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Abstract

The overall aim of this thesis is to improve the outcome of Radioguided Surg-
eries (RGSs) by developing and evaluating reconstruction methods to exploit
the advantages of Coded Aperture Imaging (CAI) for Intraoperative Gamma
Cameras (IGCs).

Motivation: Female breast cancer has surpassed lung cancer as the most
commonly diagnosed cancer. The biopsy and examination of lymph nodes that
receive lymphatic drainage from the primary tumor are guided by IGCs. CAI
has been proposed as an alternative to parallel-hole or pinhole collimators to
produce an image. It offers a better trade-off between sensitivity and spatial
resolution, but requires image reconstruction.

Methods: First, planar reconstruction was investigated where the source’s
depth is assumed to be known. A Convolutional Encoder-Decoder (CED) was
developed and trained on synthetic source distributions and a low-fidelity sim-
ulation. It was quantitatively compared to reconstruction methods from the
literature, such as MURA Decoding and a Maximum Likelihood Expectation
Maximization (MLEM) algorithm. The computing time and the Contrast-to-
Noise Ratio (CNR) served as key metrics throughout this thesis. Moreover, the
ability of super-resolution was investigated by reconstructing bilinear interpo-
lations of simulated low-resolution detector images. In the second part of this
thesis, the assumption of a known source-to-mask distance was loosened and
the axial resolution quantified using the Full Width at Half Maximum (FWHM)
of the axial CNR profile of a point-like source. Lastly, an Iterative Source
Localization (ISL) algorithm incorporating an Exponentially Modified Gaussian
(EMG) fitting was developed to localize sources in all three dimensions.

Results: While MURA Decoding quickly provides robust reconstructions
with good quality, MLEM takes around 170 times longer with a 1.2 times
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Abstract

higher CNR. The CED performed the best with an on average 2.7 times higher
CNR and a runtime comparable to MURA Decoding, despite the low-fidelity
simulation of the training data. The simulation study indicated that super-
resolution is feasible. Regarding 3D reconstruction, it was found that, for
MURA Decoding, the axial resolution degraded from 5.3mm FWHM at 12mm
mask-to-source distance to 42.2mm at 100mm. The ISL combined with an
EMG fit achieved a mean localization error of 0.8mm on the simulated and
2.6mm on the experimental data in the imaging range of 20−100mm.

Conclusion: The MLEM algorithm yields a higher CNR and better axial
resolution, but is not suitable for RGS in its current form, due to its compu-
tational complexity. MURA Decoding provides robust reconstructions. Its
fast computation enables 3D reconstruction which allows the localization of
point-like sources with an accuracy comparable to that of stereoscopic cameras.
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Zusammenfassung

Das Ziel dieser Arbeit ist es, den Ausgang von Sonden-geführten Eingriffen
(SGE) zu verbessern, indem Rekonstruktionsmethoden für die Bildgebung mit
einer kodierten Aperture (KA) entwickelt und evaluiert werden. Damit sollen
die Vorteile von KA für intraoperative Gamma-Kameras (IGK) nutzbar gemacht
werden.

Motivation: Brustkrebs bei Frauen hat Lungenkrebs als die am weltweit
häufigste diagnostizierte Krebsart überholt. Die Biopsie und Untersuchung
von Lymphknoten, die einen Lymphabfluss vom Primärtumor erhalten, wird
mit Hilfe von IGKs durchgeführt. Als Alternative zu Parallelkollimatoren
oder Lochblenden, wurde zur Bilderzeugung KA entwickelt. Sie bieten einen
besseren Kompromiss zwischen Sensitivität und räumlicher Auflösung, er-
fordern allerdings eine Bildrekonstruktion.

Methoden: Zunächst wurde die planare Rekonstruktion untersucht, bei
der die Tiefe der Quelle als bekannt angenommen wird. Ein faltungsbasiertes
Encoder-Decoder-Netzwerk (FED) wurde entworfen und auf synthetischen
Quellverteilungen und einer einfachen Simulation trainiert. Danach wurde es
mit Methoden aus der Literatur, u.a. MURA Decoding und einem Maximum-
Likelihood-Schätzer (MLS), quantitativ verglichen. Die Laufzeit und das
Kontrast-zu-Rausch-Verhältnis (KRV) dienten hierbei als Hauptmetriken. Des
Weiteren wurde die Möglichkeit der Super-Resolution untersucht, bei der
niedrig aufgelöste Bilder vor der Rekonstruktion mittels bilinearer Interpo-
lation skaliert wurden. Im zweiten Teil dieser Arbeit wurde die Annahme einer
bekannten Quelltiefe fallen gelassen und die axiale Auflösung als Volle Bre-
iter bei Halber Höhe (VBHH) des axialen KRV-Profils einer punktähnlichen
Quelle bestimmt. Zuletzt wurde die Genauigkeit analysiert, mit welcher eine
Quelle in allen drei Raumrichtungen lokalisiert werden kann. Ein Iterativer

iii



Zusammenfassung

Quell-Lokalisierungsalgorithmus (IQL) einschließlich einem Fitting mit einer
symmetrischen Gauß-Verteilung oder einer exponentiell modifizierten Gauß-
Verteilung (EMG) wurde dazu entwickelt.

Ergebnisse: Während MURA Decoding robust und schnell eine gute Rekon-
struktionsqualität liefert, brauchte der MLS für ein 1.2 mal höheres KRV ca. 170
mal länger. Das FED erzielt die besten Ergebnisse mit einem durchschnittlich
2.7 mal höheren KRV, trotz seiner simplen Trainingssimulation. Die Ergebnisse
der Simulationsstudie deuten daraufhin, dass Super-Resolution realisierbar ist.
Im Bezug auf 3D-Bildgebung wurde herausgefunden, dass für MURA Decoding
die axiale Auflösung von 5.3mm VBHH bei 12mm Quelldistanz zu 42.2mm
VBHH bei 100mm abnimmt. Der IQL erreicht in der Kombination mit dem
EMG-Fitting einen durchschnittlichen Lokalisierungsfehler von 0.8mm auf
simulierten und von 2.6mm auf experimentellen Daten für Quelldistanzen im
Bereich von 20−100mm.

Schlussfolgerungen: Der MLS bieten generell ein höheres KRV und eine
bessere axiale Auflösung, ist aber aufgrund seines Rechenaufwands in seiner
derzeitigen Form für SGE nicht geeignet. MURA Decoding bietet eine ro-
buste Rekonstruktion. Die schnelle Berechnungszeit erlaubt die Generierung
von 3D-Rekonstruktionen. Mit diesen ist eine Lokalisierungsgenauigkeit von
punktähnlichen Quellen erreichbar, die mit Stereo-Kameras vergleichbar ist.
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Chapter 1
Introduction

1.1 Motivation

Female breast cancer has surpassed lung cancer as the most commonly diag-
nosed cancer, with an estimated 2.3 million new cases worldwide in 2020 [1].
In Germany alone, the Robert Koch institute estimates that 74,500 women
and 600 men are diagnosed with breast cancer per year [2]. Over the decades,
axillary staging of breast cancer has evolved, becoming less invasive and more
conservative. It has moved from dissecting the entire axillary lymph system to
the less invasive Sentinel Lymph Node Biopsy (SLNB) [3], which is nowadays
the gold standard for early-stage patients with clinically negative axilla [4].
The objective of SLNB is to locate, dissect and to pathologically examine the
Sentinel Lymph Nodes (SLNs), i.e. lymph nodes in the lymphatic drainage of
the primary tumor, which are the first nodes to receive lymph-borne metastatic
cells [3, 5]. In the last decades, surgical procedures like SLNB are driving the
development of Intraoperative Gamma Camera (IGC) to perform Radioguided
Surgery (RGS) [6–8]. IGCs are gamma cameras that are used to visualize the
distribution of biological structures during the surgery that were marked with
radioactive tracers, emitting gamma photons from inside the body. In hospitals
world-wide, IGCs guide the surgeons in SLNB as well as in surgical resection
for localized tumors [5]. In order to neither stall nor interrupt the surgical
workflow, IGCs have to be compact and lightweight to remain maneuverable.
Additionally, they are required to provide fast acquisitions of images that are
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both high in contrast and in spatial resolution [7, 8]. The collimator represents
the component of IGCs that has the largest impact on the imaging performance.
Compared to conventional forms of collimation, Coded Aperture Imaging (CAI)
offers a superior trade-off between acquisition time and spatial resolution [7].
However, it requires image reconstruction that adds a layer of complexity to the
imaging procedure. In the field of computer vision, Machine Learning (ML)
approaches have gained considerable popularity, especially in image regression
tasks [9, 10] and, thus, present a promising candidate for CAI reconstruction.
Besides an accelerated imaging procedure and more detailed images, CAI is
able to provide additional information about the source-to-camera distance.
Overall, the development and evaluation of reconstruction methods, both for
planar and 3D imaging, with regards to an intraoperative application has enor-
mous potential to provide depth information and, hence, to improve the outcome
of RGS [7, 8].

1.2 State of the Art

Stationary gamma cameras, such as Single Photon Emission Computed To-
mography (SPECT) systems, are an established tool in nuclear medicine to
provide comprehensible visualizations of the internal distribution of radiotracer
materials. The goal is to measure the distribution of radiotracers that are specifi-
cally designed to accumulate in organs or tissue of interest in order to detect
abnormalities which are characteristic of a disease [11–13]. Over the last few
decades, intraoperative imaging has increasingly gained importance, and surgi-
cal procedures have become less invasive, leading to the development of RGS,
where a radiation detection probe is employed during the surgery and within
the surgical suite [8, 14]. In most clinics, RGS relies on a combination of pre-
operative imaging with intraoperative guidance with a handheld gamma probe.
Such gamma probes provide instantaneous feedback on the local radioactivity
concentration by displaying the count rate and offering variable-pitch acoustic
feedback, which is essential for a rapid and precise detection in RGS [12]. How-
ever, several limitations were identified [14]: First, acoustic gamma probes do
not provide image documentation for the medical record. Second, the outcome
is highly operator dependent, and requires a lot of experience about the correct
positioning. Third, SLNs, that are either deeply located or have a low uptake

2



1.2. State of the Art

of radiotracer, are hard to locate and may be missed due to the low emission
and high attenuation inside the body. IGCs are small, compact, and lightweight
imaging probes that offer solutions to the short-comings of acoustic gamma
probes. They offer two key advantages: Instead of discrete point measurements,
IGCs allow for a broader overview of the incision site making surveying larger
areas less tedious and difficult for the surgery team. Additionally, the provided
images from IGCs are considered more intuitive guidance than numerical or
acoustic feedback [8].

Commercially available IGCs exist. Among them are, for example, the
CrystalCam [15, 16], distributed by Crystal Photonics GmbH (Berlin, Ger-
many), and the Sentinella 102 [17] by Oncovision (Valencia, Spain). In the
research community, more diverse forms of IGCs are being investigated: the
ultra-portable wireless PGC [18], λ -Eye, which is specifically designed for
SLNB [19], and stereoscopic gamma cameras for 2D imaging with additional
depth estimation [20], to name a few. The performance of IGCs are dominated
by their collimator design and most of the current devices use either pinhole or
parallel-hole collimators [7]. However, collimation always represents a trade-off
between harvesting as many photons as possible (sensitivity) and high-resolution
imaging (spatial resolution). For a pinhole collimator, this translates into the
following: the smaller the opening, the sharper the image, but at the same time,
a small opening also means that a large proportion of the incoming photon flux
is blocked, resulting in a longer exposure time [11]. To improve the compro-
mise between fast image acquisition and high-resolution images the concept of
coded apertures was introduced independently by Dicke [21] and Ables [22] in
1968. Initially proposed for X-ray astronomy, a mask with multiple pinholes
between the radiating object and detector encodes the directional information
of incoming gamma rays. An increase in photon detection of nine to 20-fold
is possible [23, 24], and a superior spatial resolution of below 1mm was re-
ported [25]. Another advantage of CAI is that, unlike parallel-hole collimation,
magnification can be achieved, allowing larger areas to be surveyed, making it
particularly useful for the source localization. However, image reconstruction
is required to obtain an interpretable image of the scene. The reconstruction
method is a major driver of the final image quality and several reconstruction
methods have been suggested [23, 24, 26–29]. However, a thorough and quanti-
tative analysis of reconstruction methods with regard to both the computational
burden and the image quality is still missing. A few ML approaches have been

3
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reported [29, 30], but not for high-resolution detectors and an evaluation on
data from an experimental IGC is still pending. Furthermore, CAI offers the
possibility of 3D imaging: In contrast to pinhole or parallel-hole collimation, an
in-focus plane must be selected. In x-ray astronomy or other far-field use-cases
an image plane infinitely far away can be chosen, but this does not apply to
RGS. Interestingly, the depth dependency of the in-focus plane can be exploited
to estimate the source-to-camera distance, particularly in the near-field where
the image projection is more sensitive to the depth than in the far-field. More
common technologies for estimating the source-to-camera distance are stereo
gamma cameras [20, 31, 32], external tracking [33], and additional optical
stereo [34] or depth cameras [35].

In summary, coded aperture collimators combine the high geometric sensi-
tivity of parallel-hole collimators with the excellent resolution and magnification
properties of pinhole collimators. Despite the advantages of CAI, it remains the
disfavored choice of collimation in IGCs. Image reconstruction is required and
adds a layer of complexity, but offers the possibility of 3D imaging. A recent
review article on IGCs has identified great potential for CAI in general and its
capabilities of 3D imaging in particular, where the reconstruction methods play
a central role. These promising prospects, however, are currently impeded by
the considerable burden of conducting experiments with radioactive material,
coupled with the lack of publicly available datasets [7].

1.3 Research Question and Hypotheses

The goal of this thesis is to develop and evaluate appropriate reconstruction
methods in order to exploit CAI for RGS. Despite the increased sensitivity and
spatial resolution, there is little research carried out in employing CAI in the
surgical suite [7]. Even though, several planar reconstruction methods have
been proposed [23, 24, 26–29], they have not been quantitatively compared
on real-world data to analyze their strengths and weaknesses with regards to
RGS. Additionally, the high spatial resolution of CAI is achieved by an aperture
with very small pinholes, which requires such a high number of detector pixels
that can only be achieved with less efficient semiconductor-based detectors.
Thus, it is desirable to combine a low-resolution but sensitive detector with a
high-resolution coded aperture mask, which is referred to as super-resolution.
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1.3. Research Question and Hypotheses

Furthermore, the research community lacks publicly available datasets with
a variety of source distributions, which heavily impedes investigating CAI in
general and reconstruction methods specifically. These problems lead to the
following research question, thesis, and two accompanying hypotheses that will
guide the reader through this work:

Research Question I

How do planar reconstruction methods for CAI suited for RGS perform
on real-world images?

Thesis I

A ML approach is able to achieve better reconstruction results in less
time than known planar reconstruction methods.

Hypothesis Ia

A Convolutional Encoder-Decoder (CED) network trained on a synthetic
dataset that is generated with a low-fidelity simulation achieves on
average a higher Contrast-to-Noise Ratio (CNR) with less computation
time than known planar reconstruction methods.

Hypothesis Ib

Even with a detector that cannot resolve the coded aperture mask’s
small pinholes, a CED network still outperforms other methods and
thus, achieves super-resolution.

In order to investigate the proposed hypotheses and to answer the research
questions of this thesis, the following milestones must be addressed:
(M1) A literature research must be conducted to find the planar reconstruction

methods for CAI that are suitable for RGS and its requirements, which
are a fast reconstruction time and a computational complexity that fits into
the surgery room. They need to be implemented in a common framework
for a fair comparison.

(M2) In ML, a plenitude of architectures for image-to-image regression tasks
exist. Therefore, a suited ML architecture must be implemented, trained,
and compared. This involves developing a fast simulation of coded
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aperture images to generate a dataset for training and an appropriate
training procedure. Additionally, a domain of training data must be
selected.

(M3) A sensible and established metric is required to compare image quality.
Additionally, this metric should be deterministic and not require man-
ual labelling of either source or background as this would compromise
reproducibility.

(M4) Real-life images captured with experimental gamma cameras suffer from
noise and artefacts that are difficult to predict or simulate. Semiconductor-
based detectors, for example, tend to suffer from cracks in the substrate,
defective pixels and additionally environmental gamma or alpha particles
that can heavily disturb image acquisition and reconstruction. Thus, an
appropriate form of preprocessing must be found.

The application described above is linked to the strong assumption that
the distance between the camera and the source is known when reconstructing
an image. Reconstruction becomes more complex, when this assumption is
loosened and at the same time opens up the challenge of 3D imaging. Yet, the
capabilities of CAI to produce 3D reconstructions from a single acquisition
have not been fully explored. Planar reconstruction methods require selecting
an in-focus plane, yet, e.g. the depth of a SLN in the tissue is not known
beforehand. Thus, the second research question emerges and the following
thesis and hypotheses can be derived:

Research Question II

How can point-like gamma sources be localized with high precision and
high accuracy in all three spatial dimensions?

Thesis II

By applying planar reconstruction methods at succeeding in-focus
planes in the near-field, a 3D reconstruction can be generated, allowing
to estimate the 3D position of point-like sources.

Hypothesis II
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Single point-like gamma sources can be localized with an accuracy of
approximately 5mm in all three dimensions in the range of 20mm to
100mm from a stack of planar reconstructions, and is, thus, comparable
to a stereoscopic camera.

When investigating the potential of 3D imaging, it is necessary to address the
following milestones:
(M5) From the planar reconstruction methods investigated, a suitable method

must be chosen to analyze both the precision and accuracy for localizing
point-like gamma sources. The existing 3D Maximum Likelihood Expec-
tation Maximization (3D-MLEM) algorithm must be generalized to our
setup in order to serve as a reference method.

(M6) The axial resolution, as a measurement for the precision, must be deter-
mined for different distances between the camera and the source in a
typical range for RGS.

(M7) A 3D-localization method for point-like sources must be developed, where
from a single image captured with a coded aperture camera all three
spatial coordinates of the source are estimated. Comparing the estimated
position with the true source position yields the localization error and,
thus, the accuracy.

(M8) A dataset of real-life images captured with an experimental IGC is re-
quired. A dataset of detector images where a point-like source is posi-
tioned at different distances from the camera covering the entire Field
of View (FOV) is needed to evaluate the axial resolution, as well as the
localization accuracy.

In summary, the research presented in this thesis, aims to leverage the coded
aperture technology for IGC by developing and evaluating reconstruction meth-
ods. It focuses on two cases: First, when the source is at a well-known distance.
Second, when the source is close to the camera, which is desirable for a high
photon yield, 3D imaging is possible and the question of the axial resolution
and localization accuracy arises. These finding would pose the basic to further
investigate the 3D imaging capabilities of CAI.
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1.4 Structure of This Thesis

This thesis consists of five parts: First, in Part I the fundamentals about gamma
cameras in nuclear medicine (Sec. 2), the basic principles of CAI (Sec. 3) and the
basics of ML (Sec. 4) are presented. Part II describes the experimental datasets
as well as the synthetic datasets acquired and used in the course of this thesis.
Part III investigates planar CAI guided by research hypotheses Ia and Ib. It
presents planar reconstruction methods that are suitable for RGS before showing
the development and training of the ML approach. The selected reconstruction
methods are then quantitatively compared regarding their computational costs
and reconstruction quality. Afterwards, the concept of super-resolution is
introduced and analyzed. In Part IV, the possibility of 3D imaging with a
coded aperture gamma is investigated, as stated by research hypothesis II: the
axial resolution of an experimental IGC is assessed, followed by analyzing the
accuracy in localizing point-like gamma sources in all three spatial dimensions.
Finally, Part V gives an outlook on further research, summarizes the main
results of this work, and eventually completes this thesis by drawing its main
conclusions.
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Chapter 2

Intraoperative Gamma
Cameras in Nuclear Medicine

Intraoperative Gamma Cameras (IGCs) in nuclear medicine are specialized
imaging devices used during Radioguided Surgery (RGS) aiding surgeons to
locate marked tissue. This chapter provides an overview on how an image
is generated and their application in nuclear medicine. In order to assess the
imaging capabilities of IGCs, the main performance parameters of IGCs are
describes in Sec. 2.1, while Sec. 2.2 and 2.3 give a detail overview over the
state-of-the art technologies used. Finally, Sec. 2.4 provides an overview of
Sentinel Lymph Node Biopsy (SLNB), the most popular procedure guided by
IGCs.

2.1 Performance Parameters

IGCs combine two components to produce an image: a position-sensitive
detector to measure the position and energy of an impinging gamma photon and
a collimator between the detector and source to obtain its directional information.
Both components heavily influence the camera’s imaging capabilities. The
following main performance characteristics of IGC were identified [7, 8]:
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Sensitivity The sensitivity describes the efficiency in converting impinging
radiation into a usable signal and is an important performance parameter due to
the low activity in RGS. This parameter is mainly influenced by the detector
choice (see Sec. 2.2). One can distinguish between geometrical sensitivity
and intrinsic sensitivity. The geometrical sensitivity is the fraction of emitted
photons which interact with the detector and is directly proportional to the
sensitive detector area and inversely proportional to the square of the detector-
to-source distance. Intrinsic sensitivity, on the other hand, describes the fraction
of radiation that impinges in the sensitive area and is efficiently detected, i.e.
converted to a readable electrical signal and attributes to the final detector
image. In general, higher sensitivities have been reported for devices with
scintillator-based detectors compared to semiconductor-based detectors [7].

Spatial resolution The spatial resolution expresses the capability of the de-
vice to resolve two sources as individual objects. Even though the spatial
resolution is defined as a measure of the smallest distance between two objects
that can be resolved, multiple ways of measuring it are in use [8]. For example,
measuring the Full Width at Half Maximum (FWHM) of a line spread function,
by taking the derivative of an edge response function, or combining measure-
ments with mathematical approximation of the geometrical resolution of the
collimator are used to quantify the spatial resolution [7]. The most common
way, however, is to measure the FWHM of a point-like source, where its profile
is considered to be a Gaussian curve with a mean γ and a variance δ 2. With
the correspondence of Eq. 2.1 the FWHM is calculated from a fitted Gaussian
curve [36].

FWHM = 2
√

2ln2δ ≈ 2.35δ . (2.1)
That indicates that two point sources with a distance of FWHM have a relative
intensity difference between both peaks of 0.5. The collimator is the biggest
determinant factor for a good spatial resolution, but it implies a reduction of
geometrical sensitivity. Consequently, the choice of collimation is always a
trade-off between high spatial resolution and low sensitivity and vice versa.

Energy resolution A high energy resolution enables the device to discrimi-
nate between the different energies of detected photons. This allows to separate
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gamma photons emitted by the target structure from scattered photons or back-
ground activity [37]. Usually, an energy window if ±10 % around the target
energy is applied to avoid large image degradation from scattered or background
radiation. The energy resolution is especially important to reject image noise
caused by Compton-scattered photons (see Sec. 3.5).

More performance parameters exists, such as contrast, count rate capability,
shielding and the device’s geometrical design, but are mainly influenced by the
parameters above:

Contrast This parameter is used to describe the device’s ability to separate
high activity enclosed by low activity background. It is directly related to the
device’s sensitivity, spatial resolution and energy resolution, more specifically
by the selected energy window.

Count rate capability It defines the maximum number of counts per seconds
that the detector can detect before the material reaches its saturation. The
amount of activity can only be derived correctly in the quasi-linear conversion
domain of the detector. Both the detection crystal, and the readout electronic can
limit the count rate capability [6]. The count rate capability of scintillator-based
detectors is usually more limited than that of semiconductor-based detectors.

Shielding The better the shielding, the fewer photons from outside the target
area reach the detector and degrade the image quality. While side shielding
helps to reduce noise and thus improves contrast and spatial resolution, it can
reduce the device’s Field of View (FOV).

Geometrical design The distance between the collimator and the area under
examination affects all of the parameters above. While being close to the source
maximizes the sensitivity, it reduces the spatial resolution. On the contrary,
with a larger collimator-to-detector distance, the sensitivity declines, because it
also elongates the source-to-detector distance, and at the same time the spatial
resolution improves, because the projection of a point-source becomes more of a
parallel projection. The size of sensitive area of the detector acts analogously [8].
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Figure 2.1: There are three basic detector technologies. Scintillator-based with a continu-ous crystal (A), with an pixelated array of single isolated crystals (B) and semiconductor-bas-ed detectors (C). Incoming gamma photons are converted inside the scintillator crystals andare either amplified by photomultiplier tubes (PMT) (A) or directly converted to an electricalsignal by an array of silicon photomultipliers (SiPM). In semiconductor-based detectors theconversion takes place directly in the substrate and allows for a larger pixelation but at thecosts of a lower conversion rate (C). Figure modified from [38].

2.2 Detector Technology

Three main types of detector technologies for gamma imaging can be distin-
guished: scintillator-based detectors with continuous or pixelated scintillation
crystal and semiconductor-based detectors [8, 39]. An overview is presented in
Fig. 2.1.

Continuous scintillator detectors The design of Single Photon Emission
Computed Tomography (SPECT) cameras has remained unchanged for decades,
consisting of a single large scintillation crystal made of sodium iodide doped
with thallium ions (abbreviated by NaI:Tl) with an array of large Photomultiplier
Tubes (PMTs) and a parallel-hole collimator [38]. This design is so renowned
that it is commonly referred to as Anger camera, named after its inventor Hal
Oscar Anger in 1957 [12]. The detection unit consists of three components: A
scintillator, a photodetector and readout electronics. A scintillator is a slab of
material that absorbs the energy of incoming gamma photons and re-emits it
as light in response. In order to detect these light photons, they are amplified
by PMTs. Behind the scintillator is an array of PMTs and readout electronics
to compute photon energy and the location of the photon interaction within the
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crystal. The spread of the emitted light photons increases with the scintilla-
tor’s thickness, degrading the precision of the localization of the gamma ray
interaction, resulting in a poorer intrinsic resolution of the device. However, a
thick crystal improves the detector’s sensitivity, because the probability that a
gamma photon passing through the material will interact increases. Since the
invention of the Anger camera, the scintillator materials have developed towards
materials with higher stopping powers and improved light yields. Nowadays
the most popular choices of scintillator material for continuous detectors are
sodium-doped cesium iodide CsI:Na and cerium-doped lanthanum bromide
(LaBr3:Ce) [7].

The readout electronics have also undergone substantial improvement, with
a progress especially in semiconductor-based readout technology. While many
devices currently available or under investigation still employ photodetectors
based on vacuum technology like PMTs or multi-channel PMTs, semicon-
ductor-based photodetectors such as photodiodes (PINs) or photon multiplies
made of silicon (SiPMs) are on the rise [7]. The latter has the advantage of
remaining unaffected by magnetic fields allowing the usage together in an
Magnetic Resonance Imaging (MRI) device, higher mechanical durability, and
an overall more compact design [7, 8]. All in all, the general advantage of using
a continuous scintillator is its higher sensitivity, at the costs of a poorer spatial
resolution and a heavy and bulky design compared to semiconductor-based
detectors.

Pixelated scintillator detector An emerging alternative to a single contin-
uous scintillator crystal is packing a large number of small rectangular scin-
tillation crystals (for example 1.9× 1.9× 5mm3 cubes [19]) that are coated
with a reflective material into a larger array to form a pixelated scintillator.
Thereby, the re-emitited light is much more focused and can be converted into
an electrical signal more precisely than in a continuous design. Furthermore,
pixelated scintillators are capable of higher counting rate due to the light pulses
emerging in isolated pixels, so only single pixels can reach saturation without
effecting others [38]. Since each pixel can be produced separately, materials are
chosen that are normally harder to grow uniformly and defect-free but achieve a
higher light yield like thallium-doped cesium iodide (CsI:Tl) and cerium-doped
gadolinium aluminium gallium garnet (GAGG:Ce) [7]. Even though pixelated
detectors can be used with PMTs, the semiconductor-based SiPMs have become
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the new photodetector of choice [38]. Concluding, pixelated scintillators are
increasing in popularity, making up over half of all analyzed IGCs in a recent
review paper [7], due to their improved spatial resolution, less complex readout
electronics, and in total, a smaller size.

Semiconductor-based detectors Semiconductor-based detectors for gam-
ma radiation are fairly new [40–42]. The incoming gamma photons are directly
absorbed by the semiconductor and generate electron-hole pairs, which are
converted in an electrical signal by a bias voltage of up to −500 V without
the detour of producing light photons [42]. Most current devices utilize a
hybrid pixel architecture, where a continuous crystal sensor is bump-bonded
to a Complementary Metal-Oxide Semiconductor (CMOS) ASIC readout chip
with pixelated anode contacts [7, 8, 43]. The most common crystals are silicon
(Si), cadmium-zinc-telluride (CdZnTe, or CZT) or cadmium telluride (CdTe),
where the latter has a sensitivity around five times higher compared to Si but is
also prone to more crystal defects [44]. Even though, the sensitivity is still below
that of scintillator-based detectors, the direct conversion allows for an improved
energy resolution. The energy resolution of semiconductor-based detectors
detectors have even become so precise, that spectroscopic imaging is achievable:
An example of this is the CrystalCam device, which has 4,095 energy channels
per pixel, enabling a pixel-specific energy spectrum to be generated from any
capture [16].

Similarly to the scintillator devices, a trade-off between sensitivity and
energy resolution must be made when deciding for the thickness of the crystal.
Furthermore, the thicker the crystal, the higher are the chances of crystal defects
and impurities.

Another decision that affects the trade-off between spatial and energy reso-
lution is the choice of pixelation: While the detector in the CrystalCam has an
excellent energy resolution, its spatial resolution with its 16×16 pixels is rather
poor. On the other hand, a high pixelation of 128×128 or even 256×256 leads
to charge sharing, where a single gamma interaction will be registered across
multiple neighboring pixels [7, 45]. To compensate, a specific software solution
was developed: With a multitude of short-exposure frames and a cluster centroid
localization method the actual event position is determined. With this aid, a
superior spatial resolution of close to 1mm was achieved [46]. Besides the
aforementioned cracks and crystalline defects, another disadvantage is the small
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Figure 2.2: An overview of the most common collimation techniques. The majority of IGCsutilize pinhole or parallel-hole collimators where parallel-hole is more popular. Coded aper-ture collimators can be regarded as an extension to the multi-pinhole technique with sev-eral existing mask patterns. The Modified Uniformly Redundant Arrays (MURA) pattern,and especially its No-Two-Holes-Touching (NTHT) version is the most popular pattern.

drift of the detection efficiency with irradiation time [40, 44, 46]. According
to a recent review article, semiconductor-based IGC detectors are the rarest
deployed detector technology despite achieving the current best spatial and
energy resolution [7].

