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Aims The effective refractory period (ERP) is one of the main electrophysiological properties governing arrhythmia, yet ERP per
sonalization is rarely performed when creating patient-specific computer models of the atria to inform clinical decision- 
making. This study evaluates the impact of integrating clinical ERP measurements into personalized in silico models on 
arrhythmia vulnerability.

Methods 
and results

Clinical ERP measurements were obtained in seven patients from multiple locations in the atria. Atrial geometries from the 
electroanatomical mapping system were used to generate personalized anatomical atrial models. The Courtemanche M. et 
al. cellular model was adjusted to reproduce patient-specific ERP. Four modeling approaches were compared: homoge
neous (A), heterogeneous (B), regional (C), and continuous (D) ERP distributions. Non-personalized approaches (A and 
B) were based on literature data, while personalized approaches (C and D) were based on patient measurements. 
Modeling effects were assessed on arrhythmia vulnerability and tachycardia cycle length, with sensitivity analysis on ERP 
measurement uncertainty. Mean vulnerability was 3.4 ± 4.0%, 7.7 ± 3.4%, 9.0 ± 5.1%, and 7.0 ± 3.6% for scenarios A–D, 
respectively. Mean tachycardia cycle length was 167.1 ± 12.6 ms, 158.4 ± 27.5 ms, 265.2 ± 39.9 ms, and 285.9 ± 77.3 ms 
for scenarios A–D, respectively. Incorporating perturbations to the measured ERP in the range of 2, 5, 10, 20, and 
50 ms changed the vulnerability of the model to 5.8 ± 2.7%, 6.1 ± 3.5%, 6.9 ± 3.7%, 5.2 ± 3.5%, and 9.7 ± 10.0%, 
respectively.

Conclusion Increased ERP dispersion had a greater effect on re-entry dynamics than on vulnerability. Inducibility was higher in perso
nalized scenarios compared with scenarios with uniformly reduced ERP; however, this effect was reversed when incorpor
ating fibrosis informed by low-voltage areas. Effective refractory period measurement uncertainty up to 20 ms slightly 
influenced vulnerability. Electrophysiological personalization of atrial in silico models appears essential and requires confirm
ation in larger cohorts.

* Corresponding author. Tel: +49 721 608 42790, E-mail address: publications@ibt.kit.edu
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Graphical Abstract

Personalization of the effective refractory period has a higher impact on
reentry dynamics than on arrhythmia vulnerability
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Introduction
Refractoriness is an electrophysiological property that characterizes 
the response of cardiac tissue to premature stimulation. Shortened car
diac refractoriness promotes sustained re-entrant activity1 and can be 
assessed during electrophysiological studies following the extra- 
stimulus S1S2 pacing technique, where a train of S1 stimuli is given at 
a certain cycle length followed by a premature S2 stimulus.2 The effect
ive refractory period (ERP) can then be defined as the longest S1S2 
interval that fails to generate a capture in the tissue. Refractory period 
can only be determined at one region at a time (between stimulus and 
measurement locations); thus, multiple measurements are necessary 
for estimations of spatial distribution.1

Although ERP is often linked to the action potential duration (APD), 
this relationship is inconsistent, particularly in the presence of structural 
abnormalities.3,4 Effective refractory period can be influenced by the 
stimulus type and the local structural environment, such as electrotonic 
loading. This makes ERP especially relevant in cases of fibrosis, as fibro
sis can affect ERP without significantly altering APD.

Clinical and pre-clinical investigations have demonstrated heteroge
neous refractoriness properties across different atrial regions, which 
also vary from patient to patient.5−7 During atrial fibrillation (AF), 
high stimulation frequencies induce electrical remodeling, resulting in 
shortened APD and ERP.8 However, contrary to the belief that pro
longed exposure to AF always shortens ERP, patients with persistent 
AF may exhibit longer ERP due to the presence of atrial dilatation.4

So, the overall contribution of refractoriness to increased re-entrant in
ducibility remains unclear.

A common theory explaining the existence of AF postulates that both 
a trigger and a vulnerable substrate are necessary for the initiation and 
maintenance of AF.9 Ectopic activity from the sleeves of the pulmonary 

veins (PVs) is the most frequent form of AF triggers.10 Non-PV triggers 
have been identified in the crista terminalis (CT), the interatrial septum, 
the left atrium (LA) posterior wall, the left atrial appendage (LAA), the 
ligament of Marshall, the superior vena cava (SVC), and the coronary 
sinus, yet their precise role in initiating AF remains uncertain.11 The vul
nerable substrate refers to changes in electrical and structural remodel
ing (e.g. shortening of the APD, presence of fibrosis, atrial dilatation, 
adipose tissue infiltration, and inflammation).12 The presence of electric
al heterogeneity, such as regional variations in conduction velocity (CV), 
APD, and ERP, can favour unidirectional block in response to ectopy/ 
stimulation, which can then initiate re-entry.13 However, it is still challen
ging to characterize the vulnerable substrate in a clinical or experimental 
setting. Understanding the interplay between electrophysiological and 
structural factors and how their regional distribution (heterogeneity) in
fluences arrhythmia maintenance remains a complex task in cardiac elec
trophysiology research.

