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1 Introduction

To establish the nature of dark matter we clearly would be happy to discover a suitable
candidate. This could be found in experiments such as, e.g., searches at the LHC (cf., e.g., [1])
or at axion search experiments such as ALPS II or IAXO [2–5] by either producing them
inside the experiment itself (e.g. LHC or ALPS II) or by looking at new particles produced
in a known source (e.g. the sun in the case of IAXO).

At the next level, of course, we would want to show that this candidate is indeed present
in the Universe. Both direct and indirect detection experiments (see [6–22] for some axion
centered examples of both approaches) can do it (as well as at the same time discovering
a suitable candidate, of course).

However, even if we have a discovery by direct or indirect detection, we are not yet sure
whether the signal is caused by the dominant form of dark matter or whether it originates
from a sub-dominant but more strongly coupled fraction of the dark matter. The reason for
this is that these experiments are usually only sensitive to some combination of a coupling
and the dark matter density, gnρDM.1 We are therefore faced with a degeneracy in the
measurement that makes it impossible to say how much of the dark matter we have actually
discovered. In principle, this degeneracy can be lifted if we have a signal for the same type of

1In direct detection the combination is usually g2ρDM, but in indirect detection it is g2ρDM for decays
and gρDM for annihilation. However, direct and indirect detection are often sensitive to different couplings.
Therefore, a combination is non-trivial even if the coupling dependencies are different.
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particle in two experiments with different dependencies on coupling and density. An example
could be a particle search experiment that is independent of the dark matter density and
a direct detection experiment. For WIMPs, an example of this has been investigated, e.g.
in [23], combining direct detection experiments and LHC. However, at present, for most
particles there is only limited overlap in the sensitivity in couplings/masses of experiments
where such a “double detection” is possible.

In this paper, we show an optimistic case where a measurement of the coupling might
be possible with a single axion direct detection experiment, specifically a haloscope [6, 24].
To do so, we use the fact that these experiments can not only detect dark matter axions
but they can also measure the energy spectrum with excellent precision. It is already
known that this information can be used to measure the velocity squared spectrum of
the local dark matter [25–29].2 However, if we encounter a gravitationally bound object
made of axions, e.g. an axion minicluster, the resolution in the spectrum may be enough
to resolve the depth of the gravitational well, such that, using the Poisson equation for
the gravitational potential, we can then determine the density of the minicluster. Together
with the signal strength, that is proportional to g2

aγγρminicluster, this allows to determine the
coupling g2

aγγ . After the minicluster has passed, one can then measure the signal caused by
the local homogeneous density, g2

aγγρDM,homogeneous and therefore the corresponding density
ρDM,homogeneous. Comparisons to the expected DM density can finally be done at our location
in the galaxy to check whether axions are a dominant component of the dark matter.3

In the following, we first start in section 2 by briefly reviewing axion miniclusters and
their properties and in section 3 the expected signals in cavity haloscopes. We explicitly
demonstrate how the axion-photon coupling can be reconstructed in section 4 and in section 5
we quantify how lucky (admittedly very) we have to be, by discussing the rate with which
we could encounter suitable miniclusters. We provide some further discussion of the results
and conclusions in section 6.

2 Wave functions of self-gravitating axion miniclusters

In this section, we summarize the construction of axion miniclusters (AMC) in a wave
formalism. We start by discussing in section 2.1 the general set up for the construction of
the wave function of a self-gravitating system, based on a random phase assumption [34] for
the coefficients of each mode. In section 2.2, the wave function of an AMC with fixed mean
density and gravitational potential is introduced following refs. [35, 36] (see also [34, 37, 38]).
Finally, we discuss the statistical properties of this solution.

2.1 General formalism and random phase model

In the non-relativistic and low density regime, axions are well described by the Schroedinger
equation. More precisely, for a not too dense self gravitating object, like an AMC, we have a

2Indeed, axion dark matter experiments also have a chance to achieve directional sensitivity [27–33].
3Such a statement can only be achieved if an O(1) fraction of the dark matter is then found to be in the

homogeneous density, as suitable axion miniclusters are too rare to collect statistics on this component.
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complex scalar field ψ(x, t) obeying the Schroedinger-Poisson (SP) equations [34],

i∂tψ = − ∇2

2ma
ψ +maϕψ,

∇2ϕ = 4πGma|ψ|2 = 4πGρ,
(2.1)

where ϕ is the gravitational potential and ma the axion mass. The density in the non-
relativistic approximation of the axion field is ρ = ma|ψ|2.

Importantly, the typical de Broglie wavelength is expected to exceed the inter-particle
separation usually by a significant margin. In other words, the typical occupation numbers
are very large such that ψ can be viewed as a classical field describing a large number
of axions [6, 39].

This equation has been solved extensively with numerical simulations [40–44]. However,
analytical approximations have been developed to reduce the computational cost while still
retaining a good description of the system [25, 33–35, 37]. One approach [34, 35, 37, 38] is to
decompose the wave function into energy eigenmodes of the Schroedinger equation,

ψ(x, t) =
∑

i

aiψi(x)e−iEit,(
− ∇2

2ma
+maϕ(x)

)
ψi(x) = Eiψi(x),

(2.2)

where ψi are the modes with Ei their corresponding energy. The coefficients ai are complex
and can be found by solving the Poisson equation,

∇2ϕ(x) = 4πGma|ψ(x, t)|2

= 4πGma

∑
i

|ai|2|ψi(x)|2 +ma

∑
i ̸=j

aia
∗
jψi(x)ψ∗

j (x)e−i(Ei−Ej)t. (2.3)

The interference between different modes on the right hand side of eq. (2.3) is time depen-
dent. This makes it difficult to solve the Poisson equation. To overcome this issue, one usually
assumes that each coefficient ai, carries a different random phase [34]. As a simplification,
we can solve the Poisson equation on average to obtain a fully time-independent system,(

− ∇2

2ma
+maϕ(x)

)
ψi(x) = Eiψi(x),

∇2ϕ(x) = 4πGma⟨|ψ(x, t)|2⟩ = 4πGma

∑
i

|ai|2|ψi(x)|2.
(2.4)

The average performed is an ensemble average. In this sense, an individual minicluster
will still carry a density featuring (time-dependent) fluctuations due to the interference terms,

ρ = ma|ψ(x, t)|2 = ma

∑
i

|ai|2|ψi(x)|2 +ma

∑
i ̸=j

aia
∗
jψi(x)ψ∗

j (x)e−i(Ei−Ej)t, (2.5)

where the fluctuations in the AMC density profile appear in the second term of the right
hand side. These “granules” have a characteristic length scale of the order of the de Broglie
wavelength,

ℓgran ∼ λdB ∼ 1/(mav), (2.6)
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Figure 1. Left: single realization of the density profile of an NFW [49] AMC with mass M = 10−13 M⊙,
radius R = 10−8 pc and concentration c = 10. Right: density profile averaged over the random phases.
Note that the radial features in the left panel are numerical artefacts. Increasing the grid as well as
the number of angular momentum modes is expected to remove them but also drastically increases
the computational effort required.

and a characteristic time scale

Tgran. ∼ 1/(mav
2), (2.7)

where v is the typical velocity dispersion of the cluster [36, 45, 46]. An example of a realization
obtained by selecting random phases is shown in figure 1 and clearly shows this non-uniform
nature. Such features are also observed in numerical simulations [42, 47, 48].

