17]) and the Eshelby stress
tensor in nonlocal elasticity given in Lazar and Kirchner [60]. The
corresponding Peach-Koehler force is obtained as

∫𝑉
𝜕𝑗𝑃𝑘𝑗 d𝑉 = PK

𝑘 . (101)

The Peach-Koehler force in nonlocal simplified strain gradient elasticity
reads
12
PK
𝑘 = ∫𝑉

𝜖𝑘𝑗𝑙
(

𝜎𝑖𝑗𝛼𝑖𝑙 + 𝜏𝑖𝑗𝑚 𝜕𝑚𝛼𝑖𝑙
)

d𝑉

= ∫𝑉
𝜖𝑘𝑗𝑙

(

(𝜎𝑖𝑗 − 𝜕𝑚𝜏𝑖𝑗𝑚)𝛼𝑖𝑙 + 𝜕𝑚(𝜏𝑖𝑗𝑚𝛼𝑖𝑙)
)

d𝑉

= ∫𝑉
𝜖𝑘𝑗𝑙𝑡𝑖𝑗𝛼𝑖𝑙 d𝑉

= ∫𝑉
𝜖𝑘𝑗𝑙𝜎𝑖𝑗𝛼

0
𝑖𝑙 d𝑉 . (102)

From the second to the third line, the div-term (surface term) can be
neglected at infinity.

If we substitute the classical dislocation density of a straight dis-
location (see Eqs. (52) and (69)) into Eq. (102), we find for the
Peach-Koehler force per unit length of a straight dislocation

PK = 𝜖 𝑏′𝜎 𝜉 . (103)
𝑘 𝑘𝑗𝑙 𝑖 𝑖𝑗 𝑙
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Fig. 15. Peach-Koehler force  PK of two parallel screw dislocations with: (a) 𝑏′𝑧𝑏𝑧 > 0, (b) 𝑏′𝑧𝑏𝑧 < 0.
The Peach-Koehler force (103) is the interaction force of a straight
dislocation with Burgers vector 𝑏′𝑖 and the dislocation line direction
𝜉𝑙 in the stress field 𝜎𝑖𝑗 . The Peach-Koehler force (103) is nonsingular
due to the nonsingular Cauchy stress in nonlocal simplified strain
gradient elasticity. Eq. (103) is important for the interaction between
dislocations.

For two parallel screw dislocations with Burgers vector in 𝑧-
direction and 𝜉𝑧 = 1, the Peach-Koehler force per unit length reads

PK
𝑥 = 𝑏′𝑧𝜎𝑧𝑦, PK

𝑦 = −𝑏′𝑧𝜎𝑧𝑥, (104)

where the corresponding Cauchy stress fields of a screw dislocation are
given in Eqs. (62) and (63). The Peach-Koehler force (104) is plotted in
Figs. 15(a) and 15(b). It can be seen that the Peach-Koehler force (104)
is nonsingular. The Peach-Koehler force (104) is repulsive if 𝑏′𝑧𝑏𝑧 > 0
(see Fig. 15(a)) and is attractive if 𝑏′𝑧𝑏𝑧 < 0 (see Fig. 15(b)). It is obvious
that the Peach-Koehler force of two parallel screw dislocations (104) is
a central force.

For two parallel edge dislocations with Burger vector in 𝑥-direction
and 𝜉𝑧 = 1, the Peach-Koehler force per unit length reads

PK
𝑥 = 𝑏′𝑥𝜎𝑥𝑦, PK

𝑦 = −𝑏′𝑥𝜎𝑥𝑥, (105)

where the corresponding Cauchy stress fields of an edge dislocation are
given in Eqs. (90) and (92). The Peach-Koehler force (105) is plotted in
Figs. 16(a) and 16(b). It can be seen that the Peach-Koehler force (105)
is nonsingular. The Peach-Koehler force (105) is repulsive if 𝑏′𝑥𝑏𝑥 > 0
(see Fig. 16(a)) and is attractive if 𝑏′𝑥𝑏𝑥 < 0 (see Fig. 16(b)). It is obvious
that the Peach-Koehler force of two parallel edge dislocations (105) is
not a central force. The glide and climb components of two parallel
edge dislocations are plotted in Figs. 17 and 18, respectively. Of course,
they are nonsingular (see also the discussion in [9] for the Peach-
Koehler force in nonlocal elasticity). Also, it can be observed that the
climb component is greater than the glide component in the dislocation
core region (or near the dislocation line): PK

𝑦 > PK
𝑥 and this is because

the extremum of the Cauchy stress component 𝜎𝑥𝑥 is greater than the
extremum of the Cauchy stress component 𝜎𝑥𝑦 in the dislocation core
region (see Fig. 13 and also [9]).