In this sense, patient-specific atrial computational models provide a 
robust framework for studying, under controlled conditions, the inte
grated effect of substrate features unique to each patient and their im
pact on arrhythmia vulnerability.14−16 The creation of patient-specific 
computer models of the atria typically involves anatomical personaliza
tion using image data obtained from magnetic resonance imaging (MRI), 
computed tomography scans, or electroanatomic mapping systems 
(EAMS). Electrophysiological personalization is rarely performed since 
patient electrophysiological data are usually not available beforehand.17

Some studies have conducted personalization of atrial electrophysi
ology, by fitting model parameters to patient clinical data.14,17−20

Their findings suggest that personalized electrophysiological parameter 
values vary among patients and differ from standardized literature par
ameter values. Nevertheless, the effect of incorporating patient-specific 
clinical ERP measurements on arrhythmia vulnerability has not yet been 
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assessed. In this work, we investigate the role of incorporating perso
nalized ERP values from various clinical measurements on the in silico 
assessment of arrhythmia vulnerability.

Methods
Electrophysiological study
Six patients with a history of AF and prior pulmonary vein isolation (PVI) 
and one patient with atrial flutter (AFl) underwent an electrophysiological 
study. Patients gave written informed consent, and the ethics committee of 
Städtisches Klinikum Karlsruhe gave ethical approval for this work. 
Electroanatomic maps during sinus rhythm were generated using the 
Rhythmia 3D mapping system (Boston Scientific, USA). For patients with 
prior PVI, LA mapping was conducted, whereas for the patient with AFl, 
the right atrium (RA) was mapped. Effective refractory period measure
ments were obtained from multiple locations in the atria (5.7 ± 1.4 
measurements) following an S1S2 protocol with seven S1 stimuli at a basic 
cycle length of 500 ms and an S2 stimulus with intervals between 300 
and 200 ms, decreasing by 10 ms until loss of capture. Pacing stimuli for 
clinical ERP identification had an amplitude of 5 V with a duration of 
1 ms in a bipolar configuration, using either the Intellamap Orion™ 8.5 F 
catheter or the Intellanav Stablepoint™ 7 F catheter (Boston Scientific, 
USA). Stimulus capture was verified for each location, and the amplitude 
was incrementally increased at locations where no capture was achieved 
initially.

Effective refractory period measurements were taken in different ana
tomical regions such as the anterior wall, posterior or lateral wall, append
age, and at least one PV in the case of LA geometries. A representative 
endocardial trace of the stimulation protocol is shown in Figure 1A. 
Effective refractory period was defined as the longest S1S2 interval without 
capture. To characterize the patient-specific fibrotic substrate, low-voltage 
areas (LVAs: <0.5 mV) were identified from bipolar voltage maps.

Patient-specific anatomical modeling
The atrial anatomy derived from the EAMS was utilized to generate perso
nalized simulation-ready bilayer meshes. The seven bilayer meshes were 
created using AugmentA21 including rule-based anatomical annotations 
and fiber orientations. For the LA models, the LAA, mitral valve, PV, and 
left Bachmann’s bundle (BB) were automatically annotated, and for the 
RA model, the tricuspid valve, right atrial appendage, SVC, inferior vena 
cava, pectinate muscles (PM), right BB, and CT. An open-source 
Python-based algorithm was used to subdivide the meshes into anatomical 
regions—anterior wall, septal wall, posterior wall, lateral wall, inferior wall, 
and appendage—for the RA and LA accordingly.22

Atrial electrophysiology modeling
Electrical propagation in the atria was modeled using the monodomain equa
tion and simulated with openCARP.23 Anisotropy in different parts of the atria 
was modeled as described in Krueger M. et al.17 Conduction velocity was 
doubled in the CT and tripled in the PM and in the BB.24 As both ERP and 
CV influence re-entry maintenance,19 our aim was to identify the CV at which 
vulnerability was highest. We tuned the longitudinal monodomain conductivity 
to achieve a mean CV of 0.3, 0.5, and 0.7 m/s in the bulk myocardium, for each 
patient-specific model. A CV of 0.3 m/s, as shown in Figure 2, exhibited the high
est number of inducing points and was therefore selected for further vulner
ability assessments. To reach a limit cycle, single-cell models were paced 100 
times with a basic cycle length of 500 ms. Single-chamber models were paced 
four times from the earliest activation site identified from local activation maps, 
also with a basic cycle length of 500 ms.

Patient-specific effective refractory period 
modeling
To reproduce patient-specific clinical ERP in silico, the maximum conduc
tances of key ionic channels affecting action potential morphology in the 
established Courtemanche M. et al. cellular model25 were modified from 
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control conditions to a setup that reflects changes in the action potential 
observed in patients with persistent AF (Figure 1B).24 We modified the max
imum conductances of the inward rectifier K+ current (gK1), the ultrarapid 
(gKur), the rapid (gKr), the slow delayed-rectifier (gs), and the transient out
ward (gto) K+ currents; the L-type Ca2+ current (gCaL), the sarcoplasmic Ca2 

+ pump current (IpCa), and the Ca2+/Na+ exchanger (maxINaCa). The ion 
channel conductances were linearly scaled to generate a set of 50 different 
cellular models with gradually increasing remodeling levels. We generated 
an in silico tissue cable for each cellular model with a length of 40 mm 
and a resolution of 0.4 mm and performed a virtual S1S2 pacing protocol 
to obtain the ERP (Figure 1C and D). The scaling factors for each combin
ation and the corresponding ERP can be found in Supplementary material 
online, Table S1. Pacing stimuli for in silico ERP identification had a current 
density of 30 µA/cm2 with a duration of 3 ms and an S2 coupling interval 
ranging from 350 ms up to loss of capture in steps of 1 ms.

