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Abstract

Multi-person tracking is a fundamental task in computer vision with various
applications such as surveillance, autonomous driving, and sports analysis.
The goal is to localize and identify all persons in each frame of a video se-
quence. This allows to track persons in safety-critical areas, predict the move-
ment of pedestrians in road traffic, or calculate running statistics at soccer
games. The majority of methods follows the tracking-by-detection paradigm
dividing the tracking problem into the two subtasks detection and associa-
tion. For the generated detections, motion and appearance cues are typically
extracted to solve the association task of joining detections from the same
targets to tracks. This thesis shows that existing tracking approaches from
the literature exploit this available information in an insufficient way. Con-
sequently, a novel tracking framework is introduced that improves both the
utilization of available detections as well as the fusion mechanism of motion
and appearance information in the association.

Most tracking errors occur in crowds, where missed detections due to occlu-
sion complicate the association task. To improve the performance in such
situations, an adapted non-maximum suppression is proposed, which allows
to include detections under severe occlusion in the association process that
were discarded by previous tracking approaches. Two different techniques
are suggested to leverage the additional set of heavily-occluded detections.
The first one integrates these in a second association stage, where they are
matched to the remaining unassigned tracks from the first stage. The sec-
ond approach utilizes the available track information to identify track clusters
with missing detections and incorporates the heavily-occluded detections in
these areas locally. Both techniques not only enhance detection recall under
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strong occlusion but also simplify the association task by reducing the num-
ber of missing detections and thus eliminating ambiguities in the assignment
of detections to tracks.

Next to the usage of detections, the way of leveraging the available informa-
tion on appearance and motion of targets plays a key role for the association
accuracy. In this thesis, existing fusion mechanisms for motion and appear-
ance information are evaluated within a common base framework, allowing
a thorough and fair comparison for the first time, and weaknesses of the pre-
vailing approaches are elaborated. Building on this, novel combined distance
measures for a better utilization of motion and appearance information in the
association are introduced that significantly outperform previous variants.

To prevent the start of ghost tracks from duplicate detections in crowded ar-
eas, an occlusion-aware initialization strategy is suggested. It derives knowl-
edge about the neighborhood of unassigned detections from the available
track information to identify and discard duplicates. Moreover, a lightweight
model for compensating potential camera motion is presented, which is of
great importance for applications with non-static cameras. The proposed
modules are combined into a novel framework that surpasses the state of
the art in established multi-person tracking benchmarks. This achievement
is mainly due to a better use of available information in the tracking process,
since the same models are adopted for detection as well as extraction of ap-
pearance and motion information as in the competing trackers.

Additionally, several optimizations are made to accelerate the computation-
ally complex multi-person tracking framework, including the application of
an efficient model for extracting appearance information, the use of a high-
performance library for neural network inference, and parallelization. With-
out a significant loss of performance, the resulting system runs in real time
while being capable of tracking hundreds of targets simultaneously. This is
despite the fact that it includes all important components like appearance
model or camera motion compensation, which are not used by many methods
from the literature in order to achieve a low runtime.
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Kurzfassung

Das Multi-Personen-Tracking ist eine grundlegende Aufgabe der Computer
Vision mit verschiedenen Anwendungen wie etwa Überwachung, autonomes
Fahren und Sportanalyse. Das Ziel ist es, alle Personen in jedem Bild einer Vi-
deosequenz zu lokalisieren und zu identifizieren. Dies ermöglicht es, Personen
in sicherheitskritischen Bereichen zu verfolgen, die Bewegung von Fußgän-
gern im Straßenverkehr vorherzusagen oder Laufstatistiken bei Fußballspie-
len zu berechnen. Die meisten Methoden folgen dem Tracking-by-Detection-
Paradigma, bei dem das Trackingproblem in die beiden Teilaufgaben Detekti-
on und Assoziation aufgeteilt wird. Für die generierten Detektionen werden
typischerweise Bewegungs- und Erscheinungsmerkmale extrahiert, um die
Assoziationsaufgabe zu lösen, die darin besteht, Detektionen von gleichen
Objekten zu Tracks zusammenzufügen. Diese Arbeit zeigt, dass bestehende
Trackingansätze aus der Literatur diese verfügbaren Informationen auf un-
zureichende Art und Weise ausnutzen. Daher wird ein neuartiges Tracking-
framework eingeführt, das sowohl die Nutzung der verfügbaren Detektionen
als auch den Fusionsmechanismus von Bewegungs- und Erscheinungsinfor-
mationen bei der Assoziation verbessert.

Die meisten Trackingfehler treten in Menschenmengen auf, wo fehlende De-
tektionen aufgrund von Verdeckungen die Assoziationsaufgabe erschweren.
Um die Performanz in solchen Situationen zu verbessern, wird eine angepass-
teNon-Maximum Suppression vorgeschlagen, die es ermöglicht, stark verdeck-
te Detektionen in den Assoziationsprozess einzubeziehen, die von bisherigen
Trackingansätzen verworfen wurden. Zwei verschiedene Techniken werden
eingeführt, um die zusätzlicheMenge an stark verdecktenDetektionen zu nut-
zen. Die erste Methode integriert diese in einer zweiten Assoziationsstufe, in
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der sie mit den verbleibenden, ungematchten Tracks aus der ersten Stufe ver-
glichen werden. Der zweite Ansatz verwendet die verfügbaren Trackinforma-
tionen, um Trackcluster mit fehlenden Detektionen zu identifizieren und die
stark verdeckten Detektionen in diesen Bereichen lokal einzubeziehen. Bei-
de Techniken erhöhen nicht nur die Detektionssensitivität bei starker Ver-
deckung, sondern vereinfachen auch die Assoziationsaufgabe indem sie die
Anzahl der fehlenden Detektionen verringern und so Mehrdeutigkeiten bei
der Zuordnung von Detektionen zu Tracks beseitigen.

Neben der Verwendung von Detektionen spielt die Art und Weise, wie die
verfügbaren Informationen über Erscheinung und Bewegung von Personen
genutzt werden, eine Schlüsselrolle für die Assoziationsgenauigkeit. In die-
ser Arbeit werden existierende Fusionsmechanismen für Bewegungs- und
Erscheinungsformationen innerhalb eines gemeinsamen Basisverfahrens
evaluiert, was einen umfassenden und fairen Vergleich erstmalig ermöglicht,
und Schwächen der vorherrschenden Ansätze werden herausgearbeitet.
Darauf aufbauend werden neuartige kombinierte Distanzmaße zur besse-
ren Ausnutzung von Bewegungs- und Erscheinungsinformationen in der
Assoziation vorgestellt, die bisherige Varianten deutlich übertreffen.

Um die Entstehung von Geistertracks durch Mehrfachdetektionen in Berei-
chen hoher Personendichte zu verhindern, wird eine verdeckungsbewusste
Initialisierungsstrategie vorgeschlagen. Sie leitet Wissen über die Nachbar-
schaft von ungematchten Detektionen aus den verfügbaren Trackinformatio-
nen ab, um Mehrfachdetektionen zu identifizieren und zu verwerfen. Dar-
über hinaus wird ein leichtgewichtiges Modell zur Kompensation möglicher
Kamerabewegungen vorgestellt, das für Anwendungen mit nicht statischen
Kameras von großer Bedeutung ist. Die eingeführten Module werden zu ei-
nem neuartigen System kombiniert, das den Stand der Technik in etablierten
Benchmarks des Multi-Personen-Trackings übertrifft. Diese Leistung ist vor
allem auf eine bessere Nutzung der verfügbaren Informationen im Tracking-
prozess zurückzuführen, da die gleichen Modelle für die Detektion sowie die
Extraktion von Erscheinungs- und Bewegungsinformationen wie in den kon-
kurrierenden Trackern verwendet werden.
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Außerdem werden mehrere Optimierungen vorgenommen, um das rechenin-
tensive Framework für das Multi-Personen-Tracking zu beschleunigen. Dazu
gehören die Anwendung eines effizienten Modells für die Extraktion von Er-
scheinungsinformationen, die Verwendung einer leistungsstarken Bibliothek
für die Inferenz neuronaler Netze und Parallelisierung. Das resultierende Sys-
tem läuft ohne nennenswerte Leistungseinbußen in Echtzeit und kann hun-
derte von Personen gleichzeitig tracken. Und das, obwohl es alle wichtigen
Komponenten wie Erscheinungsmodell oder Kamerabewegungskompensati-
on enthält, die von vielen Methoden aus der Literatur nicht verwendet wer-
den, um eine geringe Laufzeit zu erreichen.
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1 Introduction

This thesis aims at the development of a real-time-capable framework for
tracking multiple persons in videos. Derived from an exhaustive study of
applicable modules, the focus lies on leveraging available information that
has been overlooked by previous approaches or used in an insufficient way.
This includes, for instance, the utilization of severely-occluded detections in
the tracking process and an improved fusion of motion and appearance in-
formation of targets.

The conducted research ismotivated in Section 1.1, where various applications
of multi-person tracking (MPT) are presented. Moreover, deficiencies of the
prevailing approaches and how these are addressed in this thesis are outlined.
Section 1.2 gives a comprehensive overview of typical challenges that emerge
when developing an MPT system. After that, the main contributions of this
thesis are summarized in Section 1.3, and finally, Section 1.4 describes the
structure for the remainder of this thesis.

1.1 Motivation

Tracking multiple persons in videos has a wide variety of practical applica-
tions. In recent years, the increasing availability of cameras in both public and
private spaces has lead to a growing demand for efficient MPT solutions. Next
to the major fields of surveillance [Elh21] and autonomous driving [Yur20],
MPT plays an important role in smart city applications [Luc21], robot navi-
gation [Fai19], human computer interaction [Laz17], customer behavior anal-
ysis [Qui16], and sports analysis [Cui23].
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In the surveillance context, the main goal of tracking is to help ensuring the
safety of people. For instance, crowd behavior analysis in mass events allows
to identify gatherings with critical person densities and makes early inter-
ventions possible [Kok16]. Moreover, person tracking can support security
personnel and law enforcement authorities with the prevention, mitigation,
or prosecution of suspects in cases of break-in, theft, vandalism, assault, or
other crimes, and can also help to find missing people [Cyb23]. During a pan-
demic, social distancing could be enforced by tracking pedestrians in public
areas [Pun21]. Furthermore, video surveillance is also applied frequently in
private spaces. Companies use cameras to guard their premises or to make
sure that certain sections are only entered by authorized personnel. In ad-
dition, employees at safety-critical workstations or construction sites can be
monitored to detect accidents quickly [Tei09].

The safety of people has also a high priority in automated driving. Besides
other traffic participants, pedestrians have to be detected and tracked robustly
such that the self-driving vehicle can react to persons crossing the street or
children jumping onto the road. MPT is also a key component for collision
avoidance and path planning in other robotic domains. Areas in which robots
already automatically navigate through spaces with people include produc-
tion facilities, where driverless transport systems are used to carry material
from one location to another [BMW24], or museums, where assistance robots
are employed to guide visitors [Tya21]. In the future, autonomous robots will
be employed more frequently in our daily lives [Tra22] and most require the
ability to recognize and track the persons in their surroundings.

The growing number of available surveillance cameras is not only beneficial
for safety and security reasons but also allows a variety of smart city appli-
cations that improve the quality of living and sustainability. For example,
by analyzing the traffic flow of vehicles and pedestrians, traffic light switch-
ing can be optimized and emissions reduced [Cho19]. Traffic statistics can
further be leveraged for infrastructure planning or improving bus timetables.
Moreover, smart cameras are able to identify traffic rule violations [Pat22] or
people trespassing on restricted footpaths and railways [Zha22b].
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Retail is another area in which the analysis of human behavior is relevant.
Customer flows in stores reveal information on where products should be
strategically placed in order to increase sales. Additionally, tracking indi-
vidual customers together with the products they select paves the way for
cashier-less checkout systems [Pol18] and thus has the potential to save man-
power and costs in the future.

MPT is also commercially used for sports analysis. Tracking all players as well
as the match ball in football, basketball, volleyball, etc. can be used to assess
running distances, team formations, or pass statistics [Cui23]. With an on-
going increasing commercialization of sports, automatic tactical analyses be-
come more and more important for coaches, scouts, and the reporting media.

While such analyses can be performed offline without critical time con-
straints, the majority of applications requires to process video streams in
real time. Especially in the surveillance domain—to which this thesis pays
particular attention—a fast response to safety-critical events is essential.
However, conventional video surveillance systems typically require human
operators who monitor multiple streams simultaneously, which is both costly
and prone to fatigue-related errors [Rob19]. Moreover, the complexity of
some scenes, for example, with a high person density, cannot be overlooked
in detail solely by a human. Therefore, automatic and efficient solutions to
assist human operators are required. Note that an assistive system can also
improve privacy, for instance, if it automatically processes the captured data
and only shows relevant incidents to the human operator [Ros23].

To meet the growing demand for intelligent surveillance systems, this thesis
aims at the development of a real-time-capable MPT framework. A strong
baseline method with well-established tracking components for detection,
re-identification (REID), and motion modeling from the literature is built.
Following the widely used tracking-by-detection (TBD) paradigm [Aha22,
Bew16, Cao23, Woj17, Zha22c]—where detections are generated indepen-
dently in each frame of the video and then associated to tracks based on
target cues—the base framework provides a high flexibility and is a good
starting point for further developments.
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A comprehensive analysis of all tracking components performed in this the-
sis shows that prevailing approaches do not utilize important information or
only in an ineffective manner. For instance, detections with severe overlaps
are typically filtered by the standard non-maximum suppression (NMS) tech-
nique and not further used in the tracking process, which makes the asso-
ciation task under strong occlusion very difficult. To address this issue, an
adapted NMS method is introduced that allows to use such heavily-occluded
detections for the first time in an MPT framework. Building on this, two
different association strategies are proposed that leverage the additional de-
tections to resolve ambiguities in the detection-to-track assignments under
severe occlusion, where usually most tracking errors occur.

In challenging scenarios, an effective utilization of available target informa-
tion is key for a high tracking accuracy. Many methods from the litera-
ture combine motion and appearance cues to enhance the association per-
formance [Aha22, Wan20, Woj17]. However, a direct comparison of these fu-
sion approaches is not reasonable as they are applied within various tracking
frameworks. Moreover, a detailed understanding of their workingmechanism
is often missing due to the lack of ablative experiments. To close this gap, an
in-depth investigation of existing fusion techniques is conducted within the
base framework of this thesis, which enables a fair comparison for the first
time and reveals several weaknesses of the examined techniques. Based on
the findings, new distance measures for a combined motion- and appearance-
based association are proposed that significantly outperform previous fusion
approaches on multiple datasets.

After the association, unassigned detections are used to initialize tracks.
While the decision whether a remaining detection belongs to a newly arrived
target or is a false positive (FP) is usually based on the confidence or conti-
nuity of the detection in consecutive frames, available context information
is not considered. Differently, a novel initialization strategy is suggested
that takes information about already tracked targets in the neighborhood
of unassigned detections into account, which improves the initialization
accuracy under occlusion and prevents the start of ghost tracks.
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The introduced tracking modules are combined to a sophisticated MPT
framework, which also comprises a method for camera motion compensation
(CMC). Since the most frequently applied CMC method in the MPT litera-
ture [Eva08] is computationally too expensive for a real-time application, an
alternative approach is suggested that achieves equally good results while
being about 30 times faster. The proposed MPT framework sets a new state of
the art (SOTA) on the standard benchmarks, and its generalization capabilities
are demonstrated through extensive experiments on several datasets.

Containing multiple modules, e.g., for detection, modelling of target motion
and appearance, or CMC, an MPT framework has a high computational com-
plexity. Many top-performing methods are thus not real-time capable, and
the runtime has been widely overlooked in the MPT literature. Therefore, a
detailed runtime analysis of the proposed framework is conducted, and bot-
tlenecks that prevent a fast execution are identified. Based on that, several
optimizations are suggested, for instance, employing a more efficient model
for appearance extraction and using a library for accelerated neural network
inference. The optimized MPT system is up to 40 times faster compared to
the baseline without sacrificing its performance. To the best of the author’s
knowledge, the proposed framework is the first MPT approach that achieves
SOTA results and contains all important tracking components, while being
able to track hundreds of targets in real time on standard hardware.

1.2 Challenges

MPT is a difficult task due to several aspects. Challenges arise from various
scene characteristics, different camera positions and properties, environmen-
tal conditions, or hardware constraints, to name a few. In Section 1.2.1, chal-
lenges resulting from the image acquisition are described. After that, MPT-
specific difficulties are discussed in Section 1.2.1 and lastly, challenges of real-
world applications are exploited in Section 1.2.3. The discussion is oriented
on a surveillance scenario but a multitude of aspects is also valid for other
application domains.
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1.2.1 Challenges Resulting from Image Acquisition

The position of cameras, their characteristics, and also environmental condi-
tions have influence on the success of an MPT system. Some of the challenges
that typically emerge from the imaging point of view are presented below.

Camera placement: Depending on the area to be monitored, the camera’s
field of view, and infrastructural constraints, the position and orientation of
the installed camera can differ significantly as displayed in Figure 1.1. Mostly,
images are acquired from an oblique view, which leads to several challenges,
in particular, a high variability in object size, frequent obstacle–person or
person–person occlusions, and small object sizes in the background. Beyond
that, if pan–tilt–zoom (PTZ) cameras are used or the camera is moving (most
commonly in non-surveillance applications), the introduced camera motion
has to be compensated in the tracking algorithm, which can be difficult and
computationally expensive. Thus, one part of this thesis deals with an effi-
cient compensation of camera motion.

Figure 1.1: A large diversity in camera views leads to a high variety in person size and appear-
ance on the image. Moreover, an oblique view results in frequent occlusions of tar-
gets. The images are taken from the PersonPath22 dataset [Shu22].
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Light andweather conditions: The appearance of an object in a camera im-
age depends not only on the viewing angle and the pose of the object, but also
on environmental factors that often cannot be controlled. Different illumina-
tions in indoor scenes and various times of day as well as weather conditions
(sunny, cloudy, rainy, snowy, etc.) outdoors lead to a high variability in the
appearance of captured images and persons as shown in Figure 1.2. This par-
ticularly renders the development of robust models for person detection and
REID challenging.

Figure 1.2: Different lighting indoors and various times of day as well as weather conditions
outdoors make the development of robust MPT methods difficult. The images are
taken from the PersonPath22 dataset [Shu22].
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Low image resolution: To save costs, cheap cameras with a small spatial
resolution are often employed. Furthermore, infrared cameras, which can be
leveraged to allow surveillance under poor lighting conditions or during night
time, usually have a lower resolution than RGB cameras that capture the visual
spectrum. But even with high-resolution cameras, the oblique view leads to
small objects in the image background being only depicted by a few pixels
as illustrated in Figure 1.3a. Detecting and tracking such targets with limited
image information is a hard task in MPT.

(a) (b) (c)

(d) (e)

Figure 1.3: Various challenges arising in MPT include (a) low resolution (in the background),
(b) image degradation like noise, blur, or compression artifacts, (c) similar look-
ing persons, (d) appearance changes of targets, and (e) distractions such as man-
nequins or reflections, posters, and statues of persons. The images are taken from
the MOT17 [Mil16], PersonPath22 [Shu22], and SOMPT22 [Sim23] dataset.

Limited frame rate: The average frame rate of surveillance cameras lies at
around 15Hz [IPV21], but cameras with lower rates are also in operation. A
small frame rate is unfavorable for MPT, since the positions of persons on
the image can change considerably between consecutive frames, especially
when people move fast. In such scenarios, the predicted positions by motion
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models can be imprecise so that further target cues like appearance might
be necessary to achieve a high tracking accuracy. Yielding complementary
information, much emphasis is put on an effective fusion of motion and ap-
pearance cues in this thesis.

Image degradation: The quality of a captured image can be deteriorated by
multiple factors such as noise, blur, or compression. Image noise manifests
in random changes of pixel colors or intensities and mainly originates from
disturbances in the sensor. Blurred images or regions lead to a loss of detail
with reduced sharpness, for instance. There are several causes for blur as mo-
tion of camera or targets and atmospheric effects. The compression of images
to save memory or bandwidth can also lead to degradation, e.g., undesirable
artifacts. Examples of degraded person images are depicted in Figure 1.3b.

1.2.2 Multi-Person Tracking-Specific Challenges

While many challenges of the previous section apply to most computer vi-
sion tasks, this section focuses on difficulties that are more specific to the
MPT problem, i.e., occlusion, similar looking persons, appearance changes,
irregular motions, distractions, and small objects.

Occlusion: One of the most severe challenges in MPT is occlusion. As men-
tioned before, persons are frequently concealed fully or partially by obstacles
or other targets due to the oblique view of the camera (Figures 1.1 and 1.2),
which easily leads to missing detections. In crowded scenes, duplicate de-
tections also occur because it is difficult for the detector to reason about the
boundaries of the targets. Both false negatives (FNs) and FPs complicate the
association task of assigning detections to tracks. Moreover, imprecise bound-
ing boxes under occlusion can deteriorate the motion states of the targets and
lead to inaccurate motion predictions. Besides that, extracted appearance in-
formation from occluded bounding boxes can be misleading as a significant
amount of image information might belong to another object. All these as-
pects contribute to a high risk for identity switches (IDSWs) when tracking
through occlusions. Therefore, specific strategies for handling occlusion are
required, which is one of the main focuses of this thesis.

9
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Similar looking persons: People with similar appearance can quickly be
confused by the tracking algorithm, especially when they are in close prox-
imity so that positional informationmight also be ambiguous as in Figure 1.3c.
Such situations occur frequently in public spaces with a high person density
including pedestrian zones or shopping malls. The problem becomes even
more severe at mass events like football games, for example, where fans wear
similar clothes making it very hard to distinguish them by appearance infor-
mation. Thus, leveraging accurate models for the motion prediction of targets
is of high importance, which is also considered in this thesis.

Appearance changes: On top of a potentially small inter-class appearance
variability considering each individual as a single class, a large intra-class
variability can further complicate the MPT task. Concretely, the appearance
of a person moving through the camera’s field of view alters on the image
due to changing distance and angle to the camera, shadows or other illumina-
tion factors, and occlusion by obstacles or other targets. This makes identity
preservation over a long time period challenging. An example of a person
with severe appearance changes due to different illuminations, perspectives,
and occlusions is depicted in Figure 1.3d.

Irregularmotions: Next to tracking persons in sports [Cui23] or while danc-
ing [Sun22], complex motion patterns can also be observed in common sur-
veillance scenarios. Pedestrians react to oncoming persons to avoid collisions
and typically keep a social distance to others. Besides complicated target mo-
tions, potential cameramovements can introduce further irregularities, which
makes the modeling of motion in MPT a non-trivial task.

Distractions: Objects or entities that look similar to persons but are no tar-
gets to be tracked are referred to as distractions. Examples are mannequins
in clothing stores, reflections of people in shop windows, advertising posters
of persons, and statues, which are depicted in Figure 1.3e. Such distractions
often lead to FP detections that impede the association task and thus can lead
to further tracking errors.

Small objects: In contrast to distractions that cause FPs, small objects are
easily overlooked by the detection model leading to FNs that also harm the
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tracking performance. As already noticed, small persons in the image back-
ground occur frequently in MPT due to the oblique view of the camera (Fig-
ure 1.3a). Even if the detector has recognized such a small person, the corre-
sponding bounding box might contain only a few pixels so that the extraction
of valuable appearance information for the association task is problematic.
Moreover, tracking small targets becomes especially challenging under se-
vere camera motion, as the image regions of the same person in consecutive
frames might not overlap, even if the camera frame rate is high.

1.2.3 Real-World Challenges

In addition to the so-far treated aspects, challenges arise when applying an
MPT system in a practical application including real-time processing, hard-
ware limitations, and requirements on the generalization ability.

Real-time processing: To solve the MPT task, different subproblems as the
detection of targets, motion modeling, and association of detections to tracks
have to be tackled. Since not all subproblems can be treated simultaneously,
multiple modules have to be executed one after another. Furthermore, addi-
tional models for extracting important appearance information and for com-
pensating potential camera motion are often employed to improve the track-
ing accuracy. As a consequence, the resulting MPT system is computation-
ally expensive, which makes a real-time processing challenging. In fact, many
SOTA methods in well-established MPT benchmarks [Den20, Mil16] are not
real-time capable and compromises between runtime and accuracy have to be
made in order to enable an application in the real world. In this thesis, a mul-
titude of runtime optimizations is performed to achieve real-time capability
while maintaining the high accuracy of the proposed MPT framework.

Hardware limitations: The hardware used in a real MPT system is limited in
several respects, mainly due to budget restrictions. For instance, cheap cam-
eras might have a low image resolution or poor sensor quality. Moreover,
the available compute power of employed central processing units (CPUs)
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and graphics processing units (GPUs) imposes constraints on the computa-
tional complexity of MPT algorithms. This holds true particularly if execution
should be performed on edge devices that often have very limited resources.

Generalization ability: Current MPT frameworks usually comprise deep
learning models for person detection or appearance feature extraction. The
performance of such data-driven approaches in practice highly depends on
the extent of domain shift between training and inference, i.e., how much
the data distribution in the real-world application differs from the data the
models have been trained on. Due to the large diversity in image appearance
and tracking scenarios, the development of a robust real-world MPT system
is a challenging task.

1.3 Contributions

The major goal of this thesis is the development of a real-time-capable MPT
framework with focus on real-world surveillance scenarios. In the following,
the main contributions are summarized.

• A baseline method with well-established components from the MPT lit-
erature is built [Sta23a] including strong modules for detection, REID,
and motion modeling [Sta22b]. This base framework is not only repre-
sentative for many existing MPT approaches, but is also a good start-
ing point for further developments. A thorough analysis of all modules
conducted in this thesis reveals several shortcomings of prevailingMPT
methods: the non-utilization of occluded detections, a poor fusion of
motion and appearance information, and a track initialization that does
not take the presence of already tracked targets into account.

• An adapted NMS [Sta21c] is proposed that keeps a set of severely-
occluded detections next to the standard set and allows to leverage
the additional detections in the association for the first time. Building
on that, two different approaches to utilize the occluded detections
are introduced in this thesis. First, a two-stage association strategy
termed BYTEv2 [Sta23c] matches them with the unassigned tracks
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from the first association stage, while preventing FP detections from
starting incorrect tracks. Second, the tracking with clusters (TWC)
approach [Sta21c] leverages information about track positions to iden-
tify regions with missing detections, in which occluded detections are
integrated. Both methods simplify the association task by reducing the
number of missing detections under occlusion, where naturally most
tracking errors occur.

• Since a sophisticated combination of motion and appearance informa-
tion is important for a high association accuracy [Sta20, Sta21a], pop-
ular fusion strategies are integrated into a common base framework in
this thesis, which allows a fair comparison for the first time. Further-
more, an in-depth analysis of their working mechanisms is conducted,
and several weaknesses of the existing methods are identified. Based
on the findings, novel distance measures for a combined motion- and
appearance-based association are introduced [Sta23b, Sta23d] that sig-
nificantly outperform previous fusion approaches.

• Several works have shown that a dedicated treatment of occlusion is
beneficial in MPT [Spe21, Sta21b]. To improve the track initialization
process under occlusion, an occlusion-aware initialization (OAI) is pro-
posed [Sta23b]. In contrast to existing initialization techniques that rely
mostly on the detection confidence to assess whether an unassigned
detection belongs to a newly arrived target, the OAI additionally takes
the surroundings of a detection into account by leveraging information
from already tracked targets. This prevents the start of ghost tracks
under occlusion and thus avoids further tracking errors.

• A fast CMC approach based on the matching of image keypoint de-
scriptors is introduced for the use in MPT [Sta23c]. Extensive exper-
iments with various keypoint detectors and descriptor extractors are
conducted. The resulting method performs slightly better than the most
frequently used CMC method in the MPT literature while being up to
30 times as fast and thus allows real-time processing.
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• Both the single components and the overall tracking framework of this
thesis are evaluated on multiple MPT datasets under various settings.
The superiority compared to previous methods and a strong generaliza-
tion ability are shown through comprehensive experiments. Moreover,
the proposed framework sets a new SOTA on the standard MPT bench-
marks, which indicates a good suitability for real-world applications.

• A detailed runtime analysis of the proposed tracking framework is car-
ried out, and bottlenecks that hinder a fast computation are identified.
Consequently, several optimizations are introduced such as leveraging
a more efficient REID model, executing modules in parallel, and utiliz-
ing a high-performance library for neural network inference. The op-
timized framework runs up to 40 times faster while maintaining SOTA
performance. To the best of the author’s knowledge, the optimized
framework of this thesis is the first SOTA approach for MPT that com-
prises all important modules as REID or CMC and is able to track hun-
dreds of persons in real-time on standard hardware.

1.4 Thesis Outline

The rest of this thesis is structured as follows. Related literature is thoroughly
reviewed in Chapter 2. A categorization of MPT approaches is made shedding
light on various aspects of the task, and many popular works are discussed.
Moreover, research areas closely related to MPT are briefly treated. After that,
the general concept of the proposed framework of this thesis is introduced in
Chapter 3. Then, Chapter 4 describes the experimental setup for assessing
the performance of tracking methods including a description of the utilized
datasets, evaluation measures, and protocols. Chapter 5 is devoted to the base
framework that is built using a multitude of established modules from the
MPT literature. A detailed analysis is conducted revealing several shortcom-
ings of existing MPT approaches, which is the basis for further developments
covered in Chapter 6. First, the focus is put on an improved utilization of
detections and tracks under occlusion. This is achieved by two different ap-
proaches that integrate occluded detections filtered by an adapted NMS into
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the tracking process and the OAI that leverages positional information to im-
prove the track initialization in crowded scenes. The second part of Chapter 6
focuses on various fusion approaches for motion and appearance cues, and
novel distance measures for an improved combination of the two information
sources are suggested. Together with a new method for CMC, the proposed
modules are combined to a sophisticated tracking framework, which is eval-
uated and compared with the SOTA. Afterwards, Chapter 7 deals with the
runtime optimization of the proposed MPT framework. It is demonstrated
that, despite the high complexity of the overall system, some modifications
lead to an optimized version that can run in real-time while maintaining the
high accuracy. Finally, Chapter 8 draws conclusions from this thesis and out-
lines ideas for future work.
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The goal of this thesis is to develop an MPT framework that focuses on an
improved utilization of available information in the tracking process. Diverse
approaches to leverage the useful information for solving the MPT task can
be found in the literature and are presented in this chapter. First, Section 2.1
gives a comprehensive overview of existing MPT methods. After that, re-
search areas closely related to MPT are briefly discussed in Section 2.2.

2.1 Multi-Person Tracking

An MPT system typically comprises multiple modules that are responsible
for solving different subtasks, e.g., detection, motion modeling, appearance
extraction, affinity computation, and track management. Thus, several ap-
proaches have evolved that focus on various aspects of the MPT problem.
Possibilities to categorize MPT methods are given in Section 2.1.1, before the
most common types of approaches are thoroughly presented in Section 2.1.2.
Finally, a short summary is given, and the proposed framework of this thesis
is put in context with existing approaches in Section 2.1.3.

2.1.1 Categorization

As differences cannot only be observed within specific tracking modules, but
the whole structure and the working mechanism of an MPT system can vary
significantly, several categorizations of existing approaches are feasible. This
can also be seen when studying multiple survey papers that classify MPT
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methods differently [Agr24, Bas22, Cia20, Du24, Luo21]. Moreover, the fo-
cus of MPT researchers has changed over the years. For instance, it is found
by analysis of the SOTA in [Lea17] that before 2015, the attention lied on op-
timizing the data association problem, whereby the task of linking detections
to tracks was often solved with graph-based methods. After 2015, the focus
shifted towards the design of strong appearance cues for assessing the simi-
larity of different objects. As predicted by the authors of the study, powerful
deep learning-based methods have been used more frequently for extracting
appearance features in the following years, replacing traditional hand-crafted
solutions. Furthermore, new tracking paradigms have evolved with the de-
velopment of new deep learning architectures such as transformers [Vas17].

Before the most common approaches are presented in the next section—
grouped mainly based on the employed architecture—the following char-
acterization of MPT approaches is made on a more abstract level. One can
categorize MPT methods based on

• whether they work online or offline,

• the tracking paradigm they follow,

• which tracking cues (motion, appearance, etc.) are leveraged,

• whether they use hand-crafted solutions or rely on deep learning, or

• whether tracking is preformed in 2D or 3D.

Note that this list does not claim to be complete but gives a good overview
of several aspects of MPT. In the following, the mentioned distinctions are
briefly discussed, and advantages as well as disadvantages of the respective
categories are elaborated.

Online vs. Offline

Offline trackers [Cet23, Lar24, Tan17, Wan22a, Zha08], also referred to as
batch methods, process the video as a whole, whereas online trackers [Ber19,
Bew16, Woj17, Zha21, Zha22c] treat each frame of a video sequentially, hav-
ing only access to the information up to the current time step. Thus, online
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methods are also termed causal. Being able to look into the future of a spe-
cific time step, offline methods are more robust to occlusions and theoretically
can achieve better performance because more information is available. How-
ever, they suffer from a high computational complexity, which can grow ex-
ponentially with the length of the processed video. Offline methods typically
build a graph, in which the nodes and edges represent detections and possi-
ble links between detections, respectively. To solve the MPT task, different
graph optimization strategies have been proposed including min-cost flow al-
gorithms [Ber11, Pir11, Zha08], multicut approaches [Tan15, Tan16, Tan17],
or generalized maximum multi-clique [Deh15]. Despite offline trackers hav-
ing the potential to achieve higher accuracy, the current SOTA is dominated
by online methods. One reason for this is that offline trackers are not suit-
able for real-time applications, which is why the focus of this thesis lies on
online approaches.

Tracking Paradigm

Most MPT methods follow the TBD paradigm performing detection and as-
sociation independently [Aha22, Bew16, Cao23, Woj17, Zha22c]. A person
detector is applied on each frame of the video and afterwards, the detections
are linked to build tracks. The TBD paradigm can be used both in online
and offline approaches and provides a high flexibility. For instance, different
cues such as motion [Bew16, Qin23, Zha22c] or appearance [Aha22, Du23,
Woj17] can be leveraged in the association. Furthermore, it is easily possible
to change individual components of a TBD-based system, for example, de-
tector or motion model, to adapt to different application domains or runtime
constraints.

Another popular paradigm termed tracking-by-regression (TBR) was first in-
troduced in [Ber19] and adopted by following works [Bra20, Hor20, Liu20,
Xu20]. Tracked boxes are taken as input to the regression network head of the
two-stage detector Faster R-CNN [Ren17] in consecutive frames, updating the
position and size of tracked targets continuously. Thus, the association task
is solved implicitly and the design of specific measures to assess the similarity
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of person detections becomes obsolete. While this simplifies the association
procedure, it precludes the inclusion of meaningful cues such as appearance
features. TBR is not limited to Faster R-CNN or other two-stage detectors.
In [Zho20], the single-stage point-based detector CenterNet [Zho19b] is ex-
tended by a network branch that is trained to predict the motion of targets
from two consecutive input images, supported by a heatmap that encodes the
track center positions from the previous time step.

Besides TBR, the tracking-by-attention (TBA) [Mei22, Sun21a, Zen22, Zhu23]
paradigm aims at integrating the detection and tracking task more tightly.
The transformer architecture [Vas17]—originally introduced to solve natural
language processing tasks but meanwhile adopted for many computer vision
problems—is used to leverage the concept of attention on global frame-level
features. Some TBA approaches are trained end-to-end and learn to reason
about track initialization, identity, and spatio-temporal trajectories purely
from image data. Exemplary TBAmethods will be presented in more detail in
the next section. While learning the wholeMPT task in an end-to-endmanner
removes the need for separate appearance or motion extraction modules and
association strategies, the high flexibility of TBD-based methods is lost. Con-
sequently, integrating specific knowledge is difficult in TBA approaches. As
this thesis strives for improving the available information in MPT, the flexible
TBD paradigm is used as a basis for the proposed tracking framework. This
design choice is supported by the observation that the vast majority of current
SOTA trackers still follows the well-established TBD paradigm.

Used Tracking Cues

Different object cues can be leveraged for assessing the similarity of detections
to form tracks, and one can classify MPT methods based on what kind of cues
they apply. A large amount of trackers is motion-based, i.e., target positions
in the next frame are predicted by a motion model and are compared with
the positions of detections in that frame. Typically, a Kalman filter [Kal60]
is employed and either the Mahalanobis distance [Wan20, Woj17, Yi24] or
intersection over union (IoU) [Aha22, Bew16, Zha22c] is used as similarity
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measure. Further examples for motion cues can be found in [Bra20], where
geometric features are designed based on position and size information, and
in [Pan20], where even the motion direction is considered. Two reasons for
the widespread use of motion information in MPT are the generally fast com-
putation and the usually high frame rates of videos. This property ensures that
the change of target positions between consecutive frames is limited, leading
to quite accurate motion predictions even with simple linear motion models.

Another highly important tracking cue is the appearance of targets. While
earlier works used hand-crafted features to describe the appearance of de-
tected persons [Ben11, Bre09, Cho15, Oku04], nowadays, deep learning-based
models are applied [Du23, Sun21b, Wan21, Woj17, Zha21]. A common strat-
egy is to adopt networks from the person REID field and use them as module
for extracting appearance features within an MPT framework [Aha22, Du23,
Woj17]. As these networks can be computationally expensive, it is hard for
appearance-based MPT approaches to achieve real-time capability.

Several works use both motion and appearance information, and different fu-
sion strategies have been proposed [Aha22, Du23, Wan20]. This thesis also
leverages both information sources and strives at combining them in the best
possible way [Sta23b, Sta23d]. Further cues exploited in MPT are human pose
information [Bao21, Tan17] and features that model the relation or interac-
tion of targets [Liu20, Sad17, Wen16].

Hand-Crafted vs. Deep Learning-Based

The distinction of approaches in hand-crafted solutions vs. deep learning-
based techniques can be made for various subtasks of the MPT problem. As
mentioned earlier, traditional cues like optical flow [Cho15, Iza12, Rod09],
color histograms [Ben11, Iza12, Oku04], and histogram of oriented gradi-
ents [Bre09, Cho12, Iza12] have been largely replaced by appearance features
generated from neural networks [Aha22, Du23, Woj17]. Likewise, traditional
detectors used in MPT [Dol14, Fel04, Yan14] have been substituted by deep
learningmodels [Ge21, Ren17, Zho19b]. While somemethods also try to learn
the association task from data [Chu19, Xu20] including transformer-based
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approaches that are able to train the whole MPT pipeline end-to-end [Mei22,
Sun21a, Zen22], the majority of current SOTAmethods relies on hand-crafted
association and track management strategies [Aha22, Cao23, Jun24, Yan23,
Zha22c]. The same holds true for the motion modeling task that is still most
often solved using the traditional Kalman filter [Du23, Liu23, Men23, Yi24,
Zha22c]. This thesis also combines deep learning models with hand-crafted
solutions allowing an easy integration of specific knowledge and to apply es-
tablished heuristics, which is difficult in end-to-end-trainable approaches.

2D vs. 3D

Another possibility of differentiatingMPTmethods is whether tracking is per-
formed in image space (using only the projected 2D data) or in world space
(when reliable 3D information is available). In the following, these approaches
are denoted by 2D vs. 3D based on the originally available information. Note,
however, that evenwith available 3D data, trackingmay be performed on a 2D
ground plane—yet, in this case, Euclidean world coordinates can be applied in
contrast to the perspective-projected image coordinates in cases when only
2D information is available.

The decision whether 2D or 3D trackers are applied is closely related to the
types of available input data and thus also to the application area. In the sur-
veillance domain, standard monocular RGB cameras are typically employed
leading mostly to 2D solutions. Contrarily, in autonomous driving, the avail-
ability of various kinds of sensors including stereo cameras, LiDAR, and radar
allows for robust tracking in three dimensions [Fro18, Lei08, Zha19]. An-
other type of 3D approaches are such based on RGB-D cameras (with depth
information), which are surveyed in [Cam17]. Moreover, multi-camera net-
works with an overlapping field of view make the exploitation of 3D informa-
tion possible [Bri19]. There also exist works that extract 3D cues like depth
from 2D monocular images [Den22, Khu21, Sha18b] to support the associa-
tion task. While gaining additional information when considering tracking
in 3D—which surely can be beneficial for the overall tracking performance—
several challenges arise including a higher computational complexity and a
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more expensive acquisition of labeled data compared to 2D methods. There-
fore, this thesis develops an MPT framework that works on 2D images of
monocular RGB cameras.

2.1.2 Common Approaches

The previous section already gave a high-level classification of existing MPT
methods and has discussed advantages and disadvantages of different track-
ing paradigms. Next, the related literature is reviewed from a more technical
perspective. Over the years, various groups of approaches have emerged for
several reasons. For instance, joint detection and embedding (JDE) methods
have been developed as efficient alternatives for previous separate detection
and embedding (SDE) approaches, which suffer from a high computational
complexity due to the consecutive execution of two networks. Moreover,
newer deep learning architectures such as transformers or graph neural net-
works (GNNs) have influenced the field of MPT. In the following, some repre-
sentatives of different groups of MPT approaches are presented. This includes
works with focus on motion modeling, SDE approaches, JDE networks, as well
as methods withGNNs and transformers. Other MPT approaches with less rel-
evance in recent years (e.g., probabilistic methods) are only discussed briefly.