2.3 Collimation Technology

The word collimator has its etymological root in the Latin word collimare, a
misreading of collineare, meaning “to direct in a straight line”1. The collimator
plays the dominant role in the performance of modern IGCs [7]. First, general
information about collimators in IGC will be provided. Afterwards, the two
most commonly used collimation techniques, together with their mathematical
description of the two main performance parameters (spatial resolution and
sensitivity) will be presented.

1“Collimate”. Merriam-Webster.com Dictionary, https://www.
merriam-webster.com/dictionary/collimate. Accessed 4 Mar.
2024.
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Figure 2.3: The three most common types of collimation: (a) Parallel-hole collimators onlyallowphotonswith a close to perpendicular direction to pass. (b) A pinhole collimator blocksphotons that do not pass through the single opening. They provide a higher resolution withthe costs of a low sensitivity compared to parallel-hole collimation. (c) A coded aperturemask consists of multiple small pinholes, allowing a better trade-off between sensitivityand spatial resolution. However, image reconstruction is required to obtain an interpretableimage.

The general purpose of collimators is to restrict the influx of photons in such
a way, that together with the information from the position-sensitive detector,
the directional information of the influx can be extracted. Just a small fraction of
the emitted photons pass through the aperture (typically < 10−2), which makes
it the main driver of the camera’s sensitivity. Here lies the fundamental target
conflict of collimation: enlarging the apertures, i.e. the holes, increases the
sensitivity but will results in a degradation of the resolution. This phenomenon
is referred to as the sensitivity-resolution trade-off [12, 47]. An overview of
pinhole, parallel-hole and coded aperture collimation is presented in Fig. 2.2.

Refractive or reflective camera systems are practically not feasible in gamma
imaging, because gamma photons are highly penetrative. Mirroring systems
were and are in use for space telescopes but come with immense manufacturing
costs and expensive quality control [48]. Thus, nearly all IGCs are equipped
with pinhole or parallel-hole collimators to acquire the spatial information of
incident gamma photons [6, 11, 49]. Application specific forms of collimators
exist, like diverging parallel-hole collimators for stationary heart perfusion
imaging exists, but they only play a niche role because their advantages are
small [7, 38]. Collimators are made of high density materials such as lead (Pb),
tungsten (W), gold (Ag) or platinum (Pt), to block as many photons as possible
except for the photons that are directed through the aperture.
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2.3.1 Parallel-Hole Collimation

Parallel-hole collimators, sometimes also called polycapillary optics [23, 50],
consist of a thick mask with elongated parallel openings in a honeycomb pattern
that resembles a pack of straws (see Fig. 2.3). In contrast to pinhole collimators,
parallel-hole collimator block photons not based on where they hit the collimator,
but based on their direction. This structure allows only photons to pass that
are close to perpendicular to the detector area. The openings are usually of
circular, square or hexagonal shape [7, 8]. The ratio of the hole size and
the collimator’s length is the primary factor for the camera’s resolution and
sensitivity. The septal thickness, the amount of material between the single
straws, must be chosen according to the photon energy of the targeted radiotracer,
since a thin septum does not prevent photons from crossing from hole to hole.
Parallel-hole collimators are classified into categories like Low-Energy High
Resolution (LEHR), Low-Energy High Sensitivity (LEHS), or compromises
such as Low-Energy General Purpose (LEGP) or Medium-Energy General
Purpose (MEGP) [51]. Parallel-hole collimators are the most popular choice of
collimators for IGC, because their sensitivity is around 10 to 100 times higher
than for pinhole collimators [7, 8] Because parallel-hole collimators produce a
parallel projection on the detector, the FOV is approximately constant for all
source-to-collimator distances, which makes it one of the most fundamental
differences between the pinhole collimator and the parallel-hole collimator [39].

The main performance parameters for gamma cameras with parallel-hole
collimators can be estimated with the following equations. The geometric
sensitivity of parallel-hole collimators is given by

gparallel =
1

4πl2
eff

A2
aperture

Aunit
, (2.2)

with the area of a single aperture Aaperture, and the area of a single unit cell
Aunit, combining the areas of the opening and the septal thickness. The effective
aperture length leff is an approximation of the collimator length l corrected for
the imperfect attenuation and is calculated as follows: leff = l −2µ−1.

The resolution is estimated by

Rparallel =
d (leff + z)

leff
, (2.3)
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Figure 2.4: A comparison between pinhole and parallel-hole collimation. The optimal IGChas a high sensitivity and good spatial resolution, i.e. small values. This graphs shows thetrade-off between the two major performance parameters spatial resolution (x-axis) andsensitivity (y-axis). Pinhole collimator is with varying diameter d, and parallel-hole collima-tor with varying length l. Further specifications can be found in [16] (parallel-hole) and [46](pinhole).

where z represents the distance between the source and source-facing side of
the collimator. Reported values of recent IGC with parallel-hole collimators of
the geometric sensitivity gparallel ranged from 1.0 ·10−4 to 2.5 ·10−3 [7]. The
geometric resolution Rparallel of the same two devices from above was 3.6mm
and 11.7mm at a distance of 50mm, demonstrating the inverse proportionality
between resolution and sensitivity.

Generally, parallel-hole collimators offer a higher sensitivity than pinhole
collimators at the costs of a worse spatial resolution making them the most used
collimator type nowadays [7]. The trade-off between those two performance
parameters is depicted in Fig. 2.4, where a pinhole collimator with varying
diameter d, and a parallel-hole collimator with varying length l and their effect
on the geometrical sensitivity and spatial resolution are shown.
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2.3.2 Pinhole Collimation

A pinhole collimator consists of a mask that contains only a single small opening
in the center, that projects the scene on the detector. Thus, a reflected image
of the scene is captured. In order to increase sensitivity for off-center sources
the edge of the pinhole opening are tapered to form so called knife-edges with
an opening angle α . Knife-edges enable a higher sensitivity at the costs of
more photon penetration through the edges and, thus, generally cause more
scattering noise. The FOV of pinhole collimators is approximated as a cone that
is only determined by the mask-to-detector, the source-to-mask distance, and
the detector size.

The main performance parameters – sensitivity and spatial resolution – for
gamma cameras with pinhole collimators can be estimated with the commonly
used formulas based on its geometry and the collimator material [7, 52]. The
on-axis geometric sensitivity gpinhole under consideration of penetration through
the knife-edges is given by

gpinhole =
d2

16z2 +
tan2 α

2
8z2µ2 ·

(
1+µd cot

α

2

)
, (2.4)

where d denotes the aperture diameter, z the distance between source and pinhole
center, α the acceptance angle of the knife-edge aperture, and µ the linear
attenuation coefficient [7]. The geometric resolution of a pinhole collimator can
be approximated with

Rpinhole =
de f f (b+ z)

b
, (2.5)

where b represents the distance between pinhole center and detector and de f f

the resolution-effective diameter, that factors the photon penetration of the
knife-edges into the pinhole diameter and is given by:

dres = d −
ln 1

2 tan α

2
µ

. (2.6)
The calculated parameters of existing IGC, both in commercial and in de-
velopment stage were analyzed and compared in a recent review study from
Farnworth et al [7]. Common sensitivities gpinhole range from 1.10 · 10−5 to
1.20 · 10−4 with corresponding resolutions Rpinhole of 3.66mm and 6.27mm,
both for source-to-mask distance of 50mm [7].
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Figure 2.5: SLNB has the goal to find the first few lymph nodes that receive lymphaticdrainage from the primary tumor. Therefore, a radiotracer is injected into the tumor, and agamma probe or IGC is used to find the Sentinel Lymph Nodes (SLNs). Analyzing the nodalstate is crucial in staging breast cancer. Figure with permission from [53]. ©(2024) TereseWinslow LLC, U.S. Govt. has certain rights.

2.4 Medical Application

SPECT, together with Positron Emission Tomography (PET), are the most
common imaging techniques in nuclear medicine and have a wide variety of
applications ranging from brain mapping over diagnoses and monitoring of heart
diseases to cancer detection [13]. While SPECT can only provide pre-operative
images, RGS utilizes a mobile gamma probe to detect the injected radiotracers
inside the patient’s body with the goal to precisely locate and possibly remove
abnormal or cancerous tissue [12]. While in most clinics, procedure like SLNB
relies on preoperative imaging in combination with an intraoperative acoustic
gamma probe guiding the surgeons during the procedure, in the last decade
IGC underwent considerable advancements both in technology as well as in
applications. The most common procedure for the application of IGC is SLNB,
which is explained in detail in the following section. Furthermore, the most
commonly administered radiotracers are described.

22



2.4. Medical Application

2.4.1 Sentinel Lymph Node Biopsy

SLNB is nowadays the most common application of RGS including patients
suffering from breast cancer, melanoma, hand and neck tumors, parathyroid
surgery, urogenital malignancies, and bone tumors [14]. While breast cancer
has become the most prevalent form of cancer [3], it is also the most common
application of SLNB. The procedure of SLNB in the case of female breast
cancer is depicted in Fig. 2.5.

The Sentinel Lymph Node (SLN) is any lymph node that receives lymphatic
drainage from a primary tumor and is, hence, the first node to receive lymph-
borne metastatic cells [19]. In breast cancer, the SLNs are part of the axillary
lymph system. Thus, an accurate assessment of the SLN involvement is an
essential component in staging breast cancer, as metastases in the SLNs are
the most important predictor of overall recurrence and survival [3]. If and
how many SLNs have become metastatic is essential for defining prognosis
and highly affects treatment planning [5], i.e. the extent of the mastectomy,
reconstruction methods, radiation therapy and if neoadjuvant chemotherapy
is recommended or not [3]. Dissection of the entire axillary lymph system,
known as Axillary Lymph Node Dissection (ALND), has been the standard
approach [5], but can cause side effects like uncomfortable postoperative drains,
pain, lymphedema [3], shoulder stiffness, arm swelling, and an overall increased
length of hospitalization [54]. Over the last two decades, axillary staging in
early breast cancer has evolved, becoming less invasive and more conservative,
from ALND to SLNB and is nowadays gold standard in staging in early-stage
patients with clinically negative axilla [3, 4]. Even though ALND is more
effective by reducing the risk of recurrence of axillary lymph node metastases
by 1-3 %, the risk of developing lymphedema is 14 % with ALND compared
to only 5-7 % after SLNB [54]. This means that deciding on a treatment plan
based only on the nodal status of the SLN is less invasive and may spare many
women the serious side effects of ALND. SLNs are detected by injecting a
radiopharmaceutical into the primary tumor. Sometimes additionally a dye
(blue dye or indocyanine green) is administered as well, varying from clinician
to clinician [54]. After several hours, the radiotracer accumulates in the SLNs
and emits gamma photons that can then be detected by a gamma probe. A study
comparing preoperative and intraoperative imaging with an IGC found out that

23



Chapter 2. Intraoperative Gamma Cameras in Nuclear Medicine

Table 2.1:Most used radiotracers in nuclear medicine, their half-life, main photon emissionand the application their are used for. Reproduced from [56, 57].

Radiotracer Half-life Main photon Application
emission [keV]

99mTc 6h 140.5 keV SLNB, myocardialperfusion, thyroidimaging, bonemetabolism
123I 13.3h 27-35 keV, 159 keV Cerebral blood flow,myocardial imaging
111In 2.8days 171 keV, 245 keV Tumor or extra-vascular imaging
131I 8.04days 364 keV Obliteration of thy-roid cancer,
125I 59days 27-32 keV Brachytherapy,brain imaging241Am 432.6 years 59.5 keV Calibration and edu-cational purpose

the most frequently detected number of SLNs a patient was two SLNs with 15
out of 30 patients (50 %). One SLN was detected 7 patients (23.3 %), 3 SLNs
were detected in 4 patients (13.3 %), and 5 SLNs were detected in one patient
(3.3 %) [55]. Even though these frequencies are based on a relatively small
number of participants (n = 30), it suggests that the possibility of more than a
single SLN must be taken into account.

2.4.2 Radiotracer

Numerous radiotracers have been developed for RGS, varying from radioactive
isotopes themselves, small molecules, peptides, antibodies and colloids. The
choice of radiotracer depends on several factors, such as its half-life, the radi-
ation type, and the emitted photon energy [14]. While the half-life should be
long enough to allow accumulation and subsequently imaging of the targeted
tissue, it must not be too long such that radiation dose to the patient and medical
staff is minimal. The energy of the emitted gamma photons should be high
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enough to avoid scattering and attenuation within the body and thus an internal
smearing of the source distribution. If the energy is too high, though, problems
described above in detecting the gamma photons both because of collimation
and detection occur [57]. A list of common radiotracers and their application is
presented in Tab. 2.1.

The most commonly used radioatracer in nuclear medicine is 99mTc. Over
75 % of all nuclear studies use this radiopharmaceutical [58]. 99mTc is a
metastable nuclear isomer of 99Tc which itself is an isotope of technetium [12].
Before administered to the patient, it is combined to form a colloid with a ligand
that is chosen according to the affinity for the targeted organ. Here, the particle
size plays an essential role, as particles larger than 500 nm have very limited
drainage, while particles smaller than 12 nm rapidly migrate through the lym-
phatic system. Typically, SLNB is carried out with colloid sizes between 20 nm
and 100 nm. 99mTc is the "workhorse isotope"[58] for gamma imaging because
of its near-ideal imaging properties: More than 98 % of the gamma decays
result in the emission of photons with an energy of 140.5 keV which is close to
the wavelength used in conventional X-ray diagnostics, and the short half-life
of approximately 6 h makes it relatively safe to work with [49]. Additionally,
99mTc has a widespread commercially availability and the generation of 99mTc
is also quite convenient for hospitals and larger medical centers [58]. Depending
on the time between injection and imaging procedure, the administered overall
activity ranges from 150 to 250 MBq for 25 h before surgery and between 10 to
50 MBq for same-day surgeries [47, 59]. The second most used radiotracers are
derived isotopes of iodide: 123I, 123I, and 131I with main emission energies of
159, 20-35keV, and 364keV and increasing half-life times of 13.3 h, 59 days,
and 8.2 days [60]. A special role has 241Am. It is not used in medical applica-
tions, however, its long half-life of more than 400 years and rather low energy
of ca. 60keV make it a relatively safe and suitable candidate for equipment
calibration in laboratories.
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Chapter 3

Coded Aperture Imaging

This chapter starts by introducing the basic principles of Coded Aperture Imag-
ing (CAI) with Sec. 3.1, explains different mathematical models to describe
the imaging process in Sec. 3.3 and presents the most common mask patterns
in Sec. 3.2. Finally, the Field of View (FOV) is explained in Sec. 3.4 and the
occurring artefacts in near-field applications in Sec. 3.5.

3.1 Basic Principle

CAI was independently proposed by Ables [22] and Dicke [21] for x-ray and
gamma-ray astronomy and, thus, only intended for a far-field application. Its
concept can be regarded as an extension to a simple pinhole camera: A mask
between the object of investigation and the detector consists of a radiopaque
material with transparent pinholes that encode the directional information of
the incoming gamma flux, as Fig. 3.1 shows. For point sources, this corre-
sponds to casting a shadow of the mask pattern on the detector. General source
distributions can be considered as a superposition of point sources: As each
transparent element of the mask acts as a pinhole, it generates a projection
of the source distributions on the detector. Thus, the resulting image, also
known as shadowgram, consists of a multitude of overlapping images, making
it incomprehensible for the human observer. Image reconstruction is therefore
necessary to obtain an interpretable result [61].
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Chapter 3. Coded Aperture Imaging

Figure 3.1: The basic principle of CAI: the lateral position of a point source is encoded bythe shift of the mask’s shadow, while the source-to-mask distance determines the size ofthe shadow.

Coded apertures can also be considered as an evolution of so-called multi-
pinhole collimators (see. Fig. 2.2). While they leverage a similar concept,
multi-pinhole collimators generally have much fewer pinholes (usually between
5 and 15) and are specifically designed to prevent overlap on the detector [62–
64]. Coded aperture masks can have a total of up to 1,924 pinholes [25]. This
large number of pinholes increases the camera’s sensitivity, because it lets
more photons shine on the detector. A factor of increase between 9 and 11
compared to a parallel-hole collimator based on the exact same design have
been reported [23, 24]. In relation to a pinhole collimator, a 20-fold increase
was shown while maintaining a comparable spatial resolution [24]. Another
advantage of CAI is that opposed to parallel-collimation magnification can be
achieved allowing to adjust the area to observe. Among proposed Intraoperative
Gamma Camera (IGC), a recent review article found that a device equipped with
a coded aperture collimator obtained the best measured spatial resolution of just
below 1mm [7]. It can therefore be stated that CAI combines the high sensitivity
of parallel-hole with the high spatial resolution of pinhole collimators.

The following geometric properties that are illustrated in Fig. 3.2, emerge
from CAI: The lateral position of a point source is encoded by the shift of
the mask’s shadow, while the source-to-mask distance is related to the size
of the shadow. The lateral position of the cast shadow depends on the lateral
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Figure 3.2: The geometry of coded aperture imaging. The detector and the mask havethe distance b. The source plane is z distant from the mask. The position of a point in thesource plane is denoted by rS and the position where the ray hits the detector plane passingthrough the mask plane by rD. The resulting incident angle between the gamma ray andthe detector plane is denoted by θ . Figure modified from [24].

position in the in-focus plane [xS,yS], the detector-to-mask distance b and the
mask-to-source distance z:

xD =−b
z

xS

yD =−b
z

yS

(3.1)

The shadow size (Ds) is the size of the mask Dm projected on the detector. Note
that others refer with z to the detector-to-source distance [24, 26], but since
the detector is encased within the camera body and thus not directly visible
by the user, we chose this more intuitive definition. Derived from the theorem
of intersecting lines, the magnification factor M and the shadow size can be
derived from the ratio of the actual mask size and the projected mask size:

Ds = M · Dm with

M =
z+b

z
= 1+

b
z
.

(3.2)
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Figure 3.3: From left to right: MURA basic pattern h′single of rank 31, the NTHT version of itwith added rows and columns of 0 and the final mask design in a 2×2 arrangement, wherethe central pattern h′central is indicated by the cyan-colored box.

From Eqs. 3.1 and 3.2 we can find the 3D position of a point-source by estimat-
ing the shadows center point, its size and the camera parameters Dm, Dd, and
b.

Outside the field of Radioguided Surgery (RGS), coded apertures are in-
vestigated for lensless photo cameras[65, 66], depth estimation from a single
photography[67, 68], or in compressed spectral sensing in x-ray imaging [69].
Additionally, there are applications for which special mask types were designed,
e.g. a temporal coded aperture for improving x-ray tomography quality [70]
or a large curved coded aperture collimator that fits inside a van designed for
monitoring large areas like parking lots in homeland security [71]. For further
information about the history of CAI, the reader is referred to references [48, 72]
and more specifically in the medical context to references [37, 73].

3.2 Mask Pattern

The position of the pinholes in the mask heavily influence the imaging proper-
ties. The position can be described by a binary encoding matrix E, which is 0
everywhere except for positions of a pinhole, where its entry is 1. In the very
beginning of CAI, pinholes were randomly distributed on the mask, however,
problems occurred due to systematic noise emerging from the Fourier transfor-
mation during the reconstruction [74]. This problem was solved by the invention
of the first structural coded aperture pattern in 1978 called Uniformly Redundant
Array (URA) [75]. URAs offer a functionality to generate both E and a match-
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3.2. Mask Pattern

ing decoding matrix G, so that their correlation with addition of some noise
signal approximates a delta function, which in turn theoretically guarantees an
optimal reconstruction [74]. It has been experimentally shown that URAs offer
significant improvements in comparison with the previously used pattern of
randomly distributed pinholes [74]. However, since the URA pattern is based on
pseudo-noise arrays it has the major disadvantage that only rectangular patterns
are construable where vertical and horizontal sides dimensions, p and q, must
satisfy the condition p−q = 2, limiting the choice of patterns immensely [75].
More than 10 years later, the Modified Uniformly Redundant Arrays (MURA)
pattern was proposed [76] and recognized as an improved version of URA
patterns. They enable rectangular, square and hexagonal patterns, where the
latter is a configuration preferred in space telescopes [48]. The underlying math-
ematical concept changed from pseudo-random to the principle of quadratic
residues. With MURA patterns available, researchers were now able to built
encoding arrays in any side length L, called the rank, that satisfies the condition
L = 4m+1, where m is a natural number greater than 0 and L a prime number,
to establish locations of transparent and opaque elements in the coding array
E [76]. Equations 3.3 and 3.4 describe the MURA encoding pattern:

h′[i, j] =


1 if i+ j = 0,

1 if j = 0, i ̸= 0,

1 if C[i]C[ j] = 1,

0 otherwise

with (3.3)

C[k] =

{
1 if k is a quadratic residue modulo L,

−1 otherwise
(3.4)

and the index values i and j referring to rows and columns starting at 0. Here
and for the remainder of this work, functions with square brackets, for example
f [x,y], will refer to discretized functions, while round brackets, f (x,y), refer to
continuous functions. The most commonly used MURA ranks are rank 7 [31,
35, 77], rank 13 [77, 78], rank 19 [31, 79] and rank 31 [25, 36, 80], even though
strictly speaking the last one is not a valid rank. While the raw MURA pattern
has a ratio of approximately 50 % between opaque and transparent elements,
what most research groups use is the No-Two-Holes-Touching (NTHT) version.
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It ensures a self-supporting mask, where material between two neighboring
pinholes prevents to obtain a mask consisting of multiple unconnected parts.
Thus, to generate a NTHT pattern, a column of zeros is inserted between every
two columns and a line of zeros is inserted between every two lines of the
original pattern [23], which reduces the overall open area of the mask to around
12.5 % [81].

Usually, the NTHT-MURA pattern is repeated to form a 2×2 arrangement
of the basic pattern omitting the last row and column. In such cases, h′ will
refer to the entire mask pattern, h′single to the single MURA pattern, and h′central
to the central quarter of h′. Due to the pattern repetition, h′central corresponds to
h′ shifted both in x and y direction by half the number of rows and columns. An
example of all three patterns is depicted in Fig. 3.3. The 2×2 arrangement serves
two purposes: First, it simplifies the computation, because for reconstruction
only h′central in combination with a cheaper circular convolution can be used (see
Sec. 3.3.2). Second, to provide the same FOV with a single basic pattern, a four
times larger detector would be required [72]. In this work, we only consider
NTHT mask designs where the pinholes have the same diameter as half the
center-to-center distance between two pinholes. Mask with larger pinholes can
be found [82], but are outside the scope of this work.

After the invention of the MURA patterns and their promising results, the
transfer of CAI to the surgery room was investigated in the 1980s. However,
interest waned because of the added complexity of reconstruction and the
presence of artifacts whenever sources moved closer to the camera [73]. Two
developments revived interest in CAI for nuclear medicine in the beginning
of the 2000s: first, computing power had significantly improved, and second,
the invention of dual image acquisition, also referred to as composite image
technique, 90◦mask rotation algorithm, or mask/anti-mask imaging [26, 83].
This technique was found to practically eliminate near-field artefacts. The
anti-mask is the inverse mask pattern with pinholes, where the mask is opaque
and vice versa. Certain MURA patterns inhibit the anti-mask by rotation of 90◦.
This makes dual acquisition easy to implement, as no additional mask needs to
be manufactured or installed [73]. This approach, though, is less practical in an
intraoperative setting.

In summary, a single acquisition with a 2× 2 arrangement of the NTHT
version of a basic MURA pattern is nowadays the most common mask pattern
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due to its good balance between design complexity, a high throughput and good
theoretical reconstruction capability.

3.3 Mathematical Models

In contrast to parallel or pinhole collimators, a coded aperture adds another
layer of complexity to the key performance parameters (sensitivity and spatial
resolution) and are generally less well understood [7]. Different mathematical
models of CAI exist, where the most common one is the Convolutional Model
because of its simplicity. Additionally, there are the Integral Model and Monte
Carlo (MC) simulation, which are interesting for both simulation as well as
developing and evaluating reconstruction methods.

3.3.1 Integral Model

The Integral Model assumes three co-planar planes that are centrally aligned
as Fig 3.2 shows: the detector plane, the mask plane and the source plane.
The detector-to-mask distance is denoted as b and the source-to-mask distance
as z. In these three planes, f ′(rS) describes the source distribution and h′(r)
represents the binary encoding pattern. Then, the detector image denoted as
p(rD) is determined by

p(rD) =
x

rS

f ′(rS)h′
(

z
z+b

rD +
b

z+b
rS

)
cos3 (θ)C (θ) d2rS (3.5)

with the incident angle between the gamma ray and the detector plane θ as

θ = arctan
(
||rS − rD||2

z+b

)
, (3.6)

where || • ||2 denotes the Euclidean norm. The incident angle characterizes
the trajectories from source to the detector and is the origin of the difference
between the near-field and the far-field case [26]. The term cos3 (θ) represents
the projection of a spherical photon flux on a planar detector, which causes
the outer areas of the detector to be less illuminated than the center. The
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collimation factor C(θ) describes the blocking of photons by the inner sidewall
of the mask’s pinholes. Only approximations under certain assumptions of C(θ)

exists and are described below in Sec. 3.5. This mathematical model of CAI
as a continuous integral is used to describe near-field effects and to develop
compensation methods [24, 26]. However, almost all researchers work with the
simpler and discretized Convolutional Model.

3.3.2 Convolutional Model

The Convolutional Model can directly be derived from Eq. 3.5. When assuming
that θ remains small and constant and the mask to be infinitely thin and thus no
collimation occurs, i.e. C (θ)≡ 1 and that the photon flux is homogeneous, i.e.
cos3 (θ)≡ 1, Eq. 3.5 becomes

p(rD) =
x

rS

f ′ (rS)h′
(

z
z+b

rD +
b

z+b
rS

)
d2rS, (3.7)

Further, with

ξ =−b
z

rS, (3.8)
f (r) = f ′

(
− z

b
r
)

, and (3.9)
h(r) = h′

(
z

z+b
r
)

, (3.10)

Eq. 3.7 becomes

p(rD) =
x

ξ

f (ξ )h(rD −ξ ) d2
ξ (3.11)

= f (rD)∗h(rD) , (3.12)
where "∗" denotes the 2D linear convolution operator. Here, f (rD) is the scaled
and reflected form of the source image f ′(r), and h(rD) is the scaled version of
the mask pattern h′(r), which will be denotes as Point Spread Function (PSF).
The scaling factor for f (rD) is z

b and corresponds to the magnification of a
pinhole camera with the same distances and the minus sign indicates a reflection.
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The scaling factor for the mask pattern h is the ratio of the mask size to the size
of its projection on the detector [26]. Its inverse is the magnification factor M
from Eq. 3.2 depending only on b and z.
Equation 3.11 corresponds to the continuous version of the Convolutional Model
from Eq. 3.13. When converting the Convolutional Model in its discrete form,
two aspects are of importance:

1. The discretization of f and h must be the same as the pixel size of the
detector, but the dimension of the PSF can be larger or smaller, depending
on the geometry and the distances between the planes.

2. The pixel size of the source image must correspond to the size of the FOV
divided by the number of pixels of the detector. For the discretized source
image f [x,y] we will automatically assume a correct discretization.

Thus, as a linear approximation of CAI, with the 2D convolution of the
discretized source distribution f [x,y], that covers the pinhole FOV and the
scaled version of the PSF h[x,y] of the mask, we yield the detector image p[x,y]:

p[x,y] = ( f ∗h)[x,y] = f [x,y]∗h[x,y] = ∑
y

∑
x

f [x,y]h[i− x, j− y]. (3.13)

For the sake of simplicity the coordinates [x,y] are omitted where not required.
Intuitively, the Convolutional Model can be motivated as well: Because each
pinhole of the masks projects an image of the object onto the detector, the entire
detector image becomes a superposition of all projections shifted by the position
of each pinhole encoded by the encoding matrix.

With finite signals, which is the case for CAI, two types of convolutions
must be distinguished: The linear convolution, which will be denoted by the
“∗”-symbol, and the circular convolution denoted by the “⊛”-symbol. The
difference is the underlying assumption about the signals beyond the image
borders. While the linear convolution assumes that all entries outside the
image are 0, in the circular convolution the signals are assumed to be repeating
themselves periodically infinitely many times. When two signals are convolved
via a multiplication in the Fourier domain and no explicit zero-padding is
carried out, the circular convolution is performed. Both convolutions are used in
simulation and reconstruction of CAI and serve different purposes: Generally, a
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Figure 3.4: A visual representation of the MC simulation toolkit TOPAS MC. The dark greybox in the bottom right corner represents the IGCwith the coded aperturemask in cyan andthe detector in gray. The green lines represent the traces of the gamma photons emittedfrom the three horizontal rectangles that act as sources.

linear convolution of the PSF h[x,y] (which might be bigger than the detector
image itself) with the source image f [x,y] gives the detector image. Instead,
a faster circular convolution can be carried out, when a 2×2 arrangement of
a single mask pattern is utilized. Then, and additionally, when the PSF is not
smaller than a quarter of the detector image, instead of the entire scaled mask
pattern only hcentral can be used to calculate the detector image.

3.3.3 Monte Carlo Simulation

The fundamental idea behind Monte Carlo (MC) simulations is the tracing of
single gamma photons, based on Monte Carlo methods [84]. This means, the
passage of single photons through matter are simulated including the major
physical interactions like Compton scattering and photon absorption, based on
the photon energy and physical properties of the environment. MC simulations
can be considered the gold standard in CAI simulation, since all the major
physics aspects of the imaging system are considered, including all near-field
effects mentioned below [74, 85, 86]. For CAI, MC simulation consist of three
components. A source, the coded aperture mask and a detector. The source can
be either flat or three-dimensional and build up from simple geometrical shapes
like rectangles, or spheres, but most software libraries allow the user to include
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volumetric sources in the form of “stl” or “ply” files as well. Geant4 [87] is the
most popular software package. Figure 3.4 shows a visualization of TOPAS
MC [88], a wrapper library around Geant4, where three rectangular sources are
imaged by a coded aperture camera. The detector can either be modelled with
the exact scintillator material and the energy deposition of impinging gamma
photons, or with a simpler approach using a so-called phase space [43, 85, 89].
The phase space is an imaginary plane that collects all particles that pass through
it and stores the position, photon energy, the incident angle, particle ID etc..
These files are then post-processed, e.g. discarding hits from particles with an
energy outside the energy thresholds or smeared by the intrinsic resolution from
the photon cascade in scintillator-based detectors.