Generation of effective refractory period 
scenarios
To assess the role of ERP personalization, we generated four scenarios: homo
geneous (A), heterogeneous (B), regional (C), and continuous (D) ERP distri
bution (Figure 3). The first two configurations were non-personalized based 
on literature data, and the latter two were personalized based on patient 
measurements. In scenario A, the same cellular model corresponding to 
AF-induced remodeling24 was applied to the whole atrium. In scenario B, ana
tomical structures had individual cellular model variants with specific ERP as
signed based on literature data.17 For scenario C, all nodes in anatomical 
regions were assigned distinct cellular models with the ERP value matching 
the spatially closest available clinical measurement. In case of multiple measure
ments present in the same region, the average ERP value was considered for 
the whole region. In scenario D, the measured ERPs were assigned to the cor
responding catheter tip positions and then continuously mapped to the whole 
surface by Laplacian interpolation.26 The measuring points were defined as 
boundary conditions, so that the ERP values never exceeded the measured 
ERP range. The ion channel conductances for each individual mesh node 
were then adjusted accordingly to match the interpolated ERP. For each modi
fied ionic channel conductance in the Courtemanche M. et al. model, an adjust
ment file was generated, consisting of a list with the corresponding scaling 
factor for the ERP value at each node in the mesh. Adjustment files were gen
erated in openCARP using the adjustment function as described in Boyle P.27

The four personalization scenarios are shown in Figure 1.

Patient-specific substrate modeling
Substrate was incorporated into the meshes based on the identification of 
LVA. To distinguish between ablation lesions from PVI and native fibrosis, 

we defined ablation lesion regions as having voltage < 0.1 mV and native fi
brosis regions as having a voltage between 0.1 and 0.5 mV.13 To model native 
fibrosis, we accounted for two different cellular mechanisms: replacement 
fibrosis and inflammation. For regions defined as native fibrosis, 30% 
of the elements were randomly selected and set to non-conductive with 
σ = 10−7 S/m to represent replacement fibrosis, while the remaining 70% 
were set to be electrically remodelled in response to cellular inflamma
tion.28,14 Several ionic conductances were rescaled to represent the 
effects of electrical remodeling (gCaL ×22.5%, gNa ×60%, factorgKur ×50%, 
gto ×35%, gKs ×200%, maxIpCa × 150%, maxINaCa × 160%). To model abla
tion lesions, all elements were set to be non-conductive.29 To assess 
the influence of ablation lesions and native fibrosis on arrhythmia vulnerabil
ity, we created four additional scenarios, namely, A2, D2, A3, and D3. The 
first two scenarios, A2 and D2, included ablation lesions and native fibrosis. 
Scenario A2 had the same ERP as scenario A (homogeneous), and scenario 
D2 corresponding to same ERP personalization as scenario D (continuous). 
Lastly, to model a stage before PVI, we generated scenarios A3 and D3 
including only native fibrosis regions, and ablation lesions were modeled as 
healthy.

Vulnerability assessment
Arrhythmia vulnerability was assessed by virtual S1S2 pacing at different lo
cations in the atria separated by an average distance of 2 cm.30 The vulner
ability ratio was defined as the number of inducing points divided by the 
number of stimulation points. Stimulation point locations remained consist
ent among scenarios. Transmembrane voltage traces were recorded for 1 s 
for each re-entry at the inducing stimulus location. We determined the 
tachycardia cycle length (TCL) of the re-entries by calculating the average 
between peaks of dV/dt.

Sensitivity analysis
To study the influence of uncertainty in ERP measurements, we conducted 
a sensitivity analysis by including perturbation in ERP measurements in the 
ranges of ±2,  ±5,  ±10,  ±20, and ±50 ms, randomly drawn from a 
uniform distribution. We generated 10 perturbation sets for each perturb
ation range, resulting in a total of 50 new perturbed ERP sets; a separate 
random value was drawn for each measured ERP. Finally, we generated 
new interpolated maps using the perturbed ERP sets. Due to the high 
computational cost of the vulnerability assessment (15 ± 2.4 min per 
stimulation point, utilizing 4 nodes × 40 CPU cores with Intel Xeon Gold 
62 302.1 GHz), the sensitivity analysis was limited to the assessment of 
the patient P3 model, which showed the highest vulnerability in the LA 
model cohort.
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Statistical analysis
The data are presented as mean ± SD. We used a two-sample t-test to de
termine statistical significance between the sample means. P < 0.05 were 
considered significant.

Results
Patient characteristics are outlined in Table 1. The overall clinically mea
sured ERP was 254.0 ± 32.7 ms. The dispersion of the ERP measure
ments is shown in the boxplot in Figure 4A. The ERP distribution 
maps for each patient are illustrated in Figure 4B. Bipolar voltage 
maps for each patient are shown in Figure 5A. Low-voltage areas ac
counted for 42.8 ± 16.4% of the atrial surface. The amount of fibrosis, 
ablation lesions, and healthy tissue for each patient is shown in Figure 5B.