Focus on Motion Modeling

The by far most common approach to model the motion of targets in MPT
is to apply a linear Kalman filter [Kal60] using a constant velocity assump-
tion [Aha22, Bew16, Cao23, Du23, Gao24, Han22, Mag23, Woj17, Yi24,
Zha22c]. Different formulations for the motion state vector are employed.
For example, SORT [Bew16] models the motion state as a 7-tuple comprising
𝑥- and 𝑦-coordinates, the bounding box size (area) and aspect ratio as well
as the derivatives of 𝑥, 𝑦, and size. In DeepSORT [Woj17], the motion vector
is eight-dimensional including 𝑥, 𝑦, aspect ratio and height of bounding
box as well as the respective derivatives. Instead of considering the as-
pect ratio or size, box width and height are directly modeled in [Aha22].
Based on the classical Kalman filter formulation, several modifications have
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been proposed in the literature. The Noise Scale Adaptive (NSA) Kalman
filter [Du21] leverages the confidence score of a detection to dynamically
adapt the measurement covariance matrix in the Kalman filter update step
to account for the uncertainty of a detection. In [Gao24], a learned lo-
calization score is used instead of the classification-based confidence to
scale the covariance matrix. ConfTrack [Jun24] recognizes that the NSA
formulation can only reduce the measurement noise in case of confident
detections and introduces an amplifying factor that allows also to increase
the noise when confidence scores are low. Moreover, ConfTrack keeps the
box size fixed during prediction to prevent the effect of unstable box size
variation of occluded targets. This is inspired by the height preservation
(HP) module—which was introduced in a previous work from the author of
this thesis [Sta22b]—that enforces a constant bounding box height in the
Kalman filter prediction step. In [Cao23], it is found that the linear motion
assumption results in a square-order error accumulation w.r.t. time when
observations are missing in consecutive frames due to occlusion. The authors
suggest to focus more on the high-quality observations of modern detectors
and propose an observation-centric Kalman filter.

As long as precise detections to update the target states and a high camera
frame rate are available, Kalman filter-based motion modeling is very accu-
rate in static cameras. However, one encounters moving cameras in some
applications, such that the linear motion assumption is strongly violated. To
counteract this, several approaches for CMC have been applied in the MPT
literature. Most works [Ber19, Du23, Han22, He21] use the enhanced cor-
relation coefficient (ECC) maximization technique from [Eva08]. Since this
image registration method is computationally expensive and hinders a real-
time capability of the whole MPT system, a fast CMC alternative based on
the matching of efficient ORB descriptors [Rub11] is proposed in this the-
sis [Sta23c]. Another fast solution to consider potential camera motion can
be found in [Nas23]. The positional differences of assigned track–detection
pairs are averaged in both spatial directions and then subtracted from the
track boxes, before the association is repeated.
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Both the target motion from a Kalman filter and the estimated camera motion
are leveraged in MAT [Han22] to dynamically set the time interval a lost track
can be re-activated. Similarly, the severity of camera motion is utilized to de-
terminewhether a lost track should be terminated in a previous work from the
author of this thesis [Sta23c]. In contrast to the aforementioned approaches
that model motion in the image plane, UCMCTrack [Yi24] employs a Kalman
filter on the ground plane, transforming detections in the image plane with
a projection matrix derived from the (estimated) camera parameters. Camera
motion is then explicitly modeled as process noise in their Kalman filter for-
mulation, removing the need for computing a transformation for each frame
of the video.

Other related MPT works with a focus on motion modeling can be found
in [Zho20], where the target displacements in two consecutive frames are
learned from image data, and in [Qin23], where a transformer-based module
for modeling the interaction of different targets is leveraged in the motion
prediction. Relying on an accurate motion model, many works confine them-
selves to a simple association using IoU as similaritymeasure and thus achieve
high inference speeds [Bew16, Boc17, Cao23]. In this thesis, a strong motion
model, based on the combination of NSA Kalman filter [Du21] and the HP
module [Sta22b], is also employed. However, appearance information is ad-
ditionally leveraged following an SDE approach. This type of MPT category
is presented in the following.

Separate Detection and Embedding

Besides motion cues, the appearance of targets plays an important role
in MPT. SDE methods comprise—next to an object detector and a motion
module—an additional model for extracting appearance information. A deep
neural network from the person REID community is often adopted, which
takes the cropped image region of a person detection as input and computes
a high-dimensional embedding vector as output. One of the most popu-
lar SDE frameworks is DeepSORT [Woj17], which applies a wide residual
network [Zag16] for appearance feature extraction. The cosine distance
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between such feature vectors is then used as similarity measure, while the
Mahalanobis distance between Kalman filter-predicted tracks and detections
is used for motion-based gating, i.e., matching restrictions are applied based
on spatial constraints. Another contribution of DeepSORT is a matching
cascade that gives priority to tracks that have been observed more recently
when associating the current detections. A few years later, the further devel-
opment StrongSORT [Du23] made various modifications to the DeepSORT
framework. Most importantly, a more recent and stronger appearance model
termed BoT (bag of tricks) [Luo19] is employed, and instead of storing the
appearance embeddings of a track in a large feature bank (100 in Deep-
SORT), only one embedding is maintained that is updated in an exponential
moving average (EMA) manner. This not only improves performance but
also reduces processing time significantly. Moreover, instead of using the
motion-based Mahalanobis distance only for gating, it is combined with the
appearance-based cosine distance by a weighted sum. However, it is found
in this thesis that IoU-based measures perform better than the Mahalanobis
distance, and improved measures for a combined motion- and appearance-
based association are proposed [Sta23b, Sta23d]. Further improvements of
StrongSORT include the application of the NSA Kalman filter [Du21] and
the incorporation of the ECC maximization technique [Eva08] for CMC.
Additionally, the matching cascade from DeepSORT is discarded as it limits
the tracking accuracy due to unnecessary prior constraints [Du23].

Apart from that, performing the association inmultiple stages can also be ben-
eficial for the tracking performance. A popular two-stage matching scheme
has been proposed in ByteTrack [Zha22c]. This two-stage approach splits the
set of detections in such with low confidence and high confidence by a simple
threshold. The low-confidence detections—that have not been used in pre-
vious MPT approaches—are matched with the remaining unassigned tracks
from the first association stage, which significantly enhances recall. One im-
portant finding from [Zha22c] is that appearance features extracted from low-
score detection boxes are unreliable as they often contain severe occlusion or
motion blur. Thus, appearance information is only used in the first associ-
ation stage. The two-step matching strategy has been adopted by following
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works [Aha22, Ren23], and other trackers also introduce multi-stage match-
ing schemes [Jun24, Liu23, Men23, Yan23]. This thesis proposes a two-stage
association strategy termed BYTEv2, a further development of the BYTE asso-
ciation [Zha22c], that enables the utilization of previously discarded heavily-
occluded detections in the tracking process [Sta23c].

Several methods [Aha22, Du23, Jun24, Mag23] use the already mentioned
BoT REID network [Luo19] showing the high importance of strong meth-
ods for appearance feature extraction. BoT-SORT [Aha22] combines appear-
ance cosine distance with IoU distance of track–detection pairs by taking the
minimum and introduces additional constraints for both cues to enhance the
association accuracy. Deep OC-SORT [Mag23] integrates appearance infor-
mation into the OC-SORT framework [Cao23] and additionally proposes an
adaptive weighting of appearance features based on the diversity of embed-
dings. Another recent SDE approach termed FineTrack [Ren23] enhances the
discrimination ability of appearance embeddings by learning part-based fea-
tures, which is especially beneficial under occlusion.

Joint Detection and Embedding

Due to the typically high computational complexity of SDE approaches,
several works have been proposed that perform detection and appearance
embedding extraction in a single JDE network. The first of this kind is
TrackR-CNN [Voi19], which extends the detection and segmentation net-
work Mask R-CNN [He17] by an embedding head for identity association.
To integrate more temporal context, image features from multiple input
frames are aggregated with 3D convolutions, before the region proposal
network and subsequent heads for detection, segmentation, and appearance
embedding are applied. Another JDE work based on a two-stage detector
is proposed in [Shu20]. Faster R-CNN [Ren17] is—next to an embedding
branch—enlarged by a Siamese tracking branch to predict the target positions
in consecutive frames, inspired by the single object tracking (SOT) literature.
These two-stage approaches still suffer from a large runtime when a high
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number of targets is present, because the appearance features have to be
computed for each person detection separately.

To counteract that, a single-stage detection approach, based on the Feature
Pyramid Network architecture [Lin17a], is equipped with an embedding
branch in [Wan20]. Such an efficient single-stage JDE architecture has been
taken over by many following works [Lia22, Lu20, Ren24, Wu21, You23,
Zha21]. For instance, RetinaTrack [Lu20] uses an additional embedding head
on top of the popular RetinaNet detector [Lin17b].

Following works [Lia22, Yu23, Zha21] focus on the problem that learning
detection and appearance features are two competing tasks: While features
from different targets (but the same object category, namely person) shall be
similar for the detection task, they should be dissimilar for the REID task.
FairMOT [Zha21] is the first work that focuses on the fairness of learning
both tasks simultaneously. The authors find that anchor boxes from com-
mon detectors lead to many ambiguities during the training of appearance
features as multiple anchors can correspond to the same identity and also,
several identities can correspond to a single anchor. To solve this issue,
FairMOT builds upon the anchor-free detector CenterNet [Zho19b] and
extracts appearance features at the object centers. On top of this, Relation-
Track [Yu23] introduces a module that decouples the learned representations
into detection-specific and REID-specific features. Task-dependent repre-
sentations are also the focus in [Lia22], where a cross-correlation network
is suggested for learning particularities and commonalities of features for
detection and REID. Further improvements are achieved with a scale-aware
attention network, which makes the features more robust to changes in
object size, and the upgrade of the underlying detection architecture from
YOLOv3 [Red18] to YOLOv5 [Joc20]. Other works with feature enhancement
modules include [Wan21, Wu21]. In [Wu21], a tracking offset is learned
to propagate features from previous frames, which allows for an improved
temporal aggregation, and in [Wan21], a GNN is trained to model the re-
lation of targets, which supports the learning of discriminative features for
detection and REID.
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One of the best-performing JDE approaches in MPT benchmarks is termed
UTM [You23]. Its main component is an identity-aware feature enhancement
module that uses embeddings from already tracked targets to boost current
detection and appearance features by various attention mechanisms. Further
components include a learnable memory aggregation module for identity em-
beddings and an association branch for identity matching. Despite its high
complexity, UTM falls behind the best MPT frameworks in the current SOTA,
which is dominated by SDE methods or approaches with focus on motion
modeling. This indicates that existing JDE solutions cannot (yet) completely
solve the problem of the competing tasks of detection and REID within a sin-
gle network, which is why this thesis follows a SDE approach.

MPT with Graph Neural Networks

GNNs are special types of artificial neural networks for processing data that is
structured as a graph. As mentioned earlier, the MPT task can be formulated
as a graph problem, where detections correspond to the nodes of a graph
and the edges between detections from different time steps represent possible
links. One of the best-known earlier methods that applies GNNs for MPT is
called MPNTrack [Bra20]. The authors introduce a so-called message passing
network (MPN) that is able to propagate information encoded in the nodes
and edges throughout the graph via learnable message passing steps. Initially,
appearance features extracted by a convolutional neural network (CNN) and
geometric cues are used for the node and edge embeddings. After several
message passing steps that iteratively aggregate neighboring embeddings, a
trained multi-layer perceptron is applied to classify whether the edges are
active, i.e., the adjacent nodes (detections) belong to the same target. The
offline method MPNTrack allows to leverage higher-order information and
reason globally over the set of detections and thus shows a good performance
in identity preservation over longer time periods.

Another usage of GNNs can be found in [Dai21]. First, an iterative graph
clustering method is used to generate an over-complete and diverse set of
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trajectory proposals. Then, a GNN is trained to predict scores that measure
the correctness of the trajectory proposals.

A major problem of graph-based approaches including GNN-based MPT
methods is the increasing computational complexity and memory require-
ments when considering large time spans that lead to very large graphs
(even when some pruning strategies are applied). This issue is addressed
with a novel hierarchical approach termed SUSHI [Cet23]. The input video is
divided into short clips, in which the GNN from [Bra20] is used to generate
short trajectories. Then, the same GNN is applied again, whereby the nodes
correspond to tracks instead of detections and the appearance features of a
track are computed by averaging its detection embeddings, which increases
robustness. Furthermore, the motion information encoded in the tracks’
embeddings is beneficial for the following association tasks. Repeating
the process multiple times leads to tracks with increasing length until the
timespan covers the whole input video.

All aforementioned works are offline approaches but there exist also online
trackers that make use of GNNs. For example, the JDEmethod GSDT [Wan21]
enhances the features for appearance and detection by leveraging object re-
lations modeled with a GNN. In [You23], an identity association branch is
proposed that builds a graph between so-far tracked targets and new detec-
tions and uses cross-graph message passing for feature aggregation. Another
approach can be found in [Qin23], where a GNN is used within a motion pre-
diction module to fuse interaction cues of targets. Due to their strong capa-
bility of modeling relations, an increasing usage of GNNs in the recent MPT
literature can be observed.

MPT with Transformers

Next to GNNs, transformer [Vas17] is another popular deep learning archi-
tecture leveraged in some MPT methods. Several works build upon the de-
tection transformer (DETR) [Car20], an encoder-decoder structure in that the
encoder extracts image information and the decoder finds the best correla-
tions of the encoded image features and so-called object queries to perform
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the detection task. To extend DETR (or its further development Deformable
DETR [Zhu21]) to a tracking framework, the concept of track queries has
been introduced in [Mei22, Sun21a]. Different from object queries, which
are responsible for initializing new tracks in transformer-based tracking ap-
proaches, track queries encode the appearance and location of already tracked
targets and are transferred to consecutive frames and updated continuously.
TransTrack [Sun21a] learns two parallel decoders for object and track queries
that yield a set of detection and track boxes, respectively. Those boxes are
then associated with the Hungarian algorithm [Kuh55] using IoU as similar-
ity measure. In contrast, TrackFormer [Mei22] trains only a single decoder
that processes object and track queries jointly and learns the association task
implicitly in an end-to-end manner. This also holds true for MOTR [Zen22],
which extends the framework by a temporal aggregation network that is re-
sponsible for fusing information of previous track queries saved in a query
memory bank. Another approach that focuses on temporal information en-
coded in track queries can be found in [Zhu23], where a temporal attention
module for improving the propagation of features to consecutive frames is
proposed. Furthermore, two spatial attention modules are introduced for
object-to-object and object-to-input attention that allow to reason globally
about the relation of the tracked targets.

While queries are decoded into bounding boxes in the aforementioned meth-
ods, TransCenter [Xu23] decodes them into center points motivated by point-
based detectors like CenterNet [Zho19b]. This change in object representa-
tion can be advantageous in crowded scenes, where bounding boxes of tar-
gets strongly overlap. A follow-upwork finds that transformer-based trackers
struggle to bridge longer occlusions, since the spatial information encoded in
the track queries can prevent a REID if the target location has changed too
much [Gal22]. Thus, the authors integrate a separate REID model and further
standard MPTmodules, e.g., a Kalman filter, into the TransCenter framework.

Apart from end-to-end-learnable trackers, the transformer architecture is
also employed within other tracking paradigms to make use of the global
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reasoning capabilities of the attention mechanism. For instance, Relation-
Track [Yu23] proposes a guided transformer encoder to enhance the discrim-
ination power of learned appearance features within a JDE network. Another
example is FineTrack [Ren23], which uses a parallel structure inspired by the
multi-head self-attention of the transformer architecture to focus on different
parts of the target and learn fine-grained representations.

Further MPT Approaches

This section shortly covers MPT approaches that are of less relevance for this
thesis, but were frequently used in earlier works. This includes many variants
of probabilistic trackers that are often based on probability hypothesis den-
sity filters [Gra12, Lin06] or multiple hypothesis tracking approaches [Kim15,
Rei79]. More recently, it was found in [Lar24] that target motion and false
detection characteristics in visual tracking differ significantly from radar or
sonar tracking, where many probabilistic approaches come from. They pro-
pose a novel probabilistic framework that accounts for these differences and
achieves competitive results compared to the SOTA.

Being omnipresent in the SOT literature, Siamese networks [Bro93] have also
been used for MPT [Jin20, Shu20, Shu21]. These networks comprise two sib-
ling branches with shared weights generating output vectors from two differ-
ent inputs and are trainedwith a similaritymeasure. In the context ofMPT, in-
put patches from the same target shall yield a high similarity, whereas images
from different targets should have a small similarity. In this sense, they are
closely related to REID networks that are frequently used in SDE approaches.

Another type of architecture that has been employed frequently in MPT are
recurrent neural networks (RNNs). Building connections between some net-
work outputs to inputs of the next time step, they are suitable to process se-
quential data and encode temporal relations. RNNs have been used to model
the change in target motion or appearance over time [Fan18, Tok21, Wan18a]
or even to perform data association and track management [Mil17]. Recently,
RNNs have been largely replaced by the transformer architecture [Vas17],
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which can better capture long-range dependencies that are hard to model in
recurrent structures.

2.1.3 Summary and Discussion

This thesis aims at improving the utilization of available information in the
tracking process. The focus lies on leveraging the generated detections in
the association most effectively and enhancing the use of object cues such
as appearance and motion when assigning detections to tracks. For this, the
TBD paradigm is followed as it provides a high flexibility allowing to tune
individual tracking components separately, which is not possible with end-
to-end-learnable MPT approaches based on transformers.

Most tracking frameworks using GNNs are offline methods that process the
input video as a whole and are thus not suitable for real-time applications
such as autonomous driving or surveillance tasks. Differently, the goal of
this thesis is to design an efficient online framework that can be applied for
various MPT applications.

Trackers that fuse motion and appearance information obviously have a
higher potential than trackers that restrict themselves to one information
source. Therefore, this thesis exploits both cues and follows a SDE approach
as the related literature indicates that JDE approaches fall behind in terms
of performance due to the competition between detection and REID when
learned in a single network.

In this thesis, a base framework is built that uses well-established TBD com-
ponents like the NSA Kalman filter [Du21] for advanced motion modeling
and the BoT REID model [Luo19] for appearance feature extraction. Due to
these design choices, the base framework is representative for many popular
MPT approaches and is a good starting point for further developments. Since
efficiency is an often overlooked issue in the MPT literature—many SOTA
approaches have a high computational complexity or do not report their run-
time [Lar24, Mag23, Men23, Qin23]—this thesis also focuses on the real-time
capability of the whole MPT framework. Next to the limited availability of 3D
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annotations inMPT datasets, the real-time constraints are a reasonwhy track-
ing is performed in the 2D image plane. To summarize, the goal of this thesis
is to develop a real-time-capable TBD-based SDE framework for 2DMPTwith
a focus on an improved utilization of detections and target information.

2.2 Related Research Areas

The previous section gave a thorough overview of the MPT literature and has
placed this thesis in context with existing approaches. In the following, fur-
ther related research areas are briefly described, emphasizing the connection
to the MPT task or the main differences. The presented research areas are
multiple object tracking (MOT), SOT, person REID, multi-camera MPT, per-
son detection, and pedestrian trajectory forecasting.

Multiple Object Tracking

A more general task compared to MPT in the sense that various object cate-
gories can be treated simultaneously is known as MOT. For example, different
vehicles such as cars, buses, or bicycles have to be tracked next to pedestri-
ans in autonomous driving applications. While considering particularities of
the several object classes like different motion behaviors can be helpful, the
basic ideas do not differ from MPT approaches. From a research perspective,
persons are the most interesting objects for MOT with many challenges such
as complex motion patterns and strong occlusions in crowded scenes. This
is one of the reasons why more than 70% of the MOT research deals with
persons according to the survey in [Luo21].

Single Object Tracking

SOT, also referred to as visual object tracking, is the task of following a pre-
defined but arbitrary object throughout a video sequence. The main focus in
the SOT literature lies in designing powerful motion or appearance models
to account for the occurring challenges such as illumination variations, scale
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changes, or out-of-plane rotations [Luo21]. Despite that, SOT is an overall
simpler task compared to MOT, which requires to cope with objects appear-
ing or leaving the scene, maintaining multiple identities, and dealing with
interactions among targets. Note that a MOT framework can also be used to
track single objects of interest, provided that the categories lie within the set
of known objects of the detector. On the other hand, some works exist that
use SOT methods within a MOT framework [Chu17, Fen22, Zhe21].

Person Re-Identification

The goal of person REID is to find occurrences of a query person of interest in
a multi-camera network. REID models therefore have to learn discriminative
appearance features to distinguish between different people, which is also
helpful in the MPT task. Consequently, REID models are frequently used in
MPT frameworks [Aha22, Du23, Jun24, Mag23, Woj17] forming the group of
SDE approaches, which already have been discussed in Section 2.1.2.

Aside from that, the general conditions differ between theMPT and REID task.
For instance, the appearance of the same person can change dramatically in
the REID context due to various viewing angles, illumination conditions, or
characteristics of the separate cameras. On the other hand, the appearance
information is mostly used for a shorter time period in MPT such that only
slight changes occur. Therefore, it is common to train the REID models uti-
lized in MPT on single-camera sequences from MPT datasets [Aha22, Jun24,
Mag23]. Note that the query person in the REID context is not restricted to im-
age or video data but can also be represented as a textual description. Other
differences can be found in [Ye22], which gives a comprehensive survey of
the person REID literature.

Multi-Camera Multi-Person Tracking

When combining the tasks of single-camera MPT and person REID, one basi-
cally gets to the multi-camera MPT problem, which is usually solved in two
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steps. First, single camera tracking is performed in each camera of the net-
work. Second, tracks from different cameras are merged on the basis of ap-
pearance features extracted by a REID model. In case of overlapping field of
views, positional information is also of high relevance. An important strategy
to enhance the inter-camera association accuracy is to enforce constraints de-
rived from the camera network topology. For example, temporal restrictions
can prevent wrong matches across cameras with far distance if the time delta
between two tracklets is infeasibly small. Such matching constraints play also
an important role in single-camera MPT. Several strategies exist to reduce the
feasible amount of combinations when associating detections to tracks includ-
ing motion-based gating mechanisms [Woj17] and prohibiting matches with
too different appearance [Aha22] or distance to the camera [Liu23]. For a
thorough overview of multi-camera multi-object tracking methods, the inter-
ested reader is referred to [Amo23].

Person Detection

Person detection—a special case of general object detection, which aims at rec-
ognizing various types of objects—is an indispensable subtask of MPT. Several
person-specific detectors that focus on crowded scenes, where most detection
(and tracking) errors emerge, have been proposed in the literature [Chu20,
Ruk21, Zha18, Zha23, Zhe22]. In a previous work, the author of this thesis
has shown that the usage of such specialized person detectors in MPT can
lead to a higher tracking accuracy compared to standard detectors [Sta21d].
Consequently, newer approaches [Zha23, Zhe22] that achieve SOTA results
on crowded person detection datasets like CrowdHuman (CH) [Sha18a] have
the potential to improve the MPT performance.

However, the predominant amount of recent MPT approaches adopts the gen-
eral purpose detector YOLOX [Ge21] that has been trained on recognizing the
person category only. While this may limit the achievable MPT performance
as detection and tracking accuracy are closely related, using the same detector
enhances the comparability of MPT methods.
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Recently, more focus is put on how the generated detections are used in the
tracking process. For a long time, it has been the standard practice to dis-
card detections with low confidence scores. Since the introduction of Byte-
Track [Zha22c], which incorporates low-confidence detections in a second
matching stage, several works treat detections with various characteristics in
terms of confidence or localization quality differently [Gao24, Men23]. This
thesis also strives for an improved utilization of the available detections, es-
pecially in crowded scenes.

Pedestrian Trajectory Forecasting

The goal of pedestrian trajectory forecasting is to predict the future trajecto-
ries of multiple pedestrians given their past trajectories. While MPT methods
also predict the position of tracked targets to the next time step, or even for
a short time interval, the forecasting literature focuses on longer predictions.
Another difference is that datasets for trajectory forecasting often comprise
videos captured from a bird’s eye view. An overview of existing approaches
can be found in [Rud20], for instance. Compared to the research areas cov-
ered before, the field of trajectory forecasting is less relevant to the MPT task.
To date, only a few MPT works have integrated forecasting methods in order
to enhance the long-term tracking performance [Den22, Kes22].
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This thesis aims at the development of a real-time-capable MPT system with
focus on an improved utilization of available information that is either not
taken into account by existing MPT works or used in a suboptimal way. The
available information comprises, for example, the set of generated detections,
extracted motion and appearance cues of targets, and context information
derived from track or detection statistics.

To solve the MPT task, most methods from the literature follow the TBD par-
adigm [Aha22, Bew16, Cao23, Woj17, Zha22c] separating the problem mainly
into two subtasks: detection and association. This makes a TBD-based frame-
work very flexible such that further components like a REIDmodel for appear-
ance feature extraction or a module to compensate potential camera motion
can be easily incorporated to further increase the tracking accuracy. For these
reasons, this thesis also employs a TBD-based approach.

In Figure 3.1 the general pipeline of a common TBD-based framework is illus-
trated and briefly summarized as follows. A detector is applied on the current
image yielding a set of raw detections that are filtered with an NMS to remove
duplicate detections. While detections under heavy occlusion are discarded,
a REID model extracts appearance embeddings for the normal detections. Af-
ter that, those are matched with the tracks from the previous time step, which
have been propagated by a motion model. This association is typically based
on appearance and/or motion information. Finally, the matched tracks are up-
dated with the corresponding detections, and the unassigned detections start
new tracks in the initialization. Note that parts where this thesis focuses on
are highlighted green in Figure 3.1.
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Figure 3.1: Common TBD framework. This thesis focuses on leveraging occluded detections that
are typically discarded, enhancing the fusion of motion and appearance information
in the association, and utilizing context knowledge in the track initialization.

While MPT works usually try to enhance the overall performance by improv-
ing single tracking components like detection, REID, or motion model, how
to leverage the available information from standard components most effec-
tively is an underexplored research question. Based on a comprehensive anal-
ysis of commonweaknesses of current TBD-based MPTmethods, several new
strategies to improve the utilization of available information in the tracking
process are introduced. The developed approaches mainly pursue the follow-
ing three goals:

• better usage of generated detections in the association,

• enhanced fusion of motion and appearance information, and

• utilization of context knowledge.

Before giving an overview of the proposed tracking framework, the various
contributions to reach the aforementioned goals are briefly described.
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Better Usage of Generated Detections in the Association

The predictions from typical detectors applied in MPT provide a set of bound-
ing boxes with corresponding confidence scores. For a long time until the in-
troduction of the BYTE association [Zha22c], it has been common to discard
all detections with a confidence below a threshold and consider only high-
confidence detections in the tracking process. Leveraging the true positives
(TPs) from the set of low-confidence detections while introducing no or little
FPs in the BYTE association, both recall and precision are increased.

This idea of utilizing so-far discarded detections is expended further in this
thesis, and a novel technique to enlarge the set of used detections in the associ-
ation is proposed. Besides low-confidence detections, detections under strong
occlusion are typically filtered by the standard NMS to remove duplicate pre-
dictions of the detector. In order to incorporate these occluded detections
into the tracking process, an adapted NMS is introduced that outputs a set
of occluded detections next to the normal detection set [Sta21c]. A previous
work of the author has found that many tracking errors under strong occlu-
sion occur because the task of assigning available detections to so-far tracked
targets becomes ambiguous due to missing detections [Sta22b]. Enabling the
use of additional detections under heavy occlusion resolves such ambiguities
and thus simplifies the association task, besides increasing the detection re-
call. This has also been shown by another work of the author [Sta21d], where
the application of crowd-specific detectors in MPT has improved the tracking
performance by increasing detection recall in crowded scenes. To the best of
the author’s knowledge, the proposed adapted NMS is the only approach that
enables the utilization of heavily-occluded detections in the association for
standard detectors that rely on an NMS as post-processing.

Two novel association strategies that utilize the occluded detections pro-
vided by the adapted NMS are suggested in this thesis: BYTEv2 [Sta23c]
and TWC [Sta21c]. BYTEv2, as a further development of BYTE, includes
the occluded detections next to the low-confidence detections in a second
association stage for matching to the unassigned tracks from the first stage.
As mentioned before, this not only enhances the detection recall but also
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simplifies the association task under heavy occlusion and thus improves the
overall performance. Besides its application within the tracking framework
of this thesis, the effectiveness of the proposed BYTEv2 association has been
demonstrated for various trackers [Sta23c].

While the goal of the TWC approach is the same as for BYTEv2—leveraging
the set of occluding detections from the adapted NMS in the association—the
mode of operation differs. In contrast to implicitly using the occluded detec-
tions in a second association stage, the track information is utilized to identify
clusters with missing detections. In such clusters, the corresponding occluded
detections are explicitly introduced to compensate for the missing detections
in the normal detection set. An improved performance in combination with a
different detector than the one applied in this thesis indicates a good robust-
ness of the TWC approach w.r.t. the detection model used [Sta21c].

Enhanced Fusion of Motion and Appearance Information

The matching of detections to tracks in each frame of a video sequence builds
mostly uponmotion or appearance information in TBD-basedMPT. Although
various fusion strategies exist in the literature, a fair comparison of the ap-
proaches is often not possible due to the use of different components, e.g., de-
tection, REID, or motion models, within the respective tracking framework.
For the first time, a profound comparison of existing fusion strategies for
motion- and appearance-based association is made [Sta23a], using a shared
base framework to guarantee meaningful results. Weaknesses of the prevail-
ing methods are identified, and it is shown that they do not fully leverage the
available information about the motion and appearance of the tracked targets.

Based on the findings, novel distance measures are proposed [Sta23b, Sta23d]
that fuse the available information in a better way and thus outperform previ-
ous approaches significantly. The combined distancemeasures for motion and
appearance information not only performwell in the base framework but also
yield strong results in combination with the BYTEv2 association strategy. Im-
provements on three different datasets with varying detection quality further
demonstrate the generalization ability of the proposed fusion approaches.
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Utilization of Context Knowledge

Next to an optimal usage of available information that is clearly evident, like
generated detections or appearance features coming from the detector and
REID model, respectively, some information is more concealed. Deriving
context knowledge about the density of targets, the ambiguity of track–
detection assignments, or physical constraints, such additional information
can be leveraged in the tracking process and consequently lead to improved
performance. For instance, several works have restricted the change of target
bounding box size in the prediction step of the motion model because the
person size on the image cannot alter much between two consecutive images
when the camera frame rate is high. One of the first methods of this kind—the
HP module—has been proposed by the author in [Sta22b] and is also utilized
in the MPT framework of this thesis. Another example of using context
information in the motion modeling can be found in a further work of the
author, where the severity of camera motion is utilized to adaptively change
the time an inactive track is propagated in order to react to the increasing
uncertainty of the motion state [Sta23c].

Especially in crowded scenes, where most tracking errors occur, the introduc-
tion of additional information is desirable. It is shown that explicitly mod-
eling the relation between occluding and occluded tracks can improve the
tracking performance in crowds [Sta21b]. Moreover, the number of detec-
tions and tracks in combination with the computed distances for the associa-
tion can be leveraged to identify ambiguous situations that are treated specif-
ically [Sta22a, Sta22b]. As mentioned earlier, the number of detections and
tracks also plays a role in the proposed TWCapproach that recognizesmissing
detections in crowded areas and incorporates the set of occluded detections
from the adapted NMS in the association.

Another module that exploits context knowledge in crowds introduced in this
thesis is the OAI [Sta23b]. Confident detections that remain unassigned after
the association are usually used to start new tracks. This easily leads to ghost
tracks in crowded scenes, where duplicate detections occur as the detector
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has difficulties to reason about the boundaries of the persons. The OAI uti-
lizes track information to identify unassigned detections with high overlaps
to already tracked targets as duplicates and discards them such that the start
of ghost tracks is prevented, which in turn avoids further tracking errors.

Overview of the Proposed Tracking Framework

Following the TBD paradigm, this thesis initially develops a base framework
comprising frequently used approaches for detection, REID and motion mod-
eling, which allows a fair comparison with the current SOTA. For instance,
YOLOX [Ge21] is adopted as detector which has become the standard detec-
tion model on the MPT benchmarks MOT17 [Mil16] and MOT20 [Den20] in
recent years. The base framework will be explored in detail in Chapter 5. Be-
ing representative formany currentMPTmethods, it is also a good foundation
for the developed tracking modules treated in Chapter 6.

Combining the introduced modules for improving the utilization of available
information leads to the proposed tracking framework visualized in Figure 3.2
and described in the following. Note that components comprising the main
contributions of this thesis are highlighted in green. Moreover, modules that
are runtime-optimized in order to make the whole tracking system real-time
capable are colored blue.

In each frame of a video stream, the detector generates a redundant set of de-
tections, which is post-processed with the proposed adapted NMS that yields
additional occluded detections next to the normal detection set. The latter
is further split into low-confidence and high-confidence detections that are
treated differently in the association, which also holds true for the occluded
detections. For the high-confidence detections, appearance embeddings are
extracted with a REID model that are compared with the appearance features
of the so-far tracked targets in the association. Since appearance features
from occluded and low-confidence detections are unreliable [Sta23c, Zha22c],
the REID model is only applied for the high-confidence detections. The other
detections are matched to tracks based on motion information modeled by an
improved Kalman filter [Sta22b].
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Figure 3.2: Concept of the proposed tracking framework. Themain contributions are the utiliza-
tion of occluded detections from an adapted NMS, an enhanced fusion of motion and
appearance information, and an occlusion-aware track initialization. Moreover, an
enhanced motion model is introduced, and an efficient CMC technique is suggested.
Together with runtime optimizations of detector and REID model, the real-time ca-
pability of the whole system is enabled.

Highlights of the association module of the proposed tracking framework are
the usage of occluded detections (BYTEv2, TWC) and the enhanced fusion of
motion and appearance information. After the association, the proposed OAI
technique is employed to remove unassigned duplicate detections and thus to
prevent the start of ghost tracks.

As an additional tracking component, a real-time-capable CMC is intro-
duced [Sta23c], which is an essential module whenever video streams of
non-static cameras have to be processed. Given the current and the last
image as input, it computes a transformation matrix that is used to align the
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tracks from the previous time step with the current frame, before the motion
model for target movement is applied.

Figure 3.2 indicates that anMPT system has a large computational complexity
due to itsmultiple components. To the best of the author’s knowledge, none of
the top-performing methods on the common MPT benchmarks comprises all
of the computationally expensive but important modules, i.e., detection, REID,
and CMC model, and is able to run in real-time. To close this gap, a runtime-
optimized variant of the proposed system is developed in Chapter 7. The TBD
paradigm allows to exchange the REID model with a lightweight alternative
that has a much better runtime–accuracy trade-off as the frequently applied
variant from the base framework. With further optimizations including the
acceleration of detector and REID model using a library specialized for neural
network inference as well as the parallel computation of detection and CMC,
a significant speed-up of the framework is achieved without sacrificing its
SOTA performance. The final optimized tracking system is capable of tracking
500 targets at a rate of 19 frames per second (FPS) on standard hardware.
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This chapter presents the setup for experiments and evaluating the proposed
tracking framework. Datasets used are introduced in Section 4.1, followed
by evaluation measures in Section 4.2. Finally, Section 4.3 describes different
protocols for evaluating the tracking performance under various conditions.

4.1 Datasets

First, datasets for the actual task of MPT are described in Section 4.1.1. After
that, Section 4.1.2 introduces further datasets that are leveraged in the training
process of the applied person detection model.

4.1.1 Multi-Person Tracking Datasets

Due to the wide range of applications, there exist numerous datasets for MPT
in the literature. An overview of some popular MPT datasets is given in Ta-
ble 4.1. Large differences can be observed in the dataset size w.r.t. the number
of videos, total length, resolution of the images, and number of identities (IDs)
to be tracked. As a side note, most of the videos are sampled at 20–30 FPS
and some datasets comprise various frame rates.

Next to general datasets that include videos under different scenarios, there
exist datasets with special focus on some application domains. These include
DanceTrack [Sun22] concentrating on dance videos and SportsMOT [Cui23]
comprising sequences of soccer, basketball, and volleyball games. Other pop-
ular datasets are HiEve (Human in Events) [Lin23], with focus on complex
events such as earthquake escape, fighting, or subway getting on/off, and
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Table 4.1: Overview of some popular MPT datasets. The four datasets at the bottom of the table,
i.e., MOT17, MOT20, PersonPath22, and SOMPT22, are used in this thesis.

Dataset Videos Length Resolution IDs Focus
MOT15 [Lea15] 22 17min 640×480–1920×1080 1,221 general
MOTSynth [Fab21] 768 1,152min 1920×1080 45,273 synthetic
P-DESTRE [Kum21] 75 59min 3840×2160 1,894 drone-based
DanceTrack [Sun22] 100 88min 1280×720–1920×1080 990 dancing
HiEve [Lin23] 32 33min 352×258–1920×1080 2,687 events
SportsMOT [Cui23] 240 100min 1280×720 3,401 sports
MOT17 [Mil16] 14 8min 640×480–1920×1080 1,331 general
MOT20 [Den20] 8 9min 1173×880–1920×1080 3,833 crowds
PersonPath22 [Shu22] 236 139min 720×480–3840×2160 11,970 general
SOMPT22 [Sim23] 14 12min 1280×720–1920×1080 997 surveillance

P-DESTRE [Kum21], which contains aerial videos captured by a small drone.
The largest publicly available dataset is the synthetic MOTSynth [Fab21],
which was created using a rendering game engine and is especially of interest
when investigating the synthetic-to-real domain gap in the context of MPT.

As of 2024, the two most used datasets for evaluating MPT algorithms are still
MOT17 [Mil16] and MOT20 [Den20], two representatives of the MOTChal-
lenge¹. Being the gold standard for comparing MPT methods with the SOTA,
those are also used in this thesis. In addition, PersonPath22 (PP22) [Shu22]
as largest real-world MPT dataset is leveraged, which allows to assess the
generalization capabilities of the proposed tracking components. To evaluate
the MPT performance in a specific application domain, the surveillance-based
dataset SOMPT22 [Sim23] is utilized. These four datasets are described next
in more detail.

¹ The MOTChallenge is a popular collection of MOT datasets found at https://motchallenge.net
(accessed on July 16, 2024).

48

https://motchallenge.net


4.1 Datasets

MOT17

Comprising the same videos as its predecessor MOT16 [Mil16], MOT17 can
be regarded as an updated version with improved annotations and an addi-
tional provision of public detection sets. Despite the motivation of enabling
a fair comparison of tracking methods using the same detections, the public
detections are outdated and evaluation is more frequently performed under
the private protocol that allows to apply an arbitrary person detector.

The 14 videos, 7 in the train and test split each, comprise a great variety con-
taining day and night scenes with different viewing angles and levels of target
density. Moreover, they are captured indoor and outdoor and include both
static scenes and scenes with camera motion. The mean (maximum) number
of persons per image in the train split is 23 (56), and the average time a per-
son is visible is 7.5 s. A total of 300,373 person ground truth (GT) boxes are
annotated in the whole dataset and the frame rate ranges between 14 and 30
FPS. Figure 4.1 shows exemplary frames of the MOT17 dataset.

Figure 4.1: Example images of the MOT17 dataset. It comprises day and night scenes, different
views as well as sequences with static and moving cameras.
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Since the GT of the test set is not publicly available, a validation (val) split
is created by splitting each train video into two halves and taking the second
half following [Aha22, Du23, Wu21, Zha22c, Zho20]. The val split is used for
evaluating the proposed tracking components, whereas the test split is taken
to compare the whole tracking framework with the SOTA, for which one has
to submit the results to the official MOTChallenge evaluation server.

MOT20

The focus of MOT20 [Den20] lies on very crowded scenarios, as this is where
naturally most tracking errors occur due to severe occlusion. Per image, the
mean (maximum) number of targets is 141 (248), which indicates the largest
density among publicly available MPT datasets. MOT20 contains in total
2,102,385 GT boxes, and the average duration of a person being in the cam-
era’s field of view in the train split is 20.5 s. The train and test split contain 4
static videos at 25 FPS each, with indoor sequences as well as outdoor day and
night scenes. Like for MOT17, the test split of MOT20 is leveraged for com-
parison with the SOTA by submitting results to theMOTChallenge evaluation
server because the annotations are not publicly available. Example images of
MOT20 can be found in Figure 4.2.

PersonPath22

To create a large-scale dataset for general MPT, the authors of PP22 [Shu22]
combined several datasets for human activity understanding (MEVA [Cor21],
VIRAT [Oh11], PathTrack [Man17]), added missing bounding box annota-
tions, and additionally sourced sequences from stock video services. This
resulted in a total of 236 videos, 138 and 98 in the train and test split, re-
spectively, and a mean (maximum) number of 21 (139) persons per image.
Overall, 741,475 GT boxes are annotated, and a person is visible for 12.4 s
on average. A vast variation w.r.t. backgrounds, camera positions, and en-
vironment conditions like weather and lighting has been ensured by a team
of experts that manually selected the videos from a set of over 8,000 candi-
dates [Shu22]. This large variety makes PP22 an ideal dataset for assessing the
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Figure 4.2: Example images of theMOT20 dataset. Its main characteristic is the very high person
density in all of the videos.

generalization capabilities of MPT algorithms and thus, it is used as further
evaluation dataset in this thesis. Figure 4.3 displays example frames of PP22.

Although the videos are sampled at 15–60 FPS, annotations are only available
at a rate of 5 FPS as of July 2024¹. Accordingly, tracking and evaluation are
performed at this low frame rate on PP22 in this thesis, which poses an addi-
tional challenge to the tracker. The lack of full annotations might be a reason,
why no results on PP22 have been reported in the literature so-far, except in
the original paper of the dataset.

¹ https://github.com/amazon-science/tracking-dataset (accessed on July 16, 2024)
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Figure 4.3: Example images of the PP22 dataset. As largest real-world MPT dataset to date, a
great diversity in tracking scenarios is covered.

SOMPT22

The Surveillance Oriented Multi-Pedestrian Tracking 2022 (SOMPT22) [Sim23]
dataset comprises 15 videos, 10 in the train and 5 in the test split. Since the
GT of the test split is not publicly available and there is no evaluation sever as
for the MOTChallenge, only the train split is used for evaluation. A total of
535,904 GT boxes are available, and the average time a person appears in the
scene is 26.3 s. All sequences are captured at daytime with 30 FPS from static
cameras mounted on poles at a height of 6–8m for city surveillance. This
results in a large field of view and many small persons in the image back-
ground that are hard to detect and track as can be seen in Figure 4.4. As
a supplement to the general MPT datasets MOT17 and PP22, the SOMPT22
dataset is utilized to evaluate the performance of tracking components in the
surveillance context.
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Figure 4.4: Example images of the SOMPT22 dataset. The surveillance-oriented recordings con-
tain an oblique view leading to a high variation in person size and appearance.

4.1.2 Additional Datasets for Person Detection

Besides the MPT datasets from the previous section, three additional datasets
are utilized for training the applied person detector as will be described in
Section 4.3. These datasets are briefly introduced in the following.

