
Received 27 September 2024, accepted 10 October 2024, date of publication 14 October 2024, date of current version 28 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3480360

FUSION: A Fuzzy-Based Multi-Objective Task
Management for Fog Networks
ARYA MOTAMEDHASHEMI 1, BARDIA SAFAEI 1, AMIR MAHDI HOSSEINI MONAZZAH 2,
JÖRG HENKEL 3, (Fellow, IEEE), AND ALIREZA EJLALI 1
1Department of Computer Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
2School of Computer Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
3Chair for Embedded Systems (CES), Department of Computer Science, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Corresponding author: Bardia Safaei (bardiasafaei@sharif.edu)

ABSTRACT While the Guarantee Ratio (GR) is critically important in delay-sensitive fog applications, the
existing deadline-aware task assignment strategies prioritize the balance of utilization over this criterion.
Therefore, this paper introduces FUSION: a fuzzy-based task management policy, which provides a high
GR with the least possible makespan. FUSION considers the effect of propagation, uplink/downlink delays,
and also the bandwidth between the layers on the tasks’ completion time during offloading. It benefits from a
fuzzy offloader, alongwith aVM-ranking strategy based on a fuzzy quantified proposition. Hence, it uses two
simple and efficient fuzzy ranking approaches, i.e., Decomposition and OWA. By employing fuzzy-based
models, FUSION can handle uncertainty in rapidly changing fog environments with time-varying task sets
with minimal computation complexity against existing meta-heuristic algorithms. FUSION considers tasks’
size with respect to VM’s processing capacity (MIPS), arrival rate, length, deadline, processing time, and
execution time. In addition to VMs’ load, and busy time, FUSION considers laxity as one of its VM-ranking
objectives. FUSION also conducts load-balancing, but only when it can improve the rankings to not affect the
GR. Based on the iFogSim simulations, FUSION provides a higher GR in 63% of the scenarios compared to
state-of-the-art. Furthermore, evaluations of the offloader algorithm indicate that FUSION provides higher
GR in more than 55% of the scenarios.

INDEX TERMS Internet of Things, fog computing, network, task assignment, offloading, scheduling, fuzzy
logic, multi-objective, guarantee ratio, makespan.

I. INTRODUCTION
Offloading the computing-intensive tasks from IoT devices to
the cloud can significantly improve the computing efficiency
of resource-constrained IoT devices [1]. Nevertheless, cloud
computing is coping with substantial challenges, including
long End-to-End (E2E) delays, traffic congestion, big data
process, and communication cost [2]. Meanwhile, E2E delay,
and communication costs in particular are caused due to
the long physical distance between Data Centers (DCs) and
End-Users (EU), located at the edge of the network [2].
These issues degrade the Quality of Service (QoS), which
is not well-suited for time-sensitive services, e.g., real-time

The associate editor coordinating the review of this manuscript and

approving it for publication was Ye Liu .

applications. Fog computing is a virtualized platform [3],
which was first introduced by Cisco to extend cloud
computing to the edge of a network by providing computing,
storage, and networking between DC and EU [4]. In fog
computing infrastructures, many geo-distributed devices (fog
nodes), e.g., EU devices, routers, switches, and access points,
provide cloud-like computing services in proximity to the
edge devices to reduce the overall latency.

The generic architecture of fog computing could com-
promise several fog node layers between the cloud and
end users [5]. Among different architectures, the three-layer
architecture is widely used and is depicted in Fig. 1 [6].
According to this model, the computation and storage
capability, bandwidth, and latency are increased in a bottom-
up manner [4]. Various applications can utilize cloud/fog

152886

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-4456-7802
https://orcid.org/0000-0001-9504-8637
https://orcid.org/0000-0002-0613-6844
https://orcid.org/0000-0001-9602-2922
https://orcid.org/0000-0002-5661-3629
https://orcid.org/0000-0001-9156-9515

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 1. The three-tier fog computing architecture.

infrastructure, e.g., smart cities [7], Intelligent Transportation
Systems (ITS) and Vehicular Ad-hoc Networks (VANET)
[8], smart health-care systems (fall detection [9], ECG
monitoring [10], real-time epileptic seizure detection [11]
and oxygen level control [12]), and multi-player online video
games [13].
Among the various applications that use the cloud/fog

infrastructure, those that are latency-sensitive can benefit
more from the fog concept due to the closer proximity (e.g.,
healthcare systems, surveillance in smart cities, VANET, and
video games). Most latency-sensitive applications require
real-time computations, which necessitate the execution of
tasks to be completed before a specified deadline. One of
the key factors contributing to the task completion time is
the employed taskmanagement strategy including offloading,
scheduling, and taskmigration.Meanwhile, since IoT devices
are resource-constraint, to finish executing tasks before their
deadlines, nodes may need to offload their tasks to a more
powerful computation resource at the fog layer. Not to forget
that fog devices may also need to offload their assigned tasks
to a more powerful device in the cloud layer.

Generally speaking, tasks are members of a bigger set
known as a job. In real-world applications, e.g., google
clusters contain hundreds of thousands of jobs (applications),
Where every job consists of one to thousands of tasks [14],
[15]. Post to the offloading, when a job is received at a fog
device or a cloud data center, it is decomposed into a set of
independent tasks, which will be then mapped into Virtual
Machines (VMs) for execution based on a task scheduling
policy. The offloading and scheduling mechanisms have a
decisive impact on guaranteeing the timing constraints of
the tasks (deadlines), their completion time, makespan of
the jobs, guarantee ratio, and many other factors in the
fog framework. Therefore, the main goal of any assignment
mechanism in the field of real-time fog applications must be
to provide a high guarantee ratio with the least makespan
possible. The guarantee ratio refers to the ratio of completed
tasks to the total number of arrived tasks. Having a higher
guarantee ratio is especially important in safety and mission-

critical applications, where executing even one more task
could be a game changer.

Offloading and scheduling mechanisms are usually man-
aged by employing multi-objective fitness functions to con-
sider several factors in the process of task assignment. Several
studies have tried to develop deadline-aware task assignment
mechanisms for multi-tiered fog infrastructures [16], [17],
[18]. While many of these studies do not consider load-
balancing, those few who do, prioritize load-balancing
over the guarantee ratio, which is a threat to meeting the
timing constraints of real-time tasks. While a high and
evenly distributed utilization can be valuable, it should not
be directly included in the fitness function of real-time
fog applications as it can prioritize load-balancing over
the guarantee ratio. Establishing a trade-off between load-
balancing and other critical performance metrics in real-time
fog applications, i.e., latency involves several strategies,
that could be taken into consideration in the developed
fitness functions. These include adaptive load distribution,
priority-based task handling, resource allocation, perfor-
mance monitoring, predictive analysis (employing predictive
analytics to forecast potential bottlenecks and adjust load
distribution proactively to prevent performance degradation),
and Service Level Agreements (SLAs). SLAs specify the
minimum performance metrics that must be met, and design
load-balancing strategies to adhere to these agreements.

On the other hand, while executing tasks in more powerful
computational resources may decrease the execution time
of the offloaded tasks, offloading imposes transmission and
propagation delays to the tasks’ completion time. However,
existing studies neglect the imposed communication over-
heads between different layers of the fog architecture. Finally,
it should not be forgotten that the offloading and scheduling
processes have their own processing expenses. Therefore,
they must not take a considerable amount of resources in the
IoT and fog devices. Accordingly, while previous studies do
not pay attention to this matter, we need a lightweight, simple,
and easy-to-implement decision-making algorithm.

To address all of the mentioned challenges, this paper
proposes FUSION: a novel fuzzy-based multi-objective task
management policy for multi-tiered fog networks. The main
contributions of FUSION are as follows:

• Employs a fuzzy offloader, which decides to offload the
tasks before scheduling, based on a set of fuzzy rules.
At every layer, FUSION decides whether to keep the
task for local execution or offload it to the higher layer.
By employing fuzzy-based models, FUSION can handle
uncertainty in rapidly changing fog environments with
time-varying task sets [19]. Generally, in cases, where it
is difficult to develop an exact mathematical model in a
rapidly changing, dynamic, and uncertain environment,
fuzzy logic is the most employed technique due to its
lower computation complexity [20], [21], [22]. The use
of fuzzy logic in both the offloader and the ranking
algorithms of FUSION makes it easy to implement and

VOLUME 12, 2024 152887

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

provides lower time complexity than all of the existing
meta-heuristic algorithms.

• In case of local execution, the FUSION assignment
algorithm ranks the VMs and assigns tasks to the top-
ranked VM. The ranking of VMs is based on a fuzzy
quantified proposition, which indicates that almost all
of the objectives are satisfied. To this end, it uses
two simple and efficient fuzzy ranking approaches,
i.e., Decomposition (DECOMP) and Ordered Weighted
Averaging (OWA).

• Considering various task specifications including the
task size concerning the VM processing capacity (MIPS
of the VM), arrival rate, length, deadline, processing
time, and execution time.

• In addition to VM load, and busy time, FUSION con-
siders laxity as one of its VM ranking objectives. Laxity
ensures that FUSION meets the real-time requirements.
Laxity refers to the amount of time between the end time
of a task and its deadline. The higher the laxity of a
task, the more time we save for other tasks to meet their
deadlines.

• It conducts load-balancing, but only when it can improve
the rankings to not affect the guarantee ratio.

• Considers the imposed communication overheads to the
completion time of tasks during the task offloading from
IoT/edge devices to fog and cloud layers. To this end,
it takes into account the propagation delay, uplink, and
downlink communication delays, and also the effect of
available bandwidth in the transmitting path.

• Provides a high guarantee ratio with the least possible
makespan for real-time fog applications.

• Finally, by indirectly considering throughput through
the execution time and meeting deadlines, FUSION
ensures that a high throughput alone is not prioritized.

FUSION has been implemented and evaluated on a 3-layer
architecture considering a comprehensive set of scenarios
in the iFogSim [23]. In this architecture, the cloud layer
resides at the top, two levels of fog devices in the middle
(to evaluate the offloader), and a number of IoT/edge
devices that offload their tasks. According to our evaluations,
using an offloader improves the makespan and guarantee
ratio in more than 55% of the considered scenarios. Also,
FUSION improved the guarantee ratio and execution time
in 63% and 89% of the scenarios, respectively. Furthermore,
in scenarios, where FUSION shows the highest amount of
guarantee ratio, it provided the least makespan against the
state-of-the-art.

The organization of this paper is structured as follows:
Section II covers the related studies. Section III explains
the system model, the scheduling problem, the mathematical
formulation of the problem, fuzzy offloading, and fuzzy
ranking. In Section IV, FUSION is described in detail.
Section V explains the system setup and discusses the
evaluation results. Finally, section VI concludes the paper and
discusses future studies.

II. RELATED STUDIES
The existing studies in the context of task scheduling can be
categorized into two families: 1) Heuristic algorithms and
2) Meta-heuristic algorithms. Heuristics are often problem-
dependent, while Meta-heuristics are problem-independent
techniques that can be applied to a broad range of problems.
In other words, a heuristic exploits problem-dependent
information to find a good enough solution to a specific
problem, while meta-heuristics are general algorithmic ideas
that can be applied to a broad range of problems. First,
several important heuristic algorithms will be introduced.
Accordingly, the authors in [24] have implemented the
Min-Min algorithm. Since this algorithm does not support
load-balancing, they have come up with two solutions. One
solution is that after the algorithm is finished, the task with
the shortest length on the VM with the most load will be
selected; then the completion time of that task on other VMs
will be calculated. If the completion time on another VM
leads to a better makespan, the task will be assigned to that
VM, and the timetable of the VMs will be updated. This
process continues until no other operation is feasible. The
second solution considers task priorities, where tasks labeled
with a VIP tag will be scheduled on the VIP resources by the
Min-Min algorithm, and the non-VIP tasks will be scheduled
on the non-VIP resources based on the first solution.

The Max-Min algorithm is implemented in [25], where
at every iteration, the longest task is selected and will
be scheduled on a VM, which offers the least completion
time of that task. This algorithm also suffers from load-
balancing. In [26], a shortest-load-first algorithm is proposed
that considers load-balancing. The task with the shortest
length is selected and will be assigned to the VM with the
lowest load. If two or more tasks have the same length
(also shortest), or two or more VMs have the same load, the
selection policy would be FCFS. The authors in [27] have
proposed an improved version of the Weighted Round-Robin
(WRR), whose goal is to perform load-balancing for reducing
the makespan. In [28], authors have proposed a fast heuristic
algorithm based on the genetic algorithm to offload codes
for maximizing the number of tasks that should be executed
on wearable devices with guaranteed delay requirements.
In another related study, authors have tried to jointly optimize
the computing and communication resources in the fog node
by formulating a delay-sensitive data offloading problem that
mainly considers transmission delay and local task execution.
To do so, they have obtained an approximate solution via
Quadratically Constraint Quadratic Programming (QCQP)
[29].

