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Abstract: Boosting distributional copula regression is a flexible tool to jointly
model multivariate outcomes, in which all parameters of the joint distribution
can be related to covariates via additive predictors. Estimation via model-based
boosting allows to fit these complex models also to high-dimensional data (p > n).
Additionally, boosting can incorporate data-driven variable selection simultane-
ously for all parameters of the marginal distributions as well as for the associa-
tion parameter of the copula. However, as known from univariate (distributional)
regression models, the boosting algorithm tends to select too many variables,
particularly for low-dimensional settings (p < mn). To counteract this behavior,
we adapt a recent deselection approach for statistical boosting to multivariate
copula regression models to deselect base-learners with only a negligible impact
on the overall performance of the model. We illustrate our approach by jointly
modelling LDL and HDL cholesterol based on large UK Biobank genotype data.

Keywords: Model-based boosting; Variable selection; GAMLSS; Copula regres-
sion.

1 Introduction

In distributional copula regression, potentially different marginal response
distributions can be combined by an appropriate copula function that de-
fines the dependency structure between the outcomes for multivariate mod-
elling. Within the framework of generalized additive models for location,
scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005), all parameters
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of the distributional copula regression model (i.e. the distribution param-
eters of the marginals and the dependency parameter) are modelled by
an additive predictor incorporating different effect types for the covariates
(Klein and Kneib, 2016). In combination with component-wise gradient
boosting, we can incorporate data-driven variable selection for potentially
high-dimensional data, which is controlled by the number of boosting iter-
ations (Mayr et al., 2012). However, despite these advantages, the boosting
algorithm still tends to select too many variables (including ones which
are non-informative or have a very low signal), which occurs particularly
for low-dimensional settings. In these situations, we can observe a slow
overfitting behavior, which results in a later stopping of the algorithm and
therefore a larger set of included base-learners that might have only minor
importance. As a result, we are faced with an unnecessary large model,
that might be performing good for prediction but is difficult to interpret.

2 Deselection of base-learners

We address this issue by adapting the deselection approach by Strémer
et al. (2022) for boosting distributional copula regression. The pragmatic
and simple idea is to start with a classical boosted model tuned by cross-
validation or resampling techniques to determine the optimal stopping it-
eration mgop to achieve high prediction accuracy. Then, the base-learners
and variables that were selected but only have a minor impact on the model
are identified and are deselected. Afterwards, the model is boosted again
only with the remaining ones. The importance of a base-learner j in the
deselection approach is measured via the risk reduction after mgop, itera-
tions:

Mstop

Ry= > I(j =gt —plmy =1, ",
m=1

where I denotes the indicator function and j*I" is the selected base-learner
in iteration m. Furthermore, ™1 — 7[™ represents the risk reduction in
iteration m, for risks I and r[™~1 at iterations m and m — 1. Note that
in the case of distributional copula regression, all distribution parameters
are considered together and each parameter 0,k = 1,..., K may depend
on a different number of variables py. For a given threshold 7 € (0, 1), we
deselect base-learner j if

Rj <T- (7‘[0] — ']"[mStOP])7

where 7[0) — rlmsiop] yepresents the total risk reduction and R; denotes the

attributable risk reduction of base-learner j. In other words, only base-
learners which contribution R; to the total risk reduction is larger than
the relative T threshold (e.g., 1%, Stromer et al, 2022) will remain in the
model after the deselection step.
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3 Simulations for comparison with competitors

We conducted a simulation study (based on a similar set-up as in Hans et
al., 2023) to investigate and compare the variable selection properties, the
predictive performance and the computation time of the classical boosting
algorithm with the adapted deselection approach. As additional competi-
tors, we also considered stability selection (Meinshausen and Biithlmann,
2010) and probing (Thomas et al., 2017) to benchmark our results. For
a low-dimensional setting, the classical boosted model selected many non-
informative variables for every distribution parameter. All approaches effec-
tively reduced the number of false positives. Probing and stability selection
did not select all informative variables in each simulation run, whereas the
deselection approach maintained all informative variables in the model. In
a high-dimensional setting, fewer non-informative variables were included
in the boosted models. The approaches performed similar as in the low-
dimensional setting and reduced the number of selected non-informative
variables almost completely.

A comparison of the negative log-likelihood for the low-dimensional and
high-dimensional setting showed that stability selection and deselection re-
sulted in a slightly better predictive performance than the classical boosted
model. Probing, on the other hand, led to a lower predictive performance.
In terms of computation time, probing is the fastest and stability selection
takes much more computational resources than the classical boosted model
or the deselection approach.

4 Joint modelling of LDL and HDL cholesterol

We illustrate our deselection approach on high-dimensional genomic cohort
data from the UK Biobank, modelling the joint genetic predisposition for
two continuous phenotypes, LDL and HDL cholesterol, in dependence of
different genetic variants. For both phenotypes, the 1000 variants (typi-
cally single nucleotide polymorphisms) with the largest marginal associ-
ations with each of the two phenotypes were selected in a pre-screening
process. Overall, the data set includes 20,000 sampled observations and
1,179 variants (803 variants selected for both phenotypes). The log-logistic
distribution was considered as marginal distribution for both phenotypes
and the Gumbel copula was used for modelling the dependency structure
based on the comparison of the predictive risk. All variants were included
with simple linear models as base-learners.

Figure 1 illustrates the resulting estimated absolute coefficients for every
distribution parameter (similar to Manhattan plots). The classical boosted
model selected several variants for each distribution parameter. After the
deselection approach with 7 = 0.01, only some variants for p; and py are
left. This means that with the deselection approach we can not only reduce
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FIGURE 1. Manhattan-type plots (chromosomes on x-axis) for the absolute co-
efficients of boosted copula regression for the joint analysis of LDL and HDL
cholesterol. The dark blue dots are the selected variants by classical boosting, the
lighter blue points are the remaining variables after the deselection approach.

the included variables and obtain a much sparser model with a potentially
simpler interpretation: In this case the approach also further reduces the
overall complexity by completely deselecting all variants of distribution
parameters resulting in two simple univariate models for both phenotypes.
Furthermore, the deselection leads to a comparable predictive performance
on test data as the classical boosted model.

5 Conclusion

We presented a pragmatic deselection approach for boosting multivariate
distributional copula regression models. The new deselection approach re-
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sults in much sparser models and can even lead to more simple univariate
regression models, reducing the complexity of the overall analysis. The
prediction accuracy usually does not improve but can lead to comparable
accuracy as the classical boosted model with less predictors. Consequently,
the interpretability of resulting prediction models is improved.

The presented deselection procedure is controlled via a threshold value 7,
which represents the minimum amount of total risk reduction which should
be attributed to a corresponding base-learner in order to avoid deselection.
This can be interpreted as a threshold-value for the importance of the par-
ticular predictor variable. In the simulation study, a threshold of 7 = 0.01
(i.e. 1% of total risk reduction) was considered to be appropriate. However,
depending on the research question and the context of the problem, the
choice of 7 is a trade-off between more complex models with the highest
prediction accuracy and a sparser, more interpretable model with poten-
tially reduced prediction accuracy.
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