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processes b → cūd and b → cc̄s, which constitute the dominant decay channels in standard
model predictions for B-meson lifetimes within the heavy quark expansion. We consider the
contribution from the four-quark operators O1 and O2 in the ∆B = 1 effective Hamiltonian.
The decay rates are obtained from the imaginary parts of four-loop propagator-type diagrams.
We compute the corresponding master integrals using the “expand and match” approach which
provides semi-analytic results for the physical charm and bottom quark masses. We show
that the dependence of the decay rate on the renormalization scale is significantly reduced
after including the next-to-next-to-leading order corrections. Furthermore, we compute
next-to-next-to-leading order corrections to the Cabibbo-Kobayashi-Maskawa-suppressed
decay channels b → uc̄s and b → uūd.
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1 Introduction

Bound states of quarks and anti-quarks in the form of hadrons are commonly observed in
collider experiments. Their lifetimes are among the most important quantities to obtain
insights into the fundamental interactions of elementary particles. In this paper we consider B

mesons which contain a heavy b quark or anti-quark and a lighter quark u, d or s. Their decay
is governed by the weak interaction of the b quark. The theoretical framework describing
the decay rates of inclusive decays of hadrons containing a heavy quark is the heavy quark
expansion (HQE). Lifetimes, which are the inverse of the total decay width, can be calculated
in the HQE as a double series expansion in ΛQCD/mb and the strong coupling constant
αs. The first term in the ΛQCD/mb expansion describes the decay of a free bottom quark
within perturbative QCD (for reviews see [1, 2]). The leading term is complemented by
power-suppressed contributions involving matrix elements of higher-dimensional operators.
Global fits [3, 4] of B → Xcℓν̄ℓ data measured at B factories provide the numerical values
for the matrix elements involving two-quark operators, like the kinetic and chromo-magnetic
terms µ2

π and µ2
G. Lifetimes depend also on matrix elements of four-quark operators, which

can be estimated by HQET sum rules [5, 6] or calculated on the lattice [7, 8].
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At leading order in ΛQCD/mb, the total decay width Γ(Bq) is given by the sum of the
semileptonic decay channels b → cℓν̄ℓ, with ℓ = e, µ, τ , the nonleptonic channels b → cūd,
b → cūs, b → cc̄d and b → cc̄s, as well as other CKM suppressed and rare decay modes. For
reviews we refer to refs. [1, 2]. Next-to-next-to-leading order (NNLO) corrections to the
semi-leptonic decay rate have been computed a few years ago [9–12]. More recently also
the O(α3

s) corrections [13–15] became available, even for the kinematic moments without
experimental cuts [16].

The nonleptonic decays of B mesons are most conveniently described with the help
of the ∆B = 1 effective Hamiltonian [17–19] governing the low-energy dynamics at the
renormalization scale µb ∼ mb. For them only next-to-leading order (NLO) corrections are
currently available [20–26]. At NNLO there are only partial results from ref. [27] where only
one of the relevant four-quark operators has been considered. Furthermore, no resummation
of the large logarithms log(MW /mb) due to the running from the electroweak scale to the
scale of the B meson mass has been performed.

On the basis of all currently available correction terms, one obtains the following results
for the B meson decay rates [28]

Γ(B+) = 0.58+0.11
−0.07 ps−1 ,

Γ(Bd) = 0.63+0.11
−0.07 ps−1 , (1.1)

with an uncertainly of almost 20%. It is by far dominated by the renormalization scale
dependence of the free-quark decay. The uncertainties arising from CKM elements and quark
mass values are significantly smaller. For this reason, the current state-of-the-art calls for a
determination of NNLO corrections to nonleptonic decays in the free quark approximation,
including an appropriate choice of the short-distance mass scheme for the heavy quarks.
In this work, we aim to address this gap by providing results for the NNLO corrections
to the nonleptonic decay of a free quark, where the charm and bottom quark masses are
renormalized on-shell. We take into account finite charm and bottom quark masses and
consider the so-called current-current operators O1 and O2, which provide the dominant
contribution to the decay width. We will show that the µb dependence is significantly reduced
once the NNLO corrections are included. For an update of the decay widths in eq. (1.1) it
is necessary to consider other renormalization schemes for the quark masses. Furthermore,
one has to properly combine all decay channels and incorporate the known power-suppressed
terms [29–34]. This is postponed to a future publication [35].

The paper is organised as follows: in section 2 we set up the notation, introduce the
effective Hamiltonian and the operators O1 and O2. We discuss in particular how to apply
naive dimensional regularization and use anticommuting γ5. This is crucial in order to adopt
the same prescription utilized in the calculation of the NNLO anomalous dimensions of O1
and O2 [17, 36]. The detail of the calculation of interference terms up to O(α2

s) and the
evaluation of the four-loop master integrals are presented in section 3. We also discuss in
details the role of evanescent operators in the calculation. In section 4 we combine our
predictions for the squared amplitudes up to O(α2

s) with the NNLO Wilson coefficients
evaluated at the low-scale µb ∼ mb and give results for the rate of the different channels. We
conclude in section 5. In the appendix A, we provide additional details about the operator
renormalization. Appendix B reports our estimate of the strange-quark mass effects.
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2 Framework

We describe the nonleptonic decays of a bottom quark governed by weak interactions using
the effective Hamiltonian

Heff = 4GF√
2

∑
q1,3=u,c

∑
q2=d,s

λq1q2q2

(
C1(µb)Oq1q2q3

1 + C2(µb)Oq1q2q3
2

)
+ h.c. , (2.1)

where λq1q2q3 = Vq1bV
⋆

q2q3 are the corresponding CKM matrix elements and Ci(µb) are the
Wilson coefficients for the ∆B = 1 effective operators evaluated at the renormalization scale
µb ∼ mb. The current-current operators Oq1q2q3

i are given by [17, 18]

Oq1q2q3
1 = (q̄α

1 γµPLbβ)(q̄β
2 γµPLqα

3 ),

Oq1q2q3
2 = (q̄α

1 γµPLbα)(q̄β
2 γµPLqβ

3 ) , (2.2)

where α and β refer to colour indices. We will refer to such operator definition as the historical
basis. For simplicity, we will ignore the penguin operators whose contributions to the rate
are suppressed due to the numerically small Wilson coefficients. Another common operator
choice is the so-called Chetyrkin-Misiak-Münz (CMM) basis [37], in which the operators are

O
′ q1q2q3
1 = (q̄1T aγµPLb)(q̄2T aγµPLq3),

O
′ q1q2q3
2 = (q̄1γµPLb)(q̄2γµPLq3), (2.3)

where T a are the generator of the SU(3) colour group. The CMM basis was introduced to
consistently use fully anticommuting γ5 at any number of loops in the evaluation of the
QCD corrections to b → sγ and b → sℓℓ decays. However, this feature breaks down for the
processes considered in this article and the historical basis turns out to be more convenient
for our calculation, as explained below. Moreover, the historical basis is the default choice
in many phenomenological studies [1, 2, 28, 33, 38].

In our study, we treat the bottom and the charm quark as massive with mass mb and
mc, respectively, while all other quarks are considered massless (mu,d,s = 0). We then divide
the nonleptonic decays into three classes based on the flavour indices of O1 and O2:

(i): Three massless quarks in the final state, i.e. q1q2q3 = udu, usu.

(ii): One charm quark and two massless quarks (q1q2q3 = cdu, csu, udc, usc).

(iii): Two charm quarks and one massless quark (q1q2q3 = cdc and csc).

In the following, we will focus on the CKM-favoured decays b → cūd and the CKM-suppressed
mode b → uc̄s as representatives for case (ii). For case (iii) we consider b → cc̄s. Case (i)
can be obtained from the mc → 0 limit of the other two, however it requires the additional
calculation of the finite charm-mass effect originating from closed charm-loop insertion into a
gluon propagator (see the sample diagram in figure 1(i)). We will refer to this kind of effect
as the Uc contribution. Note also that our NNLO results will include (small) contributions
associated to the production of an addition c̄c pair from gluon splitting, e.g. b → cūd(g⋆ → c̄c).
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To calculate the inclusive decay width, we use the optical theorem and evaluate the
imaginary part of forward scattering amplitudes for an on-shell bottom quark up to NNLO. For
a definite flavour content of the operators, the contribution to the decay rate can be written as

Γq1q2q3(ρ)= 1
mb

∑
i,j=1,2

(4GF |λq1q2q3 |√
2

)2

C†
i (µb)Cj(µb)Im i

∫
d4xeiqx ⟨b|T

{
O†q1q2q3

i (x)Oq1q2q3
j (0)

}
|b⟩
∣∣∣∣∣
q2=m2

b

, (2.4)

where ρ = mc/mb. As a consequence, at LO the imaginary parts of two-loop diagrams have
to be computed and at NLO and NNLO, three- and four-loop diagrams have to be considered,
see figure 1. For b → cc̄s and b → uūd, besides the corrections in which the LO diagram in
figure 1(a) is dressed with additional gluon lines, there are also contributions at order O(αs)
and O(α2

s) due to the insertions of the operators O1,2 into penguin diagrams like figure 2.
These kind of corrections of O(αs) were studied in [26, 39, 40] and shown to be numerically
much smaller than the O(αs) corrections arising from diagrams like figure 1(b). We postpone
the evaluation of this class of penguin-like diagrams to a subsequent publication since they
require a special treatment of cut Feynman integrals.

Due to the presence of γ5 a straightforward use of naive dimensional regularization
(NDR) is not possible. Starting from NLO there are traces with one γ5 matrix that must be
evaluated in d = 4− 2ϵ dimensions (see e.g. the diagram in figure 1(b)). For the calculation
of the anomalous dimension (and thus the renormalization constants needed for the operator
mixing) anticommuting γ5 has been used [17, 36]. Thus we would like to apply the same
prescription in our calculation.