For our purposes the granules are important, because they correspond to fluctuations in
the density that limit the precision with which the coupling can be measured, cf. section 4.

2.2 Explicit axion minicluster wave functions in the WKB approximation

In order to generate an explicit realization we still need to have the wave functions.
One approach, used in refs. [35, 36], is to fix the average gravitational potential and hence

the density profile of the AMC. Then, one can use the WKB approximation to solve eq. (2.4)
and to derive a general expression for the coefficients |ai|. In the case of a spherically symmetric
gravitational potential ϕ(r) and density profile ρ(r), the wave function becomes [35, 36],

ψ(r, θ, ϕ) =
∑
nlm

anlme
iϕnlmRnl(r)Ylm(θ, ϕ), (2.8)

with n standing for the principal quantum number and l,m, respectively, for the angular
momentum and its z component. The energies Enl of the modes are assumed to be independent
of the quantum number m. In the continuum limit of large miniclusters, the l-dependence
also becomes unimportant, therefore we write En. The radial part is defined with the WKB
approximation as,

Rnl(r) = 1√
Nnl

1
r

1
[2ma (En − Vl(r))]1/4 sin

(∫ r

dr′
√

2ma (En − Vl(r′)) + π/4
)
, (2.9)
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where Vl(r) is the effective potential for a given angular momentum and Nnl is a constant to
assure the correct normalization. With that, the Poisson part of eq. (2.4) yields [35, 36],

anlm = 4π
√
maNnl

f(En)
gl(En) , (2.10)

where gl(En) = 2ma Nnl/π is the density of states for a given angular momentum l4 and
f(En) is the distribution function of the AMC. The latter is directly derived from ϕ(r) and
ρ(r) with the Eddington formula [50].

Note that, in the classically forbidden regions, the WKB wave functions decay ex-
ponentially. For a given mode, the decay length is roughly given by its wavelength,
λ = 2π/

√
2ma(En − Vl). To obtain a sufficient accuracy in our measurement of the gravita-

tional potential via the energy spectrum of the axions, we have to make sure that the wave
function at a given location r does not receive important contribution from the exponential
tail of lower (classically forbidden) energy modes with turning point at (r− ∆). This requires
the somewhat stronger condition

√
2ma|ϕ(r) − ϕ(r − ∆)|∆ ≫ 1. Estimating ϕ ∼ maGM/R

as in [35],5 with M the cluster mass and R its radius, we find that this translates into
λ/R ≪ (∆/R)3/2. Assuming a reasonable precision of ∆/R ∼ 0.01 (note that this also
approximately gives the relative precision of the potential), we get the following parametric
condition on the cluster parameters,

1 ≪ 1.2 × 104
(

ma

50µeV

)(
M

10−5M⊙

)1/2 ( R

10−4pc

)1/2
. (2.11)

Only clusters satisfying this inequality will be considered in this work and we indicate the
corresponding constraint on the parameter space in figure 6. Therefore, from now on we
neglect the exponentially decaying part of the WKB wave function.

Let us briefly pause and summarize the physical features of this spectrum. In our
approximation the axion spectrum of the minicluster features a sharp cutoff at both ends.
In the classical limit the upper end of the spectrum can be understood by noting that all
the particles with kinetic energy larger than the potential are not bound to the cluster. The
lower end arises because particles that reach a certain distance from the center of the cluster
cannot have energies below the value of the minicluster potential at this distance from the
centre. From the quantum mechanical point of view we can consider the axions in the cluster
to have a bound state spectrum featuring a cutoff at the energy at which axions escape the
potential well. This gives the upper end of the spectrum. The lower end is given by the
same argument as in the classical case. However, due to the quantum mechanical nature
wave functions with lower energies also extend to some degree into the classically forbidden
region. Therefore, at a given radius also wave functions with a lower energy than the classical
cutoff will contribute. However, as we have just checked in eq. (2.11) this effect should be
small for the clusters of interest and we therefore expect a reasonably sharp end. This will
translate into a (reasonably) sharp cut-off in the experimental signal. We will discuss this
feature in more detail in the following section.

4Note that, we will actually never need to calculate the density of states since it will drop out when the
continuous approximation for the energy levels is taken (see ref. [35]).

5This assumes that the impact parameter of our cluster crossing is not too much smaller than R.
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Of course, for a given realization of the phases, the time dependent granules discussed
above are present. In particular, if the phases are distributed uniformly, the constructed
axion field is a Gaussian random field and the corresponding density profile, therefore, follows
an exponential probability distribution [51],

P (ρ) = 1
ρ(r)e

−ρ/ρ(r), (2.12)

where ρ(r) is the input density profile. The variance of the density is given by,

σρ(r) = ρ(r). (2.13)

In figure 1, we show the resulting density profile for both a single realization and an
ensemble average of a wave function constructed according to this formalism. In the left
panel, the small scale granules are clearly visible as expected from the wave interference.

The density profile considered in this example is the Navarro-Frenk-White (NFW)
profile [49], characterized by its mass M , radius R and concentration c as,

ρ(r) = M

4πR3
1

log(1 + c) − c/(1 + c)
1

rc/R (1 + rc/R)2 . (2.14)

The corresponding distribution function f(E) is given by,

f(E) = 1
m4

a

F0ϵ
3/2 (1 − ϵ)−λ

(− log(ϵ)
1 − ϵ

)q

ep, (2.15)

where ϵ = E/ma and F0, λ, p and q are coefficients given in table 2 of ref. [52].
We note that, for spherically symmetric miniclusters in virial equilibrium,6 the distribution

function depends only on the energy of the system. This results in a unique isotropic velocity
distribution [53] that we will use in our analysis.