CrowdHuman

CH [Sha18a] is a large dataset specialized for person detection in crowded
scenes with about 470,000 human instances and high degrees of occlusion. It
consists of 24,370 web-crawled images that are split into a train (15,000), val
(4,370), and test (5,000) set. Images with only a small number of persons or
small overlaps were discarded in the selection process. This lead to a density
of 23 persons per image on average in the train and validation splits, which
is much larger than for common person detection datasets. For instance, the
COCOPersons subset of the famous COCO dataset [Lin14] contains only four
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persons per image on average. The CH images vary strongly both in resolu-
tion (250×374–10800×7200) and content. The large diversity of the dataset
is indicated with example images in Figure 4.5.

Figure 4.5: Example images of the CH dataset. As the name suggests, the focus of this person
detection dataset lies on humans appearing in crowds.

CityPersons

Another dataset for person detection is CityPersons [Zha17]. It is derived
from Cityscapes [Cor16], a large dataset for semantic segmentation of urban
scenes in the context of autonomous driving. The 5,000 images with fine
pixel-wise annotations for semantic labeling of various categories have been
adopted and annotated for the task of person detection. This resulted in a total
of 35,016 bounding boxes showing 19,654 unique persons in the 2,975 train,
500 val, and 1,525 test images. For benchmarking purposes, the annotations
of the test set are withheld. All images have a resolution of 2048×1024 pixels.
Figure 4.6 shows examples of the CityPersons dataset.

Figure 4.6: Example images of the CityPersons dataset. These are captured from the front of a
vehicle in road traffic showing both persons and vehicles.
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ETH

Captured by authors of the eponymous university in Zurich, the ETH data-
set [Ess07] contains five videos acquired from a moving platform in busy
shopping streets. The sequences contain a total of 2,056 frames sampled at
15 FPS with 16,720 annotated person bounding boxes. Besides debayering
artifacts, slight motion blur, and missing contrast, the small resolution of
640 × 480 pixels poses a severe challenge for person detection algorithms.
Exemplary images of the ETH dataset are depicted in Figure 4.7.

Figure 4.7: Example images of the ETH dataset. These are captured by a moving platform in
busy shopping streets.

4.2 Evaluation Measures

To compare the MPT performance of different methods, a commonly ac-
cepted evaluation measure is indispensable. However, considering all aspects
of MPT is a non-trivial task, since detection, association, and localization
accuracy have to be taken into account simultaneously. The first measure
that has become a standard in the MPT community is the Multiple Object
Tracking Accuracy (MOTA) [Ber08]. Despite its major drawback of signifi-
cantly preferring detection over association performance, it has been serving
as main evaluation measure in the MPT literature and in popular bench-
marks as MOTChallenge and KITTI [Gei12] for more than a decade. In 2016,
identity F1 (IDF1) [Ris16] was proposed as special measure for multi-target
multi-camera tracking. It has also been widely adopted for evaluating MPT
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in the single-camera context, as it focuses more on the association than
detection accuracy and thus is a valuable supplement to MOTA.

Apart from overestimating detection or association accuracy, bothMOTA and
IDF1 possess other shortcomings that have been addressed with a new metric
for MOT termed Higher Order Tracking Accuracy (HOTA) [Lui21]. It is the
only popular unified measure for a balanced evaluation of all MOT aspects,
i.e., detection, association, and localization. In contrast to MOTA and IDF1,
HOTA has the two important characteristics of monotonicity as well as error
type differentiability and is the onlymeasure that is ametric in the sense of the
mathematical definition. For an in-depth comparison of the three evaluation
measures, the interested reader is referred to the HOTA paper [Lui21].

Due to its useful properties, HOTA has been adopted as the main evaluation
measure by the MOTChallenge and KITTI benchmark and is also leveraged
in this thesis to assess the performance of MPT methods. As will be seen in
Section 4.2.1, HOTA can be split into several submeasures that are also used
in the evaluation. MOTA and IDF1, which are described in Section 4.2.2 and
Section 4.2.3, respectively, are reported as additional measures in the com-
parison with the SOTA. For the computation of HOTA, MOTA, and IDF1 as
well as its submeasures, the TrackEval library [Jon20] is utilized. There exist
other measures for evaluating MOT performance in the literature, however,
these are less relevant and are therefore not considered further. Note that
in this thesis, all quantitative evaluation results are given in percent unless
otherwise stated.

4.2.1 Higher Order Tracking Accuracy

Like each MPT performance measure, HOTA evaluates how well a predicted
set of tracks aligns with the actual GT set of tracks within a video. Before the
HOTA computation is described step by step, some notations are introduced
as follows. Let 𝒯pred = {T1pred,T2pred, … } denote the predicted track set and
𝒯GT = {T1GT,T2GT, … } the GT track set, both comprising multiple tracks T, i.e.,
lists of detections belonging to the same identity (ID). For example, a predicted
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track is written as T𝑖pred = [D𝑖,𝑓1
pred,D

𝑖,𝑓2
pred, … ] with D𝑖,𝑓1

pred being the predicted de-
tection in frame 𝑓1 of the video belonging to track T𝑖pred. The same notation is
used for a GT track, i.e., T𝑖GT = [D𝑖,𝑓1

GT ,D𝑖,𝑓2
GT , … ]. The ID of a predicted and GT

detection is given by ID(Dpred) and ID(DGT), respectively. Note that the IDs of
detections belonging to the same track are equal: ID(D𝑖,𝑓1) = ID(D𝑖,𝑓2) = … .

Given a localization similaritymeasure for comparing predicted andGT detec-
tions and a minimum localization threshold 𝜂, the matching of predicted and
GT tracks is performed on the detection level for each frame of the video. In
this thesis, tracking is performedwith 2D bounding boxes, so the IoU between
such boxes is used as similarity measure. Let𝒟pred = {D𝑖

pred}𝑖 be the predicted
detections and𝒟GT = {D𝑖

GT}𝑖 the GT detections of a frame, whereby the frame
index is omitted for clarity. A bijective matching of the two detection sets is
performed in a way that the resulting HOTA value is maximized. Details of
this matching process are not necessary for the general understanding of the
HOTA calculation and thus are not considered here but can be found in the
original paper [Lui21].

After matching, the predicted detections can be split into three sets that are
later used for assessing the detection quality:

• True Positives (TP)—predicted detections with matched GT detection:

TP = {Dmatched
pred }. (4.1)

• False Positives (FP)—predicted detections without matched GT
detection:

FP = {Dunmatched
pred }. (4.2)

• False Negatives (FN)—GT detections without matched predicted
detection:

FN = {Dunmatched
GT }. (4.3)
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To evaluate the association accuracy, three measures are defined in the fol-
lowing, which are graphically illustrated in Figure 4.8.

Dpred
𝑖  

True Positive
of interest

FPA(Dpred
𝑖 ) 

False Positive
Associations

TPA(Dpred
𝑖 ) 

True Positive
Associations

Ground Truth
detections and
trajectories

Predicted
detections and
trajectories

True Positives False Positives False Negatives

FNA(Dpred
𝑖 ) 

False Negative
Associations

Figure 4.8: Concepts in the evaluation of HOTA. Given a TP of interest (purple), its TPAs (green),
FPAs (yellow), and FNAs (brown) can be determined based on the predicted and GT
trajectories. The figure builds upon [Lui21] and is extended by TPs, FPs, and FNs.

These measures are calculated for each true positive detection D𝑖
pred ∈ TP

with D𝑖
GT denoting the matched GT detection to D𝑖

pred:

• True Positive Associations (TPA)—set of TPs that have the same
predicted ID and same GT ID:

TPA(D𝑖
pred) = {D𝑘

pred
||D𝑘

pred ∈ TP

∧ ID(D𝑖
pred) = ID(D𝑘

pred) ∧ ID(D𝑖
GT) = ID(D𝑘

GT)}.
(4.4)
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• False Positive Associations (FPA)—set of TPs with the same predicted
ID but different GT ID or FPs with the same predicted ID:

FPA(D𝑖
pred) = {D𝑘

pred
||D𝑘

pred ∈ TP

∧ ID(D𝑖
pred) = ID(D𝑘

pred) ∧ ID(D𝑖
GT) ≠ ID(D𝑘

GT)}

∪ {D𝑘
pred

||D𝑘
pred ∈ FP ∧ ID(D𝑖

pred) = ID(D𝑘
pred)}.

(4.5)

• False Negative Associations (FNA)—set of TPs with the same GT ID
but a different predicted ID and FNs with the same GT ID:

FNA(D𝑖
pred) = {D𝑘

pred
||D𝑘

pred ∈ TP

∧ ID(D𝑖
pred) ≠ ID(D𝑘

pred) ∧ ID(D𝑖
GT) = ID(D𝑘

GT)}

∪ {D𝑘
GT
||D𝑘

GT ∈ FN ∧ ID(D𝑖
GT) = ID(D𝑘

GT)}.

(4.6)

In Figure 4.8, an arbitrary TP detection of interest D𝑖
pred is highlighted in pur-

ple, for which the TPAs, FPAs, and FNAs are labeled with green, yellow, and
brown boxes, respectively. Remember that these association entities are com-
puted for each TP detection individually. For instance, to determine the set
of TPAs for the detection of interest, it is checked for each detection of its
predicted trajectory (black filled circles) whether it belongs to the same GT
trajectory (dark blue circles), according to Equation (4.4). The set of FPAs and
FNAs for the TP of interest are determinedwith Equations (4.5) and (4.6). Next
to the association measures, Figure 4.8 highlights TP and FP detections with
orange and red circles, respectively, and indicates FNs with blue crosses.

Remember that the introduced measures are defined for a specific localiza-
tion threshold 𝜂, i.e., the minimum IoU for matching predicted and GT boxes,
which has been omitted for clarity. Given a concrete value of 𝜂, HOTA𝜂 can
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be calculated as

HOTA𝜂 =
√√√
√

∑D𝑖pred∈TP AssS(D𝑖
pred)

|TP| + |FN| + |FP| with (4.7)

AssS(D𝑖
pred) =

||TPA(D𝑖
pred)||

||TPA(D𝑖
pred)|| + ||FNA(D𝑖

pred)|| + ||FPA(D𝑖
pred)||

, (4.8)

where AssS(D𝑖
pred) denotes an association score for the true positive detection

D𝑖
pred ∈ TP. Consequently, HOTA𝜂 measures the detection and association

accuracy at a minimum localization requirement given by 𝜂 ∈ (0, 1). The final
HOTA score is the integration over all possible HOTA𝜂 values, which practi-
cally is approximated by an average over 19 values Η = {0.05, 0.1, … , 0.95}:

HOTA = ∫
1

0
HOTA𝜂 d𝜂 ≈ 1

19 ∑
𝜂∈Η

HOTA𝜂. (4.9)

Besides being a unified metric for detection, association, and localization ac-
curacy in MOT, HOTA can be decomposed into several submeasures. At
each specific localization value 𝜂, HOTA𝜂 can be split into detection accuracy
(DetA𝜂) and association accuracy (AssA𝜂) as follows:

HOTA𝜂 = √DetA𝜂 ⋅ AssA𝜂 with (4.10)

DetA𝜂 =
|TP|

|TP| + |FN| + |FP| and (4.11)

AssA𝜂 =
1
|TP| ∑

D𝑖pred∈TP

AssS(D𝑖
pred). (4.12)

According to Equation (4.10), HOTA𝜂 is the geometric mean of DetA𝜂 and
AssA𝜂 , so detection and association are equally weighted by the HOTA met-
ric. Similar to HOTA, the summarized DetA and AssA can be computed by
integrating over DetA𝜂 and AssA𝜂 for all 𝜂 values as in Equation (4.9). On top
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of the separation into DetA and AssA, those can be further split into recall
and precision measures. The common detection recall (DetRe) and detection
precision (DetPr) are calculated and combined to DetA using the sets of TP,
FN, and FP from Equations (4.1) to (4.3) as follows (for a specific localization
threshold 𝜂):

DetRe𝜂 =
|TP|

|TP| + |FN| , (4.13)

DetPr𝜂 =
|TP|

|TP| + |FP| , (4.14)

DetA𝜂 =
DetRe𝜂 ⋅ DetPr𝜂

DetRe𝜂 + DetPr𝜂 − DetRe𝜂 ⋅ DetPr𝜂
. (4.15)

The accumulated versions DetRe and DetPr are also generated via integration
as in Equation (4.9). DetRe gives the proportion of GT detections that are
predicted, while DetPr specifies the percentage of predicted detections that
are correct.

Similar to the detectionmeasures, the novel concepts of association recall (As-
sRe) and association precision (AssPr) can be computed with TP, TPA, FNA,
and FPA from Equations (4.1) and (4.4) to (4.6) and combined to AssA for a
certain value 𝜂:

AssRe𝜂 =
1
|TP| ∑

D𝑖pred∈TP

||TPA(D𝑖
pred)||

||TPA(D𝑖
pred)|| + ||FNA(D𝑖

pred)||
, (4.16)

AssPr𝜂 =
1
|TP| ∑

D𝑖pred∈TP

||TPA(D𝑖
pred)||

||TPA(D𝑖
pred)|| + ||FPA(D𝑖

pred)||
, (4.17)

AssA𝜂 =
AssRe𝜂 ⋅ AssPr𝜂

AssRe𝜂 + AssPr𝜂 − AssRe𝜂 ⋅ AssPr𝜂
. (4.18)

Again, the summarized versions AssRe and AssPr follow by integration over
𝜂 as in Equation (4.9). AssRe measures how well the predicted tracks match
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the actual GT tracks. For instance, a low AssRe means that an object is rep-
resented with multiple predicted tracks. AssPr states how well the predicted
tracks keep to tracking the same GT tracks. For example, a low AssPr occurs
if a predicted track covers several objects.

The various submeasures of HOTA allow a detailed analysis of different char-
acteristics of a tracking method. In the evaluations of this thesis, the submea-
sures DetA, AssA, DetRe, DetPr, AssRe, and AssPr are leveraged besides the
general HOTA metric.

4.2.2 Multiple Object Tracking Accuracy

As for HOTA, a bijective matching of predicted and GT tracks is performed
on the detection level in the MOTA computation. A minimum localization
requirement is also enforced with a threshold 𝜂. However, MOTA is only
calculated for one specific value of 𝜂, which is typically set to 0.5. So in the
case of tracking with 2D bounding boxes, a minimum IoU of 0.5 between pre-
dicted and GT detection is required for matching. Next to TP, FN, and FP
(Equations (4.1) to (4.3)), the computation of MOTA requires another concept
for measuring association accuracy termed IDSW. An IDSW happens when-
ever an object ID is mistakenly switched by the tracker or when a track is
re-initialized with another ID after it was lost. Formally, the set of IDSW at
frame 𝑓 is given by the true predicted detections that have a different ID as the
true predicted detections from the previous frame 𝑓 − 1 but the same GT ID:

IDSW𝑓 = {D𝑖,𝑓
pred

||D
𝑖,𝑓
pred ∈ TP

∧ ID(D𝑖,𝑓
pred) ≠ ID(D𝑖,𝑓−1

pred ) ∧ ID(D𝑖,𝑓
GT) = ID(D𝑖,𝑓−1

GT )}.
(4.19)

Note that IDSW counts association errors only w.r.t. the previous true detec-
tion and does not take longer contexts into account like HOTA. Moreover,
the IDSW measure does not include ID transfers, i.e., tracking errors where
the same predicted ID switches to a different GT ID.
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When TP, FN, FP, and IDSWhave been determined after thematching process,
the MOTA score can be calculated as

MOTA = 1 − |FN| + |FP| + |IDSW|
|TP| + |FN| . (4.20)

The main problem of the MOTA measure is its strong bias towards detection
performance. An evaluation of trackers on the MOT17 benchmark in [Lui21]
revealed that the number of detection errors |FN| + |FP| is typically about
100 times higher than the number of association errors |IDSW| in the MOTA
formulation. Further shortcomings of the measure are discussed in [Lui21].
Because of its weaknesses, MOTA is only reported as secondary performance
measure in the SOTA comparison of this thesis.

4.2.3 Identity F1

In contrast to HOTA and MOTA, IDF1 performs the matching of predicted
tracks to GT tracks on the track level, i.e., the full tracks are compared and not
their single detections on a frame level. As in MOTA, a minimum localization
(IoU) requirement of 𝜂 = 0.5 is applied and the bijective matching is carried
out such that the final score is maximized. After the matching process, the
following types of detections can be specified:

• Identity True Positives (IDTP)—predicted detections in the
overlapping parts of two matched tracks.

• Identity False Negatives (IDFN)—GT detections in the non-overlapping
parts of two matched tracks and detections of unmatched GT tracks.

• Identity False Positives (IDFP)—predicted detections in the
non-overlapping parts of two matched tracks and detections of
unmatched predicted tracks.
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Based on these definitions, the identity recall (IDRe), identity precision (IDPr)
and IDF1 are computed as follows:

IDRe = |IDTP|
|IDTP| + |IDFN| , (4.21)

IDPr = |IDTP|
|IDTP| + |IDFP| , (4.22)

IDF1 = 2|IDTP|
2|IDTP| + |IDFN| + |IDFP| . (4.23)

Next to its bias towards association, IDF1 has several drawbacks including a
counter-intuitive and non-monotonic behavior when it comes to measuring
detection accuracy as analyzed in [Lui21]. Therefore, IDF1 is not used for
evaluating single tracking components in this thesis, but is given as another
supplementary performance measure in the SOTA comparison.

4.3 Evaluation Protocols

The proposed tracking framework comprises two modules whose perfor-
mance on an applied dataset strongly depends on the data they were trained
on: detector and REID model. In practice, large amounts of training data are
not always available in the application domain, especially for MPT because
annotating videos with dozens or even hundreds of persons is a time consum-
ing process. In such cases, alternative data has to be used for training which
leads to a domain gap between training and inference of the used models.
The larger this discrepancy between training and testing data, the greater the
requirements for the generalization capabilities of the tracking framework.

To assess the performance of proposed tracking components under various
generalization difficulties, three evaluation protocols are followed that differ
in the utilized datasets for training and testing. Moreover, two further proto-
cols are defined for comparing the performance of the final tracking frame-
work with the SOTA. In the following, the training datasets of detector and
REID model for five different evaluation datasets, i.e., MOT17 val, PP22 test,
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SOMPT22 train, MOT17 test, and MOT20 test, are briefly described and the
main purpose of the respective evaluation protocol is stated. Finally, a sum-
mary of the key aspects of these protocols is given.

MOT17 Val

Remember that MOT17 val contains the second halves of the MOT17 train
sequences. The first halves of the sequences, denoted as MOT17 train half,
are used for training. As this subset is quite small for training a detection
model from scratch, the CH train/val dataset is additionally utilized, which has
become a standard procedure in the literature [Aha22, Cao23, Cet23, Du23,
Jun24, Sun21a, Wu21, Zen22, Zha22c, Zho20]. The REID model is also trained
on MOT17 train half (for details, see Section 5.6.2). Since the domain gap
between MOT17 val and MOT17 train half is small, this protocol focuses on
the specialization capabilities of the evaluated methods.

PP22 Test

In the evaluation on PP22 test, the detector is trained on a combination of CH
train/val and PP22 train. For REID, the same model as for MOT17, which is
trained on MOT17 train half, is applied. Thus, good generalization capabili-
ties of the REID model are required. Furthermore, a powerful REID model is
beneficial in this evaluation because the low frame rate of five FPS generally
makes the predictions of the motion model less accurate.

SOMPT22 Train

The annotations of the SOMPT22 test set are not publicly available. This is
why evaluation is performed on the train set. As for PP22 test, the detector
trained on CH train/val and PP22 train is applied, as well as the REID model
trained on MOT17 train half. Since SOMPT22 is a special dataset for surveil-
lance with different characteristics compared to the more general MOT17 and
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PP22 dataset, there is a quite large domain gap between the training and test-
ing scenarios. Thus, this protocol poses the greatest challenges regarding the
generalization capabilities of the evaluated tracking approaches.

MOT17 Test

MOT17 test is next to MOT20 test the standard benchmark for comparing
an MPT method with the current SOTA. The common protocol of training
the detector on MOT17 train, CH train/val, CityPersons train/val, and ETH
is adopted [Aha22, Cao23, Du23, Jun24, Zha22c]. Following [Aha22, Du23,
Gao24, Jun24, Mag23], the REIDmodel trained onMOT17 train half is applied.
On MOT17 test, the performance of trackers on general MPT sequences with
a high variety is evaluated.

MOT20 Test

As another well-established dataset in the MPT community, MOT20 test is
the second dataset used in the SOTA comparison of this thesis. Again, the
typical evaluation protocol from the literature is followed meaning that the
detector is trained on a combination of MOT20 train and CH train/val [Aha22,
Cao23, Du23, Jun24, Zha22c] and the REID model is trained on MOT20 train
half [Aha22, Du23, Gao24, Jun24, Mag23]. The focus of the evaluation on
MOT20 test lies on the performance of MPT methods in very crowded scenes,
where naturally many tracking errors can occur.

Summary

The key aspects of the just described evaluation protocols are summarized in
Table 4.2. As mentioned before, the evaluation protocols differ in terms of the
required generalization capability of the tested tracking approaches and their
ability to handle scenes with various crowd density levels.
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Table 4.2: Overview of evaluation protocols of this thesis. Different combinations of training and
evaluation dataset splits mainly lead to various levels of generalization difficulty and
crowdedness. The first three rows depict configurations used for analyzing proposed
tracking components, whereas the last two rows show protocols for comparing the
final tracking framework with the SOTA.
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For various reasons, most MPT methods found in the literature follow the
TBD paradigm [Aha22, Bew16, Cao23, Woj17, Zha22c]. Since the MPT task is
divided into the two subtasks detection and association, single tracking mod-
ules can be exchanged independently, making the overall system design very
flexible. This is beneficial both for the development and evaluation of indi-
vidual tracking components. In this chapter, a generic TBD framework is
built, which serves as baseline for comparison with the proposed methods in
Chapter 6. While additional modules are possible, a TBD approach for MPT
comprises at least the following three parts:

• Detection: Localization of persons on the images of the input video.

• Association: Matching of detections belonging to the same target to
tracks, i.e., sequences of detections.

• Track management: Strategies to determine when tracks are
initialized, change their state (e.g., active, inactive), and are terminated.

MPT is mostly applied on videos with a high frame rate. Therefore, the posi-
tions of the persons on the images do not change much from frame to frame
and are of high value for the association task. For this reason, MPT systems
usually contain a motion model that uses the motion states of the targets to
predict their positions in the current frame, before performing amotion-based
association. Besides positional information, the appearance of persons is a
good indicator for determining whether two detections from different video
frames belong to the same person. Therefore, it is common practice in MPT
to leverage a model from the person REID community for computing appear-
ance features that are utilized in the association. Consequently, the following
two modules are also widely used in MPT systems:
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• Motion model: Prediction of target positions in consecutive frames.

• REID model: Extraction of appearance cues from persons.

The base framework of this thesis comprises all of the five aforementioned
modules, which are described next in more detail. Finally, an experimental
evaluation of the base framework concludes this chapter.

5.1 Detection

The main task of the detector in the context of MPT is to provide a set of
bounding boxes and corresponding confidence scores for each image of the
input video. More precisely, let V = (𝐈1, … , 𝐈𝑙) be the input video to be pro-
cessed, i.e., a sequence of images with length 𝑙. Given a detection model
DET(⋅) and an image 𝐈, a set of 𝑘 person detections �̃� = {D̃1, … , D̃𝑘} is gen-
erated, applying the detector on the image: �̃� = DET(𝐈). The tilde indicates
that the detection set is an intermediate result as explained in the next para-
graph. A single detection comprises at least a four-dimensional vector 𝐛 and
a scalar 𝑠 representing the bounding box and confidence of the detection, re-
spectively. Hence, it is modeled as a tuple D = (𝐛, 𝑠). The bounding box
𝐛 = (𝑥, 𝑦, 𝑤, ℎ)T is fully described by its center coordinates on the image (𝑥,
𝑦) as well as its width 𝑤 and height ℎ. The confidence score 𝑠, normalized
between zero and one, is a measure of how sure the detector is about the
presence of the detected object.

In a multitude of common detector architectures, the obtained detection set �̃�
is highly redundant, meaning that it contains a high number of duplicate de-
tections of the same person. The reason for this redundancy will be explained
in Section 5.1.1, where the detection model used in this thesis is described.
To remove duplicate detections, a common technique termed NMS is applied
that yields the final set of detections 𝒟 ⊆ �̃� with |𝒟| ≤ |�̃�|, which will be
presented in Section 5.1.2.
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5.1.1 Detection Model

As alreadymentioned, themodules of the built MPT framework are exchange-
able such that an arbitrary detection model can be used. The choice falls on
the single-stage detector YOLOX¹ [Ge21] for mainly two reasons:

• The overall system should be real-time capable. The YOLO series
[Boc20, Ge21, Joc20, Joc23, Li22, Red16, Red17, Red18, Wan23a] is a
popular family of object detectors with a good trade-off between
runtime and accuracy.

• YOLOX is the most utilized detector of recent MPT methods allowing
a good comparability with the current SOTA.

The basic functionality of YOLOX is explained using its architecture depicted
in Figure 5.1.
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Figure 5.1: Scheme of the YOLOX-X architecture with an exemplary input size of 1440×800
pixels. The backbone extracts feature maps of different sizes, which are then fused
in the neck. Given the fused features, the head produces three sets of predictions at
various scales. Finally, the predictions are combined yielding the network output.

The input to the network is an image of arbitrary size with three channels (red,
green, blue). All shapes of the network can be derived from the input width

¹ “YOLO” stands for you only look once and was one of the first one-stage detection approaches,
meaning that the detections are generated by looking only once at the image. In contrast,
two-stage detectors typically predict region proposals containing object candidates first, before
classifying and adjusting those proposals in the second stage. The “X” denotes a variant of the
YOLO family with the paper title YOLOX: Exceeding YOLO Series in 2021.
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and height that are set to 1440 and 800 pixels, respectively, in this thesis.
That input resolution is also utilized by many SOTA approaches, enabling a
fair comparison in the evaluation. The overall structure of YOLOX is made of
a backbone for feature extraction, a neck for feature enhancement, and a head
for the actual detection task.

In the backbone, multiple feature maps are extracted with a CNN.With grow-
ing depth, the spatial size of the feature maps decreases, while the number of
channels and semantic value increases. To improve the semantic information
encoded in feature maps of earlier layers, while at the same time enhancing
the spatial accuracy in feature maps of deeper layers, a feature fusion module
is applied in the network neck. In total, three feature maps with a downsam-
pling factor of 8, 16, and 32 w.r.t. the input size are revised in the feature
fusion module. Finally, the network head is applied on the revised feature
maps generating detections at three different scales, which is beneficial for
detecting objects of various sizes.

Before taking a closer look at the detection head, more details about the back-
bone shapes are given because these determine the number of detections gen-
erated by the model. YOLOv5 [Joc20] introduced a scaling scheme for the net-
work size in order to providemodels with different computational complexity,
which has been adopted by YOLOX. Starting with the Darknet53 architecture
from YOLOv3 [Red18], various variants N (nano), S (small), M (medium), L
(large), and X (extra large) are derived by changing the number of layers and
filters in the partial CNNs that are indicated in Figure 5.1. In this thesis, the
extra large version X is adopted. Consequently, the overall architecture is
named YOLOX-X. Note that, for example, the number of channels of the fea-
ture maps used for detection in YOLOX-X (320, 640, 2560) is 1.25 times larger
than in YOLOX-L (256, 512, 2048), which is the original Darknet53 [Red18]
architecture fromYOLOv3, and 5 times larger than in YOLOX-N (64, 128, 512).

As a consequence of the downsampling in the backbone, it has to be ensured
that the input width and height are divisible by 32, which is done by simple
padding operations if necessary. The three feature maps used in the network
head have a resolution of 180×100, 90×50, and 45×25 pixels, respectively
(for input size 1440×800). This yields a total of 180 ⋅ 100+ 90 ⋅ 50+ 45 ⋅ 25 =
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23,625 predictions, since the network headmakes a prediction for each spatial
position of the feature map input. As will be seen in the next paragraph, one
prediction corresponds to a six-dimensional vector if only one object class,
i.e., person, has to be detected.

While previous YOLO versions had a coupled detection head using the same
features for classification and localization, YOLOX implements a decoupled
head to resolve the conflict between the two tasks. The decoupled head with
its classification and localization branch is illustrated in Figure 5.2.
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Figure 5.2: Structure of the YOLOX network head with exemplary shapes. Given a feature map
as input, the classification branch generates a class score for each spatial position
and category. In parallel, the localization branch simultaneously performs bounding
box regression and IoU computation for assessing the localization accuracy of the
predicted boxes, also for each spatial position of the feature map. Classification,
regression, and IoU scores are concatenated to create the network output.

As mentioned before, the network head is applied on three feature maps from
the backbone with different shapes to improve the detection performance for
various object sizes. The classification branch is a small CNN that yields 𝑐
confidence scores, one for each considered object category. Since only per-
sons should be detected, 𝑐 = 1 holds. The single output is termed 𝑠person and
is normalized between zero and one. The localization branch also consists
of small CNNs. It is further split into two subbranches for bounding box re-
gression and a newly introduced IoU score. The standard regression branch
computes the four bounding box parameters 𝑥, 𝑦, 𝑤, and ℎ. Like the first
YOLO version, YOLOX additionally employs an IoU branch that predicts the
IoU between the GT box and the generated box. The predicted IoU score 𝑠IoU,
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which also lies between zero and one, is multiplied with the score of the clas-
sification branch, giving the overall confidence score

𝑠 = 𝑠person ⋅ 𝑠IoU. (5.1)

As the IoU is a measure for localization accuracy, this reduces the confidence
of poorly localized bounding boxes. To summarize, the YOLOX head predicts
six values for each spatial position of the input feature map: one confidence
score for detecting a person, four for the bounding box position and size, and
one for the IoU as indicator of the localization accuracy.

Besides the decoupled head and the IoU branch, YOLOX introduces further
architectural developments as well as improvements in the training process
of the single-stage detector, which are out of the scope of this thesis. The
interested reader is referred to the original paper of YOLOX [Ge21] and a
comprehensive review of the YOLO family found in [Ter23].

5.1.2 Non-Maximum Suppression

With an input size of 1440×800 pixels, a total of 23,625 predictions is made by
the YOLOX detector (Figure 5.1). Obviously, not all of these predictions corre-
spond to actual persons. Predictions from feature map positions that contain
only information from the background, i.e., image parts without persons, will
mostly have a very low confidence score 𝑠. Therefore, a minimum confidence
threshold 𝑠min is applied to filter these background detections. Moreover, adja-
cent feature map positions are likely to detect the same person multiple times,
especially if the person covers a large area on the input image such that large
parts of the feature maps contain information from that person. For this rea-
son, an NMS is leveraged to filter duplicate detections as post-processing step.

Given a set of detections �̃� = {D̃1, … , D̃𝑘}, where each detection D = (𝐛, 𝑠)
consists of a bounding box 𝐛 and a confidence score 𝑠, optionally, a confidence
threshold 𝑠min is applied to remove low-confidence detections with 𝑠 < 𝑠min.
As first step of the NMS, the detections are sorted with descending confidence.
Then, the IoU, denoted by 𝑜 (overlap), between the most confident detection
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and each other detection is calculated. If it exceeds an overlap threshold 𝑜NMS,
the less-confident detection is removed from the set of detections �̃�. When all
overlapswith themost confident detection have been computed, the process is
repeated with the second most confident detection, while the most confident
one is excluded in the following runs. The algorithm terminates when all
detections have either been removed or have been kept as the most confident
detection, yielding the output set of detections 𝒟 = {D1, … ,D𝑚}, 𝑚 ≤ 𝑘. In
practice, it is much smaller than the input detection set �̃�, so 𝑚 < 𝑘 holds.
Algorithm 1 summarizes the NMS procedure.

Algorithm 1: Non-Maximum Suppression.
Input: Set of detections �̃� = {D̃1, … , D̃𝑘} with D = (𝐛, 𝑠) and

𝐛 = (𝑥,𝑦,𝑤,ℎ),
IoU threshold 𝑜NMS

Output: Filtered set of detections 𝒟 = {D1, … ,D𝑚}, 𝑚 ≤ 𝑘
// sort detections with descending confidence 𝑠 and save in list

1 L ← [(𝐛1, 𝑠1), (𝐛2, 𝑠2), … , (𝐛𝑘, 𝑠𝑘) | 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑘]
2 𝒟 ← ∅ // initialize output set
3 while length(L) ≠ 0 do
4 D = (𝐛, 𝑠) ← L.pop(0) // select most confident detection
5 𝒟 ← 𝒟∪ {D} // and save it in the output set

6 for D̃ = (�̃�, ̃𝑠) ∈ L do // iterate over all other detections
7 𝑜 ← IoU(𝐛, �̃�) // calculate intersection over union
8 if 𝑜 > 𝑜NMS then
9 L ← L \ D̃ // remove less-confident detection

It is guaranteed that there are no two detections left in 𝒟 with an IoU ex-
ceeding 𝑜NMS. In sparse scenes without persons occluding other persons, this
is desired as only duplicate detections are filtered. However, in dense scenes
with many person–person occlusions, also TP detections can be removed, es-
pecially if themaximum overlap threshold 𝑜NMS is set too small. In conclusion,
𝑜NMS should be tuned to achieve a good trade-off between removing most du-
plicate detections, while eliminating only few TPs.
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5.2 Motion Model

In order to achieve a good motion-based association, which means that de-
tections are assigned to tracks based on the estimated track positions derived
from the motion of targets, the estimated track positions should be as accu-
rate as possible. The prediction of track positions is the task of the motion
model. Formally, a track can be modeled as tuple T = (𝐱) comprising a state
𝐱 that contains the positions of the track on the image. As will be seen in
Section 5.2.1, the state 𝐱 may include further information about dimensions
and velocities. Besides 𝐱, a track T = (𝐱, 𝐏) could also incorporate uncer-
tainties 𝐏 about the state quantities or other information, for instance, about
the appearance of the tracked target (Section 5.4.2). Given a motion model
MM(⋅), a track state T̂𝑡 = (�̂�𝑡, �̂�𝑡) at time 𝑡 can be predicted from the state
of the previous iteration:

T̂𝑡 = (�̂�𝑡, �̂�𝑡) = MM(T𝑡−1) = MM(𝐱𝑡−1, 𝐏𝑡−1). (5.2)

While motion paths of persons in natural environments are in general non-
linear, the high frame rate available in videos captured for MPT applications
allows to approximate the frame-wise motions with a linear model. The om-
nipresent motion model utilized in MPT is the Kalman filter [Kal60]. Its ba-
sic version is described in Section 5.2.1, and two adaptations are treated in
Section 5.2.2.

5.2.1 Kalman Filter

The Kalman filter is used to estimate the internal state of a linear dynamic
system, which has been discretized in the time domain, on the basis of noisy
measurements. Before examining the Kalman filter for the MPT task, its basic
formulation and working mechanism are explained. Two steps are performed
alternately: the prediction step and the update step. Those two phases are based
on the system equation and the observation equation of the linear dynamic
system, which are described in detail as follows.
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Given a multi-dimensional state 𝐱, a transition matrix 𝐅𝑡−1, a control ma-
trix 𝐁𝑡−1 with control vector 𝐮𝑡−1, and process noise𝐰𝑡−1, the system equa-
tion for the transition from state 𝐱𝑡−1 to 𝐱𝑡 is given by

𝐱𝑡 = 𝐅𝑡−1𝐱𝑡−1 + 𝐁𝑡−1𝐮𝑡−1 +𝐰𝑡−1. (5.3)

Note that the process noise 𝐰𝑡−1∼𝒩(0, 𝐐𝑡−1) is assumed to be drawn from
a multivariate normal distribution 𝒩 with zero mean and covariance ma-
trix 𝐐𝑡−1. The system equation models how the components of the state vec-
tor influence each other, how the state is controlled by external inputs, and
additionally considers the process noise of the system.

The observation equation describes the relation between an observed mea-
surement vector 𝐳𝑡 , the observation matrix𝐇𝑡 , the state 𝐱𝑡 , and the measure-
ment noise 𝐯𝑡 at time 𝑡:

𝐳𝑡 = 𝐇𝑡𝐱𝑡 + 𝐯𝑡. (5.4)

The measurement noise 𝐯𝑡 ∼ 𝒩(0, 𝐑𝑡) is also assumed to be drawn from a
normal distribution with zero mean and its covariance matrix is denoted by
𝐑𝑡 . The observation equation models how the observed measurements are
generated from the internal state and also considers the measurement noise.

Based on Equation (5.3), the formulas of the prediction step can be given:

�̂�𝑡|𝑡−1 = 𝐅𝑡−1�̂�𝑡−1 + 𝐁𝑡−1𝐮𝑡−1, (5.5)

�̂�𝑡|𝑡−1 = 𝐅𝑡−1�̂�𝑡−1𝐅T
𝑡−1 + �̂�𝑡−1. (5.6)

The estimated a priori mean of the state 𝐱 at time 𝑡, given observations up to
and including time 𝑡 −1, is denoted by �̂�𝑡|𝑡−1. Likewise, the estimated a priori
covariance matrix of the state 𝐱 is labeled with �̂�𝑡|𝑡−1. It has to be noticed that
the covariance matrix of the process noise 𝐐𝑡−1 is not known and must be
estimated with a priori information of the system yielding �̂�𝑡−1.

One can see from Equation (5.6), that the uncertainty of the state estimation
increases in the prediction step if the process noise is large. Therefore, it is
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desired to use measurements to reduce the uncertainty of the estimation in
the update step. The formulas of the update step are listed below:

𝐊𝑡 = �̂�𝑡|𝑡−1𝐇T
𝑡 (𝐇𝑡�̂�𝑡|𝑡−1𝐇T

𝑡 + �̂�𝑡)−1, (5.7)
�̂�𝑡 = �̂�𝑡|𝑡−1 +𝐊𝑡�̃�𝑡 = �̂�𝑡|𝑡−1 +𝐊𝑡(𝐳𝑡 −𝐇𝑡�̂�𝑡|𝑡−1), (5.8)

�̂�𝑡 = (𝐈𝑛 −𝐊𝑡𝐇𝑡)�̂�𝑡|𝑡−1. (5.9)

Notice that the covariance matrix 𝐑𝑡 of the measurement noise is unknown
and has to be estimated yielding �̂�𝑡 and that 𝐈𝑛 is the identity matrix. 𝐊𝑡 is
termed Kalman gain and the auxiliary variable �̃�𝑡 = 𝐳𝑡 − 𝐇𝑡�̂�𝑡|𝑡−1 is often
referred to as innovation. The innovation indicates how accurately the esti-
mated a priori mean of the state �̂�𝑡|𝑡−1 from the prediction step can explain
the measurement 𝐳𝑡 using the observation equation (Equation (5.4)). For a
bad prediction, the absolute value of the innovation gets large, while for a
good prediction, it gets small. Therefore, the innovation is a measure for the
extent of the correction that has to be made for the estimated state from the
prediction �̂�𝑡|𝑡−1.

The influence of the innovation on the estimated a posteriori mean, i.e., after
incorporating the measurement, of the state �̂�𝑡 is controlled by the Kalman
gain 𝐊𝑡 as can be seen in Equation (5.8). If the Kalman gain is small, the Kal-
man filter puts more weight on the prediction than on the measurement and
vice versa. Having a closer look at Equation (5.7), this is reasonable because
the Kalman gain gets large if the (estimated) uncertainty of the measurement
�̂�𝑡 is low and the Kalman gain gets small if the uncertainty of the measure-
ment �̂�𝑡 is high. This means that, depending on the uncertainty of the pre-
diction �̂�𝑡|𝑡−1 and the uncertainty of the measurement �̂�𝑡 , the Kalman filter
puts more confidence in the one or the other in the update step. That finding
can be underlined regarding the following two extreme cases:
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• No uncertainty in the measurement: �̂�𝑡 = 0. With Equations (5.7)
to (5.9) follows:

𝐊𝑡 = �̂�𝑡|𝑡−1𝐇T
𝑡 (𝐇𝑡�̂�𝑡|𝑡−1𝐇T

𝑡 + 0)−1

= �̂�𝑡|𝑡−1𝐇T
𝑡 (𝐇T

𝑡 )−1�̂�−1𝑡|𝑡−1𝐇−1
𝑡 = 𝐇−1

𝑡 , (5.10)

�̂�𝑡 = �̂�𝑡|𝑡−1 +𝐇−1
𝑡 (𝐳𝑡 −𝐇𝑡�̂�𝑡|𝑡−1) = 𝐇−1

𝑡 𝐳𝑡, (5.11)

�̂�𝑡 = (𝐈𝑛 −𝐇−1
𝑡 𝐇𝑡)�̂�𝑡|𝑡−1 = 0. (5.12)

The Kalman filter relies fully on the measurement and the estimated
uncertainty becomes zero.

• Maximum uncertainty in the measurement: �̂�𝑡 →∞∞∞. With
Equations (5.7) to (5.9) follows:

𝐊𝑡 = lim
�̂�𝑡→∞∞∞

�̂�𝑡|𝑡−1𝐇T
𝑡 (𝐇𝑡�̂�𝑡|𝑡−1𝐇T

𝑡 + �̂�𝑡)−1 = 0, (5.13)

�̂�𝑡 = �̂�𝑡|𝑡−1 + 0(𝐳𝑡 −𝐇𝑡�̂�𝑡|𝑡−1) = �̂�𝑡|𝑡−1, (5.14)

�̂�𝑡 = (𝐈𝑛 − 0𝐇𝑡)�̂�𝑡|𝑡−1 = �̂�𝑡|𝑡−1. (5.15)

The Kalman filter relies fully on the prediction and the estimated
uncertainty stays the same, i.e., the measurement is not used at all.

Note that Equation (5.9) and the two examples above indicate that, in practi-
cal cases, the uncertainty after the update step �̂�𝑡 is always smaller than the
uncertainty after the prediction step �̂�𝑡|𝑡−1.

In the initialization, �̂�0 and �̂�0 are set, and then, prediction step and update
step are alternately repeated if a measurement is available at each discrete
time 𝑡. If no measurement is available, the update step can be skipped, how-
ever, with the consequence that the uncertainty of the estimated state will
increase in consecutive prediction steps without any update step.