The ERP of in silico tissue cables varied from 320 ms in the healthy 
state to 157 ms in the AF remodeling state. Non-personalized 
scenarios had a shorter ERP and reduced dispersion with an ERP 
of 158.9 ± 5.3 ms, while personalized scenarios had an ERP of 
254.0 ± 32.7 ms. From a total of 214 stimulation points (30.6 ± 8.9 
stimulation points per patient), 61 simulated re-entries were induced 
across the four scenarios without fibrotic substrate, with individual 
counts of 7, 18, 20, and 16 re-entries for scenarios A, B, C, and D, 

respectively. Vulnerability values are shown in Figure 6. The vulnerability 
for scenario A was 3.4 ± 4.0%, 7.7 ± 3.4% for scenario B, 9.0 ± 5.1% 
for scenario C, and 7.0 ± 3.6% for scenario D. The mean TCL was 
167.07 ± 12.58 ms for scenario A, 158.42 ± 27.52 ms for scenario B, 
265.17 ± 39.87 ms for scenario C, and 285.88 ± 77.31 ms for scenario 
D, as shown in Figure 7.

We assessed the impact of incorporating fibrotic substrate informed 
by LVA into the models along with ERP personalization on arrhythmia 
vulnerability. Given that most patients had undergone previous PVI, we 
compared vulnerability with and without ablation lesions defined by 
regions where bipolar amplitude was < 0.1 mV. To avoid additional 
confounding factors, we compared scenario A (homogeneous non- 
personalized) and scenario D (continuous with personalized ERP) with
out fibrosis with their respective counterparts with fibrosis and ablation 
lesions A2 and D2 (Figure 8). Incorporating fibrosis and ablation lesions 
resulted in a vulnerability of 11.3 ± 7.3% and 3.9 ± 3.3% for A2 and D2, 
respectively. Incorporating only fibrosis without ablation lesions re
sulted in a vulnerability of 47.5 ± 32.0% and 39.4 ± 30.3% for A3 and 
D3, respectively. Area reduction due to PVI decreased vulnerability 
by 36.2% when comparing A3 vs. A2 (47.5 ± 32.0% vs. 11.3 ± 7.3%), 
and by 35.5% when comparing D3 vs. D2 (39.4 ± 30.3% vs. 3.9 ± 
3.3%; Figure 8). The magnitude of the difference between A3 and D3 
varied among patients, with some experiencing small differences in 
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Table 1 Clinical characteristics of patient cohort

Patient Sex Chamber Volume (ml) Area (cm2) LVA (%) ERP (ms) ERP (#) Dx

P1 F LA 270.1 267.4 45.49 222.0 ± 11.0 5 PAF

P2 M RA 221.4 200.7 25.78 222.5 ± 14.9 8 AFl

P3 F LA 175.9 179.8 46.04 232.0 ± 16.4 7 PAF

P4 M LA 175.6 187.4 74.02 236.3 ± 21.3 5 PeAF

P5 M LA 86.9 120.0 47.36 284.0 ± 20.7 5 PeAF

P6 F LA 95.2 121.2 28.85 286.0 ± 13.4 4 PAF

P7 M LA 106.8 136.9 32.35 295.0 ± 20.8 6 PAF

Dx, diagnosis; ERP, effective refractory period; F, female; LA, left atrium; LVA, low-voltage area; M, male; PAF, paroxysmal atrial fibrillation; PeAF, persistent atrial fibrillation; RA, right 
atrium; #, number of measurements.
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vulnerability, e.g. P2 and P4, while others showing a bigger difference, 
e.g. P1 and P7. On average, the homogeneously reduced ERP in A3 
in the presence of native fibrosis without ablation lesions resulted in 
higher vulnerability compared with D3.

Incorporating perturbations to the measured ERP in the sensitivity 
analysis slightly impacted the vulnerability of the model from 9.1% 
in the baseline scenario D to 5.8 ± 2.7%, 6.1 ± 3.5%, 6.9 ± 3.7%, and 
5.2 ± 3.5%, observed for perturbations in the range of ±2,  ± 5,  ± 10, 
and ±20 ms, respectively (Figure 9). Only when the perturbations 
were in the range of ±50 ms, a higher standard deviation was observed 
(9.7 ± 10.0%).

Discussion
In this study, we assessed arrhythmia vulnerability in a cohort of seven 
patient-specific atrial models, each with information on the distribution 
of ERP and low-voltage substrate. We compared vulnerability across 
four ERP scenarios: non-personalized homogeneous (A), non- 
personalized heterogeneous (B), personalized regional (C), and perso
nalized continuous (D) distribution of ERP without substrate. 
Secondly, we investigated the impact on vulnerability of the interaction 