In order to use anticommuting γ5, we apply a method similar to the one discussed in
section 2.3 of ref. [22]. Instead of eq. (2.4), let us consider

Γ̃q1q2q3(ρ)= 1
mb

∑
i,j=1,2

(4GF |λq1q2q3 |√
2

)2

C̃†
i (µb)Cj(µb)Im i

∫
d4xeiqx ⟨b|T

{
Oq2q1q3 †

i (x)Oq1q2q3
j (0)

}
|b⟩
∣∣∣∣∣
q2=m2

b

. (2.5)

Note the different ordering of the quark flavour indices in the first operator, i.e. q2q1q3 instead
of q1q2q3. Here, C̃i(µb) is the Wilson coefficient of the operator Oq2q1q3

i . The forward scattering
matrix defined by Γ̃q1q2q3 leads to only one trace of gamma matrices containing an odd number
of γ5. This is easily seen from figure 3 where the effect is illustrated. Since the width is
parity-even, the trace containing exactly one γ5 can be discarded at any order in perturbation
theory, while in case we encounter two γ5 in the same trace we apply anticommuting γ5.
This means that for Γ̃q1q2q3 we can use NDR and the renormalization constants known from
the literature. If we had considered Γq1q2q3 , we would have encountered the product of two
traces with one γ5 each, which in general can give a parity-even contribution. This is shown
in the NLO diagram on the left in figure 3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Example of Feynman diagrams contributing to the forward scattering amplitude in eq. (2.4)
at order α0

s (LO), αs (NLO) and α2
s (NNLO). The dot pairs denote insertions of the effective operators

and highlight how fermion flows are contracted. Thin, bold and double bold lines denote massless,
charm and bottom propagators.

(a) (b) (c)

Figure 2. Example of Feynman diagrams with penguin topology at NLO and NNLO.

In the next step we recover the expression for Γq1q2q3 from Γ̃q2q1q3 . In four dimensions
the operators Oq2q1q3

1 and Oq1q2q3
2 are connected by a Fierz transformation:1

Oq1q2q3
1 = (q̄α

1 γµPLbβ)(q̄β
2 γµPLqα

3 ) = (q̄α
2 γµPLbα)(q̄β

1 γµPLqβ
3 ) = Oq2q1q3

2 , (2.6)

and similarly Oq1q2q3
2 = Oq2q1q3

1 . This implies

Γq1q2q3(ρ) = Γ̃q2q1q3(ρ)
∣∣∣
C̃1→C2, C̃2→C1

. (2.7)

1We include also the factor −1 for anti-commuting fields.
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b b

q1

q3

q2

Oq1q2q3
j Oq1q2q3 †

i
b

q2

Oq1q2q3
j Oq2q1q3 †

i
b

q1

q3−→

Figure 3. Illustration of the Fierz transformation on a diagram at NLO. In contrast to the
diagram on the left contributing to Γq1q2q3 in eq. (2.4), the one on the right can be computed using
anticommuting γ5.

Fierz identities in general are not valid for d ̸= 4, however, the Fierz symmetry can be
restored order by order in perturbation theory by renormalization using anticommuting
γ5 and a suitable definition of the evanescent operators [17]. We will discuss in detail
the renormalization and the evanescent operator scheme in section 3.3. In conclusion, our
strategy for obtaining the NNLO prediction for Γq1q2q3 is to calculate Γ̃q1q2q3 and to adopt a
renormalization scheme which preserves eq. (2.7) up to O(α2

s).

3 Technical details

In this section we provide details for the calculation of the squared amplitude, the master
integrals and the renormalization scheme adopted for the effective operators in eq. (2.2).

3.1 Generation of the amplitude

For our calculation we use a well-tested chain of programs which allows for a high degree of
automation. We us qgraf [41] for the generation of the amplitude and tapir [42] for the
translation to FORM [43] code and the identification of the underlying integral families. The
program exp [44, 45] performs the mapping of the amplitudes to the integral families and
prepares them for further processing with FORM. After applying projectors and decomposing
the reducible numerator factors in terms of denominators, we obtain for each family a list of
scalar integrals for which we need a reduction to so-called master integrals. For the decay
channels with up to one charm quark in the final state at LO we perform the calculation
for general QCD gauge parameter keeping linear terms and check that it drops out at the
level of the renormalized amplitude. For the channel b → cc̄s we choose Feynman gauge
since the reduction is significantly more expensive.

We employ the program Kira [46] in combination with Fermat [47] and FireFly [48, 49].
for the reduction to master integrals, which is organised in two steps. First, we generate
(for each family) reduction tables for seed integrals with up to two dots and one scalar
product up to the top-level sector. These reduction tables serve as input for the program
ImproveMasters.m [50] to search for a good basis, i.e. a master integral basis where the
dependence on the kinematical quantity ρ and on the dimension d factorizes in all denominators.
In the second step, we perform the reduction of the integrals needed for the amplitude onto
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Figure 4. Samples of four-loop master integrals. Black and red solid lines represents massive
propagator with mass mb and mc, respectively, while dashed lines are massless propagators.

the good basis that we found. We use Kira also for the minimization of the master integrals
among all families. For the process b → cūd we find 321, for b → cc̄s 527 and for UC 21
master integrals. The calculation of the amplitudes for b → uc̄s can be mapped to the
same families as b → cūd.

3.2 Computation of the master integrals

The master integrals at LO and NLO are calculated analytically. For both channels b →
cūd and b → cc̄s, we establish a set of differential equations for the master integrals by
differentiating them with respect to ρ. Afterwards, we use the programs Canonica [51] and
Libra [52] (the latter implements Lee’s algorithm [53]) to find a suitable basis transformation
such that the masters in the new basis satisfy a set of differential equations in canonical
form [54]. The boundary conditions to the differential equations are obtained using the
auxiliary mass flow method [55, 56] as implemented in AMFlow [57]. We numerically compute
all master integrals at NLO at a regular value of ρ with about 150 digits, a precision sufficient
to reconstruct the boundary constants in terms of transcendental numbers using the PSLQ
algorithm [58]. The master integrals for b → cūd are expressed through simple Harmonic
Polylogarithms (HPLs) [59] with ρ as argument. For the decay b → cc̄s, we apply the
change of variable

ρ = x

1 + x2 , (3.1)

to bring the system in canonical form. The solution is expressed in terms of iterated integrals
over the letters x, 1 + x, 1 − x, 1 + x2, 1 − x + x2 and 1 + x + x2, which are also known
as cyclotomic harmonic polylogarithms [60]. After factorizing the letters over the complex
numbers, we can express the results in terms of generalized polylogarithms (GPLs) [61, 62].

At four-loop order we exclusively use the “expand and match” method [63–66] which
provides semi-analytic results for the master integrals in the form of expansions around
properly chosen points with numerical coefficients. We use “expand and match” at LO

– 7 –
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and NLO as cross check for the analytic result. At NNLO the application to the subset of
master integrals which already contribute the semileptonic decay rate is described in detail in
ref. [67]. In the following we concentrate on a brief summary and on the additional features
present in the hadronic decay rate. In principle we could concentrate on the physical region
with mc/mb ≈ 0.3. However, for b → cūd and UC we want to cover the whole region for
0 ≤ mc/mb ≤ 1 so that our results can also be applied to other physical situations. In the
case of b → cc̄s, which is computationally much more demanding, we construct expansions
which provide precise results for 0 ≤ mc/mb ≲ 0.4.

One of the ingredients for “expand and match” are the differential equations for the
master integrals in the variable

ρ = mc

mb
. (3.2)

Let us stress that the system of differential equations does not have to be in a particular
form; in particular it is not necessary to bring it into a canonical form [53, 54]. However, the
computational time can be reduced in case the occurring denominators have a simple structure.

We denote the positions of the poles in the differential equation as singular points. In
general, such branch cut points in the complex plane reflect physical thresholds. Some of the
singularities are also spurious and no divergent behaviour is observed in the amplitude. All
other points are called regular since there the master integrals have usual Taylor expansions.

As further ingredient, we need boundary conditions in the form of analytic or high-
precision numerical results for the master integrals at a regular point of the differential
equation. In our application we obtain the numerical boundary conditions with the help of
AMFlow [57], typically requesting 80 digits. For b → cūd we evaluate them for ρ = 1/4, for
b → cc̄s at ρ = 1/5 and ρ = 1/3, and for UC at ρ = 1/3.

The basic idea of “expand and match” is to construct truncated expansions around regular
or singular points with the help of the differential equations and match them numerically at
intermediate ρ-values. The first expansion point coincide with the value where the boundary
conditions are computed.

At four-loop order we have singular points for those values of ρ corresponding to the
thresholds for the production of one, two, three or four charm quarks. For the various
channels we have:

ρsingular ∈ {0, 1/3, 1} for b → cūd ,

ρsingular ∈ {0, 1/4, 1/2} for b → cc̄s ,

ρsingular ∈ {0, 1/2} for UC . (3.3)

In the “expand and match” approach, usually the expansions around singular points
are necessary in order to connect the solutions above and below the singularity. In order
to improve the precision one can complement the list of expansion points by regular points.
In our case we choose

ρ0 ∈ {0, 1/4, 1/3, 1/2, 7/10, 1} for b → cūd ,

ρ0 ∈ {0, 1/5, 1/3} for b → cc̄s ,

ρ0 ∈ {0, 1/3, 1/2, 7/10, 1} for UC . (3.4)

– 8 –
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The combination of the expansions provided for b → cūd and UC lead to a precise covering of
the whole range for ρ ∈ [0, 1]. In the case of b → cc̄s we can cover the physically interesting
region ρ ∈ [0.2, 0.4] with high precision. Furthermore, as we will see below, both Taylor
expansions agree at the singular point ρ0 = 1/4 to about 15 digits and thus the computation
of the expansions around ρ0 = 1/4, which is computationally quite expensive, can be avoided
for practical purposes. Nonetheless, also for b → cc̄s we provide for convenience an expansion
around the massless charm quark limit.