Meta-heuristic algorithms use optimization techniques to
find the optimal or near-optimal solution. In [30], the authors
proposed a meta-heuristic algorithm based on the ant colony
optimization for cloud environments, which aims to lower
the makespan, and balance the load. In a related study, the
authors in [17] proposed a meta-heuristic algorithm based on
the Ant-colony optimization that considers the deadline of
real-time tasks in the cloud and fog environments. The aim of

152888 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

this algorithm is to maximize the obtained profit by assigning
the tasks to VMs. They have also considered load-balancing
in their proposed technique. The authors in [31] have used a
reinforcement learning approach that considers the deadline
of real-time tasks in the edge computing framework. The
main goal of this study is to reduce the makespan and manage
the energy consumption. Machine learning has been also
utilized in [32], where the main objective of the authors is
to introduce a reliable backup task assignment strategy for
fog environments in terms of both functionality and timing.
A cost-aware meta-heuristic task scheduling algorithm based
on the genetic algorithm has been introduced in [16], which
considers the deadline of real-time tasks on the cloud and fog-
based environments. The aim of this algorithm is to schedule
as many tasks as possible while minimizing the financial cost.

Two meta-heuristic algorithms are addressed in [33].
In this study, the first algorithm utilizes the ant colony
optimization for task offloading to satisfy the quality of
service constraints (specifically the response time), while
considering load-balancing. The second approach employs
an offloading algorithm by using the Particle Swarm
Optimization (PSO) technique to minimize response time
and maintain load-balancing. In another related study, the
authors have come up with a meta-heuristic approach based
on the genetic algorithm to minimize makespan, and cost of
service [34]. Nevertheless, their newly proposed algorithm
does not consider real-time constraints. In [35], an energy-
aware meta-heuristic algorithm based on an ant-mating
algorithm is proposed. The algorithm considers the tiered
IoT network but does not consider real-time constraints.
A deadline-aware meta-heuristic algorithm on a tiered IoT
structure has been proposed in [18], which utilizes ant colony
optimization. The authors in this study have considered
the mobility feature and proposed a method for location
prediction.

An iterative optimization (TPIO) technique is proposed
in [36] to try to optimize capacity and traffic allocation
in Mobile Edge Computing (MEC) to satisfy the latency
percentage constraint. TPIO has an iterative nature because
it uses a tightly coupled two-phase process. The two
phases of TPIO capacity and traffic allocation are closely
interlinked. Adjustments in one phase directly affect the
other, necessitating an iterative process to find an optimal
balance. The iterative nature allows the technique to meet
two key objectives: providing a minimal-capacity network
and ensuring that a certain percentage of traffic meets
the latency constraint. Iteration helps in fine-tuning the
system to achieve these goals. By iteratively adjusting
capacity and traffic, TPIO can more effectively allocate
resources where they are most needed, ensuring that theMEC
architecture operates efficiently without over-provisioning.
The iterative process allows for continuous improvement
in performance metrics, such as latency, by allowing for
repeated adjustments until the desired performance level
is reached. In [37] the authors have proposed an auction

method to model the interactions of MEC nodes, and also the
likelihood of successful offload from users. They have tried
to minimize the cost of offloading to get more users engaged
in the offloading process. In another study, authors have
proposed a resource allocation mechanism to ensure reliable
and low-latency communication for services in space-air-
ground networks [38]. Authors in [39] have proposed
a scheduling mechanism based on classifying the tasks
according to historical scheduling data and creating a certain
number of VMs. Then, tasks are matched with concrete
VMs dynamically, to improve scheduling performance and
achieve load-balancing of resources. In another study, authors
have proposed a task scheduling and resource management
strategy with minimized task completion time for promoting
the user experience [40].
Generally speaking, in critical fog applications, partic-

ularly in dynamic and unpredictable environments, e.g.,
mobile fog networks, several techniques are employed
to improve the tasks’ guarantee ratio. These include: 1)
Task prioritization, 2) Resource management, 3) Imple-
menting fault-tolerant mechanisms, 4) Employing advanced
scheduling algorithms, like the Critical Task First Scheduler
(CTFS), and 5) load-balancing. Several studies have tried
to improve tasks’ throughput by proposing latency-aware
offloading mechanisms. In [41], the authors have proposed
an accelerated gradient offloading strategy to guarantee delay
constraints and provide energy-efficient computation for
Industrial IoT (IIoT) within a fog computing environment.
IIoT has been also the main target of authors in [42],
where they have utilized an AI-based Whale Optimization
Algorithm (WOA) as part of their proposed QoS-aware
offloading mechanism. In another study, authors have
claimed that in contrast with the existing techniques, it is
impractical to consider a deterministic QoS (delay) guarantee
for tasks due to the high dynamics of the mobile wireless
environment when offloading to edge servers. Therefore,
they proposed a task offloading with a statistical QoS
guarantee in mobile edge computing. They introduce a
statistical computation model and a statistical transmission
model to quantify the correlation between the statistical QoS
guarantee and task offloading strategy [43]. Furthermore,
energy efficiency problems with performance guarantees
in mobile-edge computing are investigated in [44], where
an optimization problem for mobile-edge cloud computing
is introduced. In another research, a cost-efficient task-
offloading method for delay-sensitive applications in fog
computing systems is proposed [45]. This technique aims
to minimize the overall system cost in terms of energy
consumption and makespan, which includes transmission
time, processing time, andwaiting time. The tradeoff between
the response time and the energy utilization has been
also the main focus of authors in [46], where they have
introduced a Metaheuristic Mountain Gazelle Optimization
Algorithm-based task scheduling approach (MMGOA-TSA)
in the Next-Generation IoT Fog-Cloud Networks. The same

VOLUME 12, 2024 152889

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

goal has been pursued in [47], where a multi-objective
Harris Hawks Optimization (HHO)-based task scheduling
algorithm (MoHHOTS) is developed for cloud-fog comput-
ing networks. Finally, a load-balanced offloading mechanism
based on PSO with improved response time has been
introduced in [48]. While there are industry certifications and
regulatory standards concentrating on the reliability, safety,
and performance of critical fog applications, they may not
explicitly focus on tasks’ guarantee ratio. They encompass
the broader objectives of ensuring that critical systems are
reliable and perform as expected, which includes meeting
specific performance benchmarks such as guarantee ratios.
A number of safety standards used in industries, include DO-
178B for avionics, and ISO 26262 for road vehicles [49].

III. SYSTEM MODEL AND PROBLEM FORMULATION
In our system model, we assume two layers of fog devices
between an edge device and the cloud data center. The
layer closer to the cloud has more computation capability
than the layer closer to the edge device. Each layer has
its own offloader. The offloader is aware of the VMs
capacities of its layer. Based on the outcome of the offloading,
a fog layer may have some (or none) tasks to assign to
its VMs. The scheduling algorithm is responsible for the
distribution of the fog’s tasks among the fog’s VMs. For
each task, the scheduler ranks the VMs to find a suitable
VM that satisfies all the objectives. The problem of finding
suitable VM for running a task is a multi-objective decision-
making problem as we have multiple objectives to satisfy
like guarantee ratio, makespan, and load-balancing. These
objectives are typically conflicting in nature. In other words,
improvement in one objective may cause deterioration in
others. In such problems, it is important to establish the
trade-off between all of the considered objectives. Hence,
obtaining a single optima solution is very complicated as
opposed to the single objective optimization problems [50].
Instead, multi-objective decision-making provides a set of
solutions known as Pareto optimal solutions. These solutions
have equal importance and are non-dominated by each other
but are superior to the rest of the solutions in the search space.
The number of Pareto solutions increases with the number
of objectives. Therefore, multi-objective decision-making
is considered as an NP-hard problem, necessitating the
approximation of the Pareto front to reduce the computation
and complexity of the applied algorithms. Nevertheless, the
wide range of solutions provided to the decision-makers,
which enables them to choose a single best solution in a
flexible manner has made multi-objective decision-making
an appealing approach [51].

Among different approaches for solving multi-objective
decision-making problems, fuzzy logic approaches are very
effective due to their simplicity both in time complexity
and implementation. Accordingly, in FUSION scheduler,
we benefit from fuzzy logic-based ranking to rankVMs based
on our multiple objectives. In the following, for a given task,
FUSION evaluates the rank of each VM. Each VM may

TABLE 1. Definition of Notations in this Study.

have a different evaluation (rank) for an objective. Therefore,
the rank of any VM is an aggregation of its rank for every
objective. Table 1 represents the definitions of the employed
notations in our formulations.

A. ARCHITECTURE OF THE SYSTEM
As we mentioned, we consider three-layer architecture
having two levels of fog devices between an edge layer
and the cloud layer. Except for the cloud layer which does
not have any upper layer, each layer has its Offloader.
Furthermore, all the layers have their own broker. The broker
is responsible for receiving tasks and assigning them to VMs.
The offloader is responsible for making a decision before
task assignment, to whether keep an incoming task in its
layer or offload it to a higher layer. It is worth mentioning
that passing tasks between the layers impose communication
and propagation delays to their makespan. In fog computing
networks, the communication protocol commonly used for
conducting task offloading is the Message Queuing Teleme-
try Transport (MQTT) protocol. MQTT is a lightweight,
publish-subscribe messaging protocol that is well-suited for
establishing efficient and reliable communications between
devices in IoT and fog computing environments [52].

B. SCHEDULING PROBLEM
In real-world applications, e.g., google clusters [14], [15],
tracks contain hundreds of thousands of jobs (applications).

152890 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

Where every job consists of one to thousands of tasks. Due
to the computational limitations of IoT devices, they may
offload their jobs to the fog or the cloud layer. Each job will
be then decomposed into its independent tasks. This set of
tasks needs to be assigned to VMs for execution. We assume
real-time tasks in this study. Thus, tasks have deadlines (di)
and we must finish their executions before their deadlines.
Therefore, the scheduler must consider the deadline of the
tasks. Themakespan of a job (1TJobk), is the interval between
the instance of time when its first task starts executing
to the end of executing its last task. Accordingly, the task
with the highest finish time will determine the makespan. The
makespan is a critical metric in evaluating the performance
and efficiency of task scheduling algorithms in virtualized
environments. Makespan is used as a primary indicator of the
performance of scheduling algorithms. A shorter makespan
typically signifies a more efficient algorithm, as it indicates
that tasks are completed in less time. By analyzing the
makespan, it’s possible to identify bottlenecks in the system.
Long makespans may indicate that certain resources are
overburdened or that the task distribution is not balanced [53].
It could be also used as an indication for the resource
utilization, cost efficiency, and QoS [54]. The ratio of tasks
finished before their deadlines to the total number of tasks
is known as the Guarantee Ratio (GR). In conclusion, the
problem that we are going to solve by FUSION is to assign
tasks to VMs in a way that provides a high guarantee ratio
with the least makespan possible.

C. PROBLEM FORMULATION
To formulate our problem, first, we need to describe the
characteristics of the tasks in the system. Accordingly,
we have some jobs that later will be decomposed into several
independent indivisible tasks as in the following:

Jobk = {Task1,Task2, . . . ,Taskm}

Taski = {ai, di, si,CPBi, li, JobID ∈ {1, . . . , k}}

where every task has its own set of specifications. Accord-
ingly, ai represents the arrival time of Taski, di represents the
absolute deadline of Taski (the time at which the job should
be completed from t = 0), si is the size of the task in bytes,
CPBi is cycles per byte of the task (the number of instructions
needed for execution per each byte), li is the number of
instructions (length) of the task that has to be executed on the
processor of a VM and JobID is the job that owns the task.
A job is assumed to be completely executed if its last task (in
its task set) is completed. If we consider t ijExec as the execution
time of Taski on VMj, and the t ijCompletion as the completion
time of Taski on VMj, the makespan of Jobk (1TJobk) will be
calculated via equations (1)-(4).

t ijCompletion = t jCurrent + t
ij
Exec (1)

t ijExec =
li
PCj

(2)

li = CPBi × si (3)

1TJobk = Max{t ijCompletion}, j ∈ {1, . . . ,m} (4)

As it has been mentioned in Table 1, t jCurrent is the elapsed
time from t = 0 in VMj. The total path latency is composed
of propagation, and communication delays, and is calculated
as in the following.

Tlatency = 2Tpropagation + T upcomm + T
down
comm (5)

where T upcomm, and T downcomm are calculated based on equa-
tions (6), and (7), respectively.

T upcomm =
si
BWj

(6)

T downcomm =
Size(TaskResponsei)

BWj
(7)

In equation (7), Size(TaskResponsei) indicates the size of
the response corresponding to the execution of Taski to
the IoT device. According to these equations, the uplink
and downlink communication delays are dependent on the
available bandwidth between the submitting IoT node and
the destined fog device VMj. Considering two fog layers
(FL1,FL2) between the cloud (CL) and the IoT devices
(IoT), according to the following, the propagation delay is
calculated based on the offloading destination of Taski.

