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The ongoing revolution in information technology is reshaping human life. In the realm of 

health behavior, wearable technology emerges as a leading digital solution, capturing physical 

behaviors (i.e., physical activity, sedentary habits, sleep patterns) within the 24-h cycle of 

daily life. Wearables are applied in research, clinical practice, and as lifestyle devices; most 

obvious, they promise to be a key element for increasing human physical activity, one of the 

biggest health challenges nowadays. However, despite the high expectations associated with 

wearable technology, fundamental aspects remain surprisingly neglected. Here, the lack of 

methodologically sound validation studies for wearables entering the market appears 

particularly critical. In our recent and comprehensive review of 967 validation studies, 
1–4

 the 

overall low study quality was evident and alarming. In essence, standard regulatory processes 

are missing, although the scientific community is strongly advocating for improvements in the 

validation and trustworthiness of digital health products. Hence, we call for validity of 

wearables to be systematically tested to pave the way towards expedient digital health 

solutions and, in terms of reproducibility, to provide transparent information about the devices 

used (i.e., all data processing steps, analytical approaches, updates of algorithms). Toward this 

end, our viewpoint compiles challenges and suggests key elements for enhancing the quality 

of validation protocols (i.e., wearing position, criterion measurement, validated outcomes, 

sample size, statistical analyses) as well as issues pertinent to improving the validation 

process (i.e., replication of studies, access to raw data, the release of a new version). 

Moreover, to catalyze this comprehensive validation process, we are launching and 

introducing the project Wearable Landscape (www.wearable-landscape.info); the open 

science initiative not only compiles validation protocols but also facilitates collaboration 

efforts for sharing resources, equipment, set-up of multi-location studies, as well as joint data 

analysis and pre-processing. 
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1. Relevance of validity when using wearables to measure 24-h physical behavior  

―People sleep less, sit more, walk less frequently, drive more regularly, and do less physical 

activity than they used to‖.
5
 This quote describes the lifestyle of young people in the 21st 

century, emphasizing central risk factors that contribute to poor health, low quality of life, 

morbidity, and premature mortality.
6
 Empirical evidence shows that 24-h physical behavior—

which encompasses all movement and posture-related physical behaviors, including physical 

activity, sedentary, and sleep behavior
7
—is strongly associated with mental and physical 

health conditions across all age groups throughout the lifespan.
8
 Digital health solutions such 

as wearable technologies are a promising application for increasing human physical activity, 

one of the biggest current health challenges. Thus, to investigate associations between 

physical behavior and health, researchers have started gathering comprehensive data on 

postural and movement patterns in everyday life via wearable technology. The purpose of 

their application is manifold and could include use as an observational tool in surveillance 

studies,
9
 as a motivational tool in interventions,

10
 as a way to better understand the underlying 

mechanisms of health, treatment, and recovery (i.e., understanding the role of physical 

behavior), and as a diagnostic tool in clinical settings.
11

 Moreover, as one of the first digital 

health solutions for capturing physical behavior, wearables have become widely used lifestyle 

devices, with a growing consumer market and millions of users around the globe.
12

 The 

evolution of wearables as an integral part of research and public use can be seen as a blueprint 

for other digital health solutions.  

The validity of wearables is crucial for developing wearable-based public health guidelines
13

 

and effective prescription of 24-h physical behavior. Validity, in this context, denotes the 

degree to which a wearable precisely measures the intended values—a critical criterion for 

evaluating the quality of a wearable.
14

 If the devices do not measure precisely, the user 

information will be incorrect and thus may have detrimental instead of beneficial effects on 
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health. For example, a user aims to move a recommended amount of 9000 steps per day
15

 

while wearing a wrist-worn wearable to monitor daily steps. If users are relying on displayed 

feedback and reach their goals, they may reduce their activity levels for the rest of the day. 