In the following, the details of the Kalman filter implementation used in this
thesis are provided. It is based on the DeepSORT [Woj17] implementation,
which has been taken over by many MPT methods [Wan20, Wan21, Zha21,
Zha22c]. The Kalman filter is utilized for modeling the motion of the tracked
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persons with the motion state

𝐱 = (𝑥, 𝑦, 𝑎, ℎ, ̇𝑥, ̇𝑦, ̇𝑎, ̇ℎ)T, (5.16)

whereby (𝑥,𝑦) is the position on the image, 𝑎 = 𝑤/ℎ and ℎ are the aspect
ratio and height of the track bounding box, respectively, and ⋅ denotes the
temporal derivative.

The detector from Section 5.1 is leveraged for generating a measurement

𝐳 = (𝑥, 𝑦, 𝑎, ℎ)T. (5.17)

Thus, only the first four entries of the state are observable, while the remain-
ing four have to be estimated with the system equation. Since the system
contains no control inputs 𝐮𝑡−1, the system equation (Equation (5.3)) and the
prediction step for the state mean (Equation (5.5)) simplify with 𝐁𝑡−1 = 0 to

𝐱𝑡 = 𝐅𝑡−1𝐱𝑡−1 +𝐰𝑡−1, (5.18)
�̂�𝑡|𝑡−1 = 𝐅𝑡−1�̂�𝑡−1. (5.19)

All other aforementioned equations of the Kalman filter remain identical.

As mentioned earlier, the high frame rate in MPT ensures that only small
motion changes occur between two time steps. Therefore, a constant velocity
assumption is made. Moreover, the system and observation equations do not
change over time, i.e., the time index 𝑡 can be omitted in the transition matrix
𝐅𝑡−1 = 𝐅 and observation matrix 𝐇𝑡 = 𝐇, which are given below:

𝐅 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝐇 =
⎛
⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟
⎠
. (5.20)
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Since the covariance matrices of the process and measurement noise are not
known, they have to be estimated in each iteration. The covariances 𝐐𝑡 and
𝐑𝑡 depend on the depth of the tracked target in the camera frame, since the
depth is a good indicator for the extent of movement on the image plane be-
tween two time steps. However, there is usually no depth information avail-
able in the 2D images. Therefore, the height ℎ of the target’s bounding box
is leveraged because there is a correlation between height and depth infor-
mation. Namely, persons close to the camera, i.e., with a small depth, appear
larger than persons far away from the camera, i.e., with a large depth. Conse-
quently, the estimated height ̂ℎ𝑡 of the state mean �̂�𝑡 and the height ℎ𝑡 of the
measurement 𝐳𝑡 are used to compute the estimated process noise covariance
�̂�𝑡 and estimated measurement noise covariance �̂�𝑡 , respectively:

�̂�𝑡 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼 ̂ℎ𝑡 0 0 0 0 0 0 0
0 𝛼 ̂ℎ𝑡 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0
0 0 0 𝛼 ̂ℎ𝑡 0 0 0 0
0 0 0 0 𝛽 ̂ℎ𝑡 0 0 0
0 0 0 0 0 𝛽 ̂ℎ𝑡 0 0
0 0 0 0 0 0 10−5 0
0 0 0 0 0 0 0 𝛽 ̂ℎ𝑡

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

, (5.21)

�̂�𝑡 =
⎛
⎜⎜
⎝

𝛼ℎ𝑡 0 0 0
0 𝛼ℎ𝑡 0 0
0 0 0.1 0
0 0 0 𝛼ℎ𝑡

⎞
⎟⎟
⎠

2

. (5.22)

The parameter 𝛼 is introduced to tune the estimated variances related to the
positional variables of the state 𝑥, 𝑦, and ℎ, while the parameter 𝛽 is re-
sponsible for the velocity variables ̇𝑥, ̇𝑦 and ̇ℎ. In this thesis, 𝛼 = 0.05 and
𝛽 = 6.25 ⋅ 10−3 are adopted from the DeepSORT [Woj17] implementation, as
well as the constant variances related to the aspect ratio 𝑎.
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In the initialization step, the first measurement 𝐳0 = (𝑥0, 𝑦0, 𝑎0, ℎ0) is used
to originally set the estimated state mean �̂�0 and covariance �̂�0:

�̂�0 = (𝑥0, 𝑦0, 𝑎0, ℎ0, 0, 0, 0, 0)T, (5.23)

�̂�0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2𝛼ℎ0 0 0 0 0 0 0 0
0 2𝛼ℎ0 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0
0 0 0 2𝛼ℎ0 0 0 0 0
0 0 0 0 10𝛽ℎ0 0 0 0
0 0 0 0 0 10𝛽ℎ0 0 0
0 0 0 0 0 0 10−5 0
0 0 0 0 0 0 0 10𝛽ℎ0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

. (5.24)

While the measurement 𝐳0 is directly copied to the positional entries of the
state mean 𝐱0, the velocities are initialized with zero, as no velocity infor-
mation can be derived from a single measurement. Note that the increased
uncertainty of the initial state 𝐱0 is reflected in the higher values of the vari-
ances in �̂�0, especially in those related to the velocities.

5.2.2 Kalman Filter Adaptations

In this section, two small adaptations of the basic Kalman filter in the context
of MPT are presented: the NSA Kalman filter from [Du21] and the HP module
proposed in a previous work from the author of this thesis [Sta22b].

The idea of the NSA Kalman filter is to leverage the confidence score from the
detector as indicator for the measurement noise. A high detection confidence
implies a small measurement noise, whereas a low confidence implies a large
noise. This should be reflected in the estimation of the measurement covari-
ance matrix. Given a confidence score 𝑠𝑡 at time 𝑡 next to the measurement
𝐳𝑡 and the standard estimated noise covariance �̂�𝑡 from Equation (5.22), the
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NSA measurement covariance �̃�𝑡 is calculated as¹

�̃�𝑡 = (1 − 𝑠𝑡)2 �̂�𝑡. (5.25)

If the detector is completely sure about its detection, i.e., 𝑠𝑡 = 1, the es-
timated measurement uncertainty will become zero, whereas the estimated
uncertainty is not altered for 𝑠𝑡 = 0.

While the NSA Kalman filter makes changes to the update step, the HP adapts
the prediction step. It is found that tracks updated by a measurement with
inaccurate height before getting occluded, i.e., with no following measure-
ment for multiple time steps, suffer from a shrinking or growing bounding
box during prediction [Sta22b]. This is because the inaccurate measurement
distorts the velocity state of the height ̂ ̇ℎ in the update step and since no fur-
ther measurements are available during occlusion, the bounding box height
gets smaller or larger in each prediction step. As a consequence, an associa-
tion of the track after the occlusion is not possible, if the distortion of the state
̂ ̇ℎ is too severe, because the predicted height will differ significantly from the

more accurate height of the newly arriving measurement. To prevent such a
behavior, the velocity state of the height is set to zero in the prediction step:

̂ ̇ℎ = 0. (5.26)

This ensures that the height of the track is preserved during an occlusion,
which simplifies a motion-based association after the occlusion has dissolved.

The performance of the two Kalman filter adaptations will be compared to
the standard formulation in Section 5.6.4.

¹ The square in Equation (5.25) does not appear in the paper of [Du21] but in the implementation
available at https://github.com/dyhBUPT/StrongSORT (accessed on July 16, 2024).
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5.3 Re-Identification Model

Many MPT approaches found in the literature leverage a REID model to ex-
tract appearance features from the image regions where persons have been
detected [Aha22, Ber19, Du23, Tan17, Woj17]. The features extracted from
various person detections are then compared with a similarity measure to
perform the association task. This will be elaborated in more detail in Sec-
tion 5.4.2, while the basic functionality of a REID model is explained next.
After that, the model used in the base framework of this thesis is presented.

Given a set of person detections𝒟 = {(𝐛1, 𝑠1), … , (𝐛𝑚, 𝑠𝑚)}, the correspond-
ing image regions 𝐈reg,1, … , 𝐈reg,𝑚 are cropped from the image 𝐈 using the
bounding box information 𝐛1, … , 𝐛𝑚. The image regions are then resized to
a fixed size and put into the REID model. It is a CNN that computes a feature
vector 𝐟 for each input region 𝐈reg. While some sophisticated networks com-
bine multiple local features from different parts of the input region, a typical
approach is to extract one global feature vector from the last feature map of
the network backbone. This is done by global average pooling (GAP), which
takes a three-dimensional feature volume of size𝑤f×ℎf×𝑐f as input, with𝑤f,
ℎf, and 𝑐f being the width, height, and channel dimension of the feature vol-
ume, respectively. Output of the GAP is a feature vector 𝐟 of length 𝑐f, since
the average is calculated across the spatial dimensions of the feature volume.

The goal is to train the REID network in a way such that input images of the
same person result in similar feature vectors with a small distance in the em-
bedding space. Two common loss functions to achieve this goal are presented:
the triplet loss [Her17] and the identity loss. Provided three input images,
whereof two depict the identical person and the third shows a different per-
son, the REID network extracts the feature vectors 𝐟a, 𝐟p, and 𝐟n denoting the
anchor, positive, and negative feature, respectively. The anchor feature and
positive feature originate from the same person, whereas the negative feature
is extracted from the image depicting the other person. Then, the triplet loss
ℒtriplet can be calculated as

ℒtriplet = max (‖𝐟a − 𝐟p‖2 − ‖𝐟a − 𝐟n‖2 + 𝛾, 0) (5.27)
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with 𝛾 ∈ [0,∞) being a hyper-parameter termed margin and ‖⋅‖2 represent-
ing the Euclidean distance. The triplet loss aims at bringing features from the
same person closely together in the embedding space, while pushing features
from different persons away from each other. The maximum function pre-
vents the loss becoming negative, and the margin parameter ensures that the
loss gets zero only if the negative feature is at least by the value of 𝛾 farther
away from the anchor feature than the positive feature. Obviously, a training
batch has to contain at least two images depicting the same person to enable
the use of the triplet loss.

The triplet loss is often combined with the identity loss in the training process
of a REID model [Gon22, Her21, Wan18b]. To enable the utilization of the
identity loss, the network is extended by a fully-connected (FC) layer and a
softmax layer, which are put after the GAP layer that yields the feature vector
𝐟 with length 𝑐f. Thus, the FC layer has an input size of 𝑐f. The output size is
set to the number of different person identities 𝑁ID available in the training
dataset, as the identity loss treats the REID task as a classification problem
with𝑁ID classes. Before calculating the loss, the outputs of the FC layer𝑝𝑖, 𝑖 ∈
{1, … ,𝑁ID} are normalized using the softmax function

̃𝑝𝑖 =
exp(𝑝𝑖)

∑𝑁ID
𝑗=1 exp(𝑝𝑗)

(5.28)

so that ̃𝑝𝑖 ∈ (0,1) holds. Given an input image with GT label 𝑔 ∈ {1, … ,𝑁ID}
and class-wise predictions ̃𝑝𝑖, 𝑖 ∈ {1, … ,𝑁ID}, the identity loss ℒID can be
computed:

ℒID = −
𝑁ID

∑
𝑖=1

𝛿𝑖𝑔 log( ̃𝑝𝑖). (5.29)

Here, 𝛿𝑖𝑔 stands for the Kronecker delta, which becomes one if 𝑖 = 𝑔 and zero
if 𝑖 ≠ 𝑔. Thus, the identity loss gets low if the correct identity class has been
predicted with large probability ̃𝑝𝑖 and vice versa. The identity loss also aims
at generating similar features 𝐟 from images depicting the same person. Note
that the FC layer and softmax layer are only applied in the training phase,
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while during inference, the network outputs the feature vector 𝐟. In contrast
to the triplet loss, a training batch can contain images of exclusively different
persons when using the identity loss.

To improve the performance of the network, REID works [Gon22, Her21,
Wan18b] leverage both the triplet loss and the identity loss in the training
process. That is also true for the model adopted for this thesis from [He23]. It
is termed stronger baseline (SBS) and is a further development of the bag of
tricks (BoT) model presented in [Luo19]. Remember that the modularization
of the TBD paradigm allows to use any REID model within the base frame-
work. The SBS model has been chosen for two reasons:

• It is designed to achieve a good speed–accuracy trade-off keeping a
lightweight network architecture, while using a bag of training tricks
to improve the performance without additional computational costs.

• It is also utilized in other MPT methods, which enables a fair
comparison with those works.

An overview of the SBS network structure is illustrated in Figure 5.3.

GAP BN

Triplet loss

FC

Identity loss
Only in training

2048
1

2048
384

128
Backbone BNNeck

1
NID

1
2048

24

8 𝐟triplet 𝐟ID

Figure 5.3: Overview of the SBS REID network. Given image crops of persons as input, the back-
bone extracts feature maps, which are then transformed to feature vectors by GAP.
The following BNNeck applies batch normalization (BN) on these features. During
training, the triplet loss is leveraged for the non-normalized features, while the iden-
tity loss is used together with a FC layer for the normalized features.

A training batch contains 𝐵 = 𝑃𝐾 images of size 128×384 pixels with 𝑃 de-
noting the number of different persons and 𝐾 the number of different images
per person. The images are put into a modified ResNeSt-50 (S50) [Zha22a]
backbone, where the stride of the last stage has been changed from 2 to 1 to
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increase the spatial resolution of the feature map. This comes with very small
computational costs, while the performance is significantly increased. With
this modification, the overall downsampling factor of the backbone becomes
16 and the size of the last feature volume is 8×24×2048. Consequently, the
GAP results in a feature vector 𝐟 of length 𝑐f = 2048.

Usually, triplet loss and identity loss are applied on the same feature vector 𝐟.
In [Luo19], however, it is argued that the targets of the two losses are incon-
sistent in the embedding space. Therefore, a batch normalization (BN) layer is
leveraged within a BNNeck to differentiate the two feature vectors 𝐟triplet and
𝐟ID as can be seen in Figure 5.3. The triplet loss is applied on 𝐟triplet, which is the
output of the GAP layer. Then, BN is performed on 𝐟triplet yielding the feature
vector 𝐟ID. Finally, the identity loss is applied on 𝐟ID. As mentioned before,
the FC layer and softmax layer are only used in the training process. During
inference, the network outputs the feature vector 𝐟ID, which embeds valuable
information about the appearance of the person depicted on the input image.
Consequently, such features are used in the appearance-based matching of
the MPT framework.

5.4 Association

In MPT, the task of matching detections of the same persons together to form
tracks is termed association. One can categorize available approaches into of-
fline and online methods. In an offline setting, the detections from all images
of a video are available, whereas in an online setting, only the detections up
to the current time can be used in the association and typically, the tracks
are updated in each time step. Offline methods theoretically can achieve bet-
ter results, since for a time step 𝑡, not only information from the past but
also from the future can be leveraged. However, they usually suffer from
a very high computational complexity, especially for long sequences as the
length 𝑙 of a video enters exponentially into the number of possible assign-
ments. For instance, given a toy example of a video with length 𝑙 = 5 and
𝑛 = 4 person detections in each frame, there are a total of (𝑛!)(𝑙−1) = 331,776
possible combinations. In contrast, performing the association in each time
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step in an online manner, there are only 𝑛! ⋅ (𝑙 − 1) = 96 possibilities. The
high complexity of offline methods is one reason why the current SOTA in
MPT is dominated by online methods. Furthermore, offline methods cannot
be applied in real time and thus have a lower relevance for practical applica-
tions. Therefore, this thesis focuses on online association methods following
the TBD paradigm, i.e., detections are assigned to tracks in each time step.

After the initialization of tracks, which will be treated in Section 5.5, the cur-
rent set of detections 𝒟 = {D1, … ,D𝑚} has to be associated with the tracks
from the previous time step 𝒯 = {T1, … , T𝑛}. For each detection D𝑖 and each
track T𝑗 , a distance 𝑑(D𝑖,T𝑗) is computed and saved in a distance matrix

𝐃 = (𝑑(D𝑖,T𝑗))𝑖=1,…,𝑚; 𝑗=1,…,𝑛 (5.30)

of size𝑚×𝑛. Note that the number of detections𝑚 and the number of tracks 𝑛
can differ, as the detector might miss some targets or generate some FP detec-
tions. To solve the assignment problem of associating each track with at most
one detection, while not utilizing a detection twice, two approaches are com-
mon in MPT: greedy matching and using the Hungarian algorithm [Kuh55].
In the greedy approach, the detection and track with the smallest distance are
matched. Then, the pair with the second smallest distance among the remain-
ing tracks and detections is matched and so on. In contrast, the Hungarian
algorithm associates tracks and detections such that the summed distances
of matched detections and tracks are minimized. In both strategies, a max-
imum distance 𝑑max is enforced to prevent unlikely assignments. The two
approaches will be evaluated in Section 5.6.5.

Various information about the targets can be represented in the association
distance 𝑑, whereby mostly motion or appearance cues are leveraged. In the
following, common variants for either motion-based or appearance-based as-
sociation in the context of MPT are presented.
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5.4.1 Motion-Based Association

In motion-based association, a motion model is used to predict the track po-
sitions (and dimensions) in the current time step 𝑡 with the information from
the previous time step 𝑡 − 1 saved in the track states {T𝑡−1}. Denoting the
prediction function of the motion model with MM(⋅), the prediction step can
be written as

𝒯𝑡|𝑡−1 = {T̂1𝑡|𝑡−1, … , T̂
𝑛
𝑡|𝑡−1} = {MM(T𝑡−1) |T𝑡−1 ∈ 𝒯𝑡−1} (5.31)

with the predicted tracks 𝒯𝑡|𝑡−1 and the tracks from the previous time step
𝒯𝑡−1. The predicted tracks 𝒯𝑡|𝑡−1 are then compared with the current detec-
tions𝒟𝑡 leveraging a spatial distance function. When using the Kalman filter
from Section 5.2.1 as motion model, the predicted track state T̂𝑡|𝑡−1 contains
the eight-dimensional mean vector �̂�𝑡|𝑡−1 = ( ̂𝑥, ̂𝑦, ̂𝑎, ̂ℎ, ̂̇𝑥, ̂̇𝑦, ̂̇𝑎, ̂̇ℎ)T and its co-
variance matrix �̂�𝑡|𝑡−1 from Equations (5.5) and (5.6):

T̂𝑡|𝑡−1 = (�̂�𝑡|𝑡−1, �̂�𝑡|𝑡−1). (5.32)

A simple approach to get a motion-based distance 𝑑mot between such a pre-
dicted track T̂ and a detection D = (𝐛, 𝑠) is to calculate the Euclidean distance
between its center positions

𝑑L2(T̂,D) = ‖(𝑥T, 𝑦T)T − (𝑥D, 𝑦D)T‖2. (5.33)

Here, (𝑥T, 𝑦T)T is taken from �̂� of T̂ and (𝑥D, 𝑦D)T comes from the bounding
box 𝐛 of D. Notice that the time indices have been omitted for clarity.

Another possibility is to use the (squared) Mahalanobis distance between the
track’s state (mean and covariance) and the detection in the measurement
space. Next to the positional information, the bounding box dimensions are
considered as well as the uncertainties of the estimated quantities. To calcu-
late the Mahalanobis distance, mean �̂�𝑡|𝑡−1 and covariance �̂�𝑡|𝑡−1 of the track
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are projected into the measurement space yielding 𝐲 and 𝐒, respectively:

𝐲 = 𝐇�̂�𝑡|𝑡−1, (5.34)

𝐒 = 𝐇�̂�𝑡|𝑡−1𝐇T + �̂�𝑡. (5.35)

Remember that 𝐇 denotes the observation matrix from Equation (5.20) and
�̂�𝑡 is the estimated measurement noise at time 𝑡 from Equation (5.22). Given
also the detection 𝐝 = (𝑥D, 𝑦D, 𝑎D, ℎD)T in the measurement space (confi-
dence score 𝑠 is omitted), the squared Mahalanobis distance 𝑑Mah is calculated
as follows:

𝑑Mah(T̂,D) = (𝐝 − 𝐲)T𝐒−1(𝐝 − 𝐲). (5.36)

Note that 𝐒 is positive definite in practice, so the existence of 𝐒−1 is ensured.

The most used distance measure in motion-based MPT is the IoU distance
𝑑IoU. Let 𝐛T = (𝑥T, 𝑦T, 𝑤T, ℎT)T be the bounding box derived from the track
state T̂ and 𝐛D the box taken from detection D. Further, let 𝐴T and 𝐴D denote
the bounding box area of 𝐛T and 𝐛D, respectively. Then, the IoU distance is
computed using the ratio of intersection (∩) over union (∪):

𝑑IoU(T̂,D) = 1 − IoU(𝐛T, 𝐛D) = 1 − |𝐴T ∩ 𝐴D|
|𝐴T ∪ 𝐴D|

. (5.37)

Besides positional information, the IoU also takes the bounding box dimen-
sions and the aspect ratio implicitly into account. The performance of the
three presented motion-based distances 𝑑L2, 𝑑Mah, and 𝑑IoU used in the MPT
task is compared in Section 5.6.5.

Independent from the distance function utilized, whenever a detection 𝐝𝑡 =
(𝑥𝑡, 𝑦𝑡, 𝑎𝑡, ℎ𝑡)T is assigned to a track, the track’s state T̂𝑡|𝑡−1 = (�̂�𝑡|𝑡−1, �̂�𝑡|𝑡−1)
is updated using the measurement 𝐳𝑡 = 𝐝𝑡 yielding T̂𝑡 = (�̂�𝑡, �̂�𝑡) according
to the Kalman filter update Equations (5.8) and (5.9). If the NSA Kalman filter
adaptation is applied, the confidence score 𝑠𝑡 of the detection is also leveraged
as per Equation (5.25). The Kalman filter prediction in the next iteration 𝑡 + 1
is then based on the updated track state T̂𝑡 .
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5.4.2 Appearance-Based Association

In appearance-based association, a REID model is used to extract appear-
ance features from the detected image regions. Features from different de-
tections are then compared in order to perform the association. Formally,
let D = (𝐛, 𝑠, 𝐟) be a detection comprising an appearance feature vector 𝐟 ex-
tracted by the REID network in addition to the bounding box 𝐛 and confidence
score 𝑠. Moreover, the state of a track (Equation (5.32)) is extended by a list
of associated feature vectors F𝑡 = [𝐟𝑡−𝑘, … , 𝐟𝑡]:

T̂𝑡 = (�̂�𝑡, �̂�𝑡, F𝑡). (5.38)

While the motion states �̂�𝑡 and �̂�𝑡 as well as the detection bounding box 𝐛
and score 𝑠 still are used in the prediction and update step of the Kalman
filter, the appearance-based association uses only the features F𝑡 and 𝐟. More
precisely, let FT be the list of feature vectors of a track T (time index 𝑡 omitted
for clarity) and 𝐟D the feature vector of a detection D. Then, the appearance-
based distance 𝑑app between track T and detection D

𝑑app(T, D) = 𝑑app(FT, 𝐟D) (5.39)

can be calculated using only the feature information.

Various approaches to compute the appearance distance exist. Before present-
ing methods for determining the distance between a list of feature vectors and
a single feature vector, the two basic distance measures for comparing two
single feature vectors in MPT are described.

First, the Euclidean distance 𝑑L2 between two feature vectors 𝐟1 and 𝐟2 can
be leveraged:

𝑑L2(𝐟1, 𝐟2) = ‖𝐟1 − 𝐟2‖2. (5.40)
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Second, the cosine distance 𝑑cos is another possibility for comparing two fea-
ture vectors:

𝑑cos(𝐟1, 𝐟2) = 1 − 𝐟T1𝐟2
‖𝐟1‖2 ⋅ ‖𝐟2‖2

. (5.41)

While the Euclidean distance is not bounded, i.e., 𝑑L2 ∈ [0,∞), for the cosine
distance, 𝑑cos ∈ [0, 2] holds.

Next, several approaches for computing the appearance distance 𝑑app are in-
troduced. In [Woj17], a feature bank of size 𝑁F is saved with each track.
Specifically, the length of the list with associated feature vectors F is limited
to 𝑁F. When the list is full and another feature vector 𝐟 is assigned to the
track, the oldest feature vector of the list is removed. Given a track T with
feature bank FT = [𝐟1, … , 𝐟𝑁], 𝑁 ≤ 𝑁F and a detection D with feature 𝐟D, the
minimum cosine distance between 𝐟D and all track features 𝐟𝑗 ∈ FT is utilized
as appearance distance:

𝑑min(T,D) = 𝑑min(FT, 𝐟D) = min
𝑗=1,…,𝑁

{𝑑cos(𝐟𝑗, 𝐟D)}. (5.42)

Alternatively, one can also leverage themean distance instead, as in a previous
work of this thesis’ author [Sta23b]:

𝑑mean(T,D) =
1
𝑁

𝑁
∑
𝑗=1

𝑑cos(𝐟𝑗, 𝐟D). (5.43)

Naturally, it is beneficial to use features from multiple time steps rather than
using only the last associated feature vector of a track, which would corre-
spond to 𝑁F = 1. However, this comes with an increased computational bur-
den because the distance function must be evaluated 𝑁F times. While some
computation time can be saved with the cosine distance, as the normalization
in the denominator of Equation (5.41) has only to be computed once for each
feature vector 𝐟𝑗 , all calculations of the Euclidean distance (Equation (5.40))
have to be performed 𝑁F times. Still, the nominator of Equation (5.41) has to
be calculated 𝑁F times for the cosine distance. As a consequence, the associ-
ation is slowed down with a growing size of the feature bank.
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A different approach of incorporating appearance information of multiple
time steps is proposed in [Wan20] and adopted in subsequent works [Aha22,
Du23, Jun24, Ren23]. In contrast of maintaining multiple features for each
track, a single feature vector 𝐟T𝑡 is updated iteratively by an EMA according to

𝐟T𝑡 = 𝜙𝐟T𝑡−1 + (1 − 𝜙)𝐟D𝑡 , (5.44)

where 𝐟D𝑡 denotes the detection feature assigned to the track at time 𝑡 and
𝜙 ∈ [0, 1] is the weight of the previous feature vector. Consequently, the track
state from Equation (5.38) turns to T̂𝑡 = (�̂�𝑡, �̂�𝑡, 𝐟T𝑡 ). Following [Wan20], the
appearance distance between a track T with feature vector before the update
step 𝐟T𝑡−1 and a detection D with feature vector 𝐟D𝑡 can be calculated as

𝑑EMA(T,D) = 𝑑cos(𝐟T𝑡−1, 𝐟D𝑡 ), (5.45)

i.e., the cosine distance is used. The performance of the various appearance-
based matching methods will be evaluated in Section 5.6.5.

5.5 Track Management

So far, it has already been covered how detections are generated, how they
are associated with tracks, and how tracks are propagated and updated with
a motion model. What is left is to answer the following questions:

• How are tracks initialized?

• What happens with detections and tracks that are not matched in the
association?

• When are tracks terminated?

These questions are treated by the track management.

Because of the imperfection of the detector, the set of detections 𝒟 =
{D1, … ,D𝑚} = {(𝐛1, 𝑠1), … , (𝐛𝑚, 𝑠𝑚)} contains, next to TPs that should be
leveraged in the tracking process, also FPs that should be removed. While
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a detection with high confidence 𝑠 is likely a TP, a detection with low con-
fidence is probably a FP. Therefore, a TBD method usually filters the set of
detections with a minimum confidence threshold 𝑠track before the association,
i.e., only detections with 𝑠 ≥ 𝑠track can be assigned to so-far tracked targets,
while the others are deleted.

When persons appear in the video for the first time, the corresponding de-
tections will not fit to the tracks and remain unassigned in the association.
These detections are then used for initializing new tracks. More precisely, let
𝐝𝑡 be the bounding box of an unassigned detection Du

𝑡 in the Kalman filter
measurement space. Then, a new track T̂𝑡 = (�̂�𝑡, �̂�𝑡) is initialized according
to Equations (5.23) and (5.24) using the unassigned detection as first measure-
ment 𝐳0 = 𝐝𝑡 .

Besides the minimum confidence threshold, many TBD approaches apply a
continuity requirement such that a target has to be detected in 𝑛init consecu-
tive frames for a successful track initialization [Aha22, Bew16, Du23, Woj17,
Zha22c]. This aims at preventing ghost tracks being started from FP detections
that occur only in single frames. To achieve this, a tentative track state is in-
troduced: When a new track Tn is initialized by an unassigned detection, it is
deemed tentative until it has been associated with another 𝑛init−1 detections
in the next time steps. If during this period, no detection can be assigned to
the new track, this tentative track is deleted. Otherwise, it turns active, which
can be indicated by the superscript: Tn → Ta. Notice that in the evaluation
of an online MPT method, only active tracks are typically considered.

To enable the continuation of tracks during failures of the detector or occlu-
sions, tracks without an assigned detection after the association are not imme-
diately terminated but turn inactive: Ta → Ti. An inactive track Ti is kept for
a maximum time period 𝑖max without assigned detection before termination.
While deemed inactive, a track is consistently propagated in the Kalman filter
prediction step (Equations (5.5) and (5.6)). If a detection ismatched to the inac-
tive track in the association during this time period, the track is re-activated:
Ti → Ta. The influence of the parameters related to the track management
𝑠track, 𝑛init, and 𝑖max will be evaluated in the next section.
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5.6 Evaluation

As all modules of the base tracking framework have been introduced, an over-
view of the whole pipeline is given in the following. After that, details about
the implementation are provided, before the single modules are evaluated and
the results are summarized.

5.6.1 Pipeline Overview

The interplay of the base tracking components is illustrated in Figure 5.4.
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Figure 5.4: Overview of the base framework with its five modules detection, motion model
(MM), re-identification, association, and track management (TM).The switch symbol
indicates that either motion or appearance information is used in the association.

In each iteration of the TBD pipeline, an updated set of tracks 𝒯𝑡 is computed
given the image of the current time step 𝐈𝑡 and the set of tracks from the
previous iteration 𝒯𝑡−1. First, the detector (DET) generates a set of prelimi-
nary detections �̃�𝑡 that is filtered by NMS yielding 𝒟𝑡 . As part of the track
management, low-confidence detections with 𝑠 < 𝑠track are deleted, while the
bounding boxes {𝐛𝑡} of the high-confidence detections are leveraged in the
association or the REID module. In the latter, they are used to crop the image
patches {𝐈reg} from the input image 𝐈𝑡 . These image regions {𝐈reg} go into the
REIDmodel that computes a set of appearance features {𝐟D𝑡 } for the detections.
Before comparing the motion or appearance cues of the current detections to
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the tracks from the last time step, the tracks 𝒯𝑡−1 are predicted with the mo-
tion model to get their estimated positions in the current frame.

For the association, the base framework supports two variants: motion-based
and appearance-based matching. This is indicated by the switch symbol in
Figure 5.4. In the motion-based association, the predicted track positions (and
uncertainties) {(�̂�𝑡|𝑡−1, �̂�𝑡|𝑡−1)} are compared against the detection boxes {𝐛𝑡}
with a motion distance 𝑑mot. Note that in this case, the REID module is not
used. In the appearance-based association, however, the detection features
{𝐟D𝑡 }, which come from the REID model, are compared against the track fea-
tures {𝐟T𝑡−1}with an appearance distance 𝑑app. All distances are summarized in
the distance matrix 𝐃𝑡 , and the assignment problem is solved with the Hun-
garian algorithm, or a greedy matching is performed.

Depending on whether a track or detection has been assigned with its coun-
terpart, different actions are carried out. The set of matched detections 𝒟m

𝑡
is leveraged to update the matched tracks 𝒯m

𝑡−1 with the Kalman filter motion
model. This yields a set 𝒯a,n

𝑡 with updated active and tentative tracks. The
unmatched detections 𝒟u

𝑡 and tracks 𝒯u
𝑡−1 are handled according to the track

management as follows. Each unmatched detection of 𝒟u
𝑡 initializes a track

yielding a set of new tracks 𝒯n
𝑡 . Depending on the state of the unmatched

tracks 𝒯u
𝑡−1 (active, inactive, tentative), they are treated differently. Tentative

tracks that are unmatched 𝒯u,n
𝑡−1 are deleted. Unmatched inactive tracks 𝒯u,i

𝑡−1
are kept if their inactive time 𝑖 does not exceed the inactive patience 𝑖max and
deleted otherwise. Together with the unmatched active tracks 𝒯u,a

𝑡−1, the kept
inactive ones build the set of inactive tracks 𝒯i

𝑡 . Finally, the updated set of
tracks 𝒯𝑡 = 𝒯a,n

𝑡 ∪ 𝒯i
𝑡 ∪ 𝒯n

𝑡 is the union of the aforementioned track sets.

5.6.2 Implementation Details

This section briefly describes some implementation details of the tracking
components contained in the base framework. As described in Section 4.3, the
YOLOX-X detector has been trained on the combination of MOT17 train half
and CH train/val following [Aha22, Cao23, Cet23, Du23, Jun24, Sun21a,Wu21,
Zen22, Zha22c, Zho20], for application on MOT17 val. Its model weights are
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taken over from [Zha22c], where the training details can be found. Unless
otherwise stated, the overlap threshold of the NMS is set to 𝑜NMS = 0.7.

For the SBS REID model, the GT from the first half of the videos from the
MOT17 training set is leveraged to generate a dataset for person REID. More
precisely, image regions of the persons are cropped in each video frame us-
ing the bounding box information, while the identity label is saved next to
every image patch. This results in a total of 74,455 images of 𝑁ID = 487 dif-
ferent persons. Consequently, the number of output neurons in the last FC
layer of the REID model is 487 during training. 𝑃 and 𝐾 are set to 4 and 16,
respectively, leading to a batch size of 𝐵 = 64. Due to a comparison with BoT-
SORT [Aha22] later in this thesis, the model weights are adopted from their
work. Further training details can be looked up in the corresponding paper.

When using the EMAupdate strategy for the track features according to Equa-
tion (5.44), 𝜙 is set to 0.9 following [Aha22, Du23, Wan20]. The impact of all
other tracking parameters and different design choices within the base frame-
work is evaluated on MOT17 val as described in the next sections.

5.6.3 Track Management

To evaluate the three parameters of the trackmanagement 𝑠track, 𝑛init, and 𝑖max,
the motion-based IoU distance 𝑑IoU is leveraged for association and the Kal-
man filter with both adaptations from Section 5.2.2 is applied asmotionmodel.
If not otherwise stated, initialized tracks immediately turn active (𝑛init = 1)
and the inactive patience 𝑖max is set to 1.5 s. Note that a time period is given
instead of a number of frames because the MOT17 dataset contains videos of
varying frame rates (Section 4.1.1).

The confidence threshold 𝑠track is applied to filter the set of detections for the
tracking process, since the confidence 𝑠 of a detection is an indicator whether
it is a TP or a FP and only correct detections should be used. To ablate the
influence of this track threshold, multiple runs with varying choices of 𝑠track
have been performed. The results are visualized in Figure 5.5.
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Figure 5.5: Influence of 𝑠track in the IoU base framework on MOT17 val. Smaller values lead to
a higher DetRe but lower DetPr and vice versa (right). A compromise yields the best
DetA, which holds also true for AssA and HOTA (left). Note that the vertical axes
do not start at zero and have a different scale and that DetA is shown in both plots.

Remember that HOTA is the geometric mean of DetA and AssA (Equa-
tion (4.10)) and that DetA can be decomposed into its submeasures DetRe
and DetPr (Equation (4.15)). The track threshold has the largest impact on
DetA. Setting a low threshold leads to high DetRe but low DetPr, while a
high threshold leads to low recall and high precision. Naturally, DetA has
a large influence on AssA since the difficulty of the association task heavily
depends on the quality of the provided detections. Thus, AssA also goes up
for an increasing 𝑠track up to an optimal value and then falls again. The best
performance measured in HOTA is achieved for 𝑠track = 0.7, which is kept
for all following experiments of the base framework.

The idea behind the track initialization utilizing a tentative track state is to
suppress FP detections that only occur in single frames. Results with a varying
number of 𝑛init are given in Table 5.1.

Table 5.1: Influence of 𝑛init in the IoU base framework on MOT17 val. Use of tentative tracks
enhances DetPr and AssPr but reduces DetRe, which overall leads to a lower HOTA.

𝑛init HOTA DetA AssA DetRe DetPr AssRe AssPr
1 67.6 65.2 70.5 69.0 85.2 75.0 84.7
2 67.5 65.0 70.5 68.6 85.5 75.0 84.8
3 67.3 64.7 70.5 68.1 85.7 75.0 84.9
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For 𝑛init = 2 and 𝑛init = 3, DetPr and AssPr are improved w.r.t. the baseline
(𝑛init = 1), which indicates that indeed FP detections are removed. However,
a decreasing DetRe shows that also TP detections are removed from the re-
sulting tracks leading in total to a lower HOTA. It is hypothesized that the
strong YOLOX-X detector generates only few high-confidence FPs such that
the introduced initialization technique yields no improvements, in contrast to
other tracking frameworks with worse detectors, where thresholds 𝑛init > 1
are applied [Bew16, Wan20, Woj17]. Consequently, 𝑛init = 1 is set for the
base framework.

The inactive patience 𝑖max determines for how long a track is kept inactive
without assigned detection. Its impact on the tracking performance of the
IoU base framework can be studied in Figure 5.6.
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Figure 5.6: Influence of 𝑖max in the IoU base framework on MOT17 val. HOTA is mainly affected
by a changing AssA, as DetA is nearly constant (left). Keeping tracks longer inactive
is beneficial for AssRe, at the cost of AssPr (right). Note that the vertical axes do not
start at zero and have a different scale and that AssA is shown in both plots.

Recall that AssA can be decomposed into AssRe and AssPr according to Equa-
tion (4.18). One can see that AssRe largely improves up to 𝑖max = 1.5 s and
then starts to saturate, as the uncertainty of the predicted motion states in-
creases for longer time periods making a successful association less likely.
This is also expressed in AssPr, which decreases with a higher inactive pa-
tience. Furthermore, the small decrease in DetA can also be explained with
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the decreasing accuracy of predicted motion states: If a predicted track with a
low accuracy is updated with a reasonable detection, the resulting bounding
box will be not as accurate as using the box of the detection directly, what
would be done in the initialization of a new track if the corresponding track
would have already been terminated. The best compromise between AssRe
and AssPr is achieved with 𝑖max = 1.5 s, which is kept for following exper-
iments. With this setting, HOTA is enhanced by 5.8 points w.r.t. 𝑖max = 0
demonstrating the high importance of utilizing inactive tracks in MPT.

5.6.4 Motion Model

The two Kalman filter adaptations presented in Section 5.2.2 are evaluated
exemplarily with the IoU base framework presented in the previous section.
As a reminder, the NSA Kalman filter leverages the detection confidence to
improve the estimatedmeasurement noise and thus the update step of the Kal-
man filter, while the HPmodule aims at a better prediction step. Experimental
results with the two adaptations are summarized in Table 5.2.

Table 5.2: Influence of Kalman filter adaptations in the IoU base framework on MOT17 val. Both
the NSA Kalman filter and the proposed HP module improve all tracking measures.
Moreover, their combination leads to further gains in HOTA and its submeasures.

NSA HP HOTA DetA AssA DetRe DetPr AssRe AssPr
7 7 66.9 64.7 69.6 68.6 84.7 74.2 84.2
3 7 67.3 65.2 69.8 69.0 85.2 74.3 84.4
7 3 67.2 64.8 70.2 68.6 84.8 74.5 84.7
3 3 67.6 65.2 70.5 69.0 85.2 75.0 84.7

Adaptively changing the measurement noise according to the detection con-
fidence, the NSA Kalman filter notably enhances DetA, which improves also
AssA slightly. On the other hand, HP mainly increases AssA because of the
enhanced accuracy of the predicted track boxes that simplify the association
task. A further plus in HOTA when combining NSA Kalman filter with HP
shows that the two modules yield complementary improvements. W.r.t. the
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standard Kalman filter formulation, HOTA is increased by 0.7 points, without
noticeable computational overhead.

Next to the height, one could also keep the aspect ratio fixed during Kalman
filter prediction. Experimental results are given in Table 5.3.

Table 5.3: Keeping different Kalman filter motion states fixed during prediction. Only the HP
results in an increased HOTA compared to the baseline.

Fix state None Height (HP): ̇ℎ = 0 Aspect ratio: ̇𝑎 = 0 Both: ̇ℎ = ̇𝑎 = 0
HOTA 66.9 67.2 66.9 66.9

Keeping the aspect ratio fixed yields the same HOTA as the standard Kalman
filter. The same is true when ̇ℎ = ̇𝑎 = 0 is set, which means that both height
and width of the bounding box are fixed during prediction. However, the
width should be variable since in MPT, persons moving in 𝑥-direction of the
image plane lead to a varying width on the image due to the motion of legs
(and arms). In conclusion, the experimental results indicate that it is only
reasonable to fix the height of bounding boxes during prediction.

5.6.5 Association

Before different motion- and appearance-based distance functions are evalu-
ated, the two algorithms for solving the assignment problem (Hungarian and
greedy assignment) are compared. Moreover, the influence of the maximum
association distance on the tracking performance is analyzed.

Table 5.4 gives a comparison of the IoU base framework results when using
either the Hungarian algorithm or a greedy assignment.

Table 5.4: Hungarian vs. greedy assignment in the IoU base framework on MOT17 val. Mini-
mizing the overall costs for all assignments, the Hungarian method performs better
than the greedy approach. As expected, the same DetA is obtained.

Assignment HOTA DetA AssA DetRe DetPr AssRe AssPr
Hungarian 67.6 65.2 70.5 69.0 85.2 75.0 84.7
Greedy 67.4 65.2 70.2 69.0 85.2 74.8 84.4
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As expected, the measures related to the detection accuracy are equal, since
the same set of detections is used in the association and also all other tracking
parameters are identical. Both AssRe and AssPr are higher for the Hungar-
ian algorithm leading to an overall better tracking performance measured in
HOTA. An advantage of the greedy assignment is that it is faster. However,
the computational burden of the whole tracking framework is dominated by
the detection and REID model (Section 7.1), so a small decrease in processing
time, when using the greedy assignment compared to the Hungarian algo-
rithm, is mostly negligible. For these reasons, the Hungarian algorithm is
leveraged to solve the assignment problem in the remainder of this work.