MC simulation are widely used to simulate IGCs for predicting and eval-
uating the properties of collimator, shielding and detector design [7, 90–93].
However, due to simulating millions of photons, a computation time of multiple
minutes up to 7 h for the simulation of one detector image must be expected [89].

3.4 Field of View

In contrast to pinhole or parallel hole collimation, in CAI, the FOV depends to
the reconstruction methods. When using a 2×2 arrangement of a basic MURA
pattern, only the central detector portion is used that corresponds to the size of
a projection of one pattern, which ultimately defines the FOV. When neglecting
the mask thickness, the FOV is defined as

FOV(z) =
z+b

b
Dm

2
, (3.14)

where Dm represents the side length of the entire 2 × 2 mask. There is a
limitation in depth direction as well: In order to reconstruct an image, at least
one entire single pattern must be projected on the detector, from which the
minimal source-to-mask distance can be deducted:

zmin = b
Dm

4Dd −Dm
, (3.15)

where Dd denotes to the size length of the detector’s active area. The FOV of a
pinhole collimator is defined as follows:
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Figure 3.5: Different FOVs in CAI: A point source closer than zmin projects less than oneMURA pattern on the detector, which inhibits image reconstruction. For this plot, the fol-lowing geometrical parameters were used: b = 20mm, hd = 15mm, Dm = 20mm and a maskthickness of 1mm. M, S, and D refer to the mask, shielding and detector.

FOV(z) = z
Dd

b
(3.16)

However, because the FOV plays a minor role in this work, the reader is
referred to [73] and its supplementary material, which can be found online for a
more thorough description1.

3.5 Near-Field Effects

As already mentioned in Sec. 3.3, in the case of near-field imaging both incident
angle θ [81] as well as the mask thickness [24, 94] cause effects that impede
image reconstruction. This section presents the most influential near-field
effects, also called close-up effects [95], and their mathematical models with a
focus on improving CAI simulations based on the Convolutional Model as is
shown in Fig. 3.6.

1https://static-content.springer.com/esm/art%3A10.1007%
2Fs11307-011-0494-2/MediaObjects/11307_2011_494_MOESM1_
ESM.pdf
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3.5. Near-Field Effects

3.5.1 Planar Wave Effect

In near-field applications, the incoming photon flux can no longer be regarded as
parallel rays, which means that the incident angle θ between impinging photons
and the detector plane differs from 90◦. Instead, a spherical wave hits the flat
detector plane leading to steeper angles and thus a smaller flux density towards
the edge of the detector compared to its center [26]. This effect is included in
the integral form (Eq. 3.5) by the term cos3(θ), but remains unconsidered in the
Convolutional Model (Eq. 3.13). The planar wave effect will increase the closer
a source is to the camera. Accorsi et al. suggested to assume that all radiation
stems from a single point source in the center, because that allows to make θ a
function only of the detector coordinates and a correction term Cplanar can be
derived [26]:

θ(ri = 0,rD) = θ(rD) = arctan
(
||rD||2
z+b

)
(3.17)

Cplanar (θ) = cos3 (θ) . (3.18)
Hence, the detector image can be corrected for the planar wave effect by dividing
the simulated image by Cplanar.

3.5.2 Collimation Effect

An ideal mask is infinitely thin and allows photons of all angles to pass through
the pinholes. However, in reality the mask requires a certain thickness to prevent
photons from reaching the detector unimpeded and to allow only photons that
passed through a pinhole. The collimation effect arises from photons that are
blocked by hitting the inner sidewall of the pinholes. Thus, the collimation
effect is mainly influenced by the mask’s thickness, which limits the pinhole’s
acceptance angle. The collimation effect increases together with the angle of
incidence, e.g., when the source is off-center [96]. Analog to the planar wave
effect (Sec. 3.5.1), Mu et al. [24] simplified the calculations by assuming a point
source at the center of the plane in focus. Together with Eq. 3.6 the following
equations approximate the collimation effect:
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Figure 3.6: The visual influence of near-field effects and Poisson noise. (a) detector imageof a point source in the bottom right corner of the FOV simulated with the ConvolutionalModel. (b): with 1% transmission and the planar wave effect, (c): additionally with thecollimation effect (t = 0.11mm), (d): the final simulation result after Poisson randomization,where a total of 500,000 photons were set to hit the detector. Figure is taken from [96].

d = min(t tan(θ) , 2r) (3.19)
ψ = cos−1

(
d
2r

)
(3.20)

CColl (θ) =
2ψr−d sin(ψ)

πr
, (3.21)

with r denotes the pinholes’ radius, t the mask’s thickness, ψ the angle of
displacement, and d the displacement of the projection of the aperture’s front
opening. For a more in-depth explanation the reader is referred to [24].
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3.5.3 Other Effects

Additionally to the near-field effects described above, transmission, Poisson
noise, scattering, and septal penetration are further contributors that are not
limited to CAI, but generally deprive the image quality in gamma imaging.

Transmission High-energy photons like gamma photons always have a cer-
tain probability to pass through matter, and this probability T is proportional to
the negative exponential function of the material’s mass attenuation coefficient
µ at the photon energy of interest, its density ρ , and the mask’s thickness t:

T = e−µρt . (3.22)
For example, in order to block 99 % of all photons with 140 keV with a mask
made of Tungsten (ρ = 19.3 g/cm3, µ = 1.76 cm2/g at 140keV) a thickness
of around 1.36mm is necessary. This effect is independent from the object-
to-detector distance. For a more in depth discussion of mask transmission the
reader is referred to [47]. The detector image that includes transmission (pT )
can be obtained by weighting and adding to the detector image from both the
Integral Model (Eq. 3.5) as well as from the Convolutional Model (Eq. 3.13)
p(rD).

pT (rD) = (1−T )p(rD)+T
x

rS

f (rS) d2rS. (3.23)

Poisson Noise Both the Integral and the Convolutional Model give deter-
ministic results of the detector image. However, because ionizing radiation
is harmful to the patient and medical staff, the guiding principle in RGS is to
reduce the exposure to as low as reasonable achievable (the ALARA princi-
ple [77]). Thus, the photon flux is generally low and the number of detected
photons per pixel must be regarded as a Poisson process, leading to Poisson
noise which is sometimes also called shot noise. A Poisson process is a random
process following a discrete probability distribution that expresses the prob-
ability for the number of detected photons in a pixel, if theses events can be
considered to occur with a known constant mean rate λ and independent from
the time of the last event [97]. Under a Poisson distribution with the expectation
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of λ detected photons per pixel, the probability that k photons hit the pixel (here
denoted by the random variable X) is given by

P(X = k) =
λ ke−λ

k!
. (3.24)

Only a discrete number of photons can be detected, and thus, k is always a non-
negative natural number N0. For small λ , the probability distribution is heavily
skewed towards 0, but becomes more and more symmetrical and converges
toward a Normal distribution for λ ≳ 30 [97].

Scattering Gamma photons interact with the mask or the shielding, causing
scattering, when they are not fully absorbed. Compton scattering plays the
primary contributor in gamma imaging, where the collision of a gamma photon
with an atom causes the reflection of a gamma photon with a lower energy,
depending on the scattering angle [63]. When these lower energy photon hits
are registered by the detector they cause additional image noise. Scattering
noise can be reduced when the detector’s energy resolution is high enough to
separate scattered photons from the unscattered photons with a known photon
energy [8].

Septal penetration Some gamma photons are not fully blocked by the inner
sidewall of the pinholes, but pass through the matter, because it is thinner than
the mask’s general thickness. It has been suggested to empirically add a constant
term κ to the collimation function CColl (θ) from Eq. 3.21 to account for septal
penetration [24].
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Chapter 4
Machine Learning

During the last decade, Machine Learning (ML) has gained a tremendous
popularity in the computer vision community for tasks like image segmenta-
tion [98, 99], image denoising [100], or image reconstruction [9, 10, 101, 102].
In image reconstruction tasks, ML refers to the development and deployment
of models that “learn” to map between image domains, generalize to unseen
data and are, thus, able to perform tasks without any explicit instructions [103].
Such ML models are inspired by the neural networks of the nervous system and
consist of hierarchical layers of mathematical operations with trainable param-
eters that transform an input into an output image [104]. This transformation
is not derived from a mathematical description of the mapping. Instead, an
approximate transformation from the input domain into the output domain is
deduced by providing a large amount of training images and their corresponding
Ground Truth (GT) data. For a more general insight in ML, there is excellent
literature available [104, 105]. This chapter presents the typical training pro-
cedure (Sec. 4.1), gives an overview of the basic components of modern ML
models (Sec. 4.2), and presents the Convolutional Encoder-Decoder architecture
(Sec. 4.3).

4.1 Training Procedure

The goal of the training procedure is to obtain the optimal parameters of a given
network architecture, that has generalized from the training data to unseen data
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Figure 4.1: Overfitting, underfitting and the desired generalization in ML at the example ofa simple 2D classification network.

and performs exactly the intended task. Because training datasets are usually so
large that they do not fit into the memory in its entirety, the training procedure
is performed iteratively on small portions of the training dataset, the so-called
mini-batches or short batches. When all batches of a training set have been
used once and the entire dataset has been used for updating the parameters,
the network has been trained for one epoch. Usually, networks are trained
for multiple dozens epochs [102]. Several other problem formulations, such
as unsupervised or reinforcement learning, exist, but supervised learning is
the most relevant training paradigm for this thesis: Supervised learning for
image-to-image tasks, is a practice that can only be applied to problems, where
the training set contains both input as well as the indented output images (often
denoted as Ground Truth (GT)). One training step consists of three stages: First,
a batch, usually consisting of 1 to 64 images, is propagated through the network
to obtain its output, often referred to as prediction. Second, the prediction is
compared to the GT and the difference is considered as the current error. Third,
the error is propagated backwards through the network’s layer and an optimizer
adapts each layer’s weights and biases according to their contribution to the
error [105]. The following paragraphs go into detail of these essential steps:

Loss function The loss function is typically a mathematical metric1, that
quantifies the network’s prediction error, i.e. how close a network’s predictions

1Not all but most loss functions fulfill all mathematical properties of a metric, which are
non-negativity, identity of indiscernibles, symmetry, and the triangle inequality [106]
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are to the GT. By averaging the observed error over the entire dataset, a scalar
value is obtained that represents the discrepancy between the network perfor-
mance and the ideal outcome. It is assumed that if the loss function is minimal,
the network has learned its intended task. In this manner, the loss function poses
as a bridge between ML and classical optimization [105]. For image prediction
the L2 is commonly used, even though there are indications that training with
the L1 norm can deliver more “natural” looking images [107].

Backpropagation The backpropagation algorithm, which is based on the
chain rule for differentiation, was invented in 1986 and poses an important
milestone in ML history, because it allows training networks with more than one
layer [104]. The algorithm propagates the network’s error backwards through
the layers of the network (hence the name) and distributes the “blame” of
each trainable weight to the error according to its and the succeeding layers’
derivatives. Thereby, the gradients of the loss function with respect to the
weights are computed and combined by the chain rule for partial derivatives. By
converting the network architecture into a computational graph and applying
automatic differentiation, these partial derivatives can be computed efficiently,
which was another main contributor of modern ML. To minimize the loss
function the weights are adjusted by an optimizer.

Optimizer The optimizer determines how the weight updates are applied
until the error converges to a minimum. There are simple approaches like the
stochastic gradient descent (SGD), which is called stochastic, since updating
happens iteratively on batches that only allow an approximation of the true
gradient. The objective is to repeatedly take steps in the opposite direction to
the approximated gradient of the loss function at the current position, as this
is the direction of steepest descent leading to the minima. The step size is
known as the learning rate in ML and is usually a small number in the range
of 10−1 to 10−9. More recently another optimizer has mostly replaced SGD,
due to its strong empirical performance: the Adam optimizer [108]. It derives
the optimal learning rate for each training parameter from estimates of first
and second moments of the gradients, where the upper bound is fixed by the
learning rate. Although Adam requires tracking not only each gradient but also
each individual learning rate, making it computationally more expensive, its
advantages often outweigh the costs.
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Validation strategy ML engineers are typically more interested in how well
a model performs on previously unseen data rather than achieving a good metric
on the training dataset, since the GT for the training data is already known.
Instead, the ability to perform well on previously unobserved input data is of
major importance and is called generalization [104]. To quantify generalization,
the loss function or other metrics like accuracy for classification or the Structural
Similarity Index Measure (SSIM) for image regression are computed for both the
training dataset as well as for a separate validation set. When a separate portion
of the available data is used for validation it is called a held-out validation
strategy [105]. Another strategy, especially used when the total amount of
available data is limited, is cross-validation. In cross-validation, the whole
dataset is split into N-fold subsets where in all N variations the network is
trained on all sets but one and the overall validation metric is composed of the
N subset validation values [109].

The natural antagonist of generalization is overfitting. Overfitting means
that the network was unable to derive abstract features to guide its prediction.
Instead, it has learned excessive and irrelevant details of the training set, and is
thus unable to perform well on previously unseen data. In contrast, underfitting
happens when the network fails to capture a sufficient level of structure in the
data. In the course of the training, overfitting occurs as soon as the validation
error increases while the training error still decreases. The concept of under-
fitting, a well generalization, and overfitting on the example of a classification
network is presented in Fig. 4.1. For more information about unsupervised learn-
ing, automatic differentiation, the backpropagation algorithm and its historical
development, the interest reader is referred to Ref. [104] and [105].

4.2 Basic Components

This section gives an overview of the basic components and layers that most
neural network architectures are composed of.
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Figure 4.2: This graphic shows the convolution of an image with three channels (H×W ×3)with a set of 3× 3 kernels. The convolutional layer produces an output image by shiftinga kernel over the input image, multiplying element-wise and summing the intensities, andaggregating the results per input channel. The input image is zero-padded to obtain anequal size output image. A convolutional layer performs this procedure multiple times toproduce a feature maps with Cout output channels. Figure modified from [110].

4.2.1 Convolution Layer

Convolution is an efficient way of applying the same linear transformation of a
small local region, like edge detection or smoothing, to an entire input image. In
ML terms, the first argument (function I in Eq. 4.1) to the convolution is often
referred to as the input and the second argument (K) as the kernel. The output is
usually referred to as a feature map or activation map (F). A convolutional layer
performs multiple convolutions simultaneously, depending on the number of
input channels and the desired output channels: From an input image I with the
dimensions H×W ×Cin and a set of k trainable filter kernels, each of dimension
HF ×WF×, a feature map F is produced. For each input channel Cin and output
channel Cout, there is a separate filter that slides across the input image, where
for each position the kernel is multiplied element-wise with the overlapping
image and summed up to generate the output pixel value (see Fig 4.2). Usually,
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zero-padding is carried out prior to the convolutions in order to maintain image
size. An additional trainable offset bk, called bias term, is added to elevate
the output values of an entire output channel which helps in exploiting the
succeeding activation function. Each individual convolution can be described
by:

F [i, j,k] = (I ∗Kk)[i, j] =
Cin−1

∑
c=0

HF−1

∑
m=0

WF−1

∑
n=0

I[m,n,c]Kk[i−m, j−n,c]+bk (4.1)

Technically, since the filter is not flipped, a convolutional layer does not perform
a convolution, but a correlation. However, this name is generally accepted [104].
Besides the number of filters, which determines Cout, most ML software pack-
ages allow the setting of further hyperparameters to adapt a convolutional layer
to its intended purpose. First, the kernel size, which is typically rather small
compared to the size of the input image and always uneven, most commonly
3× 3 or 5× 5 kernels [10, 98]. Second, the stride configures the step size at
which the kernel shifts across the input and helps to reduce the spatial dimension
of the output if a stride ≥ 2 is selected. Third, filter kernels can be dilated. That
means, untrainable rows and columns of zeros are inserted between the elements
to increase overlap between filter and input image. This increases the field of
perception of a single filter but keeps a small number of trainable parameters.
The convolutional layer allows to extract spatially relevant information with only
relatively few trainable parameters, because an output pixel is only connected
to a small portion of the input image or preceding feature map. From analysing
the activations of a trained Convolutional Neural Network (CNN), it has been
observed that the first few convolutional layers often act as smoothing and edge
filters [111].

4.2.2 Activation Layer

Activation functions are usually a scalar-to-scalar function, which propagate
the output of one layer to the next one. They are essential to neural networks,
because they are the component that adds non-linearity to the networks capabil-
ity [105]. Without activation functions, two consecutive convolutional layers
could be shorten to one, because both perform linear operations. Figure 4.3
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Figure 4.3: Activation functions add non-linearity to a ML network. x represents the inputand f (x) the output of the three presented activation functions Sigmoid, Relu, and Leaky
Relu. Note the small negative slope of p = 0.01 in the negative half-plane with the LeakyRelu. When p is a trainable parameter it is called Parametric Relu.

shows the three most common activation functions which will be explained in
the following paragraphs.

Sigmoid function It transforms variables from an infinite range into simple
probability values between 0 and 1, in a smooth monotonically increasing
matter. It has the advantage of having a smooth derivative that can be expressed
with the activation itself, making it easy to compute and, in turn, allowing for
fast training [104]. But because the gradient becomes very small towards the
negative and positive limits, the simgoid activation function has lost popularity
in contemporary image-to-image network architectures [105].

Rectified linear unit The rectified linear unit (often abbreviated as Relu) is a
discontinuous activation function which returns zero until the input rises above
a threshold, from where it has a linear relationship:

f (x) = max(0,x) =

{
0 if x < 0

x otherwise
(4.2)

Despite being discontinuous, Relu can be considered the state of the art activa-
tion function, as its fast and simple computation has been proven to work well
in many different areas of ML [105].

Leaky Relu Leaky Relu activation function was developed to mitigate the
difficulty during training called dying Relu issue. Some units might never be
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Figure 4.4: The Batch Normalization Layer explained on a batch of 16 samples with two fea-tures F1 and F2. First, the mean and standard deviation (STD) are calculated and combinedwith all previous batches to the moving averages for the mean µmoving1,2 and standard devi-ation σmoving1,2 . In a second step, the features are normalized and then scaled and shifted ina third step by the trainable parameters γ1,2 and β1,2. The result is a batch with an optimizedlocation and extension of the new features F̃1 and F̃2.

activated during the entire training set, however, these units will never contribute
to the network’s output, posing a waste of computational power and effective
network capacity. Instead of an all-zero output for negative input values, the
negative half-plane of the Leaky Relu has a small negative slope (for example
p = 0.01) and is defined as follows:

f (x) =

{
px if x < 0

x otherwise
(4.3)

When p is a trainable parameter adjusted by the optimizer during training, this
activation function is denoted Parametric Relu or simply as Prelu [104].

4.2.3 Batch Normalization Layer

Calculating the updates for all parameters happens according to the backpropa-
gation algorithm from the output error backwards to the input layer. Applying
the updates to the parameters of a single layer is based on the assumption that all
other layers remain constant. However, since powerful networks consist of many
layers in sequence, updating a previous layer can significantly change how a
later layer influences the final output. Thus, the update might be sup-optimal. To
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tackle this problem, Ioffe & Szegedy [112] proposed the Batch Normalization
Layer in 2015, which was soon recognized as a revolutionary tool that stabilizes
the training and allows faster training and deeper networks.

Batch Normalization is usually applied between each convolutional and
activation layer. It shifts and scales the input data to a trainable mean with a
trainable variance. It does this by multiplying the normalized values by a factor,
γ , and adding it to the factor β , which is illustrated by Fig. 4.4. In image-to-
image networks, each channel of the feature maps is normalized, shifted and
scaled independently of each other. What differentiates this layer from many
other layers, is the fact that it has sets of parameters: the trainable parameters
γ and β and the non-trainable moving means of the average and variance
µmoving and σmoving. They are updated in each training set based on the entire
batch and they act as a proxy of the mean and variance of the entire training
dataset [104]. Hence, it is capable of capturing more features about the dataset
than other normalization techniques. Even though the authors initially explained
the strong performance of Batch Normalization layers with reducing the internal
covariate shift, more recent research attributes their improved performance to
the smoothing of the objective function [113].

4.3 Convolutional Encoder Decoder
Networks

The most popular architecture in image-to-image networks are CNNs, where
the main components are convolutional layers. A CED is a subtype of CNNs,
with the origin in the famous U-Net architecture proposed by Ronneberger et
al. [98] in 2015. A CED uses convolutional, normalization, and activation layers,
to successively transform an input image via a compressed low-dimensional
representation into an output image. Figure 4.5 shows an exemplary CED
that transforms an image of size I × I ×K over the latent space representation
(I/16 × I/16 ×1024) into an output image of I × I ×K. The input image is com-
pressed into a latent space representation by strided convolutions or pooling
layers [104], which represents the final feature map before the decoding stage.
Thereafter, it is progressively up-sampled to generate the output image. The
bottleneck convolutions effectively regularize the ill-posed inverse mapping
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Figure 4.5: The U-Net architecture: an input image of size I× I×K is successively spatiallydown-sampled until it has reached a 16th of its original size. While doing so, the number ofchannels per feature map increases to 1,024. The last feature map before the decoding iscalled latent space representation. The decoder part extends the image and simultaneouslyreduces its channels until the output dimensions are reached. The blue arrows represent acopy and concatenation of feature maps from encoder to the decoder part.

by acting as an implicit denoising algorithm [100]. Thus, CNNs and CEDs in
particular, have been deployed successfully on direct reconstruction of Positron
Emission Tomography (PET) scans from sonograms [10], Radon inversion
[101], metal artifact reduction in computer tomography [114] or image deblur-
ring [115], to mention a few examples.
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Chapter 5
Experimental & Synthetic

Datasets

Developing and evaluating reconstruction methods for Coded Aperture Imaging
(CAI) requires realistic gamma camera images, as simulations do not provide
the same level of realism as actual measurements. Therefore, in collaboration
with other research groups three experimental datasets were captured and shared
with the research community. The Intraoperative Gamma Cameras (IGCs) used,
along with the details of the measurements are explained in Sec. 5.1, Sec. 5.2,
and Sec. 5.3. For training a Machine Learning (ML) approach, however, a
large quantity of training images is necessary. Two image domains serving as
synthetic source images were investigated and are presented in Sec. 5.4, and 5.5.

5.1 Rozhkov Dataset

The purpose of the Rozhkov Dataset was to investigate different planar recon-
struction methods at a medium source-to-mask distance. Since this dataset
was used for a quantitative comparison of planar reconstruction methods,
most of the following description is taken from Ref. [116]. The experimen-
tal IGC used to captured this dataset consists of a 1mm thick tungsten mask
and a semiconductor-based detector where a 2mm thick CdTe crystal is cou-
pled to a Timepix3© readout circuit. The anode is divided into 256× 256
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Figure 5.1: The three hot-rod phantoms of the Rozhkov dataset: (a) spatial resolution phan-tom (SRP), (b) linear resolution phantom (LRP), (c) contrast phantom (CP). Marked in red arethe tubes that were filled with 99mTc. The notches on both sides were used to clamp androtate the containers.

pixels with a pixel size of 0.055mm. The detector has an active area of
Dd ×Dd = 14.08×14.08mm2. The coded aperture pattern is a a 2×2 arrange-
ment of a No-Two-Holes-Touching (NTHT) Modified Uniformly Redundant
Arrays (MURA) pattern of rank 31 with pinholes of 0.34mm in diameter, has a
side length Dm of 22mm and the mask was placed 42mm in front of the detector,
i.e. b = 42mm. The mask is anti-symmetrical and can be mechanically rotated
by 90◦to form the anti-mask. The in-focus plane was set a mask-to-source
distance of z = 172mm, which, according to Eq. 3.16, results in a Field of
View (FOV) of 57.75×57.75mm2 for a pinhole collimator. A summary of the
experimental IGC can be found in Table 5.1.

Three different phantoms were designed and manufactured: A spatial resolu-
tion phantom (SRP), a linear resolution phantom (LRP) and a contrast phantom
(CP). All three phantoms have the basic shape of a cylinder with a height of
80mm and a diameter of 50mm, where tubes along the vertical axis were filled
with 99mTc. The phantoms were designed using a CAD software and milled
out of Lucite and a depiction of all three phantoms is shown with Fig. 5.1. The
SRP has three tubes with a diameter of 1.1mm, two of which are 15mm and
one 20mm long. The tubes are arranged in parallel at three different positions.
The LRP has eleven tubes in a straight line in radial direction. All tubes are
20mm long and have a diameter of 1.1mm. Only every second tube was filled
with 99mTc. The CP consists of two larger tubes, each 25mm long and 5mm in
diameter, centered around the long axis. All three phantoms were filled with
99mTc before beginning of the imaging process, where the total initial activity
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Table 5.1: A summary of the experimental IGCs used to acquire the datasets used in thisthesis.

Experimental IGC Rozhkov Dataset Axial Resolution
and Localization
Dataset

Detector
Material CdTe SiThickness 2mm 0.5mmSide length Dd 14.08mmPixelation 256×256

Mask
Pattern NTHT MURA rank 31in 2×2 arrangementSide length Dm 22mm 9.92mmThickness 1mm 0.11mmPinholediameter 0.34mm 0.08mm

Source

Detector-to-mask distance b 42mm 20mm

Source-to-maskdistance z 172mm 12−100mm
Main gammaemission 140.5 keV 59.5 keV
Type 99mTc-filledhot-rodphantoms

Spherical 241Amsource (�1mm)

was 83 MBq, 50 MBq and 75 MBq for the SRP, LRP and CP. Each phantom was
placed on a rotational table in front of the camera. The detector was exposed
for 2 min and afterwards the phantom was rotated along its vertical axis by
3◦. One complete rotation per hot-rod phantom resulted in 120 images per
phantom. Each phantom was captured once with mask and once with anti-mask
and thus a total amount of 720 images were acquired. Detected photons outside
the energy window of 10keV centered at the photon peak of 140keV were
discarded. The entire dataset is available upon request to the co-author of [116]:
rozhkov@jinr.ru.
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Figure 5.2: Exemplary images from the Rozhkov dataset: (a), (b), and (c) show the detectorimages of the spatial resolution phantom (SRP) at 0◦, 21◦, and 45◦rotation. (d), (e), (f) showthe corresponding Ground Truth (GT) images calculated based on their CAD models andthe visualization software Paraview.

To compare the reconstructed images the perfect reconstruction (referred
to as Ground Truth (GT) images) is essential. Therefore, GT images were
obtained by loading the CAD models of the phantoms in the 3D visualization
software tool Paraview (version 5.9.1) [117]. The containers and all un-filled
tubes were set to transparent, in order to only show the 99mTc-filled tubes. The
camera was then positioned at the corresponding distance and orientation, with
focal length and resolution adjusted to match the imaging properties of our
experimental gamma camera. The background and 99mTc filled tubes were set
to black and white, respectively, and the camera resolution was set to 256×256.
An automatic rotation around the long axis was initiated while automated
screenshots were captured. Finally, the screenshots were binarized and shadows
were cleaned by applying a simple thresholding operation with the threshold of
0.5 and all pixels belonging to the source was set to 1 while all other pixels were
assigned to 0. A set of exemplary images from the SRP and their corresponding
GT images are shown in Fig. 5.2.
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Figure 5.3: The measurement setup for the Axial Resolution Dataset. Top: The setup con-sisting of a Timepix3 detector, a MURA mask of rank 31 (see close-up photography onthe top left) and a 241Am source captured at 21 mask-to-source distances. Bottom: Thecaptured detector images at a mask-to-source distance of 12mm, 50mm, and 100mm (seeorange circles above). Note, that for better visualization in each detector image pixels belowand above the 1st and 99th percentile are presented in the lowest and highest correspond-ing color.

5.2 Axial Resolution Dataset

In order to assess the 3D imaging capabilities of CAI, a set of images with of a
point-like source at several different positions in the FOV was required. This
dataset, along with the one described below, was collected during the course of
the publication [118], and most parts of this description are taken from there.

The experimental IGC we used for image acquisition was composed of
a rank 31 NTHT MURA mask having 0.08mm diameter holes in a 0.11mm
thick tungsten sheet and a semiconductor-based detector unit. The basic MURA
pattern was duplicated in a 2×2 arrangement leading to a total mask size of
Dm ×Dm = 9.92× 9.92mm2. Similar to the Rozhkov dataset, the detector
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consisted also of a Timepix3© readout Application-Specific Integrated Circuit
(ASIC) with a pixelation of 256×256. However, instead of a CdTe crystal, here
it was bump-bonded to a 0.5mm thick Silicon cystal with a sensitive area of
Dd ×Dd = 14.08× 14.08mm2. This detector is known as the “MinipixEDU
camera” designed and distributed by Advacam1. A 3D-printed case made of
acrylonitrile butadiene styrene (ABS) keeps the detector and the collimator in
a fixed distance and axially aligned and holds the mask in a detector-to-mask
distance b of 20mm.

For keeping a point-like source in a well defined distance to the camera, an
automatic linear axis was used. It enabled us to move the source automatically
and with high precision without interrupting the measurement procedure. An L-
shaped holder was attached to the axis to which the 241Am source was clamped.
The source’s nominal diameter is 1mm but was previously measured to have
a Full Width at Half Maximum (FWHM) of 0.65mm [119] and emits mainly
gamma photons of 59.5keV. The source holder together with the gamma
camera is depicted in the top right corner of Fig. 5.3. The coded aperture mask
was originally designed for sources of 30 keV. Nevertheless, the source-mask
combination used for this acquisition was the only one available to us. However,
it has been shown that usage of this mask at higher energies (80 kV X-ray
beam) may reduce the image contrast but does not generally impede the image
reconstruction [45].

The images were acquired using a software tool provided by Advacam
called “Pixet”. Instead of collecting a predefined number of photons per image,
we kept the acquisition time constant. We recorded 9,000 single frames with
an acquisition time of 0.1 s in “Tracking mode”. In this acquisition mode, the
energy deposited by the interacting particles in the sensor is registered in each
pixel, together with the time instant at which the interaction is revealed in the
pixel. This information allows for the reconstruction of tracks released in the
sensor from the impinging radiation, via a clustering algorithm based on time
correspondence and spatial proximity of hits. This process, from which the
name of the acquisition mode is derived, ultimately allows us to infer the type
of radiation detected by the sensor based on its energy and the shape of its track.
The time interval of 0.1 s per frame was chosen to avoid double counting of
photons in a single pixel. Photon hits that resulted in a energy deposition of

1https://advacam.com/camera/minipix-edu
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5 keV or less were discarded, and no further energy windowing was applied.
Each acquisition lasted approximately 20 minutes, including 15 minutes of
active acquisition and 5 minutes for the intermediate processing of the single
frames. Thus, the pixel values of the final image represent the energy deposited
in keV in each pixel integrated over the entire acquisition duration.