between native fibrosis and ablation lesions with ERP. Thirdly, we con
ducted a sensitivity analysis to evaluate the effects of uncertainty in ERP 
measurements on arrhythmia vulnerability. The four main highlights of 
our study are as follows: (i) differences in arrhythmia vulnerability be
tween personalized and non-personalized scenarios should be acknowl
edged, particularly for patients with low ERP; (ii) an increased dispersion 
of the ERP in personalized scenarios had a greater effect on re-entry dy
namics than on mean vulnerability values; (iii) the incorporation of per
sonalized ERP had a greater impact on inducibility than had a 
homogeneously reduced ERP; however, this effect reversed when na
tive fibrosis was included, with a higher inducibility for the homoge
neously reduced ERP scenario; and (iv) ERP measurement uncertainty 
up to 20 ms slightly influences arrhythmia vulnerability.
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Effect of effective refractory period 
personalization on arrhythmia 
vulnerability and dynamics
Personalized and non-personalized scenarios were different in the 
mean and dispersion of the ERP. Among all scenarios, the homoge
neous non-personalized scenario A had the lowest vulnerability, while 
the regional personalized scenario C had the highest vulnerability. 
Heterogeneities in the form of regions in scenario C promote unidirec
tional blocks, thereby increasing vulnerability, while the homogeneous 
scenario A makes it less likely to induce re-entry even with a shorter 
ERP.32 Differences in vulnerability between personalized and non- 
personalized scenarios were greater in patients with lower ERP 
(<240 ms), corresponding to P1–P4, with a total of 56 inducing points. 
In contrast, the remaining three patients (P5–P7) were almost non- 
inducible, with only five inducing points in total. During cursory follow- 
up, two out of seven patients (P1 and P3) recurred with AF after 4 and 8 
months, respectively. Decreased inducibility in P5–P7 could be attribu
ted to the reduced effective atrial size.33 Thus, differences in vulnerabil
ity between personalized and non-personalized scenarios cannot be 
neglected, particularly for patients with low ERP.

The effect of ERP personalization becomes more evident when ana
lyzing re-entry dynamics. There were no significant differences in the 
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TCL of the non-personalized scenarios A and B (167.1 ± 12.6 ms vs. 
158.4 ± 27.5 ms, P = 0.43), nor were there significant differences 
between the personalized scenarios C and D (265.2 ± 39.9 ms vs. 
285.9 ± 77.3 ms, P = 0.31). However, personalized scenarios had 
significantly slower TCL compared with non-personalized scenarios 
(P < 0.001). This finding suggests that the increased dispersion of the 
ERP in the personalized scenarios has a greater effect on re-entry 
dynamics than on the absolute value of vulnerability.

Increased effective refractory period 
dispersion is associated with higher 
arrhythmia vulnerability
Previous clinical and simulation studies have analyzed the effect of ERP 
and APD dispersion on arrhythmia vulnerability in patients with persist
ent and paroxysmal AF.34−36,4 Dispersion can be defined both spatially 
and temporally. Spatial dispersion refers to the difference between the 
maximum and minimum values of ERP measurements,36 while temporal 
dispersion refers to variation exceeding 5% from the baseline value.35 In 
the study of Narayan et al.,35 pacing-induced AF from either the PVs or 
high RA was always preceded by an increased temporal APD dispersion. 

In a cohort of 47 patients with paroxysmal AF, ERP was measured in five 
sites in both atria and a higher ERP dispersion was found to be the only 
clinical predictor of AF inducibility.36 An interesting finding of this study 
was that in patients with induced AF, ERP dispersion was similar in those 
with self-sustained and self-terminated AF. In another cohort of 22 
patient-specific bi-atrial models without personalized ERP, where the 
substrate was modeled based on late gadolinium enhancement MRI 
by applying changes in anisotropy, conduction, and remodelled electro
physiology, the 13 models in which AF was induced had significantly lar
ger APD gradients.37 In our results, scenarios with higher ERP dispersion 
in patients with a lower ERP mean had higher inducibility.

Previous studies have demonstrated that introducing a  ± 10% 
homogeneous variation to the baseline APD increases uncertainty in 
both the quantity and preferred locations of re-entrant drivers.38,39

Consequently, it is expected that higher variations would also impact 
re-entry inducibility. In our results, clinical ERP measurements ranged 
from 222 to 295 ms, with a mean dispersion of 46.5 ± 15.8 ms corre
sponding to a mean variation of 18.0%. When compared with 
literature-based ERP values (157 ms for the LA), the variation between 
this value and the maximum observed clinical ERP reaches 87.9%. We 
conclude that increased inducibility depends on both reduced mean 
ERP and increased dispersion.
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In this study, electrophysiological and substrate information was ob
tained through single-chamber electroanatomical mapping. A previous 
study from our group40 showed that arrhythmia vulnerability is higher 
in bi-atrial models than LA-only models. This increased vulnerability is 
due to exacerbated electrophysiological and substrate heterogeneity 
in the RA and the presence of interatrial connections. Effective refrac
tory period measurements can typically only be obtained during the 
mapping procedure, which shortens the time frame available to build 
the personalized model and run the simulation to a few minutes. This 
warrants faster simulation approaches,41 reduced-order models or sur
rogate measurements of ERP distribution if no data from previous pro
cedures can be utilized.