TheHungarianmethod assigns detections to tracks such that the overall costs,
i.e., the sum of distances, are minimized. To prevent the association of detec-
tions and tracks with a too large distance, the maximum distance threshold
𝑑max is applied. Its influence on the tracking performance of the IoU base
framework is depicted in Figure 5.7.
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Figure 5.7: Influence of 𝑑max in the IoU base framework on MOT17 val. A larger threshold
allows more associations such that AssRe increases but AssPr decreases (right). The
best overall performance is achieved when allowing associations with small IoU, i.e.,
with a large distance threshold (left). Notice that the vertical axes do not start at zero
and have a different scale and that AssA is shown in both plots.
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Allowing a larger distance formatching, AssRe goes upwhile AssPr decreases.
The best compromise is achieved with 𝑑max = 0.8, which means that a min-
imum IoU of 1 − 𝑑max = 0.2 between a detection and a track is required for
association. The slight drop in DetA when enlarging 𝑑max can again be ex-
plained with the uncertainty of predicted motion states: A small IoU between
predicted track and detection box that belong to the same target will mostly
occur for inactive tracks that have been predicted for a while without state
update. Looking at the HOTA values, one observes that 𝑑max has a large in-
fluence on the tracking performance and thus should be tuned carefully.

Motion-Based Association

So far, only the IoU distance has been used for determining the similarity
between detections and tracks. Table 5.5 compares results generated with
IoU distance 𝑑IoU, Mahalanobis distance 𝑑Mah, and Euclidean distance 𝑑L2 as
introduced in Section 5.4.1.

Table 5.5: Comparison of motion-based distances in the base framework on MOT17 val. IoU
works much better than L2 and Mahalanobis distance.

𝑑 HOTA DetA AssA DetRe DetPr AssRe AssPr
𝑑L2 64.3 65.1 64.0 68.9 85.1 67.7 83.7
𝑑Mah 63.3 65.0 62.1 68.9 85.1 65.1 75.0
𝑑IoU 67.6 65.2 70.5 69.0 85.2 75.0 84.7

Using the Euclidean distance between the center points of tracks and detec-
tions yields worse results as the IoU, which additionally takes size and aspect
ratio of objects into account. Although the Mahalanobis distance leverages
such information, the results are much worse than using the IoU and even
worse in comparison to the Euclidean distance. As already stated by the au-
thors of DeepSORT [Woj17], one of the most popular MPT methods that uses
the Mahalanobis distance, the Kalman filter provides only a rough estimate
of the object location if the state uncertainty is high. Furthermore, it has
been shown by previous works of this thesis’ author [Sta23a, Sta23b] that
IoU-based distance measures perform better than the Mahalanobis distance
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in MPT, where tracking is performed in the image space. Utilized by many
SOTA approaches [Aha22, Du23, Jun24, Men23, Zha22c], the IoU distance can
be regarded as the standard measure for motion-based association in MPT.

Appearance-Based Association

Next to the motion of persons, their appearance is a valuable information
for the association task. Typically, a REID model is leveraged to extract ap-
pearance features from person detections that are then compared against each
other with a distance function 𝑑app. Note that this comes with additional com-
putational expenses that usually cannot be neglected, especially in real-world
applications. The runtime will be analyzed comprehensively in Chapter 7,
but the focus is put on the performance of the appearance-based association
in the following.

Two measures are common in MPT for computing the distance between the
appearance feature vectors: the Euclidean distance 𝑑L2 and the cosine distance
𝑑cos. To compare the twomeasures, experiments are conducted onMOT17 val
with a feature bank size of𝑁F = 30, which corresponds to a time period of one
second in most of the sequences. For these experiments, the minimum dis-
tance 𝑑min among all pairs between a track’s feature vectors and the detection
feature vector is used as association distance. Table 5.6 depicts the results.

Table 5.6: L2 vs. cosine distance in the appearance base framework on MOT17 val. Similar re-
sults are obtained with both distance measures.

𝑑 HOTA DetA AssA DetRe DetPr AssRe AssPr
𝑑L2 67.4 65.4 70.0 69.1 85.4 74.9 84.6
𝑑cos 67.5 65.3 70.1 69.1 85.3 75.0 84.4

The evaluation shows that both measures perform similarly. However, when
computing multiple cosine distances, some computation time can be saved
since the normalization term has only to be computed once as explained in
Section 5.4.2. Thus, the calculation of the cosine distances is in total faster, so
𝑑cos is used in the following experiments.
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Next, the influence of the feature bank size𝑁F on the performance is analyzed.
In addition, the mean distance 𝑑mean is applied besides the minimum distance
𝑑min. The resulting HOTA values are given in Table 5.7.

Table 5.7: Influence of feature bank size 𝑁F and strategies for appearance distance calculation
in the base framework on MOT17 val. 𝑑cos is used as distance between single feature
vectors, and HOTA is reported as main evaluation measure. Taking multiple past
features into account significantly improves the performance in both strategies.

𝑁F 1 10 20 30 60 100
𝑑min 66.3 67.4 67.9 67.5 67.7 67.3
𝑑mean 66.3 67.9 67.2 67.2 65.8 65.2

Three observations can be made: First, taking multiple features from differ-
ent time steps into account significantly improves the performance compared
to just using the last associated feature as track feature, i.e., 𝑁F = 1. Sec-
ond, incorporating features from too far in the past, i.e., setting 𝑁F too large,
degrades the accuracy because the appearance of targets changes over time.
Third, 𝑑min and 𝑑mean can achieve similarly good results, while taking the min-
imum distance is more robust w.r.t. the feature bank size 𝑁F.

As an alternative approach to incorporate appearance information from dif-
ferent time steps into the track features, the EMA update rule has been intro-
duced in Section 5.4.2. The evaluation results for different calculation strate-
gies of the appearance distance are summarized in Table 5.8.

Table 5.8: Comparison of different calculation strategies for appearance distance. While the
same HOTA is obtained, the EMA strategy is most efficient as only one cosine dis-
tance has to be computed per track–detection pair.

𝑑 HOTA DetA AssA DetRe DetPr AssRe AssPr
𝑑min 67.9 65.3 71.0 69.1 85.3 75.3 85.9
𝑑mean 67.9 65.4 70.8 69.2 85.4 75.8 84.7
𝑑EMA 67.9 65.3 71.1 69.1 85.3 76.6 83.4

Some notable differences are found in AssRe and AssPr, but the overall track-
ing performance is similar. However, the computation of 𝑑EMA is significantly
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faster since only one feature, which is iteratively updated in each time step,
has to be compared with the detection feature for each track. In other words,
only one cosine distance has to be calculated per track–detection pair. For
𝑑min and 𝑑mean, the cosine distance has to be calculated 𝑁F = 20 and 𝑁F = 10
times, respectively, to achieve the same performance (Table 5.7). Thus, the
EMA distance 𝑑EMA is much more efficient. For this reason, it is used as ap-
pearance distance in the rest of this thesis.

Motion-Based vs. Appearance-Based Association

In this section, a detailed comparison of themotion- and appearance-based as-
sociation in the base framework is presented. First, a quantitative examination
shows that comparable results are obtained onMOT17 val. After that, various
qualitative examples are provided, which demonstrate that in different situa-
tions, the one or the other association method performs better. Furthermore,
the advantages and disadvantages of the two approaches are elaborated.

Table 5.9 opposes the evaluation results for the best motion-based and best
appearance-based method from the previous sections.

Table 5.9: Best motion-based vs. best appearance-based association method in the base frame-
work on MOT17 val. The latter achieves slightly better results due to a higher AssRe.

𝑑 HOTA DetA AssA DetRe DetPr AssRe AssPr
𝑑mot = 𝑑IoU 67.6 65.2 70.5 69.0 85.2 75.0 84.7
𝑑app = 𝑑EMA 67.9 65.3 71.1 69.1 85.3 76.6 83.4

The appearance-based association overall achieves a better accuracy, how-
ever, with the expense of a much higher computational complexity due to the
additional REIDmodel (Section 7.1.2). While 𝑑app yields a higher AssRe, using
𝑑mot results in a higher AssPr. This is because the appearance distance does
not make any spatial restrictions and considers only the extracted appearance
features. In situations, where the predicted motion states of the Kalman filter
are poor, e.g., due to unaccounted camera motion, the appearance-based asso-
ciation can still achieve good results, while the motion-based association can
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fail. Figure 5.8 shows qualitative tracking results for motion- and appearance-
based association on an example sequence with notable camera motion.

(a) Motion-based association

(b) Appearance-based association

Figure 5.8: Effect of camera motion on motion- and appearance-based association. (a) If not
compensated, the camera motion deteriorates the target’s motion states and tracking
fails in motion-based association. (b) As long as no severe motion blur is introduced,
camera motion does not affect appearance-based association.

Note that here and in the following, active and inactive tracks are visualized
with solid and dashed boxes, respectively, while each track has its own color
and some tracks are omitted for clarity. In the motion-based association (Fig-
ure 5.8a), the distances 𝑑IoU between the predicted tracks and the real positions
of the targets are larger than the threshold 𝑑max due to the camera motion.
This leads to a lot of inactive ghost tracks and also many IDSWs, since some
of the predicted track positions fall together with the positions of real targets.
In contrast, the appearance-based association has no problems to deal with
the camera motion as can be seen in Figure 5.8b.

While applying no spatial restrictions can be beneficial if the available mo-
tion information is poor, the appearance-based association has issues if the
extracted features are unreliable. For instance, the REID model might extract
unreliable features from severely-occluded persons, blurry images, or small
targets as shown in Figure 5.9.
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(a) Unreliable appearance features of occluded persons

(b) Unreliable appearance features for small and blurred persons

Figure 5.9: Failures of appearance-based association due to missing spatial restrictions. Appear-
ance features can be unreliable under strong occlusion (a) or for small and blurred
persons (b) and thus lead to wrong associations.

In the middle and right image of Figure 5.9a, the bounding box contains not
only image regions belonging to the occluded target but also body parts from
other persons. Thus, the extracted features can be misleading which results
in incorrect associations. The same risk is prevalent when facing small or
blurred detection boxes that can also result in misleading features and thus in
wrong associations as visible in Figure 5.9b.

Analyzing more qualitative results, one observes that the appearance-based
association can also achieve good results under quite large degrees of occlu-
sion. Since the training data contains occluded persons, too, the REID model
can learn to focus on the actual target while ignoring image parts of nearby
persons, at least to some extent. However, it is difficult to determine whether
the extent of occlusion is, or is not, too severe for the REID model to extract
reasonable appearance features. On the other hand, themotion-based associa-
tion has also problems under severe occlusion, mainly for two reasons: First,
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multiple targets share similar positions on the image. Second, the detected
bounding boxes might be inaccurate, because it is hard for the detector to
reason about the exact boundaries of occluded persons, which can lead to dis-
torted motion states. To conclude, there are situations with occlusion where
the appearance-based association works better and other situations where the
motion-based association has an advantage. The following qualitative exam-
ples underline this statement.

Two sequences are shown in Figure 5.10, for which the appearance-based as-
sociation is superior to the motion-based association.

(a) Motion-based association

(b) Appearance-based association

Figure 5.10: Examples for better performance of appearance-based association under occlusion.

In the middle frame of the left sequence, two predicted track boxes are nearly
identical such that an IDSW occurs in the motion-based association, while
the appearance-based association makes no error. In the right sequence, the
situation is as follows for the motion-based association (Figure 5.10a). Next
to the blue and the yellow active track in the first frame, two occluded tar-
gets are modeled by the inactive green and purple track. In the middle frame,
the large detection is erroneously assigned to the purple track instead of the
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yellow track, and in the right frame, the middle detection is falsely assigned
to the green track instead of the purple track. The reason for the wrong as-
signments lies again in the similar spatial positions of the targets. In other
words, the accuracy of the motion model is not high enough to correctly solve
the assignment problem in the motion-based association. Surprisingly, the
appearance-based association in Figure 5.10b assigns all detections correctly
despite the fairly strong occlusions.

Whereas the previous examples have shown superior performance of the
appearance-based association under occlusion, the two scenes in Figure 5.11
depict situations, where the motion-based association is in favor.

(a) Motion-based association

(b) Appearance-based association

Figure 5.11: Examples for better performance of motion-based association under occlusion.

The left sequence displays a person walking behind a static obstacle and
thereby becoming more and more occluded. While the motion-based as-
sociation works fine, the detection in the last frame is not assigned to the
track but a new track is initialized (blue) in the appearance-based association.
This is because the cosine distance between the feature vector extracted
from the occluded detection box and the track’s feature vector exceeds the
maximum distance threshold. The same conclusion can be drawn from the
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right sequence with the exception that the occluding entity is not a static
obstacle but another person.

5.6.6 Summary and Analysis

In this section, findings from the evaluation are summarized and opportuni-
ties for further developments are worked out. To improve the tracking perfor-
mance, one can try to enhance the accuracy of the detector, motion model, or
REID network, for instance. However, the use of available information in the
base framework is not optimal as pointed out shortly. The aim of this thesis
is to develop a framework that improves the utilization of available informa-
tion in the tracking process, especially by improving the track management
and association.

In the base framework, the following shortcomings are identified:

• Only confident detections are kept for the tracking task and
heavily-overlapping detections are removed by NMS.

• No information about already tracked targets is leveraged in the
initialization of tracks.

• Either motion or appearance information is used in the association but
not both.

Next, these weaknesses are explained in more detail, and approaches devel-
oped in this thesis to eliminate them are briefly outlined.

Detections with a lower confidence score than 𝑠track are not used in the track-
ing process. However, Figure 5.5 clearly shows that this simple filtering strat-
egy removes a lot of correct detections since DetRe in the optimal setting
(DetRe = 69.0 for 𝑠track = 0.7) is about 10 points lower than if all detections
are used (DetRe = 79.2 for 𝑠track = 0.0). If onemanages to leverage the correct
low-confidence detections while filtering the incorrect ones, the overall track-
ing accuracy can be largely increased, which has been demonstrated by the
BYTE association in [Zha22c]. The same holds true for strongly-overlapping
detections: Instead of suppressing all detections with overlaps higher than
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𝑜NMS in the NMS, only the FPs should be filtered. For the first time, two differ-
ent approaches are proposed in this thesis to leverage such heavily-occluded
detections in the tracking process. The first method builds upon the BYTE as-
sociation and utilizes both low-confidence and heavily-occluded detections in
a second matching stage, while preventing incorrect detections from starting
FP tracks [Sta23c]. The second method leverages the positional information
of so-far tracked targets to identify regions with missing detections and adap-
tively incorporates detectionswith high overlaps into the association [Sta21c].
Both strategies will be introduced in Section 6.1.

For the track initialization, the continuity requirement presented in Sec-
tion 5.5 has not led to any improvements (Table 5.1). Instead of determining
whether a unmatched detection is confirmed in consecutive frames, the
surroundings of the detection can indicate whether it is a TP or a FP. If
an unmatched detection arises at a dense region, where already multiple
targets have been tracked, it is likely that the detection is a duplicate. The
OAI technique presented in Section 6.1.3 utilizes the track information to
identify and remove such duplicate detections, which prevents the start of
ghost tracks [Sta23b]. To the best of the author’s knowledge, the OAI is the
first method in MPT that explicitly takes the surroundings of an unmatched
detection for track initialization into account.

The third shortcoming of the base framework, that either motion or appear-
ance information is used in the association, has already been analyzed in
detail in the previous section. It was demonstrated that in different situa-
tions, motion- or appearance-based association is favorable, which indicates
that the combination of both information sources has a large potential for
improving the association accuracy. While several fusion strategies exist in
the literature, it will be shown through a detailed analysis in Section 6.2 that
the prevailing approaches do not utilize the available information effectively.
Based on the findings, novel combined motion- and appearance-based dis-
tance functions are proposed that do not have the weaknesses of previous
fusion methods [Sta23b, Sta23d].
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Note that the Kalman filter adaptations from Section 5.2.2 can also be regarded
as methods that improve the usage of available information: The NSA Kal-
man filter enhances the update step leveraging the confidence score of the
detection, which is not utilized in the standard formulation. The proposed
HP module [Sta22b] takes advantage of the fact that in MPT with typically
high frame rates and persons moving with limited speed, the size of bound-
ing boxes cannot change notably during a short time period. Exploiting such
context knowledge is also a form of improving the use of available informa-
tion. As the Kalman filter adaptations have significantly enhanced the track-
ing performance (Table 5.2), it is reasonable to further improve the utilization
of available information in the tracking process.
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It has been found in the previous section that the base framework, which
follows the TBD paradigm like many methods from the literature [Aha22,
Bew16, Cao23, Woj17, Zha22c], does not fully utilize the available information
in the tracking process. This available information can contain, for instance,
the set of detections, extracted appearance features, or motion states of the
tracked targets. The main goal of this thesis is to use such information in the
best possible way.

At first, the focus lies on improving the utilization of detections and tracks
under occlusion, as this is where naturally most errors occur in the MPT task.
Section 6.1 introduces two different approaches for enlarging the set of used
detections in the association to enhance the matching accuracy. Furthermore,
the track information is leveraged in an OAI technique to suppress the start
of ghost tracks from duplicate detections in crowded regions.

After that, various strategies to fuse motion and appearance information are
examined in Section 6.2 and combined distance functions for a motion- and
appearance-based association are introduced, which clearly outperform pre-
vious fusion approaches from the literature.

By combination of the approaches in Section 6.3, the overall tracking per-
formance is further improved showing that the proposed modules work well
together and complement each other.

In Section 6.4, an efficient model for CMC is introduced, which is an impor-
tant component for MPT when dealing with non-static cameras and makes an
additional module of the proposed tracking framework.
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Finally, a comparison of the tracking framework with the SOTA on two MPT
benchmarks is made in Section 6.5, and the findings of this chapter are sum-
marized in Section 6.6.

6.1 Improved Use of Detections and Tracks
under Occlusion

To remove duplicate detections, the NMS is applied, which ensures that the
filtered detections have a maximum overlap (IoU) of 𝑜NMS on the image (Sec-
tion 5.1.2). This is illustrated exemplarily in Figure 6.1, where the filtered
detections for different values of 𝑜NMS are shown.

(a) 𝑜NMS = 0.0 (b) 𝑜NMS = 0.3 (c) 𝑜NMS = 0.6 (d) 𝑜NMS = 0.9

Figure 6.1: Filtered detections with different NMS thresholds 𝑜NMS. Duplicate detections are
depicted in red, and the detection of the person that is only kept with a very high
NMS threshold, i.e., 𝑜NMS = 0.9, is highlighted in orange.

With a growing NMS threshold 𝑜NMS, the detection recall increases, however,
at the cost of a decreasing precision. Note that for 𝑜NMS = 0.9 in Figure 6.1d,
the left-most person is detected multiple times, which is depicted with red
overlapping boxes. Using such a high NMS threshold would lead to a lot of
ghost tracks initialized by the FP duplicate detections and thus to a significant
decrease in tracking performance. However, the severely-occluded person
on the right top of the image (orange box) is only detected with a very high
NMS threshold, see also Figure 6.1d. Leveraging such a TP detection cannot
only enhance the detection recall but also the association accuracy, since the
assignment task becomes simpler if no detections are missing.
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With less detections than tracks under severe occlusion, the association easily
fails as can be seen in Figure 6.2a, where tracking results of the base frame-
work are depicted.

(a) Active (solid) and inactive (dashed) tracks (b) Used (green) and removed (orange) detect.

Figure 6.2: Failure of standard association (a) and available detections (b) under person–person
occlusion. The removal of detections in the NMS is caused by too large overlaps.

The standard association uses only one detection in the first an second frame
and two detections in the third frame of the sequence. Notice that the optimal
setting for the standard association is 𝑜NMS = 0.7 (Table 6.4). Because of the
missing detections and imperfections of the motion model, an IDSW occurs.
Figure 6.2b shows the used detections in green and the removed detections,
which one would obtain when setting 𝑜NMS = 0.9, in orange. Leveraging such
additional detections can simplify the association task and prevent IDSWs
under severe occlusion, as will be seen later in this section.

Two different approaches are suggested in this thesis that both have the goal
to utilize as many occluded TP detections as possible, while not introducing
duplicate detections into the tracking results. Both methods build upon an
adapted version of the NMS proposed in this thesis that aims at an increased
detection recall under occlusion [Sta21d]. Several works exist in the liter-
ature that adjust the NMS process to enhance the detection performance in
crowded scenes [Chu20, Hos17, Hua20, Liu19, Xie20]. For instance, the detec-
tor is enlarged by a density subnetwork and the NMS threshold is increased
for detections with large estimated densities in [Liu19]. Similarly, [Xie20] in-
troduces a count-and-similarity branch in the Faster R-CNN detector [Ren17]
to identify distinct proposals. Another approach is found in [Chu20], where
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one region proposal makes multiple predictions for distinct targets and a set
NMS is applied on the generated detection sets. In contrast to the aforemen-
tioned methods, the proposed adapted NMS can be applied without the need
for changes to the network architecture or training process of the detector.
Thus, it is a generic method that can be used together with a multitude of dif-
ferent detectionmodels. Its workingmechanism is explained in the following.

Adapted NMS

The adapted NMS aims at providing an additional set of occluded detections
next to the normal set of detections. To achieve this, two standard NMS are
performed with various overlap thresholds and then, the resulting detection
sets are subtracted. More formally, let �̃� be the unfiltered detection set com-
ing from the detection model and 𝑜NMS1 and 𝑜NMS2 the maximum overlap
thresholds measured in IoU of the first and second NMS, respectively. The
two filtered detection sets 𝒟NMS1 and 𝒟NMS2 can be computed as

𝒟NMS1 = NMS(�̃�, 𝑜NMS1) and 𝒟NMS2 = NMS(�̃�, 𝑜NMS2), (6.1)

where NMS(⋅) stands for the procedure in Algorithm 1. The second NMS
shall apply a larger threshold: 𝑜NMS1 < 𝑜NMS2. Then, 𝒟NMS1 corresponds to
the standard detection set, and the additional set of occluded detections 𝒟occ
is obtained by subtraction of the two sets:

𝒟occ = 𝒟NMS2 \𝒟NMS1. (6.2)

This additional detection set can be leveraged in several ways in the asso-
ciation. Two different approaches are suggested. The first method incorpo-
rates the detections from 𝒟occ in a second association stage, where they are
matched with unassigned tracks from the first stage [Sta23c]. While this al-
lows the TPs of 𝒟occ being used in the association, the FPs are not utilized
for track initialization such that the start of duplicate tracks is prevented. The
second approach makes use of the track information to identify track clus-
ters, where the number of corresponding detections within the standard set
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𝒟NMS1 is less than the number of tracks, i.e., missing detections are recog-
nized [Sta21c]. Then, the additional detection set 𝒟occ is used within these
clusters, while also ensuring that no duplicate tracks are started. The two
different methods are thoroughly presented next.

6.1.1 Two-Stage Association

The set of occluded detections𝒟occ usually contains much more duplicate FP
detections than TPs. Directly using them in the association and in the ini-
tialization would lead to many tracking errors. Therefore, a second associa-
tion stage is introduced similar as in the BYTE¹ tracking framework [Zha22c].
In BYTE, low-confidence detections—which are typically discarded just like
the occluded detections—are matched with the unassigned tracks from the
first association stage. In addition to discarding TP detections with severe
person–person occlusions by NMS as in Figure 6.2, TP detections of persons
with severe obstacle occlusion can be removed from the association due to a
low confidence score (𝑠 < 𝑠track). An example is given in Figure 6.3a, where
the tracking results of the standard association are depicted for frames 892,
914, and 937 of the MOT17-04 sequence.

(a) Active (solid) and inactive (dashed) tracks (b) Used (green) and removed detect. (orange)

Figure 6.3: Failure of standard association (a) and available detections (b) under obstacle–person
occlusion. The removal of detections is caused by too low confidence scores.

¹ Authors being affiliated with the Chinese company ByteDance explains the name of the tracker.
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Between frames 893 and 936 inclusively, the confidence score of the person
detection occluded by the static obstacle is below 𝑠track, so no update of the
yellow track is performed. It turns inactive and is predicted with the motion
model in the consecutive frames. When in frame 937, a confident detection for
the occluded person is available again, the predicted track position is quite in-
accurate such that the association fails and a new track (purple) is erroneously
started. Figure 6.3b shows the used detections in green and the removed de-
tections due to low confidence in orange. The goal of the BYTE association
is to leverage these low-confidence detections to improve the detection recall
and the association accuracy. Note that there can be other reasons besides
occlusion for low-confidence TP detections as motion blur, small object size,
or unusual appearance, to name a few.

While BYTE uses detections with low-confidence, detections with high over-
laps are still discarded, so the risk for tracking errors under strong occlusion
due tomissing detections as in Figure 6.2 remains high. Therefore, a two-stage
association technique—termed BYTEv2 as extension to BYTE—that addition-
ally leverages heavily-occluded detections in the tracking process is proposed
in this thesis [Sta23c]. Before the further development BYTEv2 is presented,
the functionality of the basic BYTE association is introduced in the following.

Given the set of detections filtered by standard NMS 𝒟, the track threshold
𝑠track, and a minimum confidence threshold 𝑠min, the detection set is split into
low-confidence detections 𝒟low and high-confidence detections 𝒟high:

𝒟low = {D𝑖|D𝑖 ∈ 𝒟, 𝑠min ≤ 𝑠𝑖 < 𝑠track}, (6.3)
𝒟high = {D𝑖|D𝑖 ∈ 𝒟, 𝑠𝑖 ≥ 𝑠track} (6.4)

with 𝑠𝑖 denoting the confidence score of the 𝑖-th detection D𝑖 . Notice that
detections with very low confidence below 𝑠min are removed. As in the base
framework, the high-confidence detections𝒟1,BYTE = 𝒟high are matched with
the set of tracks𝒯 based on a distance function 𝑑1 in the first association stage.
After that, the active unassigned tracks 𝒯u,a ⊆ 𝒯 are matched to the low-
confidence detections𝒟2,BYTE = 𝒟low based on the distance function 𝑑2 in the
second association stage. Note that various distance measures can be applied
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6.1 Improved Use of Detections and Tracks under Occlusion

for 𝑑1 and 𝑑2 and that the maximum allowed matching distance generally
differs among the two stages: 𝑑max,1 ≠ 𝑑max,2. Since a lot of low-confidence
detections are FPs, only unassigned detections with a confidence score 𝑠 ≥
𝑠init ≥ 𝑠track are allowed to initialize new tracks.

Incorporating the usually discarded low-confidence detections into the asso-
ciation, BYTE improves the usage of available information in the tracking
process. However, it does not account for the heavily-occluded detections
filtered by NMS. To solve this problem, BYTEv2 additionally utilizes the set
of occluded detections 𝒟occ in the second association stage. Since detections
under heavy occlusion tend to be more inaccurate—as the detector has diffi-
culties to reason about the boundaries of objects—only detections �̃�occ with
a confidence score larger than 𝑠occ are leveraged:

�̃�occ = {D𝑖|D𝑖 ∈ 𝒟occ, 𝑠𝑖 ≥ 𝑠occ}. (6.5)

This detection set is added to the set of low-confidence detections from Equa-
tion (6.3) yielding the detection set for the second association stage of BYTEv2

𝒟2,BYTEv2 = 𝒟low ∪ �̃�occ. (6.6)

Like for BYTE, only unassigned detections from the first association stage,
i.e., unassigned high-confidence detections, with score 𝑠 ≥ 𝑠init can start new
tracks. As a summary, the pipeline of BYTEv2 is illustrated in Figure 6.4,
where the adapted NMS and the two association stages are highlighted. Note
that time indices, some components (detection, REID, and motion model) as
well as the final part of the trackmanagement formatched (m), unmatched (u),
and new (n) tracks are omitted for clarity (compare with Figure 5.4).

As in the base framework, high-confidence detections𝒟high are matched with
the tracks 𝒯 in the first association stage. Then, low-confidence detections
𝒟low and confident heavily-occluded detections �̃�occ coming from the adapted
NMS are matched with the unassigned active tracks𝒯u,a

1 in the second associ-
ation stage. In contrast to unassigned detections from the first stage 𝒟u

1 that
are considered for track initialization, unassigned ones from the second stage
𝒟u
2 are deleted to prevent the start of duplicate tracks.
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Figure 6.4: Overview of the proposed BYTEv2 pipeline. Main components that differ from the
base framework are the adapted NMS that enables the use of occluded detections in
the tracking process and the two-stage association.

Evaluation

In this section, the BYTE and BYTEv2 association are evaluated and com-
pared with each other. For all experiments, the IoU distance is leveraged as
association distance in both stages: 𝑑1 = 𝑑2 = 𝑑IoU. In addition to such a
motion-based association, it will be shown in Section 6.3 that BYTEv2 can
also be successfully applied with an appearance-based distance measure.

BYTE mainly makes two adaptations w.r.t. the base framework: the incor-
poration of low-confidence detections in a second association stage and the
introduction of a confidence threshold 𝑠init ≥ 𝑠track for track initialization.
Evaluation results of these adaptations can be found in Table 6.1.

Table 6.1: Ablation of the BYTE two-stage association and initialization on MOT17 val. Both
strategies improve the overall tracking performance and lead to further gains when
applied together.

Two-stage association Initialization 𝑠track 𝑠init HOTA DetA AssA
7 7 0.7 − 67.6 65.2 70.5
3 7 0.7 − 68.4 66.8 70.6
7 3 0.6 0.7 67.8 66.1 70.0
3 3 0.6 0.7 68.8 67.1 71.0
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6.1 Improved Use of Detections and Tracks under Occlusion

The first row corresponds to the base framework with standard association
(single stage) and no separate initialization threshold, i.e., the unmatched de-
tections with 𝑠 ≥ 𝑠track start new tracks. If one uses the low-confidence detec-
tions in a second matching stage, HOTA is increased by 0.8 points showing
the high potential of incorporating typically discarded detections in the as-
sociation. Using a higher confidence threshold for track initialization than
for association (third row), HOTA is slightly increased by 0.2 points. Both
improvements stem mainly from an increase of DetA. However, if both adap-
tations are applied together, AssA is also significantly enhanced (+1.0 w.r.t.
the base framework). This synergy effect is further indicated by a total in-
crease of 1.2 HOTA when combining the two components that individually
yield only a plus of 0.8 and 0.2 HOTA. Note that Table 6.1 shows the optimal
values of 𝑠track and 𝑠init for the respective configuration.

The influence of the maximum association distance in the second association
stage of BYTE 𝑑2,max on the tracking performance can be seen in Table 6.2.

Table 6.2: Influence of 𝑑2,max in the BYTE association on MOT17 val. A too small distance
threshold prevents correct matches in the second association stage, while a too high
threshold introduces wrong matches.

𝑑2,max 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HOTA 68.1 68.3 68.3 68.8 68.2 67.9 67.3 67.2 66.6

The same conclusion as for the distance threshold of the base framework is
drawn: Whereas a too small threshold misses TP associations, a too large
threshold introduces FP associations. The best tracking performance of BYTE
on MOT17 val is achieved with 𝑑2,max = 0.4. Note that this is smaller than
the distance in the first association 𝑑1,max = 0.8 that has been taken over
from the base framework, like other basic parameters (𝑖max, 𝑛init, etc.). Thus,
a stricter matching criterion is applied for the on average more inaccurate
low-confidence detections.

The minimum confidence of detections in the second association 𝑠min is set to
0.0 on MOT17 val. On the PP22 and SOMPT22 dataset, a slightly higher value
of 0.1 yields the best results. The key message here is that with the BYTE
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6 Utilization of Occluded Detections and Target Information

association, detections with very low confidence can improve the tracking
performance, since they are only used for assigning to already tracked targets
and not for track initialization.

This also holds true for the occluded detections that are utilized in the second
association stage of the further development BYTEv2. Table 6.3 lists the eval-
uation results of BYTEv2, BYTE, and the standard association on the three
datasets MOT17 val, PP22 test, and SOMPT22 train.

Table 6.3: Comparison of associationmethods on three different datasets. The proposed BYTEv2
further improves upon BYTE and clearly outperforms the standard association in all
evaluation measures.

MOT17 val PP22 test SOMPT22 train
Association HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA
Standard 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
BYTE 68.8 67.1 71.0 63.0 68.2 58.7 56.0 57.1 55.1
BYTEv2 69.3 67.4 71.7 63.4 68.2 59.5 56.3 57.4 55.5

Leveraging the occluded detections 𝒟occ that are discarded in BYTE and the
standard association, BYTEv2 further increases the tracking performance on
all datasets. This indicates a good generalization ability w.r.t. different quali-
ties of the available detections, since the domain gap varies among the three
evaluation protocols (Section 4.3). Compared to the standard association,
HOTA is enhanced by 1.7, 1.3, and 0.9 points on MOT17 val, PP22 test, and
SOMPT22 train, respectively.

Note that BYTEv2 is a generic association strategy that can be applied within
any TBD-based method. It has been shown in a previous work of the au-
thor [Sta23c] that consistent performance improvements w.r.t. the BYTE base-
line are achieved when using BYTEv2 in various tracking frameworks.

The superior tracking performance of BYTEv2 especially shows up in crowded
scenes, where severely-occluded detections are not leveraged in BYTE and the
standard association, which easily leads to IDSWs. Figure 6.5 depicts qualita-
tive tracking results of BYTE and BYTEv2 on three sequences of the evaluation
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6.1 Improved Use of Detections and Tracks under Occlusion

datasets. Remember that inactive tracks are drawn in dashed lines and that
only the interesting tracks are visualized for clarity.

(a) BYTE (b) BYTEv2

Figure 6.5: Qualitative comparison of BYTE and BYTEv2 on example sequences from the
MOT17, PP22, and SOMPT22 dataset (top to bottom). The utilization of heavily-
occluded detections simplifies the association task (b) and prevents IDSWs that occur
in the BYTE baseline (a).

In all three sequences, missing detections lead to an IDSW in BYTE, while
no such error occurs in BYTEv2. Next to missing detections making the as-
sociation task more difficult, propagated inactive tracks become increasingly
inaccurate without assigned detections. This can be seen in the middle frame
of the last sequence in Figure 6.5a, where the inaccurate inactive orange track
contributes to the association failure in BYTE. In contrast, the motion state is
successfully updated in this frame with the additional occluded detection in
BYTEv2 such that the tracking error is prevented.
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6 Utilization of Occluded Detections and Target Information

Building upon the advanced NMS presented earlier in this section, BYTEv2
introduces an additional parameter into the tracking framework: the over-
lap threshold 𝑜NMS2 of the second NMS. Its influence on the tracking perfor-
mance, together with the first NMS threshold 𝑜NMS1, has been exemplarily
investigated on MOT17 val. The results are summarized in Table 6.4.

Table 6.4: Influence of the NMS thresholds 𝑜NMS1 and 𝑜NMS2 in the BYTE and BYTEv2 associa-
tion on MOT17 val. The introduction of heavily-occluded detections in BYTEv2 with
𝑜NMS2 ≤ 0.9 enhances the tracking performance for all evaluated values of 𝑜NMS1.

𝑜NMS1 𝑜NMS2 HOTA DetA AssA DetRe DetPr AssRe AssPr
0.6 − 68.6 66.6 71.1 72.9 81.6 76.1 83.3
0.6 0.7 68.7 66.9 71.1 73.3 81.5 76.3 83.1
0.6 0.8 68.8 67.2 70.9 73.7 81.5 76.1 82.7
0.6 0.9 69.0 67.1 71.5 73.7 81.3 76.6 83.1
0.6 1.0 68.2 66.7 70.2 74.2 80.1 76.3 81.3
0.7 − 68.8 67.1 71.0 73.9 81.0 76.3 82.8
0.7 0.9 69.3 67.4 71.7 74.3 81.1 76.9 83.0
0.8 − 67.4 67.1 68.4 74.5 80.2 73.6 81.7
0.8 0.9 68.2 66.9 70.0 74.5 80.0 75.0 82.8

The rows where no value for 𝑜NMS2 is given (−) correspond to the BYTE base-
line. As mentioned earlier for the standard association, the optimal setting
when applying a single NMS is 𝑜NMS1 = 0.7. Higher values, e.g., 𝑜NMS1 = 0.8,
lead to a greater DetRe, but with the cost of a reduced DetPr and AssA. In
contrast, smaller values like 𝑜NMS1 = 0.6 increase the precision of detection
and association at the expense of a reduced recall. For the parameter 𝑜NMS2 of
BYTEv2, two findings can be derived from Table 6.4. First, the overall track-
ing accuracy measured in HOTA consistently improves for a growing overlap
threshold until 𝑜NMS2 = 0.9. Setting it too high, e.g., 𝑜NMS2 = 1.0, leads to a
drop in DetPr, since a lot of duplicate detections are introduced. The reason
for this is as follows. Whenever a ghost track has been started by a duplicate
detection, the chance is high that the ghost track is consistently matched with
a duplicate occluded detection if 𝑜NMS2 is set to a very high value. The second
finding is that for various values of 𝑜NMS1, BYTEv2 achieves notable improve-
ments. Setting 𝑜NMS2 = 0.9, a gain of 0.4, 0.5, and 0.6 HOTA is obtained for
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𝑜NMS1 ∈ {0.6, 0.7, 0.8}, which indicates a good robustness of BYTEv2 w.r.t. the
choice of its parameter 𝑜NMS2.

Finally, the influence of the second additional parameter, the confidence
threshold for occluded detections 𝑠occ, is ablated in Table 6.5.

Table 6.5: Influence of 𝑠occ in the BYTEv2 association on MOT17 val. It balances the number of
FPs and FNs in the set of used occluded detections.

𝑠occ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HOTA 68.7 68.8 69.1 69.2 69.2 69.2 69.3 69.1 68.8

A too small confidence threshold introduces many FP detections, whereas a
too large threshold removes TPs. Choosing 𝑠occ = 0.7 yields the best results.
In the range of 𝑠occ ∈ [0.3, 0.8], HOTA values above the BYTE baseline are
achieved, which demonstrates that the performance of BYTEv2 is robust to
the choice of its parameter 𝑠occ.

In this section, the two-stage association method BYTEv2 has been intro-
duced. It enhances the tracking performance in crowded scenes by incorpo-
rating occluded detections in the association and thus improving the utiliza-
tion of available detections. Another method with the same goal but a quite
different approach is presented in the following.

6.1.2 Tracking with Clusters

In situations where missing detections occur when only the normal set of
detections (termed 𝒟NMS1 in the previous section) is leveraged, BYTEv2 im-
plicitly integrates the additional occluded detections𝒟occ with the second as-
sociation stage. This section introduces an explicit approach to treat such
situations with missing detections [Sta21d]. The basic idea is to utilize posi-
tional information of already tracked targets to find track clusters in the image
where the number of tracks is larger than the number of normal detections.
In the local image regions of these clusters, additional occluded detections
𝒟occ from the adapted NMS are incorporated. Then, the assignment problem
is solved in each cluster separately. To the best of the author’s knowledge,
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no comparable approach exists in the MPT literature. The procedure of the
TWC method is summarized for a single time step below, before the individ-
ual steps are presented in detail.

1. Build track clusters based on the overlaps of all tracks in the image.

2. Put each of the normal detections into the cluster containing the track
with the highest overlap.

3. For clusters with a greater number of tracks than detections, put the
suitable occluded detections into the cluster.

4. Solve the assignment problem in each cluster separately.

5. Treat the unassigned detections and tracks.

To build clusters of tracks having high overlaps, which correlates with a high
chance for missing detections, the IoU between all tracks T ∈ 𝒯 is com-
puted. Here, T denotes a predicted track with bounding box 𝐛 in the current
frame, on which the motion model has been applied, and the time index is
omitted for clarity. Moreover, the IoU between two tracks shall be the IoU
between its predicted track boxes: IoU(T1,T2) = IoU(𝐛1, 𝐛2). Then, a track
cluster 𝒞 = {T1, … ,T𝑘} contains tracks that are connected in the sense that
two neighboring tracks have an IoU of at least 𝑜cluster. Formally, for all tracks
T𝑖 of a cluster 𝒞, there exists a sequence of tracks [T𝑖,T1, … ,T𝑛,T𝑗] within
the cluster, where the IoU of subsequent tracks is greater or equal 𝑜cluster:

𝒞 = {T𝑖 | ∀T𝑖,T𝑗 ∈ 𝒞 ∃ [T𝑖,T1, … ,T𝑛,T𝑗]∶
IoU(T𝑖,T1), … , IoU(T𝑛,T𝑗) ≥ 𝑜cluster}. (6.7)

Note that not all track pairs of a cluster must have an IoU above 𝑜cluster. For
instance, the tracks T𝑎 , T𝑏 , and T𝑐 with IoU(T𝑎,T𝑏), IoU(T𝑏,T𝑐) ≥ 𝑜cluster
build a cluster, even if IoU(T𝑎,T𝑐) < 𝑜cluster holds, as T𝑎 is connected to T𝑐
over T𝑏 . Since 𝑜cluster is set quite high in practice, a cluster contains only
few tracks and many clusters comprise just a single track, i.e., if the track
has no minimum overlap of 𝑜cluster with other tracks. To compute the track
clusters according to Equation (6.7), a graph is built, where each track is a
node and two nodes are connected with an edge if the IoU between the tracks
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of the corresponding nodes exceeds 𝑜cluster. Then, the set of clusters ℭ̃ =
{𝒞1, … , 𝒞𝑙} emerges from the set of connected components of the graph. Thus,
⋃𝑙

𝑘=1 𝒞𝑘 = 𝒯 holds. So far, the clusters contain only tracks, which is denoted
by the tilde. In the next step, the detections are integrated into the clusters.

For each normal detection with high confidence Dnorm ∈ 𝒟1 = {D𝑖 ∈
𝒟NMS1 | 𝑠𝑖 > 𝑠track}, the IoU with all tracks T ∈ 𝒯 is computed. Then, a
detection is put into the cluster containing the track with the highest over-
lap, if the IoU between that track and the detection exceeds the minimum
matching threshold 1−𝑑max. Notice that 𝑑max denotes the maximum allowed
IoU distance for association. If there is no track with a sufficiently large
IoU, the detection is put into a preliminary set of unassigned detections 𝒟u

that is later used to initialize new tracks. After all normal detections are
treated, a cluster can contain both tracks and detections. For example, a
cluster 𝒞 containing the tracks T𝑎 and T𝑏 as well as the detections D𝑎 and
D𝑏 is denoted by 𝒞 = {T𝑎,T𝑏,D𝑎,D𝑏} without tilde.