Let us briefly discuss the different ansätze which we have to use for the different expansion
points. They have to incorporate the respective physical situation and contain logarithms
and/or square roots.

For regular points ρ0 the ansatz for the master integral Ii is a simple Taylor expansion
and it is given by

Ii(ρ, ϵ) =
ϵmax∑
j=−4

nmax∑
n=0

ci,j,nϵj (ρ − ρ0)n . (3.5)

For ρ0 = 0 a power-log expansion is needed which we parametrize as

Ii(ρ, ϵ) =
ϵmax∑
j=−4

j+4∑
m=0

nmax∑
n=0

ci,j,m,nϵj (ρ − ρ0)n logm (ρ − ρ0) . (3.6)

We can use this ansatz also for threshold singularities involving an odd number of particles.
For an even number of cut particles, the ansatz has to contain also square roots [68] and reads

Ii(ρ, ϵ) =
ϵmax∑
j=−4

j+4∑
m=0

nmax∑
n=nmin

ci,j,m,nϵj (ρ − ρ0)n/2 logm (ρ − ρ0) . (3.7)

We use this ansatz for ρ0 = 1/2.

3.3 Renormalization

In the following we discuss the renormalization scheme adopted for the operators O1 and
O2 to preserve the Fierz symmetry in eq. (2.7) up to NNLO.

In a first step we perform the usual parameter renormalization for the strong coupling
constant in the MS scheme with five active flavours and the charm and bottom quark masses
in the pole scheme. Furthermore, we also renormalize the wave function of the external bottom
quark in the on-shell scheme. It is important to expand the bare two- and three-loop correlators
to O(ϵ2) and O(ϵ), respectively, in order to obtain the correct constant terms at NNLO.

In a second step we take into account the counterterms originating from operator mixing
(see appendix A for details). This requires that in eq. (2.5) not only the physical operators
O1 and O2 are considered, but also evanescent operators [17, 69].

As shown in [17], Fierz symmetry can be restored order by order in perturbation theory by
requiring that the anomalous dimension matrix (ADM) γ̂, which governs the renormalization
group evolution of the Wilson coefficients C1 and C2, namely

µb
dCi

dµb
= γjiCj for i, j = 1, 2, (3.8)

– 9 –
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fulfils

γ11 = γ22, γ12 = γ21. (3.9)

We expand the ADM in series of αs:

γ̂ = γ̂(0) αs(µb)
4π

+ γ̂(1)
(

αs(µb)
4π

)2
+ γ̂(2)

(
αs(µb)
4π

)3
+ O(α4

s). (3.10)

The conditions (3.9) can be imposed order by order in αs by a proper definition of the
evanescent operators. At NLO, they are defined by [17]:

E
(1),q1q2q3
1 = (q̄α

1 γµ1µ2µ3PLbβ)(q̄β
2 γµ1µ2µ3PLqα

3 )− (16− 4ϵ)Oq1q2q3
1 ,

E
(1),q1q2q3
2 = (q̄α

1 γµ1µ2µ3PLbα)(q̄β
2 γµ1µ2µ3PLqβ

3 )− (16− 4ϵ)Oq1q2q3
2 , (3.11)

where we introduced the notation

γµ1...µN = γµ1 . . . γµN . (3.12)

While the ϵ-independent term in front of O1 and O2 on the r.h.s. of (3.11) is unique and
obtained by requiring that the evanescent operator vanishes for d = 4, the coefficients of O(ϵ)
and higher are in principle arbitrary. This leads to the well-known scheme dependence of the
ADM starting at NLO, which eventually cancels for physical observables against the scheme
dependence of the matching condition for the Wilson coefficients at the scale µW ≃ MW

and the matrix element of the effective operators at the low scale µb ∼ mb. The definition
in eq. (3.11) leads to the NLO anomalous dimension matrix

γ̂(1) =

−21
2 − 2

9nf
7
2 + 2

3nf

7
2 + 2

3nf −21
2 − 2

9nf

 , (3.13)

which preserves Fierz symmetry up to O(αs).
At NNLO we have to consider the following evanescent operators:

E
(1),q1q2q3
1 = (q̄α

1 γµ1µ2µ3PLbβ)(q̄β
2 γµ1µ2µ3PLqα

3 )− (16− 4ϵ + A2ϵ2)Oq1q2q3
1 ,

E
(1),q1q2q3
2 = (q̄α

1 γµ1µ2µ3PLbα)(q̄β
2 γµ1µ2µ3PLqβ

3 )− (16− 4ϵ + A2ϵ2)Oq1q2q3
2 ,

E
(2),q1q2q3
1 = (q̄α

1 γµ1µ2µ3µ4µ5PLbβ)(q̄β
2 γµ1µ2µ3µ4µ5PLqα

3 )− (256− 224ϵ + B1ϵ2)Oq1q2q3
1 ,

E
(2),q1q2q3
2 = (q̄α

1 γµ1µ2µ3µ4µ5PLbα)(q̄β
2 γµ1µ2µ3µ4µ5PLqβ

3 )− (256− 224ϵ + B2ϵ2)Oq1q2q3
2 . (3.14)

At O(α2
s) also O(ϵ2) terms must be considered in the coefficients multiplying Oq1q2q3

1 and
Oq1q2q3

2 in the evanescent operator definitions. By imposing that also the NNLO ADM γ(2)

fulfils eq. (3.9), we can fix the coefficient A2, B1 and B2. To this end, we take the expressions
for γ(2) in the CMM basis [36] and perform a transformation to the historical basis. For
simplicity we restrict ourself to O1 and O2, neglecting the penguin operators. We give more
details on the basis transformation in the appendix A. We find that the Fierz symmetry is

– 10 –



J
H
E
P
1
0
(
2
0
2
4
)
1
4
4

preserved by a one-parameter class of renormalization scheme defined by:

B1 = −4384
115 − 32

5 nf + A2

(
10388
115 − 8

5nf

)
,

B2 = −38944
115 − 32

5 nf + A2

(
19028
115 − 8

5nf

)
. (3.15)

We highlight two notable scheme choices. The first one is

A2 = −4, B1 = −45936
115 , B2 = −115056

115 , (3.16)

which gives a definition of E
(2)
1,2 independent on nf however with B1 ̸= B2. We adopt the

values in eq. (3.16) as reference scheme for the evanescent operators. All scheme dependent
quantities will be given relative to this choice. Another notable choice would be

A2 = +4, B1 = B2 = 1616
5 − 64

5 nf , (3.17)

which leads to the same coefficient for E
(2)
1 and E

(2)
2 at O(ϵ2). In principle, we could have

defined the evanescent operators E
(1)
1 and E

(1)
2 in a more general way with unequal coefficients

at order ϵ2, namely with A1 ̸= A2. In this case one would find a class of renormalization
schemes governed by two parameters instead of one. However we observe that the only
solution independent on nf still correspond to the case given in eq. (3.15), therefore for
simplicity we set A1 = A2, and verify that the dependence on A2 drops out in the total width.

With the evanescent operator definition in eq. (3.14), we compute at LO all correlators
which involve {O1, O2, E

(1)
1 , E

(1)
2 , E

(2)
1 , E

(2)
2 } and at NLO those with {O1, O2, E

(1)
1 , E

(1)
2 }. At

NNLO only the physical operators have to be considered. We compute the renormalization
constants of the operators up to O(α2

s) and check that after a basis transformation we
reproduce the known results in the CMM basis. Further details on the calculation of the
renormalization constants, and their explicit expressions, are given in appendix A.

Once all renormalization constants are taken into account, we arrive at a finite expression
for the decay rate up to NNLO. At this point it is straightforward to choose different
renormalization schemes for the quark masses.

One important cross check on the finite result is to verify that in the massless limit
the coefficients in front of C2

1 and C2
2 are equal up to O(α2

s). This is a consequence of
Fierz symmetry for the operators O1 and O2, whose contributions to the rate become
indistinguishable if all final-state quarks are massless. Notice that this is a necessary but not
sufficient condition for imposing Fierz symmetry in the renormalized results.

4 Results for the total rates

We present in this section our results for the squared amplitude up to O(α2
s) and combine

them with the perturbative expansion of the Wilson coefficient at the scale µb ∼ mb up to
NNLO. Let us write the decay rates in the following way:

Γq1q2q3 = Γ0

[
C2

1 (µb)Gq1q2q3
11 + C1(µb)C2(µb)Gq1q2q3

12 + C2
2 (µb)Gq1q2q3

22

]
, (4.1)
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where Γ0 = G2
F m5

b |λq1q2q3 |2/(192π3). For the sake of clarity, we omit in the following the
flavour indices for Gij . They can always be reconstructed from the context in which these
quantities are used. The functions Gij are the interference terms between the insertion of
the operators Oi and Oj . They depend on the mass ratio ρ and the renormalization scale
µb. Their perturbative expansion in αs is given by

Gij = G
(0)
ij + αs

π
G

(1)
ij +

(
αs

π

)2
G

(2)
ij + O(α3

s), (4.2)

where αs ≡ α
(5)
s (µb) is the strong coupling constant with nf = 5 active quarks at the

renormalization scale µb.