5. Conclusions

In this paper, we have investigated nonlocal simplified strain gradi-
ent elasticity. Nonlocal simplified strain gradient elasticity is a model
of generalized continuum theory involving two internal characteristic
lengths in addition to the two Lamé parameters. It allows to eliminate
13

elastic singularities and discontinuities and to interpret size effects.
In order to show the main advantages of the nonlocal simplified
strain gradient elasticity model, it has been employed to investigate
straight dislocations. Exact analytical solutions for the displacement
fields, elastic distortions, Cauchy stresses, double stresses, total stresses,
plastic distortions and dislocation densities of screw and edge dislo-
cations have been derived which demonstrate the elimination of any
singularity in the elastic and plastic fields at the dislocation line, except
the dislocation density field possessing a logarithmic singularity at
the dislocation line. The fields of straight dislocations depend on the
characteristic gradient length 𝓁𝐺 and the characteristic nonlocal length
𝓁𝑁 in the following way:

• displacement vector: 𝒖 = 𝒖(𝒓,𝓁𝐺)
• plastic distortion tensor: 𝜷P = 𝜷P(𝒓,𝓁𝐺)
• dislocation density tensor: 𝜶 = 𝜶(𝒓,𝓁𝐺)
• elastic distortion tensor: 𝜷 = 𝜷(𝒓,𝓁𝐺)
• Cauchy stress tensor: 𝝈 = 𝝈(𝒓,𝓁𝐺 ,𝓁𝑁 )
• double stress tensor: 𝝉 = 𝝉(𝒓,𝓁𝐺 ,𝓁𝑁 )
• total stress tensor: 𝒕 = 𝒕(𝒓,𝓁𝑁 ).

Therefore, the displacement, plastic distortion, elastic distortion and
dislocation density fields incorporate the nonlocality of strain gradi-
ent elasticity, the total stress incorporates the nonlocality of nonlocal
elasticity, and the Cauchy stress and double stress fields incorporate
both the nonlocality of strain gradient elasticity and the nonlocality
of nonlocal elasticity. It is important to note that the main feature of
the obtained solutions of screw and edge dislocations is the absence of
any singularity in the displacement, elastic distortion, plastic distortion,
Cauchy stress, double stress and total stress fields due to the regulariza-
tion in the framework of nonlocal simplified strain gradient elasticity.
We have proven that the solutions for the stress and elastic strain fields
of screw and edge dislocations given by Gutkin and Aifantis [31] are
actually the solutions of the total stress and elastic strain fields in the
framework of nonlocal simplified strain gradient elasticity.

Moreover, we have calculated the Peach-Koehler force in the frame-
work of nonlocal simplified strain gradient elasticity. The Peach-Koehler
force (per unit length) reads for a straight dislocation with Burgers
vector 𝒃′ and dislocation line direction 𝝃 in the stress field 𝝈:

 PK = (𝒃′ ⋅ 𝝈) × 𝝃. (106)

It is important to note that the Cauchy stress 𝝈, which incorporates the
nonlocality of strain gradient elasticity and the nonlocality of nonlocal
elasticity, is the physical stress entering the Peach-Koehler force, which
is felt by the dislocation with Burgers vector 𝒃′. The Peach-Koehler
force (106) has the same formal mathematical form as the Peach-

Koehler force in classical elasticity (see [61]). The only difference is
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Fig. 16. Peach-Koehler force  PK of two parallel edge dislocations with: (a) 𝑏′𝑥𝑏𝑥 > 0, (b) 𝑏′𝑥𝑏𝑥 < 0.

Fig. 17. Glide component (Peach-Koehler force component PK
𝑥 ) of two parallel edge dislocations with: (a) 𝑏′𝑥𝑏𝑥 > 0, (b) 𝑏′𝑥𝑏𝑥 < 0.

Fig. 18. Climb component (Peach-Koehler force component PK
𝑦 ) of two parallel edge dislocations with: (a) 𝑏′𝑥𝑏𝑥 > 0, (b) 𝑏′𝑥𝑏𝑥 < 0.
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Fig. 19. Limits of nonlocal simplified strain gradient elasticity.
Table 2
Behavior of dislocation fields in simplified strain gradient elasticity, Eringen’s nonlocal elasticity and nonlocal
simplified strain gradient elasticity.

Simplified gradient elasticity Nonlocal elasticity Nonlocal simplified
gradient elasticity

𝒖 Smooth and nonsingular Discontinuous and singular Smooth and nonsingular
𝜷P Nonsingular Singular Nonsingular
𝜷 Nonsingular Singular Nonsingular
𝝈 Nonsingular – Nonsingular
𝝉 Singular – Nonsingular
𝒕 Singular Nonsingular Nonsingular
s
s
a

C

V
t

D

a
f

D

A

d
f
2

A
e

n

Table 3
Framework of nonlocal simplified strain gradient elasticity.
Geometric fields Stresses Constitutive relations

𝐿𝐺𝒖 = 𝒖0 𝐿𝐺𝐿𝑁𝝈 = 𝝈0 𝝈 = C∶𝒆 ∗ 𝛼
𝐿𝐺𝜷P = 𝜷P,0 𝐿𝐺𝐿𝑁 𝝉 = 𝓁2

𝐺∇𝝈
0 𝝉 = 𝓁2

𝐺∇𝝈
𝐿𝐺𝜷 = 𝜷0 𝐿𝑁 𝒕 = 𝝈0 𝒕 = C∶(𝐿𝐺𝒆) ∗ 𝛼
𝐿𝐺𝜶 = 𝜶0

Table 4
Framework of simplified strain gradient elasticity.
Geometric fields Stresses Constitutive relations