We stress that this formalism applies for miniclusters in virial equilibrium. In the
following we will consider this simplified case. We note, however, that miniclusters will be
subject to stellar interactions. The non-equilibrium state following such interactions cannot
be captured by the wave function constructed in this section. This is particularly true for a
cluster that crosses Earth itself, thereby coming close to both Earth and the Sun. A better
analysis will therefore require detailed simulations of these effects, which is far beyond the
scope of the present investigation. Our investigation should therefore be considered more
an estimate of the relevant orders of magnitude than a precision analysis. We will comment
on this again in later sections.

3 Axion miniclusters in haloscope experiments

As a concrete case study of how to distinguish the coupling and the density by using an axion
minicluster, we will focus on cavity haloscopes [6]. In particular, we have in mind a setup, as
currently being operated by the ADMX collaboration [7, 15] (see also ORGAN [11], QUAX [12]

6More precisely, this assumes “ergodicity”, i.e. a system that explores the energy density in an uniform
way, so that the distribution function, f(E) is uniform on the energy surface of interest.
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or CAPP [13]). However, our discussion should essentially also apply to experiments such as
MADMAX [10] or DM-Radio [14], as long as they employ sufficiently spectrally resolving
detection schemes (see below).

A crucial ingredient for our approach is to make use of the very high spectral resolution.
As long as linear amplifier schemes (cf. [54] for a discussion of such schemes vs photon counters)
are used, the output signal can be Fourier transformed, allowing to analyze the signal with high
spectral resolution. In practice this has been demonstrated by the ADMX collaboration [55].

Recently, the expected haloscope signal in the case of an axion field background with
given momentum distribution and allowing for random phases has been derived in refs. [25–27].
Similarly, we proceed here to obtain the expected signal for an AMC crossing the Earth.

As recalled in appendices A and B, following refs. [25, 26], and applied to the AMC dis-
cussed in the previous section, with field eq. (2.8), the spectral power for a finite measurement
time T is given by,

S(ωd) ≈ T
(gaγγB0)2 G V

2ma
(3.1)

×|
∑
nlm

ω2
nlm(

ω2
j − ω2

nlm − iωjωnlm/Q
)anlmψnlm(x) sinc

(
(ωnlm − ωd) T2

)
|2,

where B0 is the magnetic field in the cavity and V its volume, G is the usual geometry factor
(see [56]) of the employed cavity mode with frequency ωj and ωnlm is the energy of the modes
(see appendix B). Haloscope experiments are usually optimized such that it is O(1). Moreover,
we assume here that the typical wavelength of the axion field is much larger than the size of
the haloscope such that it is approximately constant in the cavity volume. The measurement
is then assumed to be taken at a location x inside the cluster, in a frame with the origin at
the center of the AMC. Finally, note that the bin width of the spectral power is inversely
proportional to the measurement time T , ∆ω = 2π/T , such that ωd are discrete frequencies.

Importantly, since the axion field is a Gaussian random field (due to the random phases),
the spectral power will be exponentially distributed (as already pointed out in refs. [25, 26])
and follows the probability distribution,

P (S(ωd)) = 1
S̄(ωd)

e−S(ωd)/S̄(ωd). (3.2)

For a fixed AMC mean density ρ(r) and gravitational potential ϕ(r), the mean value S̄(ωd)
has been calculated in appendix B and is given for high enough resolution by,7

S̄(ωd) = 4π2m2
aṽd

∫
dθ sin(θ) f(ṽ2

d + v2
c − 2ṽdvc cos(θ))|C(ṽ2

d + v2
c − 2ṽdvc cos(θ))|2

× Θ
(√

−2ϕ(r) − (ṽ2
d + v2

c − 2ṽdvc cos(θ))
)

Θ
(
ṽ2

d + v2
c − 2ṽdvc cos(θ)

) (3.3)

where we recall that f is the energy distribution function associated to the density pro-
file. Moreover, vc is the velocity of the cluster relative to Earth and we define ṽd =√

2/ma (ωd −maϕ(r) −ma) (see also appendix B for further details).
7We would like to thank the anonymous referee for pointing out an error in the way we accounted for the

relative velocity of the mini-cluster, that had significant impact on the sensitivity.
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Haloscope/Axion Parameters
Axion ma = 50µeV

gaγγ = 10−15GeV−1

Experiment B0 = 8T
V = 220l
Q = 105

G = 0.69 (TM010 mode)
ωc = ma

Table 1. Input axion and experimental parameters used for numerical calculations in this work. We
used a setup similar to ADMX, in particular, we consider a cylindrical cavity and the TM010 [7] mode.
We furthermore assume that the cavity is tuned in a way to have the mode frequency ωj at the axion
mass. Note however, that due to the large density of the AMC, the precise specification of the halo-
scope/axion parameters does not affect the coupling reconstruction and this table is only for illustration.

From eq. (3.3) we can see that the signal will be limited to be in the frequency range
ma

2 v2
c +ma −ma

√
−2ϕ(r)vc ≤ ωd ≤ ma

2 v2
c +ma +ma

√
−2ϕ(r)vc. (3.4)

Hence, measuring both the starting and end points of this signal leads to a direct measurement
of the potential energy maϕ(r) and the velocity vc.8 From the power spectral density, the
overall power induced in cavity would just be the sum over the spectral power (see appendix A),

P = ωj

Q

1
4π
∑

d

∆ωS(ωd),

≈ ωj

Q

1
4π

∫
dωS(ω).

(3.5)

Again, it is important to remember that due to the statistics of the axion field, the power
is randomly distributed as well. From eq. (3.3), the mean power is easily calculable and
is given by,

P̄ ≈
g2

aγγρ(r)
4ma

B2
0G Vmin (Q,Qa) , (3.6)

such that we recover the usual result that the power is proportional to g2
aγγρ(r) [6, 24, 57].

It can be easily checked, using the central limit theorem, that the power is Gaussian
distributed. Its variance, σP , is found to be proportional to the mean power P̄ 9 and to the
inverse measurement time

√
Tgran/T . Explicitly,

σP

P̄
∼
√

2π
T

1
maϕ(r) ,

∼

√
Tgran
T

.

(3.7)

8Of course this measurement suffers from an error resulting from the finite bin width as well as from the
noise/background signal. This will be discussed in the next section.

9Note that this is to be expected since the variance of the density σρ is proportional to ρ.
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Figure 2. Averaged signal of an NFW profile axion minicluster crossing the Earth. For this example
we consider a mass M = 10−10 M⊙, radius R = 10−5 pc and concentration c = 10. The velocity of the
AMC is v = 10−4c and we are crossing it with an impact parameter b = 10−6 pc. We assume that each
measurement period is T = 5 × 104 s. Left: averaged power spectral density at each measurement loca-
tion (from blue to red as we are moving toward the cluster center). The dots are showing the power in
each frequency bin. Right: averaged power as a function of time. Each dot represents the power calcu-
lated from the spectral power at a different location. The axion and cavity parameters are as in table 1.