4.1 One massive quark: b → cūd

We report here the analytic expressions at LO and NLO (for µb = mb) of the interference
term for the decays with one massive charm quark in the final state: b → cūd and b → cūs.
Their analytic expressions written in terms of HPLs read

G
(0)
11 =G

(0)
22 = 3

2G
(0)
12 =3

(
1−8ρ2+8ρ6−ρ8−24ρ4H0(ρ)

)
. (4.3)

G
(1)
11 = 31

2 − 554ρ2

3 +554ρ6

3 − 31ρ8

2 +π2
(
−2+16ρ2+48ρ4− 16ρ6

3 +2ρ8

3

)

+
(
−62

3 +640ρ2

3 − 640ρ6

3 +62ρ8

3

)
H−1(ρ)+

(
62
3 − 640ρ2

3 +640ρ6

3 − 62ρ8

3

)
H1(ρ)

+
(
−96ρ2−120ρ4+32π2ρ4+992ρ6

3 − 124ρ8

3

)
H0(ρ)−

(
288ρ4+64ρ6−8ρ8

)
(H0(ρ))2

+
(
8−64ρ2−576ρ4−64ρ6+8ρ8

)[
H0,1(ρ)−H0,−1(ρ)

]
, (4.4)

G
(1)
22 = 31

2 − 550ρ2

3 +550ρ6

3 − 31ρ8

2 +π2
(
−2+64ρ3−32ρ4+64ρ5−2ρ8

)
+
(
−288ρ4−8ρ8

)
(H0(ρ))2+

(
−34

3 +128ρ2

3 − 128ρ6

3 +34ρ8

3

)
H−1(ρ)

+
(
34
3 − 128ρ2

3 +128ρ6

3 − 34ρ8

3

)
H1(ρ)+

(
−80ρ2−432ρ4+16ρ6

3 − 68ρ8

3

)
H0(ρ)

+
(
16+256ρ3+480ρ4+256ρ5+16ρ8

)
H0(ρ)H−1(ρ)−

(
16−256ρ3+480ρ4−256ρ5

+16ρ8
)
H0(ρ)H1(ρ)−

(
24+256ρ3+384ρ4+256ρ5+24ρ8

)
H0,−1(ρ)

+
(
24−256ρ3+384ρ4−256ρ5+24ρ8

)
H0,1(ρ) , (4.5)

G
(1)
12 =−17+1828ρ2

9 − 1828ρ6

9 +17ρ8−π2
(4
3+

32ρ2

3 − 128ρ3

3 +160ρ4

3 − 128ρ5

3 +32ρ6

3

+4ρ8

3

)
−
(
160ρ2

3 −352ρ4+1504ρ6

9 +376ρ8

9

)
H0(ρ)+

(116
9 +1088ρ2

9 − 1088ρ6

9

− 116ρ8

9

)
H1(ρ)+

(
−116

9 − 1088ρ2

9 +1088ρ6

9 +116ρ8

9

)
H−1(ρ)+

(32
3 +512ρ3

3
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+320ρ4+512ρ5

3 +32ρ8

3

)
H0(ρ)H−1(ρ)−

(
192ρ4−128ρ6+16ρ8

3

)
(H0(ρ))2

+
(
−32

3 +512ρ3

3 −320ρ4+512ρ5

3 − 32ρ8

3

)
H1(ρ)H0(ρ)+

(
−16−128ρ2− 512ρ3

3

−640ρ4− 512ρ5

3 −128ρ6−16ρ8
)

H0,−1(ρ)+
(
16+128ρ2− 512ρ3

3 +640ρ4− 512ρ5

3

+128ρ6+16ρ8
)

H0,1(ρ) . (4.6)

The HPLs are defined by

Hw1,w⃗(ρ) =
ρ∫

0

dtfw1(t)Hw⃗(t) , (4.7)

with the letters

f0(t) =
1
t
, f1(t) =

1
1− t

, f−1(t) =
1

1 + t
, (4.8)

and the regularization H0(t) = log(t). The functions needed at NLO can also be expressed
in terms of classical logarithms and polylogarithms:

H0(ρ) = log(ρ), H1(ρ) = − log(1− ρ), H−1(ρ) = log(1 + ρ),
H0,1(ρ) = Li2(ρ), H0,−1(ρ) = −Li2(−ρ) .

In the massless limit, the interference terms at NLO reduce to2

G
(1)
11 = G

(1)
22 = 31

2 − 2π2, G
(1)
12 = −17− 4π2

3 . (4.9)

For illustration we present in the following our numerical results for the NNLO interference
terms G

(2)
ij as a series expansion around ρ = 0 up to ρ7. For the numerical evaluation it is

more convenient to use the expansions close to the physical value of mc/mb. For the colour
factors, we insert their values in QCD and set nl = 3, nc = 1 and nb = 1, where nl denotes
the contribution from closed massless fermion loops while the nc and nb contributions arise
from closed fermion loops with masses mc and mb, respectively. Our results read:

G
(2)
11 = 13.4947− 24.6740ρ +

(
115.542− 625.679lρ + 8l2ρ

)
ρ2 + (−76.2198 + 210.552lρ)ρ3

+
(
1829.82 + 2820.10lρ − 1058.37l2ρ + 32l3ρ

)
ρ4 + (−74.0184 + 574.630lρ)ρ5

+
(
−2197.51− 12.1531lρ + 892.933l2ρ − 257.185l3ρ

)
ρ6

+ (−371.871 + 433.678lρ)ρ7 + O(ρ8), (4.10)

2Our coefficient G
(1)
12 differs from the result usually quoted from [20, 22]. In these articles part of the O(αs)

correction to the Wilson coefficients is reabsorbed into the interference terms, however we prefer to keep the
two corrections separated since they have different origin.
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Figure 5. The NLO (left) and NNLO (right) corrections to different combinations of Wilson
coefficients for b → cūd as defined in eq. (4.1) as functions of ρ = mc/mb for µb = mb.

G
(2)
22 = 13.4947− 24.6740ρ +

(
−2647.00− 1257.33lρ + 8l2ρ

)
ρ2 + (−2883.63− 3842.57lρ)ρ3

+
(
3403.78− 4764.59lρ − 777.272l2ρ + 32l3ρ

)
ρ4 + (−601.507− 2397.66lρ)ρ5

+
(
2833.10− 559.776lρ + 264.958l2ρ − 21.3333l3ρ

)
ρ6

+ (−440.110 + 57.8599lρ)ρ7 + O(ρ8), (4.11)

G
(2)
12 = − 72.8420− 16.4493ρ +

(
−279.953 + 63.3413lρ + 5.33333l2ρ

)
ρ2

+ (−3707.85− 2702.08lρ)ρ3 +
(
2164.12− 2197.00lρ + 2041.82l2ρ + 21.3333l3ρ

)
ρ4

+ (−888.121− 1177.33lρ)ρ5 +
(
1987.97− 4886.67lρ − 174.131l2ρ + 632.889l3ρ

)
ρ6

+ (846.185− 66.7025lρ)ρ7 + O(ρ8), (4.12)

where lρ = log(ρ). In eqs. (4.10) to (4.12) we present six significant digits for the numerical
coefficients and suppress tailing zeros. Note that in most cases we have a higher accuracy.

In figure 5 we show our predictions for the interference terms G
(n)
11 , G

(n)
12 and G

(n)
22 at

NLO (n = 1) and NNLO (n = 2) as a function of ρ = mc/mb with µb = mb. Both at NLO
and NNLO, the limit ρ → 0 is finite after renormalization, as expected from the cancellation
of mass singularities in inclusive observables. To this end, as discussed for the semileptonic
decay in [67], it is crucial to properly treat the master integrals around the singular point of
the differential equations ρ = 1/3. In particular, one has to take into account that there are
master integrals which have no imaginary part for ρ > 1/3. Finally we note that G11 and
G22 have the same limit for ρ → 0 both at NLO and NNLO as required by Fierz symmetry.
We remind that the expressions given for G

(1)
ij , G

(2)
ij and the plots in figure 5 are scheme

dependent, relative to our default choice of the evanescent operators in eqs. (3.14) and (3.16).
We can now turn to the prediction for the total rate Γcdu. We have to combine our

results for the interference terms up to NNLO and the perturbative expansion of the Wilson
coefficients at the low scale µb obtained with RGE at NNLO. The matching conditions for C1
and C2 in the historical basis can be obtained starting from those in the CMM basis [70] and
then performing a basis transformation (see appendix A.2, in particular eq. (A.21)). The
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i = 1 i = 2
C

(0)
i (µb) −0.2511 1.109

C
(1)
i (µb) 4.382 −2.016

C
(2)
i (µb) 36.63 −82.19

Table 1. Values of the Wilson coefficients C1(µb) and C2(µb) in the historical basis at LO, NLO and
NNLO at the scale µb = 4.7GeV. The matching scale is µW = MW .

explicit expressions in the historical basis with anticommuting γ5 read [36, 70]:

C1(µW ) = αs

4π

(11
2 + 3L

)
+
(

αs

4π

)2
[
14565
368 + 9π2

2 + 205
4 L + 27

2 L2

−nf

(
55
12 + π2

3 + 10
3 L + L2

)
− 1

2T

(
m2

t

M2
W

)]
+ O(α3

s),

C2(µW ) = 1− αs

4π

(11
6 + L

)
+
(

αs

4π

)2
[
−1409251

16560 − π2

6 − 85
12L − L2

2

+nf

(
55
36 + π2

9 + 10
9 L + L2

3

)
+ 1

6T

(
m2

t

M2
W

)]
+ O(α3

s), (4.13)

where L = log(µ2
W /M2

W ). The function T (x) parametrizes the top-quark mass effects. Its
explicit expression can be retrieved from eq. (19) in ref. [70].