Tpropagation =

TIoT→FL1 If Taski is offloaded to FL1
TIoT→FL1 + TFL1→FL2 If Taski is offloaded to FL2
TIoT→FL1 + TFL1→FL2 + TFL2→CL If Taski is offloaded to CL

(8)

According to (8), if an IoT device sends a task to the first fog
layer, the propagation delay is calculated solely for the path
between the IoT device and FL1. Subsequently, if the first
fog layer decides to offload the received task to the next fog
layer (FL2), the propagation delay would be calculated for
the path encompassing the IoT device, FL1, and FL2. Finally,
if the second fog layer opts to offload the received task to
the cloud (CL), the path for calculating the propagation delay
would include the IoT device, FL1, FL2, and the cloud. The
considered values will be later discussed in Section IV.

In cloud and fog networks, having a low makespan is
beneficial due to its positive impacts on the total latency
and response time. In real-time applications, where tasks
must be finished before their deadlines, we must consider
the guarantee ratio to achieve this goal [55]. As it has been
discussed earlier, the guarantee ratio (GR) is the ratio of the
tasks completed within their deadlines to the total number of
tasks [17]. This metric is calculated through equation (9).

GR =
Ncompleted
Ntotal

(9)

where Ncompleted represents the number of tasks completely
finished before their deadlines, and Ntotal is an indication of
the total number of tasks. This metric indicates the ratio of
tasks that have completed execution before their respective
deadlines, to all of the received tasks. It can be utilized to
determine the ratio of tasks that have been finished before
their deadlines on a fog or cloud device or for all of the

VOLUME 12, 2024 152891

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

tasks received from various devices. While the guarantee
ratio is a custom metric used in real-time applications, there
are more general metrics, which are considered in a wider
range of applications. One of the most well-known general
metrics is utilization. In queuing theory, the utilization is
defined as the ratio of the arrival rate (µ) to the service
rate (λ). In the context of fog computing, utilization (U)
could be referred to as the portion of time that the VM is
busy (in other words, the VM is executing tasks). Therefore,
in our study, the arrival rate could be considered as the
arrival rate of tasks, that are entered the VM to be executed,
while the service rate corresponds to the execution rate of
the VMs. Based on this definition, when the number of
offloaded tasks to a specific VM exceeds the execution
rate of that VM (U ≥ 1), congestion occurs and the
buffer of the hosting fog device starts to fill until it gets
fully occupied [56]. Therefore, occurrence of congestion
creates an unstable network, leading into task or packet
drops, communication overhead and higher delays in the
network [57]. Typically, dense network infrastructures are
more prone to congestion than sparse networks with limited
number of offloaded tasks. In addition to increased delay
in the network, the network congestion leads to reduced
throughput [58]. Furthermore, congestion also increases the
number of retransmissions, which can lead into more energy
consumption by the IoT nodes [59], [60]. Based on the
principles of queuing theory, in order to avoid congestion and
instability in the fog network, we shall keep the utilization
under one. As expected, this would also affect the makespan
and the total latency. On the other hand, it is undesirable
to have idle VMs. Thus, higher (but lower than one) and
evenly balanced utilization could provide lower idle times
in the deployed VMs (in cases where the VMs capacities
are uniform). Having higher utilization values means that
the employed algorithm distributes the tasks to the VMs
efficiently. The average amount of utilization for the deployed
VMs is calculated via equations (10), and (11), respectively.

1TVMj =

m∑
i=1

t ijexec (10)

Uaverage =

∑Nvm
j=1 1TVMj

Nvm
(11)

where 1TVMj indicates the total busy time of VMj, and Nvm
represents the total number of VMs.

According to the above discussions, the multi-objective
offloading/scheduling problem that we are going to solve
in this study consists of three objectives: 1) Having the
least makespan as possible, 2) Having the highest guarantee
ratio, and 3) Having a high and balanced average amount of
utilization as possible. Now, let’s consider that a Taski has
been submitted by an IoT node. Based on the concept of task
assignment, we can consider a random variable Xij, which
indicates whether Taski is assigned to VMj for execution or

not.

Xij =

{
1 If Taski is assigned to VMj

0 Otherwise
(12)

A real-time task (Taski) must be assigned to only one VM
and it must be executed before its deadline. In other words,
equations (13) and (14) must be satisfied.∑

j

Xij = 1 (13)

t ijCompletion + Tlatency ≤ di (14)

Thus, the objective function of this study could be determined
as follows.

F =
{
Min(1Tjob),Max(GR),Max(Uaverage)

}
(15)

D. FUZZY OFFLOADING
Many contemporary fog applications are composed of mobile
IoT devices, in which the number of devices, as well as the
topology of the network, are highly time variable. On the
other hand, different types of tasks with variable resource
requirements, lengths, timing constraints (hard, firm, and
soft deadlines), and arrival and departure specifications are
produced every instance of time. These issues lead to the
generation of highly dynamic task sets to be executed by
either fog devices or cloud servers. In addition, it is expected
that throughput, balance of load among the fog devices, and
the finishing time of the tasks will be also time-varying. It has
been shown that by employing fuzzy-based models, we can
handle uncertainty in rapidly changing environments such
as mobile fog applications [19]. Because it allows for the
representation of vague or imprecise information [61], [62].
Traditional Boolean logic relies on binary values (true or
false), which may not always accurately capture the nuances
of real-world situations where information is not always
clear-cut. Fuzzy logic, on the other hand, allows for the use of
degrees of truth (between 0 and 1), enablingmore flexible and
nuanced reasoning in uncertain or ambiguous scenarios [61].
Applying fuzzy logic has shown eye-catching improvements
when used for solving related network challenges such
as congestion mitigation, hand-off control, network, and
workload management [63], [64], [65], [66], [67], [68].
Generally speaking, in cases, where it is difficult to develop
an exact mathematical model in a rapidly changing, dynamic,
and uncertain environment, fuzzy logic is the most employed
technique due to its lower computation complexity against
other decision-making algorithms [20], [21], [22]. In addition
to handling uncertainty, Fuzzy logic can tolerate imperfect
data with great precision [69]. In several studies, fuzzy logic
has been employed in decision-making to cope with data
imprecision [70]. Therefore, based on the specifications of
the problem under study, and also the characteristics of
fuzzy logic, we were motivated to use this approach in
the structure of our FUSION task assignment mechanism.
Fuzzy logic is a system for representing the meaning of

152892 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 2. Fuzzy logic process diagram.

propositions expressed in a natural language when the
meaning is imprecise [71]. According to [71] a proposition in
natural language may be viewed as collection of constraints,
C1, . . . ,Cm restricting the value of variables,X1, . . . ,Xk . The
constraints and the variables are implicit.

In fuzzy logic, the canonical representation of the propo-
sition p is used to get an explicit meaning of the proposition.
The canonicalform, p→ X is A, where A is a fuzzy predicate
and x is the variable. This canonical form implies that the
possibility distribution of X is equal to A, Poss

{
X = u

}
=

µA(u)where u ∈ U .WhereµA(u) is the membership function
of A, the degree of which X is A. In the case of possibility
distributions of the form Poss

{
X = u,X = v

}
= µA(u) ∧

µB(v). The operators ∨, and ∪ denote the operator max and
the operators ∧ and ∩ denote the operator min.
To use fuzzy logic for our problem, we have some input

variables, some output variables, set of rules, and an inference
method. Each predicate of input and output variables has
a membership function. The membership degree of the
current values of input variables is called fuzzification. These
membership values will then trigger some of the rules which
will determine the membership degree of the output variable.
With the help of an inference method the membership degree
of the output variable will be defuzzified into a value in
the domain of the output variable. In short, we determine
the output value by the current input values based on some
rules. Fig. 2 depicts the process diagram of the fuzzy
offloader.

As it can be seen in Fig. 2, in this study we use the
same technique for the FUSION offloader. According to this
figure, the input variables represent the metric values used
to evaluate the performance of our algorithm. During the
fuzzification phase, these input values are combined with the
associated membership functions of the fuzzy predicates to
obtain fuzzy values for the input variables. To calculate the
output variable values, a set of rules, membership functions
for output fuzzy predicates, and a defuzzification method
are employed. The rules yield value(s) for the fuzzy output

variable, and the Center of Gravity (COG) method is used
to determine the defuzzified value of the output variable.
COG defuzzification is a simple, accurate, well-known and
long-standing method in the context of fuzzy systems.
This technique is a combine-then-defuzzify algorithm that
determines the crisp output as the center of gravity of the
combined fuzzy set. One of the necessary specifications of a
defuzzifier is its continuity; meaning that the slight alterations
in the rules should not drastically affect the output of the
defuzzifier. It has been shown that the COG defuzzifier is
continuous, and as long as the considered fuzzy sets are
not empty, it provides a continuous output for continuous
membership function [72], [73]. The COG provides relatively
higher weights to lower membership values, whereas the
other well-known defuzzification technique, e.g., MOM,
neglects lower membership values [74]. As it has been
mentioned in [75], COG never exhibits RMS error. Generally
speaking, COG is an important property since it reflects both
the location and the shape of a fuzzy set definition [76].
Therefore, COG has been selected as the defuzzifier tech-
nique in this study.

The input variables are: tasksize, deadline, and Ci/Pi (the
communication time over the processing time). The fuzzy
predicates of the input variable tasksize are: small, medium,
and large. These predicates are based on the capacity of the
VMs residing on the offloader layer. The fuzzy predicates
for input variable deadline are: early, moderate, and high,
which means how close the deadline of a task is to the current
time. The predicates for the input variable Ci/Pi are: low,
modearte, and high, which denote whether or not a task
has more communication time than its processing time. The
fuzzy predicates for the output variable status are: offload ,
probable, and local. As we mentioned, we use COG as the
defuzzification method.

Since FUSION has two fog layers and each layer has one
offloader module, we will have two different rule bases. The
rules in a fuzzy logic system are often expressed in the form
of ‘‘if-then’’ statements. There are three inputs each having
three fuzzy predicates, therefore the total number of rules
will be 33 = 27. However, we may not need to have all
the rules included. Fuzzy logic systems can work well even
if some of the rules are skipped [71], [77]. This is because
fuzzy logic is designed to handle uncertainty and imprecision,
and can still make good decisions even when some of the
rules are not included. Table 2 and Table 3 show the rules
for each offloader. It should be mentioned that among the
rules, only those that have the least impact on the precision,
and quality of FUSION have been excluded from the
system.

E. FUZZY RANKING
In this section we represent our problem as a fuzzy quantified
proposition. Then in order to rank VMs for FUSION
scheduling algorithm, we utilize fuzzy ranking algorithms to
rank them and eventually assign the top-ranked VM to the
current task.

VOLUME 12, 2024 152893

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

TABLE 2. Offloader layer 1.

TABLE 3. Offloader layer 2.

1) LINGUISTIC QUANTIFIERS
propositions of the form Q Es are A or Q BEs are A,
begin with a quantifier where Q is the quantifier and E
is the expression that its membership is evaluated in the
membership function of a fuzzy predicate A. This quantifier
can be decreasing, such as at most 5, or non-decreasing,
such as all, at least 2. These quantifiers mostly are of two
kinds. The first kind are called absolute, such as at least 1,
at most 2, etc. The second kind are called proportional or
relative, such as almost all, at least half, etc. The first kind
can be represented as fuzzy subsets of non-negative numbers,
whereas the second kind can be represented as fuzzy subsets
of the unit interval because it is proportional and it should be
represented as a proportion of a whole set.

2) DECOMPOSITION METHOD
Assume we have a proposition p1 as ‘‘Almost All objectives
are satisfied by x’’. This is of the first form as mentioned
above. Q =‘‘Almost All’’, E =‘‘set of objectives’’, and
A = ‘‘satisfied by x’’. The proposition p2 as ‘‘Almost All
important objectives are satisfied by x’’ is of the second
form mentioned above. Q =‘‘Almost All’’, B =‘‘important
objectives’’, E =‘‘set of objectives’’, and A = ‘‘satisfied by
x’’. As proposed in [78], for the truth value of propositions of
the form p1 we have equation (16).

V (p) = Max
C⊂E

[Vp(C)] = Max
C⊂E

[T1(Q(C), T
Ei∈C

(A(Ei)))] (16)

where T1 and T represents a t − norm. The elements of A(Ei)
are in descending order, i < j H⇒ A(Ei) ≥ A(Ej). Therefore
for our fuzzy quantified proposition ‘‘Almost All objectives
are satisfied by x’’ where Q is a relative quantifier (Almost
All) we have equations (17), (18), and (19).

T1[Q(C), T
Ei∈C

(A(Ei))] = min(Q(C), T
Ei∈C

(A(Ei))) (17)

T
Ei∈C

[A(Ei)] = min[T
Ei∈C

(A(Ei))] = A(Ei) (18)

V (p) = maxni=1[min(µA(xi), µQ(
i
n
))] (19)

where i < j H⇒ µA(xi) ≥ µA(xj). In our case, for each task
we rank the VMs, and the task is assigned to the top rank
VM.