We recall that the time scale of the granules was defined as Tgran ∼ 1/(mav
2) ∼ 1/(maϕ),

where v is the velocity dispersion in the cluster at radius r.

We show in figure 2 an illustrative example of mean spectral power (left) and integrated
power (right) for axion and haloscope parameters described in table 1. This signal is for
an NFW cluster (see eq. (2.14)) with mass, radius and concentration respectively given
by (10−10M⊙, 10−5 pc, 10). The Earth is assumed to cross the minicluster with a relative
velocity of 10−4c and an impact parameter b = 10−6 pc. The relatively low value of the
relative velocity was originally motivated by the necessity of having enough time to measure
at multiple locations along the path throughout the minicluster. However, it turns out that
also higher velocities usually work well, since the observable width of the spectrum also
increases with this velocity. That said, in section 5, we will consider a realistic distribution
for the relative velocity of the miniclusters thereby including also higher relative velocities.
In the left panel, each colored line represents the mean spectral power at a different location
inside the cluster (from blue to red). At each location, the measurement time is taken to be
T = 5 × 104 s, leading to a bin width ∆ω ≈ 10−19eV. In the right panel, the corresponding
mean power has been calculated at each location (colored dots). We furthermore carefully
checked, that the approximation given in eq. (3.6) was in line with the exact expression for
the power in eq. (3.5). Finally, since the cluster we have considered has a density more than
∼ 6 orders of magnitude larger than the expected dark matter density background, it is not
surprising to find that the power gets the same scale difference compared to the background
axion field power Pbackground ∼ 10−22 W [6, 15, 24, 27].
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4 Reconstruction of the axion-photon coupling

As emphasized, the spectral power offers the promise of a direct measurement of the axion
minicluster gravitational potential. This is the key for the axion-photon coupling recon-
struction, since from it, and with the use of the Poisson equation, we have access to the
density of the cluster. The coupling and the density are then no longer entangled in the
power measurements.

In this section, we proceed to construct a formalism based on the Poisson equation, that
enables us to disentangle the coupling from the density as just described. We then apply
this method on simulated signals in order to delineate the region in the AMC parameter
space where a reconstruction can be successful.

4.1 General method

Let us first of all declare the assumptions used in the following calculations. We consider
a similar hypothetical scenario as considered in ref. [27] where the axion and its mass have
been found after some scan over a wider mass range. Once this is done, the axion mass
is no longer an unknown parameter. Secondly, following the discussion initiated around
figure 2, the typical signal induced by an AMC is orders of magnitude higher than in the
case of a background axion field signal. We therefore expect that the thermal and quantum
noises [57, 58] are negligible in our case. Moreover, we also use a simplified setup where
the minicluster is fully virialized and is unperturbed by the gravitational potential of the
Earth and the Sun and Earth crosses the minicluster on a straight line. This is clearly not
realistic. However, we nevertheless hope that this treatment captures the relevant order of
magnitudes for the measurement and that a more realistic situation can be addressed with
numerical simulation of the cluster encounter (cf, e.g. [59], for an example of a minicluster
in the vicinity of a neutron star) and a corresponding more careful analysis of the time
dependence of the signal.

As pointed out in the previous section, the width of the spectral power S(ω) provides a
direct measurement of the gravitational energy maϕ(r). Since the AMC is a self-gravitating
object, its density ρ(r) and gravitational potential ϕ(r) are directly related via the Poisson
equation,

∇2ϕ(r) = 4πGρ(r). (4.1)

However, note that what is actually obtained from the spectral power is the gravitational
potential as function of the measurement time t. In order to make use of the Poisson equation,
we then have to parameterize the radial motion of the Earth throughout the AMC. This
can be done via,10

r(t) =
√
b2 +

(
vt−

√
R2 − b2

)2
, (4.2)

10Note, again, that a realistic description of the Earth’ motion should account for its orbit around the sun.
In this more realistic picture, the trajectory would therefore no longer be a straight line. However, the velocity
of the Earth around the sun (∼ 30 km/s) is smaller than the typical velocity of the minicluster (∼ 300 km/s),
therefore we consider the straight line limit as a reasonable approximation.
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where v is the velocity of the Earth (in a frame with the origin at the center of the AMC),
b is the impact parameter and R the radius.11 With that, the Poisson equation can be
transformed by using the time t as the variable,

ϕ̈(t)
ṙ(t)2 + 2ϕ̇(t)

ṙ(t)r(t) −
¨r(t)ϕ̇(t)
ṙ(t)3 = 4πGρ(t). (4.3)

The procedure to reconstruct the axion-photon coupling is the following:

• ϕout(ti) and (g2
aγγρ(ti))out are extracted from the power spectral density and power,

respectively, at N different measurement times i (corresponding to N different locations
in the cluster). Moreover, the velocity vc of the AMC can be determined from the
power spectral density as well.

• We then use the Poisson equation in the form of eq. (4.3) to define the function

F(b, R, gaγγ ; ti) =
g2

aγγ

4πG

(
ϕ̈(ti)
ṙ(ti)2 + 2ϕ̇(ti)

ṙ(ti)r(ti)
−

¨r(ti)ϕ̇(ti)
ṙ(ti)3

)
, (4.4)

which returns g2
aγγρ(r) if the impact parameter, radius and gravitational potential are

perfectly known.

• Finally, the parameters b, R and gaγγ are reconstructed by maximizing the function,

L(b, R, gaγγ) =
∑

i

log(
(g2

aγγρ(ti))out

|(g2
aγγρ(ti))out − F(b, R, gaγγ ; ti)|

). (4.5)

Note that the choice of the maximizing function is not unique and different choices may
alter the reconstruction of the parameters.

Before moving to concrete applications of this formalism, let us clarify the different sources
of errors associated to it.

First, the reconstruction suffers from the inevitable statistical fluctuations of the axion
field (see section 2). Indeed, we have already mentioned that the random phases in the AMC
wave function generate granule fluctuations for a specific realization of the phases. It is
important to stress that, those granules do not affect the width of the power spectral density
but instead translate into fluctuations in the power as discussed in eq. (3.7). Hence, using the
formalism constructed in this section, the granule structures affect the quantity (g2

aγγρ)out
extracted from the power measurement and those statistical fluctuations will also impact on
the reconstruction of the axion-photon coupling via the maximization of eq. (4.5).