The solution of the RGE for the Wilson coefficients up to NNLO is well known and
presented in refs. [36, 71]. It requires the NNLO ADM in the historical basis, with the
evanescent operator definition in eq. (3.14). After performing a basis transformation of γ(2)

from the CMM basis to the historical basis we obtain:

γ̂(2) =

 1340209
460 −nf

(
1190291

6210 − 80ζ3
3

)
+ 130

81 n2
f

401635
276 −672ζ3−nf

(16657
414 +80ζ3

)
− 130

27 n2
f

401635
276 −672ζ3−nf

(16657
414 +80ζ3

)
− 130

27 n2
f

1340209
460 −nf

(
1190291

6210 − 80ζ3
3

)
+ 130

81 n2
f

 ,

(4.14)
With the matching conditions and the ADM up to NNLO, we can calculate3 the values

of the Wilson coefficients at the low-energy scale µb ∼ mb

Ci(µb) = C
(0)
i (µb) +

αs(µb)
4π

C
(1)
i (µb) +

(
αs(µb)
4π

)2
C

(2)
i (µb) + O(α3

s), (4.15)

which is appropriate for studying nonleptonic decay. We report in table 1 the values for the
Wilson coefficients at the reference scale µb = 4.7GeV and matching scale µW = MW . For
the numerical evaluation of αs(µb) we use the five-loop RGE implemented in RunDec [72, 73]
with αs(MZ) = 0.1179. After inserting the values for C1(µb) and C2(µb) into eq. (4.1) and
re-expanding it in series of αs we obtain the perturbative expansion for the branching ratio

3We perform the running from µW to µb both in the historical and, as a cross check, in the CMM basis. In
the latter case we apply the basis change relations from appendix A.2.
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Figure 6. The dependence of the rate for b → cūd on the renormalization scale µb ∼ mb at LO, NLO
and NNLO in the on-shell scheme.

in the on-shell scheme

Γcdu = Γ0

[
1.89907 + 1.77538αs

π
+ 14.1081

(
αs

π

)2
]

, (4.16)

with αs = α
(5)
s (mb), mOS

b = 4.7GeV and mOS
c = 1.3GeV. As a cross check, we repeated the

calculation of the interference terms, the ADM and the Wilson coefficients at NNLO without
specifying the numerical value for A2 in eq. (3.14) and (3.15). We explicitly verified that
A2 drops out in eq. (4.16), so that the rate is independent on the scheme adopted for the
evanescent operators. This represent a strong validation of our computational setup.

The dependence of the rate on the renormalization scale is presented in figure 6. In the
plot we vary the scale µb associated to the strong coupling constant and the Wilson coefficients
from 1GeV < µb < 10GeV. We estimate the theoretical uncertainty by determining maximum
and minimum for µb ∈ {mb/2, 2mb} and dividing the result by two. We observe that the scale
uncertainty is significantly reduced once higher order QCD corrections are included. Whereas
at leading order the scale variation between mb/2 and 2mb yields a relative uncertainty of
about 7%, which reduces to 6.3% at NLO, the inclusion of the NNLO corrections further
reduce the scale uncertainty to 3.5% relative to the central value at µb = mb. At the
central scale µb = mb the O(αs) corrections are about 6.5% of the LO result and the O(α2

s)
corrections are less than 3.5% of the prediction at NLO. Note that close to µb = mb/2
the NNLO corrections vanish.

4.2 Massless contribution and secondary charm pair production

From the expressions for the b → cūd decay, it is possible to take the limit ρ → 0 and obtain
the decay rate for b → uūd. We then add the Uc contribution arising at O(α2

s) from the
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insertion of a closed charm loop into the gluon propagators (see for instance the diagram in
figure 1(i). After inserting the values for C1 and C2, we obtain the perturbative expansion
for the branching ratio in the massless limit:

Γudu = Γ0

[
3.31981 + 0.597456αs

π
+ (−25.645 + 0.254978Uc)

(
αs

π

)2
]

, (4.17)

where the last term arises from the Uc contribution and depends on the ratio between the
bottom and the charm mass. We use mOS

b = 4.7GeV and mOS
c = 1.3GeV. The dependence

of the rate on the renormalization scale µb for the massless decay b → uūd is presented in
figure 7. We observe also here that for mb/2 < µb < 2mb the scale uncertainty is reduced
from a relative 7% at LO, to 5% at NLO, to less than 1.3% after incorporating the NNLO
corrections. At the central scale the NLO corrections are positive and amount to about
2% whereas the NNLO corrections are approximately twice as big and negative. However,
close to µb = 2mb the NNLO corrections vanish.

At this point it is interesting to compare to the result from ref. [27]. In order to get a
prediction for the nonleptonic decay width from ref. [27], we multiply their eq. (4) by the
semileptonic decay rate, which for massless charm quark and µ = mb is given by

Γclν = Γ0

[
1− 2.41307αs

π
− 21.2955

(
αs

π

)2
]

. (4.18)

Then we obtain from eq. (4) of [27]

Γ|ref. [27] =Γ0

[
3−4.2392αs

π
+
(
12L2+22.5L+12δ1+12δ2−71.12579

)(
αs

π

)2
+O

(
α3

s

)]
=Γ0

[
3−4.2392αs

π
+121.118

(
αs

π

)2
+O

(
α3

s

)]
, (4.19)

where L = log(MW /mb) and the values mb = 4.7 GeV and MW = 81 GeV have been used
to obtain the numerical result in the second line. Furthermore, we have used the analytic
formula for their expression δ2 given in the published version of the paper.4 If we switch off
the resummation of logk(µW /µb) terms in our result, we can reproduce eq. (4.19).

At this point we can compare to Γudu in eq. (4.17) and observe that the NNLO corrections
from ref. [27] deviates by about a factor five and has a different sign. The comparison with Γcdu

in eq. (4.16) also shows a significant difference in the order of magnitude. This demonstrates
that the resummation of the large logarithms log(µW /µb) is important.

4.3 Two massive charm quarks: b → cc̄s

Also for the channel with two massive charm quarks in the final state we obtain analytic
results at LO and NLO. For convenience we present in the following expansions around

4Note that it evaluates to δ2 ≈ 1.3 and not to δ2 ≈ 1.8 as given in the paper.
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Figure 7. The dependence of the rate for b → uūd on the renormalization scale µb ∼ mb at LO,
NLO and NNLO in the on-shell scheme.

ρ = 0. At LO we obtain

G
(0)
11 = G

(0)
22 = 3

2G
(0)
12

= 3(1− x2)
(
x12 − 8x10 − 43x8 − 80x6 − 43x4 − 8x2 + 1

)
(x2 + 1)7

− 144
(
x2 − x + 1

) (
x2 + x + 1

) (
x4 + 3x2 + 1

)
x4 log(x)

(x2 + 1)8

= 3
(
1− 16ρ2 + 24ρ4 − 32ρ6 + 2ρ8 + 32ρ10 +

(
−48ρ4 + 48ρ8

)
H0(ρ)

)
+O

(
ρ12
)

.

(4.20)

The analytic expressions for b → cc̄s at NLO are rather lengthy and we report them only
in the supplementary material attached to this paper and also in [74, 75]. In the following
we provide only the first few terms in an expansion around ρ = 0.

G
(1)
11 = 31

2 −2π2−
(
320−32π2+192lρ

)
ρ2+

[
−276+64π2+

(
336+64π2

)
lρ−576l2ρ

]
ρ4

+
(
−1552

3 +160π2

3 − 3200lρ
3 −128l2ρ

)
ρ6+

[
−7
2−108π2+288ζ(3)

+
(88

3 −64π2
)

lρ+1264l2ρ

]
ρ8+O(ρ9), (4.21)

G
(1)
22 = 31

2 −2π2+
(
−320+16π2−192lρ

)
ρ2+64π2ρ3+

[
−636−576l2ρ+16π2

+lρ
(
528+32π2

)]
ρ4+

(
2696
9 − 16π2

3 − 5312lρ
3 −64l2ρ

)
ρ6−64π2ρ7

+
[
−14236

75 −68π2−288ζ(3)+1440l2ρ+lρ

(
−628

5 +32π2
)]

ρ8+O(ρ9), (4.22)
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G
(1)
12 =−17− 4π2

3 +
(
336+16π2−128lρ

)
ρ2− 128π2

3 ρ3+
[
−328−384l2ρ+lρ (1120

+128π2

3

)]
ρ4+256π2

3 ρ5+
[
6008
27 +176π2

9 +192ζ(3)+lρ

(
128
9 − 128π2

3

)
+64l2ρ

]
ρ6

−128π2ρ7+
[
237341
675 − 104π2

9 +192ζ(3)+lρ

(
−47152

45 − 128π2

3

)
+
1376l2ρ

3

]
ρ8

+O(ρ9). (4.23)

One observes that the result at ρ = 0 coincides with the massless limit in eq. (4.9). For the
NNLO result we obtain expansions around ρ = 0, ρ = 1/5 and ρ = 1/3 using “expand and
match” as described above. The expressions for the NNLO result expanded around ρ = 0 read

G
(2)
11 = 13.4947− 24.6740ρ +

(
−533.154− 1251.35lρ + 16.0000l2ρ

)
ρ2

+ (2998.33 + 210.551lρ) ρ3 +
(
116.662 + 10686.6lρ − 628.278l2ρ + 64.0000l3ρ

)
ρ4

+ (−2364.37 + 903.617lρ) ρ5 +
(
5409.89− 6392.16lρ − 5833.18l2ρ − 507.259l3ρ

)
ρ6

+ (−135.120 + 3582.30lρ) ρ7 +
(
−2320.40− 15254.6lρ + 6047.29l2ρ + 2654.91l3ρ

)
ρ8,

(4.24)

G
(2)
22 = 13.4947− 24.6740ρ +

(
−3295.69− 1883.01lρ + 16.0000l2ρ

)
ρ2

+ (190.918− 3842.56lρ) ρ3 +
(
4770.24 + 5244.57lρ − 347.178l2ρ + 64.0000l3ρ

)
ρ4

+ (1299.89− 542.170lρ) ρ5 +
(
5832.60− 7262.42lρ − 10760.9l2ρ − 271.407l3ρ

)
ρ6

+ (1667.93 + 1806.31lρ) ρ7 +
(
−30465.4− 19154.5lρ + 9435.28l2ρ + 4491.90l3ρ

)
ρ8,

(4.25)

G
(2)
12 = − 72.8419− 16.4493ρ +

(
3160.66 + 1152.54lρ + 10.6666l2ρ

)
ρ2

+ (3980.72 + 2702.07lρ) ρ3 +
(
−5915.68 + 8133.91lρ + 3393.24l2ρ + 42.6666l3ρ

)
ρ4

+ (−8194.22 + 5070.78lρ) ρ5 +
(
18013.7 + 3710.59lρ + 1222.25l2ρ + 278.518l3ρ

)
ρ6

+ (184.414 + 7746.34lρ) ρ7 +
(
7997.58 + 2111.25lρ − 9970.14l2ρ − 773.168l3ρ

)
ρ8.