3) OWA METHOD
According to [79], An OWA operator of dimension n is a
mapping f : Rn → R that has an associated n vector
W = [w1,w2, . . . ,wn]T where:

1) wi ∈ [0, 1].
2)

∑n
i=1 wi = 1.

Furthermore, f (a1, . . . , an) =
∑n

j=1 wj.bj, where bj is the jth
largest of the ai. The wj in the summation for the Ordered
Weighted Averaging (OWA) method represents the corre-
sponding weight from the weight vector associated with bj.
A number of properties can be associated with the mentioned
operators:

• The OWA aggregation is commutative, that is the
aggregation is indifferent to the initial indexing of the
argument.

• Monotonicity: if âi ≥ ai for all i, then f (â1, . . . , ân) ≥
f (a1, . . . , an).

• Idempotency: if ai = a for all i, then f (a1, . . . , an) = a.

The OWA aggregation is bounded by the Min and Max of
the arguments. Thus, for any OWA aggregation f ,Mini[ai] ≤
f (a1, . . . , an) ≤ Maxi[ai]. For the quantifier guided
aggregation, If Q1 and Q2 are two proportional quantifiers,
we say Q1 < Q2 if Q1(r) ≤ Q2(r) for all r . An important
subclass of these proportional linguistic quantifiers are the
regular monotonic quantifiers. These quantifiers satisfy the
following conditions:

1) Q(0) = 0.
2) Q(1) = 1.
3) Q(r1) ≥ Q(r2) if r1 ≥ r2.

Assume the proposition is of the form QY ′s are B. The first
step in the process of evaluating the truth of these quantified
propositions is to associate with the quantifier Q an OWA
weighting vectorW of dimension n, where n is the cardinality
of Y. In particular, the weights are obtained as:

wj = Q(
j
n
)− Q(

j− 1
n

). (20)

It can be seen that wjs satisfy the conditions wj ∈ [0, 1] and∑n
j=1 wj = 1. After obtaining the weights, the truth value τ ,

152894 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

of the proposition QY ′s are B, can be obtained as:

τ = FQ(b1, . . . , bn) (21)

where FQ represents the OWA aggregation of bi using the
weights obtained from Q. Where Q represents the propor-
tional linguistic quantifier ‘‘Almost All’’, as equation (20).

IV. DETAILED DESCRIPTION OF FUSION
FUSION has two stages: Fuzzy Offloading and Fuzzy
Ranking. When the task list arrives at a fog device, FUSION
Offloader (using Fuzzy Logic), decides which tasks should
be offloaded to a higher layer device. Then the FUSION
Scheduler (using Fuzzy Ranking), finds themost suitable VM
for each task. This means that for each task, the VMs are
ranked and the top-ranked VM is assigned to that task.

A. FUSION OFFLOADING
Knowing that the offloader has a knowledge of VM capacities
of its layer, we use Task Size as one of the fuzzy input
variables in FUSION Offloader. Since Task Size varies
during the run-time and we cannot know it beforehand,
we measure their size with respect to the VMs capacities.
As Fig. 3.a shows, at the first fog layer, the VM capacities
are:

{
2000, 3000, 4000, 5000, 6000

}
Million Instructions Per

Seconds (MIPS) and the fuzzy predicates are determined
based on the size of a task with respect to the VM capacities.
On the other hand, Fig. 3.b shows the membership function
of the task size at the second fog layer. The VM capacities at
this layer are:

{
9000, 10000, 11000, 12000, 13000

}
MIPS.

Since FUSION considers real-time application, we
assumed that the tasks have deadlines. Fig. 3.c shows the
membership function of the deadlines. FUSION considers
the communication delays in its task offloading decisions.
Indeed, there may be situations where offloading a task
to a more powerful fog leads to a higher response time.
To take the correct decision in such situations, FUSION
uses another input variable which is Tcomm/Tprocessing. This
input determines whether it is beneficial to offload the task
to a higher level due to the lower communication time or
execute it locally due to the higher communication time with
respect to the processing time. Fig. 3.d shows themembership
function of fuzzy input variable Ci/Pi.

For the fuzzy output variable, FUSION introduces 3 fuzzy
predicates: offload, probable, and local. Probable means that
the task will be offloaded based on the defuzzified value of
the output variable. We use this predicate to show some non-
determinism. There are cases that the inference of fuzzified
values cannot determinewhether to offload or execute locally.
For these cases, we use this probabilistic approach. Fig. 3.e
shows the membership function of fuzzy output variable
Status.

Algorithm 1 shows how the FUSIONoffloadingworks. For
each task from the incoming task list, the input variables are
fuzzified (lines 2-4). Then in line 5, the defuzzified value of
output variable status is calculated. In case of the probable
decision, if the value of the fuzzy output variable Status is

FIGURE 3. Membership functions of input/output variables in offloader.

less than the lower bound of the probable interval, the task
is marked for offload and is added to the offloaded list (lines
6-7). If Status is greater than the upper bound of the probable
interval, the task is marked for local execution (lines 19-20).
When Status is in the probable interval, the task is marked
for local execution with the probability of Status (lines 8-
12). Otherwise, the condition Ci/Pi < 1 is checked, and the
task is marked for offload and added to the offloaded list,
if the condition is satisfied (lines 13-16). The default decision
would be local execution if none of the conditions mentioned
above hold. Ultimately, the offloaded list is returned to the
scheduler. It’s worth knowing that this list may be empty
when there are no task to offload.

B. FUSION VM RANKING
To assign VMs to the new arrival tasks in the task list,
the FUSION’s Fuzzy-Based Ranking algorithm ranks VMs
and assigns the top-ranked VM to the task. There are three
objectives for ranking: laxity, load, and execution time.
The laxity ensures that we meet the real-time requirements.
By definition, the amount of time between the end time of a
task and its deadline represents laxity. This parameter could
be also refereed to as slack time [80]. In the context of fog and
edge computing, a higher slack time on one server leads to a
higher dispatching probability, and then more requests will
be dispatched to the server [81]. Accordingly, the higher the
laxity of a task, the more time we save for other tasks to meet
their deadlines. Since calculating a task’s laxity depends on
the task’s expected end time, and there is no prior knowledge
about the expected end times, we need to normalize this

VOLUME 12, 2024 152895

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

Algorithm 1 Offloader Mechanism
Input List < Task > IncomingTasks
Output List < Task > OffloadedList

1: for each t ∈ IncomingTasks do
2: si← Membership(Size(t))
3: di← Membership(Deadline(t))
4: ci← Membership([Ci/Pi](t))
5: status← Output(si, di, ci,COG)
6: if status is behind the PROBABLE interval then
7: Add t to OffloadedList
8: else if status is in the PROBABLE interval then
9: Generate random number R ▷ U(0,1)

10: if R ≤ status then
11: Mark t for local execution
12: else if R > status then
13: if Ci/Pi < 1 then
14: Add t to OffloadedList
15: else
16: Mark t for local execution
17: end if
18: end if
19: else if status is out of the PROBABLE interval then
20: Mark t for local execution
21: end if
22: end for
23: return OffloadedList

objective for the domain of the membership function. This
objective (Fig. 4.a) is also used in [17] as profit. Equation (22)
shows the normalization formula.

Saving =
di − ei
di − ai

(22)

where di is the absolute deadline of taski, ei is the expected
end time of the taski, and ai is the arrival time of the taski.
With equation (22), the domain of the membership function
is now known. Since Saving in equation (22) varies between
[0,1] and a higher Saving is a better objective, themembership
function of this objective would become quite simple as
Equation (23).

MembershipLaxity =
di − ei
di − ai

(23)

Another objective is load (Fig. 4.b) which represents
the current load of VMs. To calculate the load of VMs,
we need their current makespan, which can be calculated by
equation (10), and themaximummakespan for normalization.
The maximum makespan can be calculated by equation (24).

Maxspan = max(1TVMj) ; j ∈ [1,Nvm] (24)

Finally, the load of a VM can be normalized by equation (25).

load =
1TVMj

Maxspan
(25)

The load in equation (25) takes values in [0,1] and a lower
load has a higher priority with respect to a higher load.

Algorithm 2 Scheduler in Fog Node
Input List of Incoming Jobs
OutputMap <Tasks,VMs>

1: Decompose jobs into TaskList
2: TaskList ← Offloader(TaskList)
3: while Size(TaskList) > 0 do
4: Remove one task from the list
5: Rank VMs (Decomposition or OWA)
6: Map the removed task to the top-ranked VM
7: Update timetables
8: end while
9: returnMapping

Algorithm 3 Scheduler in Cloud Node
Input List of Incoming Jobs
OutputMap <Tasks,VMs>

1: Decompose jobs into TaskList
2: while Size(TaskList) > 0 do
3: Remove one task from the list
4: Rank VMs (Decomposition or OWA)
5: Map the removed task to the top-ranked VM
6: Update timetables
7: end while
8: returnMapping

FIGURE 4. Membership functions of objectives and fuzzy proportional
quantifier.

Therefore, the membership function of this objective can be
calculated by equation (26).

MembershipLoad = −(
1TVMj

Maxspan
)+ 1 (26)

The third objective is the execution time (Fig. 4.c). Con-
sidering makespan, a task should have the lowest execution
time possible. In Equation (2), we defined the execution time
of a task on a VM. For the membership function of execution
time, we only need the capacity of the VMs. In each step, the
length of the task is fixed, and the ranking algorithm iterates
through VMs. The set of the capacities of VMs contains

152896 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

discrete values. Therefore, the membership function would
be a set of tuples. We sort the VM capacities set in ascending
order(Capacity(VM1) ≤ . . . ≤ Capacity(VMk)), Then tuples
are defined in Equation (27).

MembershipExec = (Capacity(VMi),
i
k
) ; i ∈ [1, k] (27)

The membership function of the proportional linguistic
quantifier ‘‘Almost All’’ (Fig. 4.d) that we used both in the
decomposition and OWA approaches, is according to the
Equation (28).

QAlmostAll(
i
n
) =

0 (

i
n
) < 0.5

5
2
(
i
n
−

1
2
) 0.5 ≤ (

i
n
) ≤ 0.9

1 (
i
n
) > 0.9

(28)

Algorithm 2 and Algorithm 3 show that FUSION can
be applied in both fog and cloud nodes. Algorithm 2 and
Algorithm 3 are almost similar, except that no offloading
takes place for the cloud node, because there is no higher level
node above the cloud layer. The arriving jobs are decomposed
into a list of independent tasks (line 1), the list is then sent
to the offloader, and the remaining tasks (if any) will go for
scheduling (line 2). For each of the remaining tasks, VMs
are ranked using two methods (Decomposition and OWA),
and the top-ranked VM is then assigned to the task (lines
3-6). At the end of each iteration, timetables are updated
to keep track of the current time (line 7) and finally the
mapping is returned to the broker (line 9). In Algorithms 2
and 3, The ‘‘Mapping’’ is the output ‘‘Map<Task, VM>’’.
The algorithm takes a list of incoming tasks, and for each task
it ranks virtual machines and maps the task to the top-rank
virtual machine. In the end, this mapping of tasks to virtual
machines is returned so that the broker can use them for
execution.

Generally speaking, time synchronization between fog
devices is a critical challenge in fog computing networks
due to several reasons. Many fog applications require
precise coordination between devices, where even small
timing discrepancies can lead to significant errors or system
malfunctions. Accurate time synchronization is essential for
implementing fault-tolerance services and for the correct
sequencing of events, which is crucial for maintaining
system reliability. Synchronized time enables time-triggered
communication, which is necessary for deterministic and
predictable data exchange within the network. Furthermore,
in distributed systems, data consistency relies heavily on
timestamping, and without synchronized clocks, it’s chal-
lenging to maintain a consistent state across the network.
Proper time synchronization can improve the overall effi-
ciency of the network by enabling better scheduling of tasks
and reducing the need for time-related error corrections.
Accurate time stamps are vital for tracking network usage,
identifying latency issues, and detecting security breaches,

Algorithm 4 Updating Timetables
Input Taski, VMj

1: if t jCurrent < Arrival(Taski) then
2: t jCurrent ← Arrival(Taski)
3: end if
4: if t ijcompletion + Tlatency ≤ Deadline(Taski) then

5: t jCurrent ← t ijcompletion
6: return
7: else
8: Mark Taski for offload
9: return
10: end if

which are all critical for the secure operation of fog
networks.