Although the width of the power spectral density does not suffer from the axion field
statistics, it naturally gets errors from the finite frequency binning ∆ω = 2π/T . The
determination of the width of the signal, leading to the reconstruction of the potential maϕout,
is therefore known with an uncertainty proportional to ∆ω. This error propagates on the
first and second derivatives of the potential needed to calculated the function F(b, R, gaγγ).
Thus, the reconstruction of the axion-photon coupling applying eq. (4.5) suffers from a

11We assume here that R = r(0).
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Figure 3. Reconstruction of the gravitational energy (left) and g2
aγγρ(r) (right) for a simulated signal

from a cluster characterized by M = 10−10 M⊙, R = 10−5 pc and b = 10−6 pc. The number of time
data points taken during the AMC crossing is N = 20 . In the right panel, the shaded gray region
shows the expected variance σP of the power (see eq. (3.7)) due to the granules of the AMC.

systematic error which gets stronger as the ratio of ∆ω over the signal width increases.
In other words, we require ∆ω/(2mavc

√
−2ϕ(r)) ≪ 1. In addition to the finite binning

error, the noise/background is affecting the measure of the signal width and therefore the
gravitational potential reconstruction. In what follows, only the values of S(ωd) exceeding
the noise/background are considered. Although we find that this does not have a dramatic
effect on the reconstruction of the potential, it will eventually degrade the measurement of
the signal width as we go to lighter clusters.

It is furthermore expected, that the number N of time data points ti provides another
source of systematic error. Indeed in the limit of small N , the potential is only reconstructed
at few locations and, similarly as before, its first and second derivatives gets less accurately
reconstructed, leading to the same conclusion as before.

4.2 Application to simulated data

We now proceed to apply our reconstruction formalism to concrete simulations. For our
practical computations we consider encounters between an AMC featuring an NFW profile
(see eq. (2.14)) and a detector on Earth. From the point of view of the detector the density
profile, the impact parameter and the velocity of the AMC are, of course, assumed to be
unknown parameters.

The spectral power, S(ω), induced by the AMC is simulated according to the probability
distribution in eq. (3.2) at each measurement location inside the cluster, corresponding to
measurement times ti. The period of the measurement T , defines the bin width of the
spectral power. For each simulated spectral power, the induced power is finally calculated
according to eq. (3.5). The data are at the end composed of N successive measurements
of {S(ω; ti), P (ti)} for i = 0, . . . N .
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Figure 4. Left: reconstruction of the axion-photon coupling as a function of the mass for N = 50 and
N = 15 data points. The shaded region shows the dispersion of the reconstruction over 10 simulated
reconstructions, the dashed lines the average. For both curves, the radius is set to R = 10−5 pc, the
AMC velocity to v = 10−4c and the measurement time to T = 5 × 104s. Right: sensitivity of the
coupling reconstruction as a function of the number of time data points N ≈ 2R/(vT )

√
1 − (b/R)2 and

the averaged ratio of the bin and signal widths, α = mavc

√
2GM log (R/b)

(R−b) T/π. The blue shaded region
shows the region where the axion-photon coupling is reconstructed with an error less than 30%. The
dashed orange lines show the rectangle approximations used to infer the rate of encounters in section 5.

In figure 3, we show for a simulated cluster with mass M = 10−10 M⊙, radius R = 10−5 pc
and concentration c = 10, the reconstruction of the gravitational energy (maϕ(ti))out and(
g2

aγγρ(ti)
)

out
. The impact parameter and the cluster velocity are, as before, b = 10−6 pc

and v = 10−4c. At each location the measurements are taken during T = 5 × 104s and we
collect data at a total of N = 20 locations. The input axion mass and coupling, as well as
the experiment parameters, are taken from table 1.

In order to illustrate the sensitivity of the construction on the minicluster mass, we
show in the left panel of figure 4 the ratio between the reconstructed coupling, gout, and
the input one, gin, as a function of the AMC mass. The other parameters (v,R, b, T ) are
respectively fixed to be

(
10−4c, 10−5pc, 10−6pc, 4 × 105s

)
. For each mass, 10 realizations of

the signal have been simulated and the coupling has been reconstructed for each of them. The
dashed lines show the average reconstructed coupling, and the solid upper and lower lines the
variance of the reconstruction. Following the expectations, as the mass decreases, the ratio
∆ω/(2mavc

√
−2ϕ(r)) becomes larger and the reconstruction of the gravitational potential

suffers from larger deviations due to the bin width ∆ω. The reconstruction procedure via
the Poisson equation is then less efficient, and there is an increasing systematic error visible
in the left panel of figure 4 as an overall deviation from gout/gin = 1 towards smaller values.
We can understand this from the fact that the reconstructed gravitational potential suffers
from larger fluctuations. As the density cannot be negative the Poisson equation will then
tend to overestimate the density. In order to match to the reconstructed (g2

aγγρ(ti))out, the
coupling is therefore systematically underestimated. In addition to this, the power suffers
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from sizeable statistical fluctuations. This effect can be seen as an increase of the variance as
we go to lower masses. Finally, the red and blue curves show how the number of location
data points alter the reconstruction. In particular, the red and blue lines have been simulated
for N = 15 and N = 50 points, respectively.

Since the main influence on the reconstruction is coming from the ratio
∆ω/(2mavc

√
−2ϕ(r)) and the number of location data points N , we show in the right

panel of figure 4, the region of those parameters that returns a reasonable reconstruction
with precision |1 − gout/gin| ≤ 0.3. In particular, the number of data points has been ex-
pressed as the ratio between the total crossing distance and the distance per measurement,
N = 2R

√
1 − (b/R)2/(vT ), assuming that each point is taken after having measured at a

location during a period T . Moreover, since the quantity ∆ω/(2mavc

√
−2ϕ(r)) depends on

the location where the measurement is performed, we use in figure 4 the potential averaged
over the path of the Earth throughout the AMC. The resolution of the gravitational potential
will therefore be approximated as α ≡ mavc

√
2GM log (R/b)

(R−b) T/π.