(4.26)

In figure 8 the results for G
(1)
ij and G

(2)
ij are shown for ρ ∈ [0, 0.5]. Evaluating the

renormalized amplitude for µb = mOS
b we obtain the following numerical values for the

decay width

Γcsc = Γ0

[
0.86706 + 3.15768αs

π
+ 37.3426

(
αs

π

)2
]

, (4.27)

In figure 9 we show the dependence on the renormalization scale µb. Already at NLO we
observe a quite flat behaviour with a scale variation below 2.5%. It gets further reduced to
about 1.5% at NNLO. As observed already in [22, 26, 76], the O(αs) corrections are rather
large, about 25% of the LO prediction at µb = mb, and similarly the O(α2

s) corrections are
16% of the NLO prediction. Note that there is no overlap of the uncertainty band in the
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Figure 8. The NLO (left) and NNLO (right) corrections to different combinations of Wilson
coefficients for b → cc̄s as defined in eq. (4.1) as functions of ρ = mc/mb for µb = mb.
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Figure 9. The dependence of the rate for b → cc̄s on the renormalization scale µb ∼ mb at LO, NLO
and NNLO in the on-shell scheme.

considered range of µb. The NLO and NNLO prediction would differ by more than 5 sigma
if the theoretical uncertainty is entirely based on the scale variation. A more conservative
approach for the b → cc̄s channel would be to take as uncertainty of the NNLO prediction
half of the O(α2

s) corrections, which amounts to about 8%.

4.4 The CKM suppressed channel b → uc̄s

For the LO contribution we obtain the same result as in the b → cūd decay channel in
eq. (4.3). Starting from NLO, the results differ from the b → cūd case. We obtain

G
(1)
11 = 31

2 − 554
3 ρ2+554

3 ρ6− 31
2 ρ8+π2

(
−2+16ρ2+48ρ4− 16

3 ρ6+2
3ρ8+32ρ4H0(ρ)

)
+
(
−62

3 +640
3 ρ2− 640

3 ρ6+62
3 ρ8

)
H−1(ρ)+

(
−288ρ4−64ρ6+8ρ8

)
(H0(ρ))2
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+
(
−96ρ2−120ρ4+992

3 ρ6− 124
3 ρ8

)
H0(ρ)+

(62
3 − 640

3 ρ2+640
3 ρ6− 62

3 ρ8
)

H1(ρ)

+
(
8−64ρ2−576ρ4−64ρ6+8ρ8

)
[H0,1(ρ)−H0,−1(ρ)] , (4.28)

G
(1)
22 =G

(1)
11 , (4.29)

G
(1)
12 =−17+932

9 ρ2− 932
9 ρ6+17ρ8+

(
−224

3 ρ2+2048
3 ρ4+4384

9 ρ6− 344
9 ρ8

)
H0(ρ)

+π2
(
−4
3+

80
3 ρ2− 256

3 ρ3+96ρ4− 256
3 ρ5− 16

9 ρ6+20
9 ρ8+128

3 ρ4H0(ρ)
)

+
(
−100

9 +1952
9 ρ2− 1952

9 ρ6+100
9 ρ8+

(
−32

3 − 128
3 ρ2− 1024

3 ρ3−576ρ4

−1024
3 ρ5− 128

3 ρ6− 32
3 ρ8

)
H0(ρ)

)
H−1(ρ)+

(
−192ρ4−64ρ6+16ρ8

)
(H0(ρ))2

+
(100

9 − 1952
9 ρ2+1952

9 ρ6− 100
9 ρ8+

(32
3 +128

3 ρ2− 1024
3 ρ3+576ρ4

−1024
3 ρ5+128

3 ρ6+32
3 ρ8

)
H0(ρ)

)
H1(ρ)

+
(16

3 +448
3 ρ2+1024

3 ρ3+1152ρ4+1024
3 ρ5+448

3 ρ6+16
3 ρ8

)
H0,−1(ρ)

+
(
−16

3 − 448
3 ρ2+1024

3 ρ3−1152ρ4+1024
3 ρ5− 448

3 ρ6− 16
3 ρ8

)
H0,1(ρ). (4.30)

One observes, that the coefficients G
(1)
22 and G

(1)
11 are the same in this decay channel. The

NNLO results expanded around ρ = 0 read

G
(2)
11 = 13.4947− 24.6740ρ +

(
−552.675− 591.011lρ − 8.00000l2ρ

)
ρ2

+ (3314.34 + 210.551lρ) ρ3 +
(
−1000.88 + 5447.49lρ − 505.906l2ρ − 64.0000l3ρ

)
ρ4

+ (387.348 + 328.986lρ) ρ5 +
(
−2248.02 + 240.114lρ + 1066.01l2ρ − 264.296l3ρ

)
ρ6

+ (−159.907 + 306.177lρ) ρ7 +
(
306.693− 508.164lρ + 133.563l2ρ − 66.3703l3ρ

)
ρ8,

(4.31)

G
(2)
22 = G

(2)
11 , (4.32)

G
(2)
12 = − 72.8419− 16.4493ρ +

(
3424.97 + 1112.31lρ + 5.33333l2ρ+

)
ρ2

+ (7782.51 + 5404.15lρ) ρ3 +
(
−72.4205 + 15986.63lρ + 727.426l2ρ − 42.6666l3ρ

)
ρ4

+ (−2108.79 + 9301.11lρ) ρ5 +
(
−8020.41 + 2479.56lρ + 1176.61l2ρ − 311.703l3ρ

)
ρ6

+ (629.490 + 1924.62lρ) ρ7 +
(
−1269.71− 34.1428lρ − 26.6329l2ρ + 81.3497l3ρ

)
ρ8.

(4.33)

The limit for ρ = 0 coincides with the result obtained from b → cūd and b → cc̄s calculations.
At the central scale we obtain the following expansion of the decay rate

Γucs = Γ0

[
1.89907 + 4.39458αs

π
+ 23.7335

(
αs

π

)2
]

. (4.34)
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Figure 10. The dependence of the rate for b → uc̄s on the renormalization scale µb ∼ mOS
b at LO,

NLO and NNLO in the on-shell scheme.
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Figure 11. All contributing decay channels combined.

The dependence on µb in figure 10 shows a reduction from 7.3% to 4.0% when going from
NLO to NNLO.

4.5 Combined decay channels

The total decay width at partonic level is obtained from the incoherent sum of all individual
channels discussed before. In particular, we include the contributions from b → cūd, b → cūs,
b → cc̄d, b → cc̄s, b → uc̄d, b → uc̄s, b → uūd and b → uūs. The width is in a first
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approximation given by the sum of the two channel b → cūd and b → cc̄s since |Vud| ≃
|Vcs| ≃ 1. Other channels are CKM suppressed and lead to additional small corrections.
We obtain for µb = mOS

b the numerical values

Γ
∣∣∣
all nonlep, partonic

= Γ′
0

[
0.00490995 + 0.00869123αs

π
+ 0.0898854

(
αs

π

)2
]

,

= Γ′
0|Vcb|2

[
2.80609 + 4.96713αs

π
+ 51.3704

(
αs

π

)2
]

, (4.35)

where we define Γ′
0 = G2

F (mOS
b )5/(192π3) as the normalization of the decay width. We use

the following numerical input for the CKM matrix elements [77]:

|Vud| = 0.97435± 0.00016, |Vus| = 0.22501± 0.00068, |Vub| = (3.732+0.090
−0.085)× 10−3,

|Vcd| = 0.22487± 0.00068, |Vcs| = 0.97349± 0.00016, |Vcb| = (4.183+0.079
−0.069)× 10−2.

(4.36)
The decay b → cūd gives about 59% of the total sum in eq. (4.35), while b → cc̄s contribute
about 36%. The remaining 5% is given by all other CKM suppressed modes. We observe
that the NNLO corrections come with the same sign as the NLO corrections in the relevant
region of the renormalization scale µb. Using RunDec, we obtain αs(µb = 4.7GeV) = 0.2166
and find that the term of O(α2

s) is roughly 50–60% of the one at O(αs) for µb = mOS
b . The

scale uncertainty reduces from a relative 3.5% at NLO to 1.7% at NNLO. From figure 11
we observe that the NNLO curve is flatter than the LO and NLO ones, however also in the
sum of all channels, the predictions at NLO and NNLO differs by about 2∼sigma, once the
theoretical uncertainties are evaluated from the scale variation between mb/2 < µb < 2mb.

5 Conclusions

In this paper we provide an important contribution to the hadronic B meson decay rate. We
compute NNLO corrections to all relevant partonic channels taking into account finite bottom
and charm quark masses. In the effective theory we take into account the current-current
operators together with the relevant evanescent operators such that it is possible to use
anti-commuting γ5 for our calculation. For the computation of the Feynman integrals we use
the “expand and match” method. It uses the differential equations for the master integrals
in order to construct analytic expansions around properly chosen values for mc/mb with
high-precision numerical coefficients. This leads to compact expressions which are can be
evaluated numerically in a straightforward way.

