KIT | KIT-Bibliothek | Impressum | Datenschutz

Driver Behavior Analysis and Decision-Making for Autonomous Driving at Non-Signalized Inner City Intersections

Weinreuter, Hannes ORCID iD icon 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

The focus of this work is on human driving behavior in road traffic. Two aspects of it are covered, the prediction of it, including the identification of relevant influencing factors, as well as the behavior generation for autonomous vehicles.
The behavior prediction is based on a field study during which participants drove a measurement vehicle through inner-city traffic. Using the driven trajectories and lidar recordings complexity features to describe the surroundings at the intersection, the traffic there and the driving path are defined. The driving behavior is characterized by further features. Based on the complexity features regression models are trained to predict the behavior features. For that, linear regression, random forest and gradient boosting machine are utilized. Different complexity feature sets, including ones that are reduced with the help of an autoencoder, are used for prediction. The results show that the driving behavior can be predicted reliably. However, when using complexity feature sets with only few features the prediction performance is reduced.
In order to obtain a complexity score that is in line with human perception of complexity, an online study using videos of approaches to intersections was conducted. ... mehr


Volltext §
DOI: 10.5445/KSP/1000175979
Veröffentlicht am 06.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Arbeitswissenschaft und Betriebsorganisation (IFAB)
Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Hochschulschrift
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 978-3-7315-1393-3
ISSN: 2190-6629
KITopen-ID: 1000175979
Verlag KIT Scientific Publishing
Umfang XVII, 195 S.
Serie Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie ; 35
Art der Arbeit Dissertation
Fakultät Fakultät für Elektrotechnik und Informationstechnik (ETIT)
Institut Institut für Industrielle Informationstechnik (IIIT)
Prüfungsdaten 20.09.2024
Prüfungsdatum 20.09.2024
Schlagwörter Autonomes Fahren, Entscheidungsfindung, ereignisdiskrete Modellierung, Verhaltensprädiktion, paarweise Vergleiche, autonomous driving, decision making, discrete event modelling, behavior prediction, pairwise comparisons
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
Referent/Betreuer Heizmann, Michael
Deml, Barbara
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page