We captured images at 21 different source-to-mask distances, ranging
from12mm to 20mm in 2mm increments and from 20mm to 100mm in 5mm
increments. The measurement setup along with three exemplary images cap-
tured at z = 12mm, z = 50mm, and z = 100mm can be seen in Fig. 5.3. Instead
of GT images, the source size (1mm diameter, 0.65mm FWHM) as well as the
source-to-mask distance z (ranging from 12mm to 100mm) serve as GT.

The experimental IGC used for this dataset, with varying detector-to-mask
distances b, is known under the name “MediProbe2” [25, 46] and mainly
developed by the research team surrounding Prof. Russo at the Università
di Napoli Federico II in Naples, Italy, where we also took the measurements.
MediProbe2 with its combination of a high-resolution detector and the coded
aperture mask with very small pinholes enable a lateral resolution, was recently
found to yield the best lateral resolution among current IGCs [7].

5.3 Localization Dataset

The purpose of acquiring the Localization Dataset was to evaluate the 3D-
localization capabilities of a single gamma camera equipped with a coded
aperture collimator. The same experimental IGC, source, and imaging procedure
as for the Axial Resolution Dataset from Sec. 5.2 was used.

The key difference is that the source position was varied in two directions
(z and y) while keeping it central along the x-axis. A total of 17 images were
captured with lateral shifts y from the center at several mask-to-source distances
z: 0mm for z= 20mm; 0mm, 2mm, 4mm, 6mm, and 8mm for z= 50mm, z=
75mm, and at z= 100mm additionally at y= 14mm. The x-coordinate was kept
constant at 0mm. We chose these positions for two reasons. First, it was shown
that off-center sources are reconstructed with a lower contrast than centered
sources [46]. However, neither was a difference in the two lateral coordinates
reported, nor can we think of a reason to assume an asymmetry. Thus, to spend
our measurement time efficiently, we captured only data of a source moving
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Figure 5.4: Themeasurement setup for the Axial Localization Dataset. Top: The experimen-tal gamma camera setup and the source are the same as for the Axial Resolution dataset.Bottom: Three captured detector images at a mask-to-source distance of 50mm and a lat-eral position of 2mm, 4mm, and 8mm (see orange circles above).

along the positive y-coordinate. Second, practical limitations were imposed by
the two automatic linear axes (Physik Instrumente (PI), Karlsruhe, Germany)
available to us.

In order to have a better control over the exact source position, we repro-
duced the experimental setup in-silico using a Monte Carlo (MC) simulation, as
described in Sec. 3.3.3. With the software package TOPAS (version 3.8.1) [88],
the source was modeled as a homogeneously radiating sphere of 241Am with a
1mm diameter and emitting a total of 109 photons of 59.5 keV. The mask was
modeled as a sheet of tungsten with the parameters described above. Because
simulating the deposited energy in a semiconductor detector with a bias voltage
is a complex process and an area of ongoing research [43], we decided for the
following image generation process: Instead of the deposited energy in each
pixel, we captured the photon hits. All photons that passed the front surface
of the detector were scored in a phase space file. From this list, we generated
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a detector image by computing the 2D histogram according to the detector
specifications. By doing so, we ignored the charge-sharing effect between
neighboring pixels and defective pixels, which are rare in thin silicon-based
detectors compared to CdTe [44].

The setup is depicted in Fig. 5.4 together with three exemplary images from
the dataset and a table with all positions can be found in the Tab. 5.2, including
the total integrated energy per image and the number of photon hits for the MC
simulation.

Table 5.2: We both simulated and captured detector images of a 241Am radioactive sourcewith a nominal diameter of 1mmemittingmainly gamma photons of 59.5 keV at 17 positionsgiven in millimeters within the near-field of our gamma camera. Additionally, the total en-ergy captured by our experimental gamma camera as well as the number of photon countsfrom the MC simulation are presented.

Source position / mm Experimental data
Integrated Energy / keV

MC Simulation
Photon countsx y z

0 0 20 34,691,600 5,204,4660 0 50 21,581,440 1,734,9180 2 50 21,378,936 1,724,0740 4 50 3,062,625 1,706,9090 6 50 20,536,964 1,684,5880 8 50 20,173,747 1,656,6750 0 75 11,640,180 930,8340 2 75 11,572,164 929,7980 4 75 11,524,095 925,5090 6 75 11,408,447 917,9160 8 75 11,257,055 909,2530 0 100 7,141,504 580,3020 2 100 7,146,672 579,4030 4 100 7,157,586 578,8950 6 100 7,271,324 576,3510 8 100 7,158,355 572,6720 14 100 6,938,520 558,671
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Figure 5.5: Two different sets of image data that serve as GT for training: (a) Imagenet, and(b) Lines. Note, that the bottom image of (b) is the same image that is shown in Fig. 3.4.

5.4 Imagenet Dataset

What distinguishes a ML approach from analytical reconstruction methods
is the need for a large quantity of training images. A common way to solve
this data problem is by using simulated training data [10, 50, 120]. Thus, two
different image domains were used to generate detector images by leveraging
the Convolutional Model from Sec. 3.3.2 to generate detector images: A dataset
based on the Imagenet dataset (abbreviated by IN), and a dataset of images with
horizontal lines (Lines).

The IN dataset is based on a large collection of natural photographs called
ImageNet [121]. The first 50,000 images from the ImageNet’s validation set
were chosen, all three color channels averaged to yield a gray-scale image and a
random region of 256×256 pixels was cropped. The final image was finally
normalized to the range of 0 to 1. Two exemplary images from the Imagenet
Dataset are shown in Fig. 5.5
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5.5 Lines Dataset

The Lines Dataset is fully synthetic and contains horizontal lines with varying
thickness, length and intensity on dark background. These image were designed
to represent a wide variety of source distributions in a single in-focus plane
in front of our IGC with the goal to reconstruct the images from the Rozhkov
dataset described above. For this training dataset, 50,000 images with black
background and different number of horizontal lines with varying thickness
were created using the openCV library (version 3.4.2) [122]. The number of
lines varied between 2 and 6, with a height and width between 4 and 24 pixels
and between 60 and 122 pixels, respectively. The center points of the lines were
randomly positioned across the image, with any portions of lines extending
beyond the image borders being cropped. Each line was assigned a uniform
intensity between 0 and 1, and the intensities of overlapping lines were added to
ensure a non-binary intensity distribution. For both sets, the final images were
normalized to the range of 0 to 1.
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Chapter 6
Quantitative Comparison of

Planar Reconstruction Methods

This chapter examines Hypothesis Ia by first, giving an overview of common
planar reconstruction methods from the literature with Sec. 6.2.1. Afterwards,
the architecture, training, and generation of training data for the Machine Learn-
ing (ML) approach are explained in Sec. 6.2.2. Section 6.3 shows the results of
comparing the reconstruction methods in terms of reconstruction quality and
runtime, which are discussed in Sec. 6.4. Finally, Sec. 6.5 concludes this study’s
main findings.

This chapter is taken in most parts from the related open-access publication
licensed under CC-BY 4.0 in IOPscience “Journal of Instrumentation” [116].
It was complemented by a more detailed comparison of the influence of the pre-
processing, and a more in-depth demonstration on how the Two-Holes-Touching
(THT) pattern compared to the No-Two-Holes-Touching (NTHT) pattern affects
the reconstruction results.

6.1 State of the Art

Coded Aperture Imaging (CAI) has been proposed as an alternative collima-
tion technique for Radioguided Surgery (RGS), because it persuades a better
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compromise between resolution and photon efficiency [21, 22]. However, it
requires image reconstruction to obtain an interpretable image. When the depth
dimension of an object of interest is small compared to the camera-object dis-
tance, one can reasonably assume that all gamma radiation emerges from a
fixed plane parallel to the detector. Subsequently, CAI can be regarded as an
image-to-image mapping and is referred to as planar CAI. Several reconstruc-
tion methods for planar CAI have been proposed but yet, no comprehensive
quantitative comparison has been carried out to assess their advantages and
disadvantages. A first study has been carried out by Kulow et al. [50], but it is
only a qualitatively comparison based on only few captured images between
reconstruction methods that are not widely used in CAI. ML approaches have
been investigated by Zhang et al. [29, 120]. However, their architectures are
not capable of processing high-resolution images, the evaluation is entirely
based on simulated data and a comparison to state-of-the-art methods is yet
to be presented. Additionally, the phenomenon of domain shift has not been
quantitatively investigated with respect to CAI reconstruction. Domain shift
refers to when a network trained on a source domain encounters a different
data distribution when applied to new unseen data [104]. Usually, the larger the
domain shift, the worse the network performs on the unseen data [9, 123]. The
main contributions of this chapter to the state of the art can be summarized as
follows:

1. A thorough and quantitative comparison of the most commonly used
planar reconstruction methods with regards to runtime and reconstruction
quality is presented.

2. A Convolutional Encoder-Decoder (CED) is proposed that, even though
trained on simulated CAI images, is able to outperform state-of-the-art
methods and proved worthy of further investigations.

3. We offer the research community access to three datasets of high-resolu-
tion coded aperture images of different hot-rod phantoms acquired with
an experimental gamma camera.

4. This chapter describes, to the best of our knowledge, the first re-imple-
mentation and evaluation on experimental data of the convolution-based
Maximum Likelihood Expectation Maximization algorithm proposed
by [24].
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6.2 Methods & Material

In the following, the chosen analytical reconstruction methods from literature
and the development of a novel ML approach will be presented. Furthermore,
the Contrast-to-Noise Ratio (CNR) as a metric for comparing the reconstruction
quality is introduced before the preprocessing of the acquired detector images
is described. The comparison is carried out based on the Rozhkov dataset
described above in Sec. 5.1.

6.2.1 Analytical Reconstruction Methods

Several methods for planar image reconstruction have been proposed within
the last few decades: MURA Decoding, also called inverse filtering, or cross-
correlation analysis [25, 26, 31, 32, 73, 78, 83, 124–127], Wiener Filter [23, 27],
standard Maximum Likelihood Expectation Maximization (MLEM) [28, 128],
convolutional MLEM algorithm [24, 129], genetic algorithm [23], least-square
optimization [23], and data-driven ML approaches [29, 50, 120]. A number of
the proposed methods (standard MLEM, genetic algorithm, and least-square
algorithms) require a system matrix which results in high computational costs
and runtimes of multiple minutes up to 16 h were reported [23]. Therefore,
these reconstruction methods were not considered in this study.

The runtimes for all methods were measured by averaging the elapsed time
for the reconstruction of one image over 1,000 runs on the CPU of a computer
with a 6-kernel Intel Core i7 processor (2.6 GHz) and 16 GB of RAM. The
ML library TensorFlow [130] enables the use of the GPU for the analytical
reconstruction methods as well. Hence, the runtime with GPU support was
also evaluated with a Nvidia GeForce RTX 2070 and 8 GB dedicated RAM.
All reconstruction methods were implemented, processed, and analyzed with
NumPy (1.24), SciPy (1.10.1), and TensorFlow (2.7.2) in Python (3.9.7).

6.2.1.1 MURA Decoding

The MURA patterns were developed with the idea to automatically yield an
optimal decoding pattern without using the Fourier transformation [74, 131].
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Under considerations of the convolutional model (see Sec. 3.3.2) and purely
Gaussian additive white noise, the decoding pattern g′ is optimal and the cor-
relation of the decoding and the encoding pattern h′ results in a δ -distribution.
The decoding pattern g′ is directly derived from the encoding pattern h′:

g′[i, j] =


1 if i+ j = 0,

1 if h′[i, j] = 1, i+ j ̸= 0,

−1 if h′[i, j] = 0, i+ j ̸= 0.

(6.1)

Practically this translates to changing all entries that are 0 to −1and all 1 stay
1 except for the central pixel if a 2× 2 arranged mask is chosen [74]. Two
different decoding patterns were constructed and evaluated on the Rozhkov
dataset: A version according to the NTHT pattern where the intermitting rows
and columns are considered part of the encoding pattern h′[x,y] and thus turned
negative as well, and a version according to the THT pattern, where h′[x,y] does
not have these rows. Both have been used as base pattern for reconstruction in
literature [27, 127].

Generally, when using a 2× 2 arrangement of the basic MURA pattern,
only the central part of the detector image p[x,y] is employed for reconstruction.
This central part, C (p[x,y], b, z) is obtained by cropping the portion of the
detector with the central cropping operator C (·) onto which one basic MURA
pattern is projected. For a more in-depth explanation the reader is referred
to [73]. The size of this projection depends on the magnification factor M from
by Eq. 3.2. As a result, the dimension of the reconstructed image depends
on the detector-to-mask and source-to-mask distances b and z. Because of
the geometrical properties of our camera setup, the central projection matched
exactly the detector size and, thus, no cropping was required.

Instead of a circular convolution with the central mask patter, we opted for
a linear convolution. The decoding pattern g′ was scaled to twice the detector
dimensions of 512×512 pixels by nearest neighbor interpolation and is denoted
as g[x,y] in analogy to the Convolutional Model from Sec. 3.3.2. Finally, the
linear convolution of the given detector image p[x,y] with the decoding pattern
g[x,y] yields the reconstructed image f̂ [x,y]:

f̂ [x,y] = p[x,y]∗g[x,y] (6.2)
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Normally for MURA Decoding, the detector image is cropped to the central
projection. However, because of the geometrical properties of this camera setup
the entire detector was covered by the central projection. Thus, for MURA
Decoding and the Wiener Filter, no cropping was required and the complete
detector image could be used.

6.2.1.2 Wiener Filter

The Wiener Filter executes reconstruction in an optimal balance between inverse
filtering and noise smoothing with regards to the mean squared error. As above,
the underlying assumptions are the convolutional model and Gaussian additive
white noise [131]. It can be regarded as a weighted cross correlation with the
mask pattern and has the design parameter signal-to-noise-ratio (SNR), which
is a scalar constant. For formulating the Wiener Filter W[u,v], the Point Spread
Function (PSF) h[x,y] must be transformed into the Fourier domain where it
is denoted as H[u,v] via the discrete 2D Fourier transformation F with the
frequency coordinates u and v:

H[u,v] = F{h[x,y]} (6.3)
Hence, the Wiener Filter is defined as follows:

W[u,v] =
1

H[u,v]
||H[u,v]||22

||H[u,v]||22 +
1

SNR

(6.4)
As opposed to MURA Decoding, here, the reconstruction turns into a multipli-
cation and thus a faster reconstruction can be expected. Therefore, the detector
image p[x,y] is transformed into the Fourier domain, element-wise multiplied
with W[u,v] and afterwards transformed back into the image domain to yield
the reconstruction result f̂ [x,y]:

f̂ [x,y] = F-1 {F{p[x,y]} ·W[u,v]} (6.5)
Analogously to MURA Decoding, two types of mask pattern were used as

base pattern for the Wiener Filter: The THT and the NTHT version. However,
since the convolution will be carried out in the Fourier domain, only the central
256× 256 pixels of h[x,y], corresponding to one basic MURA pattern, was
required. Furthermore, no cropping took place and the entire detector image
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was exploited. The Wiener Filter was calculated according to Eq. 6.4 with
various SNR. A line search was carried out to find the optimal value for the
design parameter SNR ranging from 10-1 to 10-9. The SNR that obtained the
highest median CNR for one of the hot-rod phantoms, the SRP, was chosen for
all following analyses.

6.2.1.3 Maximum Likelihood Expectation Maximization

The MLEM algorithm is an iterative algorithm that estimates the source image
with the highest likelihood for the captured detector image. The algorithm
is derived from the assumption that the photon detection follows a Poisson
process [106] that is described in Sec. 3.5. Originally, a transfer matrix A must
be provided where the source and detector images are considered as vectors.
The entries ai j represent the fraction of photons emitted from source pixel j and
detected at detector pixel i. Ergo, A grows rapidly for high-resolution imaging
and would contain more than 4 billion entries for an image of 256×256 pixels
resulting in a computational demand that makes this approach impractical for
RGS [28, 128]. To overcome this major drawback, Mu & Hoang [24] proposed
a convolutional-based version of the MLEM algorithm: Instead of using the
system matrix A for forward- and back-projection, the PSF h[x,y] is used:

f̂ (k+1)[x,y] = f̂ (k)[x,y] ·
[

p[x,y]
f̂ (k)[x,y]∗h[x,y]

×h[x,y]
]
, (6.6)

where "·", "∗" and "×" denote element-wise multiplication, linear convolution
and the correlation operator. The current iteration is indicated by the superscript
letter k. The algorithm consists of four major steps: forward-projection, cal-
culating the difference between the detector image and the forward-projection,
back-projection of the error and updating the estimate. The convolution in
the denominator represents the forward-projection step using current estimate
f̂ (k). Dividing the detector image p by the current forward-projection yields
the relative difference. The correlation of the relative difference with the PSF
h represents the back-projection, which is multiplied element-wise with the
current estimate f̂ (k) to obtain an updated estimation f̂ (k+1).

The algorithm according to Eq. 6.6 was implemented with an additional
small ε of 10−7 added to the denominator to avoid zero divisions. Additionally,
the correlation was carried out as convolutional with a flipped second argument
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Figure 6.1: The architecture of the deployed CED network with the number of featurechannels on top and the spatial resolution of the feature maps at the bottom. “Conv” in-dicates convolutional layers, “BN” Batch Normalization and “ReLu” an activation with theReLu function.

to use the same implementations for both operations. The initial guess was set
to a constant image of 0.5. Instead of applying an adaptive stopping criteria, we
analyzed the results of one of the phantoms, the SRP, and chose the number of
iterations for all further analyses where the median CNR was maximal.

6.2.2 Data-Driven Reconstruction Methods

Initial promising experiments have been carried out on the application of Con-
volutional Neural Networks (CNNs) to planar CAI reconstruction, but they
were either validated on simulated low-resolution images [29, 120] or were
only compared visually with other methods [50]. This section describes the
development of a CED, a specific architecture of CNNs trained on two different
training datasets, that performs high-resolution planar reconstruction. In the
following, the above described reconstruction methods are referred to as ana-
lytical reconstruction methods, while trained CEDs are denoted as data-driven
reconstruction methods.
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6.2.2.1 Architecture and Training

Figure 6.1 presents the CED architecture used for this experiment. It is based on
architectures from literature [98, 101, 132] and in particular on DeepPET [10].

A multitude of architectures for image-to-image tasks have been proposed.
A well-known architecture called Automap [9] contains multiple layers of fully
connected neurons which makes it infeasible for the detector size of our setup:
For the reconstruction of an image with 256× 256 pixels more than 4 · 109

trainable parameters would be required, exceeding the capabilities of available
GPUs. The widely acclaimed U-Net architecture [98], which is another subtype
of the CED architecture, has concatenating or additive skip connections directly
transferring information from the encoder to the decoder part. However, as
there is no similarity on a pixel level between input and output domain in CAI,
it was decided to refrain from skip connections. Another architecture is the
Mixed Scale Dense Convolutional Network (MSD-Net) [99], which relies on
convolutional kernels with a large dilatation. The problem is that these kernel
makes training highly inefficient and, hence, only small networks could be
evaluated. In the appendix A.1, it is shown how other architectures compete
against our proposed CED architecture. It is compared to the three MSD-Nets
and two U-Nets that were trained in the same manner.

The main building block of the developed CED architecture is a convolution
block. It consists of a convolutional layer with different kernel and strides, batch
normalization and is concluded by a ReLU activation function. Details about the
building blocks can be found above in Sec.4.2. To ensure a large receptive field,
which is especially important in CAI, as information is spread across the entire
input image, a large kernel size of 7×7 pixels and 5×5 pixels in the encoding
part was chosen. In the encoder part, the spatial resolution is successively
reduced to 32×32 pixels by convolutions with stride 2. Simultaneously, the
number of channels increases from 1 to 512 in the bottleneck. The bottleneck is
intended for the actual transformation between the domain of the detector image
and the domain of the source distribution and thus the majority of trainable
parameters were embedded here. The decoder takes the encoded representation
from the latent space and progressively increases the spatial size while reducing
the channels to reach a final output image with a single channel and 256×
256 pixels. As described in [133], using transposed convolutions can lead to
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checkerboard artifacts in the output image when performing image regression
tasks. Therefore, bilinear resizing followed by unstrided convolutions was
employed in this network’s decoder. The kernel size remains 3× 3 in the
entire decoder section to produce high-resolution images. The final layer is a
convolution followed by a linear activation function, because of its constant
sensitivity. Overall, the CED network consists of 16,414,817 trainable and
10,432 non-trainable parameters.

The loss function used for training is the mean squared error of output
and target image and was optimized by the Adam optimizer [108] with its
standard parameters. A mini-batch size of 16 was chosen, as a compromise
between short training time and a small generalization gap between training and
validation data [104]. The network was trained on 35,000 training images and
validated during training on separate 10,000 validation images for 20 epochs. If
within three epochs the validation loss had not improved, the learning rate was
automatically reduced by a factor of 0.4. An automatic stopping criteria was
defined to efficiently use the development time of such large networks [104]:
When the validation loss did decrease above a threshold of 10−6 for 4 epochs,
training was automatically stopped. Training was carried out for both training
sets, whereas the network trained on the Imagenet dataset served as pre-trained
network for the Lines dataset. Afterwards, the CEDs with the best performance
on the validation set were chosen and applied to the hot-rod phantom data.

The CED, as well as all other reconstruction methods, were implemented,
trained and evaluated in TensorFlow. The network trained on the ImageNet
dataset (see Sec. 5.4 is referred to as CED-IN, the network additionally fine-
tuned on the Lines dataset (Sec. 5.5) as CED-Lines. In the following analysis
both trained CEDs are considered as separate reconstruction methods.

6.2.2.2 Simulation of Training Data

In order to rapidly simulate the detector image from an arbitrary source images,
the Convolutional Model described in Sec. 3.3.2 was chosen. Therefore, the
mask pattern h′[x,y] was scaled according to Eq. 3.8 with b = 42mm and the
source-to-mask distance z = 172mm to obtain the camera’s PSF h[x,y]. The
linear convolution of the PSF and a source image resulted in an image of
498×498 pixels, that were then centrally cropped to 256×256 pixels yielding
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Figure 6.2: Steps in simulating the training data for the CEDs based on two different im-age datasets, IN (top) and Lines (bottom). (a) and (d) are the target images, (b) and (e) thesimulated detector images, and (c) and (f) the detector images after Poisson randomization.

the simulated detector image. No additive noise or near-field artefacts from
Sec. 3.5 were considered. However, different levels of Poisson noise were
simulated. The sum of all pixel intensities, corresponding to the amount of the
photon count, was scaled to reach a random number in the range of 1,000 and
1,000,000 photons. This scaled image represents the expected photon count
per pixel and formed the basis for the Poisson randomization (see Eq.3.24).
Finally, the simulated detector image was normalized to the range of 0 to 1.
Exemplary images with their simulated forward-projection with and without
Poisson randomization from the ImageNet dataset and for the horizontal line
dataset can be seen in Fig. 6.2. The generation of training data was carried out
on-line while training the CEDs.

6.2.3 Contrast-to-Noise Ratio

A widely used metric to quantify the reconstruction quality in nuclear imaging
is the Contrast-to-Noise Ratio (CNR), because it takes into considerations both
the source visibility and the degradation from noise [29, 120, 129, 134]. Thus,
the CNR is considered to be more aligned with the human visual perception
of image quality compared to the root mean squared error. Additionally, it is
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well-known in the medical imaging field and applied across various imaging
modalities, such as SPECT, MRI, and CT [134, 135]. The following definition
of CNR is employed:

CNR =
S̄− B̄

σB
, (6.7)

where S̄ denotes the mean intensity of the signal S, B̄ the mean intensity and σB

the standard deviation of the background B. The binary ground truth images
from Section 5.1 allowed the bisection of the reconstructed image into signal
and background.

6.2.4 Preprocessing

As previously described in Sec. 2.2 semiconductor-based detectors are prone to
defects in the crystaline structure of the active area of the sensor. The Rozhkov
dataset is captured with a detector consisting of CdTe and small clusters of
defective pixels are noticeable on first inspection of the captured images.

A negative impact on the reconstruction results must be assumed and, thus,
a preprocessing step prior to reconstruction has been proposed [136]. The goal
of this procedure is to mitigate degradation by clusters of defective pixels and
replace them with more “reasonable” values. Thus, a two-step preprocessing
is employed: First, the defective pixels were identified by averaging all 720
images taken with our experimental gamma camera. This average image was
thresholded according to the 2nd and 98th percentile. Pixels outside this range
were considered defective. Second, these defective pixels were consequently
replaced by the median of their 3×3 neighborhood in each image of our dataset.
The effect of preprocessing the detector images on the final reconstruction
quality was analyzed based on the SRP.

6.3 Results

The results are presented in the following order: First, the preprocessing of
the captured images is compared to the reconstruction quality based on the
raw detector images. Afterwards, the reconstruction methods with the optimal
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Figure 6.3: (a) shows the first detector images from each of the three captured hot-rodphantoms before (top) and after preprocessing. (b) shows the binary mask which markthe defective pixels in black according to the 2nd and 98th percentile of the average image.Figure from [116].

parameters are compared both regarding their reconstruction quality as well as
the runtime.

6.3.1 Preprocessing

The first detector image for each of the three hot-rod phantoms is presented in
Fig. 6.3a before and after preprocessing. Pixels with high intensities or clusters
of black pixel corrupt the image and structure is barely visible as the top row
shows. Replacing outliers by the median value of their neighborhood lead to a
higher contrast and vertical stripes becoming visible. The binary mask generated
by thresholding the average detector image (Fig. 6.3b) shows multiple clusters of
erroneous pixels in addition to pixels along the edge. Despite the preprocessing,
systematic pixel errors remain and are noticeable as black clusters in the top
right corner of all detector images.

Table 6.1 presents the median CNR of each reconstruction method and
phantom based on the un-preprocessed detector images (raw) and the difference
to the preprocessed detector images. Regarding the SRP, where overall the best
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Table 6.1: This table shows the median CNR and the interquartile range between the
25th and 75th percentiles in brackets of the SRP reconstructions based on the raw, thepreprocessed detector images and their difference. The Wiener Filter is carried out withSNR = 10−9 and the MLEM algorithm with 106 iterations. The values printed in bold in-dicate that the median CNR of the preprocessed is higher than of the raw images. Themedian CNRs for the preprocessed images for all phantoms are presented in Tab. 6.2.

Reconstruction
method

Raw Preprocessed Difference

Wiener Filter 1.59 (0.45) 1.92 (0.63) +0.33
MURA Decoding 1.90 (0.69) 1.92 (0.74) +0.02
MLEM 2.57 (1.24) 2.31 (1.03) −0.26
CED-IN 1.36 (0.32) 2.65 (1.05) +1.29
CED-Lines 3.89 (1.70) 5.22 (2.82) +1.33

reconstructions were obtained, it is noticeably that the Wiener Filter improves by
0.33 while the MLEM algorithm obtains a median CNR that is smaller by 0.26.
The largest improvement were obtained by the data-driven methods: CED-IN
and CED-Lines achieve improvements of 1.29 and 1.33.

6.3.2 Comparison of Reconstruction Methods

As Fig. 6.4 shows, the NTHT version for reconstruction causes a periodic noise
causing the median CNR of MURA Decoding to drop from 1.92 to 0.35 on
the SRP. An analogous behavior was observed for the analytical reconstruction
methods as well. Thus, in the following, all presented results are based on the
THT version.

For the Wiener Filter a SNR of 10-7 resulted in the highest median CNR
for the SRP (see Fig. 6.5b) which will be considered for the remainder of this
analysis. Instead of applying adaptive stopping criteria to the MLEM algorithm,
the fixed number iterations was chosen based on where the reconstruction quality
of the SRP as well. As Fig. 6.5b shows the median CNR rises from 1.89 after
one iteration and declines after reaching the maximum median CNR of 2.31
after 106 iterations. Training the CED-IN took around 11:55 h and additional
3:45 h for the lines dataset. The automatic stopping aborted training after 19

81



Chapter 6. Quantitative Comparison of Planar Reconstruction Methods

Figure 6.4: This graphic shows the reconstruction of one image from the SRP with MURADecoding where the decoding pattern is based on the THT (left) and on the NTHT (right)version of the utilized MURA pattern. The CNRs of the reconstructions are printed in thetop left corners. Note the heavy periodic noise when the NTHT version is used.

Figure 6.5: Top: The median CNR of the SRP dataset plotted against the number of itera-tions for theMLEM algorithm. Bottom: Themedian CNR of the SRP dataset plotted againstthe hyperparameter SNR of the Wiener Filter. Finally, 106 iterations and a SNR of 10-9 waschosen as optimal hyperparameters. The median CNR of the SRP dataset reconstructedwith MURA Decoding of 1.92 (red dashed line) is plotted for reference.
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Figure 6.6: The L2 loss of the CED training plotted against the number of training epochs.The top pair represent the loss of the CED-IN over the training set (green) and the validationset (pink). The bottom pair is the CED-Lines with training loss in red and the validation lossin blue.

epochs and 6 epochs for the CED-IN and CED-Lines, respectively, as Fig. 6.6
shows.
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The distribution of the 120 CNR values for the five different reconstruction
methods are presented as grouped boxplots in Fig. 6.7. The median CNR
values for each reconstruction method and phantom are listed in Tab. 6.2. It
is noticeable, that the SRP is reconstructed with a higher CNR than the other
two phantoms (see also Fig. 6.8): While the median CNR for the SRP varies
between 1.92 and 5.22, the median CNR for the CP ranges between 0.57 and
1.42 and is even smaller for the LRP with median CNRs below 1.0.

The Wiener Filter and MURA Decoding show similar reconstruction results,
with the latter producing a smoother background and hence reaching an overall
higher median CNR for all phantoms. However, among the analytical recon-
struction methods, the MLEM algorithm produces the best reconstructions for
the SRP and reaches a similar quality for the LRP and CP. Its reconstructions
exhibit a darker and more uniform background, but also slightly weaker tubes.

Both CEDs reconstructed the phantoms with a higher median CNR than
all analytical reconstruction methods for two of the three phantoms, namely
the SRP and CP. While the CED-IN obtains a median CNR of 2.65 for the
SRP, the CED-Lines achieves an even higher median of 5.22. The background
generated by the data-driven reconstruction methods and especially for the
CED-Lines is almost uniformly dark, except for a few cloudy artifacts. As
Fig. 6.8 shows, the tubes of the SRP are clearly visible in all reconstructions,
but are weaker for the LRP and CP, especially when the tubes are in an upright
position. Overall, the second tube of the CP is missing from the reconstructions.
In most reconstructions there is a thin bright stripe at the top of most images,
regardless of the reconstruction method.