We perform a preliminary numerical study of the impact of the NNLO corrections in the
various channels considered using pole scheme for the quark masses. Overall we find that
the theoretical uncertainties stemming from the scale variation is reduced by more than a
factor of three for b → cūd. The reduction for the channel b → cc̄s is about a factor of two,
however we notice that the NLO and NNLO predictions do not overlap withing the assigned
uncertainties, due to large corrections arising at order αs and α2

s.
Our analytic results for all decay modes are provided in electronic form and can be

retrieved from the repository [74, 75]. An update of the lifetime prediction of B meson is
ongoing where we include the novel NNLO corrections presented in this paper and combine
them with updated prediction for the power suppressed terms and quark masses [35]. Our
results can also be easily applied to decays of D mesons.

– 23 –



J
H
E
P
1
0
(
2
0
2
4
)
1
4
4

Acknowledgments

We thank Mikolaj Misiak for providing us with the matching coefficients for C1 and C2 with
explicit dependence on nf . We also thank A. Lenz, M.L. Piscopo and A. Rusov for discussions
and useful comments. This research was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant 396021762 — TRR 257 “Particle Physics
Phenomenology after the Higgs Discovery” and has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme grant agreement 101019620 (ERC Advanced Grant TOPUP). The work of M.F.
was supported by the European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 101065445 - PHOBIDE.

A Operator mixing

A.1 Calculation of renormalization constants

For our calculation we need the renormalization constants for the mixing of the effective
operators O1 and O2 in the historical basis up to two loops. The results can be found in
refs. [37, 71, 78, 79], however, not in the form suitable for our calculation, which is performed
keeping the full dependence on NC . For this reason we decided to repeat the calculation in
our setup, which is also a good check on the correct implementation of the effective operators.
Note that higher-order results for the renormalization constants and anomalous dimensions
are available in the CMM basis [36, 80–83]. Furthermore, transformation rules allow to
convert the results from the historical to the CMM basis and vice versa [36, 37, 84].

In the following we briefly describe the calculation of the renormalization constants for
the physical and evanescent operators appearing in our calculation. We consider the matrix
element Aeff =

∑
i Ci ⟨cd|Oi |bu⟩ of the effective operators with four external quarks (e.g.

bu → cd). At higher order in αs, Aeff contains ultraviolet (UV) poles after renormalization
of the masses, the strong coupling constant and the quark wave functions. They must be
subtracted via the renormalization of the Wilson coefficients,

Ci,B = ZjiCj(µb), (A.1)

where Ci,B and Ci(µb) denote the bare and renormalized Wilson coefficients, respectively.
Schematically, the matrix element of the operators is given by

Aeff = Cj(µb)Zji⟨Z(Oi)⟩R, (A.2)

where ⟨Z(Oi)⟩R describes the expectation value of the operator Oi including wave function,
quark mass and coupling constant renormalization. The renormalization constants Zij can
be obtained order by order in αs by requiring that eq. (A.2) is free of UV poles.

The renormalization constants Zij have the perturbative expansion

Zij = δij +
∞∑

k=1

(
αs

4π

)k

Z
(k)
ij , (A.3)

where

Z
(k)
ij =

k∑
l=0

Z
(k,l)
ij

ϵl
. (A.4)
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Figure 12. Sample Feynman diagrams with four external quark lines and the insertion of one of the
effective operators at tree-level, one- and two-loop order. All the quarks are massive and the external
momenta are set to zero. The square denotes the insertion of an effective four fermion operator.

We use the MS renormalization scheme, which implies l > 0. This is, however, not the case
if i is the coefficient of an evanescent operator, while j corresponds to a physical one. In
these cases, the renormalization constants include ϵ-finite terms that ensure that the matrix
elements of evanescent operators vanish in four dimensions (see refs. [85, 86]).

For the calculation of the renormalization constants we consider operator matrix ele-
ments for {O1, O2, E

(1)
1 , E

(1)
2 , E

(2)
1 , E

(2)
2 } with four external quark lines up two-loop order,

see figure 12 for some sample diagrams. Since these Feynman diagrams are logarithmically
divergent and since we are only interested in the UV divergence, we are allowed to choose
a convenient kinematic limit for their computation. In order to avoid infrared divergences,
we assign to all quarks the same mass, keep the gluons and ghosts massless and set the
external momenta to zero. This leads to one-scale vacuum integrals which are conveniently
computed with the help of MATAD [87].

After the calculation of the loop integrals, the result contains terms with up to nine γ

matrices and different colour structures. We use the usual commutation relations and bring
the products of γ matrices in a form which allows us to identify the contributions from the
physical and evanescent operators in eqs. (2.2) and (3.14), respectively. For our calculation
we need in addition higher order evanescent operators given by

E5 =
(
q̄i

1γµ1...µ7PLbj
) (

q̄i
2γµ1...µ7PLqj

3

)
− (4096− 7680ϵ)O1,

E6 =
(
q̄i

1γµ1...µ7PLbi
) (

q̄j
2γµ1...µ7PLqj

3

)
− (4096− 7680ϵ)O2,

E7 =
(
q̄i

1γµ1...µ9PLbj
) (

q̄i
2γµ1...µ9PLqj

3

)
− (65536− 176128ϵ)O1,

E8 =
(
q̄i

1γµ1...µ9PLbi
) (

q̄j
2γµ1...µ9PLqj

3

)
− (65536− 176128ϵ)O2. (A.5)

The O(ϵ) terms can be obtained following ref. [88]; in the case of E5 and E6 they can also
be found in ref. [89].
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Once the bare result is expressed as a linear combination of (bare) operator matrix
elements, we perform the parameter renormalization (wave function, quark mass and strong
coupling constant) in the MS scheme and introduce the Zij according to eq. (A.2), where
the unknown coefficients are obtained from the requirement that the renormalized operator
matrix elements are finite.

Our results for the one-loop renormalization constants for the following set of physical
and evanescent operators

Q⃗T = (O1, O2), E⃗T = (E(1)
1 , E

(1)
2 , E

(2)
1 , E

(2)
2 ), (A.6)

are given by

Z(1,1) =



−1 3 7
12

1
4 0 0

3 −1 1
2 −1

6 0 0

0 0 −59
3 −5 7

12
1
4

0 0 −13 13
3

1
2 −1

6

0 0 −1888
3 96 41

3 −9

0 0 −288 1568
3 3 −67

3


,

Z(1,0) =



0 0 0 0 0 0

0 0 0 0 0 0

16 −48 0 0 0 0

−24 −56 0 0 0 0

512 −1536 0 0 0 0

−768 −1792 0 0 0 0


, (A.7)

and at two loops we have

Z(2,2) =



21
2 − 39

2 − 91
9 − 8

3
67

288
5

96

− 39
2

21
2 − 143

24 − 17
72

5
48

11
144

0 0 229
2

955
6 − 35

6 − 53
6

0 0 227
6 − 3

2 − 55
24 − 35

24

0 0 13360
9

5200
3 − 2273

6
907

6

0 0 1424
3 − 63248

9 − 793
6

1675
6



+ nf



− 1
3 1 7

36
1

12 0 0

1 − 1
3

1
6 − 1

18 0 0

0 0 − 59
9 − 5

3
7

36
1

12

0 0 − 13
3

13
9

1
6 − 1

18

0 0 − 1888
9 32 41

9 −3

0 0 −96 1568
9 1 − 67

9


,
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Z(2,1) =



− 23
24 − 161

8
323
36

7
12 − 1

36 − 5
48

55
8 − 239

24
51
8

115
72 − 35

384 − 77
1152

−212 252 − 1279
24 − 697

8
145
24

49
24

96 256 − 1963
24

2753
24

89
12 − 1

12

−3968 11904 32488
9 1704 9257

24 − 2817
8

4992 16768 − 12748
3

101644
9

6985
24

2117
24



+ nf



− 1
18

1
6 − 7

216 − 1
72 0 0

1
6 − 1

18 − 1
36

1
108 0 0

16
3 −16 353

54 − 1
18 − 7

216 − 1
72

−8 − 56
3

67
18 − 259

54 − 1
36

1
108

512
3 −512 4280

27 − 40
3

427
54 − 3

2

−256 − 1792
3 80 − 3280

27
7
2 − 383

54


,

Z(2,0) =



0 0 0 0 0 0
0 0 0 0 0 0

202796
115 − 50488nf

1035
1037132

115 − 25544nf

345 0 0 0 0

− 15148nf

345 − 39856
115

46028nf

1035 + 39904
23 0 0 0 0

4098848
1035 − 1561184nf

1035
1154912nf

345 − 1011808
15 0 0 0 0

56192nf

69 − 34695184
345

6995584nf

1035 − 282282736
1035 0 0 0 0


. (A.8)

We have performed the calculation for general SU(Nc) gauge groups; the corresponding
analytic expressions can be found in the supplementary material to this paper [74, 75]. For
simplicity we present the results for Nc = 3 and only keep the number of active flavours nf

in the analytic expressions. In the numerical analysis we use nf = 5.
At first sight it looks strange that with our approach also the finite terms in Z(1,0) and

Z(2,0) can be determined. Note, however, that they originate from divergent part of loop
integrals multiplied by factor of ϵ from the Dirac algebra in the numerator of the Feynman
diagrams. Our calculation has been performed for general QCD gauge parameter which drops
out in the final results for the renormalization constants. Furthermore, after converting the
renormalization constants to the anomalous dimension matrix, we agree with the results
in eq. (57) of ref. [37].