However, as highlighted by recent validation studies,
16–18

 step estimates are often imprecise; 

therefore, it’s plausible that 9000 steps could be an overestimation when an individual has 

only achieved 6000 steps. In a case such as this, the feedback could potentially harm the 

individual—in a meta-analysis examining steps and mortality, a difference in 3000 steps/day 

was associated with a 30% increase in mortality risk.
19

 However, to date, market access for 

wearables through certification or authorization relies on regulatory commissions (e.g., 

European CE (European conformity)-marking or U.S. Food and Drug Administration), which 

focus primarily on aspects such as the privacy or security of the processed data.
20

 While these 

regulatory commissions advocate for enhanced interoperability through the ongoing 

development and validation of digital tools,
21

 they do not enforce regulations explicitly 

targeting the technical validation of digital tools such as wearables. For example, the Digital 

Medicine Society is seeking to develop clinical-quality resources on a tech timeline and to 

deliver these actionable resources to the field via open-source channels and educational 

programs.
22

 As a result, a wearable landscape with no quality criteria regarding the refinement 

and optimization of a device across different phases of validation emerged. 

Accordingly, in the realm of wearable technology, we urgently call for the regulation of high-

quality validation protocols that are embedded in a phase-based validation framework, as 

presented by Keadle and colleagues.
23

 We recently conducted a series of systematic reviews 

of 967 validation studies addressing the quality of validation protocols for the assessment of 

24-h physical behavior via wearables.
1–4

 We identified 391 different wearables from 166 

different brands (Fig. 1). Of note, the number of validation studies does not provide any 

information about the validity of the devices itself. This wearable landscape viewpoint aimed 
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to illustrate the quality of validation studies, extract challenges, and offer recommendations 

for improving validation processes and protocols, as well as to discuss future solutions. 

 

Fig. 1. The 50 most validated devices categorized by the dimensions of the 24-h physical 

behavior (i.e., red: intensity; yellow: posture/activity types; blue: biological state) and 

contextual setting (i.e., bright: laboratory; dark: free-living). The asterisk indicates that the 

devices validated parameters from all dimensions of the 24-h physical behavior construct. 

2. Quality of validation studies for the assessment of 24-h physical behavior via 

wearables 

To unveil the validity of the entire landscape of wearables, we summarized the 4 systematic 

reviews we recently published.
1–4

 In these reviews, studies were primarily categorized by 
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target group (children/adolescents vs. adults), setting of the validation study (laboratory, i.e., 

protocols with structured and semi-structured assessment vs. free-living, i.e., real-world 

conditions where participants can perform their natural daily behaviors), and 24-h physical 

behavior construct (i.e., intensity dimension, such as energy expenditure or steps; 

posture/activity types dimension, such as sitting, standing, or walking; and biological state 

dimension, such as the state of being awake or asleep).
7
 In a comprehensive effort, we 

reviewed the quality of 967 studies 
1–4

 that validated the results of at least 1 dimension of the 

24-h physical behavior construct. Reflecting the pace of technological advancements of 

wearable technology, most validation studies were published after 2011 (77.7%). Across all 

studies, the main target population was adults 18–64 years of age (68.1%), followed by older 

adults (≥65 years; 12.2 %), and children 8–13 years of age (10.9 %). Review of studies by 

age group showed a paucity of studies in adolescents compared to other age groups., which is 

a gap in the validation literature that should be addressed in future research. (For more details 

see Table 1 and published reviews 
1–4

).  

The overall quality of a study was evaluated using a modified version of the Quality 

Assessment of Diagnostic Accuracy Studies (QUADAS-2).
24

 In particular, the tool comprises 

4 domains (i.e., patient selection, index measure, criterion measure, and flow/timing). 

Following the QUADAS-2 guidelines, we selected a set of signaling questions for each 

domain and added questions modified from the QUADAS-2 background document based on 

core principles, recommendations, and expert statements for validation studies.
23–26

 Notably, 

since we are not aware of any further quality tools and signaling questions that had been 

published for wearable validation purposes, our selected criteria can serve as a starting point 

for future reviews. The risk of bias for each study was categorized into low risk (5.3%), some 

concerns (18.0%), or high risk (76.7%). One-third (31.5%) of all studies were rated as high 

risk, because the selected wearables were not validated against a criterion measure aligned 
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with recommended gold standards,
23

 such as indirect calorimetry (28.7%), video recordings 

(20.1%), or polysomnography (13.7%). Further characteristics of the existing studies are 

illustrated in Fig. 2. Most studies were conducted with a focus on the intensity dimension, 

with some low-risk studies for both settings (laboratory and free-living) and target groups 

(children/adolescents and adults). The dimension of biological state had a lower overall 

number of studies, and no studies in the laboratory setting were classified as low risk. In 

contrast, studies focusing on posture and activity types in children were only conducted in 

laboratory settings, with high-risk studies dominating; only a limited number of low-risk 

studies and some concerning studies were available.  