Maintaining synchronization and data consistency when
offloading tasks between different layers of the fog comput-
ing architecture presents several challenges of its own. For
example, due to the distributed structure of fog computing,
fog nodes require more communications for synchronization
and maintain data consistency. This requires more resources
to be taken from computation and given to communications.
Thus, the processing power could get lower, leading intomore
delays and affecting real-time decision-making. Another
issue is data freshness, which refers to ensuring that the
most recent data is used when tasks are offloaded, which
is critical for real-time decision-making. Dealing with the
dynamic nature of the network, such as variable latency
and bandwidth, can also affect the timely synchronization of
data. Fog nodes may have limited computational and storage
resources, making it difficult to handle large volumes of data
and maintain consistency. In environments like vehicular fog
computing, themobility of nodes can lead to frequent changes
in network topology, complicating data synchronization
efforts. Furthermore, when the number of devices and
the volume of data grows, ensuring consistent data across
all nodes becomes increasingly challenging. Concurrency
control is another challenge associated with data consistency
and synchronization, which refers to managing concurrent
access to shared data resources without causing conflicts
or inconsistencies. Integrating and synchronizing data from
diverse set of heterogeneous devices and platforms with
different capabilities and data formats is another challenge
in this context. Finally, ensuring that data consistency and
synchronization mechanisms do not compromise the security
and privacy of the data being handled are also considered as
one of the challenges in maintain synchronization and data
consistency [82].

Therefore, time synchronization is very important for
determining the timing parameters of the tasks, such as arrival
time, current time, completion time, etc, for making decisions
about scheduling, and offloading. Accordingly, in FUSION,
we have used Algorithm 4 to track time. If the arriving task
has an arrival time later than the current time, the current

VOLUME 12, 2024 152897

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 5. Big picture of the FUSION task management.

time is then set to the task’s arrival time (lines 1-2). If the
expected completion time of a task is earlier than its deadline,
it is kept for scheduling and the current time is updated to the
completion time (lines 4-6). Otherwise, the task is offloaded
to a higher level (line 8). Finally, the big picture of the
FUSION is depicted in Fig. 5.

As Fig. 5.a shows, the received jobs are decomposed into
a list of independent tasks. These tasks are first sent to the
offloader. The offloader decides which tasks to send to the
upper layer, so that offloading may lead to better execution
times considering tasks’ deadlines. The remaining tasks are
then sent to the scheduler for assignment of suitable VMs.
The scheduler outputs a mapping of tasks to VMs which the
broker uses to send a task to its VM.

As Fig. 5.b shows, based on each task’s characteristics
(task size, deadline, and worst-case execution time) as the
inputs to fuzzy input membership functions, their degree of
membership is calculated. Accordingly, the calculated values
trigger rules. The fuzzy output value is then determined
by inference and is later defuzzified by the defuzzification
method. This defuzzified value is used to make decisions
about offloading. If the value is in the interval of [minthreshold ,
maxthreshold], the task is marked for local execution with a
probability. Indeed, a random number R is generated and
if R < Output (Output is the defuzzified value of the
fuzzy output variable), the task is marked for local execution.
Otherwise, it is offloaded only if Ci/Pi (task’s utilization) is
less than 1. If the output value is less than the minthreshold ,
the task is marked for offloading. Finally, if the output value
is greater than the maxthreshold , the task is marked for local
execution.

As Fig. 5.c shows, considering those tasks which were
marked for local execution, a suitable VM will be assigned.
Accordingly, for each task, all the VMs are ranked based
on three objectives: Saving (or profit), Load, and Execution

FIGURE 6. Entity Relationship Diagram (ERD) of CloudSim scheduling.

Time. The ranking is based on decomposition or OWA.
Finally, the top-ranked VM is assigned to the current task.

V. SYSTEM SETUP AND EVALUATION RESULTS
To evaluate FUSION, we have used the iFogSim [23]
simulation environment, which is based on the CloudSim
[83]. iFogSim simulates data centers, data center brokers,
VMs, and task scheduling algorithms. Although real-world
test beds are highly valuable, iFogSim offers a depend-
able, economical, and scalable option for deploying fog
networks and assessing offloading strategies. Its extensive
modeling features and validated outcomes have established
it as a respected resource within the research community.
Fig. 6, illustrates the entity relationship diagram of the
CloudSim scheduling mechanism. The VM allocation policy,
VM scheduling policy, and cloudlet scheduling policy are
the default policies in CloudSim (space-shared). We also
implemented our own Cloudlet task scheduler (space-shared)
to consider deadlines for the tasks in order to prohibit
their execution if their deadlines are not met. It is also
worth mentioning that our proposed technique employs a
non-preemptive task execution mechanism. For the FUSION
fuzzy offloader, we used jFuzzyLogic Java library developed
by [84] and [85], which supports Fuzzy Control Language
(FCL). The definition of membership functions of input and
output variables, fuzzy predicates, and rule blocks can be
implemented via FCL. jFuzzyLogic has implemented several
defuzzification methods including the Center of Gravity
(COG).

We considered 3 data centers, one for each layer, each
of which has to allocate its resources to 5 VMs. There is
one Processing Entity (PE) for each of the VMs. There is a
data center broker at each layer that receives tasks and maps
them to VMs. According to the mentioned architecture in
Section III, each of the two fog layers has its fuzzy offloader
module. In total, 25 IoT/edge devices have been considered
in the simulations that submit their jobs for execution to
the fog or the cloud. Each job consists of several tasks,
and their considered model has been discussed in detail in
Section III-C. We assume that each job of the IoT devices has
an equal number of tasks that differ in size and length. For
the communication time of a task, its size is the contributor,
and for the execution time or processing time, its length is
the contributor. To calculate the expected finishing time of
a task, we only need Tpropagation, Texec, and T

up
comm. Since the

152898 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

TABLE 4. Simulation environment parameters.

returned task size (the response to the submitted task) is small,
the T downcomm is negligible.

For the sake of simplicity, we consider a single link
between each layer with the same throughput as in multiple
parallel links. Assuming the same throughput will not affect
the arrival time of the incoming tasks. On the other hand,
considering a single link reduces the complexity of handling
multiple parallel links. Due to the physical proximity,
we assumed that the latency between the IoT/edge devices
and the first fog node is negligible. Table 4 summarizes the
most important simulation environment parameters, which
have been considered in this study.

As stated in Table 4, the dataset is composed of tasks, VMs,
number of fog nodes, number of IoT devices that send tasks,
and the latency for each path. The size, cycles per byte, and
deadline of a task are obtained from a uniform distribution
mentioned in Table 4. The number of tasks for every scenario
has been increased from 200 to 1000 with steps of 100 tasks.
It is also assumed that each IoT device sends the same number
of tasks. Each cloud/fog node is composed of a data center.
Each data center has some hosts and a broker, and each host
is responsible for managing VMs. The VM capacity is also
obtained from a uniform distribution mentioned in Table 4.
The information regarding the resources of data centers and
hosts is also indicated in Table 4.

A. PERFORMANCE METRICS
We have evaluated and compared the performance of
FUSION with state-of-the-art from six different metrics.
These metrics include:

1) Job Makespan: The time interval between the submis-
sion of job’s first task to the finishing time of its last
task (equation (4)).

2) Total Makespan: The task (from any job) that has the
highest finishing time determines the total time taken
to execute jobs.

3) Total Guarantee Ratio: The total number of tasks that
have met their deadline out of all the tasks from all the
jobs (equation (9)).

4) Average Utilization: The average ratio of the VMs’
busy time periods over the maximum working time.
This metric shows how effectively the mapping
algorithm could distribute tasks to VMs to improve
both makespan and guarantee ratio (equation (11)).

5) Algorithm Execution Time: The execution time of
the algorithm’s code. This metric is used to measure
the time complexity of the implemented algorithms.
In other words, it defines the elapsed time between the
start of the algorithm and its termination.

6) Average Task Type: The average number of tasks
executed at each layer categorized by different deadline
intervals and the total number of tasks. This metric is
used to measure the performance of the offloader.

It is worthy to mention that the difference between the Job
makespan and the total makespan is that in the former a task
from the job, which has the highest finishing time determines
the makespan, whereas in the latter a task among all the tasks
and jobs, which has the highest finishing time determines
the makespan. This means that for a job that has been
finished last, the total makespan is equal to the job makespan.
Therefore, other jobs have less makespan than the job that
is finished last. Accordingly, reporting the results of total
makespan is more effective when comparing the performance
of algorithms. In FUSION we use the total makespan to
measure the performance.

FUSION uses load balancing only when it helps the
ranking of a task. Utilization alone may not be a suitable
metric to compare algorithms, because there might be a
powerful resource that behooves the algorithm to execute
tasks on it, thus reducing the utilization. FUSION’s main
focus is tomake tasksmeet their deadlines in a lessmakespan,
and utilization is used during the ranking process. Therefore,
it is not necessary to report the results of the average
utilization as a separate chart.

As we mentioned before, in FUSION, VMs can be ranked
by employing two techniques (Decomposition and OWA).
These two approaches are indicated with DECOMP, and
OWA, respectively. Three state-of-the-art studies have been
selected for comparison. We selected two deadline-aware
algorithms [16] and [17], and a Genetic Algorithm (GA)
that doesn’t consider deadline [34]. The offloader module
has been used for all the other methods. In this study,
to simplify the comparison, we refer to the proposed method
in [17] as Deadline-Aware scheduling algorithm based on
Ant-Colony Optimization (DAACO), the proposed method
in [16] as Cost-Aware Real-Time scheduling algorithm based
on Genetic Algorithm (CARTGA), and the proposed method
in [34] as an evolutionary Task Scheduling algorithm based
on Genetic Algorithm (TSGA).

Accordingly, CARTGA uses the genetic algorithm, whose
fitness function is the success ratio over the cost of usage [16].

VOLUME 12, 2024 152899

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 7. Evaluation and comparison of FUSION’s guarantee ratio with state-of-the-art meta-heuristic algorithms.

The cost of usage is obtained based on the amount of time of
usingmemory and processing. In DAACO, authors employed
the ant colony optimization. To calculate the probabilities,
they used laxity as the main heuristic. The load balancing
heuristic works by determining a score as a fraction of used
resources over the total resources of a node [17]. Generally
speaking, the objective of any task scheduling mechanism
in fog computing is targeted at the benefit of users or
service providers. From users’ perspective, metrics such as
makespan, budget, deadline, security, and cost are important.
Meanwhile, makespan and response time are playing an
important role for guaranteeing the QoS. On the other hand,
since monetary costs are important for service providers, cri-
terion such as load balancing, resource utilization, and energy
efficiency gets more important. According to the above, a task
scheduling technique, which minimizes completion time and
saves monetary cost, will satisfy Service Level Agreement
(SLA) signed by the users. This is the main reason that the
authors in [34] have proposed TSGA; a genetic algorithm
task scheduling algorithm with the aim of minimizing the
makespan while maintaining a high utilization (to mitigate
monetary costs). To reach this goal, the fitness function is
considered as a weighted-sum of two fractions: the solution
makespan, and the minimum makespan, and the solution
utilization and the highest utilization possible [34]. It should
be mentioned that to provide a fair comparison between
FUSION and other techniques, all of the parameter settings
for the existing algorithms (DAACO, CARTGA, and TSGA)
are all gathered from their original papers.

B. EVALUATION RESULTS DISCUSSIONS
As mentioned earlier, the simulation results are based on
27 scenarios (3 deadline intervals and 9 different sets of task
lists).

For the result visualizations, we used the mosaic plot
or Marimekko chart. In this visualization, the algorithms
are blocks or mosaics with different colors. A mosaic that
is placed above any other mosaic has greater value in the
vertical axis (metrics). If two or more mosaics are placed
next to each other, it means they have the same value in
the vertical axis. Using these charts allows us to simply
compare our results both in general and relative manners.
Considering the mosaic plots, we can compare the efficiency
of FUSION with all the other implemented algorithms by
simply counting the number of times FUSION’s mosaic is
on top of the others. In the same way, we can compare any
two algorithms with respect to each other. The total number
of tasks in each iteration (9 cases) constitutes the horizontal
axis. Therefore, since we have three deadline intervals and
nine different number of tasks, we have a total number of
27 cases for every metric of the comparison. The mosaic
chart helps us to gather all of the required information in
a single chart for every deadline interval. Fig. 7 shows
the mosaic plot of the guarantee ratio. Any algorithm that
stands on top of another algorithm is assumed to have a
better guarantee ratio. According to Fig. 7, considering all
the 27 scenarios, FUSION (DECOMP and OWA) have the
highest guarantee ratio in 17 cases. The other two real-time
algorithms (CARTGA [16] and DAACO [17]) have the
highest guarantee ratio in 15 and 13 cases, respectively. The
comparison can be seen in Table 5. In Fig. 7(c), we can see
that all the real-time algorithms have executed all their tasks
and have a guarantee ratio of one. This is because the deadline
interval is large enough for the tasks to be finished before their
deadlines.

Table 6 and Table 7 show the cases where two approaches
of FUSION had a higher guarantee ratio compared with the
other algorithms. The OWA approach had a higher guarantee

152900 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 8. Evaluation and comparison of FUSION’s makespan with state-of-the-art meta-heuristic algorithms.