5 Rate of encountering suitable AMCs

In this section, we estimate the rate at which we may encounter an AMC with parameters
that allow for a reasonable reconstruction of the axion-photon coupling (see blue region in
right panel of figure 4). Our approach is somewhat simplistic. We assume that all axion
miniclusters are spherically symmetric, with the same size and have the same mass.12 The
rate is then given by,

Γ = nAMC(r)⟨σv⟩, (5.1)

where,

nAMC(r) = fAMC
ρDM(r)
M

, (5.2)

and fAMC is the fraction of the total dark matter density in AMCs and M is the AMC mass.
The local density of dark matter is modeled by an NFW profile evaluated at r = 8.33 kpc,

ρDM(r) = ρs

(r/rs)(1 + r/rs)2 , (5.3)

with ρs = 0.014M⊙pc−3, rs = 16.1 kpc [61], so that the local dark matter density is

ρDM = 0.45 GeV/cm3. (5.4)

Concerning the minicluster fraction, fAMC, refs. [60, 62, 63] for example, find from
numerical simulations that the fraction of axions bound in AMCs is ∼ 0.75 at redshift
around z ∼ 100. However, it is quite uncertain how this evolves until today. In any case,

12A better estimate for the rate should take into account a more realistic mass distribution for the AMCs.
See for instance ref. [60]. In light of our relatively crude approximations made for several other effects we
neglect this effect.
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the numerical values in our figures show rates divided by fAMC. But to give rough and
optimistic numbers we assume fAMC ∼ 1.

The geometrical cross section to encounter an AMC with impact parameter less than b and
a relative velocity between vi and vf is given by σ(b) = πb2 and the differential rate becomes,

dΓ
db

= nAMC(r)
〈
v
dσ

db

〉
,

= nAMC(r)
∫ vf

vi

vf(v)dσ
db
dv, (5.5)

where f(v) is the velocity distribution. For the latter we consider the distribution in the
laboratory frame from [26] adapting the conventional Standard Halo Model (SHM) that
yields to a Maxwell-Boltzmann distribution in the galactic frame,

fgal(v) = 4π 1
π

√
π

v2

v3
0
e−v2/v2

0 , (5.6)

where v0 ∼ 220 km/s13 is the velocity dispersion [65, 66]. Note that, the velocity distribution
is expected to be additionally cut-off beyond the escape velocity vesc ∼ 544 km/s [67].

Performing the transformation to the detector rest frame [67] as v → v − vlab(t), and
averaging over the spatial angles yields to the detector frame speed distribution [68],

2v√
πv0vlab

e−v2
lab/v2

0 sinh
(2vlab

v2
0
v

)
e−v2/v2

0 |v + vs| < vesc

0 |v + vs| > vesc

(5.7)

where vlab ∼ 235 km/s is the laboratory velocity relative to the galactic frame [69] and
vs is the Sun’s velocity relative to the galactic frame. We can indeed use an angular
averaged distribution, as does not matter from which direction we encounter our (spherically
symmetric) AMCs.

According to figure 4, we estimate that a reasonable axion-photon coupling reconstruction
is possible if

αmin ≤ mav
T

π

√
2GM log (R/b)

(R− b) , (5.8)

Nmin ≤ 2R
vT

√
1 − (b/R)2 (5.9)

with αmin ≈ 19 and Nmin ≈ 17 (these values are obtained from approximating the blue
shaded region in figure 4 as a rectangle). These constraints come from imposing a sufficiently
good resolution of the gravitational potential and on enough of data points, as given by
the blue region in the right panel of figure 4.14 We furthermore define κ ≡ b/R, and

13Some papers give slightly different velocities, e.g. ref. [64] has a value of ∼ 270km/s. We have checked
that this does not drastically alter the rate.

14Note, again that his “rectangular” approximation provides an easy-to-handle approximation of the blue
shaded region in the left panel of figure 4. This makes it simple to obtain a first estimate for the rate.
Considering the exact shape of this surface is expected to not alter the results drastically and would lead an
increase of the encounter rate.
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Figure 5. Left: detection rate as a function of the radius for two AMC masses. Right: detection rate
as a function of the mass for two AMC radius. In both panels, the rate is normalized with the axion
fraction bound in AMCs, fAMC.

the maximum measurement time as Tmax(R, b, v) = 2
√
R2 − b2/(vNmin), such that the two

previous equations now become

αminNmin ≤ 2ma/π
√

2MGR
√

−(1 + κ) log(κ) (5.10)

Solving this last equation numerically gives the maximal impact parameter - radius ratio,
κmax(M,R), as a function of the AMC mass and radius. Note that the reconstructable impact
parameters do not depend on the relative velocity. We can therefore use the full available
range of velocities from 0 to vesc. Finally, using eq. (5.5) we obtain that the rate of AMC
encounters that allows for a reasonable reconstruction of the axion-photon coupling is given by,

Γ(M,R) = nAMC(r)πR2κmax(M,R)2
∫ vesc

0
vf(v)dv. (5.11)

We show in figure 5 the resulting rate as a function of the radius (left panel) and the
mass (right panel). We observe that the rate typically increases as we go to larger radius.
On the other hand, increasing the mass decreases the rate since in that case the number
density of miniclusters decreases. Taking the full shape of the blue shaded region in figure 4
into account (and not the rectangle approximation considered above) would increase the
rate compared to what we are presenting here.

In figure 6, we show the rate of the AMC encounters for which a reasonable reconstruction
is possible as a function of both the mass and the radius (left panel). As the mass decreases the
reconstruction becomes less efficient. However, the number density of miniclusters increases
even faster and the overall rate increases. We also observe that larger AMCs have the
best chances to be detected and to lead to a good axion-photon coupling reconstruction.
Nonetheless, as shown in recent works (see refs. [35, 70–73]), AMCs might be strongly affected
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Figure 6. Left: rate of AMC encounters (normalized by the DM fraction in AMC fAMC) that allow
for a reconstruction of the axion-photon coupling. Right: rate accounting for the survival probability
decreasing with the mean density ∼ M/R3 (given in ref. [35]). The gray shaded region corresponds to
the parameter space where ou formalism does not hold, see eq. (2.11).

by tidal interactions with galactic stars.15 Although the survival of the AMCs depends on their
density profile shape (NFW, power law, etc.), it has been argued that their survival is directly
proportional to the mean density of the cluster. For this reason, even if encounters with larger
AMCs are expected to be more frequent, their survival should be more strongly affected
compared to smaller AMCs. We show on the right panel of figure 6 the AMC encounter rate
weighted by the survival probability. Note, however, that the survival probability has been
extracted from the results of ref. [35] for a Lane-Emden profile (see for instance ref. [74]).
However, it has also been argued in ref. [35] that clusters with density profiles similar to
NFW should be more resistant to stellar interactions.

It is also important to consider the disruption effects that can be produced by the Earth
and by the Sun. To get an estimate, lets consider the energy injection generated by an
interaction with an astrophysical object, [70]

∆E ≈
(2GMd

b2Vd

)2 M⟨R2⟩
3 , (5.12)

where Md and Vd are the mass and the relative velocity of the disturber interacting with
the minicluster with mass M . b is the impact parameter and ⟨R2⟩ is the mean squared
radius of the minicluster.