Interaction between effective refractory 
period and substrate heterogeneities
In current clinical practice, it remains challenging to identify patients for 
whom PVI will be sufficient to prevent AF recurrence without addition
al ablation lesions. Six out of seven patients in our cohort had under
gone prior PVI, indicating that PVI was ineffective in preventing AF 
recurrence. It is likely that substrate progression and gaps in PVI pro
moted AF recurrence.42,43 Regional heterogeneities in ERP dispersion 
are believed to be capable of sustaining AF on vulnerable substrates. 
Several atrial in silico studies have shown that fibrosis regions can anchor 
or block re-entrant drivers.37,44–46 Our results showed that the pres
ence of fibrosis and ablation lesions had a higher impact on vulnerability 
than ERP. However, the combination of fibrotic substrate and ERP had 
different effects on vulnerability. Scenarios in which both native fibrosis 
and ablation lesions were considered (scenarios A2 and D2) had lower 
vulnerability compared with those having native fibrosis only. A possible 
explanation is the reduced effective atrial size due to PVI lesions.33 We 
tried to simulate a state prior to PVI in scenarios A3 and D3, although it 
is likely that native fibrosis based on the identification of regions with 

voltage >0.1 and <0.5 mV might not accurately represent the pre- 
ablation state. On average, the lower mean ERP in A3 in the presence 
of native fibrosis without ablation lesions resulted in higher vulnerability 
compared with a dispersed ERP distribution as in D3. As substrate 
areas have a significant impact on model inducibility, further studies 
should focus on providing a more detailed description of their spatial 
distribution for informing patient-specific models.

Incorporating uncertainty to effective 
refractory period measurements
Measured ERP values depend on the time resolution of the S2 coupling 
interval, with higher resolution leading to more accurate values. To de
termine whether the addition of ERP perturbations would affect vul
nerability, we conducted a sensitivity analysis by running 50 additional 
vulnerability assessments. Our results suggest that variations in the 
range of 2–20 ms did not markedly change the number of inducing 
points, and vulnerability remained similar, indicating that further reduc
tions (<10 ms) in the S2 coupling interval would not impact model in
ducibility. Only when the perturbations were in the range of 50 ms, a 
higher standard deviation was observed. However, these differences 
in vulnerability might become more pronounced when functional sub
strate is incorporated. As mentioned before, re-entry dynamics are af
fected when ERP is personalized, rather than inducibility; therefore, 
future studies should assess the impact of ERP uncertainty together 
with substrate information on re-entry dynamics.

Limitations
The small sample size can limit the generalization of our findings. No 
bi-atrial electrophysiological mapping data were available; therefore, 
single-chamber patient-specific models were generated, which did 
not allow for the assessment of ERP dispersion effects between the 
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LA and RA on arrhythmia vulnerability. In the optimization process to 
adapt the cellular electrophysiology model to measured ERP, we re
duced the dimensionality of the parameter set space by constraining 
the range of variation for each parameter in a linear fashion from nor
mal healthy to changes due to persistent AF. We did not personalize 
CV distribution. The rate-dependent nature of ERP was not evaluated 
in our study as clinically measurements of the ERP were only obtained 
at 500 ms S1 cycle length.

Conclusions
Incorporation of patient-specific ERP values affects the assessment of 
AF vulnerability. Differences in arrhythmia vulnerability between perso
nalized and non-personalized scenarios should be acknowledged, par
ticularly for patients with low ERP. An increased dispersion of the 
ERP in personalized scenarios had a greater effect on re-entry dynamics 
than on mean vulnerability values. The incorporation of personalized 
ERP had a greater impact on inducibility than had a homogeneously re
duced ERP, with this effect reversing once fibrosis was included. ERP 
measurement uncertainty up to 20 ms slightly influences arrhythmia 
vulnerability. Functional personalization of atrial in silico models appears 
essential and warrants confirmation in larger cohorts.

Translational perspective
Patient-specific atrial computer models are at a pivotal stage to demon
strate clinical applicability. Most patient-specific atrial models currently 
rely solely on structural information. This study evaluates the impact of 
incorporating functional information derived from clinically measured 
effective refractory period (ERP). The findings indicate that persona
lized ERP dispersion significantly influences re-entry dynamics and 
that the effects of personalized ERP on inducibility also depend on 
the presence of fibrosis. Incorporating functional personalization into 
models could improve the ability to stratify patients based on their in
dividual characteristics, leading to more tailored and effective treatment 
strategies for atrial fibrillation.
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Supplementary material is available at Europace online.

Acknowledgements
The authors acknowledge support by the state of Baden-Württemberg 
through bwHPC.

Funding
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie 
grant agreement no. 860974. This work was supported by the Leibniz 
ScienceCampus ‘Digital Transformation of Research’ with funds from the 
programme ‘Strategic Networking in the Leibniz Association’.

Conflict of interest: none declared.

Data availability
The data underlying this article including bilayer models, adjustment files, 
and source code to reproduce the simulated re-entries are publicly available 
at https://doi.org/10.5281/zenodo.10726677.31

References
1. Burton FL, Cobbe SM. Dispersion of ventricular repolarization and refractory period. 

Cardiovasc Res 2001;50:10–23.
2. Issa ZF, Miller JM, Zipes DP. Clinical Arrhythmology and Electrophysiology: A Companion to 

Braunwald’s Heart Disease. 3rd ed. Elsevier; 2019. p81–124.

3. Sutton PMI, Taggart P, Opthof T, Coronel R, Trimlett R, Pugsley W et al. Repolarisation 
and refractoriness during early ischaemia in humans. Heart 2000;84:365–9.

4. van Staveren LN, de Groot NM. Exploring refractoriness as an adjunctive electrical bio
marker for staging of atrial fibrillation. J Am Heart Assoc 2020;9:e018427.