𝐿𝐺𝒖 = 𝒖0 𝐿𝐺𝝈 = 𝝈0 𝝈 = C∶𝒆
𝐿𝐺𝜷P = 𝜷P,0 𝐿𝐺𝝉 = 𝓁2

𝐺∇𝝈
0 𝝉 = 𝓁2

𝐺∇𝝈
𝐿𝐺𝜷 = 𝜷0 𝒕 = 𝝈0 𝒕 = C∶(𝐿𝐺𝒆)
𝐿𝐺𝜶 = 𝜶0

Table 5
Framework of Eringen’s nonlocal elasticity.
Geometric fields Stresses Constitutive relation

𝒖 = 𝒖0 𝐿𝑁 𝒕 = 𝝈0 𝒕 = C∶𝒆 ∗ 𝛼
𝜷P = 𝜷P,0 𝒕 = 𝝈
𝜷 = 𝜷0

𝜶 = 𝜶0

that the Cauchy stress 𝝈 is nonsingular in nonlocal simplified strain gra-
ient elasticity unlike the singular Cauchy stress in classical elasticity.
he Peach-Koehler force depends on the characteristic gradient length
𝐺 and the characteristic nonlocal length 𝓁𝑁 in the following way:

• Peach-Koehler force:  PK =  PK(𝒓,𝓁𝐺 ,𝓁𝑁 ).

Nonlocal simplified strain gradient elasticity is the unification of the
theories of Eringen’s nonlocal elasticity and simplified strain gradient
elasticity. It combines the advantages of the theories of Eringen’s non-
local elasticity and simplified strain gradient elasticity. The advantage
of nonlocal simplified first strain gradient elasticity in comparison to
Eringen’s nonlocal elasticity and simplified first strain gradient elastic-
ity is that all relevant dislocation fields are nonsingular (see Table 2). In
this way, nonlocal simplified first strain gradient elasticity provides a
new way to remove/regularize the singularities in classical dislocation
fields.
15
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Nonlocal simplified strain gradient elasticity contains three impor-
tant limits (see Fig. 19):

𝓁2
𝑁 → 0 : simplified strain gradient elasticity

𝓁2
𝐺 → 0 : nonlocal elasticity

𝓁2
𝑁 → 0, 𝓁2

𝐺 → 0 : classical elasticity.

The frameworks of nonlocal simplified strain gradient elasticity,
implified strain gradient elasticity and Eringen’s nonlocal elasticity are
ummarized in Tables 3–5, respectively. The fields with superscript 0
re the singular fields in the framework of classical elasticity.
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ppendix. Boundary conditions in nonlocal first strain gradient
lasticity

The non-standard boundary conditions are an important aspect of
onlocal first strain gradient elasticity theory. The boundary conditions

BCs) in nonlocal first strain gradient elasticity were originally given
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n
p
r

by Lim et al. [39]. The BCs corresponding to Eq. (19) read in the index
notation
𝑡𝑖𝑗𝑛𝑗 − 𝜕𝑗

(

𝜏𝑖𝑗𝑘𝑛𝑘
)

+ 𝑛𝑗𝜕𝑙
(

𝜏𝑖𝑗𝑘𝑛𝑘𝑛𝑙
)

= 𝑡𝑖
𝜏𝑖𝑗𝑘𝑛𝑗𝑛𝑘 = 𝑞𝑖

}

on 𝜕𝛺, (A.1)

where 𝑡𝑖 and 𝑞𝑖 are the Cauchy traction vector and the double stress
traction vector, respectively. Moreover, 𝜕𝛺 is the smooth boundary
urface of the domain 𝛺 occupied by the body satisfying the Euler–
agrange equation (19), 𝑛𝑖 denotes the unit outward-directed vector
ormal to the boundary 𝜕𝛺, and the overhead bar represents the
rescribed value. Using the constitutive equation (14), the BCs (A.1)
educe to
𝑡𝑖𝑗𝑛𝑗 − 𝓁2

𝐺𝜕𝑗
(

𝑛𝑘𝜕𝑘𝜎𝑖𝑗
)

+ 𝓁2
𝐺𝑛𝑗𝜕𝑙

(

𝑛𝑙𝑛𝑘𝜕𝑘𝜎𝑖𝑗
)

= 𝑡𝑖
𝓁2
𝐺𝑛𝑗𝑛𝑘𝜕𝑘𝜎𝑖𝑗 = 𝑞𝑖

}

on 𝜕𝛺. (A.2)

In the limit 𝓁2
𝑁 → 0 that means 𝛼 → 𝛿(𝒙), the BCs (A.1) reduce to

the BCs in first strain gradient elasticity (see [25,62,63]). In the limit
𝓁2
𝐺 → 0, the BCs (A.2) reduce to the BC in Eringen’s nonlocal elasticity:

𝑡𝑖𝑗𝑛𝑗 = 𝑡𝑖 (see [1]).
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