Our setup is validated also by reproducing the well known results in the CMM basis. For
the calculation of the Zij in the CMM basis, we use the physical operators from eq. (2.3).
The evanescent operators are given by

E′
1 =(q̄1γµ1µ2µ3T aPLb)(q̄2γµ1µ2µ3T aPLq3)−16O′

1,

E′
2 =(q̄1γµ1µ2µ3PLb)(q̄2γµ1µ2µ3PLq3)−16O′

2,

E′
3 =(q̄1γµ1...µ5T aPLb)(q̄2γµ1...µ5T aPLq3)−256O′

1−20E′
1,

E′
4 =(q̄1γµ1...µ5PLb)(q̄2γµ1...µ5PLq3)−256O′

2−20E′
2 ,

E′
5 =(q̄1γµ1...µ7T aPLb)(q̄2γµ1...µ7T aPLq3)−4096O′

1−336E′
1,

E′
6 =(q̄1γµ1...µ7PLb)(q̄2γµ1...µ7PLq3)−4096O′

2−336E′
2,
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E′
7 =(q̄1γµ1...µ9T aPLb)(q̄2γµ1...µ9T aPLq3)−65536O′

1−5440E′
1,

E′
8 =(q̄1γµ1...µ9PLb)(q̄2γµ1...µ9PLq3)−65536O′

2−5440E′
2 . (A.9)

We were able to reproduce the results from ref. [36]. Furthermore we use the formalism
developed in refs. [37, 84] and translate the renormalization constants from the CMM to
the historical basis (see also next subsection), which confirms the results given in eqs. (A.7)
and (A.8).

A.2 Change of basis

In order to calculate the NNLO anomalous dimension in eq. (4.14) in the historical basis
fulfilling the condition (3.9) and to compare the renormalization constants with known results
for the CMM basis in the literature, we have to perform a basis transformation. In the
following we adopt the formalism developed in [37, 84, 89] to describe the basis change
between the CMM basis and the historical basis. Let us denote by

Q⃗
′T = (O′

1, O′
2),

E⃗
′T = (E′

1, E′
2, E′

3, E′
4), (A.10)

the physical and evanescent operators in the CMM basis. For physical operators, the basis
change is a simple linear transformation

Q⃗ = R̂Q⃗′, (A.11)

where in our case R̂ is a 2×2 matrix.5 For the evanescent operators, the transformation rule is

E⃗ = M̂
[
E⃗′ + ϵÛQ⃗′ + ϵ2V̂ Q⃗′

]
, (A.12)

where the n × 2 matrices Û and V̂ and the n × n matrix M̂ parametrize the rotation
of evanescent operators. The basis change for the operator set (Q⃗, E⃗) is encoded by two
ϵ-dependent linear transformations,

Â =
(

R̂ 0
0 M̂

)
, B̂ =

(
1 0

ϵÛ + ϵ2V̂ 1

)
, (A.13)

so that renormalization constants in the two bases are related by

Ẑ = (ÂB̂)Z ′(B̂−1Â−1). (A.14)

The transformation matrices from the CMM basis to the historical basis with the evanescent
operators defined in eq. (3.14) and A2 = −4 are

R̂=
(
2 1/3
0 1

)
, M̂ =



2 1
3 0 0 0 0

0 1 0 0 0 0
40 20

3 2 1
3 0 0

0 20 0 1 0 0
672 112 0 0 2 1

3
0 336 0 0 0 1


,

5In general one has to consider a basis change where also some evanescent operators are added to the
physical ones, i.e. Q⃗′ = R̂(Q⃗ + Ŵ E⃗), where Ŵ is a 2 × n matrix. In our case Ŵ = 0.
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Û =



4 0
0 4

144 0
0 144

6336 0
0 6336


, V̂ =



4 0
0 4

36736
115 −2304

23

0 105856
115

−1344 0
0 −1344


. (A.15)

By focusing on the various subblocks of the renormalization matrices,

Ẑ =
(

ẐQQ ẐQE

ẐEQ ẐEE

)
, (A.16)

we can give the transformation rules at order αs

Ẑ
(1,1)
QQ = R̂Ẑ

′(1,1)
QQ R̂−1, Ẑ

(1,1)
QE = R̂Ẑ

′(1,1)
QE M̂−1,

Ẑ
(1,1)
EE = M̂Ẑ

′(1,1)
EE M̂−1, Ẑ

(1,0)
QQ = −R̂Ẑ

′(1,1)
QE Û R̂−1,

Ẑ
(1,0)
EQ = M̂

[
Ẑ

′(1,0)
EQ + Û Ẑ

′(1,1)
QQ − Ẑ

′(1,1)
EE Û

]
R̂−1. (A.17)

At order α2
s we have

Ẑ
(2,2)
QQ = R̂Ẑ

′(2,2)
QQ R̂−1,

Ẑ
(2,2)
QE = R̂Ẑ

′(2,2)
QE M̂−1,

Ẑ
(2,2)
EE = M̂Ẑ

′(2,2)
EE M̂−1,

Ẑ
(2,1)
QQ = R̂

[
Ẑ

′(2,1)
QQ −Ẑ

′(2,2)
QE Û

]
R̂−1,

Ẑ
(2,1)
QE = R̂Ẑ

′(2,1)
QE M̂−1,

Ẑ
(2,1)
EE = R̂

[
Ẑ

′(2,1)
EE −Û Ẑ

′(2,2)
QE

]
M̂−1,

Ẑ
(2,1)
EQ = M̂

[
Ẑ

′(2,1)
EQ +Û Ẑ

′(2,2)
QQ −Ẑ

′(2,2)
EE Û

]
R̂−1,

Ẑ
(2,0)
QQ = R̂

[
−Ẑ

′(2,1)
QE Û−Ẑ

′(2,2)
QE V̂ +Ẑ

′(1,1)
QE V̂ Ẑ

′(1,1)
QQ

]
R̂−1

Ẑ
(2,0)
EQ = M̂

[
Ẑ

′(2,0)
EQ +Û Ẑ

′(2,1)
QQ +V̂ Ẑ

′(2,2)
QQ −Ẑ

′(2,1)
EE Û−Ẑ

′(2,2)
EE V̂ −Û Ẑ

′(2,2)
QE Û

]
R̂−1. (A.18)

After rotating the CMM basis into the historical basis, the element Ẑ
(1,0)
QQ and Ẑ

(2,0)
QQ are differ-

ent from zero and therefore they do not corresponds to an MS renormalization scheme. Such
finite contributions must be removed by a suitable change of scheme. For the renormalization
constants this corresponds to the transformation

ẐMS =
[
1− αs

4π
r̂1 −

(
αs

4π

)2
(r̂2 − r̂2

1)
]

Ẑ, (A.19)
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where for the subblock corresponding to the physical operators we obtain

(r̂1)QQ = Ẑ
(1,0)
QQ =

(
−7

3 −1
−2 2

3

)
,

(r̂2)QQ = Ẑ
(2,0)
QQ =

−153257
2070 − 35

54nf −1763
138 − 5

18nf

−6493
276 − 5

9nf −239239
4140 + 5

27nf

 . (A.20)

The transformation rule for the Wilson coefficients is

C⃗(µb) = C⃗ ′(µb)R̂−1
[
1 + αs

4π
(r̂1)QQ +

(
αs

4π

)2
(r̂2)QQ

]
, (A.21)

while the ADMs transform in the following way:

γ̂(0) = R̂γ̂
′(0)R̂−1,

γ̂(1) = R̂γ̂
′(1)R̂−1 −

[
Ẑ

(1,0)
QQ , γ̂(0)

]
− 2β0Ẑ(1,0),

γ̂(2) = R̂γ̂
′(2)R̂−1 −

[
(r̂2)QQ, γ̂(0)

]
−
[
Ẑ

(1,0)
QQ , γ̂(1)

]
+
[
Ẑ

(1,0)
QQ , γ̂(0)

]
Ẑ

(1,0)
QQ

− 4β0(r̂2)QQ − 2β1Ẑ
(1,0)
QQ + 2β0(Ẑ(1,0)

QQ )2. (A.22)

Our expressions for the NNLO anomalous dimension in the historical basis and the evanescent
operator definition given in eq. (3.14) with A2 = −4 is shown in eq. (4.14) which fulfils
the condition (3.9).

B Strange quark mass effects

We can estimate finite strange quark mass effects in Γusu using our results for Γucs from
eq. (4.34) and interpreting the charm as the strange and the strange as the up quark. In
such a setup the change in the NNLO coefficient is below 5% in case we use ms(2 GeV) =
0.093GeV [77] instead of a massless strange quark.

Alternatively, we can estimate the strange mass effects by taking the formula for the
NNLO corrections to the semileptonic decay b → cτν calculated in [90], replace the mass of
the tau lepton with the strange mass and multiply the total rate by the corresponding color
factor. In this way we obtain the contribution to the b → cus decay width arising from the
operator O2 where gluons are exchanged only between bottom and charm quarks (see e.g.
figure 1(d)). We observe that in the on-shell scheme the sensitivity on the strange mass is
quadratic. The comparison between the calculation with and without strange mass shows
a difference of the order of 0.5% in the NNLO coefficient.

Note that the formulas from [90] do not capture the contributions of diagrams where
a strange-quark loop is inserted into a gluon propagators. These kind of diagrams yield a
linear dependence on ms/mb if we utilize the on-shell scheme, as observed for semileptonic
decay [9]. However, once a short-distance mass scheme is used for the bottom mass, like
the MS mass, such linear terms are absorbed into the lowest-order decay width and are
absent at higher-orders in αs.
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As a third possibility to estimate the strange quark effects we take the leading order result
for Γcud and multiply with R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−) including strange
quark mass effects up to order α2

s (see, e.g., refs. [91, 92]). It turns out that the strange
quark mass effects at NNLO are below the percent level.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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