The average runtimes and their standard deviations are presented in Tab. 6.2:
106 iterations of MLEM executed on the CPU takes an average of 48,962 ms,
while MURA Decoding takes 288 ms and the Wiener Filter even less with
67 ms. The runtime of both CEDs are almost identical with 285 ms and 286 ms
on the CPU and 52 ms for both CEDs on the GPU. When deploying a GPU, the
runtimes decrease, but are associated with a higher standard deviation.
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Figure 6.7: CNR distribution of the reconstructions of the preprocessed detector imagesseparated by the three hot-rod phantoms (SRP, LRP andCP). Three data points above a CNRof 16 are not shown. The boxes indicate the 25:75 percentiles, lines are medians, whiskersstretch 1.5 times the interquartile range and data point outside this range are consideredoutliers. Figure from [116].

6.4 Discussion

In following sections, the reported results are interpreted starting with the
Rozhkov dataset, the proposed preprocessing, before the planar reconstruction
methods are compared.

6.4.1 Rozhkov Dataset and Preprocessing

Even after preprocessing the acquired images, noise dominates all detector
images. Structures in the images are more distinctive for the SRP than for the
CP and LRP. Despite the preprocessing, the acquired detector images still suffer
from systematic pixel errors. The acquisition a flood-field and a dark-field
image would allow a pixel-wise calibration process. However, defective pixels
that always output 0 could not be corrected and remain a general disadvantage
of semiconductor-based detectors.
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6.4. Discussion

Figure 6.8: Exemplary reconstructions from the SRP (top), LRP (middle) and CP (bottom).For each hot-rod phantom from top to bottom row: The best, median andworst reconstruc-tions fromMURADecoding and the corresponding reconstructions from all other methodsare displayed. The outer columns represents the detector and ground truth (GT) image re-spectively. Note, that the histogram of the detector images were equalized for better visu-alization. Figure from [116].

87



Chapter 6. Quantitative Comparison of Planar Reconstruction Methods

Nonetheless, all reconstruction methods are equally affected by noise and
defective pixels which assures a fair comparison. Overall, the reconstructions
from the LRP and CP yield on average CNRs of around 1.0 and below, suggest-
ing that not enough photons were detected, potentially due to a large amount
of 99mTc that has already decayed before the acquisition took place. Thus, the
SRP dataset where all three tubes are visible in most images and independently
from the reconstruction method can be considered the most useful dataset in
comparing. An air bubble trapped in one tube of the CP was found after the
measurements and posed an additional challenge.

All reconstruction methods, not only the CEDs, have difficulties in recon-
structing the phantoms when the tubes are in an upright position. In these cases,
the radiating sources are spread over a larger portion of the Field of View (FOV).
This leads to a more uniform distribution of the photons hitting the detector,
which reduces the photon count per pixel. Hence, Poisson noise dominates
these detector images. The almost blank reconstructions of the LRP show that
the data-driven reconstruction methods cannot perform miracles and rely on a
certain quality of the detector image.

Whether the proposed preprocessing improves the reconstruction quality
depends on the reconstruction method. In the case of MURA Decoding, the
choice of raw or preprocessed detector images did not affect the reconstruction
outcome, rendering it the most robust reconstruction method. After the Wiener
Filter, the CEDs benefited the most with improvements above 1.0. That makes
it the most sensitive reconstruction methods, but also the best. They can only
unfold their full potential when the utilized detector images look as similar as
possible to the training data [137]. A further improvement can be expected
when the detector technology advances and is able to provide crystals with
fewer defects and a more homogeneous sensitivity.

6.4.2 Reconstruction Method

The most commonly used reconstruction method, MURA Decoding, proved to
be good compromise between reconstruction quality and runtime, despite its
negligence of Poisson noise. The Wiener Filter with an optimal hyperparameter
(SNR) yields reconstructions of comparable quality but has the advantage of a
more than four times faster runtime. This can be attributed to the convolutions
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that are not carried out in the spatial domain but in the Fourier domain. This
acceleration indicates that MURA Decoding should be carried out in the Fourier
domain as well, since, compared to the Wiener Filter, no hyperparameter search
is required.

The MLEM algorithm offers on average a 1.2 times better reconstruction
quality on the SRP than MURA Decoding which comes with a higher compu-
tational cost: it takes more than 170 times longer for a single reconstruction
compared to MURA Decoding. Each iteration consists of two convolutions and
two element-wise operations, one division and one multiplication, where the
reconstruction is updated based on the current forward projection. The potential
of the MLEM algorithm is certainly not fully exploited yet. It is conceivable to
accelerate the MLEM algorithm, for example, a warm-start based on MURA
Decoding can be considered [132, 138], additional regularization [139], or an
adaptive stopping criterion [140].

Overall, both CEDs reconstructed the phantoms better than all analytical
reconstruction methods. Especially the SRP is reconstructed about 1.4 times
better by the CED-IN compared to MURA Decoding and 2.7 times better by the
CED-Lines. This is achieved, even though the simulated training data are based
on the simplistic Convolutional Model (see Sec. 3.3.2) and did not account for
any near-field effects. Neglecting near-field effects, transmission and scattering
inherently limit the CED’s reconstruction ability. It can be expected, that a
more realistic generation of training data has the potential to improve CAI
reconstruction. The runtime of both CEDs are identical with circa 286 ms and,
thus, equal to MURA Decoding with 288 ms.

The fact that the data-driven reconstruction methods produce reconstructions
with similar characteristic (e. g. the highlighted tip in the top image of the CP
in Fig. 6.8) as all analytical reconstruction methods supports the hypothesis,
that the CEDs learned an actual image-to-image mapping and did not just
repeat known patterns. The data-driven CEDs, unlike analytical reconstruction
methods, are not based on a formal description of the imaging system. Two
problems arise from this: First, it has been shown, that CNNs can inherently
possess instabilities [138, 141]: For CAI, instabilities mean that perturbations of
the detector image can lead to nonsensical reconstructions, e.g. reconstructions
with large uniform areas or negative pixel values. However, instabilities were
only noticed during training and none of the final deployed networks showed
instable behavior, but its possibility must be kept in mind, especially because
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the application in RGS can have serious health consequences. Therefore, a more
in depth analysis of the CED regarding its trustworthiness and the influence
of training data is required. Second, the reconstruction results depend on
the domain of the training data. The different reconstruction results between
CED-IN and CED-Lines are solely caused by the different image domains
used for training. This data dependency has already been described by Kulow
et al. [50] and indicates, that ML approaches are not capable yet, to learn a
domain-independent image-to-image mapping. The superior performance of
the CED-Lines indicate, that the domain shift between the Lines dataset and the
target domain (the hot-rod phantom data) is smaller compared to the Imagenet
training set. This can be used as an advantage: The two training sets used in
this paper represent different approaches to CAI reconstruction. First, using
natural photographs as source distribution forms a general approach aiming
at the question “What do we have in front of our camera?”. Second, when
the approximate amount, shape and size of radioactive sources is known, a
training set can be tailored to that specific application. This approach contains
a priori knowledge and seeks to answers the question “Where is the source
located?”. For Sentinel Lymph Node Biopsy (SLNB) the radiating sources
can be considered of spherical shape with maximally a few centimeters in
diameter [82, 142] and a set of training data could be generated for this specific
task.

With respect to the state of art, the presented quantitative comparison pro-
vides researchers with an overview of the existing reconstruction methods for
planar CAI. Additionally, research groups are encouraged to use the published
Rozhkov dataset with its three hot-rod phantoms for evaluating and developing
their own reconstruction methods. This study also gives concrete information
about the advantages and disadvantages of the most common reconstruction
methods: In summary, MURA Decoding balances quality and speed, the Wiener
Filter is faster, MLEM provides superior quality but is slow, and the data-driven
CEDs outperform analytical techniques but require further analysis regarding
the domain shift and its reliability.
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6.5 Conclusion & Outlook

In this chapter common reconstruction methods for planar CAI on data acquired
by an experimental gamma camera and three hot-rod phantoms were compared.
For the given set-up, MURA Decoding, the most commonly used CAI recon-
struction method, provides robust reconstructions despite the assumption of
a linear system model. The Wiener Filter delivers results of almost similar
quality while requiring only a quarter of the computational time. The MLEM
algorithm yields the best reconstruction quality among the analytical recon-
struction methods, but comes with a 170 times longer runtime with the used
hyperparameters. All in all, both developed CEDs outperformed the analytical
reconstruction methods for two out of three phantoms, despite a simple and
low-fidelity simulation of training data based on the Convolutional Model. The
ML approach turned out to be especially successful, when a priori knowledge
about the expected radiation sources in the form of a tailored training set is
used. Even though, none of the CED reconstructions exhibited instabilities, its
possibility must be kept in mind.

The main conclusions from this comparative study with regards to using CAI
for Intraoperative Gamma Camera (IGC) can be summarized as follows: First,
preprocessing the detector images to mitigate the impact of defective pixels
might be beneficial and should be selected based on the reconstruction method
used. Second, even though the actual imaging is carried out with a NTHT
MURA pattern, it is beneficial to use its THT version for the reconstruction
process. Third, the Wiener Filter is much faster than MURA Decoding and
delivers the same quality. Therefore, it is advisable to transfer the convolution
of MURA Decoding to the Fourier domain to obtain a fast and robust method
without the need of adjusting hyperparameters. Fourth, the MLEM algorithm
offers superior quality, but takes multiple seconds for what the Wiener Filter
needs milliseconds. This might make the MLEM a more suitable reconstruction
method for SPECT imaging where the requirements regarding the runtime is of
minor priority. Fifth, CEDs offer both high quality reconstructions and a fast
runtime. However, the unknown reliability and the dependency on the training
domain of the training data must be further investigated.
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Chapter 7
Simulation Study on

Super-Resolution for Planar
Coded Aperture Gamma

Imaging

This chapter investigates Hypothesis Ib and aims at answering the question
if and to what extend super-resolution imaging is possible in planar Coded
Aperture Imaging (CAI).

This chapter has been accepted but not yet published at a conference proceedings
to the “4EU+ International Workshop on Recent Advancements in Artificial
Intelligence (4EU+IWAI)” where a preprint is publicly available under license
CC-BY 4.0 on the arXiv [143].

7.1 State of the Art

The term super-resolution refers to the process of combining several “low
resolution, noisy, slightly shifted observations” [144] to reconstruct an image of
the underlying high resolution scene, as Fig. 7.1 illustrates. With regards to CAI,
Kulow et al.[23] argues that because multiple projections from slightly different
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Figure 7.1: The process of combining two or more low-resolution or noisy images to forman high-resolution image of the underlying scene is called super-resolution. Figure adaptedfrom [143].

angles are captured by a coded mask, super-resolution is theoretically feasible.
In practice, this means producing a high-resolution image reconstruction from a
low-resolution detector image. Because the spatial resolution in CAI is mainly
influenced by the mask’s pinhole diameter [23], increasing the MURA rank and
thus the amount of pinholes while reducing their diameter would increase the
spatial resolution. So far, the pinhole diameter has been chosen such that the
utilized detector can properly sample the resulting PSF [25, 82]. To the best of
the author’s knowledge, no research has been conducted about the combination
of small pinholes and a low-resolution detector. Therefore, the investigated
hypothesis of this chapter is as follows: Existing CAI reconstruction methods
are capable of reconstructing point sources from an undersampling detector, and
thus achieving super-resolution, at reasonable quality even though the detector
is unable to resolve the higher spatial resolution of the aperture. This is due to
the shifted but overlapping projections caused by the coded aperture. Planar
reconstruction methods from the previous chapter (MURA Decoding, MLEM,
and the CED-IN) are investigated and their results compared. With this chapter,
the following contributions to the state of the art are made:

1. It is shown that in theory super-resolution for planar CAI is feasible, as
long as the sampling theorem is fulfilled.

2. Smoothing the captured detector images can improve the CED’s predic-
tion.
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Figure 7.2: From left to right: The portion of the Point Spread Function (PSF) captured bythe experimental gamma camera from the Rozhkov dataset, the Two-Holes-Touching (THT)encoding and the THT decoding pattern used for MURA Decoding. Figure from [143].

7.2 Methods & Material

First, the analyzed reconstruction methods are briefly summarized. Afterwards,
an under-sampling detector of a test image is simulated with a state-of-the-art
Monte Carlo (MC) simulation framework. Thereafter, the experimental data are
shortly summarized, and the procedure of simulating a low-resolution detector
image from a high-resolution image is explained. Finally, the concept of the
critical super-resolution factor is introduced.

7.2.1 Reconstruction Methods

Three different methods for super-resolution reconstruction are analyzed and
compared in this paper: MURA Decoding [75], a convolutional Maximum Like-
lihood Expectation Maximization algorithm (MLEM) [24] and a convolutional
encoder-decoder network (CED) from previous work [116]. Instead of the real
Point Spread Function (PSF) h[x,y] with round pinhole projections, the Two-
Holes-Touching (THT) version of the PSF without gaps between neighboring
pinholes is used for reconstruction since it suppresses periodical noise (see
Sec. 6.3). Both the THT-PSF and its corresponding decoding pattern, scaled
according to Eq. 3.8, are of rectangular structure and a square of 8 bright pixels
represents each projected pinhole. They also define the reconstructed resolution
of 256× 256 pixels. Figure 7.2 depicts the measured PSF (only the central
portion that fits the detector) , the THT-PSF and the decoding pattern. Addition-
ally, MURA Decoding with low-resolution THT-PSF was implemented, where
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not the synthetic high-resolution THT-PSF was used, but the down-sampled
THT-PSFs mimicking how the PSF would be sampled with a low-resolution
detector. Since the detector images come in low-resolution, the reconstructed
images were upsampled to 256×256 pixels by bilinear interpolation before the
actual reconstruction step. The reconstruction quality was measured with the
Contrast-to-Noise Ratio (CNR) in analogy to the previous experiment where
details can be found in Sec. 6.2.3. For the MLEM algorithm, a fixed number of
25 iterations was heuristically found to be a good compromise between speed
and quality.

7.2.2 Simulating the Test Image

For simulating a test image, the MC simulation toolkit TOPAS [88], a wrapper
library of the popular Geant4 software package [87], is adopted. As described
above in Sec. 3.3.3, MC simulations account for photon-mass interactions
like scattering and mask penetration and are therefore considered the gold
standard for simulating gamma cameras [36]. The geometrical components and
dimensions were simulated according to the experimental gamma camera from
the Rozhkov dataset where the exact specifications can be found in Tab. 5.1.
The test image consists of three circular sources with diameters d1, d2 and
d3 of 1, 2 and 3mm distributed within the Field of View (FOV) as Fig. 7.5
shows. 109 gamma photons with a photon energy of 140.5 keV (corresponding
to the photon peak of 99mTc the most commonly used radiotracer in nuclear
medicine [12]) were distributed to the three sources according to their area.
Every photon penetrating the front plane of the detector was registered and
stored in a so called phase space file.

In addition to the coded aperture a single pinhole collimator, as described in
Sec. 2.3, with the same pinhole diameter was simulated to serve as a reference
for the reconstructed images. The captured pinhole image was smoothed by
Gaussian blurring with a σ of 2 pixels as is standard in gamma imaging [145,
146]. The Ground Truth (GT) image was generated from the geometrical model
and remains binary: 1 for where a source is located and 0 everywhere else.

96



7.2. Methods & Material

Figure 7.3: Pixels of the high-resolution detector image from the TOPAS simulation areaccumulated (here with k = 8 into 32×32 pixels) to form the low-resolution detector image.Afterwards this image is upsampled by bilinear interpolation to the high-resolution of 256×
256 pixels.

7.2.3 Experimental Data

Images from an experimental gamma camera were used to validate the effect of
super-resolution on real-world experimental data. From the Rozhkov dataset
(see Sec. 5.1) the 120 images captured of the Spatial Resolution Phantom (SRP)
were used. The same preprocessing as described in Sec. 6.2.4 was applied to
the detector images.

7.2.4 Simulating Low-Resolution Detector Images

To analyze the effect of different pixel sizes, low-resolution images of different
resolutions were generated. The captured photons from the MC simulation and
from the experimental gamma camera were binned into images of different low
resolution. The actual detector served as reference with a resolution of 256×256
pixels, which corresponds to the resolution of the final reconstructed image.
Therefore, the super-resolution factor k is introduced. This factor represents
how many pixels are pooled to a single low-resolution pixel, i.e. k× k high-
resolution pixels are reconstructed from a single low-resolution pixel. Note that
the absolute detector size with the side length DD of 14.1mm remains the same.
Only the size of each pixel s changes proportional to k with s = 14.1 · k/256.
Effectively, this down-sampling in combination with the following upsampling
in the reconstruction step can be regarded as a low-pass filtering of the detector
images. The process of generating low-resolution images is shown in Fig. 7.3
for k = 8.
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7.2.5 Critical Super-Resolution Factors

The Nyquist-Shannon sampling theorem states that the sampling frequency of
a pixelated representation must be larger than twice the maximum frequency
of the image. Thus, when the smallest occurring structure is sampled by two
pixels or less, an image is not represented unambiguously anymore, which
leads to aliasing and hence signal degradation [131]. Since the aforementioned
analytical reconstruction methods, MURA Decoding and MLEM, consist of
one or more convolutions of two discretized signals, a reconstruction without
aliasing artifacts is only possible when both images were sampled by enough
pixels. Thus, critical super-resolution factors k̃ were determined both for the
coded aperture test image and the THT-PSF h[x,y]. The smallest point source of
the test image is 1mm wide and therefore much larger than the pinhole diameter:
d1 ≫ d. Hence, the smallest structure on the detector caused by the small point
source can be approximated by t = d1 ·M = 1.244mm with the magnification
factor M from Eq. 3.2. For h[x,y] the smallest structure t is 8 pixels wide, i.e.
t = 8 · s. All in all, for the given gamma camera with its magnification factor
of M = (1+b/z)∼= 1.244, the smallest depicted structure t and the single pixel
side length of s = 0.0551mm k̃ is defined as

k̃ =
⌊

1
2
· t

s

⌋
, (7.1)

where ⌊·⌋ denotes rounding off to the nearest smallest integer value.

7.3 Results

The results of this study are presented as following: First, the critical super-
resolution factors are given. Second, the reconstructions of the rest image and
third, the reconstructions of the captured images are presented.

7.3.1 Critical Super-Resolution Factors

The following critical super-resolution factors k̃ were obtained from the Nyquist-
Shannon sampling theorem: The THT-PSF h[x,y] must be sampled by at least
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Figure 7.4: The CNR plotted against the super-resolution factor k. Top: Test image. Theblack dotted vertical lines mark the critical super-resolution factors k̃THT-PSF = 4 and k̃1 =
11. The red dotted line represents the CNR of the smoothed image captured by a pinholecollimator and serves as reference. Bottom: Measured phantom data. Error bars representthe standard deviation at each data point. The vertical dotted lines denote the critical super-resolution factors k̃THT-PSF = 4 and k̃measurement = 12.
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Figure 7.5: On the right-hand side the coded aperture detector and the GT images areshown The CNR are printed in the top right corner of each reconstruction. Top: Exemplaryreconstructions of the test image generated byMC simulation at different super-resolutionfactors k. For reference, the coded aperture simulation in 256× 256 pixels, the smoothedpinhole collimator simulation in the same resolution and the GT is shown on the right-handside. Bottom: super-resolution evaluated on the SRP data captured with our experimentalgamma camera.
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64× 64 pixels leading to k̃THT-PSF = 4. This means that the synthetic high-
resolution THT-PSF in this paper is 4-times oversampled. The test image with
the 1 mm point source results in a higher critical super-resolution factor of
k̃1 = ⌊11.29⌋ = 11. The tubes of the phantom captured by the experimental
gamma-camera have a diameter of 1.1 mm, that are magnified to approximately
1.37 mm and thus 24.83 pixels. This results in a critical super-resolution factor
for the measured data of k̃measurement = ⌊12.42⌋= 12.

7.3.2 Results on the Test Image

Figure 7.4 shows the CNR of the four reconstruction methods over the super-
resolution factor k. The red dotted line at 7.63 denotes the CNR of the smoothed
image captured with a pinhole collimator where no reconstruction was required.
It is depicted central on the right-hand side together with the GT image and the
coded aperture test image in Figure 7.5. The left-hand side shows exemplary
reconstructions for k = 1,3,6,11 and 16. It can be seen that the CNRs of the
reconstruction methods with the synthetic high-resolution THT-PSF increase
until k = 3 and decline afterwards. The CED-IN is an exception, where the CNR
increases further until falling below its baseline at k = 13. For all reconstruction
methods using the synthetic high-resolution THT-PSF the smallest point source
starts to disappear for k > 11 and is hardly visible for k = 16.
MURA Decoding with the low-resolution THT-PSF does not exceed its baseline
CNR and falls beneath the pinhole reference at k = 5 and again for all k ≥ 9.
The reconstructions for k ≥ 11 fail entirely and resemble no similarity to the
GT anymore.

7.3.3 Results on the Measured Images

Analogously to the test image, Fig. 7.4 shows the CNR for the presented
reconstruction method at different super-resolution factors k. Because 120
reconstructions were analyzed, the marker represents the median CNR and
additional error bars represent the standard deviation for each reconstruction
method and super-resolution factor k. In general, lower CNRs compared to
the test image can be observed. Similarly, all methods except for the MURA
Decoding with low-resolution THT-PSF slightly rise for small k and then fall
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after approximately k = 7. This behavior can also be seen in the exemplary
images in Fig. 7.5. Visually, a higher background noise is present compared
to the test image and the three line sources are prominent until they start to
disappear for larger k. The maximum median CNR is reached by the CED-IN
with 3.42 at super-resolution factor k = 6.

7.4 Discussion

At first, the results from the test image will be discussed, before the experimental
data and general limitations of this experiment are examined.

7.4.1 Simulated Test Image

For the given setup the Nyquist-Shannon sampling theorem states, that for super-
resolution factors above k = 4 the PSF is not sufficiently sampled anymore. If
the THT-PSF is undersampled it loses its characteristic to properly function for
CAI reconstruction. The simulation study of this paper shows this behavior
where CNRs of MURA Decoding with low-resolution THT-PSF drop notably
for k ≥ k̃THT-PSF and the reconstruction of k = 11 show major artifacts rendering
the three sources unrecognizably.

But, when upsampling the low-resolution detector image to a high-resolution
of 256×256 pixels and using the synthetic high-resolution THT-PSF for recon-
structions, the CNRs drop slower for both analytical reconstruction methods.
For k ≤ 6 the CNRs even stay approximately constant. Additionally, the re-
constructed images are visually closer to the expected output. For k > k̃1 the
smallest point source cannot be reconstructed properly and starts to dissolve
which is in accordance to the prediction by the sampling theorem. In the simula-
tion study super-resolution with small k and upsampling by bilinear interpolation
even had a positive impact on the CNR and the reconstructions look smoother.

7.4.2 Measured Phantom Images

Similar behavior was observed for the measured phantom data. For all recon-
struction methods, the CNR does not decrease until approximately k = 7, even
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though undersampling of the THT-PSF starts at k = 4. However, the gain in
CNR for the measured phantom data is far less for small k compared to the
simulated test image.

It is remarkable that the CED-IN, even though not trained on processing
upsampled low-resolution images, performs better than all other reconstruction
methods for super-resolution factors of k ≥ 4. For the measured phantom data
it is the best reconstruction method for all k. This indicates that the CED-IN
generalized from the training domain of natural photographs to discrete sources
on a dark background, even when the input images where smoothed by the
upsampling process. Specifically the background is reconstructed more uniform.
This implies that the CED-IN has learned to compress the input detector image
into a robust representation of the image, suppressing the influence of noise
and defective pixels, like in the top right corner of the coded aperture image in
Fig. 7.5.

7.4.3 Limitations

The test image generated by MC simulation shows in theory that super-resolution
in CAI is possible and the simulated low-resolution detector images based on
phantom data captured by an experimental gamma-camera strengthen this hy-
pothesis. However, the question remains as to how a real low-resolution detector
would affect the reconstruction. In this study low-resolution detectors were
simulated by accumulating photon hits of neighboring pixels, but defective
pixels on a low-resolution detector will have a higher impact since it captures a
larger fraction of the mask’s shadow. Furthermore, the critical super-resolution
factor also depends on the source-to-mask distance z and thus on the magnifi-
cation factor M from Eq. 3.2. Hence, additional experiments for 3D imaging
are necessary. Another aspect not investigated in this study are other types of
gamma sources. Especially extended sources are known to cause problems in
CAI for reasons that are still unknown [129, 147].
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7.5 Conclusion

The conducted simulation study indicates that super-resolution reconstruction
for planar CAI is feasible even when the detector is not capable of sampling the
PSF sufficiently according to the Nyquist-Shannon sampling theorem. Instead,
upsampling the captured low-resolution detector image by bilinear interpolation
is combined with a synthetic high-resolution THT-PSF. This way, established
reconstruction methods were able to reconstruct the simulated test image. As a
byproduct of our investigation, we discovered that the smoothing of the detector
image can enhance the reconstruction quality of the CED-IN. However, for large
super-resolution factors, the smallest point source could not be reconstructed as
predicted by the sampling theorem. Applying the same technique to simulated
low-resolution detector images from data of a hot-rod phantom captured with
an experimental gamma-camera strengthen these findings. For future research,
further experiments with a more realistic undersampling detector including
defective pixels are required.
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3D IMAGING





Chapter 8

Assessment of the Axial
Resolution

This chapter and the following one address Hypothesis II, where the assumption
of a known source-to-mask distance is dropped. In analogy to the spatial resolu-
tion in x and y-direction, in this chapter the axial resolution of our experimental
Intraoperative Gamma Camera (IGC) is assessed.

The content of this chapter is taken from a research paper that has been pub-
lished in the “European Journal of Nuclear Medicine and Molecular Imaging
Physics” under license CC-BY 4.0 [118].

8.1 State of the Art

Planar image reconstruction requires to select an in-focus plane, i.e. a distance
at which the source is assumed to be located. The choice is either based on
the assumption that the source is infinitely far away, as is the case in far-field
applications such as space astronomy, or on a priori knowledge. In principle, this
represents an inherent limitation of Coded Aperture Imaging (CAI) since other
collimation technologies do not require selecting an in-focus plane. However,
this can also be used to extract 3D information and has already been investigated
for point sources [25, 95]. As described in the Fundamentals (see Sec. 3.1),
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the lateral position of a point source is encoded by the shift of the mask’s
shadow, while the source-to-mask distance is related to the size of the projected
shadow. The size of the projected shadow depends on the magnification factor
M from Eq. 3.2 that, in turn, depends on the detector-to-mask distance b and
the source-to-mask distance z. Hence, in theory, the 3D-localization of a point
source based on a single image is feasible.

Accurately estimating the 3D position of gamma sources can substantially
improve the effectiveness of Radioguided Surgery (RGS). Procedures such as
Sentinel Lymph Node Biopsy (SLNB) for breast cancer staging highlight the
critical need for detailed examination of the axial resolution in CAI [6, 8, 20].
So far, two reconstruction algorithms have been proposed for 3D CAI recon-
struction: MURA Decoding and 3D convolution-based Maximum Likelihood
Expectation Maximization algorithm (3D-MLEM). The first method retrieves
a 3D reconstruction by a sequence of images with in-focus planes at multiple
distances. With this method Russo et al. [25] were able to show that a ring-
shaped object is captured with an axial resolution of about 3mm. However, no
systematic analysis of the axial resolution at different source-to-mask distances
has been carried out. The second method, the 3D-MLEM algorithm, extends the
MLEM algorithm already used in Chapter 6 to reconstruct an entire 3D source
distribution simultaneously. Mu et al. [24, 129] demonstrated that this algorithm
is capable to distinguish two sources positioned in succession. However, the
axial resolution is not reported and the 3D-MLEM algorithm is not yet suitable
for a more general camera setup.

All in all, in contrast to the extensive investigations into the lateral resolution
of CAI [26, 36, 73], the axial resolution has received much less attention. Only
a few articles exist, covering only a limited range of source-to-mask distances
by different methodologies. Thus, the experiments of this chapter aim at closing
this gap and make the following contributions to the state of the art:

1. A systematic experiment and assessment of the axial resolution of an
experimental IGC equipped with a coded aperture collimator is presented.

2. We propose a reproducible method for measuring the axial resolution by
calculating the FWHM of the CNR profile along the z-axis of a point-like
source.

3. The 3D-MLEM algorithm from [24] is generalized to a broader camera
setup by extending it by a normalization factor and mask transmission.
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4. This study compares two coded aperture reconstruction methods and
demonstrates that 3D-MLEM can be considered as the slower but superior
reconstruction method compared to standard MURA Decoding which is
faster but less precise.

The entire acquired dataset of 21 images and its preprocessed versions are
publicly available at https://zenodo.org/doi/10.5281/zenodo.
8315861.

8.2 Methods & Material

In this study we use the Axial Resolution Dataset that is described in detail in
Sec. 5.2. In the following section, the preprocessing of the detector images is
described, followed by the proposed modifications to the 3D-MLEM algorithm.
Finally, the assessment of the axial and the lateral resolution are described.

8.2.1 Preprocessing

The detector images that are used in this study are captured with a detector
based on Si instead of CdTe like in the previous chapters. Because this Si
detector is thinner than Rozhkov’s CdTe detector (0.5mm instead of 2mm)
and Si is generally less prone to clusters of defective pixels [44], a less radical
preprocessing step is used. Per detector image, all pixels with values outside
the range of the 1st and 99th percentile were considered to be outliers and
were replaced by the median value of their 3×3 neighborhood. Additionally,
Gaussian smoothing with a sigma of 1 pixel was applied. Figure 8.1b shows a
comparison between a raw and a preprocessed detector image.