In the third step, the number of tracks 𝑛T = |𝒞 ∩ 𝒯| and the number of de-
tections 𝑛D = |𝒞 ∩ 𝒟1| in each cluster 𝒞 are compared. If 𝑛T > 𝑛D holds,
which means that missing detections are identified, the additional set of oc-
cluded detections𝒟occ from the adapted NMS is involved. As in BYTEv2, only
confident occluded detections �̃�occ with score 𝑠 > 𝑠occ are considered (Equa-
tion (6.5)). For each occluded detection Docc ∈ �̃�occ, the track with highest
IoU is searched. If the IoU exceeds the matching threshold 1 − 𝑑max and the
track is in a cluster with missing detections (𝑛T > 𝑛D), the occluded detection
is put into this cluster. The process of assigning detections to track clusters
is summarized in Algorithm 2.

After both normal and occluded detections have been put into the clusters, the
association task is solved in each cluster separately. Clusters with 𝑛T = 𝑛D =
1 are straightforward: The track and detection can be associated, since the
maximum association distance 𝑑max has already been enforced when putting
the detection into the cluster containing the single track. For 𝑛T = 1, 𝑛D = 0,
the track turns inactive and for all other cases, the Hungarian algorithm is
applied to solve the assignment problem.
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Algorithm 2: Assigning Detections to Clusters (D2C).
Input: Set of track clusters ℭ̃ = {𝒞1, … , 𝒞𝑙} with 𝒞 = {T1, … ,T𝑘} and

⋃𝑙
𝑗=1 𝒞𝑗 = 𝒯,

set of confident normal detections 𝒟1,
set of confident occluded detections �̃�occ,
maximum IoU distance for matching 𝑑max

Output: Set of clusters with tracks and detections ℭ = {𝒞1, … , 𝒞𝑙} with
𝒞 = {T1, … ,T𝑘,D1, … ,D𝑛},
preliminary set of unassigned detections 𝒟u

1 ℭ ← ℭ̃, 𝒟u ← ∅ // initialize output sets
2 for Dnorm ∈ 𝒟1 do // iterate over all normal detections
3 𝑜max ← max𝑘{IoU(Dnorm,T𝑘)} // find track with maximum overlap
4 if 𝑜max ≥ 1 − 𝑑max then
5 𝒞𝑘 ← 𝒞 |T𝑘 ∈ 𝒞 // find respective track cluster

6 𝒞𝑘 ← 𝒞𝑘 ∪ {Dnorm} // put detection into cluster in output set

7 else
8 𝒟u ← 𝒟u ∪ {Dnorm} // save unassigned detection

9 for 𝒞 ∈ ℭ do // iterate over all clusters
10 𝑛T ← |𝒞 ∩ 𝒯| // count number of tracks in cluster
11 𝑛D ← |𝒞 ∩ 𝒟1| // count number of detections in cluster
12 if 𝑛T > 𝑛D then
13 for Docc ∈ �̃�occ do // iterate over all occluded detections

// find maximum overlap with tracks in cluster
14 𝑜max ← max𝑘{IoU(Docc,T𝑘) |T𝑘 ∈ 𝒞}
15 if 𝑜max ≥ 1 − 𝑑max then
16 𝒞 ← 𝒞 ∪ {Docc} // put detection into cluster

17 �̃�occ ← �̃�occ\ {Docc} // remove assigned detection from set

As a final association step, the unassigned normal detections from the clus-
ters are compared with the unassigned tracks without the cluster limitation.
This can lead to additional correct matches in cases where a detection has
been assigned to the wrong cluster due to inaccuracies of the motion model
or the detected bounding box. The remaining unassigned detections {Du

norm}
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are then combined with the preliminary set of single detections 𝒟u, i.e., de-
tections that have not been put into any cluster. This yields the total set of
unassigned normal detections 𝒟u = 𝒟u ∪ {Du

norm}. Note that the unassigned
occluded detections {Du

occ} are removed to prevent the start of ghost tracks,
as also done in BYTEv2. Lastly, the total set of unassigned normal detections
𝒟u is leveraged for track initialization.

Figure 6.6 gives an overview of the TWC approach. The final association step,
update of matched tracks, and the track initialization are left out for clarity
(compare with Figure 5.4).
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Figure 6.6: Pipeline of the proposed TWC. The adapted NMS and the association is highlighted
in blue and orange, respectively. The assignment of detections to clusters (D2C) of
Algorithm 2 is depicted green, and the building of clusters according to Equation (6.7)
is colored red. The association task is performed in each cluster separately. The
occluded detections are only used if 𝑛T > 𝑛D holds, which is indicated by the switch
symbols, e.g., 𝑛T > 𝑛D is true in cluster 𝒞2.

First, track clusters are built according to Equation (6.7). Then, the confident
normal detections 𝒟1 and occluded detections �̃�occ from the adapted NMS
are assigned to the clusters (D2C, Algorithm 2). Different from previously
presented approaches, the association task is divided: It is performed in each
cluster 𝒞𝑘 ∈ ℭ separately. Note that, according to line 12 in Algorithm 2,
the occluded detections �̃�occ are only used if 𝑛T > 𝑛D holds, i.e., if missing
detections are identified.
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Evaluation

The TWC approach is compared with the basic tracking framework in the
following. Again, the IoU distance is taken as association distance 𝑑 = 𝑑IoU.
Table 6.6 lists the main performance measures for both methods on the three
evaluation datasets.

Table 6.6: Comparison of TWC and the base framework on three different datasets. Notable
improvements are only obtained on MOT17 val.

MOT17 val PP22 test SOMPT22 train
Method HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA
Baseline 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
TWC 68.1 65.5 71.2 62.1 67.7 57.6 55.5 56.1 55.1

With a plus of 0.5 HOTA and an increase in AssA of 0.7 points, the TWC ap-
proach outperforms the baseline on theMOT17 dataset. However, on the PP22
and SOMPT22 dataset, only marginal gains can be observed. Before reasons
of this worse performance on these datasets are given, positive examples of
the TWC are shown in Figure 6.7.

In all of the three depicted sequences, the results of the TWC approach are
superior to the results of the base framework, since no IDSWs occur in con-
trast to the baseline. Looking at the top and bottom sequence, respectively,
the improved tracking performance of TWC can be attributed to an additional
occluded detection that is leveraged in the middle frame. No detections are
missing which simplifies the association task and the IDSW of the base frame-
work is prevented.

In the sequence displayed in the second row of Figure 6.7, no additional de-
tections are incorporated by the TWC approach. The correct assignments in
the middle frame stem from the separate association in each cluster. In the
example, each cluster contains only a single track, as no two tracks overlap
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(a) Base framework (b) TWC

Figure 6.7: Qualitative comparison of the base framework and TWC on example sequences
from the MOT17, PP22, and SOMPT22 dataset (top to bottom). Leveraging heavily-
occluded detections, the TWC can resolve ambiguities in the association (b) that lead
to IDSWs in the base framework (a).

bymore than 𝑜cluster = 0.7. The two shown detections¹ have both been put into
the cluster containing the green track. Since the green detection fits better, it
is assigned to the track, while the other unassigned detection is matched to
the purple track in the final association step.

This kind of greedy matching introduced in some cases of the TWC approach
can be beneficial but may also harm the performance as illustrated in the ex-
ample of Figure 6.8.

¹ To be precise, the updated track boxes after the Kalman filter update step are depicted and not
the assigned detections. This detail is ignored in favor of a more comprehensible explanation.
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(a) Base framework

(b) TWC

Figure 6.8: Failure case of TWC (b) compared to the base framework that makes no error in this
sequence (a). The failure is caused by the divided association in the TWC approach
that does not take all possible track–detection assignments into account.

Due to an inaccurate motion prediction of the inactive blue track, the green
and the blue detection are assigned to the cluster of the blue track in the last
frame of Figure 6.8b. The other tracks again build their own clusters because
the overlaps are lower than 𝑜cluster. As a consequence of the inaccurate motion
prediction, the blue detection is put in the wrong cluster and assigned to the
blue track. However, it should be assigned to the yellow track. The remain-
ing green detection does not fit to any unassigned track (the yellow one) in
the final association step, so it starts a new track. Without the separation of
the association in the clusters but rather considering all possible assignments
with the Hungarian algorithm, the base framework makes no error on this
example sequence as can be seen in Figure 6.8a. Since the Hungarian method
is generally preferable over a greedy matching (Table 5.4), the separation of
the association task can be regarded as a drawback of the TWC approach.
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Moreover, the example in Figure 6.8 shows that TWC depends on a very ac-
curate motion prediction to prevent detections being assigned to the wrong
cluster. Thus, it also requires detections with high accuracy, especially under
occlusion. The quality of detections in crowded scenes might be worse on
the PP22 and SOMPT22 dataset compared to the MOT17 dataset, as MOT17
is the dataset on which the applied detector has been trained. This can be
an explanation why the TWC performs not as good on these datasets (Ta-
ble 6.6). Furthermore, the frame rate of the sequences in the PP22 dataset is
much lower compared to the ones in MOT17 (5Hz vs. 30Hz). This negatively
influences the accuracy of the motion prediction and thus the performance
of the TWC approach.

Before discussing differences compared to the previously presented BYTEv2
association, the parameters of TWC are ablated. Table 6.7 summarizes the
influence of the overlap thresholds of the adapted NMS 𝑜NMS1 and 𝑜NMS2 on
MOT17 val. Note that 𝑜cluster = 𝑜NMS1 is set for the TWC approach and that
the rows without 𝑜NMS2 (−) are results of the base framework.

Table 6.7: Influence of theNMS thresholds𝑜NMS1 and𝑜NMS2 in TWConMOT17 val. For𝑜NMS2 ≤
0.9, leveraging heavily-occluded detections improves the tracking performance for all
evaluated values of 𝑜NMS1.

𝑜NMS1 𝑜NMS2 HOTA DetA AssA DetRe DetPr AssRe AssPr
0.6 − 67.1 64.7 70.1 68.3 85.5 74.3 84.9
0.6 0.7 67.4 65.0 70.5 68.7 85.2 75.0 84.8
0.6 0.8 67.7 65.3 70.6 69.0 85.4 75.1 84.9
0.6 0.9 67.9 65.3 71.0 69.4 84.9 75.2 85.0
0.6 1.0 66.8 64.7 69.5 69.0 84.3 74.1 83.7
0.7 − 67.6 65.2 70.5 69.0 85.2 75.0 84.7
0.7 0.9 68.1 65.5 71.2 69.5 85.1 75.7 85.3
0.8 − 66.5 65.2 68.2 69.3 84.8 73.0 83.5
0.8 0.9 66.6 65.3 68.4 69.3 84.9 73.2 83.7

Similar findings are made as for BYTEv2: Up to 𝑜NMS2 = 0.9, the performance
improves for all evaluated values of 𝑜NMS1, but setting 𝑜NMS2 too high (𝑜NMS2 =
1.0), the performance decreases because duplicate detections are introduced.
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For 𝑜NMS2 = 0.9, HOTA is enhanced by 0.8, 0.5, and 0.1 points for 𝑜NMS1 = 0.6,
𝑜NMS1 = 0.7, and 𝑜NMS1 = 0.8, respectively, w.r.t. the baseline.

In Table 6.8, the HOTA values when applying different confidence thresholds
for the occluded detections 𝑠occ in TWC are given.

Table 6.8: Influence of 𝑠occ in TWC on MOT17 val. The best results are achieved with a small
score threshold for the occluded detections.

𝑠occ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HOTA 67.9 68.1 67.8 67.3 67.4 67.1 67.4 67.9 67.4

The results show that the TWC approach is not as robust to the choice of 𝑠occ as
BYTEv2. One reason for this could be that in TWC, occluded detections can
be preferred over the normal detections in the association, as all detections
within a cluster are treated equally. Contrarily, in BYTEv2, the occluded de-
tections do not alter the assignment of normal detections to tracks, as those
are matched in the first stage. The occluded detections are only considered for
matching to the remaining unassigned tracks in the second association stage.
Another advantage of the BYTEv2 association is that the maximum distance
threshold for the second stage, i.e., for the occluded detections, can be set
different as for the first stage, i.e., for the normal detections. A more strict re-
quirement for matching the on average more inaccurate occluded detections
is beneficial for the overall association accuracy.

Besides leveraging the occluded detections in the tracking process, the main
idea behind the TWC approach is to utilize the track information to identify
areas with missing detections and only incorporate occluded detections from
these areas. BYTEv2 achieves exactly that by considering all occluded de-
tections in the second association stage but not incorporating the occluded
detections that do not fit to any of the unassigned tracks. Overall, BYTEv2 is
superior to TWC because it does not suffer from the elaborated shortcomings
of the TWC approach.
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6.1.3 Occlusion-Aware Initialization

In the previous section, the spatial proximity of tracks has been leveraged
to identify areas in the image with missing detections in order to incorporate
additional detections and improve the association performance. Next, another
method is introduced that makes use of the available track information. Its
goal is to enhance the accuracy of the track initialization process.

Before the remaining unassigned detections from the association are taken to
initialize new tracks, they are filtered with a minimum confidence threshold
𝑠init to remove FP detections that would introduce ghost tracks, i.e., FP tracks.
Still, some FP detections with high confidence can remain in the filtered detec-
tion set. To further remove such FPs, an often applied continuity requirement
has already been investigated in the base framework, which allows the initial-
ization of a track only if multiple detections of the same target are available in
consecutive frames. Since the strategy not only filters FP detections but also
many TPs, the tracking performance could not be improved (Table 5.1).

While looking at the continuity of detections, the surroundings of a detec-
tion have not been considered by previous literature in the track initialization
process. For an isolated detection, it is difficult to determine whether it is a
TP or a FP as no information about the surroundings is available. However,
in crowded scenes, FP duplicate detections can be revealed with the help of
the current track information. The idea of the OAI is to compute overlaps of
unassigned detections with the current set of tracks and prohibit a track ini-
tialization if overlaps are too large [Sta23b]. It is argued that an unassigned de-
tection with a severe overlap to an already tracked target is likely a duplicate
detection and shall be removed to prevent the start of ghost tracks. Formally,
let 𝒟u denote the set of unassigned detections remaining from the associa-
tion and 𝒯 the updated tracks after the Kalman filter update step. Given an
unassigned detection Du ∈ 𝒟u, the maximum overlap 𝑜max measured in IoU
with all tracks T ∈ 𝒯 is computed:

𝑜max(Du, 𝒯) = max
T∈𝒯

{IoU(Du,T)}. (6.8)

137



6 Utilization of Occluded Detections and Target Information

If the maximum overlap exceeds a predefined threshold 𝑜init, the detection is
deemed a duplicate and deleted. Consequently, the final set of detections that
is used in the OAI 𝒟init follows as

𝒟init = {Du |Du ∈ 𝒟u ∧ 𝑜max(Du, 𝒯) ≤ 𝑜init}. (6.9)

The procedure of the OAI is illustrated for two updated tracks and an unas-
signed detection in Figure 6.9.

delete Du  

max(𝑜1, 𝑜2)  𝑜init  𝑜1 = IoU(Du, T1)  

𝑜2 = IoU(Du, T2) 

T1 

T2  

Du  T1 

T2  

Figure 6.9: Scheme of the proposed OAI. The unassigned duplicate detection Du is deleted be-
cause its maximum IoU to already tracked targets, namely 𝑜2, exceeds the threshold
𝑜init. Thus, the start of a FP track is prevented.

In the toy example, an additional FP detection under severe occlusion Du

remains unassigned. The two overlaps 𝑜1 and 𝑜2 to the tracks T1 and T2
of the detection’s surroundings are computed. Since the maximum overlap
𝑜max = 𝑜2 exceeds the threshold 𝑜init of the OAI, the detection is deemed a FP
and deleted. Thus, no ghost track is started from this duplicate detection.

Evaluation

Looking at the surroundings of a detection, the OAI follows an approach dif-
ferent from BYTE and BYTEv2 that apply two confidence thresholds 𝑠track and
𝑠init for detections being used in the association and for initialization, respec-
tively. TheOAI also differs from the continuity strategy of starting tracks only
from detections that are confirmed in 𝑛init consecutive frames (Section 5.5).
However, it is possible to combine the OAI with the two other approaches.
Table 6.9 summarizes results with various initialization settings, strategies,
and combinations.
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Table 6.9: Comparison of different initialization strategies and settings on MOT17 val. Using
a slightly higher score threshold for initialization than for association (𝑠init > 𝑠track)
increases HOTA, while leveraging a tentative track state (𝑛init > 1) does not. Addi-
tionally employing the OAI leads to further improvements.

𝑠track 𝑠init 𝑛init OAI HOTA DetA AssA DetRe DetPr
0.6 0.6 1 7 67.4 66.2 69.2 71.1 83.4
0.7 0.7 1 7 67.6 65.2 70.5 69.0 85.2
0.6 0.7 1 7 67.8 66.1 70.0 70.8 83.9
0.6 0.7 2 7 67.7 65.8 70.0 70.3 84.1
0.6 0.7 1 3 68.2 65.9 71.0 70.0 84.7
0.6 0.7 2 3 68.1 65.6 71.2 69.6 84.9

The first two rows correspond to the standard initialization of the base frame-
work, where only a single confidence threshold 𝑠track = 𝑠init is used to filter the
detections for association and track initialization. Setting 𝑠track = 𝑠init = 0.7
yields the best results (see also Figure 5.5). Utilizing a slightly higher thresh-
old for initialization as in BYTE(v2), HOTA is increased by 0.2 points. The
fourth row shows that using a continuity requirement in the track initializa-
tion (𝑛init = 2) does not enhance the overall performance, also not in combi-
nation with the BYTE(v2) initialization (last row). The second last row depicts
the results of the OAI when combined with the BYTE(v2) initialization. One
observes that another gain of 0.4 HOTA is achieved compared to only using
the two confidence thresholds. DetA remains nearly constantwith an increase
in DetPr but a decrease in DetRe. This is because some TPs are also removed
from the OAI, besides filtering FP detections. However, AssA is increased
considerably by 1.0 points, which indicates that the removal of unassigned
detections with high overlaps to already tracked targets prevents many in-
correct assignments. Next to the superior tracking performance in compari-
son with the standard initialization, another advantage is that the OAI can be
combined with other strategies like using the continuity requirement. If AssA
is more important to the application than DetA, it is beneficial to combine the
OAI with 𝑛init = 2, which results in a slightly higher AssA (+0.2).
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Next, the generalization ability of the OAI is investigated, conducting experi-
ments on the three evaluation datasets. Table 6.10 lists the quantitative track-
ing results for the OAI in combination with the BYTE(v2) initialization com-
pared to the standard method.

Table 6.10: Comparison of initialization strategies on three different datasets. The OAI yields,
on top of the BYTE(v2) strategy, notable enhancements of the overall performance
measured in HOTA compared to the standard initialization.

MOT17 val PP22 test SOMPT22 train
Initialization HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA
Standard 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
+ BYTE(v2) 67.8 66.1 70.0 62.2 67.2 58.1 56.1 56.7 55.7
+ OAI 68.2 65.9 71.0 62.4 67.1 58.5 56.3 56.7 56.0

In combination with the BYTE(v2) initialization, the OAI improves the over-
all tracking performance measured in HOTA with a plus of 0.6, 0.3, and 0.9
points w.r.t. the standard initialization on the MOT17, PP22, and SOMPT22
dataset, respectively. Furthermore, better results in comparison to using only
the BYTE(v2) initialization are achieved.

The benefits of the OAI can also be observed qualitatively. In Figure 6.10,
tracking results when applying only the BYTE(v2) initialization and addition-
ally using the OAI are depicted. In all three example sequences, an IDSW
occurs in the baseline as a consequence of an unassigned duplicate detection
that starts a ghost track. The OAI, however, identifies the duplicate detections
as FPs with the help of the track information from the surrounding targets.
Removing the FPs, it successfully prevents the wrong track initializations and
thus also the IDSWs. Note that next to the initial IDSWs in the baseline, the
propagated ghost tracks could lead to further errors in consecutive frames,
which is also prevented by the OAI.
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(a) Baseline (b) OAI

Figure 6.10: Qualitative comparison of OAI (b) and baseline initialization (a) on example se-
quences from the MOT17, PP22, and SOMPT22 dataset (top to bottom). The OAI
prevents both the start of a ghost track and an IDSW in each depicted sequence.

Only one additional parameter is introduced with the OAI: the maximum al-
lowed overlap between an unassigned detection and the already tracked tar-
gets 𝑜init to initialize a new track. The influence of this parameter on the
tracking performance is evaluated in Table 6.11.

Table 6.11: Influence of 𝑜init in the OAI on MOT17 val. A too small overlap threshold delays
the initialization under vanishing occlusion, whereas less ghost tracks are prevented
with a too high threshold.

𝑜init 0.05 0.2 0.35 0.5 0.65 0.8 0.95
HOTA 64.3 67.0 68.2 68.0 67.9 67.8 67.8
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Obviously, 𝑜init must not be set too small as this delays the initialization of
targets until they are nearly completely visible without any remaining occlu-
sion. In crowded scenes, some targets are partially occluded the whole time
such that they are not tracked at all when setting a too low overlap threshold.
On the other hand, if 𝑜init is set too large, the influence of the OAI vanishes,
since 𝑜init = 1 corresponds to not applying the method at all. For the applied
values of 𝑜init ∈ {0.35, 0.5, 0.65}, higher HOTA values compared to the base-
line (67.8) are achieved on MOT17 val, which indicates a good robustness of
the OAI to the choice of 𝑜init, when not set too small.

To conclude, the OAI improves the accuracy of the track initialization and thus
enhances the overall tracking performance. This is achieved by leveraging the
current set of tracks to derive context information of unassigned detections.
The information is used to identify whether such detections are duplicates,
and if so, they are deleted to prevent the start of ghost tracks.

6.1.4 Combinations

Three methods to improve the use of available detections and tracks have
been introduced: BYTEv2, TWC, and the OAI. The first two mainly aim at in-
creasing the association performance incorporating the additional occluded
detections from the adapted NMS, while the OAI enhances the initialization
accuracy. With these different objectives, it is promising to combine the ap-
proaches. Results on the three evaluation datasets are found in Table 6.12.

Table 6.12: Combination of approaches to improve the use of available detections and tracks.
The largest improvements w.r.t. the baseline are achieved with BYTEv2. Further
small gains are obtained when additionally employing the OAI and TWC.

MOT17 val PP22 test SOMPT22 train
BYTEv2 OAI TWC HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA

7 7 7 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
3 7 7 69.3 67.4 71.7 63.4 68.2 59.5 56.3 57.4 55.5
3 3 7 69.4 67.5 71.9 63.5 68.0 59.9 56.4 57.4 55.6
3 3 3 69.4 67.4 72.0 63.6 68.0 60.0 56.5 57.6 55.6
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The first two rows depict the performance measures of the base framework
and of BYTEv2 alone, respectively. Besides the large improvements of
BYTEv2 w.r.t. the base framework, combining it with the OAI yields further
improvements on all of the three datasets.

The last line of Table 6.12 shows the results when additionally leveraging the
TWC approach. In this combination, the TWC is performed first, with the
adaptation that the unassigned occluded detections are saved. Then, the sec-
ond association stage of BYTEv2 is executed with the unassigned occluded
detections and the low-confidence normal detections. Finally, the OAI is per-
formed using the unassigned high-confidence normal detections. The overall
tracking performance measured in HOTA is only slightly increased on PP22
and SOMPT22 but keeps equal on MOT17 compared to BYTEv2+OAI. So only
marginal gains can be achieved when additionally applying TWC in combi-
nation with BYTEv2. This is expected as both methods have the same goal,
while it has already been elaborated in Section 6.1.2 that BYTEv2 yields bet-
ter results than TWC. Moreover, the TWC approach has another shortcom-
ing: It is designed to work with the IoU distance 𝑑IoU as association measure.
As will be seen in the next section, the utilization of combined motion- and
appearance-based association distances can significantly improve the track-
ing accuracy. Application of such a sophisticated association distance is not
directly possible following the TWC approach, which makes the combination
BYTEv2+OAI+TWC inferior to BYTEv2+OAI. Consequently, BYTEv2+OAI is
the best tracking framework within this thesis to improve the utilization of
detections and tracks. It will be used in Section 6.3 together with more ad-
vanced distance measures that are presented in the following.

6.2 Fusion of Motion and
Appearance Information

In the base framework, either motion or appearance information has been
used. To achieve a high processing speed of the overall system, several track-
ers rely fully on motion information [Bew16, Cao23, Yan23, Zha22c, Zho20]
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and refrain from using a REID model to extract appearance information, since
this comes with an additional computational overhead. However, it will be
shown in Chapter 7 that even a sophisticated tracking framework as presented
in this thesis can achieve real-time speed on standard hardware despite using
both motion and appearance cues. With this finding in mind, there is hardly
any reason why one should not leverage the valuable appearance informa-
tion in the association task.

The fusion of available motion and appearance information is an underex-
plored research field of MPT. Although there are various approaches to com-
bine the two different cues [Aha22, Du23, Mag23, Wan20, Woj17], there is
a lack of in-depth analyses of the combined distance measures found in the
literature. For instance, some formulas for fusing motion and appearance dis-
tances are introduced without thorough explanation, and often, no ablation
studies, which would give more insights into the working mechanisms, are
performed [Aha22, Wan20, Woj17]. Furthermore, a detailed comparison of
the existing fusion approaches is missing. As the tracking frameworks gener-
ally comprise various detectors, motion models, etc., one cannot simply com-
pare the tracking results from two publications that propose different fusion
approaches for motion and appearance information. For these reasons, this
thesis conducts a detailed analysis of fusion strategies from the literature, and
shortcomings in existing methods are identified. Based on that, distance mea-
sures for an improved utilization of available motion and appearance infor-
mation are proposed [Sta23b, Sta23d].

In Section 6.2.1, existing association distances for motion and appearance in-
formation are combined with the base framework, making sure that all other
tracking components are identical, thus enabling a fair comparison. The dif-
ferent distance measures are analyzed in detail and their weaknesses are elab-
orated. Then, improvements are proposed in Section 6.2.2 on the basis of the
findings. Finally, a comprehensive evaluation is given in Section 6.2.3.
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6.2.1 Existing Fusion Approaches

One of the most popular tracking frameworks and one of the first approaches
that leveraged appearance features extracted by a deep CNN for person REID
in MPT is DeepSORT [Woj17]. For motion information, the squared Maha-
lanobis distance 𝑑Mah (Equation (5.36)) is calculated, and for appearance infor-
mation, the cosine distance of the extracted features is taken. Note that here
and in the following, the EMA strategy is used to compute the appearance
distance: 𝑑app = 𝑑EMA (Equations (5.44) and (5.45)). DeepSORT introduces a
gating mechanism that forbids the association of detections and tracks with a
squared Mahalanobis distance above 𝑑max,Mah = 9.4877. This value is drawn
from the inverse chi-square distribution with 4 dimensions of freedom for a
confidence level of 95%. Consequently, the distance measure of DeepSORT
𝑑DS can be stated as

𝑑DS = {𝑑app if 𝑑Mah ≤ 𝑑max,Mah

𝜅 otherwise
(6.10)

with 𝜅 ≫ 𝑑max denoting a large constant, e.g., 𝜅 = 10,000 in the implemen-
tation (note: 𝑑app = 𝑑cos ∈ [0, 2]). Next to the motion constraint 𝑑max,Mah,
the maximum allowed association distance 𝑑max prevents matches of detec-
tions and tracks with large appearance distance 𝑑app. Although both motion
and appearance information is considered, the DeepSORT fusion strategy has
two major weaknesses. First, the squared Mahalanobis distance is used for
calculating motion similarity. As already stated in the evaluation of the base
framework (Section 5.6.5), the squared Mahalanobis distance is not very accu-
rate if the uncertainties of the tracks’ motion state estimates from the Kalman
filter are high. Second, apart from utilizing the motion information for gating,
within the gating area, i.e., 𝑑Mah ≤ 𝑑max,Mah, the exact values of the motion
distance 𝑑Mah do not matter and only the appearance distance determines the
outcome of the association. In other words, the DeepSORT distance 𝑑DS uses
motion information only for preventing unlikely assignments but relies fully
on appearance information for the remaining association candidates. This
strategy of utilizing the available information is not very effective.
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The way of combining the squared Mahalanobis distance and appearance dis-
tance is improved in the JDE framework from [Wan20]. Instead of using
the motion information only for gating, the two distances are fused with a
weighted sum to

𝑑JDE = 𝜆𝑑app + (1 − 𝜆)𝑑Mah, (6.11)

where 𝜆 ∈ [0, 1] is the weighting factor that determines the influence of the
two information sources. The distance 𝑑JDE is adopted from other well-known
MPT works, for example, FairMOT [Zha21] and StrongSORT [Du23]. In all
of the three works, 𝜆 is set to 0.98 but an analysis of the choice of this value
is missing. In the JDE paper, this value is not even given and it has to be
looked up in the official implementation¹. The reason for such a high 𝜆 lies
in the different scales of the combined distance measures. While the appear-
ance cosine distance is bound in [0, 2], the Mahalanobis distance can become
indefinitely large, i.e., 𝑑Mah ∈ [0,∞). Besides the undesirable scale difference
of the involved single distance measures, which makes 𝑑JDE very sensitive to
the choice of 𝜆, the imprecise Mahalanobis distance is still used for motion
information in the JDE distance.

Another approach for combiningmotion and appearance cues is found in BoT-
SORT² [Aha22]. Different from the previous fusion methods, the IoU distance
𝑑IoU is applied for motion information instead of the squared Mahalanobis
distance. Two gating thresholds 𝑑max,IoU and 𝑑max,app are introduced that are
intended to prevent unlikely assignments with the help of IoU distance and
appearance distance, respectively. A further difference to the DeepSORT and
JDE distance lies in the fusion strategy of the BoT-SORT distance measure
𝑑BoT. In contrast of using a weighted sum, the minimum of motion and ap-
pearance distance is leveraged, whereby the latter is scaled by 0.5 such that
both IoU distance and appearance distance are in the range [0, 1]. Putting all

¹ https://github.com/Zhongdao/Towards-Realtime-MOT (accessed on July 16, 2024)
² The REID model BoT from [Luo19] is the namesake.

146

https://github.com/Zhongdao/Towards-Realtime-MOT


6.2 Fusion of Motion and Appearance Information

together, the BoT-SORT distance 𝑑BoT can be calculated as follows:

𝑑BoT = min { ̃𝑑app, 𝑑IoU} with (6.12)

̃𝑑app = {0.5 𝑑app if 𝑑app ≤ 𝑑max,app ∧ 𝑑IoU ≤ 𝑑max,IoU

1 otherwise
. (6.13)

Unfortunately, the authors of BoT-SORT do not give a motivation of why us-
ing the minimum of motion and appearance distance should be beneficial
compared to using a weighted sum as in 𝑑JDE. Moreover, only a negligible
gain is achieved with 𝑑BoT compared to simply applying the IoU distance 𝑑IoU
alone in their experiments on MOT17 val [Aha22]. This indicates that fusing
the two distance measures for motion and appearance information by tak-
ing the minimum is not a powerful strategy. That claim can be supported by
the following two facts. First, the BoT-SORT distance represents either the
appearance distance or the motion distance between a detection and a track—
depending on which distance is smaller—but not both. Thus, one of the two
information sources is discarded. Second, when comparing the distances be-
tween a track and two candidate detections for association, the one distance
can be the appearance distance while the other one is the motion distance.
The method provides no sound basis for directly comparing distances of two
different types, i.e., motion and appearance distance, which can lead to unpre-
dictable results. Based on the findings of this section, improved combinations
of motion and appearance distances are proposed in the following.

6.2.2 Proposed Distance Measures

The analysis of existent combined distance functions for motion and appear-
ance information has revealed several shortcomings:

• Use of the imprecise Mahalanobis distance for motion information
(DeepSORT, JDE).

• Suboptimal fusion of the two information sources in the sense that
motion cues are only used for gating (DeepSORT) or that either one or
the other information is decisive but not both (BoT-SORT).
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6 Utilization of Occluded Detections and Target Information

• Missing detailed understanding of the working mechanism and the
influence of involved parameters due to a lack of ablation experiments.

To address the first problem, various IoU-based distance measures shall be
investigated for motion information. Remember that the evaluation in the
base framework has demonstrated that the IoU distance achieves better re-
sults than the squared Mahalanobis distance when only motion information
is considered (Table 5.5). Moreover, further developments of the IoU, e.g.,
generalized IoU (GIoU) [Rez19] or distance IoU (DIoU) [Zhe20], have shown
promising results when combined with appearance information in a previous
work of this thesis’ author [Sta23a]. As will be seen shortly, the GIoU and
DIoU have the advantage that they yield different values for non-overlapping
boxes with various spatial distances, for which the IoU is always zero. These
measures are briefly introduced as follows.

To calculate the GIoU of two boxes 𝐴 and 𝐵, the smallest box 𝐶 enclosing
both 𝐴 and 𝐵 has to be computed as intermediate step. Then, the GIoU(𝐴, 𝐵)
between 𝐴 and 𝐵 is given by

GIoU(𝐴, 𝐵) = IoU(𝐴, 𝐵) − |𝐶 \ (𝐴 ∪ 𝐵)|
|𝐶| (6.14)

with |𝐶 \ (𝐴 ∪ 𝐵)| denoting the area of 𝐶 minus the union of 𝐴 and 𝐵. The
subtrahend in Equation (6.14) gets zero if𝐴 = 𝐵 and tends to one if the spatial
distance of the boxes 𝐴 and 𝐵 tends to infinity. As the IoU is bound in the
range [0, 1], the GIoU lies in (−1, 1].

While the distance of two boxes 𝐴 and 𝐵 is to a certain extent encoded in
the enclosing box 𝐶, it is not modeled explicitly. This is done by the DIoU
that takes the Euclidean distance 𝑑L2(𝐴, 𝐵) of the box centers into account.
The smallest enclosing box 𝐶 still has to be computed, since its diagonal 𝑑𝐶
is necessary for calculating the DIoU:

DIoU(𝐴, 𝐵) = IoU(𝐴, 𝐵) − 𝑑2L2(𝐴, 𝐵)
𝑑2𝐶

. (6.15)
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With the same argumentation as for the GIoU, it can be derived that the DIoU
lies also in the range (−1, 1].

The three IoU-based distance measures are illustrated and compared with two
examples in Figure 6.11.

 

IoU =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

 
GIoU = IoU −

|𝐶 \ 𝐴 ∪ 𝐵|

|𝐶|
 

𝐶  \ (𝐴 ∪ 𝐵)

(𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵)

Figure 6.11: Illustration and comparison of IoU, GIoU, and DIoU with two examples. While
similar values for two overlapping boxes are obtained with all measures, GIoU and
DIoU yield negative values for non-overlapping boxes, for which IoU is always zero.

IoU, GIoU, and DIoU all assess the similarity of bounding boxes and give
nearly identical results when comparing boxes with high overlaps. However,
regarding non-overlapping boxes, the IoU is always zero no matter how far
the boxes are away from each other. In contrast, GIoU and DIoU take on neg-
ative values if the examined boxes do not overlap, and become the smaller the
larger the distance between the box centers.

Just like with the IoU, one gets a distance measure for GIoU and DIoU, re-
spectively, when subtracting them from one:

𝑑GioU(𝐴, 𝐵) = 1 − GIoU(𝐴, 𝐵), (6.16)
𝑑DioU(𝐴, 𝐵) = 1 − DIoU(𝐴, 𝐵). (6.17)

Note that 𝑑GioU, 𝑑DioU ∈ [0, 2) holds.
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Combining the presented IoU-based distances with the appearance distance,
neither a motion-based gating nor a minimum function should be used be-
cause such strategies cannot exploit the full potential of the two information
sources. Instead, utilizing a weighted sum as in 𝑑JDE leverages both compo-
nents and furthermore, the influence of each component can be controlled.
Thus, the following combined distance measures are proposed:

𝑑comb,IoU = 𝜆𝑑app + (1 − 𝜆)𝑑IoU, (6.18)
𝑑comb,GIoU = 𝜆𝑑app + (1 − 𝜆)𝑑GIoU, (6.19)
𝑑comb,DIoU = 𝜆𝑑app + (1 − 𝜆)𝑑DIoU. (6.20)

In the next section, those distance measures are compared with the previous
fusion approaches from the literature and a detailed analysis is conducted.

6.2.3 Evaluation

To evaluate the performance of the presented distance measures, the base
framework from Chapter 5 is leveraged. Except replacing the association
distance, all tracking components (detection, REID, motion model, and track
management) are kept unchanged to enable a fair comparison. Experiments
are conducted on the datasets MOT17 val, PP22 test, and SOMPT22 train.

Because of different scales and composition of the applied distance measures,
the maximum allowed distance for association 𝑑max is adapted for every mea-
sure separately. Moreover, parameters of the distance functions, for instance,
the weighting factor 𝜆 for motion and appearance distance, are also tuned
such that the shown evaluation measures represent the best achievable re-
sults. This is also important for a meaningful comparison, since parameter
configurations of the distance functions from the literature are given with-
out validation, and taking over these parameter values in a different tracking
framework can lead to suboptimal results. Indeed, by tuning the parameters
of the distance measures, results can be significantly improved. For example,
setting 𝑑max,app = 0.4 and 𝑑max,IoU = 0.3 in BoT-SORT instead of using the
values given in the paper [Aha22], i.e., 𝑑max,app = 𝑑max,IoU = 0.5, HOTA is
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enhanced by 0.5 points on MOT17 val. This underlines the importance of a
detailed analysis of existing fusion approaches in order to identify weaknesses
and improve the utilization of the available information.

Table 6.13 gives a fair quantitative comparison of the existent fusion ap-
proaches for motion and appearance distances 𝑑DS, 𝑑JDE, and 𝑑BoT, which has
been missing so far in the MPT literature. Moreover, results of the proposed
combined distances 𝑑comb from the previous section are listed, as well as the
baseline results, where only either motion information 𝑑IoU or appearance
information 𝑑app was used.

Table 6.13: Comparison of association distance measures on three different datasets. The pro-
posed combined distances for motion and appearance information (last rows) clearly
outperform previous fusion approaches from the literature (middle rows). The base-
line results using either motion or appearance cues are also given (first rows).

MOT17 val PP22 test SOMPT22 train
Distance HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA
𝑑IoU 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
𝑑app 67.9 65.3 71.1 61.5 66.7 57.4 56.0 56.3 56.0
𝑑DS 69.0 66.4 72.2 63.9 68.0 60.7 56.4 56.3 56.7
𝑑JDE 68.9 66.4 72.1 65.7 68.1 63.8 56.6 56.3 57.0
𝑑BoT 68.7 66.4 71.6 65.5 67.8 63.8 57.2 56.2 58.3
𝑑comb,IoU 69.7 66.5 73.6 66.0 68.1 64.6 57.7 56.3 59.4
𝑑comb,GIoU 69.7 66.4 73.5 66.6 68.1 65.6 58.2 56.3 60.3
𝑑comb,DIoU 69.8 66.4 73.8 66.5 68.1 65.5 58.2 56.3 60.3

The first essential observation from Table 6.13 is that all distance functions in-
corporating both motion and appearance information (rows 3–8) outperform
the baselines in that only one information source is leveraged (rows 1–2).
Gains in HOTA up to 1.1 (MOT17 val), 3.6 (PP22 test), and 1.2 (SOMPT22
train) points w.r.t. the best baseline are obtained. Especially in the PP22 data-
set, a good fusion strategy is important since the accuracy of the motion in-
formation is lower due to the small frame rate of 5Hz (Section 4.1.1).

Comparing the three distance measures from the literature, one cannot deem
one to be superior to the others: 𝑑DS, 𝑑JDE, and 𝑑BoT achieve the best results
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among themselves onMOT17 val, PP22 test, and SOMPT22 train, respectively.
All those methods fuse the available information in a suboptimal manner, as
they are clearly outperformed by the proposed combined distance measures
𝑑comb,IoU, 𝑑comb,GIoU, and 𝑑comb,DIoU. The overall best results are achieved with
𝑑comb,DIoU yielding a plus of 0.8, 0.8, and 1.0 HOTA on MOT17 val, PP22 test,
and SOMPT22 train, respectively, compared to the best previous fusion ap-
proach. The enhanced tracking performance is attributable to the improved
AssA because DetA is similar among themethods as the same set of detections
is used. Compared to the best baseline, 𝑑comb,DIoU increases AssA by 2.7 points
on MOT17 val, 8.1 points on PP22 test, and 4.3 points on SOMPT22 train.

A qualitative example sequence, where only the proposed combined distance
measures solve the association task without error, is shown in Figure 6.12.
Due to the high complexity of the example sequence involving four persons,
the images without any bounding boxes are depicted in Figure 6.12a. The
woman in front is barely moving in the sequence, while two men are walk-
ing from right to left behind her. Additionally, a man with a yellow shirt is
walking further behind from left to right and becomes fully occluded in the
middle and right frame. All of the four persons are heavily occluded, either
by each other or by static obstacles.

Leveraging 𝑑DS and 𝑑JDE yields the same results, which are shown in Fig-
ure 6.12b. The orange detection in the middle frame belongs to the green track
but is not assigned to it, as the distance exceeds the maximum threshold 𝑑max.
Instead, it starts a new track that leads to further IDSWs in the right frame.

In Figure 6.12c, the tracking results of using 𝑑BoT as association distance are
depicted. Although the manwith the yellow shirt is fully occluded, the yellow
detection is assigned to his track in the middle frame, since the minimum of
IoU distance and appearance distance is taken as association measure. Con-
cretely, the IoU distance of the yellow detection to the yellow track is smaller
than the IoU distance to the green track due to a bad motion prediction as
a consequence of camera motion. Note that the camera motion cannot be
seen, since different image parts are cropped to improve the visualization.
The takeaway message is that 𝑑BoT fully ignores the appearance distance in
this situation which causes an IDSW.
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(a) Images (crops)

(b) Tracks using 𝑑DS or 𝑑JDE (same results)

(c) Tracks using 𝑑BoT

(d) Tracks using 𝑑comb,IoU or 𝑑comb,GIoU, or 𝑑comb,DIoU (same results)

Figure 6.12: Qualitative comparison of fusion methods for motion and appearance information
on an example sequence from MOT17 val (a). The proposed distance measures
produce no IDSWs on this sequence (d), in contrast to previous approaches (b-c).
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Finally, Figure 6.12d shows the tracks generated applying the proposed com-
bined distance measures 𝑑comb,IoU, 𝑑comb,GIoU, and 𝑑comb,DIoU. Fusing an IoU-
based distance for motion information with the appearance distance by a
weighted sum, all targets are tracked correctly.