FIGURE 9. Relation between number of tasks and the expected
makespan.

ratio compared to CARTGA [16] in 10 cases, and in 11 cases
compared to DAACO [17], while in only 6 and 5 cases
OWA had a lower guarantee ratio compared to CARTGA
[16] and DAACO [17], respectively. The FUSIONDECOMP
approach had a higher guarantee ratio in 9 cases, and a
lower guarantee ratio in 7 cases compared to DAACO [17].
However, compared to CARTGA [16], both had a higher
guarantee ratio in 7 cases.

Fig. 8 shows the comparison of makespan. Makespan
depends on the guarantee ratio; because based on our
simulation results represented in Fig. 9, it is expected that
more number of executed tasks increases the makespan.
In Fig. 8(c) where all the real-time algorithms experienced
the same guarantee ratio, we can observe that CARTGA [16]
had the lowest makespan in 3 cases. In other cases, OWA had
a lower makespan compared to CARTGA [16] in 4 cases, and
a higher makespan in 5 cases. In Fig. 8(b) we can observe
that in cases of tasks size 400, 600, 700 and 800, that OWA
has the highest guarantee ratio, its makespan was lower than

TABLE 5. Cases of highest guarantee ratio among 27 cases.

TABLE 6. Comparison of the cases that OWA has a higher guarantee ratio
against others.

TABLE 7. Comparison of the cases that DECOMP has a higher guarantee
ratio against others.

DECOMP, DAACO [17], and CARTGA [16]. In the case
of task size 300, OWA had a lower makespan compared to
CARTGA [16] and DECOMP. This means despite having a
higher guarantee ratio, OWA could execute tasks in a lower
makespan compared to other algorithms.

To summarize the above, let’s focus on the main objective
of FUSION, which is to increase the guarantee ratio with
the least possible makespan. According to Fig. 7, one can
observe that by assuming longer deadlines for the tasks,
all of the techniques behave relatively the same as all of
them have the chance to schedule and execute as many tasks
as possible before their deadlines. Nevertheless, when the
deadlines are short, different techniques act differently (This
scenario is much more realistic for real-time applications).
In such cases, when the number of tasks is relatively low

VOLUME 12, 2024 152901

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 10. Evaluation and comparison of FUSION’s execution time with state-of-the-art meta-heuristic algorithms.

FIGURE 11. Average number of tasks processed at each layer.

(200-600), the DECOMP has provided a higher guarantee
ratio compared to all of the other mechanisms. The OWA
approach also resides in second place in terms of guarantee
ratio. On the other hand, when the number of tasks gets higher
(>700), OWA provides a better guarantee ratio compared
with the DECOMP approach. This evaluation indicates that
for large task sets, we need to use the OWA version of the
FUSION. On the other hand, when the number of executed
tasks increases, it is expected that the makespan will also
increase. So, according to Fig. 8, while FUSION has provided
a relatively higher makespan among the existing techniques,
according to Fig. 7, it has executed more real-time tasks
before their deadlines (especially when the tasks have short
deadlines).

Fig. 10 shows the algorithm execution time. We measured
the execution time from the moment the experiment started
until its termination. Since the proposed algorithm by
TSGA [34] didn’t consider real-time tasks, it performed
very poorly during task assignment and resulted in fast
termination. It’s clearly shown that FUSION (OWA and
DECOMP) perform faster and have a lower algorithm
execution time. Because CARTGA [16] and DAACO [17]

use meta-heuristic algorithms to find the solution. These
algorithms’ execution time depends on the initial solutions,
the underlying operations of moving toward the goal, the
evaluation function, and the number of iterations. Therefore,
they are expected to take more time with respect to fuzzy
ranking methods.

Fig. 11 show the average number of tasks assigned to
each layer for execution categorized by each deadline interval
and task size. Out of the total 5400 tasks, we can observe
the average number of tasks executed at the first fog layer
increases with the increase in deadline interval. It also shows
how the scheduling and offloading algorithms manage to
utilize the first fog layer (closest to IoT devices) to execute
tasks in order to have less latency and communication delay.
Average Task Type is used to analyze the behavior of
FUSION’s offloader. It’s not always beneficial to offload
almost every task to a node with higher computational
capacity. FUSION’s offloader deals with this issue by
considering latency, task size, bandwidth, and the Ci/Pi.
Now, we compare FUSION (OWA and DECOMP) with

and without offloader. Generally speaking, larger tasks
increase the computation delay (execution time), and com-
munication delay, which can affect the start time of other
tasks, leading to higher makespan and more miss rate of
deadlines [86]. Nevertheless, in long run perspective, it is
expected that offloading larger tasks in advance could be
more beneficial against offloading them at last, in terms
of both throughput and makespan. Fig. 12 and Fig. 13
show the benefit of using offloader to achieve a higher
guarantee ratio. In the DECOMP approach we can observe
that using offloading is 55.6% beneficial and results in a
higher guarantee ratio. In the OWA approach it can be
seen that using offloader is 50% beneficial and results in a

152902 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

FIGURE 12. Guarantee ratio evaluation in case of using offloader in DECOMP approaches.

FIGURE 13. Guarantee ratio evaluation in case of using offloader in OWA approaches.

FIGURE 14. Makespan evaluation in case of using offloader in DECOMP, and OWA approaches.

higher guarantee ratio. In the case of 4-6 seconds of deadline
interval, using or not using offloader produced the same
results, therefore we compared their makespan. Fig. 14 shows
the makespan comparison of using and not using offloader.

In the DECOMP approach we can see that using offloader
could improve the makespan in 55.6% of cases in the last
deadline interval. Whereas in the OWA method we do not
observe this trend. Surely, this doesn’t mean that we must
not use the offloader when using OWA just because the

result showed that OWA had a higher makespan in the last
deadline interval. Instead, the results showed that OWA’s
guarantee ratio has improved using the offloader in all
deadline intervals. Therefore, the main objective is to achieve
the highest guarantee ratio possible.

C. DISCUSSION ON COMPLEXITY AND SCALABILITY
In GA there are parameters such as: iterations, initial popu-
lation, mutation and cross-over rates and weight parameters

VOLUME 12, 2024 152903

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

used for weighted sum fitness function according to [87]. All
the mentioned parameters need to be determined beforehand.
For instance, having low number of iterations can result in
bad results. The Mutation rate indicates the rate of generating
diversity among chromosomes. TheCross-Over rate indicates
how often a new chromosome resembling its parents is added
to the population. Therefore, having a lower mutation rate
means less diversity and less unexplored results. Having a
lower cross-over rates means less mating between parents and
less potential offspring with a higher fitness value.

As for the fitness function with weighted-sum approach,
the weight parameters determines the fitness of chromo-
somes. Having poorly-tuned weight parameters can lead
to selection of undesirable chromosomes. Mostly, these
parameters are obtained using trial and error. This conditions
also hold for other meta-heuristic algorithms such as: Particle
Swarm Optimization (PSO) and Ant-Colony Optimization
(ACO) optimizations. Both have parameters that need to
be determined beforehand. For instance, in ACO there are
parameters such as: number of ants, maximum iterations,
exponents for the local heuristic and pheromone values,
global pheromone update and initial pheromone values
according [17]. In PSO, there are parameters such as: initial
positions, initial population, number of iterations, weight
parameters of weighted-sum fitness evaluation function and
random coefficients of global and personal best solutions
according to [88]. All of these issues impose complexity and
increase the number of operations.

On the other hand, in FUSION, the input and output
membership functions can be defined without having to tune
any parameters beforehand. And sometimes membership
functions of other problems can be re-used. The weights in
the OWA approach are determined regardless of the problem,
from themembership function of the relative quantifier which
in our case is Almost All and is the same in most problems.
The operations of computing ranks and ordered weighted
averaging is much simpler with respect to evaluations in GA,
PSO and ACO. Since the values which are used to compute
ranks can be simply obtained from the membership function
of that fuzzy predicate.

In summary, according to the execution time results
(Fig. 10), the evolutionary methods require more time to
complete execution, while FUSION outperforms them in
this criterion. The reason for this is that the number of
objectives in our case is relatively small (three), and all
the membership functions for the fuzzy predicates, whether
input or output, are predefined. Furthermore, the membership
function for the quantifier in our problem is considered
somewhat universal, and the ranking is based on finding a
weighted-sum value. Consequently, the overall complexity is
significantly lower than that of the evolutionary algorithms,
which require predefined and tuned parameters.

It is worthy to mention that evolutionary algorithms are
iterative, and each iteration involves multiple operations on
the solutions within the search space. Traversing the search
space to find a near-optimal solution in these algorithms is

time-consuming and complex (depending on the algorithm
type). In contrast, the proposed method’s implementation is
simple, and the number of operations is not as extensive as in
evolutionary algorithms, resulting in reduced execution time.

Regarding the issue of scalability, FUSION is scalable
in nature. Fuzzy-logic-based offloading mechanisms can be
scalable in real-world complex fog computing systems due
to several factors, including:

1) Adaptive Decision Making: Fuzzy logic solutions are
particularly adept at managing uncertainty and impre-
cision, which are prevalent in dynamic fog computing
environments. They can flexibly determine which tasks
to offload by considering current network conditions,
resource availability, and task requirements.

2) Efficient Resource Allocation: FUSION enhances
resource allocation by simultaneously considering
factors like latency, deadline, and load. This approach
ensures efficient resource use, even as the system scales
with more devices and tasks.

3) Scalability through Hierarchical Structures: The
hierarchical structure of FUSION allows local fog
nodes to make immediate offloading decisions, while
higher-level nodes oversee broader resource distribu-
tion. Applying fuzzy logic at each level ensures both
efficiency and scalability.

4) Robust Failure Handling: Fuzzy logic boosts the
robustness of fog computing systems by gracefully
managing failures. It dynamically adjusts offloading
thresholds and redistributes tasks to prevent system
overloads.

Overall, research indicates that fuzzy-logic-based offloading
mechanisms enhance performance in real-world applications
like healthcare, augmented reality, and IoT systems. These
improvements include reduced network latency, shorter
computation delays, and overall better system performance.
Accordingly, FUSION can efficiently expand within intri-
cate fog computing frameworks, maintaining effective and
dependable performance as the system scales.

VI. CONCLUSION AND FUTURE STUDIES
In this paper, we introduced FUSION, a multi-objective
decision making fuzzy algorithm for scheduling tasks in
IoT networks. FUSION benefits from a fuzzy offloader
module as a tool to help the scheduling algorithm achieve
lower makespan and higher guarantee ratio. FUSION is less
complex in terms of implementation and execution time. The
results showed that FUSION, on average, had the highest
guarantee ratio in 17 cases out of 27. The FUSION OWA
approach resulted in lower makespan in cases where it
achieved the highest guarantee ratio. In terms of algorithm
execution time, in 89% of cases among 27 cases, FUSION
terminated earlier than others. Using the FUSION offloader
resulted in higher guarantee ratio in at least 50% of cases
(among 18 cases), whereas not using it resulted in having
higher guarantee ratio in 16.7% of cases (among 18 cases).

152904 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

Furthermore, using FUSION offloader improved makespan
in the FUSION DECOMP approach.

As part of our future studies, we will try to improve the
FUSION fuzzy offloader rule base and decision making.
Since we consider real-time tasks, one approach is to imple-
ment the Earliest-Deadline-First (EDF) algorithm on the
cloudlet scheduler of VMs to ensure schedulability. We also
aim to utilize multi-objective meta-heuristic algorithms that
consider guarantee ratio, makespan, and utilization directly
in their objective function. Furthermore, we also aim to
consider other objectives such as: financial cost and energy
consumption. Finally, considering a cluster of fog nodesman-
aged by a resource-full orchestrator equipped with a machine
learning scheduler is another field of study that is aimed for
a potential field of study in the future. Additionally, ongoing
research and development in fog computing are continually
providing new insights and techniques to improve latency and
persistence. One of these approaches, which is a potential
field of research in the future is edge intelligence. Edge
intelligence allows for data to be processed and analyzed
locally, at or near the source, which means only relevant data
is sent to the cloud, reducing the volume of data transmission
and associated delays. The edge intelligence, along with
the distributed nature of fog infrastructures allows for more
efficient data processing and quicker response times, leading
into less latency and maximization of communication routes.
Not to forget that evaluating all of the mentioned approaches
along with more recent studies could be conducted on a real-
world test-bed to obtain more precise results.

REFERENCES
[1] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,

M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, ‘‘The Internet of
Things, fog and cloud continuum: Integration and challenges,’’ Internet
Things, vols. 3–4, pp. 134–155, Oct. 2018.

[2] M. Mukherjee, L. Shu, and D. Wang, ‘‘Survey of fog computing:
Fundamental, network applications, and research challenges,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826–1857, 3rd Quart., 2018.

[3] M.Aazam and E.-N. Huh, ‘‘Fog computing: The cloud-IoTIoEmiddleware
paradigm,’’ IEEE Potentials, vol. 35, no. 3, pp. 40–44, May 2016.