8.2.2 Generalizing the 3D MLEM Algorithm

The Maximum Likelihood Expectation Maximization (MLEM) algorithm is
an iterative algorithm that estimates the source distribution with the highest
likelihood assuming the measured detected photons follow a random Poisson
process [148]. The original MLEM algorithm was adapted to CAI by replacing
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the computationally excessive system matrix with a convolutional approach [24],
that is explained in more detail in Sec. 6.2.1. Additionally to this planar re-
construction method, Mu et al. [24] extended it to reconstruct planes at several
source-to-mask distances simultaneously, hence, generating an entire 3D source
distribution. The entire gamma camera can solely be defined by its Point Spread
Function (PSF) hz[x,y], where the subscript z denotes the mask-to-source dis-
tance. The algorithm for the (k+ 1)th iteration of reconstructing the source
distribution f̂ (k+1)

z [x,y] at a source-to-mask distance z is given by

f̂ (k+1)
z =

f̂ (k)z

∑z hz
·


p− ∑

∀z′ ̸=z
f̂ (k)z′ ∗hz′

f̂ (k)z ∗hz

×hz

 (8.1)

where “∗” represents the linear 2D convolution, “×” the 2D correlation and “·”
the point-wise multiplication. The given detector image is denoted as p[x,y]
and for a better readability the lateral coordinates [x,y] have been omitted.

However, two conditions are not taken into account by the 3D-MLEM
algorithm: first, a mask that is smaller in dimension than the detector and
second, gamma photons that transmit through the mask. As these two aspects
were present in working with our experimental setup, we extended the 3D-
MLEM algorithm by two modifications: a more general normalization term sz

that accounts for the size difference between the mask and the detector and a
forward simulation function F which integrates mask transmission.

8.2.2.1 Normalization

The 3D-MLEM formula is derived from the general MLEM formula in its
vectorized form with the system matrix A. The entries ai j of A denote the
probability that photons from source j are detected in detector pixel i. In the
literature the following normalization term, also referred to as sensitivity, can
be found [148]:

s =
m

∑
i=0

Ai j (8.2)
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Figure 8.1: (a): Successive number of iterations for the 3D-MLEM algorithm applied to thesource and reconstructed at 30mm. (b): Raw (left) and preprocessed detector image (right).(c): The left image shows the forward projection of 3D-MLEM for the source at 40mm andthe right image shows the reconstruction at 40mm. Due to the 2× 2 arrangement of thebasic MURA pattern, multiple ghost sources (blue arrows) along the image border emergein addition to the true source (green circle) from the 3D-MLEM algorithm for sources thatare more than 40mm away. Figure from [118].

This summation over the matrix columns represent the summed likelihood that
the photon from source j is detected by any pixel of the detector, i.e. by the
entire detector. s is a vector and is generally not a multiple of an all-one vector.

To illustrate, when the coded aperture mask is smaller than the detector,
photons emitted from a source positioned further away from the center have a
greater probability of passing through the pinholes but missing the detector. This
can be visualized by considering the shadow cast by such a source, where only
parts of the shadow fall on the active area of the detector. The further off-center
the source is, the higher the part of the shadow that is not hitting the detector
area and the smaller the summed likelihood s becomes. The normalization
factor s ensures that the inherent forward projection has approximately as many
detected photons as the given detector image p[x,y].

Transferred to the convolution-based 3D-MLEM algorithm the normaliza-
tion factor s is an image that depends on the source-to-mask distance z: sz[x,y].
It can be calculated in advance by a backward projection of an entirely illu-
minated detector to the in-focus plane. Thus, we obtain sz[x,y] by calculating
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the cross-correlation between an all-one image (1) and the PSF at the given
distance z:

sz[x,y] = hz[x,y]×1 (8.3)

8.2.2.2 Forward Simulation with Transmission

Transmission noise emerges from photons that penetrate the mask and is here
approximated as uniform background noise proportional to the transmission
probability T of the coded aperture mask. With a mask thickness of 0.11mm, a
59.5 keV source (see Sec. 5.2) and Eq. 3.22 the transmission probability T of
our setup is approximately 46%, meaning that about half of the photons pass
through the mask. Because this transmission is high, the forward projection
F (2nd denominator of Eq. 8.1) of the 3D-MLEM algorithm must be adapted.
The projected image becomes a weighted superposition of the projection of
the reconstruction f̂ (k)z and a uniform transmission noise image. The weight is
selected according to the transmission rate T and the sum of emitted photons
from the in-focus plane f̂ (k)z in accordance with Eq. 3.23:

F
(

f̂ (k)z , hz

)
= (1−T )

(
f̂ (k)z ∗hz

)
+T ∑

x,y
f̂ (k)z . (8.4)

As explained in Sec. 6.3, we do not use the NTHT-PSF but the Two-Holes-
Touching (THT) pattern to avoid periodical background noise. In contrast to
MURA Decoding, we decided to use the entire detector image for the recon-
struction. This choice ensures that the output maintains a consistent size of
256× 256 pixels. Because MLEM is based on the convolutional model, the
Field of View (FOV) is equal to that of a single pinhole collimator. All in all,
the proposed 3D-MLEM algorithm can be summarized as follows:

f̂ (k+1)
z =

f̂ (k)z

sz
·


p− ∑

∀z′ ̸=z
F
(

f̂ (k)z′ , hz′
)

F
(

f̂ (k)z , hz

) ×hz

 . (8.5)

From visual inspections we found 40 iterations to be a good compromise
between noise amplification and reconstruction quality, which can be seen
in Fig. 8.1a. The 3D-MLEM algorithm was implemented in Python (3.8) using
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Figure 8.2: The semi-automatic CNR algorithm as a macro in imageJ. Clockwise from thetop left to bottom left: the image stack that is analyzed, the macro that performs the se-lection of all possible ROIs, the results of analyzing all ROIs including the position (columnX and Y), and the mean and standard deviation (Mean and StdDev), and the ROI managerthat is controlled by the macro. The CNR profile is extracted with a Python script based onthe tabular data, as explained in the text.

the NumPy (1.24) library and, similarly to MURA Decoding, all convolutions
are performed in the Fourier domain.

8.2.3 Contrast-to-Noise Ratio

The profile of the Contrast-to-Noise Ratio (CNR) along the z-direction was used
to determine the axial resolution as the Full Width at Half Maximum (FWHM)
of this bell-shaped curve. The same definition of the CNR as in Sec. 6.2.3 was
employed:

CNR =
S̄− B̄

σB
, (8.6)

where S̄ denotes the average pixel intensity of the circular Region of Interest
(ROI) S that represents the signal, and B̄ and σB the mean intensity and the
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standard deviation of the background B which acts as a representative of the
image noise.

For the following reasons the same approach to compute the CNR of the
previous chapters could not be deployed: First, different from the previous
chapters, we do not have complete certainty about the source position in lateral
directions. During the acquisition (see Sec. 5.2) we tried to keep the source
central, but a small deviation is present. Thus, we do not have a full Ground
Truth (GT). Second, we do not require one metric per 3D reconstruction, but
rather a quantification of how visible the source is in each slice of the 3D
reconstruction along the z-axis. Third, processing each image individually and
separating the signal region from the background region by hand is tedious,
prone to fluctuations and, hence, not reproducible.

A semi-automatic algorithm was developed and implemented as an imageJ
macro that samples ROIs over the entire image and, thus, eliminates the need for
choosing regions for S and B manually. The only required input of the algorithm
is the reconstructed slice and the ROI diameter in pixels. Depending on the
image size and ROI diameter there were between approximately 14,000 and
31,000, and 54,000 and 65,000 ROIs per image. A screenshot of the procedure
in imageJ is depicted in Fig. 8.2. For each ROI, its position in pixels, the mean
intensity, and standard deviation were calculated and stored as a table in a
text file. To derive the CNR from this table a Python script is used to select
the regions S and B. The ROI with the highest mean intensity is selected as
the signal S and S̄ becomes the mean intensity. A constraint was introduced
that restricted the signal ROI to be in the inner 50% of the image area to
avoid measuring one of the ghost sources along the image border as visible
in Fig. 8.1c. Afterwards, ROIs that overlapped with S were discarded from
further processing. All remaining ROIs are considered as background B and B̄
was computed as the average intensity of all background ROIs. The same was
performed for the standard deviation σ̄B. To summarize, the axial resolution is
determined based on the CNR profile along the z-direction by employing the
combination of a semi-automatic algorithm in ImageJ and a Python script to
ensure reproducibility and accuracy.
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8.2.4 Assessing the Axial Resolution

The axial resolution expresses how well a point-like source can be localized
along the z-axis, i.e. in depth direction. We use the profile of the CNR along the
z-direction to determine the axial resolution as the FWHM of this Gaussian-like
curve: this provides a more intuitive understanding of the spatial resolution
and takes into account not just the source intensity - as in [73], where the pixel
intensity of the source was used to compute the axial spatial resolution - but
also how well the source is distinguishable from the background. Usually, a
point source is used for measuring the spatial resolution. Consequently, the
smallest source that was available for use was selected: a point-like 241Am
source with a nominal diameter of 1mm and a previously measured FWHM of
0.65mm [119].

The foundation for the assessment was the 3D reconstruction. First, we
reconstructed each source image within a broad range from 5 to 100mm in
5mm steps to roughly locate the source. Second, images within a tighter z range
containing the actual source position in 0.5mm steps were reconstructed result-
ing in sets of images ranging from 60 to 240 images for MURA Decoding and
54 to 101 for 3D-MLEM. From here on, we will refer to a set of reconstructions
of the same detector image at different depths as an image stack.

For MURA Decoding, the change of image sizes along the stack resulted in
sharp jumps of the CNR which heavily impeded the following fitting procedure.
Thus, the reconstructions from MURA Decoding were resized by bilinear
interpolation to the image size of the reconstruction at the true source position.
The impact of this resizing on the final axial resolution was found to be negligible
for source positions where the fitting worked. The axial resolution for both
the resized and the non-resized stacks for the source placed at 30mm were
11.9±0.5mm and 12.5±0.5mm, respectively. Because they are compatible
within the errors, we decided to continue our analysis on the resized stacks. No
resizing was required for 3D-MLEM images, as the algorithm returns images of
a fixed size.

The CNR profile was obtained in the following manner: the diameter of
the ROI was chosen separately for each stack, i.e. each captured detector
image, based on the true source size (see Sec. 5.2) and the true source distance.
First, the FWHM source diameter of 0.65mm was converted to pixels with
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respect to the FOV at the true source distance which was then rounded to the
nearest integer to obtain the ROI diameter. The FOV of MURA Decoding
was calculated according to Eq. 3.14 and for 3D-MLEM the FOV of a pinhole
camera is used [73].

The CNR of the image reconstructed at the z where the source was actually
located was determined as described in Sec. 8.2.3. For all other reconstructions
from the stack the position of S was kept constant, which assured that the
resulting CNR profile corresponds to a measurement along the z-axis. Finally, a
Gaussian curve with offset of the following form was fitted through the CNR
profile:

CNR(z) = α +(β −α) exp
(
− (z− γ)2

2δ 2

)
(8.7)

with the fitting parameters α , β , γ , and δ . The fitting procedure was carried
out in Python (3.8) with the curve_fit function from SciPy (1.10). As
initial guess, α and β were set to the minimal and to the difference between
the maximal and minimal occurring value of the profile. The GT position and
1.0 were used to initialize γ and δ . The fitting parameters were bound to 0 and
[500,000; 500,000; 170; 20]. Additionally, the analytical Jacobian matrix of
Eq. 8.7 and a limit of 100,000 function evaluations. The axial resolution and
its uncertainty introduced from the fitting procedure are reported as FWHM
with correspondence between δ and the FWHM from Eq. 2.1. Additionally, the
coefficient of determination (R2) was calculated per fit.

8.2.5 Assessing the Lateral Resolution

In addition to the axial resolution we measured the lateral resolution in order to
compare our results with values from the literature. This allows us to additionally
report the ratio of axial to lateral resolution. We determined the lateral resolution
for 30mm, 50mm, and 100mm source-to-mask distance in accordance with the
suggestion given in a recent review on IGCs [7].

To compute the lateral resolution, the in-focus image within the image stack
used for the assessment of the axial resolution was selected. Then the source
profile along the row with the highest pixel intensity was chosen for further
processing. A Gaussian curve with offset, analog to Eq. 8.7, was fitted to this
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profile and the FWHM value was obtained from the resulting standard deviation.
As the FWHM value was given in pixels, it was converted to millimeters by
using the FOV of the respective reconstruction method [118].

8.3 Results

First, the proposed modifications to the 3D-MLEM algorithm are evaluated
before the general 3D reconstructions are compared. Afterwards, the axial and
the lateral resolutions are presented and eventually the computation time of the
reconstruction methods are addressed.

8.3.1 Proposed 3D-MLEM algorithm

A comparison between the original 3D-MLEM algorithm and our 3D-MLEM
with the proposed modifications is shown in Fig. 8.3. Note, how in the initial
3D-MLEM reconstruction the source at 30mm distance is barely visible. Ad-
ditionally, the maximum intensity of the entire image stack is located in the
reconstructed image at 45mm. Similar artifacts are visible in all other image
stacks of sources at different distances as well. The 3D reconstruction from our
proposed 3D-MLEM algorithm shows a single bright spot at the distance where
we indeed placed the source, despite the high transmission noise.

Figure 8.3: The original 3D-MLEM algorithm (left) from [24] in comparison to our proposed3D-MLEM algorithm (right) applied to the source at 30mm distance. The center, markedby the red dotted square, is magnified for better visibility. Figure from [118].
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Figure 8.4: 3D-MLEM (left) and MURA Decoding (right) of the 30mm source. The distancebetween the mask and the in-focus plane in mm is indicated in the top left corner. MURADecoding is not capable of reconstructing planes that are closer than 11mm. A magnifica-tion of the area around the source (red dotted square) is shown in the bottom left corner.Figure from [118].

8.3.2 3D Reconstructions

For a rough localization, all 21 detector images were reconstructed in the range
of 5 to 100mm in 5mm steps. The first eight of the 20 images from the image
stack of the source at 30mm distance are shown in Fig. 8.4. The entire image
stack for the sources at 50mm and 100mm can be found in Appendix A.2.

Both methods show bright spots in the center of the reconstructed image
at the true distance, even though the pixel intensity differs largely between the
methods, as Fig. 8.4 shows. In general, the background of the 3D-MLEM images
appears more uniform, whereas MURA Decoding yields images with a higher
background noise. For reconstructions at 50mm with the source positioned at
z = 50mm and the image normalized to the range of 0 to 1, the obtained σB

values from MURA Decoding and 3D-MLEM were 0.0281 and 8.7614 ·10−5,
respectively. From Fig. 8.4 alone a worse axial resolution of MURA Decoding
can be observed, as the source is also visible in the reconstructions at 25mm
and 35mm distance. Furthermore, 3D-MLEM is capable of reconstructing at
distances that are closer than 15mm.
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Table 8.1: The FWHM axial resolutions are displayed separately for the two reconstructionmethods (MURA Decoding and 3D-MLEM) and for raw and preprocessed detector images.The standard deviation values are obtained through the fitting algorithm. Table from [118].

Source MURA Decoding 3D-MLEM
distance raw preprocessed raw preprocessed[mm] [mm] [mm] [mm] [mm]
12 5.3 ± 0.6 5.3 ± 0.6 2.17 ± 0.03 1.75 ± 0.0314 4.7 ± 0.1 4.7 ± 0.1 2.20 ± 0.02 1.80 ± 0.0616 6.0 ± 0.2 5.8 ± 0.2 2.32 ± 0.04 1.85 ± 0.0818 6.9 ± 0.2 6.2 ± 0.2 2.34 ± 0.02 2.02 ± 0.0320 7.5 ± 0.1 7.3 ± 0.1 2.60 ± 0.09 2.26 ± 0.0225 11.0 ± 0.4 9.8 ± 0.4 2.37 ± 0.02 2.54 ± 0.0430 12.1 ± 0.5 11.9 ± 0.5 2.74 ± 0.02 2.76 ± 0.1135 17.2 ± 0.9 15.1 ± 0.8 2.45 ± 0.10 2.01 ± 0.1440 16.9 ± 0.9 18.5 ± 1.1 †4.32 ± 0.12 †3.51 ± 0.1545 14.2 ± 0.8 18.4 ± 1.3 †5.48 ± 0.06 †4.69 ± 0.1350 15.6 ± 1.0 17.5 ± 1.0 †5.53 ± 0.09 †5.97 ± 0.0955 18.3 ± 1.1 18.8 ± 1.1 †5.52 ± 0.11 †4.73 ± 0.0860 19.4 ± 0.9 19.9 ± 0.9 †6.71 ± 0.11 †5.24 ± 0.1065 23.9 ± 0.9 28.0 ± 1.2 †7.04 ± 0.12 †6.67 ± 0.1070 22.2 ± 0.7 23.8 ± 0.9 †8.19 ± 0.17 †7.37 ± 0.1175 26.6 ± 0.7 27.8 ± 0.7 †9.79 ± 0.17 †9.10 ± 0.1780 32.6 ± 0.5 35.4 ± 0.5 †10.40 ± 0.18 †11.64 ± 0.2785 32.7 ± 0.2 35.9 ± 0.4 †11.11 ± 0.21 †12.34 ± 0.2490 37.0 ± 0.4 37.8 ± 0.5 †11.20 ± 0.24 †10.37 ± 0.2495 35.2 ± 0.8 38.3 ± 0.8 †12.28 ± 0.29 †14.81 ± 0.41100 34.8 ± 0.4 42.2 ± 0.9 †14.84 ± 0.66 †13.48 ± 0.86

† Additional ghost sources appear in the resulting image stack.
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Figure 8.5: The CNR profiles over the distance used for reconstruction for a selection ofsource positions: the semi-transparent red line of squares and the blue line of trianglesshow the CNR profiles of MURA Decoding and 3D-MLEM reconstruction. The Gaussiancurves with offset, represented by the bold red dotted line (MURA Decoding) and the bluedashed line (3D-MLEM), were fitted to the CNR profiles. These curves serve as the basisfor determining the axial resolution, and the corresponding FWHM values are displayed inthe top right corner of each graph. Figure from [118].

8.3.3 Axial Resolution

Table 8.1 shows the resulting FWHM axial resolution for each of the 21 acquired
detector images. The CNR profiles and Gaussian fits of a few image examples,
from which the FWHM was derived are presented in Fig. 8.5. A clear difference
between MURA Decoding and 3D-MLEM reconstruction is evident: First, the
axial resolutions obtained by 3D-MLEM are better (smaller in value), as their
profiles are narrower than those obtained from MURA Decoding. Additionally,
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the CNR values, i.e. the height of the Gaussian curves, are greater by a factor
between approximately 60 and 30,000.

The axial resolutions of the raw detector images are comparable to the those
obtained with preprocessing. The average ratio of the FWHM from preprocessed
to raw detector images are 1.05± 0.10 (MURA Decoding) and 0.93± 0.12
(3D-MLEM). Nevertheless, the ultimate objective of CAI reconstruction is to
generate clear images that are interpretable also by human observers. As illus-
trated in Fig. A.3 from the Appendix A, reconstructions based on preprocessed
images exhibit less background noise and, thus, the subsequent sections will
focus on the axial resolution of the preprocessed images. The axial resolu-
tions are 11.9±0.5mm and 2.76±0.11mm (source at 30mm, magnification
M = 1.67), 17.5± 1.0mm and 5.97± 0.09mm (source at 50mm, M = 1.40),
and 42.2± 0.9mm and 13.48± 0.86mm (source at 100mm, M = 1.20) for
MURA Decoding and 3D-MLEM respectively. The average standard deviations
introduced by the fitting procedure are 3.9 % (MURA Decoding) and 2.7 %
(3D-MLEM). For sources at greater distances than 40mm, 3D-MLEM recon-
structions contain up to eight ghost sources in a regular pattern surrounding the
true central position, as is shown in Fig. 8.1c. For a fair comparison with other
imaging systems, the axial resolution is presented in Fig. 8.6 as a function of the
magnification factor M, alongside the corresponding source-to-mask distances.

8.3.4 Lateral Resolution

The lateral resolutions based on the preprocessed detector images measured are
0.74mm (MURA Decoding) and 0.27mm (3D-MLEM) at a source distance of
30mm, 0.80mm and 0.29mm at 50mm and 1.04mm and 0.4mm at 100mm.
The resulting ratios between axial and lateral resolutions are 16 : 1 and 10 : 1,
22 : 1 and 21 : 1, and 41 : 1 and 34 : 1 for MURA Decoding and 3D-MLEM,
respectively.

8.3.5 Computation Time

To compare the computational performance of the two reconstruction methods
with their respective implementations, the average runtime for one image in an
image stack is presented here. The total runtime for image stacks containing

121



Chapter 8. Assessment of the Axial Resolution

Figure 8.6: The axial resolution for both presented reconstruction methods plotted againstthe dimensionless magnification factor M. The orange circle and green dashed line repre-sent reference values for the axial resolution estimated from literature (Russo et al. [25],and Mu et al. [24]). Note that the source-to-mask distance at the top axis only applies tothis study. Figure modified from [118].

between 54 and 101 reconstructions with the 3D-MLEM algorithm for 40 itera-
tions on a computer with a 6-kernel Intel Core i7-9750H processor (2.6 GHz)
and 16 GB of RAM ranged from 348 s to 579 s. Relative to the number of images
per stack the average runtime is (5.68±1.40) s per image for 40 iterations.

The runtime of MURA Decoding was measured using a laptop equipped
with a 12th generation Intel Core i7-12700H processor (2.3 GHz) and 32 GB
of RAM. The total reconstruction time for image stacks containing between
60 and 240 reconstructions ranged from 31.2 ms to 547 ms with a mean of
(1.3±0.5) ms per image. As a result, MURA Decoding is approximately 4,400
times faster than 3D-MLEM with the considered implementations and the
chosen number of iterations.

8.4 Discussion

In the following sections, the results of this study are discussed: It starts with a
comparison of the two reconstruction methods and afterwards the axial resolu-
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tion is compared to the sparse values from other research groups. Finally, the
limitations and potentials of this study are discussed.

8.4.1 Reconstruction Methods

Two improvements were made to the initial convolutional-based 3D-MLEM:
first, a general sensitivity term was added that takes into account that photons
emitted from the edge of the FOV are less likely to hit the detector. Second,
the forward projection was extended to account for transmission noise. The
absence of artifacts and the lower background noise (see Fig. 8.3) justify our
proposed modifications.

In contrast to MURA Decoding, the 3D-MLEM algorithm provides a com-
plete 3D distribution, as the contribution of all slices are taken into account
simultaneously. This, however, entails more convolutions: for each slice in
each iteration the forward simulation, the backward simulation and another for-
ward simulation with the updated slice are calculated. Additionally, the images
which are processed – the entire detector image and the PSFs – are generally
larger than for MURA Decoding. This makes it computationally expensive and
therefore slow, but more accurate. Although the runtime comparison was not
performed on the same computer and improvements in the implementation are
conceivable, the order of magnitude by which 3D-MLEM is slower than MURA
Decoding is sufficient to conclude that it is too slow for intraoperative use.

The ghost sources that appear in the 3D-MLEM reconstruction for sources
more than 40mm away (see image on the right of Fig. 8.1c are likely caused
by the self-similarity of the mask pattern due to its 2× 2 arrangement. A
potential explanation is that the cast shadow is smaller than the detector. The
surrounding margins (see the bottom of the detector images in Fig. 8.1b that
are not illuminated by the mask pattern, are relatively small and contain noise,
which means that the algorithm has only a limited area to penalize a set of ghost
sources outside the FOV that are partially contributing to the correct pattern in
the center. It is important to note that these ghost sources do not completely
prohibit a reconstruction, but they add an element of ambiguity. This issue
could be solved by modifying the algorithm to use only the central part of the
detector image, similar to MURA Decoding. This, however, would come at the
cost of a narrower FOV.
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The presented findings of this work allow to answer the research question
explicitly mentioned in [73]: “What role iterative reconstruction algorithms
[...] will play in improving Z resolution”: dividing the axial resolution obtained
from the iterative 3D-MLEM algorithm by the axial resolution obtained from
MURA-Decoding for each source position, gives an average factor of 0.3±0.1.
Hence, on average the axial resolution of 3D-MLEM is one third of the values
from MURA Decoding, meaning with the first method we achieve a three times
better axial resolution.

The high resolution in both lateral and axial directions makes 3D-MLEM
interesting for large gamma cameras in Single Photon Emission Computed
Tomography (SPECT) systems where runtime is of minor importance. Neverthe-
less, for an intraoperative application where the computation time substantially
influences its practicability, the long runtime makes the 3D-MLEM algorithm
unsuitable.

8.4.2 Comparison to the Literature

Setting the axial resolution in relation to the magnification factor M from
Eq. (3.2), has the advantage of eliminating the dependency on the detector-
to-mask distance b and hence allowing a comparison to other cameras from
literature.

Only few papers exist with which we can compare our results [24, 25, 73].
In a previous experiment [25] with the same coded aperture collimator but a
slightly different detector-to-mask distance b, and the same MURA Decoding
as in this work the authors evaluated the zone of best-focus of a ring-shaped
object. The zone of best-focus was defined as the zone where the image contrast
is maximum and constant within about 1 % and was approximately 3mm, while
the lateral resolution was measured to be 0.6mm at a source-to-mask distance
of about 50mm [25]. Their contrast profile is not equivalent to the CNR profile
used in this work for assessing the axial resolution, but serves as a rough
benchmark. When estimating the FWHM from the given graph, we obtain
an FWHM of approximately 12mm (denoted by the orange dot in Fig. 8.6).
This axial resolution is slightly better than our values reported above, but still
provides good plausibility. Comparing the relative resolution as the ratio of
axial to lateral resolution, a ratio of 12mm/0.6mm = 20 at 50mm distance is
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obtained. Our assessments of a ratio of 22 and 21 for MURA Decoding and
3D-MLEM at 50mm distance are in good accordance with that.

A rough classification for the reported 3D-MLEM results can be deducted
from [24]. In their described experiment, the authors placed sources shaped
like an “H” and a “>”-symbol at 164mm and 244mm distances from the mask
and reconstructed the scenery with 3D-MLEM. Since in their figure the two
sources appear separately in their corresponding planes, the axial resolution
must be smaller than half the distance between them, approximately 20mm
(green annotation in Fig. 8.6). Our values at comparable M are lower than that
and thus not contradictory.

8.4.3 Limitations

As explained in Sec. 2.1, measuring the spatial resolution for pinhole and
parallel-hole collimators as the FWHM of a point source is a common proce-
dure. The underlying assumption is the superposition principle which allows
to apply the spatial resolution to extended or multiple sources. However, the
superposition assumption is problematic in CAI, since extended sources are
known to be reconstructed in lower quality than point sources [24, 73]. That
means further investigations regarding extended sources are required.

Furthermore, we do not have the GT of the entire 3D position of the sources
from our dataset, only the source-to-mask distance. Thus, an entire 3D localiza-
tion error as in [32] could not be presented. We also did not test different values
for detector-to-mask distance b.

In an intraoperative experiment with pigs, a reduction of the dynamic range
was observed when a very bright source was present. It was called “concentra-
tion effect” (also referred to as “shine-through” [14]) and makes weaker sources
less visible [73]. The 3D-MLEM algorithm is supposedly immune to this effect,
but this was not investigated yet. However, in previous experiments with the
same semiconductor-based detector as used in this study it was observed that
a 241Am gamma source with an activity of 1 µCi is still visible when a 1 mCi
241Am source is placed nearby and used as background noise [25]. We claim
that this is possible thanks to the extended counting linearity range, the prac-
tical immunity to read-out noise and the pixel-wise functioning of the photon
counting detector, compared to scintillator-based detectors.
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Two more aspects, that were outside the scope of this study, are the impact of
a lateral shift of the source and the mask thickness. First, an image degradation
has been reported when the source is off-center [46]. This could imply a small
decrease in axial resolution, but a quantification of this effect has yet to be
performed. Second, the thin mask used in this experiment caused almost no
collimation, but a high transmission rate. The question of how transmission
affects the lateral and axial resolution remains open.

8.4.4 Potentials

The findings of this study indicate the following potentials. First, the proposed
modified 3D-MLEM algorithm enables other researchers to use this algorithm
for their gamma cameras, with masks tailored to their specific purpose, e.g.
for SPECT systems. Additionally, integrating the transmission noise into the
reconstruction step might allow to investigate masks that have a transmission
rate of less than a typical rate of 98 % [36]. Second, this unique and publicly
available dataset could be used to analyze how two point-like gamma sources
in a row can be best distinguished, similar to [129]. Third, a key advantage
of 3D-MLEM is that in addition to the reconstruction, it provides the forward
projection of the estimated reconstruction (see, for example the left-hand side
of Fig. 8.1c). This projection could be employed to assess the degree of cor-
respondence between the estimated and the acquired detector image, offering
insights into the influence of defective pixels or similar imaging issues.

Fourth, the improvements to the 3D-MLEM algorithms opens up the possi-
bilities for further optimization in its design, potentially result in an enhanced
axial resolution or a substantial increase in processing speed. Further research
might be aimed to accelerate the algorithm or reduce the number of necessary
iterations. Only then, it would be feasible for intraoperative usage.

Finally, the investigation of the localization error was beyond the scope
of this study. With the availability of concrete figures for the axial resolution,
however, further analyses are underway with the objective to evaluate the
full 3D-localization capabilities for point-like sources. In order to further
analyze the potential intraoperative use of an IGC with coded aperture collimator,
it is essential to conduct experiments that more closely resemble real-world
use cases. These experiments require a new mask, since the most commonly
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administered radionuclide in nuclear medicine is 99mTc [12] with a main gamma
emission at 140.5keV. Consequently, a thicker mask is required to reduce
transmission. A new coded aperture collimator with 0.25mm holes on a 1mm
thick tungsten sheet is currently under development by the University of Naples
and the INFN. In addition, the reported issues of CAI with extended sources
require investigations of the influence on the axial resolution and, hence, on
3D-localization.

8.5 Conclusion

In this chapter, the axial resolution of an experimental IGC equipped with a
coded aperture collimator was systematically assessed. The FWHM was derived
from 3D reconstructions closely around the true source distance followed by
fitting a Gaussian curve with offset to the extracted CNR profile. The CNR
profile along the z-direction of the obtained image stack was calculated by a
semi-automatic algorithm to assure reproducibility. In addition to the most
commonly used reconstruction method (MURA Decoding) a 3D-MLEM algo-
rithm was adapted to address the issue of transmission noise and a more general
camera setup.