5. Fareh S, Villemaire C, Nattel S. Importance of refractoriness heterogeneity in the en
hanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial 
electrical remodeling. Circulation 1998;98:2202–9.

6. Tse HF, Lau CP, Ayers GM. Heterogeneous changes in electrophysiologic properties in 
the paroxysmal and chronically fibrillating human atrium. J Cardiovasc Electrophysiol 
1999;10:125–35.

7. Daoud EG, Bogun F, Goyal R, Harvey M, Man KC, Strickberger SA et al. Effect of atrial 
fibrillation on atrial refractoriness in humans. Circulation 1996;94:1600–6.

8. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrilla
tion. Circulation 1995;92:1954–68.

9. Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart 2019;105:1860–7.
10. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G et al. Spontaneous 

initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J 
Med 1998;339:659–66.

11. Santangeli P, Marchlinski FE. Techniques for the provocation, localization, and ablation 
of non-pulmonary vein triggers for atrial fibrillation. Heart Rhythm 2017;14:1087–96.

12. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, BlomströmLundqvist C et al. 2020 
ESC guidelines for the diagnosis and management of atrial fibrillation developed in col
laboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur 
Heart J 2021;42:373–498.

13. Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, et al. 2024 
European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm 
Society/Latin American Heart Rhythm Society expert consensus statement on catheter 
and surgical ablation of atrial fibrillation. Europace 2024;26:1–107.

14. Azzolin L, Eichenlaub M, Nagel C, Nairn D, Sanchez J, Unger L et al. Personalized abla
tion vs. conventional ablation strategies to terminate atrial fibrillation and prevent recur
rence. Europace 2023;25:211–22.

15. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al. Computationally 
guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 
2019;3:870–9.

16. Roney CH, Bayer JD, Cochet H, Meo M, Dubois R, Jaïs P et al. Variability in pulmonary 
vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. 
PLoS Comput Biol 2018;14:e1006166.

17. Krueger MW, Schulze WHW, Rhode K, Razavi R, Seemann G, Dössel O. Towards per
sonalized clinical in-silico modeling of atrial anatomy and electrophysiology. Med Biol Eng 
Comput 2013;51:1251–60.

18. Corrado C, Williams S, Karim R, Plank G, O’Neill M, Niederer S. A work flow to build 
and validate patient specific left atrium electrophysiology models from catheter mea
surements. Med Image Anal 2018;47:153–63.

19. Corrado C, Whitaker J, Chubb H, Williams S, Wright M, Gill J et al. Personalized models 
of human atrial electrophysiology derived from endocardial electrograms. IEEE Trans 
Biomed Eng 2017;64:735–42.

20. Lombardo DM, Fenton FH, Narayan SM, Rappel W-J. Comparison of detailed and sim
plified models of human atrial myocytes to recapitulate patient specific properties. PLoS 
Comput Biol 2016;12:e1005060.

21. Azzolin L, Eichenlaub M, Nagel C, Nairn D, Sánchez J, Unger L et al. Augmenta: patient- 
specific augmented atrial model generation tool. Comput Med Imaging Graph 2023;108: 
102265–102265.

22. Goetz C, Loewe A, Martínez Díaz P. DIVAID v1.0. 2023. URL https://doi.org/10.35097/ 
1846

23. Plank G, Loewe A, Neic A, Augustin C, Huang Y-L, Gsell MA et al. The openCARP simu
lation environment for cardiac electrophysiology. Comput Methods Programs Biomed 
2021;208:106223.

24. Loewe A, Krueger MW, Platonov PG, Holmqvist F, Dössel O, Seemann G. Left and right 
atrial contribution to the p-wave in realistic computational models. Lect Notes Comput 
Sci 2015;9126:439–47.

25. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial ac
tion potential properties: insights from a mathematical model. Am J Physiol Heart Circ 
Physiol 1998;275:H301–21.

26. Oostendorp TF, Oosterom AV, Huiskamp G. Interpolation on a triangulated 3d surface. 
J Comput Phys 1989;80:331–43.

27. Boyle P. Smooth gradient heterogeneities (ionic adjustment), openCARP (2019). URL 
https://opencarp.org/documentation/examples/02_ep_tissue/05c_cellular_dynamics_ 
heterogeneity

28. Roney CH, Bayer JD, Zahid S, Meo M, Boyle PM, Trayanova NA et al. Modelling meth
odology of atrial fibrosis affects rotor dynamics and electrograms. Europace 2016;18: 
iv146–55.

29. Vigmond E, Pashaei A, Amraoui S, Cochet H, Hassaguerre M. Percolation as a mechan
ism to explain atrial fractionated electrograms and reentry in a fibrosis model based on 
imaging data. Heart Rhythm 2016;13:1536–43.

10                                                                                                                                                                                     P. Martínez Díaz et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/article/26/10/euae215/7739748 by G
2M

 C
ancer D

rugs AG
 user on 11 N

ovem
ber 2024

http://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euae215#supplementary-data
https://doi.org/10.5281/zenodo.10726677
https://doi.org/10.35097/1846
https://doi.org/10.35097/1846
https://opencarp.org/documentation/examples/02_ep_tissue/05c_cellular_dynamics_heterogeneity
https://opencarp.org/documentation/examples/02_ep_tissue/05c_cellular_dynamics_heterogeneity


30. Azzolin L, Schuler S, Dössel O, Loewe A. A reproducible protocol to assess arrhythmia 
vulnerability: pacing at the end of the effective refractory period. Front Physiol 2021;12: 
656411.