[4] F. Bonomi, R.Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its role
in the Internet of Things,’’ in Proc. MCC workshop Mobile cloud Comput.,
Aug. 2012, pp. 13–16.

[5] M. L. M. Peixoto, T. A. L. Genez, and L. F. Bittencourt, ‘‘Hierarchical
scheduling mechanisms in multi-level fog computing,’’ IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2824–2837, Sep. 2022.

[6] S. Sarkar, S. Chatterjee, and S. Misra, ‘‘Assessment of the suitability of
fog computing in the context of Internet of Things,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan. 2018.

[7] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
‘‘Fog computing for sustainable smart cities: A survey,’’ ACM Comput.
Surv., vol. 50, no. 3, pp. 1–43, Jun. 2017.

[8] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ‘‘Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[9] Y. Cao, S. Chen, P. Hou, and D. Brown, ‘‘FAST: A fog computing assisted
distributed analytics system to monitor fall for stroke mitigation,’’ in Proc.
IEEE Int. Conf. Netw., Archit. Storage (NAS), Aug. 2015, pp. 2–11.

[10] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, ‘‘Fog computing in healthcare Internet of Things: A case
study on ECG feature extraction,’’ in Proc. IEEE Int. Conf. Comput. Inf.
Technol.; Ubiquitous Comput. Commun.; Dependable, Autonomic Secure
Comput.; Pervasive Intell. Comput., Oct. 2015, pp. 356–363.

[11] M.-P. Hosseini, A. Hajisami, and D. Pompili, ‘‘Real-time epileptic seizure
detection from EEG signals via random subspace ensemble learning,’’ in
Proc. IEEE Int. Conf. Autonomic Comput. (ICAC), Jul. 2016, pp. 209–218.

[12] X. Masip-Bruin, E. Marín-Tordera, A. Alonso, and J. Garcia, ‘‘Fog-
to-cloud computing (F2C): The key technology enabler for dependable
e-health services deployment,’’ in Proc. Medit. Ad Hoc Netw. Workshop
(Med-Hoc-Net), Jun. 2016, pp. 1–5.

[13] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, ‘‘GamingAny-
where: An open cloud gaming system,’’ in Proc. 4th ACMMultimedia Syst.
Conf., Feb. 2013, pp. 36–47.

[14] C. Reiss and A. Tumanov, ‘‘Heterogeneity and dynamicity of clouds
at scale: Google trace analysis,’’ in Proc. ACM Symp. Cloud Comput.,
Nov. 2021, pp. 1–13.

[15] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, ‘‘Offloading tasks with
dependency and service caching in mobile edge computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792, Nov. 2021.

[16] T. S. Nikoui, A. Balador, A. M. Rahmani, and Z. Bakhshi, ‘‘Cost-aware
task scheduling in fog-cloud environment,’’ in Proc. CSI/CPSSI Int. Symp.
Real-Time Embedded Syst. Technol. (RTEST), Jun. 2020, pp. 1–8.

[17] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, ‘‘Deadline-aware
task scheduling in a tiered IoT infrastructure,’’ in Proc. IEEE Global
Commun. Conf., Dec. 2017, pp. 1–7.

[18] J. Fan, J. Liu, J. Chen, and J. Yang, ‘‘LPDC: Mobility-and deadline-
aware task scheduling in tiered IoT,’’ in Proc. IEEE 4th Int. Conf. Comput.
Commun. (ICCC), Dec. 2018, pp. 857–863.

[19] M. D. Hossain, T. Sultana, V. Nguyen, W. U. Rahman, T. D. T.
Nguyen, L. N. T. Huynh, and E.-N. Huh, ‘‘Fuzzy based collaborative task
offloading scheme in the densely deployed small-cell networks with multi-
access edge computing,’’ Appl. Sci., vol. 10, no. 9, p. 3115, Apr. 2020.

[20] D. Zhou, F. Chao, C.-M. Lin, L. Yang,M. Shi, and C. Zhou, ‘‘Integration of
fuzzy CMAC and BELC networks for uncertain nonlinear system control,’’
in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2017, pp. 1–6.

[21] L. Abdullah, ‘‘Fuzzy multi criteria decision making and its applications:
A brief review of category,’’ Proc.-Social Behav. Sci., vol. 97, pp. 131–136,
Nov. 2013.

[22] J. An, M. Hu, L. Fu, and J. Zhan, ‘‘A novel fuzzy approach for combining
uncertain conflict evidences in the Dempster–Shafer theory,’’ IEEEAccess,
vol. 7, pp. 7481–7501, 2019.

[23] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim:
A toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.,
Pract. Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[24] H. Chen, F. Wang, N. Helian, and G. Akanmu, ‘‘User-priority guided
min-min scheduling algorithm for load balancing in cloud computing,’’ in
Proc. Nat. Conf. Parallel Comput. Technol. (PARCOMPTECH), Feb. 2013,
pp. 1–8.

[25] Y. Mao, X. Chen, and X. Li, ‘‘Max–min task scheduling algorithm for load
balance in cloud computing,’’ in Proc. Int. Conf. Comput. Sci. Inf. Technol.
Cham, Switzerland: Springer, 2014, pp. 457–465.

[26] R. K. Mondal, E. Nandi, and D. Sarddar, ‘‘Load balancing scheduling with
shortest load first,’’ Int. J. Grid Distrib. Comput., vol. 8, no. 4, pp. 171–178,
Aug. 2015.

[27] D. C. Devi and V. R. Uthariaraj, ‘‘Load balancing in cloud computing
environment using improved weighted round Robin algorithm for nonpre-
emptive dependent tasks,’’ Sci. World J., vol. 2016, pp. 1–14, Jan. 2016.

[28] Z. Cheng, P. Li, J. Wang, and S. Guo, ‘‘Just-in-time code offloading for
wearable computing,’’ IEEE Trans. Emerg. Topics Comput., vol. 3, no. 1,
pp. 74–83, Mar. 2015.

[29] M. Mukherjee, S. Kumar, M. Shojafar, Q. Zhang, and
C. X. Mavromoustakis, ‘‘Joint task offloading and resource allocation for
delay-sensitive fog networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–7.

[30] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, ‘‘Cloud task scheduling
based on load balancing ant colony optimization,’’ in Proc. 6th Annu.
Chinagrid Conf., Aug. 2011, pp. 3–9.

[31] T. Sen and H. Shen, ‘‘Machine learning based timeliness-guaranteed and
energy-efficient task assignment in edge computing systems,’’ in Proc.
IEEE 3rd Int. Conf. Fog Edge Comput. (ICFEC), May 2019, pp. 1–10.

[32] R. Siyadatzadeh, F. Mehrafrooz, M. Ansari, B. Safaei, M. Shafique,
J. Henkel, and A. Ejlali, ‘‘ReLIEF: A reinforcement learning-based real-
time task assignment strategy in emerging fault-tolerant fog computing,’’
IEEE Internet Things J., p. 1, 2023.

VOLUME 12, 2024 152905

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

[33] M. K. Hussein and M. H. Mousa, ‘‘Efficient task offloading for IoT-
based applications in fog computing using ant colony optimization,’’ IEEE
Access, vol. 8, pp. 37191–37201, 2020.

[34] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen,
‘‘An evolutionary algorithm for solving task scheduling problem in cloud-
fog computing environment,’’ in Proc. 9th Int. Symp. Inf. Commun.
Technol. - SoICT, 2018, pp. 397–404.

[35] S. Ghanavati, J. Abawajy, and D. Izadi, ‘‘An energy aware task scheduling
model using ant-mating optimization in fog computing environment,’’
IEEE Trans. Services Comput., vol. 15, no. 4, pp. 2007–2017, Jul. 2022.

[36] Y.-D. Lin, Y.-C. Lai, J.-X. Huang, and H.-T. Chien, ‘‘Three-tier capacity
and traffic allocation for core, edges, and devices for mobile edge
computing,’’ IEEE Trans. Netw. Service Manage., vol. 15, no. 3,
pp. 923–933, Sep. 2018.

[37] A. Samanta, F. Esposito, and T. G. Nguyen, ‘‘Fault-tolerant mechanism for
edge-based IoT networks with demand uncertainty,’’ IEEE Internet Things
J., vol. 8, no. 23, pp. 16963–16971, Dec. 2021.

[38] X. Hou, J. Wang, Z. Fang, Y. Ren, K.-C. Chen, and L. Hanzo, ‘‘Edge
intelligence for mission-critical 6G services in space-air-ground integrated
networks,’’ IEEE Netw., vol. 36, no. 2, pp. 181–189, Mar. 2022.

[39] P. Zhang and M. Zhou, ‘‘Dynamic cloud task scheduling based on a two-
stage strategy,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 772–783,
Apr. 2018.

[40] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, ‘‘Joint optimization of task
scheduling and image placement in fog computing supported software-
defined embedded system,’’ IEEE Trans. Comput., vol. 65, no. 12,
pp. 3702–3712, Dec. 2016.

[41] S. Chen, Y. Zheng, K. Wang, and W. Lu, ‘‘Delay guaranteed energy-
efficient computation offloading for industrial IoT in fog computing,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[42] M. Kumar, G. K. Walia, H. Shingare, S. Singh, and S. S. Gill, ‘‘AI-based
sustainable and intelligent offloading framework for IIoT in collaborative
cloud-fog environments,’’ IEEE Trans. Consum. Electron., vol. 70, no. 1,
pp. 1414–1422, Feb. 2024.

[43] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, ‘‘QoS driven
task offloading with statistical guarantee in mobile edge computing,’’ IEEE
Trans. Mobile Comput., vol. 21, no. 1, pp. 278–290, Jan. 2022.

[44] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, ‘‘Performance guaranteed
computation offloading for mobile-edge cloud computing,’’ IEEEWireless
Commun. Lett., vol. 6, no. 6, pp. 774–777, Dec. 2017.

[45] K. Lone and S. A. Sofi, ‘‘Cost efficient task offloading for delay sensitive
applications in fog computing system,’’ Social Netw. Comput. Sci., vol. 4,
no. 6, p. 817, Oct. 2023.

[46] M. Maashi, E. Alabdulkreem, M. Maray, K. Shankar, A. A. Darem,
A. Alzahrani, and I. Yaseen, ‘‘Elevating survivability in next-gen IoT-fog-
cloud networks: Scheduling optimization with the metaheuristic mountain
gazelle algorithm,’’ IEEE Trans. Consum. Electron., vol. 70, no. 1,
pp. 3802–3809, Feb. 2024.

[47] A. Ali, S. A. A. Shah, T. Al Shloul, M. Assam, Y. Yasin, S. Lim,
and A. Zia, ‘‘Multi-objective Harris hawks optimization based task
scheduling in cloud-fog computing,’’ IEEE Internet Things J., vol. 11,
no. 3, pp. 24334–24352, Jul. 2024.

[48] Y. Seraj, S. Fadaei, B. Safaei, A. Javadi, A. M. H. Monazzah, and
A. M. A. Hemmatyar, ‘‘LIMO: Load-balanced offloading with MAPE
and particle swarm optimization in mobile fog networks,’’ 2024,
arXiv:2408.14218.

[49] B. Ranjbar, B. Safaei, A. Ejlali, and A. Kumar, ‘‘FANTOM: Fault tolerant
task-drop aware scheduling for mixed-criticality systems,’’ IEEE Access,
vol. 8, pp. 187232–187248, 2020.

[50] N. Saini and S. Saha, ‘‘Multi-objective optimization techniques: A survey
of the state-of-the-art and applications: Multi-objective optimization
techniques,’’ Eur. Phys. J. Special Topics, vol. 230, no. 10, pp. 2319–2335,
Sep. 2021.

[51] S. Dabia, E.-G. Talbi, T. van Woensel, and T. De Kok, ‘‘Approximating
multi-objective scheduling problems,’’ Comput. Oper. Res., vol. 40, no. 5,
pp. 1165–1175, May 2013.

[52] B. Safaei, A. M. H. Monazzah, M. B. Bafroei, and A. Ejlali, ‘‘Reliability
side-effects in Internet of Things application layer protocols,’’ in Proc. 2nd
Int. Conf. Syst. Rel. Saf. (ICSRS), Dec. 2017, pp. 207–212.

[53] R. Kaur, V. Laxmi, and Balkrishan, ‘‘Performance evaluation of
task scheduling algorithms in virtual cloud environment to minimize
makespan,’’ Int. J. Inf. Technol., vol. 14, no. 1, pp. 79–93, Feb. 2022.

[54] L. Zhang, M. Ai, R. Tan, J. Man, X. Deng, and K. Li, ‘‘Efficient prediction
of makespan matrix workflow scheduling algorithm for heterogeneous
cloud environments,’’ J. Grid Comput., vol. 21, no. 4, p. 75, Dec. 2023.