So far, it has been demonstrated both quantitatively and qualitatively, that
the proposed distance measures achieve a better tracking performance than
previous fusion approaches from the literature. What is left is to compare the
proposed measures with each other. Recalling Equations (6.18) to (6.20), one
notes that the three measures differ only in the variant of the IoU-based mo-
tion distance that they are employing. The results from Table 6.13 show that
the three combinedmeasures perform on par onMOT17 val, but 𝑑comb,GIoU and
𝑑comb,DIoU yield better results than 𝑑comb,IoU on PP22 test and SOMPT22 train.
Before analyzing the reason for this superior performance, it is pointed out
that the improvements of GIoU and DIoU are only achievable in combination
with the appearance distance, which is demonstrated by the following results.

Table 6.14 summarizes the tracking measures on the three evaluation datasets
when applying only the motion distances 𝑑IoU, 𝑑GIoU, and 𝑑DIoU for associa-
tion. Note that the maximum distance threshold 𝑑max again has been tuned
independently for each distance to enable a fair comparison.

Table 6.14: Comparison of IoU-based distance measures on three different datasets. Similar re-
sults are obtained, whereby the standard IoU overall performs slightly better than
GIoU and DIoU.

MOT17 val PP22 test SOMPT22 train
Distance HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA
𝑑IoU 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
𝑑GIoU 67.4 65.2 70.0 61.9 67.7 57.2 55.4 56.1 54.9
𝑑DIoU 67.6 65.2 70.5 61.9 67.7 57.1 55.4 56.0 55.0

A similar performance is obtained with all three measures, while the standard
IoU distance overall performs slightly better than the GIoU andDIoU distance.
In an IoU-based association, 𝑑max < 1 holds, which means that not a single
assignment is made where the corresponding detection and predicted track
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box are not overlapping. However, this is where the GIoU and DIoU have an
advantage over the basic IoU—the GIoU and DIoU differ for non-overlapping
boxes with varying distance, whereas the IoU is always zero (Figure 6.11).

Notice that using the combined distance

𝑑comb = 𝜆𝑑app + (1 − 𝜆)𝑑mot with 𝑑mot ∈ {𝑑IoU, 𝑑GIoU, 𝑑DIoU}, (6.21)

a choice of 𝜆 = 0.7, and a distance threshold of 𝑑max = 0.55 (optimal setting),
two boxes can be associated even if they do not overlap, i.e., IoU = 0. For
instance, an assignment is possible in the case of 𝑑mot = 𝑑IoU = 1 − IoU, if
the following holds:

𝑑app <
𝑑max − (1 − 𝜆)𝑑IoU

𝜆 (6.22)

𝑑app <
0.55 − (1 − 0.7) ⋅ 1

0.7 (𝑑max = 0.55, 𝜆 = 0.7, 𝑑IoU = 1) (6.23)

𝑑app ≲ 0.36. (6.24)

Thus, if the appearance distance is low enough, i.e., 𝑑app ≲ 0.36 in the example
configuration, two boxes can be matched no matter how far away from each
other they are when using the IoU for measuring motion distance. In contrast,
consider two boxes with large spatial distance and leveraging the GIoU or
DIoU instead: GIoU,DIoU → −1. One gets

𝑑app <
𝑑max − (1 − 𝜆)𝑑GIoU

𝜆 (6.25)

𝑑app <
0.55 − (1 − 0.7) ⋅ 2

0.7 (𝑑max = 0.55, 𝜆 = 0.7, 𝑑GIoU = 2) (6.26)

𝑑app ≲ −0.07 < 0, (6.27)

so an assignment is prevented no matter how small the appearance distance
is. The two calculations show that the advanced IoU distances 𝑑GIoU and 𝑑DIoU
give the combined distance 𝑑comb the ability to prevent unlikely assignments
based on motion distances of non-overlapping boxes. This is the main reason
why 𝑑comb,GIoU and 𝑑comb,DIoU yield an overall higher tracking accuracy than
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𝑑comb,IoU (Table 6.13). Figure 6.13b illustrates examples, where the distance
𝑑comb,IoU makes incorrect assignments of boxes that are far away from each
other, which can be prevented with 𝑑comb,DIoU.

(a) 𝑑comb,IoU (b) 𝑑comb,DIoU

Figure 6.13: Qualitative comparison of using 𝑑comb,IoU and 𝑑comb,DIoU as association distance on
example sequences from the MOT17, PP22, and SOMPT22 dataset (top to bottom).
The DIoU prevents infeasible assignments with large spatial distances on the image
(b), which cannot be done by the IoU within the combined distance measure, as the
IoU is always zero for non-overlapping boxes, independent from their distance (a).

Note that the small appearance distance between the associated boxes, which
is required for matching, in Figure 6.13a is caused by heavy occlusion, bad
lighting conditions, and small object sizes (top to bottom).

In contrast to applying the advanced IoU-based distances 𝑑comb,GIoU and
𝑑comb,DIoU, one can prevent assignments of far-apart boxes by fusing the com-
bined distance 𝑑comb,IoU with aminimum IoU requirement 𝑑max,IoU = 1−IoUmin
similar as in BoT-SORT (Equation (6.13)):

̃𝑑comb,IoU = {𝑑comb,IoU if 𝑑IoU ≤ 𝑑max,IoU

𝑑max + 𝜖 otherwise
(6.28)

156



6.2 Fusion of Motion and Appearance Information

with 𝜖 being a very small value, e.g., 10−5. However, such a strategy will
also prevent correct assignments of non-overlapping boxes in cases where
the predicted track boxes are inaccurate, e.g., when facing camera motion or
a low frame rate. This also has been validated experimentally: Exchanging
𝑑comb,IoU with ̃𝑑comb,IoU, i.e., enforcing the minimum IoU requirement, has lead
to a decrease in tracking performance on all three evaluation datasets.

Besides preventing unlikely assignments due to a large distance between
boxes, 𝑑comb,GIoU and 𝑑comb,DIoU allow the association of non-overlapping
boxes if the appearance distance is sufficiently high. The larger the mo-
tion distance, the smaller the appearance distance must be to allow an
assignment, which intuitively is a good property.

The last investigation of this section deals with the weighting factor 𝜆 that
determines the influence of motion and appearance information in the com-
bined distance 𝑑comb. Table 6.15 lists the HOTA values for different choices of
𝜆 exemplarily for 𝑑comb,DIoU on MOT17 val.

Table 6.15: Influence of 𝜆 in the combined distance measure 𝑑comb,DIoU on MOT17 val. Setting
𝜆 = 0.7, which means that more weight is put on the appearance distance than on
the DIoU distance according to Equation (6.20), gives the best results.

𝜆 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9 1.0
HOTA 67.6 67.7 67.9 68.6 69.0 69.8 69.7 69.0 68.1

The best results are obtained with 𝜆 = 0.7. This means that more weight is put
on the appearance information than on the motion information. In compari-
son to considering both distances equally, i.e., 𝜆 = 0.5, HOTA is enhanced by
1.2 points, which shows the high importance of fusing the available informa-
tion effectively. Note that in other configurations, for instance, if a different
motion model is used or if the quality of the REID model that extracts the
appearance information changes, another balance between motion and ap-
pearance distance might be optimal. The proposed combined distance mea-
sures allow to adapt to such situations by changing the weighting parameter
𝜆 accordingly.
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To summarize, it has been shown that existing fusion approaches from the lit-
erature for motion and appearance distances have several weaknesses and do
not fully utilize the available information. Based on the findings, novel com-
bined distance measures have been proposed that significantly outperform
the previous approaches on three different datasets.

6.3 Combination of the Proposed Approaches

Two different directions have been explored to improve the usage of available
information in the tracking process. Section 6.1 introduced novel strategies to
enhance the utilization of detections and tracks, while Section 6.2 proposed
new distance measures for a better combination of motion and appearance
information in the association. As various aspects are treated, combining the
two concepts is promising.

Recall one of the main ideas of the two-stage association BYTEv2 from
Section 6.1.1: matching the high-confidence detections without severe oc-
clusion with the current tracks, before associating the low-confidence and
heavily-occluded detections to the remaining unassigned tracks. So far,
the IoU distance 𝑑IoU has been used as association distance in both stages:
𝑑1 = 𝑑2 = 𝑑IoU. However, it is possible to use arbitrary distance functions,
so the simple IoU distance shall be exchanged with one of the combined
distances 𝑑comb from Section 6.2.2. Since the fusion of DIoU and appearance
distance 𝑑comb,DIoU has achieved the overall best results in the basic one-stage
matching (Table 6.13), it is leveraged as distance measure in the first asso-
ciation stage of BYTEv2: 𝑑1 = 𝑑comb,DIoU. With a similar argumentation
as in [Zha22c], the IoU is kept as association distance in the second stage.
Namely, for the heavily-occluded detections leveraged in the second stage,
often only unreliable appearance features can be extracted. Experimental
results have shown that such unreliable features can be misleading and harm
the association accuracy.

The OAI is not affected by the change of the association distance 𝑑1 in
BYTEv2. Since it has lead to a further increase in tracking performance
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when combined with BYTEv2 (Table 6.12), it is also used in the following
experiments. Table 6.16 shows the quantitative tracking results of the com-
bination of BYTEv2+OAI and the advanced distance measure 𝑑comb,DIoU on
the three evaluation datasets. For reference, the obtained results when only
using one of the two components are also given, as well as the results of
the IoU base framework (first row).

Table 6.16: Combination of proposed approaches for the improved utilization of available de-
tections and tracks (BYTEv2+OAI) and for a better fusion of motion and appearance
information (𝑑comb,DIoU) on three different datasets. In addition to increasing all
performance measures individually, applying BYTEv2+OAI and 𝑑comb,DIoU together
leads to further improvements.

MOT17 val PP22 test SOMPT22 train
BYTEv2+OAI 𝑑comb,DIoU HOTA DetA AssA HOTA DetA AssA HOTA DetA AssA

7 7 67.6 65.2 70.5 62.1 67.7 57.5 55.4 56.0 55.0
3 7 69.4 67.5 71.9 63.5 68.0 59.9 56.4 57.4 55.6
7 3 69.8 66.4 73.8 66.5 68.1 65.5 58.2 56.3 60.3
3 3 71.0 67.5 75.1 67.4 68.5 66.8 59.4 57.8 61.3

On all datasets, the combination of the proposed approaches leads to further
enhancements of the tracking performance. Compared to only applying one
improvement, the combination yields a plus of 1.2, 0.9, and 1.2 HOTA on
MOT17 val, PP22 test, and SOMPT22 train, respectively. Especially the gains
on SOMPT22 train are noteworthy, as the combination achieves a larger in-
crease in HOTA w.r.t. the baseline (+4.0) than the sum of increases (+3.8)
when applying only a single component (+1.0/+2.8).

In comparison to the base framework, the proposed tracking system, i.e.,
BYTEv2+OAI+𝑑comb,DioU, notably improves DetA (+2.3 on MOT17 val, +0.8
on PP22 test,+1.8 on SOMPT22 train) despite using the same detectionmodel.
This is mainly achieved by a better utilization of the available detections and
the incorporation of usually discarded low-confidence and heavily-occluded
detections into the tracking process. On the other hand, large enhancements
of AssA compared to the baseline (+4.6 onMOT17 val,+9.3 on PP22 test,+6.3
on SOMPT22 train) are attributable to a good fusion of motion and appear-
ance information, an improved association strategy, and the consideration of
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detections’ neighborhoods in the track initialization. Putting all together, the
proposed tracking system obtains a superior tracking performance indicated
by a plus of 3.4, 5.3, and 4.0 HOTA, on MOT17 val, PP22 test, and SOMPT22
train, respectively, compared to the base framework.

These remarkable results are achieved through a sophisticated utilization of
available information, while only standard components for detection, appear-
ance feature extraction, and motion modeling are adopted from the MPT lit-
erature. This shows the high importance of striving for an optimal interplay
of the single tracking modules and ensuring that the available information is
leveraged as effectively as possible.

6.4 Camera Motion Compensation

The displacement of image content as a consequence of camera motion can
also be regarded as available information that has not been treated so far in
this thesis. However, the example in Figure 5.8 has shown that tracking er-
rors can be introduced due to bad predictions of the motion model if present
camera motion is not considered. Note that camera motion not only includes
spatial translations of a mobile camera carried by an object (car, drone, per-
son, etc.) but can also arise in fixed mounting positions from PTZ cameras
to monitor large areas. Thus, building a tracking system that takes camera
motion into account is of high importance for many applications.

The majority of MPT approaches found in the literature that incorporate a
CMC method [Aha22, Ber19, Du23, Han22, He21, Khu21] utilize the ECC
maximization from [Eva08], which is too slow to be applied in real time (Ta-
ble 7.8). Maximizing the ECC requires to solve a nonlinear optimization prob-
lem, which can approximately be solved by an iterative scheme. In each iter-
ation, an 𝑁I × 𝑁p Jacobian matrix of the transformed image pixels w.r.t. the
transformation parameters has to be calculated, with𝑁I denoting the number
of image pixels and𝑁p being the number of parameters of the transformation.
This results in a large computational complexity as multiple iterations have
to be performed for convergence (up to 50 in the experiments on MOT17 val).
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For more details about the ECC algorithm, the interested reader is referred to
the original paper [Eva08].

To enable a real-time-capable CMC, a fast alternative strategy based on key-
point detection and the matching of local image descriptors is introduced for
the use in MPT for the first time [Sta23c]. As the detection of keypoints has
to be performed only once per image, for which efficient algorithms exist, the
proposed method can run significantly faster than the ECC technique (Ta-
ble 7.8). In this thesis, a thorough empirical evaluation of different algorithms
for the detection of image keypoints and extraction of visual descriptors is
performed in order to find the combination with the best accuracy–runtime
trade-off. In other words, a configuration is searched that is capable of ac-
curately compensating occurring camera motion, while not significantly in-
creasing the computational complexity of the overall tracking system.

Before going into details of the evaluation, the basic functionality of the pro-
posed CMC approach is explained. In each frame of the video sequence, a
keypoint detector is applied that identifies distinctive points on the image,
e.g., corners of objects. For each point 𝐩 = (𝑝𝑥, 𝑝𝑦)T ∈ 𝒫 from the set of
keypoints 𝒫, the subsequent descriptor extraction algorithm computes a vec-
tor 𝐟KP that stores image information of the keypoint location. This vector
can have binary entries {0, 1} or contain floating-point values depending on
the specific descriptor extractor used. Consequently, different distance func-
tions to compare the computed descriptor vectors have to be applied. Typical
choices are the Hamming distance for binary vectors and the Euclidean dis-
tance for real-valued vectors.

After keypoint detection and descriptor extraction, the set of descriptors ℱ𝑡
from the current frame 𝐈𝑡 is matched with the descriptors ℱ𝑡−1 from the pre-
vious frame 𝐈𝑡−1 based on an appropriate distance function. The matching
is performed in a brute force manner meaning that all descriptors from the
first image are compared with all descriptors from the second image. Then,
the 𝑁 matched keypoints (𝐩1𝑡−1, 𝐩1𝑡 ), … , (𝐩𝑁𝑡−1, 𝐩𝑁𝑡 ) with smallest descriptor
distances are leveraged to estimate a transformation matrix 𝐖. Finally, the
transformation matrix can be used to align the two consecutive images, thus
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6 Utilization of Occluded Detections and Target Information

to compensate potential camera motion. Notice that the random sample con-
sensus (RANSAC) algorithm [Fis81] is applied to increase the robustness of the
transformation estimation w.r.t. outliers, i.e., incorrectly matched keypoints.
The concept of the proposed CMC approach is illustrated in Figure 6.14.

ℱ𝑡− 1 

ℱ𝑡  

𝒫𝑡 − 1 

𝒫𝑡  

{(𝐩𝑡
𝑛 ,  𝐩𝑡− 1

𝑛 )} 
𝐖 

𝐈𝑡  

RANSAC Matching 

ImageKeypoints

{(𝐩𝑡
𝑛 ,  𝐩𝑡− 1

𝑛 )} 

Descriptors

𝒫  

ℱ  Transformation𝐖 

𝐈 

Matched keypoints: 

Unmatched keypoints

𝐈𝑡− 1 

Figure 6.14: Overview of the proposed CMC approach. Keypoints are detected on two consec-
utive frames, for which visual descriptors are extracted. Based on the similarity of
these descriptors, the keypoints are matched. Afterwards, the matched keypoints
are used to compute a transformation matrix for image alignment, whereby the
RANSAC algorithm is leveraged for an increased robustness.

To evaluate the performance of the CMC in the context of MPT, the proposed
tracking framework from the previous section (BYTEv2+OAI+𝑑DIoU,comb) is
leveraged. Experiments using different keypoint detectors and descriptor ex-
tractors are conducted on MOT17 val. While different types of transforma-
tions (translation, affine transformation, homography, etc.) can be estimated
from the matched keypoints to compute the matrix 𝐖, assuming a partially
affine transformation with four degrees of freedom (scale 𝑞, rotation 𝜃, trans-
lation in 𝑥-direction 𝑡𝑥 , translation in 𝑦-direction 𝑡𝑦)

𝐖 = (cos(𝜃) ⋅ 𝑞 − sin(𝜃) ⋅ 𝑞 𝑡𝑥
sin(𝜃) ⋅ 𝑞 cos(𝜃) ⋅ 𝑞 𝑡𝑦) (6.29)

has lead to the best results. Applying the CMC in the tracking system means
that the tracks from the previous iteration are aligned with the current frame
by the matrix𝐖 before performing the motion prediction step of the Kalman
filter. Formally, let (𝑥, 𝑦)T be the top-left or bottom-right coordinates of a
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6.4 Camera Motion Compensation

track’s bounding box, the transformed coordinates (𝑥′, 𝑦′)T are calculated, in
the case of𝐖 representing a (partially) affine transformation, as follows:

(𝑥
′

𝑦′) = 𝐖(
𝑥
𝑦
1
) = (cos(𝜃) ⋅ 𝑞 ⋅ 𝑥 − sin(𝜃) ⋅ 𝑞 ⋅ 𝑦 + 𝑡𝑥

sin(𝜃) ⋅ 𝑞 ⋅ 𝑥 + cos(𝜃) ⋅ 𝑞 ⋅ 𝑦 + 𝑡𝑦) . (6.30)

To conduct experiments with different keypoint detectors and descriptor
extractors, the OpenCV library [Bra00] is utilized. The following 12 methods
have been tested for keypoint detection: A-KAZE [Alc13], AGAST [Mai10],
FAST [Ros06], GFTT [Shi94], Harris-Laplace [Mik04], KAZE [Alc12],
MSER [Nis08], MSD [Tom15], ORB [Rub11], SIFT [Low04], SimpleBlobDe-
tector [Bra00], StarDetector [Agr08]. To extract descriptors, the following 12
algorithms have been used: A-KAZE [Alc13], BRIEF [Cal10], BRISK [Leu11],
BoostDesc [Trz13], DAISY [Tol10], FREAK [Ala12], KAZE [Alc12], LATCH
[Lev16], LUCID [Zie12], ORB [Rub11], SIFT [Low04], VGG [Sim14]. Note
that some methods can be applied both for keypoint detection and descriptor
extraction (A-KAZE, KAZE, ORB, SIFT) and that not all detector–extractor
combinations are possible. In total, experiments with 120 combinations have
been conducted, whereby the standard parameter settings of the detectors
and extractors are adopted from the OpenCV library.

The highest HOTA is achieved by 12 combinations. ORB+BRIEF, as the fastest
one, is compared to the baseline without CMC on MOT17 val in Table 6.17.

Table 6.17: Effect of the ORB+BRIEF CMC on the tracking performance on MOT17 val. An
increase in HOTA is mainly caused by an improved AssA.

CMC HOTA DetA AssA DetRe DetPr AssRe AssPr
− 71.0 67.5 75.1 72.9 83.1 79.2 87.2

ORB+BRIEF 71.4 67.6 75.9 73.3 82.8 80.0 86.9

Compensating camera motion yields a plus of 0.4 HOTA due to an increased
DetRe and AssRe. However, note that not all sequences of the MOT17 dataset
contain camera motion. Whereas the performance on scenes with static cam-
eras is similar, large improvements up to 2.5HOTA are observed on sequences
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with severe camera motion (MOT17-13). The static scenes are not excluded
from the evaluation because estimating an (approximate) identity matrix for
consecutive frames without camera motion is as important as precisely esti-
mating the transformation matrix under severe camera motion. If the CMC
method estimates a large motion, where none is present, many tracking er-
rors can be introduced. To investigate if such unwanted errors aremade by the
presented CMC, experiments are performed on PP22 test and SOMPT22 train
that hardly contain any camera motion. The results are given in Table 6.18.

Table 6.18: Proposed CMC on two different datasets without notable cameramotion. The similar
results show that the CMC introduces hardly any tracking errors in static scenes.

PP22 test SOMPT22 train
CMC HOTA DetA AssA HOTA DetA AssA
− 67.4 68.5 66.8 59.4 57.8 61.3

ORB+BRIEF 67.4 68.5 66.8 59.3 57.8 61.1

The same tracking measures are obtained with and without CMC on PP22,
while a small decrease of 0.1 HOTA is observed when using the CMC mod-
ule on SOMPT22. This indicates that not many errors are introduced by the
CMCmethod on static scenes. The advantage of being capable to compensate
severe camera motion clearly outweighs a potentially small decrease in track-
ing performance on static scenes. As a future work, one could use additional
information like the frame rate and motion limits of the camera to exclude in-
feasible transformation matrices originating from wrong keypoint matches.
This might be necessary in scenes with very low contrast, where the chance
for incorrect matches is increased. Moreover, if too many keypoints are found
on moving persons in very crowded scenes, this might also impede a correct
estimation of the camera motion. To counter this, keypoints on detected per-
son regions could be excluded from the keypoint matching. However, such
a strategy has not been necessary on the evaluation datasets, although they
contain scenes with a high number of persons.

Not all of the 12 detector–extractor combinations that have achieved the high-
est HOTA on MOT17 val can be applied in real time, either since a too slow
detector (Harris-Laplace) or extractor (VGG) is involved. The best results
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according to runtime–accuracy trade-off in the experiments are obtained
using the ORB detector. ORB+BoostDesc, ORB+BRIEF, ORB+BRISK, and
ORB+LATCH achieve the best tracking performance, while taking BRIEF as
descriptor extractor has the lowest runtime. Therefore, ORB and BRIEF are
used as keypoint detector and descriptor extractor, respectively, in the CMC
module of the final tracking system of this thesis. A detailed runtime analysis
of the CMC as well as the full tracking framework is given in Chapter 7.

Figure 6.15 shows a qualitative example from the MOT17 dataset, where the
usage of ORB+BRIEF improves the tracking performance of the proposed
framework BYTEv2+OAI+𝑑comb,DIoU under severe camera motion.

(a) Without CMC

(b) With CMC

Figure 6.15: Qualitative comparison of the proposed framework with (a) and without (b) CMC
on an example sequence with severe camera motion from the MOT17 dataset. The
CMC prevents wrong associations caused by inaccurate motion predictions.
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Without CMC, the predicted track positions do not match with the actual
target positions, which leads to a wrong association (yellow), an incorrect
track start (purple), and a ghost track (blue) as can be seen in Figure 6.15a. In
contrast, applying the proposed ORB+BRIEF method, all targets are tracked
correctly, which is depicted in Figure 6.15b.

Finally, a comparison of the proposed CMC with the prevailing ECC method
is performed. Results of these two approaches applied together with the
BYTEv2+OAI+𝑑comb,DIoU framework on MOT17 val are listed in Table 6.19,
and results without CMC are also given.

Table 6.19: Comparison of CMC methods on MOT17 val. The proposed method ORB+BRIEF
achieves similar results as the ECC baseline, while being able to run in real time.

CMC Real-time capability HOTA DetA AssA
− − 71.0 67.5 75.1

ECC 7 71.4 67.5 75.9
ORB+BRIEF 3 71.4 67.6 75.9

Note that the parameters of the ECCmethod (type of transformation, number
of iterations, etc.) have been tuned carefully for a fair comparison. While the
ECC can achieve comparable results to the proposed CMC method, it cannot
be applied in real time, which will be shown in Section 7.4.

With its high accuracy and computational efficiency, the presented CMC
method makes a good extension to the overall tracking system of this thesis,
which is compared with the SOTA in the following section.

6.5 Comparison with the State of the Art

The datasets MOT17 [Mil16] and MOT20 [Den20] have been used for many
years to evaluate the accuracy of MPT approaches and are still the standard
benchmarks. Consequently, those two are leveraged to compare the proposed
tracking system with the SOTA.
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For MOT17 and MOT20, two evaluation protocols exist—using public and pri-
vate detections. The public detection sets are provided with the datasets while
the private protocol allows to use an arbitrary object detector. The idea behind
the public protocol is to enable a fair comparison between tracking methods.
However, twomajor drawbacks speak against the use of the public detections:
First, they are outdated as they are generated with detection methods that are
now up to 20 years old [Fel04, Ren17, Yan16]. Second, trackers that incor-
porate additional tasks into the detection, for instance, JDE methods [Lu20,
Ren24, Wan20, Wan23b, Zha21], or transformer-based approaches that solve
detection and tracking end-to-endwithin one network [Mei22, Sun21a, Zen22,
Zhu23] cannot be directly evaluated with the public detection protocol. More-
over, the public detections are provided after a standard NMS has been per-
formed. As a consequence, alternative filter approaches like the introduced
adapted NMS cannot be applied, which also prevents the use of the proposed
BYTEv2 association strategy.

While the private protocol—which is used for evaluation in this thesis—
allows to utilize any detector, YOLOX-X [Ge21] with weights from Byte-
Track [Zha22c] has become the default detection model for evaluation on
the MOT benchmarks in recent years. This improves the comparability of
various trackers under the private protocol. Another established standard is
to interpolate fragmented tracks in order to recover missed detections under
occlusion. To analyze the impact of this post-processing on the evaluation
measures, different types of interpolation are performed on the generated
tracks of the proposed tracking framework on MOT17 val. The results are
listed in Table 6.20.

Table 6.20: Comparison of interpolation approaches on MOT17 val. Higher DetRe and AssRe
lead to a significant increase in HOTA when performing interpolation. Both the
minimum length requirement and the Gaussian smoothed interpolation (GSI) lead
to improvements compared to the standard linear interpolation (LI).

Interpolation Minimum length HOTA DetA AssA DetRe DetPr AssRe AssPr
7 7 71.4 67.6 75.9 73.3 82.8 80.0 86.9
LI 7 73.0 69.5 77.2 77.1 80.5 82.2 85.9
LI 3 73.2 69.7 77.3 76.8 81.1 82.3 86.0
GSI 3 73.5 69.9 77.8 77.0 81.3 82.7 86.3
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A simple linear interpolation (LI) leads to a large plus of 1.6HOTA and boosts
both DetA and AssA due to the increase of DetRe and AssRe, respectively.
Interpolating only fragmented tracks with a minimum overall length of one
second yields another slight enhancement, just like Gaussian smoothing of
the interpolated trajectories (GSI) as introduced in [Du23]. An overall im-
provement of the HOTA measure by 2.1 points shows the importance of in-
terpolation to achieve competitive results on the MOT benchmarks.

Besides interpolation, some parameters of the tracking framework have
a large influence on the final performance. In particular, the confidence
threshold for track initialization 𝑠init has a high impact. This is why a lot of
SOTA methods apply various thresholds for different videos of the MOT17
test set [Aha22, Cao23, Liu23, Men23, Zha22c] to take specific characteristics
of the scenes into account. For example, if a video contains many low-
resolution persons due to large camera distances, the detection confidences
are probably lower than for scenes showing only high-resolution persons.
Therefore, setting a smaller initialization threshold for such sequences can
lead to a higher recall and thus to a better overall tracking performance. The
applied values of the proposed tracking framework for 𝑠init on the MOT17
test sequences are given for reference in Table 6.21.

Table 6.21: Applied initialization thresholds 𝑠init on the MOT17 test sequences.

MOT17-01 MOT17-03 MOT17-06 MOT17-07 MOT17-08 MOT17-12 MOT17-14
0.75 0.8 0.75 0.6 0.65 0.8 0.4

All other tracking parameters are taken over from the evaluation on MOT17
val to show the generalization ability of the proposed tracking framework.
Table 6.22 gives a comparison with the 20 best-performing trackers on the
MOT17 test set, separated by offline (top) and online (bottom) approaches. In
addition to the performance measures, it is indicated for each tracker whether
specific modules are used (REID, CMC) and if a different detection model as
in the proposed framework is applied.
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Table 6.22: Comparison of the best-performing trackers on MOT17 test. Highest values are bold
and second highest underlined. REID and CMC specify whether the tracker uses
appearance information and a module to compensate camera motion, respectively.
Offline methods are listed at the top and online methods at the bottom. One tracker
that does not use the YOLOX detector with weights from [Zha22c] is indicated by ∗.

Method REID CMC HOTA DetA AssA MOTA IDF1
RTU++ [Wan22a] 3 7 63.9 64.5 63.7 79.5 79.1
BASE [Lar24] 7 7 64.5 66.3 63.1 81.9 78.6
SUSHI [Cet23] 3 7 66.5 65.5 67.8 81.1 83.1
OC-SORT [Cao23] 7 7 63.2 63.2 63.4 78.0 77.5
FOR_Tracking [Nas23] 7 3 63.3 64.7 62.2 80.4 77.7
QDTrack [Fis23] 3 7 63.5 64.5 62.6 78.7 77.5
Unfctrack [Hua23] 3 7 63.5 64.4 62.9 79.8 77.9
BPMTrack [Gao24] 3 3 63.6 65.5 62.0 81.3 78.1
UTM [You23] ∗ 3 7 64.0 65.9 62.5 81.8 78.7
FineTrack [Ren23] 3 7 64.3 64.5 64.5 80.0 79.5
StrongSORT [Du23] 3 3 64.4 64.6 64.4 79.6 79.5
SAT [Wan22b] 3 7 64.4 64.8 64.4 80.0 79.8
Deep OC-SORT [Mag23] 3 3 64.9 64.1 65.9 79.4 80.6
BoT-SORT [Aha22] 3 3 65.0 64.9 65.5 80.5 80.2
MotionTrack [Qin23] 7 7 65.1 65.4 65.1 81.1 80.1
SparseTrack [Liu23] 7 3 65.1 65.3 65.1 81.0 80.1
LG-Track [Men23] 3 7 65.4 65.6 65.4 81.4 80.4
ConfTrack [Jun24] 3 3 65.4 64.8 66.3 80.0 81.2
UCMCTrack [Yi24] 7 3 65.7 65.3 66.4 80.6 81.0
C-BIoU [Yan23] 7 7 66.0 66.3 66.1 82.8 82.5
Proposed 3 3 66.7 66.6 67.1 82.5 82.7

As a first observation, most of the SOTA trackers are considered online meth-
ods that process frame after frame. Note that nearly all listed approaches
apply interpolation as post-processing, which strictly speaking violates the
online property. However, they are still considered online in this comparison
(and by the MPT community) as only a small delay of the tracking results,
for instance, 𝑖max = 1.5 s for the proposed tracker, is introduced by the inter-
polation. In contrast, the actual offline methods process the whole sequence
at once afterwards.
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The second finding drawn from Table 6.22 is that most top-performing online
methods either apply a CMC or follow an alternative approach to handle ir-
regular motions (C-BIoU [Yan23]). So, a valid treatment of occurring camera
motion is important to obtain a high tracking performance.

Third, some approaches do not use a REID model to achieve a low run-
time [Liu23, Yan23, Yi24] at the cost of not utilizing the important appearance
information. Unfortunately, a valid runtime comparison of the different
trackers is currently impossible because some methods report their runtime
excluding modules like detection or CMC [Cao23, Cet23, Gao24, Yan23,
Yi24] or do not provide a runtime at all [Lar24, Mag23, Men23, Qin23,
Ren23, Wan22b, You23, Zha24]. The two trackers StrongSORT [Du23] and
BoT-SORT [Aha22] comprising both REID and CMC modules run only at a
small rate of 7.5 (1.5) and 4.5 (2.4) FPS on MOT17 (MOT20), respectively,
according to their papers. This indicates that no top-performing method
that includes both a REID model and CMC can run in real time on videos
with high frame rates on standard hardware. That also holds true for the
proposed tracking framework. However, it will be shown in Chapter 7 that
a runtime-optimized version can be built that achieves real-time capability
while maintaining the high tracking accuracy.

Regarding accuracy, the proposed framework of this thesis achieves the over-
all best tracking performance among all methods on MOT17 test set, with a
plus of 0.7 HOTA w.r.t the second-best online method C-BIoU [Yan23] and a
plus of 0.2 HOTA compared to the best offline approach SUSHI [Cet23]. Ob-
taining the highest DetA (+0.3 w.r.t. second-best entry) indicates a superior
utilization of available detections by the proposed adapted NMS in combina-
tion with the BYTEv2 association strategy. Moreover, the best AssA among
all online methods (+1.0 w.r.t second-best entry) is attributable to the intro-
duced combined association distance, which has been shown to be superior
to other approaches of fusing motion and appearance information from the
literature. Only the offline method SUSHI [Cet23] achieves a higher AssA
(+0.7) due to its better long-term association capabilities (+0.4 IDF1), since
all detections of the whole sequence are available at once.
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While all except one tracker leverage the identical YOLOX model with
the weights provided by [Zha22c]—which in the first place enables a fair
comparison—one has to note that different detection confidence thresholds
are applied, which are not reported by many methods. Next to the missing
or incomparable runtimes, this can be seen as another limitation of the
comparison on the MOT17 test set.

The lack of information on used confidence thresholds is also a problem on
MOT20. Again, the applied thresholds for track initialization 𝑠init of this thesis
on the MOT20 test sequences are provided for reference in Table 6.23.

Table 6.23: Applied initialization thresholds 𝑠init on the MOT20 test sequences.

MOT20-04 MOT20-06 MOT20-07 MOT20-08
0.65 0.4 0.65 0.4

Besides tuning 𝑠init for each sequence independently, it has become a common
practice to utilize the original input resolution of sequences on the MOT20
dataset for detection [Aha22, Cao23, Liu23, Men23, Zha22c]. So, instead of
keeping the default input size of 1440×800 pixels for the YOLOX detector as
on MOT17, the original sizes of the sequences are used (Table 4.1). Another
difference to the evaluation on MOT17 test is that the CMC module is turned
off since there is hardly any camera motion on MOT20.

The comparison of the proposed framework with the best-performing track-
ing methods on the MOT20 test set is given in Table 6.24. The proposed
tracker obtains the overall best performance, surpassing the second best entry
ConfTrack [Jun24] by 0.7 HOTA. Furthermore, the highest DetA (+1.1 w.r.t.
second-best entry) and MOTA (+0.4 w.r.t. second-best entry) are achieved.

Again, the reason behind the best DetA lies in the usage of heavily-occluded
detections in the BYTEv2 association. The consideration of such detec-
tions is especially important for very crowded scenes as in the MOT20
benchmark (on average 141 persons per image, Section 4.1.1). Next to
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Table 6.24: Comparison of the best trackers on MOT20 test. Highest values are bold and second
highest underlined. REID specifieswhether the tracker uses appearance information.
Offline methods are listed at the top and online methods at the bottom. Trackers that
do not use the YOLOX detector with weights from [Zha22c] are indicated by ∗.

Method REID HOTA DetA AssA MOTA IDF1
RTU++ [Wan22a] 3 62.8 63.1 62.6 76.5 76.8
BASE [Lar24] 7 63.5 64.1 63.2 78.2 77.6
SUSHI [Cet23] 3 64.3 61.5 67.5 74.3 79.8
ByteTrack [Zha22c] 7 61.3 63.4 59.6 77.8 75.2
FOR_Tracking [Nas23] 7 61.4 62.3 66.2 76.8 76.4
QuoVadis [Den22] 3 61.5 63.3 59.9 77.8 75.7
SuppTrack [Zha24] ∗ 7 61.9 63.8 60.1 78.2 75.5
BPMTrack [Gao24] 3 62.3 63.9 60.9 78.3 76.7
OC-SORT [Cao23] 7 62.4 62.4 62.5 75.7 76.3
UTM [You23] ∗ 3 62.5 63.7 61.4 78.2 76.9
SAT [Wan22b] 3 62.6 62.1 63.2 75.0 76.6
StrongSORT [Du23] 3 62.6 61.3 64.0 73.8 77.0
MotionTrack [Qin23] 7 62.8 64.0 61.8 78.0 76.5
UCMCTrack [Yi24] 7 62.8 62.4 63.5 75.6 77.4
BoT-SORT [Aha22] 3 63.3 64.0 62.9 77.8 77.5
LG-Track [Men23] 3 63.5 64.1 62.9 77.8 77.4
SparseTrack [Liu23] 7 63.5 64.1 63.1 78.1 77.6
FineTrack [Ren23] 3 63.6 63.6 63.8 77.9 79.0
Deep OC-SORT [Mag23] 3 63.9 62.4 65.7 75.6 79.2
ConfTrack [Jun24] 3 64.8 63.6 66.2 77.2 80.2
Proposed 3 65.5 65.2 66.0 78.7 79.6

SuppTrack [Zha24], which improves the detection recall in crowds by incor-
porating a detection branch that focuses on the heads of persons, and BPM-
Track [Gao24], which also makes use of the introduced adapted NMS, the pro-
posed tracking framework is the only method in Table 6.24 that explicitly ac-
counts for improving the detection recall under severe occlusion. Since most
tracking errors occur in such circumstances, further enhancing the detection
performance in crowded scenes, e.g., by applying crowd-specific person de-
tectors as in a previous work of this thesis’ author [Sta21d], is a promising
direction for future research.
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ConfTrack [Jun24] is the only online approach that achieves a higher AssA
(+0.2) than the proposed tracker on MOT20 test. One of the main contri-
butions of ConfTrack is a further development of the NSA Kalman filter, in-
troducing a confidence-weighted Kalman update and using a constant box
prediction inspired by the proposed HP module of this thesis. Moreover, the
detection confidence is incorporated into the association distance and a new
treatment of low-confidence tracks in the association is proposed. All of these
approaches are other ways of utilizing the available information in the track-
ing process which underlines the high importance of this thesis’ topic.

To conclude, the proposed tracking framework sets a new SOTA on the stan-
dard MPT benchmarks MOT17 and MOT20. DetA is notably enhanced with
the integration of heavily-occluded detections through the BYTEv2 associa-
tion strategy. Considering both benchmarks, also the best AssA is achieved,
which is attributable to an improved fusion of target information and an ef-
fective CMC technique.

6.6 Summary

With an improved use of available information—generated detections, ex-
tracted appearance and motion information of targets as well as derived
context knowledge—the proposed framework has significantly enhanced the
MPT performance, especially under occlusion.

First, an adapted NMS was introduced, which enables the incorporation of
severely-occluded detections into the association that are typically discarded.
Based on this adapted NMS, two novel association strategies, BYTEv2 and
TWC, were proposed. Both approaches are designed to leverage the addi-
tional TPs from the set of occluded detections without introducing FPs in the
tracking process. This does not only increase detection recall but also sim-
plifies the assignment task in crowded scenes leading to an overall higher
tracking accuracy. The two proposed association strategies are among only
a few approaches found in the MPT literature that leverage detections under
such heavy occlusion in the tracking process [Gao24, Zha24].
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Next to the better usage of available detections in the association, the track
information is consulted to derive knowledge of the surroundings from unas-
signed detections in the proposed OAI.Themethod prevents the start of ghost
tracks in crowded areas and thus further enhances the tracking performance
when combined with the aforementioned association strategies.

Besides a sophisticated use of detections and tracks, an effective utilization
of the extracted appearance and motion information from the targets is also
important. To identify shortcomings of existing association measures, a de-
tailed analysis of fusion strategies of motion and appearance distances from
the literature was conducted for the first time. Based on that, combined dis-
tance measures have been proposed that clearly outperform previous fusion
approaches on three MPT datasets.

A combination of BYTEv2, OAI, and the combined distance measure has
shown that the various approaches work well together and yield complemen-
tary gains. W.r.t the base framework, the overall tracking accuracy measured
in HOTA was increased by 3.4, 5.3, and 4.0 points on the MOT17 val, PP22
test, and SOMPT22 train dataset, respectively.

Moreover, an efficient CMCmethod based on keypoint detection and descrip-
tor extraction, which makes an important addition to the tracking frame-
work whenever moving cameras are involved, was introduced. An exten-
sive amount of keypoint detectors and descriptor extractors was compared to
build a CMC method with both high accuracy and real-time capability, which
improves over the prevailing CMC approach from the MPT literature.

Putting all together, the proposed framework achieves the best tracking per-
formance on the standard MPT benchmarks MOT17 and MOT20. The high
flexibility of the framework allows to integrate modules of other trackers
from the literature to further improve its performance, which is outlined in
Section 8.2. Some qualitative tracking results are visualized in Figures 6.16
and 6.17 to demonstrate the SOTA performance of the proposed tracker un-
der different scenarios.
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6.6 Summary

Figure 6.16: Qualitative results of the proposed tracking framework on example sequences of
MOT17 test. The trajectories display the targets’ positions of the last three seconds.
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6 Utilization of Occluded Detections and Target Information

Figure 6.17: Qualitative results of the proposed tracking framework on example sequences of
MOT20 test. The trajectories display the targets’ positions of the last three seconds.
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6.6 Summary

Looking at the displayed trajectories that show the targets’ positions of the
last three seconds, one observes that the persons are tracked robustly through
frequent occlusions under various camera views and target densities. Also
in very crowded scenes from the MOT20 benchmark (Figure 6.17), accurate
tracking results are obtained with the proposed framework.