In practice, the amount of energy needed to destroy the minicluster is around ∆E ∼ Eb,
with Eb the binding energy of the system. For the disruption caused by the sun, we find that

15Here, we are concerned with potential destructive encounters with stars other than the sun before the
AMC is in our vicinity.
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all of the parameter space shown in figure 6 will suffer from tidal disruption due to the sun.
This effect should be smaller only at higher masses and relatively small radii. As an example,
for a minicluster of radius R ∼ 3 × 10−6 pc the minimum mass to survive the Sun disruption
is M ∼ 10−4M⊙. These parameters, however, correspond to Γ ∼ 10−13/yr, an exceedingly
rare event. This implies the need for numerical simulations that account for the non-trivial
changes in the cluster structure due to the interaction with the solar system.

The tidal interaction caused by the Earth is found to leave the cluster relatively intact.
This is caused by the quadratic dependence on the disturber mass. Nevertheless, we expect
that the crossing of the Earth in the cluster is expected to induce changes in the local
structure, for example some turbulence around the Earth location. This would affect the
signal and this effect should be studied via some numerical simulations as well.

Finally, from eq. (5.10) we can also see that a larger axion mass allows for a higher rate
because the same value of κ can be achieved for a smaller mass of the AMC. Keeping the other
parameters fixed, this gives a linear increase in the rate due to the higher number density
of the AMCs. However, the achievable increase is somewhat limited due to the axion dark
matter mass range as well as the range where spectrally resolved detection is straightforward.

6 Conclusion

In this paper we have presented a case study in which, by means of a single axion direct
detection experiment, it is possible to get insights on the axion-photon coupling and density
separately.

Axion haloscopes are, in first instance, only sensitive to the product of coupling and
density, g2

aγγρ. Yet, we argue that in the case of an encounter with an axion minicluster
(AMC), the energy/frequency spectrum of the power provides additional information on its
gravitational potential. Taking advantage of the good measurement precision of the energy
spectrum in haloscope experiments, we are then able to trace the gravitational potential
of an AMC as the Earth goes trough it. We then use the Poisson equation to connect the
extracted gravitational potential to the density of the cluster. Combining the information on
the density with the power extracted from the haloscope cavity P ∼ g2

aγγρ, the axion-photon
coupling can be disentangled.

To demonstrate the effectiveness of our method we have applied it to simulated haloscope
signals encountering an AMC. This has been done assuming a self-consistent wave function
for the miniclusters [35, 36], as well as incorporating the axion field statistics [25, 26].

From our simulations, we have extracted the precision of the axion-photon coupling
reconstruction based on the number of data points and the AMC parameters. We find that
denser miniclusters allow for a better coupling reconstruction, due to their larger gravitational
potential and therefore better relative spectral power resolution in the haloscope. We also
find that the relative statistical fluctuations of the power are attenuated for denser AMC.

Of course, we have to ask how likely it is to encounter a suitable AMC for which we can
indeed reconstruct the axion-photon coupling. Unfortunately, the average rate to cross such
an AMC is rather low. If the AMC and axion parameters are of a favorable size the rate can

– 18 –



J
C
A
P
0
5
(
2
0
2
4
)
0
3
5

be of the order of one per 102 − 103 years.16 However, it can be much lower. The scaling of
which can be inferred from figure 5 and eq. (5.10). Finally, we stress that for our estimates
we used a rather simplistic model of a minicluster encountering the detector in a straight
line and without being perturbed by the gravitational fields of the Earth and the Sun. In
regions with sizable rates this should be a large effect [35, 70]. A more careful analysis of
the rate should be done, including a detailed simulation of the changes of the minicluster
due to its interaction with the solar system and the effects this has on the signal. In light
of this our investigation should be taken as an indicative pilot study.

Let us finally return to the question if we can tell whether axions are a dominant
contribution to dark matter. As discussed, after an encounter with a minicluster, we know the
coupling. Then, from the measurement of the homogeneous (non-minicluster) dark matter
signal,17 we can measure this part of the density. If this measurement yields a value that is
of similar size as the expected density at our location it is at least suggestive that axions
are a major component of dark matter.
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A General formalism of haloscope experiment

In the presence of an axion field the Maxwell equations are modified as follows [6, 75],18

∇.E = 0,
∇.B = 0,

∇ × E = −∂B

∂t
,

∇ × B = ∂E

∂t
− gaγγB

∂a

∂t
,

(A.1)

where gaγγ is the axion photon coupling.
In the presence of an external magnetic field B0 permeating the cavity, the axion-photon

coupling in the last equations induces an electric field Eind. The latter is governed by the
following equation of motion,

(∂2
t − ∇2)Eind(x, t) = gaγγB0(x)∂2

t a(x, t). (A.2)
16Larger masses of the axions, or more generally axion-like particles, may allow for an increase in the

rate beyond this point, because the reconstruction may be possible for lower minicluster masses that can be
more abundant, cf. eq. (5.10). That said, achieving a sufficient spectral resolution might be difficult at the
correspondingly higher frequencies.

17Estimating the fraction contained in miniclusters is more difficult, as we do not expect to encounter more
than one during a reasonable amount of time. Therefore, we cannot obtain a statistically significant result.

18We assume that no charge or electromagnetic current are present in the resonant cavity.
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Using the usual expansion of the electric field into cavity modes (cf., e.g., [6, 24, 76, 77])

Eind(x, t) =
∑

j

αj(t)Ej(x),
∫

V
d3x|Ej(x)|2 = Cj (A.3)

where Ej(x) stands for the mode j and αj(t) the time dependent coefficient. Using this ex-
pansion and taking into account damping effects in the cavity, eq. (A.2) can be re-expressed as(

∂2
t + ωj

Q
∂t + ω2

j

)
αj(t) = −bj∂

2
t a(x, t), (A.4)

where Q is the cavity quality factor and with bj is given by19

bj = gaγγ

Cj

∫
V

d3xE∗
j .B0. (A.5)

The resulting power extracted from the cavity is finally given in terms of the time averaged
electric field and the quality factor of the cavity Q [76],

Pj = ωj

Q

1
2

∫
V

d3x ⟨|αj(t)|2⟩|Ej(x)|2 (A.6)

where in the first line, ⟨.⟩ denotes the time average and Pj is the power of the mode j.
In a concrete scenario, NT measurements of the electric field amplitude αn(t) are taken

over a total measurement period T [25, 26]. The averaged power extracted from the cavity
can then be re-written,

Pj = ωj

2Q

∫
V

d3x
1
NT

NT −1∑
n=0

|αj(tn)Ej(x)|2,

= ωj

2Q
1
N2

T

NT −1∑
d=0

|αj(wd)|2
∫

V
d3x |Ej(x)|2,

= ωj

Q

1
4π

NT −1∑
d=0

∆ω T

N2
T

|αj(wd)|2
∫

V
d3x |Ej(x)|2.