The status quo of the quality of validation studies is considered critical: There are no existing 

regulatory mechanisms or guidelines for the technical validation of a wearable to assess either 

the whole 24-h physical behavior construct or for single dimensions. Furthermore, it is 

concerning that many previous validation studies are considered to be low quality due to bias. 

 

Fig. 2. Quality of the validation protocols categorized by 3 dimensions, settings, populations, 

and target groups. The number of studies is indicated by the size of the circle or square. Free 

= free-living; Lab = laboratory 
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Table 1. Statistical summary of 967 published validation studies, categorized for each dimension of the 24-h physical behavior construct.  

 
Total  

Intensity  Posture/activity type  Biological state 

Laboratory Free-living  Laboratory Free-living  Laboratory Free-living 

Target group          

Pre-school children (≤4 

years) 
17  6 

 
1 2 

 
4 4 

School children (5–12 

years) 
138 63 38 

 
10 8 

 
12 7 

Adolescents (13–17 years) 36 16 7  2   9 2 

Adults (≥18 years) 808 420 154  70 36  80 48 

Study location          

Africa 4 1 2  --- ---  1 --- 

Asia 67 33 15  1 3  9 6 

Europe 382 175 89  54 29  19 16 

North America 456 252 86  19 11  58 30 

Australia/Oceania 105 44 12  14 5  22 8 

South America 6 5 1  --- ---  --- --- 

Number of participants          

≤19 278 110 50  32 26  18 42 

20–50 664 331 114  45 20  59 95 

≥51 181 69 42  11 2  28 29 

Sex assigned at birth 

(female, %) 
   

 
  

 
  

0–25 103 42 24  11 7  13 6 

26–74 737 370 147  61 30  80 49 

75–100 122 62 25  13 8  9 5 

Criterion measure a          

Doubly labeled water 57 --- 57  --- ---  --- --- 

Indirect calorimetry 283 267 8  8 ---  --- --- 

Observation (direct) 173 128 14  26 4  1 --- 

Observation (video) 210 129 6  53 19  1 2 

Polysomnography 132 --- ---  --- ---  101 31 

Questionnaire/diary 21 1 7  --- 4  1 8 

Wearable 198 45 114  4 19  --- 16 

Outcome b          

Sleep time/metrics 166 --- ---  --- ---  106 60 

Different postures/types  125 --- 1  88 36  --- --- 

Intensity time (SB) 48 10 38  --- ---  --- --- 

Intensity time (LPA) 34 10 24  --- ---  --- --- 

Intensity time (MVPA) 70 18 52  --- ---  --- --- 

Energy expenditure  348 255 93  --- ---  --- --- 
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a Criterion measures that were not listed but identified through the review process: Heart telemetry (n = 1); 3-dimensional gait analysis (n = 1); Direct calorimetry (n = 1); Observation ( images  n = 

2); Compendium (n = 4); EEG or Zmachine (n = 4). 

b Outcomes that were not listed but identified through the review process: Sit-to-Stand transitions (n = 5); Time spent in physical activity (n = 6); Time spent in walking/active (n = 3). 

Abbreviations:  LPA = low intensity physical activity ; MVPA = moderate to vigorous intensity physical activity;   SB =   sedentary behavior.