[55] A. Motamedhashemi, B. Safaei, A. M. H. Monazzah, and A. Ejlali,
‘‘DATA: Throughput and deadline-aware genetic approach for task
scheduling in fog networks,’’ IEEE Embedded Syst. Lett., p. 1, 2024.

[56] M. Mazouzi, K. Mershad, O. Cheikhrouhou, and M. Hamdi, ‘‘Agent-
based reactive geographic routing protocol for Internet of Vehicles,’’ IEEE
Access, vol. 11, pp. 79954–79973, 2023.

[57] S. Yaqoob, A. Ullah, M. Akbar, M. Imran, and M. Shoaib, ‘‘Congestion
avoidance through fog computing in Internet of Vehicles,’’ J. Ambient
Intell. Humanized Comput., vol. 10, no. 10, pp. 3863–3877, Oct. 2019.

[58] M. Nakahara, D. Hisano, M. Nishimura, Y. Ushiku, K. Maruta, and
Y. Nakayama, ‘‘Retransmission edge computing system conducting adap-
tive image compression based on image recognition accuracy,’’ in Proc.
IEEE 94th Veh. Technol. Conf. (VTC-Fall), Sep. 2021, pp. 1–5.

[59] P. K. Donta, S. N. Srirama, T. Amgoth, and C. S. R. Annavarapu, ‘‘Survey
on recent advances in IoT application layer protocols and machine learning
scope for research directions,’’ Digit. Commun. Netw., vol. 8, no. 5,
pp. 727–744, Oct. 2022.

[60] P. K. Donta, T. Amgoth, and C. S. Rao Annavarapu, ‘‘Congestion-aware
data acquisition with Q-learning for wireless sensor networks,’’ in Proc.
IEEE Int. IoT, Electron. Mechatronics Conf. (IEMTRONICS), Sep. 2020,
pp. 1–6.

[61] P. Bedi and P. Khurana, ‘‘Sentiment analysis using fuzzy-deep learning,’’ in
Proceedings of ICETIT 2019: Emerging Trends in Information Technology.
Cham, Switzerland: Springer, 2020, pp. 246–257.

[62] K. Singh and A. K. Verma, ‘‘TBCS: A trust based clustering scheme
for secure communication in flying ad-hoc networks,’’ Wireless Pers.
Commun., vol. 114, no. 4, pp. 3173–3196, Oct. 2020.

[63] M. J. dos Santos and E. A. de M. Fagotto, ‘‘Cloud computing
management using fuzzy logic,’’ IEEE Latin Amer. Trans., vol. 13, no. 10,
pp. 3392–3397, Oct. 2015.

[64] S. Mehamel, K. Slimani, S. Bouzefrane, and M. Daoui, ‘‘Energy-efficient
hardware caching decision using fuzzy logic inmobile edge computing,’’ in
Proc. 6th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Aug. 2018, pp. 237–242.

[65] N. Dhanya, G. Kousalya, P. Balarksihnan, and P. Raj, ‘‘Fuzzy-logic-based
decision engine for offloading IoT application using fog computing,’’ in
Handbook of Research on Cloud and Fog Computing Infrastructures for
Data Science. Hershey, PA, USA: IGI Global, 2018, pp. 175–194.

[66] F. Basic, A. Aral, and I. Brandic, ‘‘Fuzzy handoff control in edge
offloading,’’ in Proc. IEEE Int. Conf. Fog Comput. (ICFC), Jun. 2019,
pp. 87–96.

[67] M. A. Benblidia, B. Brik, L. Merghem-Boulahia, and M. Esseghir,
‘‘Ranking fog nodes for tasks scheduling in fog-cloud environments:
A fuzzy logic approach,’’ in Proc. 15th Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), Jun. 2019, pp. 1451–1457.

[68] O. K. Cu and P. R. K. Sathia Bhama, ‘‘Fuzzy based energy efficient
workload management system for flash crowd,’’ Comput. Commun.,
vol. 147, pp. 225–234, Nov. 2019.

[69] B. Igried, A. Alsarhan, I. Al-Khawaldeh, A. Al-Qerem, and A. Aldweesh,
‘‘A novel fuzzy logic-based scheme for malicious node eviction in a
vehicular ad hoc network,’’Electronics, vol. 11, no. 17, p. 2741, Aug. 2022.

[70] I. Jabri, T. Mekki, A. Rachedi, and M. B. Jemaa, ‘‘Vehicular fog
gateways selection on the Internet of Vehicles: A fuzzy logic with ant
colony optimization based approach,’’ Ad Hoc Netw., vol. 91, Aug. 2019,
Art. no. 101879.

[71] L. A. Zadeh, ‘‘Fuzzy logic,’’ Computer, vol. 21, no. 4, pp. 83–93,
Apr. 1988.

[72] H. K. Lee, E. Paillet, and W. Peeters, ‘‘A consistency criterion for
optimizing defuzzification in fuzzy control,’’ in Foundations of Generic
Optimization: Applications of Fuzzy Control, Genetic Algorithms and
Neural Networks, vol. 2, 2008, pp. 403–431.

[73] M. Štěpnička, U. Bodenhofer, M. Daňková, and V. Novák, ‘‘Continuity
issues of the implicational interpretation of fuzzy rules,’’ Fuzzy Sets Syst.,
vol. 161, no. 14, pp. 1959–1972, Jul. 2010.

[74] S. Ganguly and D. Samajpati, ‘‘Distributed generation allocation on
radial distribution networks under uncertainties of load and generation
using genetic algorithm,’’ IEEE Trans. Sustain. Energy, vol. 6, no. 3,
pp. 688–697, Jul. 2015.

152906 VOLUME 12, 2024

A. Motamedhashemi et al.: FUSION: A Fuzzy-Based Multi-Objective Task Management for Fog Networks

[75] D. G. Burkhardt and P. P. Bonissone, ‘‘Automated fuzzy knowledge base
generation and tuning,’’ in Proc. IEEE Int. Conf. Fuzzy Syst., Mar. 1992,
pp. 179–188.

[76] Z. Huang and Q. Shen, ‘‘A new fuzzy interpolative reasoningmethod based
on center of gravity,’’ in Proc. 12th IEEE Int. Conf. Fuzzy Syst., vol. 15,
Oct. 2003, pp. 25–30.

[77] V. Nguyen, T. T. Khanh, T. D. T. Nguyen, C. S. Hong, and E.-N.
Huh, ‘‘Flexible computation offloading in a fuzzy-based mobile edge
orchestrator for IoT applications,’’ J. Cloud Comput., vol. 9, no. 1,
pp. 1–18, Dec. 2020.

[78] R. R. Yager, ‘‘General multiple-objective decision functions and linguis-
tically quantified statements,’’ Int. J. Man-Mach. Stud., vol. 21, no. 5,
pp. 389–400, Nov. 1984.

[79] R. R. Yager, ‘‘Constrained OWA aggregation,’’ Fuzzy Sets Syst., vol. 81,
no. 1, pp. 89–101, Jul. 1996.

[80] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli,
‘‘Schedule optimization of time-triggered systems communicating over
the FlexRay static segment,’’ IEEE Trans. Ind. Informat., vol. 7, no. 1,
pp. 1–17, Feb. 2011.

[81] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, ‘‘Online deadline-aware
task dispatching and scheduling in edge computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2020.

[82] A. S. Alfakeeh and M. A. Javed, ‘‘Intelligent data-enabled task offloading
for vehicular fog computing,’’ Appl. Sci., vol. 13, no. 24, p. 13034,
Dec. 2023.

[83] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘Modeling and simulation
of scalable cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,’’ in Proc. Int. Conf. High Perform. Comput.
Simul., Jun. 2009, pp. 1–11.

[84] P. Cingolani and J. Alcalá-Fdez, ‘‘JFuzzyLogic: A Java library to design
fuzzy logic controllers according to the standard for fuzzy control
programming,’’ Int. J. Comput. Intell. Syst., vol. 6, no. 1, p. 61, 2013.

[85] P. Cingolani and J. Alcalá-Fdez, ‘‘JFuzzyLogic: A robust and flexible
fuzzy-logic inference system language implementation,’’ in Proc. IEEE
Int. Conf. Fuzzy Syst., Jun. 2012, pp. 1–8.

[86] Z. Xue, C. Liu, C. Liao, G. Han, and Z. Sheng, ‘‘Joint service caching and
computation offloading scheme based on deep reinforcement learning in
vehicular edge computing systems,’’ IEEE Trans. Veh. Technol., vol. 72,
no. 5, pp. 6709–6722, May 2023.

[87] A. Konak, D. W. Coit, and A. E. Smith, ‘‘Multi-objective optimization
using genetic algorithms: A tutorial,’’ Rel. Eng. Syst. Saf., vol. 91, no. 9,
pp. 992–1007, Sep. 2006.

[88] S. Mostaghim and J. Teich, ‘‘Strategies for finding good local guides in
multi-objective particle swarm optimization (MOPSO),’’ in Proc. IEEE
Swarm Intell. Symp., Apr. 2003, pp. 26–33.

ARYA MOTAMEDHASHEMI received the B.Sc.
and M.Sc. degrees in computer engineering from
the Sharif University of Technology (SUT),
Tehran, Iran, in 2017 and 2022, respectively. Since
2019, he has been a member of the Embedded
Systems Research Laboratory (ESRLab). As a
Research Assistant, he is collaborating with the
Reliable and Durable IoT Application and Net-
works (RADIAN) Laboratory, SUT. His research
interests include task scheduling in the Internet of

Things (IoT) and cloud/fog networks.

BARDIA SAFAEI received the Ph.D. degree in
computer engineering from the Sharif University
of Technology, Tehran, Iran, in 2021. As a Ph.D.
Visiting Researcher, he was with the Chair for
Embedded Systems, Karlsruhe Institute of Tech-
nology, Germany, from 2019 to 2020. Currently,
he is a Faculty Member with the Department
of Computer Engineering, Sharif University of
Technology, where he is the Director of the
Reliable, and Durable IoT Applications and Net-

works (RADIAN) Laboratory. He has been a member of the National
Elites Foundation, from 2016 to 2020. His research interests include
power-efficiency and dependability challenges in the IoT, WSN, MANET,
and fog computing. He received the ACM/SIGAPP Student Award in the
34th ACM/SIGAPP Symposium on Applied Computing (SAC’19). He has
served as a Reviewer for prestigious international journals and conferences,
including IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, IEEE Communications Magazine, IEEE WF-IoT,
IEEE IOT JOURNAL, and IEEE TRANSACTIONS ON MOBILE COMPUTING.

AMIR MAHDI HOSSEINI MONAZZAH received
the Ph.D. degree in computer engineering from
the Sharif University of Technology, Tehran, Iran,
in 2017. He was a member of the Dependable
Systems Laboratory, from 2010 to 2017. As a
Visiting Researcher, he was with the Embedded
Systems Laboratory, University of California,
Irvine, CA, USA, from 2016 to 2017. As a
Postdoctoral Fellow, he was with the School
of Computer Science, Institute for Research in

Fundamental Sciences (IPM), Tehran, Iran, from 2017 to 2019. He is
currently a Faculty Member with the School of Computer Engineering, Iran
University of Science and Technology (IUST), Tehran, Iran. His research
interests include investigating the challenges of emerging nonvolatile
memories, hybrid memory hierarchy design, and IoT applications.

JÖRG HENKEL (Fellow, IEEE) is with Karlsruhe
Institute of Technology. Previously, he was a
Research Staff Member with the NEC Labora-
tories, Princeton, NJ. He has received six best
paper awards, among others ICCAD, ESWeek,
and DATE. He has led several conferences as a
General Chair, including ICCAD and ESWeek.
He serves as the steering committee chair/member
for leading conferences and journals for embedded
and cyber-physical systems. He coordinates the

DFG Program SPP 1500 ‘‘Dependable Embedded Systems’’ and a site
Coordinator of the DFG TR89 Collaborative Research Center ‘‘Invasive
Computing.’’ He is the Chairman of the IEEE Computer Society, Germany
Chapter. He served as the Editor-in-Chief for ACM Transactions on
Embedded Computing Systems, for two terms. He is currently the Editor-
in-Chief of IEEE Design & Test Magazine and is/has been Associate Editor
of major ACM and IEEE journals.

ALIREZA EJLALI received the Ph.D. degree in
computer engineering from the Sharif University
of Technology, Tehran, Iran, in 2006. He is
currently an Associate Professor of computer
engineering with the Sharif University of Tech-
nology. From 2005 to 2006, he was a Visiting
Researcher with the Electronic Systems Design
Group, University of Southampton, Southampton,
U.K. In 2006, he joined the Sharif University
of Technology, as a Faculty Member with the

Department of Computer Engineering. From 2011 to 2015, he was the
Director of the Computer Architecture Group. His research interests include
low power design, real-time embedded systems, and fault-tolerant embedded
systems.

VOLUME 12, 2024 152907