(A.7)

In the second line, the Parseval theorem has been used to relate the time average with a
sum over the Fourier modes of the electric field amplitude. For a finite measurement time T ,
only discrete frequencies enter in the sum, and we have ∆ω = 2π/T .

The argument of the sum is defined as the spectral power and is explictly given by

S(ωd) ≡ T

N2
T

|αj(wd)|2
∫

V
d3x |Ej(x)|2. (A.8)

For good enough resolution, the sum in the last line of eq. (A.7) can be approximated by
an integral and we have

Pj ≈ ωj

Q

1
4π

∫
dωS(ω). (A.9)

19It is assumed that the typical wavelength of the axion field is much larger than the size of the haloscope
such that it is constant in the cavity volume.
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B Axion minicluster power spectral density

In this appendix we derive the spectral power for the axion field given in eq. (2.8). We start by
solving the differential equation (A.4) for the electric field amplitude αj(t) and then proceed
to calculate its discrete Fourier transform for a measurement period T . From eq. (A.8) and
following the same steps as in refs. [25, 26] we obtain the spectral power,

S(ωd) = (∆t)2

T
|
∑
nlm

Cnlm

NT −1∑
n=0

eiωdn∆t
(
anlmψnlm(x)e−iωnlmn∆t + c.c.

)
|2,

= 1
T

|
∑
nlm

Cnlm

NT −1∑
n=0

∆t eiωdn∆t
(
anlmψnlm(x)e−iωnlmn∆t + c.c.

)
|2,

≈ 1
T

|
∑
nlm

Cnlm

∫ T/2

−T/2
dt eiωdt

(
anlmψnlm(x)e−iωnlmt + c.c.

)
|2,

(B.1)

where ∆t = T/NT and we have introduced the coefficients Cnlm as

Cnlm =
√

(gaγγB0)2 Gj V
ω2

nlm√
2ma

(
ω2

j − ω2
nlm − iωjωnlm/Q

) . (B.2)

In this last equation Gj is the usual form factor and is of the order O(1), V is the cavity
volume and ωnlm is the mode energy.20 Note that the wave functions ψnlm(x) depend on
the location x (in a frame centered at the origin of the cluster) at which we are doing the
measurement in the cluster. We assumed in the main text that the cluster is moving slowly
enough so that its motion is neglected during the measurement period T .

The time integral can be solved easily noting that

1
T

∫ T/2

−T/2
dt eiωdte−iωnlmt = sinc

(
(ωnlm − ωd) T2

)
. (B.3)

With this, eq. (B.9) becomes,

S(ωd) ≈ T |
∑
nlm

Cnlmanlmψnlm(x) sinc
(

(ωnlm − ωd) T2

)
|2. (B.4)

The average value of the power spectral density is obtained by taking the average over
the random phases. It leads to

S̄(ωd) = T ⟨|
∑
nlm

Cnlmanlmψnlm(x) sinc
(

(ωnlm − ωd) T2

)
|2⟩,

= T
∑
nlm

|Cnlmanlmψnlm(x)|2 sinc2
(

(ωnlm − ωd) T2

)
.

(B.5)

With the definition of the coefficients anlm given in eq. (2.10), we get

S̄(ωd) = 4πmaT

∫
dE f(E)|C(E)|2

√
(2ma (E −maϕ(r))) sinc2

(
(E +ma + ωamc − ωd) T2

)
,

(B.6)
20Note that, compared to section 2, we are now in the laboratory frame so that the velocities will be shifted

due to a boost by the cluster velocity. We will make this explicit later in the calculation.
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where with the use of the density of states g(E) we have transformed the sum into an integral
such that in the continuous limit,

C(E) =
√

(gaγγB0)2 Gj V
(E +ma + ωamc)2

√
2ma

(
ω2

j − (E +ma + ωamc)2 − iωj (E +ma + ωamc) /Q
) .
(B.7)

However, the energy distribution function obtained in section 2 is valid in a frame located
at the center of the cluster. Since we are here analyzing the signal in the laboratory frame, the
minicluster velocity should be carefully subtracted when the energy is defined. Interpreting
eq. (B.6) in a particle picture, we have that the velocities would be shifted as v → v + vc,
where vc is the cluster velocity. With this, eq. (B.6) becomes,

S̄(ωd) = m3
aT

∫
d3ṽ f(| ṽ − vc |)|C(| ṽ − vc |)|2 sinc2

((
ma +maϕ(r) +maṽ

2/2 − ωd

) T
2

)
,

= m3
aT

∫
dΩ
∫

v∈[0,
√

−2ϕ(r)]
dṽ ṽ2 f(| ṽ − vc |)|C(| ṽ − vc |)|2 (B.8)

× sinc2
((
ma +maϕ(r) +maṽ

2/2 − ωd

) T
2

)
,

where we define ṽ = v + vc and express the distribution f(E) as a function of the velocity
rather than the energy, E = ma+maϕ(r)+mav

2/2, and include an appropriate transformation
of the integration measure. Finally, the integral runs only over laboratory velocities than
return velocity in the cluster frame smaller than the escape velocities vmax =

√
−2ϕ(r).

A further simplification can be made if we use the usual assumption that the distribution
function f(v) is constant over the width of the sinc. In this limit,

S̄(ωd) = 4π2m2
aṽd

∫
dθ sin(θ) f(ṽ2

d + v2
c − 2ṽdvc cos(θ))|C(ṽ2

d + v2
c − 2ṽdvc cos(θ))|2

× Θ
(√

−2ϕ(r) − (ṽ2
d + v2

c − 2ṽdvc cos(θ))
)

Θ
(
ṽ2

d + v2
c − 2ṽdvc cos(θ)

)
,

(B.9)

where the velocity ṽd returns an energy ωd, ṽd =
√

2/ma (ωd −maϕ(r) −ma), θ is the
angle between ṽd and vc and the Heaviside functions ensure that no velocity exceeds the
escape velocity.

Although the last integral over the angle can usually only be performed numerically,
it is nevertheless possible to extract the key features of the spectrum: from the Heaviside
functions it is easy to see that the signal will be centered around the cluster kinetic energy,
ωd = mav

2
c/2. Furthermore, the signal will be contained in the frequency range,

ma

2 v2
c +ma −ma

√
−2ϕ(r)vc ≤ ωd ≤ ma

2 v2
c +ma +ma

√
−2ϕ(r)vc. (B.10)
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