Steps 359 268 91  --- ---  --- --- 

Counts 64 47 16  --- 1  --- --- 
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Ideally a wearable undergoes a structured validation process, from manufacturing to its 

implementation in applied studies. A phase-based validation framework
23

 serves as a starting 

point with both fixed and semi-structured protocols in the laboratory (Phase II) as well as in 

naturalistic conditions (Phase III), where participants can engage in their natural everyday 

physical behaviors. The framework establishes the foundation for a validation process in 

which high-quality protocols should be embedded. Toward this end, we selected issues 

warranting further discussion to enhance the quality of validation protocols (i.e., wearing 

position, criterion measurement, validated outcomes, sample size, statistical analyses) and 

issues pertinent to improving the validation process (i.e., replication of studies, access to raw 

data, the release of a new version). We would like to remark that our suggestions are based on 

published reviews, expert statements, and core principles,
1–4,23,25,26

 but should not be viewed 

as direct evidence-based recommendations. 

3. Issues that researchers should consider to improve the quality of a validation protocol 

3.1 The importance of the criterion measure.  

In 68.5% of all studies, wearables were validated against a criterion measure aligning with 

recommended gold standards,
23

 such as indirect calorimetry, video recordings, or 

polysomnography. We identified substantial differences between the percentages of studies 

including gold-standard criterion measurements in the laboratory (77.3% protocols) and under 

free-living conditions (40.2% protocols). For example, a considerable number of studies 

(19.4%) compared wearables with each other, evaluating concurrent validity rather than 

assessing criterion validity against a ground truth. This is particularly problematic if the 

device used for comparison has not been validated for the specific target group, setting, and/or 
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outcome of interest. Therefore, to promote high-quality protocols, recommended gold 

standard measures must be used.
23

 However, researchers should be aware that the integration 

of gold standard methods is sometimes accompanied by massive efforts (e.g., observation in 

the laboratory or counting video-recorded steps) and high costs (e.g., doubly labeled water 

method) and, especially in free-living protocols, is often difficult to apply in larger samples. 

Importantly, the complex nature of human movement
27

 implies that researchers in the field 

have not yet agreed on a universal gold standard. This neglect is plausibly attributable to the 

challenge of capturing the physics of physical behavior vs. the physiology of physical 

behavior (i.e., the behavior vs. the physiological response). In other words, the physical 

behavior can be captured partly by using, for example, accelerometers or motion capture 

systems, whereas the physiology can be assessed partly by using measures such as maximum 

oxygen uptake or lactate. 

There is a scarcity of studies that include multiple aspects of physical behavior and criterion 

measures. The majority of protocols were designed to validate an intensity parameter, such as 

energy expenditure or steps (71.7%). This was followed by validations for biological state 

outcomes (16.3%) and posture/activity type parameters (13.6%). Across all devices analyzed, 

we identified 23 wearables that validated parameters from each domain (see asterisk in Fig. 

1). The 24-h physical behavior construct has started gaining more attention in the 

community.
28

 During the review process, we did not account for the detection of wear and 

non-wear time as a critical characteristic of 24-h physical behavior analyses. Here, 

compositional data analyses
29

 offer valuable insights into the association between 

compositions of 24-h physical behavior and health parameters. Consequently, researchers 

might be interested in using a single device capable of collecting all domains simultaneously 

rather than employing a multisensor system from different brands. However, researchers may 

be interested in using a multisensor system—for example, combining different sensors such as 

acceleration, gyroscope, heart rate, electrocardiograph, electrodermal activity, and global 
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positioning system. If researchers are interested in capturing the 24-h physical behavior 

construct by using a single device, we encourage research endeavors to expand the protocols 

to validate different outcomes (e.g., postures and steps) within a single protocol, thus pooling 

resources.
23

 

3.2 Planning the sample size.  

Most studies recruited sample sizes ranging from 20 to 50 participants (59.0%). 

According to recommendations from the INTERLIVE network,
30

 the sample size should 

be determined by an a priori power estimation, or, if previous data are not available, by 

recruiting at least 45 participants. Since the objective of validation studies is usually to 

yield generalizable results, larger and more heterogeneous samples are required. Most 

importantly, the sample of the validation study must be representative for the target 

population of interest. We encourage researchers to conduct an a priori power analysis 

and to recruit heterogeneous samples with respect to factors such as age, sex, race, body 

mass, and atypical gait patterns, thereby facilitating potential subgroup analyses. 

3.3 Economizing resources and integrating more wearing positions and brands.  

In 57.2% of all validation studies, researchers validated a single device against a criterion 

measure, with wrist and hip/waist being the most common wearing positions (Fig. 3). 