31. Martínez Díaz P, Goetz C, Dasi A, Unger LA, Haas A, Dössel O et al. Atrial Models with 
Personalized Effective Refractory Period (Feb. 2024). URL https://doi.org/10.5281/ 
zenodo.10726677

32. Bishop MJ, Connolly A, Plank G. Structural heterogeneity modulates effective refractory 
period: a mechanism of focal arrhythmia initiation. PLoS One 2014;9:e109754.

33. Williams SE, O’Neill L, Roney CH, Julia J, Metzner A, Reißmann B et al. Left atrial effect
ive conducting size predicts atrial fibrillation vulnerability in persistent but not paroxys
mal atrial fibrillation. J Cardiovasc Electrophysiol 2019;30:1416–27.

34. Sampson KJ, Henriquez CS. Electrotonic influences on action potential duration disper
sion in small hearts: a simulation study. Am J Physiol Heart Circ Physiol 2005;289:H350–60.

35. Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE. Repolarization alternans 
reveals vulnerability to human atrial fibrillation. Circulation 2011;123:2922–30.

36. Oliveira M, Da Silva MN, Timoteo AT, Feliciano J, Sousa L, Santos S et al. Inducibility of 
atrial fibrillation during electrophysiologic evaluation is associated with increased disper
sion of atrial refractoriness. Int J Cardiol 2009;136:130–5.

37. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ et al. Patient-derived 
models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. 
Cardiovasc Res 2016;110:443–54.

38. Deng D, Murphy MJ, Hakim JB, Franceschi WH, Zahid S, Pashakhanloo F et al. Sensitivity 
of reentrant driver localization to electrophysiological parameter variability. Chaos 
2017;27:093932.

39. Hakim JB, Murphy MJ, Trayanova NA, Boyle PM. Arrhythmia dynamics in computational 
models of the atria following virtual ablation of re-entrant drivers. Europace 2018;20: 
iii45–54.

40. Martínez Díaz P, Sánchez J, Fitzen N, Ravens U, Dössel O, Loewe A. The right atrium 
affects in silico arrhythmia vulnerability in both atria. Heart Rhythm 2024;21: 
799–805.

41. Roney CH, Williams SE, Cochet H, Mukherjee RK, O’Neill L, Sim I et al. Patient-specific 
simulations predict efficacy of ablation of interatrial connections for treatment of per
sistent atrial fibrillation. Europace 2018;20:iii55–68.

42. Barrios Espinosa C, Sánchez J, Appel S, Becker S, Krauß J, Martínez Díaz P, et al. A cyclical 
fast iterative method for simulating reentries in cardiac electrophysiology using an eiko
nal-based model. arXiv 2024. https://doi.org/10.48550/arXiv.2406.18619

43. Bifulco SF, Macheret F, Scott GD, Akoum N, Boyle PM. Explainable machine learning to 
predict anchored reentry substrate created by persistent atrial fibrillation ablation in 
computational models. J Am Heart Assoc 2023;12:e030500.

44. Akoum N, Wilber D, Hindricks G, Jais P, Cates J, Marchlinski F et al. MRI assessment of 
ablation-induced scarring in atrial fibrillation: analysis from the decaaf study. J Cardiovasc 
Electrophysiol 2015;26:473–80.

45. Gonzales MJ, Vincent KP, Rappel W-J, Narayan SM, McCulloch AD. Structural contribu
tions to fibrillatory rotors in a patient derived computational model of the atria. 
Europace 2014;16:iv3–iv10.

46. Roney CH, Solis Lemus JA, Lopez Barrera C, Zolotarev A, Ulgen O, Kerfoot E et al. 
Constructing bilayer and volumetric atrial models at scale. Interface Focus 2023;13: 
20230038.

Impact of effective refractory period personalization in patient-specific atrial computer models                                                                               11
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/article/26/10/euae215/7739748 by G
2M

 C
ancer D

rugs AG
 user on 11 N

ovem
ber 2024

https://doi.org/10.5281/zenodo.10726677
https://doi.org/10.5281/zenodo.10726677
https://doi.org/10.48550/arXiv.2406.18619

	Impact of effective refractory period personalization on arrhythmia vulnerability in patient-specific atrial computer models
	Introduction
	Methods
	Electrophysiological study
	Patient-specific anatomical modeling
	Atrial electrophysiology modeling
	Patient-specific effective refractory period modeling
	Generation of effective refractory period scenarios
	Patient-specific substrate modeling
	Vulnerability assessment
	Sensitivity analysis
	Statistical analysis

	Results
	Discussion
	Effect of effective refractory period personalization on arrhythmia vulnerability and dynamics
	Increased effective refractory period dispersion is associated with higher arrhythmia vulnerability
	Interaction between effective refractory period and substrate heterogeneities
	Incorporating uncertainty to effective refractory period measurements
	Limitations

	Conclusions
	Translational perspective
	Supplementary material
	Acknowledgements
	Funding
	Data availability
	References