So far, the runtime of the tracking algorithms has not been considered. How-
ever, like most of the SOTA trackers that involve multiple modules as detec-
tion, REID, and CMCmodel, the proposed framework is not real-time capable
without modifications. For this reason, a runtime-optimized system, which
achieves real-time capability without sacrificing the SOTA performance, is
developed in the next chapter.
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For many MPT applications, especially in the security domain, a real-time
processing is required. While there is no universal understanding of what
real-time processing means in the MPT community, this thesis adopts the
definition of [Kuo06, Mur17] that states real-time capability of a tracking sys-
tem as the ability to process one frame in less time than is given between
two consecutive frames of a video stream. Thus, the real-time capability of a
tracking algorithm depends on the frame rate of the camera, which, for exam-
ple, is on average about 15 FPS for industry video surveillance cameras as of
2021 [IPV21]. Taking these 15 FPS as reference, the time limit for the overall
tracking system to process a frame is 66.7ms—including detection, motion
modeling, feature extraction, association, and track management. This makes
clear that building a real-time-capable MPT system with common hardware
is a non-trivial task.

In particular, the two optional tracking components REID and CMC are com-
putationally expensive, which is why tracking systems from the literature ei-
ther do not use these models (Section 6.5) or do not achieve real-time capa-
bility. On the contrary, this chapter shows that the proposed tracking system
runs in real time without significantly sacrificing the overall performance,
when modifications are made, namely, using a more efficient REID model,
executing some modules in parallel, and utilizing a high-performance library
for neural network inference like NVIDIA TensorRT¹.

The remainder of this chapter is organized as follows. Section 7.1 gives a thor-
ough runtime analysis of the proposed tracking system. Then, the usage of a
more efficient REID model is investigated in Section 7.2, since the so-far used

¹ https://developer.nvidia.com/tensorrt (accessed on July 16, 2024)
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model prevents a real-time capability of the overall tracking system. In Sec-
tion 7.3, the inference library TensorRT is utilized to speed up the detection
and REID model. Then, the runtime of the proposed CMC module is com-
pared with the prevailing approach from the literature, and its influence on
the total runtime is studied in Section 7.4. Finally, the applied changes w.r.t.
the proposed framework from the previous chapter are summarized, and the
runtime of the optimized system is examined in Section 7.5.

7.1 Runtime Analysis of the Proposed System

To obtain a detailed understanding about the computational complexity of the
proposed tracking system under different settings, i.e., number of targets or
input resolution, and to identify bottlenecks in the framework, the runtime of
each tracking component is analyzed independently. The runtime of a compo-
nent is measured for 10,000 iterations after performing 100warmup iterations
that do not contribute to the calculation of mean and standard deviation of the
runtime. This warmup is especially important when deep neural networks as
the detector or REID model are executed on the GPU, since some deferred
initializations and optimizations are happening in the first few iterations.

The code of the tracking system is written in Python and executed on an Intel
Xeon E5-2698 v4 CPU. Some of the code leverages multi-threading with a
maximum number of 16 threads. An NVIDIA Tesla V100-SXM2-32GB is used
as GPU. To inference the detection and REID model on the GPU, the PyTorch¹
library is utilized.

In the following subsections, the runtime of detection, REID, and motion
model as well as the parts of the association are analyzed. Note that the run-
times of the OAI and the parts of the track management, e.g., initialization of
new tracks, changes of the track state, etc., are negligible w.r.t. the other mod-
ules, so no analysis of these components is carried out. Moreover, the CMC as
optional additional module is treated separately in Section 7.4. Lastly, notice

¹ https://pytorch.org (accessed on July 16, 2024)
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that operations that would not be performed in a real application environ-
ment, like loading images from the hard disk or saving the tracking results,
are excluded from the runtime measurements.

7.1.1 Detection

The detection task consists of two parts: inference of the detection model
(YOLOX-X [Ge21]) given an image as input and a subsequent NMS for re-
moving duplicate detections. The runtime of the detector is highly dependent
on the resolution of the input image as depicted in Figure 7.1. Note that the
input sizes are chosen such that width and height are divisible by 32, which
is a prerequisite of the YOLOX-X detector.
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Figure 7.1: Runtime of the YOLOX-X detector for various image sizes and obtained HOTA val-
ues on MOT17 val. The best result of 71.4 HOTA is achieved with a resolution of
1440×800 pixels, which leads to a runtime of 27.4±0.3ms. Notice that the vertical
axis does not start at zero.

One observes that the best results are achieved with the standard input res-
olution of 1440×800 pixels, on which the model has been trained. If the
model would be trained on a higher input resolution, increased HOTA values
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might be possible. However, the goal is not to get the most powerful detec-
tion model but one with a good accuracy–runtime trade-off that is suitable
for being used in a real-time-capable MPT system. Considering that further
acceleration can be achieved with an optimized inference library (Section 7.3),
the runtime of 27.4ms for the input resolution of 1440×800 pixels is afford-
able. Consequently, this input size is used for the YOLOX-X detector in the
experiments of the following sections.

Table 7.1 compares the standard NMS with the proposed adapted NMS, which
outputs the set of occluded detections next to the normal detection set.

Table 7.1: Runtime in ms of the standard NMS and the proposed adapted NMS. A small overhead
of roughly 1ms is introduced to the tracking framework by the adapted NMS. The
runtime of both NMS variants hardly depends on the image size.

Image size 736×416 1088×608 1440×800 1920×1088 2560×1440
Standard NMS 1.28±0.10 1.23±0.21 1.19±0.16 1.15±0.10 1.21±0.16
Adapted NMS 2.08±0.18 2.33±0.42 2.22±0.37 2.03±0.16 2.13±0.26

Although the number of predictions made by the model is about 12 times
higher for the largest input size w.r.t. the smallest one (75,600 for 2560×1440
vs. 6,279 for 736×416), there is no significant runtime difference for various
image resolutions. This is mainly due to the fact that the vast majority of pre-
dictions has a very low confidence (𝑠 < 0.01) and thus is removed before the
actual NMS algorithm is performed. Moreover, due to strong parallelization
on the GPU, no significant runtime differences have been observed for scenes
with various person numbers. As the adapted NMS basically involves exe-
cuting the standard NMS two times, its mean processing time is about twice
as large. In other words, the adapted NMS comes with an overhead of about
one millisecond. Enabling the usage of occluded detections in the associa-
tion and thus notably improving the overall tracking performance, this small
overhead is worthwhile.
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7.1.2 Re-Identification Model

Whereas the runtime of the detection is to a large extent independent from
the number of targets on the image, the runtime of the REID model increases
with the number of detected persons. For each person detection considered
in the association, the REID model extracts features that are used to calculate
the appearance distances. As the input size of the network is fixed and the
detected image crops are resized accordingly, the runtime of the REID model
is independent from the image resolution. For the so-far used REID model
(SBS S50 [Luo19]), the runtime measurements are shown in Figure 7.2.

1 2 4 8 16 32 64 128 256 512 1024

1,000

2,000

3,000

4,000

20 20 20 35 63 12
1 23
5 46
7 93

2

1,8
46

3,7
06

Batch size

Ru
nt
im

e
in

m
s

Figure 7.2: Runtime of the SBS S50 REID model with various batch sizes. The results clearly
show that this REID model is not able to run in real time when a large number of
targets has to be tracked. Note the logarithmic scale of the horizontal axis.

The batch size corresponds to the maximum number of person detections for
that appearance features can be extracted in one inference pass of the REID
model. The more person detections are processed, the longer the runtime of
the REID model. Given the average frame rate of 15 FPS for industry video
surveillance cameras as reference, the applied REIDmodel can only run in real
time if no more than about 16 persons appear on the image. However, dozens
or even hundreds of persons need to be tracked in real-world applications, for
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instance, when monitoring large public spaces. If 256 persons are present, a
mean runtime of 932ms is needed which roughly corresponds only to 1 FPS.
To conclude, the so-far applied REID model prevents the real-time capabil-
ity of the whole system when a large number of targets has to be tracked.
Therefore, a more efficient alternative will be introduced in Section 7.2.

7.1.3 Motion Model

Just like the REID model, the runtime of the applied Kalman filter as motion
model is independent from the input size of the image but increases with the
number of targets to be tracked. This holds true both for the prediction step as
well as the update step. The individual runtimes are listed together with the
total runtime in dependence of the batch size (number of targets) in Table 7.2.

Table 7.2: Runtime in ms of the Kalman filter prediction and update step with various batch
sizes. The implementation runs fully on the CPU, so an acceleration for large batch
sizes through parallelization on the GPU is conceivable.

Batch size 1 2 4 8 16 32
Prediction 0.09±0.01 0.10±0.01 0.12±0.03 0.13±0.02 0.17±0.04 0.24±0.05
Update 0.08±0.01 0.10±0.01 0.13±0.03 0.15±0.03 0.25±0.05 0.38±0.07
Total 0.17±0.01 0.20±0.03 0.24±0.05 0.28±0.05 0.42±0.09 0.62±0.11

Batch size 64 128 256 512 1024
Prediction 0.36±0.07 0.65±0.14 1.13±0.23 2.34±0.47 4.28±0.73
Update 0.72±0.11 1.33±0.23 2.28±0.40 4.76±0.78 9.85±1.09
Total 1.09±0.17 1.97±0.34 3.42±0.55 7.10±1.03 14.13±1.48

With a total runtime of about 14ms including prediction and update step for
1024 targets, one can state that the Kalman filter is suitable to be applied in
a real-time-capable MPT system. Notice that the implementation runs fully
on the CPU. If the Kalman filter has to be applied on a large number of tar-
gets, extensive parallelization of a GPU implementation could lead to a further
speed-up. This, however, is outside the scope of this thesis.
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7.1.4 Association

The association task demands to calculate a distance between every track–
detection pair, before the linear sum assignment (LSA) problem can be solved,
i.e., matching each detection to (at most) one track and vice versa while mini-
mizing the summed matching distances. Thus, the runtime of the association
is both related to the number of targets to be tracked and the computational
complexity of the applied distance measure 𝑑. The introduced combined dis-
tance 𝑑comb,DIoU of the proposed tracking system from Equation (6.20) requires
to compute both the DIoU distance 𝑑DIoU (Equation (6.15)) and the cosine ap-
pearance distance 𝑑app (Equation (5.41)). Whereas the DIoU distance performs
calculations on the fixed four-dimensional bounding boxes, the computational
complexity of the cosine distance depends on the length 𝑙f of the feature vec-
tor of detections and tracks. Runtime measurements have been performed
with various batch sizes for the DIoU distance computation and the cosine
appearance distance using three different feature dimensions. The results can
be found in Table 7.3. Note that here and in the following, it is assumed that
the number of detections is identical to the number of tracks (and to the batch
size). While in practical cases, the equality generally does not hold, the num-
bers are typically close together, so the measured runtimes are meaningful
approximations.

The runtime of the DIoU distance computation is basically constant among
all evaluated batch sizes. This is because a GPU implementation from the
torchvision¹ library, a part of the PyTorch project, is leveraged that is strongly
parallelized. Computing the DIoU distance between two sets of 1024 bound-
ing boxes, thus about one million times, lasts less than one millisecond.

The calculation time of the cosine appearance distance notably depends on
the length of the feature vector 𝑙f. Taking a target number of 256 as example,
which is about the maximum number of persons in one image of the very
crowded MOT20 dataset (Section 4.1.1), the mean runtime of the appearance
distance for 𝑙f = 128 is only 0.59ms compared to 8.31ms for 𝑙f = 2048. Note

¹ https://pytorch.org/vision (accessed on July 16, 2024)
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Table 7.3: Runtime in ms of the distance computation for 𝑑DIoU and 𝑑app with different feature
vector lengths 𝑙f and various batch sizes. Due to strong parallelization, the runtime
for the 𝑑DIoU computation is independent from the batch size. Regarding 𝑑app, the
runtime is significantly reduced when using smaller feature vectors.

Batch size 1 2 4 8 16 32
𝑑DIoU 0.83±0.18 0.83±0.09 0.83±0.07 0.88±0.07 0.88±0.08 0.85±0.13
𝑑app, 𝑙f = 128 0.02±0.01 0.02±0.00 0.03±0.01 0.02±0.00 0.04±0.01 0.08±0.01
𝑑app, 𝑙f = 512 0.02±0.00 0.03±0.01 0.06±0.01 0.06±0.01 0.09±0.01 0.21±0.02
𝑑app, 𝑙f = 2048 0.04±0.01 0.07±0.02 0.09±0.01 0.16±0.03 0.39±0.03 0.64±0.07

Batch size 64 128 256 512 1024
𝑑DIoU 0.94±0.15 0.87±0.10 0.87±0.11 0.83±0.08 0.88±0.10
𝑑app, 𝑙f = 128 0.16±0.01 0.27±0.02 0.59±0.04 1.70±0.12 5.62±0.39
𝑑app, 𝑙f = 512 0.39±0.04 0.72±0.06 2.44±0.39 5.71±0.40 12.69±1.79
𝑑app, 𝑙f = 2048 2.20±0.13 4.22±0.23 8.31±1.91 18.76±1.31 46.62±3.93

that the length of the extracted feature vectors 𝑙f depends on the applied REID
network. For the so-far used SBS S50 model, 𝑙f = 2048 holds, which comes
with a relatively high computational complexity in the distance calculation
next to its high runtime (Figure 7.2). However, it will be shown in Section 7.2
that a more efficient REID network can achieve comparable results, while be-
ing faster and additionally generating more compact feature representations
with 𝑙f = 128. This saves a lot of runtime not only for extracting features in
the network backbone but also in the distance computation of the association,
especially when a large number of targets is present.

After the distance matrix is computed, the LSA problem has to be solved. No
matter which algorithm is used, the runtime obviously increases with the size
of the distance matrix and thus the number of targets. However, different
algorithms or implementations can be favorable depending on the number of
targets as will be seen shortly. The most common approach to solve the LSA
problem in MPT is to use the Hungarian method [Kuh55] or one of its many
variants. Especially the Jonker–Volgenant (JV) algorithm [Jon87] is often ap-
plied [Aha22, Ber19, Bew16, Wan20, Zha22c] as efficient variant of the Hun-
garian method. Moreover, different implementations from several libraries
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exist. For this thesis, runtime experiments with two implementations of the
JV algorithm have been performed using the SciPy¹ and LAPJV ² library, re-
spectively. Table 7.4 lists the runtime of the two implementations for various
batch sizes.

Table 7.4: Runtime in ms to solve the LSA problem with different implementations of the JV
algorithm from the SciPy and LAPJV library for various batch sizes. Up to a batch
size of 256, SciPy is faster, while LAPJV has a lower runtime for larger batches.

Batch size 1 2 4 8 16 32
SciPy 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00
LAPJV 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.01 0.03±0.01 0.03±0.01

Batch size 64 128 256 512 1024
SciPy 0.12±0.02 0.47±0.01 2.57±0.24 12.13±1.00 62.45±3.93
LAPJV 1.33±0.02 2.50±0.03 5.54±0.52 6.41±0.59 25.14±1.94

One observes that the runtime for both variants is negligible w.r.t. the full
tracking pipeline up to a batch size of 32 . Interestingly, the SciPy implemen-
tation is notably faster than the one of the LAPJV library for a batch size of
𝐵 ≤ 256, whereas the contrary holds for 𝐵 ≥ 512. Thus, either the one or
the other one may be used depending on the size of the distance matrix. This
decision can be made in each iteration of the whole tracking pipeline during
operation. For most practical cases, 𝐵 < 256 holds, so the runtime of solving
the LSA problem is below 3ms using the SciPy implementation. If, in special
cases, the number of targets to be tracked is in the region of 1,000 or even
higher, a GPU implementation, e.g., from [Dat16], needs to be considered in
order to achieve real-time capability of the overall tracking system.

¹ https://scipy.org (accessed on July 16, 2024)
² https://github.com/src-d/lapjv (accessed on July 16, 2024)
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7.1.5 Summary

The total runtime of the proposed tracking system comprises the runtime for
the detector (Figure 7.1), adapted NMS (Table 7.1), REID network (Figure 7.2),
motion model (Table 7.2), computation of 𝑑DIoU as well as 𝑑app with 𝑙f = 2048
(Table 7.3), and solving the LSA problem (Table 7.4). For the sake of com-
pleteness, it is noted that the second stage of the BYTEv2 association requires
to solve an additional LSA problem. However, the runtime for this step is
negligible, as only the unassigned tracks, which make up a small number,
are involved. The total runtime of the tracker is visualized for various batch
sizes in Figure 7.3, whereby the runtime is given with and without the use of
appearance information.
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Figure 7.3: Runtime of the proposed tracking system with and without using appearance infor-
mation for various numbers of targets. Utilizing appearance information drastically
increases the overall runtime, especially when a large number of targets has to be
tracked. Notice the logarithmic scale of the horizontal axis.

The plot clearly shows that leveraging appearance cues, which involves the
application of the REIDmodel and computing the cosine appearance distances
between the extracted feature vectors, prevents the real-time capability of the
whole tracking system. The reference rate of 15 FPS can only be achieved for
a maximum number of 8 targets when the REID model is used. If one would
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omit the appearance information by not applying the REID model and using
only motion information in the association, tracking 1,024 targets could be
realized with approximately 14 FPS. However, ignoring the available appear-
ance informationwould comewith a significant decrease in tracking accuracy.
Therefore, a more efficient REID model is introduced in the next section as an
alternative approach to achieve real-time capability of the tracking system.

7.2 Efficient Re-Identification Model

The runtime analysis of the tracking system has shown that the computation-
ally complex REID model is the component that prevents real-time capability.
Before a more efficient REID model is introduced, another possible solution
to the problem is briefly discussed.

Over the past years, JDE networks have been proposed in the literature [Lu20,
Ren24, Wan20, Wan23b, Zha21], which combine the two tasks of object de-
tection and appearance extraction within one model (Section 2.1.2). Instead
of cropping detected image patches and feeding them into a separate REID
model, a JDE network outputs next to each predicted detection box a feature
vector that represents the appearance of the corresponding detection. While
the JDE approach saves the additional computation time of a separate REID
model, the quality of detection and appearance feature extraction generally
falls behind a SDE approach, due to the competition between the two tasks
in a single network. As already discussed in Section 2.1.2, some JDE works
mitigate this issue by decoupling REID and detection features within the net-
work architecture [Guo23, Jin23, Lia22, Yu23]. However, an analysis of the
best-performing methods on the MOT17 (Table 6.22) and MOT20 (Table 6.24)
benchmark reveals that the current SOTA in MPT is dominated by SDE ap-
proaches or methods with focus on motion modelling.

Therefore, the SDE paradigm is maintained and a more efficient REID model
is introduced to replace the so-far used SBS S50 network, which prevents
real-time capability. To be concrete, the extremely lightweight Omni-Scale
Network (OSNet) [Zho19a] is employed. The main idea of OSNet is to learn

189



7 Runtime Optimization

so-called omni-scale features by combining features at different scales. Multi-
scale features are generated from parallel convolutional paths in the network
architecture and dynamically fused with input-dependent weights to omni-
scale features. This allows to combine information from small local image
regions (for instance, shoes or logos on shirts) with more global whole body
regions, which is important to distinguish similar looking persons with only
little appearance differences. The specific architecture design is tailored to
the instance-level recognition task in REID, in contrast to many CNNs that
are adopted for the REID task but are originally designed for category-level
recognition tasks [Zho19a]. This is an advantage over the so-far used SBS
model [Luo19], which uses a ResNeSt-50 [Zha22a] backbone that has been
developed mainly for classifying objects of different categories and not dis-
tinguishing instances of the person class.

Another merit of OSNet is its low computational complexity that is achieved
with the help of depthwise separable convolutions [Cho17, Sif14]. Moreover,
the hyper-parameters width and resolution multiplier enable to tune the size
of the model and the runtime–accuracy trade-off. For this thesis, the width
multiplier (𝛽 in the OSNet paper) and resolutionmultiplier (𝛾 in the OSNet pa-
per) are set to 0.25 and 1.0, respectively. Next to the number of convolutional
filters, the width multiplier determines the output size of the last FC layer that
corresponds to the length 𝑙f of the generated appearance feature vectors. The
resulting feature dimension, number of network parameters, and input reso-
lution are found in Table 7.5, which gives a comparison of some traits of the
two employed REID models SBS and OSNet.

Table 7.5: Comparison of some traits of the SBS and OSNet REIDmodel. Due to a smaller feature
vector, a lower input size, andmany less parameters, OSNet is notably faster than SBS,
while achieving comparable results because of a REID-specific design.

Network Backbone REID-specific design 𝑙f Input size Parameters
SBS ResNeSt-50 7 2048 128×384 25.4M
OSNet OSNet𝛽=0.25 3 128 128×256 0.2M

The employed OSNet variant has only about 0.2 million network parameters,
which is more than 100 times less than the SBS model. The smaller input size
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of 128×256 pixels does also contribute to the higher efficiency as well as the
more compact representation of the generated feature vectors (𝑙f = 128 vs.
𝑙f = 2048). The latter especially pays out in the computation of the cosine
appearance distance as seen previously in Table 7.3.

To investigate whether the OSNet model can achieve comparable results
within the proposed tracking system, it is trained on the REID dataset gen-
erated based on MOT17 as described in Section 5.6.2. For a fair comparison,
the same training settings as for the SBS model have been applied. Then,
the overall tracking performance measured in HOTA has been evaluated on
MOT17 val, and runtime experiments with various batch sizes have been
conducted. The results are depicted in Figure 7.4.
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Figure 7.4: Runtime comparison of SBS and OSNet and achieved HOTA values with the tracking
system on MOT17 val. Speed-up of OSNet w.r.t. SBS is also given. OSNet is over-
all much faster than SBS, especially for large batch sizes, while the performance in
HOTA is only slightly lower. Note the logarithmic scale of the horizontal axis.

While the runtime advantage for small batch sizes (𝐵 ≤ 4) is minor, OSNet
runs significantly faster than SBS for larger batch sizes (𝐵 ≥ 8). For 𝐵 = 8,
OSNet runs at about twice the speed as SBS and for 𝐵 = 1024, it is approxi-
mately 47 times faster. The processing time of OSNet keeps nearly constant up
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to a batch size of 256, since the lightweight network can benefit from strong
parallelization on the GPU. The reduced model capacity comes only with a
small degradation in tracking performance of 0.3 HOTA. This is tolerable as
the whole tracking system can run in real time with OSNet, even when a large
number of targets has to be tracked. The REID model as well as the detector
can be further accelerated using a specialized inference library, which will be
discussed in the next section.

7.3 Deployment in TensorRT

TensorRT is a library for deep learning model inference, which is strongly
optimized to run on NVIDIA GPUs. With the help of quantization, layer and
tensor fusion, kernel tuning, etc., the runtime of a model can be significantly
reduced, while (nearly) maintaining the original accuracy. That the conver-
sion to TensorRT does not come with a loss of accuracy has been checked by
exchanging the PyTorch models with its TensorRT counterparts and evaluat-
ing the tracking performance on MOT17 val, where the same HOTA values
have been obtained. The performed optimizations are dependent on the spe-
cific hardware platform used, so a TensorRT converted model (also referred
to as engine) can only run on the type of GPU, where it has been created. To
speed up the proposed tracking system, the detection model and REID model
have been converted with TensorRT on a Tesla V100-SXM2-32GB GPU. The
degree of acceleration and its influence on the runtime of the whole pipeline
are described in the following.

7.3.1 Detector

When generating a TensorRT engine, for instance, from a PyTorch model, one
has to define the maximum batch size that the resulting model will be able
to handle. Since the proposed tracking system works in an online fashion,
directly processing frame after frame, the required batch size for the detector
is one. However, to examine if a batch processing of multiple input images
has the potential of speeding up the system, the applied YOLOX-X detector

192



7.3 Deployment in TensorRT

is converted to TensorRT for various batch sizes. The resulting runtimes are
listed together with the PyTorch baseline in Table 7.6.

Table 7.6: Runtime in ms of YOLOX-Xwith PyTorch and TensorRT for various batch sizes. OOM
(out of memory) means that the GPU memory is too small for inference with the
respective batch size. Speed-up of TensorRT vs. PyTorch is also given. In an online
processing (𝐵 = 1), the TensorRT engine is 1.5 times faster than the PyTorch baseline.

Batch size 1 2 3 4 10 11
PyTorch 27.4±0.3 53.4±0.3 73.2±0.3 100.4±0.4 228.1±0.7 OOM
TensorRT 18.6±0.2 33.4±0.2 43.3±0.3 OOM OOM OOM
Speed-up 1.5 1.6 1.7 − − −

If the frames of the incoming video are processed one after another, i.e., 𝐵 = 1
(online processing), the TensorRT model is about 1.5 times faster than the
PyTorch counterpart, while maintaining the same accuracy. If the specific
application allows to output the tracking results with a small delay, one could
process multiple frames simultaneously by the detector and the other tracking
modules (batch processing). For 𝐵 = 3, a mean processing time of 14.4ms per
frame is achieved by the TensorRT model, which is an additional speed-up of
about 30% compared to the online processing.

One has to note that TensorRT engines typically require more memory than
PyTorch models for saving optimization data and intermediate results. There-
fore, the maximum batch size fitting into the applied GPU with 32GB mem-
ory is three, whereas the PyTorch model can inference up to ten images of
size 1440×800 pixels simultaneously. However, the runtime with PyTorch
is 22.8ms per image for 𝐵 = 10, which is about 1.6 times the runtime per
image of the TensorRT engine at its maximum batch size 𝐵 = 3. To conclude,
TensorRT leads to a significant acceleration of the applied YOLOX-X detector
both for online and batch processing.

7.3.2 Re-Identification Model

The second module that can be accelerated with the TensorRT library is the
OSNet𝛽=0.25 REID model. It has been converted for various maximum batch
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sizes, while allowing the batch size to change dynamically during inference.
This is an important property, since the batch size can be set to the num-
ber of actual targets in each iteration and the input of the network does not
have to contain any dummy values as it would be required if the TensorRT
engine was generated using a static batch size. The runtimes of the gener-
ated TensorRT engines for various batch sizes are compared with the PyTorch
counterpart in Table 7.7. Note that the given batch size is both the maximum
allowed batch size for the respective TensorRT engine as well as the applied
batch size for measuring the runtime. In total, 13 engines with different maxi-
mum batch sizes have been created that are compared with the same PyTorch
model, which is only restricted in its maximum batch size by the memory of
the used GPU.

Table 7.7: Runtime in ms of OSNet𝛽=0.25 with PyTorch and TensorRT for various batch sizes.
OOM (out of memory) means that the GPUmemory is too small for inference with the
respective batch size. Speed-up of TensorRT vs. PyTorch is also given. The TensorRT
engine is notably faster than the PyTorch baseline, in particular for small batch sizes.

Batch size 1 2 4 8 16 32 64
PyTorch 19.4±1.8 18.8±0.8 19.3±1.2 19.5±1.6 19.0±1.4 19.9±1.3 21.0±2.1
TensorRT 1.0±0.0 1.4±0.0 1.4±0.1 1.6±0.1 1.9±0.1 2.5±0.1 3.5±0.0
Speed-up 19.4 13.4 13.8 12.2 10.0 8.0 6.0

Batch size 128 256 512 1024 2048 4096 8192
PyTorch 20.1±1.1 21.8±0.8 40.4±0.1 78.4±0.1 153.1±0.2 348.7±2.0 703.4±2.6
TensorRT 5.5±0.0 9.3±0.0 16.7±0.1 31.3±0.1 60.7±0.2 118.6±0.3 OOM
Speed-up 3.7 2.3 2.4 2.5 2.5 2.9 −

The smaller the maximum batch size of the TensorRT engine, the smaller the
range of the input shape that has to be compliant with the engine, the more
optimizations can be performedwhen creating the engine. Thus, one observes
consistent runtime decreases when lowering the batch size up to 𝐵 = 1 for
TensorRT, whereas the runtime is nearly constant for𝐵 ≤ 256 for the PyTorch
model. This is because the PyTorch model has to be capable of handling any
batch size and cannot perform optimizations that would be possible if the
applicable batch size was limited.
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The achieved speed-up of the OSNet𝛽=0.25 model using TensorRT in compar-
ison to the PyTorch baseline lies in the range of [2.3, 19.4] depending on the
applied maximum batch size, which corresponds to the number of targets the
TensorRT engine is able to process simultaneously. The advantage of the Py-
Torch model being capable of handling a large batch size of 𝐵 = 8192 (and
larger) in contrast to TensorRT, which runs out of memory (OOM), is more
of a theoretical nature, since such a large number of targets hardly occurs in
a real MPT application.

In contrast to the detector, processing a batch of thousands of images in par-
allel is possible as the size of the input images is only 128×256 for the REID
model in comparison to 1440×800 for the detector. Therefore, the amount
of memory needed to save intermediate network results like feature maps is
significantly smaller. The small memory consumption of the REID model al-
lows to perform a batch processing of stacked image patches from consecutive
frames, if a further acceleration of the tracking pipeline is needed.

7.4 Efficient Camera Motion Compensation

Whenever the camera position or orientation is not static, compensating in-
troduced cameramotion is important tomaintain a high accuracy of the track-
ing system. It has already been stated in Section 6.4 that the commonly applied
ECC method [Eva08] for CMC is too slow to run in real time. For this rea-
son, a more efficient alternative based on the ORB keypoint detector [Rub11]
and BRIEF descriptor extractor [Cal10] has been proposed in Section 6.4. To
further accelerate the processing, a lightweight configuration of the ORB de-
tector is investigated following a previous work from the author of this the-
sis [Sta23c]. In the lightweight configuration, the number of levels in the
involved image pyramid is reduced from 8 to 2, and the scale factor between
consecutive pyramid levels is increased from 1.2 to 2. The settings of the
BRIEF descriptor extractor as well as the other settings of the ORB detector
are taken over from the standard configuration of the OpenCV library. To
compare the runtime of the different CMC methods, experiments have been
conducted onMOT17 val, whereby the efficient OSNet𝛽=0.25 has been applied
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as REIDmodel. As size of the input images, the resolution of the YOLOX-X de-
tector input has been adopted: 1440×800 pixels. The experimental results are
listed in Table 7.8. Note that the first row depicts the baseline results when
no CMC is used for reference.

Table 7.8: Runtime in ms and accuracy of CMC methods on MOT17 val using OSNet𝛽=0.25 as
REID model. The proposed ORB+BRIEF method is significantly faster than the fre-
quently used ECC and achieves better results. The lightweight configuration roughly
halves the runtime while maintaining the same HOTA.

CMC method Configuration Runtime HOTA DetA AssA
− − − 70.6 67.4 74.5
ECC − 313.6±223.6 70.9 67.6 74.9
ORB+BRIEF standard 20.8±1.8 71.1 67.5 75.3
ORB+BRIEF lightweight 10.9±0.9 71.1 67.6 75.3

With a mean runtime of more than 300ms, it is clear that the ECC method
prevents the real-time capability of the whole tracking system. Moreover,
a high standard deviation of 224ms is obtained, as the algorithm requires
different numbers of iterations to converge depending on the image con-
tent. The proposed CMC approach is about 15 times faster than ECC with
the OpenCV standard configuration and even 29 times faster when the in-
troduced lightweight configuration is used. In terms of accuracy on MOT17
val, the lightweight model is on par with the standard configuration and both
versions perform better than the ECC baseline in combination with the fast
OSNet REID model.

A more detailed runtime analysis including the time for the individual com-
ponents of the ORB+BRIEF method is found in Table 7.9.

Table 7.9: Runtime in ms of the components of the proposed CMC method ORB+BRIEF for the
standard and lightweight configuration. The components comprise keypoint detec-
tion, feature extraction, keypoint matching, and computation of transformation. The
lightweight configuration substantially decreases the runtime for keypoint detection.

Configuration Detection Extraction Matching Transformation Total
Standard 14.37±1.23 2.13±0.31 4.10±0.47 0.15±0.03 20.76±1.84
Lightweight 4.67±0.40 2.02±0.27 4.02±0.38 0.14±0.03 10.85±0.91
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In the standard configuration, the most time is spent for the ORB keypoint
detector. Lowering the size of the involved image pyramid in the lightweight
configuration, this time is reduced by two thirds without loss of accuracy.
The runtime for the following components, i.e., descriptor extraction for all
detected keypoints, matching of keypoints, and computation of the trans-
formation matrix, does not differ significantly among the configurations.
Making the ORB keypoint detector more lightweight, the overall runtime
of ORB+BRIEF is reduced by half leading to a mean processing time of
about 11ms.

As last runtime optimization of the tracking system, the parallel execution
of detection and CMC is examined. The detection of persons in the current
frame and the compensation of camera motion between the last and the cur-
rent frame can be performed independently. Therefore, a parallel execution
of detection (detector and adapted NMS) and CMC in two separate threads
is performed and the total runtime including synchronization is measured.
Moreover, a sequential processing of detector, adapted NMS, and CMC is car-
ried out. The results are shown in Table 7.10.

Table 7.10: Runtime in ms of detector, adapted NMS, and CMC as well as total runtime for se-
quential execution (left) and parallel execution (right) of detection, i.e., detector and
adapted NMS, and CMC. The parallel execution is about 1.6 times faster.

Detector Adapted NMS CMC Total Parallel
18.4±0.2 2.6±0.3 13.2±1.5 34.2±1.7 21.1±0.4

With a mean runtime of approximately 21ms, the parallel execution of de-
tection and CMC is about 1.6 times faster than processing them sequentially.
This optimization further contributes to the real-time capability of the pro-
posed tracking framework.

7.5 Runtime of the Accelerated System

The optimizations from the previous sections are combined to an accelerated
tracking system. Before a detailed runtime analysis is provided, the applied
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changes w.r.t. the proposed tracking framework from Chapter 6 are summa-
rized in the following:

• Exchange of the SBS S50 model with OSNet𝛽=0.25. Next to a huge
speed-up of the REID module, this comes with a reduction of the
appearance feature length 𝑙f and thus an acceleration of the cosine
distance computation.

• Deployment of the detection model YOLOX-X and the REID model
OSNet𝛽=0.25 with the fast inference library TensorRT.

• Introduction of a lightweight version of the proposed ORB+BRIEF
method for CMC.

• Parallel implementation of detection and CMC.

The resulting runtimes and throughputs of the pipeline for various batch sizes
are visualized and comparedwith the baseline in Figure 7.5. Note that the total
runtime of the baseline slightly differs from Figure 7.3 as the runtime for the
CMC (20.8ms, Table 7.9) has been added for a fair comparison.

Recall that the average frame rate of a surveillance industry camera is 15 FPS.
Whereas the baseline system cannot achieve this frame rate for any number
of targets, the optimized system runs at 18.6 FPS while tracking 512 targets
simultaneously. For such a high number of targets, the baseline runs only
at 0.5 FPS, which is about 36 times slower than the optimized framework.
Remember that this great acceleration comes only with a small decrease in
tracking performance (0.3 HOTA on MOT17 val).

While the runtime of the proposed system obviously depends on the utilized
hardware, the results from Figure 7.5 show that it is possible to design a SOTA
real-time-capable MPT system that contains all relevant modules including
the often computationally complex REID and CMC. As future work, the sys-
tem could be further accelerated by increasing the degree of parallelization,
for instance, by implementingmoremodules on the GPU (motionmodel, LSA)
or executing more modules concurrently.
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Figure 7.5: Runtime comparison of the optimized and baseline tracking system for various num-
bers of targets. Achieved speed-ups and throughputs are also given. The optimized
system is significantly faster than the baseline and is able to track 512 targets in real
time, i.e., with more than 15 FPS. Notice the logarithmic scale of the horizontal axes.
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8 Conclusions and Outlook

This chapter summarizes the results and findings of this thesis and draws con-
clusions in Section 8.1. After that, an outlook on possible future work to fur-
ther develop the proposed tracking system is given in Section 8.2.

8.1 Conclusions

This thesis proposes a novelMPT framework that focuses on the improved uti-
lization of detections and target information. Following the TBD paradigm,
it is very flexible and can be tuned for various applications by exchanging
single tracking components. As a starting point of the development, a base
framework has been built that is representative for many MPT approaches
from the literature. A detailed analysis of this baseline has revealed several
weaknesses of existing methods when it comes to using the available infor-
mation in the tracking process: the rejection of generated detections under
heavy occlusion, an insufficient fusion of motion and appearance informa-
tion in the association, and the ignorance of the neighborhood of unassigned
detections when initializing new tracks. Furthermore, two small extensions
of the basic motion model have shown the large potential of integrating pre-
viously unused information. The NSA Kalman filter leverages the confidence
score of a detection to improve the Kalman filter update step by taking the
measurement uncertainty into account. Enforcing physical constraints, the
HP module prevents infeasible changes of the target size during the Kalman
filter prediction step. Both modifications lead to a significant enhancement
of the motion model accuracy and thus the overall tracking performance by
exploiting additional information.
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To enable the use of detections under severe occlusion that have been dis-
carded by previous tracking frameworks, an adapted NMS is proposed that
outputs a set of heavily-occluded detections next to the normal detection set.
Based on the adapted NMS, two different association strategies are suggested
that leverage these additional detections. After assigning high-confidence
detections to tracks in the first association stage, BYTEv2 matches heavily-
occluded detections to the remaining unassigned tracks in a second associ-
ation stage. Besides increasing the detection recall in crowded scenes, this
comes with a simplification of the association task as less detections are miss-
ing and ambiguities of track–detection assignments are eliminated. The same
goal is achieved with the TWC association technique. Using the track infor-
mation, areas with missing detections are identified and the heavily-occluded
detections from the adapted NMS are incorporated in these areas to reduce
the number of missing detections and improve the association accuracy. Both
introduced strategies for including heavily-occluded detections in the associ-
ation significantly enhance the tracking performance under occlusion, which
is where naturally most errors occur.

Several fusion mechanisms for motion and appearance information can be
found in the MPT literature. However, due to differences in the tracking
frameworks, a reasonable comparison has been missing so far. In this the-
sis, the developed base framework is used to conduct a thorough analysis of
existing fusion approaches and enable a fair comparison for the first time. It
is found that prevailing methods fuse the two information sources in a subop-
timal way in the sense that motion cues are only used for gating or that either
one or the other information is decisive but not both. Based on that, novel
distance measures for a combined motion- and appearance-based association
are introduced that outperform the previous approaches by a large margin on
three different datasets. This demonstrates the high importance of fusing the
available information effectively.

Next to the association, other parts of the tracking task are enhanced. To
improve the initialization process of tracks in crowded areas, the OAI is pro-
posed, which identifies and removes duplicate detections with the help of
track information and thus prevents the start of ghost tracks. Furthermore, an

202



8.2 Outlook

efficient CMC method is suggested that enables the application of the track-
ing framework for non-static cameras. By an extensive comparison of vari-
ous algorithms for keypoint detection and descriptor extraction, an efficient
combination is found that performs on par with the prevailing CMC method
from the MPT literature while being much faster. Putting all developed com-
ponents together, the proposed tracking system surpasses the SOTA on the
well-established MPT benchmarks MOT17 andMOT20. This accomplishment
is mainly attributable to a better use of available information in the tracking
process, since the same detection, REID, and motion model as in the compet-
ing tracking frameworks are applied.

Due to the complexity of an MPT system, most SOTA methods are not real-
time capable or refrain from using computationally expensive components as
CMC or REID. In contrast, several optimizations are performed in this the-
sis to accelerate the proposed tracking system without removing important
modules. It is shown that utilizing a more efficient REID model, the time
for appearance feature extraction can be reduced up to a factor of 47 while
nearly maintaining the original accuracy. A further speed-up is achieved by
parallelization, a lightweight CMC variant, and the use of TensorRT as special
library for neural network inference to accelerate detection and REID model.
The final optimized tracking system runs at 19 FPS while tracking 512 per-
sons simultaneously without sacrificing the SOTA performance. With its high
accuracy and efficiency, it can be easily integrated in a real-world application.

8.2 Outlook

Although the proposedMPT system achieves impressive results under various
scenarios, there is still room for improvement. Some ideas to further enhance
the performance are outlined in the following.

As one of the main findings of this work, integrating detections under heavy
occlusion in the tracking process helps to simplify the association task in
crowded scenes, where most tracking errors occur. Thus, exploiting detectors
that aim at enhancing the detection recall under occlusion for the task of MPT
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is a promising research direction, as already shown in a previous study of this
thesis’ author [Sta21d]. Furthermore, increasing the detection recall of per-
sons by explicitly focusing on body parts that have typically a higher visibility
than the whole body, such as the head, is another promising idea [Zha24]. The
interplay of the proposed tracking framework with such specialized detection
approaches for crowded scenes can be investigated in the future, since the fol-
lowed TBD paradigm allows a simple exchange of the applied detector.

It has been shown that a sophisticated fusion of motion and appearance cues
significantly enhances the association accuracy. However, the two informa-
tion sources are combined in the same way at each time step, ignoring po-
tential deficiencies in the extracted features. For instance, the motion state
of an inactive track can have a high uncertainty when no measurements, i.e.,
detections, were available for a long time period or severe camera motion oc-
curred. On the other hand, the extracted appearance features of detections
might be misleading under strong occlusion or for small objects. Considering
such context knowledge and putting more weight on the motion or appear-
ance information whenever the other one is unreliable could lead to a further
boost of the association accuracy. Next to a manual design of measures for
the reliability of extracted features, learning the fusion mechanism implicitly
from data with GNNs is a possible alternative direction [Bra20, Cet23, You23].

Large potential lies in the use of available information at points of the MPT
pipeline where it has not been considered yet. Including the detection confi-
dence in the association distance and using a special association strategy for
low-confidence tracks are two examples found in the recent method Conf-
Track [Jun24] that could be employed in the proposed framework. Due to the
high modularity, adopting an advanced motion model [Cao23, Jun24, Qin23]
or appearance model [Ren23, You23] from other trackers is also conceivable.

Besides motion and appearance cues, other information has already been ex-
ploited for MPT in the past, which is rarely used by recent SOTA methods.
This includes human poses, relations of targets, or 3D information, to name a
few. The findings of this work indicate that, on the one hand, integrating such
additional knowledge into the association task is still a promising research
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direction, and, on the other hand, more attention needs to be paid to the cor-
rect merging of the available information. Moreover, with additional tracking
components and increasing complexity, more emphasis must be placed on the
efficiency of MPT systems to allow the deployment in real-world applications.
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