The results of this study complement our understanding of the spatial reso-
lution in CAI for point-like sources to all three dimensions. It was shown that
the CNR profile of a point-like source represents a monomodal curve with a
width depending on the reconstruction method. Analog to the lateral resolution,
this width, measured as FWHM, can be regarded the axial resolution. Between
the two different reconstruction methods compared, a large difference in the
obtained axial resolution was observed: MURA Decoding was found to be
fast and yielding a mediocre axial resolution, while the 3D-MLEM algorithm
reconstructs with a superior axial resolution, both in lateral and axial directions,
but is much slower than MURA Decoding. In the context of 3D localization, the
axial resolution can be interpreted as the precision, which indicates the number
of in-focus planes that the detector image must be reconstructed to achieve an
accurate depth estimation. Despite the inferior precision, it is hypothesized that
MURA Decoding is capable of estimating the depth of single point-like sources
with high accuracy in all three dimensions in a reasonable amount of time due
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to its fast runtime. Meanwhile, 3D-MLEM in its current form, is not suitable for
this task in an intraoperative setting, given its extensive computational demands.
In addition to a higher resolution and sensitivity, estimating the depth of a
source has been identified as a desirable feature of IGC [7]. This capability
further distinguishes coded aperture collimators from other types, including
parallel-hole and pinhole collimators.
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Chapter 9

3D-Localization of Point-Like
Gamma Sources

As demonstrated in the preceding chapter, point-like sources imaged with a
coded aperture camera exhibit a monomodal Contrast-to-Noise Ratio (CNR)
profile in the axial direction. This chapter aims at answering the question on
how well this curve can be exploited to localize point-like gamma sources in all
three spatial dimensions.

This chapter originates from a publication to the IOPscience journal “Physics
in Medicine & Biology” which is publicly available under CC-BY 4.0 li-
cense [149].

9.1 State of the Art

Over the last few years, gamma probes have become an important tool in
Radioguided Surgery (RGS) for a variety of cancerous diseases [6, 7, 150]. In
contrast to counting probes which provide only an acoustic feedback and a count
rate reading, Intraoperative Gamma Camera (IGC) allow for a precise detection
of radioactively-marked structures and, generally, give a broader overview of
the incision site [8].
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A common use-case for IGCs is Sentinel Lymph Node Biopsy (SLNB) [150].
An accurate assessment of the axillary lymph node involvement is essential
in staging breast cancer. Metastases in the axillary lymph nodes are the most
important predictor of overall recurrence and survival [3, 7]. Thus, localizing
gamma sources in all three spatial dimensions with a mobile gamma camera
could provide valuable information to the surgeon [20] and is a first step toward
providing valuable depth information in SLNB.

As a potential solution for 3D-localization of gamma sources, stereo camera
systems are currently under investigation [20, 31, 32, 35]: While Bugby et
al. [20] report mean localization errors of 1.23mm on simulated, and 3.54mm
on experimental data, Kaissas et al. [31, 32] obtaining errors between 0.28mm
and 7.8mm depending on the source size and distance. Nevertheless, the disad-
vantage of using stereo cameras is that they require two costly gamma cameras
and two precisely placed coded aperture masks. An alternative approach is to
combine a single mobile gamma camera with an external tracking that is capable
of merging images from multiple viewpoints into a single 3D map [33]. They
report an error between 2.9mm and 7.4mm depending on the user’s experience.
However, this approach still requires additional hardware and suffers from an
increased acquisition time.

3D imaging by using a coded aperture is a research field where the capabili-
ties have not been fully explored yet [25, 95]. By reconstructing the captured
detector image at several successive planes, also referred to as in-focus planes,
a 3D reconstruction of the scenery can be computed. In the previous chapter,
it was demonstrated that the most popular reconstruction algorithm MURA
Decoding is able to achieve an axial resolution that is approximately between
15 : 1 and 40 : 1 relative to the lateral resolution [118]. This chapter’s goal is
to answer the following research question: How accurate can a single high-
resolution gamma camera with a coded aperture collimator localize a single
point-like source in the near-field setting? 3D-localization means identifying the
coordinates [x̂, ŷ, ẑ] in a camera-based coordinate system of a single point-like
source where the source is assumed to be a isotropically radiating spherical
gamma source from the 3D reconstruction f̂ (x,y,z). Two different methods for
3D-localization are investigated: one is based on the Center Of Mass (COM)
and the other is the Iterative Source Localization (ISL) method which relies on
calculating the CNR profile in axial direction. For the depth estimation, two
different fitting functions are compared: a Gaussian curve and an Exponentially
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Modified Gaussian (EMG) distribution. After evaluating the performance of
the two methods on a simulated dataset, the most accurate method is finally
tested on the experimental dataset we acquired with our experimental IGC. The
contributions of this study to the state of the art are as follows:

1. We show that the CNR profiles of point-like sources are best fitted by an
EMG distribution.

2. We propose an iterative source localization method based on a determin-
istically calculated CNR for 3D-localization of point-like sources.

3. We demonstrate a localization accuracy of less than 3mm for point-like
sources at a distance of 20–100mm, which is comparable to the accuracy
of more complex technologies like stereo cameras.

To promote transparency and reproducibility, both the acquired datasets and
the localization methods of this research are publicly available on GitHub at
https://zenodo.org/records/11449544.

9.2 Methods

This section begins with the presentation of an enhanced algorithm for calculat-
ing the CNR. Afterwards, the methodology for generating 3D reconstruction
is briefly explained, before two different localization methods are introduced.
Finally, this section will conclude with an outline of the conducted sensitivity
analysis.

The dataset used for investigating the 3D-localization error was acquired
with the same experimental IGC from the previous chapter and is presented in
Sec. 5.3. However, the localization methods are initially analyzed on a in silico
reproduction of the experimental dataset from a Monte Carlo (MC) simulation,
where more precise control of the actual source position was possible.

9.2.1 Convolutional Contrast-to-Noise Ratio

To determine the z-component of a point-like source, we use the profile of the
CNR along the z-direction in analogy to Chapter 8. However, the previously
used imageJ macro described in Sec. 8.2.3 was slow, took up a large amount
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Figure 9.1: The CNR is determined by convolution of the reconstructed slice and a spheri-cal kernel normalized to the sum of 1 which is depicted in the red rectangle in the top leftcorner in original size. The resulting image represents the average intensity of a Region ofInterest (ROI) centered at each pixel position. With the identity Std(X) =
√

E(X2)−E(X)2,the standard deviation (STD) inside all possible Region of Interest (ROI) is calculated. After-wards, the Region of Interest (ROI) with the highest average intensity becomes the signal S̄and the background’s parameter B̄ and σB is taken by averaging over all Region of Interests(ROIs) that do not overlap with the Region of Interest (ROI) of S̄. The CNR of the exemplaryimage with a Region of Interest (ROI) size of 16 pixels in diameter is 4.71.

of disk space and required switching between computer programs manually.
Therefore, a faster variant of this algorithm was implemented in Python and is
presented here: Its foundation is the same definition of the CNR as Eq. 8.6 in
Sec. 6.2.3.

In order to increase reproducibility we developed a semi-automatic algo-
rithm that determines the CNR for a single image solely based on the source
diameter. Its scheme is depicted in Fig. 9.1. The algorithm considers all pos-
sible Region of Interests (ROIs), which are defined as regions of a given size
centred at each possible position on the pixelated grid. This is carried out by two
convolutions of the reconstructed slice with a kernel that represents the circular
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ROI. The kernel is a quadratic image twice the size of the ROI’s radius in pixels
and is 0 everywhere except for the central circular region where the intensities
are set to 1. The kernel is normalized to the sum of 1, and thus a convolution
generates an image in which each pixel represents the mean intensity in the ROI
centered at this pixel. An unpadded convolution is used, so the kernel does not
extend beyond the image boundaries. Yet, in order to keep the pixel coordinates
consistent rows and columns of NaNs (“not a number”) are appended. The
second convolution is carried out to the reconstructed image with pixel-wise
squared intensities. The resulting image is then used to calculate the standard
deviation (STD) of each ROI by the following equation:

ST D(X) =
√

E(X2)−E(X)2 (9.1)
with the random variable X and the expectation operator E. Combining the
results from both convolutions with Eq. 9.1, we yield the standard deviation of
all ROIs.

The two regions S and B that are required for the CNR were selected as
follows: first, the ROI with the highest mean intensity was chosen as S. Then,
all ROIs that overlap with S are removed from further processing. Second,
the mean and the standard deviation of the remaining ROIs are considered
as background, and by averaging we obtain B and σB, respectively. Finally,
the CNR is calculated according to Eq. 8.6. In conclusion, the presented
method enables a fast and memory-efficient calculation of the CNR directly
in Python, which is solely depending on the ROI size and is independent of
manual interaction, making it deterministic and reproducible.

9.2.2 3D Reconstruction

Among the two reconstruction methods for 3D reconstruction, we learned from
the previous chapters that only MURA Decoding is capable of producing 3D
reconstructions in an acceptable amount of time. To localize the point-like
gamma source, the detector image was reconstructed at several successive in-
focus planes and thereby a 3D reconstruction of the scene was obtained. We
explored a depth range of 11mm to 130mm with steps of ∆z= 0.5mm, resulting
in a stack of 239 images. Since the size of the reconstructed images depends
on z, each image of the stack is resized to the maximally occurring image size
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Figure 9.2: A flowchart representing the ISL algorithm with its alternating lateral and ax-ial search and the final curve fitting to estimate the 3D position of the source. Figurefrom [149].

by bilinear interpolation, which is 254×254 pixels for z = 11mm. Resizing
allows for easy handling of the 3D reconstruction, as it can be processed as a
3D matrix, where the z-coordinate corresponds to the extension of the source
in z-direction. This approach ensures that the position of the source remains
consistent with respect to the Field of View (FOV)’s center, which is beneficial
during the localization process.

9.2.3 Localization with the Iterative Source
Localization method (ISL)

In order to obtain the source position from a 3D reconstruction, the ISL was
developed. Figure 9.2 shows a flowchart of the ISL algorithm. It iteratively
alternates between a lateral and an axial search, followed by fitting a curve
through the obtained CNR profile. The algorithm requires as input the 3D
reconstruction, the FOV for each slice, and an initial guess denoted as z0 for
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Figure 9.3: (a) The detector image of the source located at [0,2,75]mm captured with ourexperimental gamma camera. The color coding was limited to intensities between the 1st

and the 99th percentile to visualize the projected mask pattern. (b) The 3D reconstructionof the detector image thresholded at the 99th percentile to visualize the reconstructedsource. Note how the extension in z-direction is much larger than in the lateral directions.(c) The CNR profile with both the Gaussian fit and the EMG fit, resulting in a z-estimationof 73.7mm (R2 = 0.97) and 81.2mm (R2 = 0.92), respectively. Figure from [149].

the source-to-mask distance. The output of the ISL algorithm is the source’s
estimated 3D position [x̂, ŷ, ẑ] in millimeters.

In the first step, the lateral search, we begin with the image slice that is
closest to z0 and with the search of the lateral position, i.e. [x̂, ŷ]. Similar to the
convolution described in Sec. 9.2.1, the mean intensities of all possible ROIs are
calculated and the position of the highest value is assigned to the current lateral
source position. The second step is the axial search, where the lateral position
is fixed and a CNR profile along the z-direction is calculated as described above.
Subsequently, the algorithm determines whether a slice with a higher CNR
value exists than the current slice at zi. If so, the algorithm initiates another
lateral search, followed by an axial search. The ROI size is updated in each
iteration based on the given source size and the FOV of the current slice.

The third and final step of the algorithms is entered as soon as zi does not
change within one iteration: the curve fitting. For more robust and accurate
depth estimation, a curve fit is applied to the last CNR profile obtained. Two
different fitting functions were compared: once a Gaussian curve with offset
from Eq. 8.7, which will be denoted as Gaussian or Gauss, and a scaled EMG
distribution with offset [151]. An EMG distribution emerges from the sum
of two independent random variables, where one is normal distributed with
mean γ and variance δ 2 and the other one exponentially distributed with a
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rate of λ . This function was suggested as a potentially good candidate for the
intensity distribution along the axial dimension in Chapter 4.3 of Ref. [152].
The resulting function has one additional fitting parameter more compared to
the Gaussian function and can eventually be described as

CNR(z) = α +(β −α) λ

2 exp
(

λ

2

(
2γ +λδ 2 −2z

))
· erfc

(
γ+λδ 2−z√

2δ

)
,

where “erfc” represents the complimentary error function that is defined as

erfc(x) =
2√
π

∫
∞

x
exp(−t2)dt. (9.2)

Equations for estimating the peak position (also referred to as mode) of an
EMG function exist [151], but for the sake of simplicity, we utilize the mo-
nomodality, and sampled the fitted function with a step size of 0.01mm and
selected the z-value where the sampled function was maximal. The following
initial guesses are directly derived from the CNR profile for the fitting procedure:
(α,β ,γ,δ ,λ )=

(
min(CNR(z)); max(CNR(z)); argmaxz (CNR(z)); 1; 1

)
. The

parameter λ is dropped for the Gaussian fitting. For the remainder of this chap-
ter, we will refer to the ISL method with a final EMG fit as ISL-EMG and to the
one with a Gaussian fit as ISL-Gaussian. An exemplary CNR profile with both
fits is presented in Fig. 9.3c.

Overall, after a few iterations, the ISL method generated the estimated
source position [x̂, ŷ, ẑ], where the x and y-component are determined by the
brightest ROI position and the z-component by calculating the mode of the fitted
function.

9.2.4 Localization with the Center of Mass (COM)

A more intuitive approach to finding the center of a 3D distribution is via the
Center of Mass (COM). The advantage is that neither fitting nor a user input is
required, which makes this method independent from any hyperparameters. The
COM method relies on the fundamental assumption that the source position is
the COM of the Largest Connected Region (LCR) in the given 3D reconstruction.
Therefore, we built an algorithms that extracts the LCR and calculates the COM:
First, the 3D reconstruction f̂ (x,y,z) is thresholded by the 99.9th percentile,
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a processing step similar to the one proposed by [153]. By thresholding the
3D reconstruction, we assume that all voxels with a lower intensity than the
99.9th percentile are background noise and therefore not the actual reconstructed
source.

This led to multiple remaining connected regions, i.e. voxel clusters: a large
region where the actual source is located and multiple smaller clusters closer
to the camera that appeared roughly between 11mm and 15mm away from the
mask. Hence, in a second step, the region with the largest number of connected
voxels was extracted and is denoted as LCR: f̂LCR (x,y,z). An exemplary LCR
of the simulated source at [0,2,75] mm is depicted in Fig. 9.3b. Finally, the
COM [x̂, ŷ, ẑ] with the intensity of all voxels within this cluster is calculated via
the 0th (M000) and 1st moments (M100, M010, M001) of a 3D distribution, which
corresponds to the intensity-weighted mean of f̂LCR:

M000 = ∑
x

∑
y

∑
z

f̂LCR (x,y,z) (9.3)
M100 = ∑

x
∑
y

∑
z

x f̂LCR (x,y,z) (9.4)
M010 = ∑

x
∑
y

∑
z

y f̂LCR (x,y,z) (9.5)
M001 = ∑

x
∑
y

∑
z

z f̂LCR (x,y,z) (9.6)
[x̂, ŷ, ẑ] = 1

M000
[M100, M010, M001] (9.7)

In summary, the COM method estimates the source positions by perform-
ing automatic thresholding of the 3D reconstruction, selecting the LCR and
calculating its COM. Both localization methods were implemented in Python
(3.8.18) with NumPy (1.24.4), Tensorflow (2.10.1) for the CNR calculation,
SciPy (1.10.1) for the fitting, the VTK library (9.3.0) for finding the LCR and
Pandas (2.0.3) for the final analysis. All processing was carried out on a com-
puter with a 6-kernel Intel Core i7-9750H processor (2.6 GHz), 16 GB of RAM
and a NVIDIA GeForce RTX 2070 with 8 GB vRAM.
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9.2.5 Sensitivity Analysis

While the COM method does not require any user input, the ISL method requires
an initial guess of the source position by the user. Hence, the impact of the initial
guess on the resulting z-coordinate was analyzed by running the ISL method
with varying z0. To mimic a user scrolling through the slices and selecting
the slice where they assume the source, the initial guess z0 was varied in three
categories within a uniform distribution around the true value with ±5mm, with
±10mm and ±15mm. With a ∆z of 0.5mm, the three categories correspond
to ±10, ±20, and ±30 slices. Additionally, we analyzed the localization error
when we automatically selected the slice with the highest voxel intensity as z0.
The ISL method was applied five times to the simulated dataset with randomly
varying initial, once with the highest voxel intensity, and once with the true z0.

9.3 Results

First, the localization error on the simulation dataset are presented with a focus
on comparing the localization methods. Then the results of the sensitivity
analysis are shown before the final analysis on the experimental dataset are
presented.

9.3.1 Simulation Results

The mean localization error and the standard deviation averaged over all 17
estimations for both localization methods are presented in Table 9.1. The mean
localization errors of the detector images from the MC simulation are (1.65±
1.05)mm, (3.13± 1.15)mm and (0.77± 0.62)mm for COM, ISL-Gaussian
and ISL-EMG, respectively.

When comparing the localization methods, it becomes obvious that the ISL-
EMG method yields overall statistically better results than the COM method.
Using the EMG fit results in a mean coefficient of determination (R2) of 0.97±
0.02 as opposed to the Gaussian with 0.93±0.04. The localization error is larger
with EMG (0.77±0.62)mm compared to the Gaussian (3.13±1.15)mm which
makes ISL-EMG on average more accurate than ISL-Gaussian by a factor of
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Table 9.1: This table shows the localization errors of the different methods. In additionto the mean error with its standard deviation (STD) over the 17 3D reconstructions, alsothe median error and the relative error of the z-component with respect to the true sourcedistance in percent are presented. Table adapted from [149].

Data Method Mean Localization Error Relative z-errorin mm in %
R2 Mean±STD Median Mean±STD Median

Sim. COM – 1.65±1.05 1.34 2.32±1.49 1.95ISL-Gauss 0.93 3.13±1.15 3.13 4.38±1.39 3.90ISL-EMG 0.97 0.77±0.62 0.58 0.88±0.68 0.60Exp. ISL-EMG 0.97 2.64±0.71 2.59 3.06±1.50 2.98

Figure 9.4: The true source positions (red circles) and the estimates from the ISL-EMGmethod applied to the simulated (green crosses) and experimental data (blue crosses) in atopview (left) and sideview (right). Note the different range in z-direction. Figure from [149].
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Figure 9.5: The localization error in mm broken down in x, y, and z-component by localiza-tion method (COM, ISL-Gaussian and ISL-EMG) and dataset (simulated and experimental).The boxes indicate the 25:75 percentile range, whiskers are maximum and minimum val-ues, and lines are the median error which are also printed vertically in white. The crossesrepresent the mean values. Figure from [149].

4.06. Moreover, for the ISL-EMG method, the x, y and z-component contribute
on average 3.2 %, 33.6 %, and 63.2 % to the localization error. The runtimes
on the computer specified above with initialized GPU averaged over the 17
source positions were (1.88±0.43) s, (1.48±0.25) s, and (11.76±0.46) s for
the ISL-Gaussian, ISL-EMG and the COM method, respectively.

9.3.2 Sensitivity Analysis

The sensitivity analysis regarding the initial guess z0 reveals that the mean error
remains on average unaffected at (0.76±0.66)mm with random variations of
±10 slices, but increases to (0.88±1.18)mm and (0.95±1.65)mm for larger
variations of ±20 and ±30 slices around the true z-value. When z0 is selected
according to the highest occurring intensity, the localization error increases to
(49.85±32.28)mm. Note, that the mean error is calculated based on different
numbers of localization errors: While the initial guess with the true slice and
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with the maximal voxel were calculated once on the dataset, the random guess
with increasing variations were carried out five times on the simulated dataset.

9.3.3 Experimental Results

We applied the ISL-EMG method with the Ground Truth (GT) as an initial guess
and the correct source Full Width at Half Maximum (FWHM) of 0.65mm on the
experimental data and obtained a mean localization error of (2.64±0.71)mm.
Especially the errors in x and z-direction are not centered around 0 but at
approximately −1.5mm and −2.4mm as can be seen in Fig. 9.5. Overall, the
localization error is about 3.4 times worse than that obtained from the MC
simulation using the same method.

9.4 Discussion

The results presented above will be discussed by first examining the localiza-
tion methods, before comparing the accuracy achieved with other localization
technologies. Finally, the identified limitations of this study are addressed.

9.4.1 Localization Method

The MC simulation results reveal that the true mask-to-source distance cor-
responds fairly well to the peak of the CNR profile, which has already been
noticed when investigating the axial resolution (see Sec. 8.3). However, as
the CNR profile of a single source is skewed towards the camera, the mean
value and the mode, i.e. the peak position, do not coincide as they would
for symmetric functions. This explains why the COM method overestimates
the z-coordinate and hence, has a localization error that is approximately 2.1
times higher than the ISL-EMG method. This demonstrates the necessity of
considering the positive skewness of the intensity distribution in the z-direction.

The sensitivity analysis showed that the mean localization error achieved
with variations of up to 30 reconstructed images is still below 1mm, although
with increasing standard deviation. This increase can be attributed to the pres-
ence of small clusters of high-intensity voxels at close distance to the camera
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that are misidentified as the source. In addition, these clusters are the reason why
it is not advisable to choose the slice with the highest pixel intensity for the ini-
tial guess as the large mean error of almost 50mm demonstrates. In most cases,
these cluster had the highest occurring intensities in the entire 3D reconstruction.
This adds another type of systematic artifact caused by MURA Decoding be-
sides the known cross-shaped artifact [83], near-field effects [24, 26], and ghost
source effect [154]: the axial ghost sources. In conclusion, the ISL method can
be considered robust with regard to the initial guess, provided that the user is
able to identify the source position with an acceptable degree of precision.

The localization errors obtained from the experimental data exhibit a sys-
tematic error in the x and z-component, despite the overall low error seen in
the simulation data. We postulate that these systematic errors emerged from
inaccuracies related to the measurement setup. First, the estimated position in
x-direction decreases linearly with respect to the mask-to-source distance (see
Fig. 9.4), while it was expected to be zero. This indicates that the source was
placed slightly off-center, and additionally, the camera was tilted around the
y-axis, i.e. pointed upwards. Second, the systematic underestimation of the
source-to-mask distance is probably caused by an inaccurate detector-to-mask
distance b. Even though the camera case was 3D printed, printing tolerances and
assembly of the case with the Timepix sensor may have led to deviations from
the target distance of 20mm. There is an additional uncertainty at which depth
in the silicon sensor an impinging photon deposits its energy. When minimizing
the error with respect to the rotation angle β and the detector-to-mask distance
b from the estimated source positions we obtain an angle and a distance of
approximately 1.2° and 20.6mm.

Less surprising is the fact that circa 2/3 of the error stems from the z-
component. It is in accordance with a previous study, where it was established
that with the same camera setup, MURA Decoding yields an axial resolution
between 15 and 40 times worse than the lateral resolution and is degrading with
increasing distances [118].

It is important to consider the runtimes of the localization methods in the
context of their current implementations, which have not been optimized for
runtime or computational efficiency. They rather represent a proof of concept.
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9.4.2 Comparison to Other Localization Technologies

To compare our results with other localization technologies we focus on the
z-component, which dominates the overall accuracy and set it in relation to the
true source-to-mask distance. All distances in this paragraph were converted
from source-to-detector to source-to-mask distances where applicable. Other
technologies for localizing gamma sources are either already commercially
available [33] or were recently proposed to the research community [20, 31, 32,
35]. The commercial freehandSPECT system was analyzed in regards to its
localization accuracy of small gamma sources and mean errors between 2.9mm
and 7.4mm depending on user experience were reported [33]. Though, explicit
distances are not specified by the authors, from Fig. 2 we can derive an imaging
range of 300-800mm, which results in a relative error below 0.96 % and below
2.46 % for the respective user group.

Additionally, research groups are investigating stereo gamma cameras with
coded aperture collimators [20, 31, 32, 35] or pinhole collimators [20]. Bugby
et al. report a median z-error of and 1.23mm (0.83 %) on simulated data and
3.54mm (3.63%) on experimental data [20]. The research group Kaissas et al.
report smaller z-errors of 0.28mm (0.22 %) for a source placed at a source-to-
mask distance of 130mm (low rank and thus low-resolution mask) and 1.23mm
(0.94 %) (high-resolution mask) [31]. Additionally, the same research group
analyzed extended gamma sources with a cylinder (24mm in diameter and
9mm in height) at increasing source-to-mask distances. Thereby, they show
that the localization error deteriorates from 6.1mm to 7.8mm for source-to-
mask distances of 140-200mm [32]. Paradiso et al. [35] aim to use their gamma
camera at much larger distances with source-to-mask distances between 360mm
and 4,000mm. A 241Am source at the distance of 1250mm was estimated to be
at 1200mm and at 3000mm to be at 2927mm, resulting in localization errors
of 50mm (4.16 %) and 73mm (2.43 %).

In this paper, with the ISL-EMG method we were able to achieve an error of
(0.88±0.68)% and (3.06±1.50)% on the simulated and on the experimental
data with median errors of 0.60 % and 2.98 %. That means for the range of
20–100mm source-to-mask distance with a single gamma camera equipped
with a coded aperture collimator we obtain a comparable localization accuracy
without requiring additional hardware like external tracking or a second camera.
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Stereo cameras which also use coded aperture collimators could benefit from
our approach without any changes to the hardware. Their localization procedure,
which is currently performed by triangulation, could potentially be made more
robust by combining it with two separate single estimations using the here
proposed methods.

9.4.3 Limitations

The experiment described in this chapter has several limitations that range
from specific localization issues to more general challenges in Coded Aperture
Imaging (CAI). First, the ISL algorithm in its current state is only be applicable
in cases where no more than one source is present within the FOV.

Second, due to practical restrictions we were not able to evaluate the local-
ization accuracy for sources beyond 100mm. However, the advantage of our
approach is that the camera can be positioned in close proximity to the source
(up to around 11mm for our setup), which allows for the capture of sources that
may fall outside the FOV of stereoscopic cameras.

Third, the 0.5mm thick silicon detector adopted has a low detection effi-
ciency at 59.5 keV, which implied long acquisition times up to 15 min. How-
ever, alternative semiconductor-based detectors such as the Timepix3 employ a
thicker cadmium-zinc-telluride (CdZnTe, or CZT) or cadmium telluride (CdTe)
crystal, whose higher sensitivity could reduce the acquisition time to a tenth.
Due to the known difficulties in simulating semiconductor-based detectors [43],
the acquired dataset and the in silico reproduction did not measure the same
quantity (see Tab. 5.2). To compare the photon count of both, the photon count
of the acquired dataset must be estimated. When assuming that each photon
deposited its full energy into a single pixel, i.e. no charge sharing occurs, the
integrated energy per pixel can be divided by 59.5keV. Based on this rough
estimation, the detector images from our MC simulation contain on average 4.8
times more photons than the images captured with our experimental gamma
camera. This difference in photon count could partially explain the difference
in localization accuracy. It emphasizes that a more precise understanding of the
relationship between the number of captured photons and the reconstruction
quality and thus the localization accuracy is required, especially for a low-flux
real-time application as RGS.
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Fourth, the localization study with extended gamma sources of [32] indicate
an increasing difficulty to localize sources with increasing size. A plausible
reason can be found in the supplementary material from [73] (Supplementary
Fig. 7) where it is shown that the reconstruction quality decreases exponentially
with growing source size. Analyzing the influence of the source size was beyond
the scope of this experiment, but the authors acknowledge that extended sources
can represent a serious challenge in the development of a coded aperture camera
for RGS. For example, in SLNB lymph nodes cannot be considered as point-like
sources as their size varies from 5 to 20mm [32, 73], and thus, the influence
of the source size on the source localization remains to be investigated. Fifth,
other 3D reconstruction methods exist, such as the 3D-MLEM described above
(see Sec. 8.2.2) with a superior axial resolution. However its computational
complexity renders it unsuitable for RGS.

Sixth, in this study, we have used a single camera setup to analyze the 3D-
localization accuracy of a point-like source. However, we expect other factors
to affect the accuracy, including the detector-to-mask distance which directly
influences the magnification of the mask pattern. Furthermore, we assume the
pinhole size, pinhole shape (round or square) and the MURA rank to affect the
accuracy as well. These factors were not within the scope of this work, but their
investigation could lead to a broader understanding of 3D-localization.

9.4.4 Potentials

The findings and limitations discussed in this study imply several potentials.
First, a considerable drawback of the ISL method presented is the necessity
for the user to possess knowledge of the source size and the initial guess z0. It
is conceivable that a user would rapidly navigate through the slices of the 3D
reconstruction, locate the source, and draw a circle indicating both the rough
source size and the initial guess z0. Nevertheless, it would be more convenient
if this process was automated as well. It is imaginable to combine both methods
and use the COM to find an estimate for the initialization for the ISL method.
This could potentially result in a fully automated source localization. Second,
the ISL-EMG algorithms holds the potential for improving the capabilities
to handle multiple sources within the FOV, for more complex scenarios with
multiple radiation sources present. Third, a Machine Learning (ML) approach to
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estimate the source position and source size directly from the detector image is
conceivable. Fourth, this study can be considered a benchmark for investigating
the following issues in order to leverage the full potential of CAI in RGS:
The most used radiotracer in nuclear medicine is 99mTc which emits gamma
photons of higher energy than the utilized 241Am. Hence, a larger and thicker
mask (1mm thick with 0.25mm pinholes) for 99mTc imaging is required and
has already been designed. It is currently under testing by the team from the
University of Naples and phantom studies will be conducted in the near future.
Additionally, a more comprehensive understanding and a solution to the problem
of imaging extended sources poses an important milestone in developing a fast
and high-resolution gamma camera.

9.5 Conclusion

The goal of this experiment was to investigate how accurately a single gamma
camera with a coded aperture collimator is able to localize in 3D single point-like
sources in the near-field. Our proposed ISL algorithm iteratively searches for
the source position based on a rough initial estimate. Mean localization errors
below 1mm based on data obtained by MC simulation and below 3mm based
on experimental data were achieved. It was demonstrated that when localizing
point-like sources, it is crucial to consider the decreasing axial resolution which
manifests in a positively-skewed CNR profile. Incorporating this behavior in
form of an EMG fitting improves the localization accuracy by an average factor
of 4 compared to using a standard Gaussian fitting. The occurrence of systematic
localization errors in the experimental data emphasizes the importance of a
thorough assembly and calibration process during image acquisition.
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Chapter 10

Outlook

Several aspects for future research emerges from the described studies of this
thesis. Specific suggestions toward the clinical usability of Coded Aperture
Imaging (CAI) are elaborated in the following chapter.