According to recommendations, wrist placement is preferred for detecting wake and sleep 

states due to small movements at the distal extremities in a supine position.
31

 Moreover, wrist-

worn devices are prone to enhance compliance due to the possibility of receiving real-time 

feedback. The hip placement is effective for proximity to the center of mass, capturing gross 

muscle movements like walking or running, and detecting body acceleration and 

deceleration.
32

 Further, thigh placement is currently the most promising position for 

accurately capturing all posture/activity types.
7
 However, with advancements in artificial 

intelligence, it is increasingly possible to derive sleep and physical activity phenotypes from 
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sensor data. For example, a recent study across 700,000 person-days of wearable data 

revealed the potential of self-supervised learning approaches for human activity recognition 

even in data with limited labeling or where good sampling coverage is hard to achieve.
33

 

Notably, researchers identified large differences while comparing activity parameters from 

different sensor positions.
16

 Considering these factors and the economic use of resources, 

researchers might consider adding 3 or 4 brands of wearables or different wearing positions of 

the same brand to enable comparisons between different wearables and positions.
23

 

 

 

Fig. 3. The 6 most validated wearing positions and the number of devices tested at the 

respective wearing position, as well as the distribution of the number of studies for each 

domain of the 24-h physical behavior construct (i.e., red: intensity; yellow: posture/activity 

types; blue: biological state). 

3.3 The choice of appropriate statistical analyses.  
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Most studies analyzed the data on an aggregated person level by using Bland-Altman 

analysis, correlations, t tests, and analyses of variance. Further approaches, such as 

equivalence testing, are recommended.
23,34

 For example, Dixon et al.
35

 provided principles 

of equivalence testing for various scenarios and indicated that an equivalence zone of 

±15% is applicable for comparing criterion measures with wearable measures. In addition 

to these analyses, higher data granulation (e.g., epoch-by-epoch comparisons) focusing on 

higher data resolution (e.g., seconds) can provide valuable insights into within-device 

differences from moment to moment. A device might be valid on an aggregated day-level 

scale but at the same time reveal a lack of validity on min-by-min evaluations. In line with 

recently published recommendations,
36

 we emphasize that researchers conduct a set of 

analyses, including equivalence testing alongside bias testing (i.e., Bland-Altman), 

difference of means, mean absolute percentage error, and—whenever possible—epoch-

by-epoch analyses. 

4. Issues around the big picture of a phase-based validation process 

4.1 There is a need for replication of validation studies.  

We found that out of 391 wearables, 193 were included only once in a validation process. 

Additionally, only 25 devices were validated for both the children/adolescents and the adults 

target group across both laboratory and naturalistic conditions. In particular, we identified a 

lack of protocols conducted under naturalistic compared to laboratory conditions. The 

naturalistic part of the validation process encompasses short duration and spontaneous 

activities and behaviors performed in a way that is natural for the subject. By this, a more 

accurate representation of physical behavior during daily life is offered. Researchers should 

be aware that a wearable tested only under standardized laboratory conditions does not 

provide insights into the responsiveness of changes between physical behaviors.
37

 Before 

using a wearable in applied studies, researchers may ensure that the wearable has been tested 
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under both laboratory and naturalistic conditions. Optimally, the results of those studies 

would be further replicated by an independent research team, resulting in 4 different high-

quality validation studies.  

4.2 Access to raw data is a key aspect of data reproducibility.  

Only 31.1% of all studies reported the algorithm of the validated outcome (e.g., reported 

as a formula or at least provided further information). Moreover, most of those studies that 

reported algorithms validated research-grade devices and focused on biological state 

outcomes. A key quality aspect of reproducibility is providing transparent information 

about the devices used (i.e., all data processing steps, analytical approaches, and updates 

of algorithms). An example of variability in sensor specification is the diverse and non-

harmonious ways of preprocessing data across the devices. In particular, different 

possibilities for signal processing raw data (e.g., rectifying, extracting low- and high-

signal frequency) and transferring those signals into metrics are presented in the literature 

(e.g., counts,
38

 movement acceleration intensity,
39

 euclidian norm minus one,
40

 or mean 

amplitude deviation
41

). A further notable challenge arises when algorithms are "black-

boxed," rendering them inaccessible to the public, and researchers are unable to report 

more information, which is often the case when applying consumer-grade devices. This is 

not surprising since the primary aim of consumer device companies is to sell devices and 

keep the algorithm proprietary. However, this lack of information hinders the opportunity 

for refinement and optimization of the algorithms during the validation process. 

Optimally, researchers should have access to raw data or high-resolution feature data that 

are derived from the raw data. Furthermore, at the very least, comprehensive details of 

algorithms as well as the versions of the device and software should be made transparent. 

In this context and in line with the FAIR (Findability, Accessibility, Interoperability, and 
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Reusability) principle standards,
42

 transparency is a requirement for reproducibility, 

comparability, stacking of datasets, or creating norms.  

4.3 How to handle the release of a new version or series of a brand. 

Across all studies, we found 391 devices from 166 different brands. Specifically, 

regarding fitness trackers and smartwatches such as Fitbit, we identified 18 series and 

models, highlighting the considerable challenges posed by the short life cycles of 

commercial-grade products. Notably, a new version of the Fitbit Inspire was released in 

less than 2 years. However, validating and adopting a new series of wearables in less than 

2 years is deemed unrealistic, given the typically slower progress of research studies. As a 

potential solution, we refer to the prerequisite mentioned in point 2: Transparent provision 

of information by companies regarding all wearable and algorithm details. If the new 

series has not changed from the technical and algorithm side, we would suggest 

replicating the findings under naturalistic conditions and skipping the remaining phases of 

the validation framework. Challenges to and recommendations for improving validation 

processes and protocols of wearables to assess 24-h physical behavior are summarized in 

Fig. 4.  
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Fig. 4. Summary of key messages for the validation process and high-quality protocols. 

5. A future scenario of wearables validation for the assessment of 24-h physical behavior 

At the moment, no organization or institution is responsible for the regulatory mechanisms of 

the technical validation of wearables. Therefore, from our point of view, there is an imbalance 

between the important task of validation, the responsibility for it, and its allocated resources. 

For example, validation studies under naturalistic settings require the time-consuming process 

of labeling gold-standard criterion measures such as video recording. The launch of an open 

science initiative is a promising way to overcome this challenge. 

Therefore, we launched the website http://www.wearable-landscape.info, which summarizes 

all validation protocols from our published reviews
1–4

 and serves as a source of information 

on previous validation studies. The website will evolve into a living review, ensuring ongoing 

updates through periodic literature searches. We envision it becoming a central point for 

resource pooling within the scientific community. This could involve building a network for 

planning upcoming validation studies, where researchers can upload protocols and the 

community can receive alerts, fostering collaborations in resource-sharing, equipment 
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provision, studies conducted at various locations, and joint data analysis or pre-processing 

efforts.  

Global trends of inactivity are projected to rise persistently over time,
43

 heightening the 

relevance of 24-h physical behavior surveillance. Activity prescriptions by a physician or a 

healthcare system that integrates wearables (e.g., pay-as-you-live) is a conceivable reality. 

Fortunately, wearable technologies and their widespread accessibility to the public can help to 

tackle health issues. These devices have already transformed how we conduct research on, 

prescribe, and monitor 24-h physical behavior, offering the potential to advance and translate 

our understanding of how physical behaviors influence health conditions.
13

 While we 

recognize great potential in wearable technology for the assessment of 24-h physical behavior, 

the rapid development and wide range of devices and algorithms should not overshoot 

rigorous technical validation, which is a critical prerequisite for expedient wearable 

application. In line with ongoing discussions on improving the validation and trustworthiness 

of digital health products, Mathews et al.
44

 stress the need to distinguish the quality and value 

of digital health solutions. The call for a robust and transparent validation process for digital 

health products is directly applicable to the acquisition of 24-h physical behavior via 

wearables. Therefore, we encourage the scientific community and companies to collaborate, 

promoting openness and transparency with respect to the presentation of algorithms. This 

collaborative approach is essential to realize the full potential of open science toward valid 

wearables for everyone. 
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