10.1 ML Approach for 3D Reconstruction

In Chapter 6, the development of a Convolutional Encoder-Decoder (CED) was
presented which is capable of reconstructing images with a higher quality in less
computation time than all other planar reconstruction methods. However, suc-
cessfully adapting this architecture for 3D reconstruction has proven challenging
due to several difficulties: First, when predicting a full 3D reconstruction, the
output dimension is much bigger than in the planar case. For example, instead
of predicting a 256×256 pixel image, a 256×256×64 data cube must be gen-
erated. In the reconstruction of point-like sources, the vast majority of voxels
would be zero, making the training process extremely challenging, since the
difference between the trivial solution, where all voxels are zero, and the correct
solution is vanishingly small. Second, the convolutional layers in the decoder
must be replaced by 3D convolutional layers which substantially increases the
number of trainable parameters. Thus, depending on the available computing
power, the batch size must be reduced which may influence the training results.
Additionally, a substantial increase in training time must be expected.
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In general, CEDs require a vast amount of training data. To address this
issue, the simulation framework ConvSim has been developed. It is capable of
simulating thousands of detector images of sources at various distances from
the gamma camera. ConvSim has been compared to Monte Carlo (MC) simula-
tions and shows high similarity to the detector images for small sources [96].
It also includes effects such as the collimation effect, the planar wave effect,
and transmission for point sources. It is publicly available1 and was specifi-
cally developed for training a CED for 3D reconstruction, making it ready for
deployment.

It may also be worth to investigate the potential of reducing the compu-
tational load of CEDs by removing unnecessary or redundant weights from
the architecture, a process called pruning. Furthermore, there has been a no-
table rise in popularity of novel architectures in the field of computer vision in
the last few years, with transformer-based architectures as a prominent exam-
ple [155, 156]. These architectures offer a functionality entirely different from
CEDs, particularly in terms of their receptive field.

10.2 Reconstructing Extended Sources

Extended sources have reportedly been associated with lower reconstruction
quality compared to point-like sources for MURA Decoding [25, 32, 73]. From
conducting preliminary simulation experiments, we can confirm this behav-
ior for the MLEM algorithm as illustrated in Fig. 10.1. Based on these yet
unpublished studies we propose the following hypothesis as a starting point
for future research: “In contrast to point sources, extended sources cause an
increased average incident angle and thus, reconstruction methods for extended
sources must consider the emerging near-field effects.” This hypothesis includes
data-driven approaches, and first experiments with a CED and low-resolution
images of extended source have already been reported [157]. According to this
hypothesis, the CED from Chapter 6 trained on detector images with near-field
effects generated by the ConvSim, should be capable of reconstructing extended
sources.

1https://github.com/tomeiss/convsim

150

https://github.com/tomeiss/convsim


10.2. Reconstructing Extended Sources

Figure 10.1: Reconstructions with the planar Maximum Likelihood Expectation Maximiza-tion (MLEM) algorithm of MC simulations of extended sources with increasing diameter(1mm, 2mm, 4mm, 6mm, 8mm, 10mm, 15mm, and 20mm) illustrate the known issue ofCAI with extended sources. The simulated camera setup is the same as from Chapter 9and a total of 109 photons were simulated. Ghost sources emerge at the image border asdescribed above.

Another avenue of future research, which is closely related to this topic, is
investigating how the number of captured photons influences reconstruction
quality and, consequently, image quality. This issue was raised in Sec. 9.4.3,
where it was estimated that the MC simulation contained on average 4.8 more
photons than the experimentally captured images. Because the mask shadow
projected by an extended source is more widespread than the one from a point
source, the illuminated area is larger. Assuming an identical radioactivity
implies that the same amount of photons impinge on a larger detector area,
resulting in a lower photon count per pixel and an increased image degradation
from Poisson noise.

In addition to planar imaging, the effect of extended sources on 3D localiza-
tion capability is even less studied and largely unknown. The axial resolution
reported above can only serve as a reference for small point-like sources and a
spread of the CNR profile for extended sources must be expected. To ensure
that robust depth estimations can effectively assist surgeons, this issue requires
further investigation.
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Figure 10.2: NewMURAmask for 99mTc imaging with a larger and thicker mask that is 1mmthick with 0.25mm diameter pinholes developed and currently under testing by the teamfrom Naples university.

10.3 99mTc Imaging

The most commonly used radiotracer in nuclear medicine is 99mTc with an
estimated usage of 75% among all radiotracers. Its more energetic gamma
photons (140.5 keV) massively penetrate thin masks, like the one that was used
in the second part of this thesis. By incorporating this transmission into the
3D-MLEM algorithm, we were able to perform image reconstruction, but a
transmission rate above 95 % from the combination of 0.11mm tungsten and
99mTc would render CAI useless. Therefore, a thicker mask is required, which in
turn, increases the impact of near-field effects as described in Sec. 3.5. A larger
and thicker mask (1mm thick with 0.25mm pinholes, resulting transmission
rate: 3.3 %) for 99mTc imaging has already been designed and is currently
under investigation by the team led by Prof. Russo from the University of
Naples. A photograph of this mask is shown in Fig. 10.2. In this work we
were able to neglect the near-field effects, because the source was either far
away (Part III) or the mask was thin compared to the pinhole size (Part IV). For
99mTc imaging, though, near-field effects must be addressed and reconstruction
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methods adapted, potentially through the integration of existing compensation
techniques [24, 26].

10.4 Semiconductor-Based Detectors

Since their first usage in mobile gamma cameras over two decades ago [158],
semiconductor-based detectors have undergone a consistent advancements in
terms of sensor area, material quality, and temperature resistance [7]. Despite
these improvements, the non-ideal imaging fidelity remains a challenge. The
causes are material impurities, flawed crystal growth that results in defective
pixels and cracks, or nonuniform bump-bonding to the readout electronics,
which have been encountered throughout this thesis. The CdTe detector used
in the studies of Part III were more affected by these issues compared to the Si
detector from Part IV.

An improvement in their manufacturing towards an overall more homo-
geneous light response is desirable. Alternatively, it would be beneficial to
investigate image preprocessing methods to mitigate image degradation. Fur-
thermore, the question arises as to how semiconductor-based detectors may be
effectively incorporated into existing MC simulation frameworks. Nowadays,
MC simulations play a major role in the development of Intraoperative Gamma
Cameras (IGCs) [7], and therefore, a complete integration, considering photon
hits, charge sharing, and deposited energy of CdTe or Si detectors is essential.

In conclusion, improving the imaging fidelity of semiconductor-based de-
tectors, whether through hardware or software modifications, is a highly de-
sirable objective. It would allow to fully harvest the superior resolution of
high-pixelated semiconductor-based detectors and to improve gamma imaging
in general, and CAI in particular.
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Chapter 11
Conclusion

In the course of this thesis, both planar reconstruction methods and 3D re-
construction methods for Coded Aperture Imaging (CAI) were developed and
evaluated with a focus on Radioguided Surgery (RGS). In this last chapter,
conclusions will be drawn by reiterating the research hypothesis, and discussing
the key findings. Three research hypotheses were proposed, where the first one
stated:

Hypothesis Ia

A Convolutional Encoder-Decoder (CED) network trained on a synthetic
dataset that is generated with a low-fidelity simulation achieves on
average a higher Contrast-to-Noise Ratio (CNR) with less computation
time than known planar reconstruction methods.

This hypothesis can be partially accepted. What contradicts the hypothesis
is, that the Wiener Filter and generally a convolution carried out in the Fourier
domain leads to a shorter computation time than the CED. Additionally, using a
CED exhibits the following challenges: First, it was found that a CED trained on
synthetic data is not as robust as for example MURA Decoding. Defective pixels
and an inhomogeneous detector response limits the capabilities of a CED. The
proposed preprocessing was effective, but in general, a semiconductor-based
detector free of defects is highly desirable and topic of current research. Second,
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an inherent lack of explainability and the possibility of instabilities must be kept
in mind, when working with CEDs.

However, the CEDs yield on average a CNR 1.4 and 2.7 times better than
the most commonly used MURA Decoding, depending on the training dataset.
A training dataset tailored to the application-specific source distributions can be
used to infuse a priori knowledge and further improve the reconstruction quality.
Regarding the computation time, we showed that the CED with approximately
290 ms is around 170 times faster than the Maximum Likelihood Expectation
Maximization (MLEM) algorithm, which represents the best analytical recon-
struction method. It can be hypothesised that improvements are likely with
a more accurate simulation of the training data, for example by integrating
near-field effects, due to the fact that the CED is mainly determined by the
training data. Therefore, CEDs are a promising candidate for overcoming the
challenges presented by thicker masks and extended sources.

The second hypothesis was:

Hypothesis Ib

Even with a detector that cannot resolve the coded aperture mask’s
small pinholes, a CED network still outperforms other methods and
thus, achieves super-resolution.

This hypothesis can be accepted with reservations. The simulation study of
this thesis indicated that it is possible to achieve super-resolution with CAI. Even
though, the Nyquist-Shannon sampling theorem must be fulfilled, combining
a low-resolution but highly sensitive scintillator-based detector with a high-
resolution coded aperture collimator. This hypothesis was investigated based
on both a MC simulation and experimental data, but the fact that the low-
resolution detector was simulated by aggregating the photon hits of neighboring
pixels limits the validity of the hypothesis. Additionally, it was discovered that
the upsampled detector image had a beneficial effect on the CED, due to its
smoothing effect.
The third research hypothesis focused on 3D imaging with a coded aperture and
was postulated as follows:
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Hypothesis II

Single point-like gamma sources can be localized with an accuracy of
approximately 5mm in all three dimensions in the range of 20mm to
100mm from a stack of planar reconstructions, and is, thus, comparable
to a stereoscopic camera.

The results of the presented studies confirm this hypothesis. From the assess-
ment of the axial resolution, it was shown that it depends on the reconstruction
method used for 3D reconstruction. While the proposed generalized 3D-MLEM
algorithm yields on average a 0.3 times lower, and thus, better axial resolution,
it takes approximately 4,400 times longer than generating a 3D reconstruction
via sequential MURA Decoding. Generally it was shown, that the axial reso-
lution degrades the further the source moves away from the camera. Despite
its worse axial resolution, it was demonstrated, that with a sequence of planar
reconstructions by MURA Decoding, the depth of a point-like source can be
accurately estimated. The proposed ISL method in combination with an EMG
fit, incorporating the decreasing axial resolution, achieved a 3D-localization
error of about 0.8mm on the simulated and 2.6mm on the experimental data
in the imaging range of 20mm to 100mm. It can be assumed that 3D-MLEM
would achieve an even better localization accuracy, but its axial resolution re-
quires a fine sampling in z-direction which renders it unsuited for RGS. All in
all, our proposed experimental Intraoperative Gamma Camera (IGC) makes 3D
source localization with a single gamma camera equipped with a coded aperture
collimator as accurate as stereoscopic cameras with pinhole collimators. Pro-
viding valuable depth estimation to surgeons in a low-cost and computationally
effective manner, constitutes an additional benefit of coded aperture collimators.

Overall, this thesis provides the research community with the first quantita-
tive comparison of the most commonly used planar reconstruction methods. The
reconstruction methods, along with the acquired datasets of our experimental
IGC were made publicly available to ease the access for other research groups.
Additionally, it has been shown that a Machine Learning (ML) approach is pow-
erful and a highly promising candidate for both planar and 3D reconstruction,
which is worth of further investigation. For the first time, two datasets were
acquired and published where the three-dimensional Field of View (FOV) of
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an IGC equipped with a coded aperture collimator was systematically sampled.
Furthermore, it was demonstrated that a single gamma camera can achieve a
localization accuracy for point-like sources that is comparable to stereo cameras,
paving the way to provide valuable depth information to surgeons during RGS.
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Appendix

A.1 Other Architectures for Planar
Reconstruction

Other architectures used in the literature for image-to-image regression tasks
have been evaluated as well. They were trained in the same manner as the CED-
IN explained in Sec. 6.2.2. The MSD-Net architecture [99] was re-implemented
in Tensorflow (Version 2.2) and, as suggested by [99], 100 layers with a channel
width of 1 was selected. The hyperparameter, width and depth, determine
how the dilated kernels are distributed along the network and vary in our
case between 1 and 10. For further information, the reader is referred to
the original publication. Three different mini-batch sizes were tested, since
there are less reference values available in the literature: 8, 16, and 32 which
are denoted by BS8, BS16, and BS32, respectively. Other than the original
architecture in order to make a fair comparison, batch normalization layers
(see Sec. 4.2) were inserted between each convolutional and activation layer.
Additionally, the use of concatenating skip connections between the encoder and
the decoder part were tested. The number of downsampling steps, the number
of filters, the kernel size, etc. was kept the same compared to the CED-IN. Since
the skip connections make the CED architecture closer to the original U-Net
architecture from Ronneberger et al. [98], it will be referred to as U-Net. Two
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mini-batch sizes of 8 and 16 were chosen, because they are typical sizes for
such networks [104].

All networks were trained with the Adam optimizer for 20 epochs, a training
and validation size of 35,000 and 10,000 images from the Imagenet database
(see Sec. 5.4) and the learning rate schedule and automatic stopping as explained
above. Finally, the networks were evaluated on the SRP dataset captured with
our experimental gamma camera. The CNR distribution of the SRP phantom
are depicted in Fig. A.1 together with our proposed CED-IN.

The CED-IN, which serves as a benchmark, achieves a median CNR of
2.65. The median CNRs of the MSD-Net BS8, MSD-Net BS16, MSD-Net
BS32 are 1.83, 1.60, and 1.86. The U-Net BS8 and U-Net BS16 obtain similar
values with 1.72 and 1.84. From the median CNR and a visual inspection of
the boxplots, it becomes obvious that none of the tested networks beats the
performance of the CED-IN.

Figure A.1: The boxplots represent the CNRs of the SRP obtained from different networkarchitectures. The vertical lines indicate the median value, the box the 25:75 quartiles, andthe diamonds mark outliers. A total of 12 outliers are above 5.5 and not shown in this graph.
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A.2 Additional 3D Reconstructions

Figure A.2: The entire image stack of reconstructing the source at 20 equidistant imageplanes from 5 to 100mm with MURA Decoding (right) and 3D-MLEM (left) for the sourceat 50mm (top) and 100mm (bottom). The areamarked by the red square has beenmagnifiedfor better visualization. Units are arbitrary. Figure from [118].
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A.3 3D Reconstruction: Raw vs.
Preprocessed Detector Images

Figure A.3: All images show the reconstruction of the raw (left) and preprocessed (right)detector image of the source at source-to-mask distance of 20mm at the 20mm plane. Thetop row shows the reconstructions fromMURADecoding while the bottom row shows the3D-MLEM results. Notice the higher background noise in the reconstructions from the rawdetector image. For a fair comparison, images were normalized to 0 to 1. Figure modifiedfrom [118].
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©(2024) Terese Winslow LLC, U.S. Govt. has certain rights. . . . 22
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the shadow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The geometry of coded aperture imaging. The detector and the mask
have the distance b. The source plane is z distant from the mask.
The position of a point in the source plane is denoted by rS and the
position where the ray hits the detector plane passing through the
mask plane by rD. The resulting incident angle between the gamma
ray and the detector plane is denoted by θ . Figure modified from [24]. 29

3.3 From left to right: MURA basic pattern h′single of rank 31, the NTHT
version of it with added rows and columns of 0 and the final mask
design in a 2×2 arrangement, where the central pattern h′central is
indicated by the cyan-colored box. . . . . . . . . . . . . . . . . . . 30

3.4 A visual representation of the Monte Carlo (MC) simulation toolkit
TOPAS MC. The dark grey box in the bottom right corner represents
the Intraoperative Gamma Camera (IGC) with the coded aperture
mask in cyan and the detector in gray. The green lines represent
the traces of the gamma photons emitted from the three horizontal
rectangles that act as sources. . . . . . . . . . . . . . . . . . . . . 36
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3.5 Different Field of Views (FOVs) in Coded Aperture Imaging (CAI):
A point source closer than zmin projects less than one Modified
Uniformly Redundant Arrays (MURA) pattern on the detector,
which inhibits image reconstruction. For this plot, the following
geometrical parameters were used: b = 20mm, hd = 15mm, Dm =

20mm and a mask thickness of 1mm. M, S, and D refer to the
mask, shielding and detector. . . . . . . . . . . . . . . . . . . . . . 38

3.6 The visual influence of near-field effects and Poisson noise. (a)
detector image of a point source in the bottom right corner of
the FOV simulated with the Convolutional Model. (b): with 1 %
transmission and the planar wave effect, (c): additionally with the
collimation effect (t = 0.11mm), (d): the final simulation result
after Poisson randomization, where a total of 500,000 photons were
set to hit the detector. Figure is taken from [96]. . . . . . . . . . . 40

4.1 Overfitting, underfitting and the desired generalization in Machine
Learning (ML) at the example of a simple 2D classification network. 44

4.2 This graphic shows the convolution of an image with three chan-
nels (H ×W × 3) with a set of 3× 3 kernels. The convolutional
layer produces an output image by shifting a kernel over the input
image, multiplying element-wise and summing the intensities, and
aggregating the results per input channel. The input image is zero-
padded to obtain an equal size output image. A convolutional layer
performs this procedure multiple times to produce a feature maps
with Cout output channels. Figure modified from [110]. . . . . . . . 47

4.3 Activation functions add non-linearity to a Machine Learning (ML)
network. x represents the input and f (x) the output of the three
presented activation functions Sigmoid, Relu, and Leaky Relu. Note
the small negative slope of p = 0.01 in the negative half-plane
with the Leaky Relu. When p is a trainable parameter it is called
Parametric Relu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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4.4 The Batch Normalization Layer explained on a batch of 16 samples
with two features F1 and F2. First, the mean and standard deviation
(STD) are calculated and combined with all previous batches to
the moving averages for the mean µmoving1,2 and standard deviation
σmoving1,2 . In a second step, the features are normalized and then
scaled and shifted in a third step by the trainable parameters γ1,2 and
β1,2. The result is a batch with an optimized location and extension
of the new features F̃1 and F̃2. . . . . . . . . . . . . . . . . . . . . 50

4.5 The U-Net architecture: an input image of size I× I×K is suc-
cessively spatially down-sampled until it has reached a 16th of its
original size. While doing so, the number of channels per feature
map increases to 1,024. The last feature map before the decoding
is called latent space representation. The decoder part extends
the image and simultaneously reduces its channels until the output
dimensions are reached. The blue arrows represent a copy and
concatenation of feature maps from encoder to the decoder part. . . 52

5.1 The three hot-rod phantoms of the Rozhkov dataset: (a) spatial
resolution phantom (SRP), (b) linear resolution phantom (LRP),
(c) contrast phantom (CP). Marked in red are the tubes that were
filled with 99mTc. The notches on both sides were used to clamp
and rotate the containers. . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Exemplary images from the Rozhkov dataset: (a), (b), and (c) show
the detector images of the spatial resolution phantom (SRP) at 0◦,
21◦, and 45◦rotation. (d), (e), (f) show the corresponding Ground
Truth (GT) images calculated based on their CAD models and the
visualization software Paraview. . . . . . . . . . . . . . . . . . . . 58

5.3 The measurement setup for the Axial Resolution Dataset. Top:
The setup consisting of a Timepix3 detector, a Modified Uniformly
Redundant Arrays (MURA) mask of rank 31 (see close-up pho-
tography on the top left) and a 241Am source captured at 21 mask-
to-source distances. Bottom: The captured detector images at a
mask-to-source distance of 12mm, 50mm, and 100mm (see or-
ange circles above). Note, that for better visualization in each
detector image pixels below and above the 1st and 99th percentile
are presented in the lowest and highest corresponding color. . . . . 59
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5.4 The measurement setup for the Axial Localization Dataset. Top:
The experimental gamma camera setup and the source are the same
as for the Axial Resolution dataset. Bottom: Three captured de-
tector images at a mask-to-source distance of 50mm and a lateral
position of 2mm, 4mm, and 8mm (see orange circles above). . . . 62

5.5 Two different sets of image data that serve as Ground Truth (GT)
for training: (a) Imagenet, and (b) Lines. Note, that the bottom
image of (b) is the same image that is shown in Fig. 3.4. . . . . . . 64

6.1 The architecture of the deployed CED network with the number of
feature channels on top and the spatial resolution of the feature maps
at the bottom. “Conv” indicates convolutional layers, “BN” Batch
Normalization and “ReLu” an activation with the ReLu function. . 75

6.2 Steps in simulating the training data for the CEDs based on two
different image datasets, IN (top) and Lines (bottom). (a) and (d)
are the target images, (b) and (e) the simulated detector images, and
(c) and (f) the detector images after Poisson randomization. . . . . 78

6.3 (a) shows the first detector images from each of the three captured
hot-rod phantoms before (top) and after preprocessing. (b) shows
the binary mask which mark the defective pixels in black according
to the 2nd and 98th percentile of the average image. Figure from [116]. 80

6.4 This graphic shows the reconstruction of one image from the SRP
with MURA Decoding where the decoding pattern is based on the
THT (left) and on the NTHT (right) version of the utilized MURA
pattern. The CNRs of the reconstructions are printed in the top left
corners. Note the heavy periodic noise when the NTHT version is
used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Top: The median CNR of the SRP dataset plotted against the num-
ber of iterations for the MLEM algorithm. Bottom: The median
CNR of the SRP dataset plotted against the hyperparameter SNR
of the Wiener Filter. Finally, 106 iterations and a SNR of 10-9 was
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line) is plotted for reference. . . . . . . . . . . . . . . . . . . . . . 82
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6.6 The L2 loss of the CED training plotted against the number of
training epochs. The top pair represent the loss of the CED-IN over
the training set (green) and the validation set (pink). The bottom
pair is the CED-Lines with training loss in red and the validation
loss in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.7 Contrast-to-Noise Ratio (CNR) distribution of the reconstructions
of the preprocessed detector images separated by the three hot-rod
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25:75 percentiles, lines are medians, whiskers stretch 1.5 times the
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outliers. Figure from [116]. . . . . . . . . . . . . . . . . . . . . . 86

6.8 Exemplary reconstructions from the SRP (top), LRP (middle) and
CP (bottom). For each hot-rod phantom from top to bottom row:
The best, median and worst reconstructions from MURA Decoding
and the corresponding reconstructions from all other methods are
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truth (GT) image respectively. Note, that the histogram of the
detector images were equalized for better visualization. Figure
from [116]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 The process of combining two or more low-resolution or noisy
images to form an high-resolution image of the underlying scene is
called super-resolution. Figure adapted from [143]. . . . . . . . . . 94

7.2 From left to right: The portion of the Point Spread Function (PSF)
captured by the experimental gamma camera from the Rozhkov
dataset, the Two-Holes-Touching (THT) encoding and the THT
decoding pattern used for MURA Decoding. Figure from [143]. . . 95

7.3 Pixels of the high-resolution detector image from the TOPAS simu-
lation are accumulated (here with k = 8 into 32×32 pixels) to form
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pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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7.4 The Contrast-to-Noise Ratio (CNR) plotted against the super-resolution
factor k. Top: Test image. The black dotted vertical lines mark the
critical super-resolution factors k̃THT-PSF = 4 and k̃1 = 11. The red
dotted line represents the CNR of the smoothed image captured
by a pinhole collimator and serves as reference. Bottom: Mea-
sured phantom data. Error bars represent the standard deviation
at each data point. The vertical dotted lines denote the critical
super-resolution factors k̃THT-PSF = 4 and k̃measurement = 12. . . . . 99

7.5 On the right-hand side the coded aperture detector and the Ground
Truth (GT) images are shown The CNR are printed in the top right
corner of each reconstruction. Top: Exemplary reconstructions
of the test image generated by MC simulation at different super-
resolution factors k. For reference, the coded aperture simulation
in 256×256 pixels, the smoothed pinhole collimator simulation in
the same resolution and the Ground Truth (GT) is shown on the
right-hand side. Bottom: super-resolution evaluated on the SRP
data captured with our experimental gamma camera. . . . . . . . . 100

8.1 (a): Successive number of iterations for the 3D-MLEM algorithm
applied to the source and reconstructed at 30mm. (b): Raw (left)
and preprocessed detector image (right). (c): The left image shows
the forward projection of 3D-MLEM for the source at 40mm and
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(blue arrows) along the image border emerge in addition to the true
source (green circle) from the 3D-MLEM algorithm for sources
that are more than 40mm away. Figure from [118]. . . . . . . . . . 111

8.2 The semi-automatic CNR algorithm as a macro in imageJ. Clock-
wise from the top left to bottom left: the image stack that is ana-
lyzed, the macro that performs the selection of all possible ROIs,
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as explained in the text. . . . . . . . . . . . . . . . . . . . . . . . . 113
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8.3 The original 3D-MLEM algorithm (left) from [24] in comparison
to our proposed 3D-MLEM algorithm (right) applied to the source
at 30mm distance. The center, marked by the red dotted square, is
magnified for better visibility. Figure from [118]. . . . . . . . . . . 117

8.4 3D-MLEM (left) and MURA Decoding (right) of the 30mm source.
The distance between the mask and the in-focus plane in mm is
indicated in the top left corner. MURA Decoding is not capable of
reconstructing planes that are closer than 11mm. A magnification
of the area around the source (red dotted square) is shown in the
bottom left corner. Figure from [118]. . . . . . . . . . . . . . . . . 118

8.5 The CNR profiles over the distance used for reconstruction for
a selection of source positions: the semi-transparent red line of
squares and the blue line of triangles show the CNR profiles of
MURA Decoding and 3D-MLEM reconstruction. The Gaussian
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Decoding) and the blue dashed line (3D-MLEM), were fitted to the
CNR profiles. These curves serve as the basis for determining the
axial resolution, and the corresponding FWHM values are displayed
in the top right corner of each graph. Figure from [118]. . . . . . . 120

8.6 The axial resolution for both presented reconstruction methods
plotted against the dimensionless magnification factor M. The
orange circle and green dashed line represent reference values for
the axial resolution estimated from literature (Russo et al. [25], and
Mu et al. [24]). Note that the source-to-mask distance at the top
axis only applies to this study. Figure modified from [118]. . . . . 122
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9.1 The CNR is determined by convolution of the reconstructed slice
and a spherical kernel normalized to the sum of 1 which is depicted
in the red rectangle in the top left corner in original size. The
resulting image represents the average intensity of a Region of
Interest (ROI) centered at each pixel position. With the identity
Std(X) =

√
E(X2)−E(X)2, the standard deviation (STD) inside

all possible Region of Interest (ROI) is calculated. Afterwards, the
Region of Interest (ROI) with the highest average intensity becomes
the signal S̄ and the background’s parameter B̄ and σB is taken by
averaging over all Region of Interests (ROIs) that do not overlap
with the Region of Interest (ROI) of S̄. The CNR of the exemplary
image with a Region of Interest (ROI) size of 16 pixels in diameter
is 4.71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2 A flowchart representing the Iterative Source Localization (ISL)
algorithm with its alternating lateral and axial search and the final
curve fitting to estimate the 3D position of the source. Figure
from [149]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.3 (a) The detector image of the source located at [0,2,75] mm cap-
tured with our experimental gamma camera. The color coding was
limited to intensities between the 1st and the 99th percentile to vi-
sualize the projected mask pattern. (b) The 3D reconstruction of
the detector image thresholded at the 99th percentile to visualize
the reconstructed source. Note how the extension in z-direction
is much larger than in the lateral directions. (c) The CNR profile
with both the Gaussian fit and the Exponentially Modified Gaussian
(EMG) fit, resulting in a z-estimation of 73.7mm (R2 = 0.97) and
81.2mm (R2 = 0.92), respectively. Figure from [149]. . . . . . . . 135

9.4 The true source positions (red circles) and the estimates from the
ISL-EMG method applied to the simulated (green crosses) and
experimental data (blue crosses) in a topview (left) and sideview
(right). Note the different range in z-direction. Figure from [149]. . 139
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9.5 The localization error in mm broken down in x, y, and z-component
by localization method (COM, ISL-Gaussian and ISL-EMG) and
dataset (simulated and experimental). The boxes indicate the 25:75
percentile range, whiskers are maximum and minimum values, and
lines are the median error which are also printed vertically in white.
The crosses represent the mean values. Figure from [149]. . . . . . 140

10.1 Reconstructions with the planar Maximum Likelihood Expectation
Maximization (MLEM) algorithm of Monte Carlo (MC) simula-
tions of extended sources with increasing diameter (1mm, 2mm,
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simulated camera setup is the same as from Chapter 9 and a total
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border as described above. . . . . . . . . . . . . . . . . . . . . . . 151

10.2 New MURA mask for 99mTc imaging with a larger and thicker
mask that is 1mm thick with 0.25mm diameter pinholes developed
and currently under testing by the team from Naples university. . . 152

A.1 The boxplots represent the CNRs of the SRP obtained from different
network architectures. The vertical lines indicate the median value,
the box the 25:75 quartiles, and the diamonds mark outliers. A total
of 12 outliers are above 5.5 and not shown in this graph. . . . . . . 160

A.2 The entire image stack of reconstructing the source at 20 equidistant
image planes from 5 to 100 mm with MURA Decoding (right)
and 3D-MLEM (left) for the source at 50 mm (top) and 100 mm
(bottom). The area marked by the red square has been magnified
for better visualization. Units are arbitrary. Figure from [118]. . . . 161

A.3 All images show the reconstruction of the raw (left) and prepro-
cessed (right) detector image of the source at source-to-mask dis-
tance of 20 mm at the 20 mm plane. The top row shows the re-
constructions from MURA Decoding while the bottom row shows
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images were normalized to 0 to 1. Figure modified from [118]. . . 162
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Female breast cancer has surpassed lung cancer as the most commonly 
diagnosed cancer. The biopsy of lymph nodes that receive drainage from 
the primary tumor are guided by Intraoperative Gamma Cameras (IGCs). 
Coded Aperture Imaging (CAI) has been proposed as an alternative col-
limation technique to produce an image, because it offers a better trade-
off between sensitivity and spatial resolution. However, it requires image 
reconstruction. Therefore, a Convolutional Encoder-Decoder Network (CED) 
was developed and trained on synthetic source images. It was quantitatively 
compared based on the reconstruction quality and the runtime with state-
of-the-art methods, such as MURA Decoding and the iterative Maximum 
Likelihood Expectation Maximization (MLEM) algorithm. Afterwards the 
axial resolution and 3D localization accuracy of the most commonly used 
methods were analyzed. In conclusion, the CED outperforms all methods 
regarding the quality. From the analytical methods the MLEM algorithm 
yields a higher quality and a better axial resolution, but is not suitable 
for IGCs in its current form, due to its computational complexity. MURA 
Decoding provides robust reconstructions. Its fast computation enables 
3D reconstruction which allows the localization of point-like sources with 
an accuracy comparable to that of stereoscopic cameras.
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