"Aerob metabolischer TCE-Abbau

Scale-Up, molekularbiologischer Nachweis und Stimulation im Rahmen der Bioaugmentation"

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN (DR.-ING.)

von der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte

DISSERTATION

von

Steffen Hertle

Tag der mündlichen Prüfung: 07.11.2024

Erstgutachter: Prof. Dr. Harald Horn

Zweitgutachter: Prof. Dr. Ing. Matthias Franzreb

INHALTSVERZEICHNIS

		CHNIS	
FINA	NZIELLE FO	ORDERUNG	. VI
	(SAGUNG.		VII
ZUSA	MMENFAS	SUNG	VIII
ABST	RACT		. IX
TABE	LLEN- UND	ABBILDUNGSVERZEICHNIS	X
ΑΒΚί	JRZUNGSV	ERZEICHNIS	XVI
1	EINLEITUN	NG	1
1.1	Stoffei	genschaften der Chlorethene	2
1.2	Sanier	ung von Grundwasserkontaminationen	4
	1.2.1	Konventionelle Verfahren	4
	1.2.2	Natural Attenuation	4
4.0	1.2.3	Bioaugmentation	6
1.3	Biolog	Ischer Chlorethenabbau	b
	1.3.1	Anaerob reduktive Dechlorierung	8
	1.3.2	Aerober Chlorethenabbau	9
	1.3.2.1	Aerob metabolischer Chlorethenabbau	. 10
	133	Actob metabolischer Chlorethen Abbau	11
14	Kombi	nierte Bio-Flektro-Verfahren	18
	141	Flektrokinetische Prozesse	18
	142	Elektrochemische Prozesse	19
	143	Nutzung elektrokinetischer und elektrochemischer Prozesse	20
2			21
3	MATERIAI		22
•			
3.1	Verwe	ndete Chemikalien. Materialien und Geräte	.22
3.1 3.2	Verwe Mikrob	ndete Chemikalien, Materialien und Geräte viologische und molekularbiologische Analvtik und Methoden	.22 .22
3.1 3.2	Verwe Mikrok 3.2.1	ndete Chemikalien, Materialien und Geräte piologische und molekularbiologische Analytik und Methoden Real-Time PCR	. 22 . 22 . 22
3.1 3.2	Verwe Mikrot 3.2.1 3.2.1.1	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion	. 22 . 22 . 22 . 24
3.1 3.2	Verwe Mikrot 3.2.1 3.2.1.1 3.2.2	ndete Chemikalien, Materialien und Geräte piologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese	. 22 . 22 . 22 . 24 . 24
3.1 3.2 3.3	Verwe Mikrot 3.2.1 3.2.1.1 3.2.2 Physik	ndete Chemikalien, Materialien und Geräte piologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren	.22 .22 .22 .24 .24 .24 .24
3.1 3.2 3.3	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie	.22 .22 .22 .24 .24 .24 .24 .24
3.1 3.2 3.3	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2	ndete Chemikalien, Materialien und Geräte piologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren lonenchromatografie Schadstoffanalytik mittels Gaschromatografie	.22 .22 .24 .24 .24 .24 .24 .24 .24
3.1 3.2 3.3	Verwe Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen	.22 .22 .24 .24 .24 .24 .24 .25 .25
3.1 3.2 3.3 3.4	Verwe Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strom	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung	.22 .22 .24 .24 .24 .24 .24 .24 .25 .25 .25
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese salisch-Chemische Analyseverfahren Ionenchromatografie. Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen. erzeugung und Messung führung der Experimente.	.22 .22 .24 .24 .24 .24 .24 .25 .25 .25 .26 .26
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren lonenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen	.22 .22 .24 .24 .24 .24 .24 .25 .25 .25 .25 .26 .26 .26
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 2.5.1.1	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium	. 22 . 22 . 24 . 24 . 24 . 24 . 25 . 25 . 25 . 26 . 26 . 26
3.1 3.2 3.3 3.4 3.5	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 2.5.2	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese salisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial	. 22 . 22 . 24 . 24 . 24 . 24 . 24 . 24
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2	ndete Chemikalien, Materialien und Geräte niologische und molekularbiologische Analytik und Methoden Real-Time PCR	. 22 . 22 . 24 . 24 . 24 . 24 . 25 . 25 . 26 . 26 . 26 . 27
3.1 3.2 3.3 3.4 3.5	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.3	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion	.22 .22 .24 .24 .24 .24 .25 .25 .26 .26 .26 .26 .27 .27 .30
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design	.22 .22 .24 .24 .24 .25 .25 .25 .26 .26 .26 .26 .27 .27 .30 .30
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.1 3.5.3.2	ndete Chemikalien, Materialien und Geräte niologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese talisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates	.22 .22 .24 .24 .24 .25 .25 .26 .26 .26 .26 .27 .30 .30 .31
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.3.3	ndete Chemikalien, Materialien und Geräte niologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates Klonierung und Transformation mit dem pGEM T-Vektorsystem	.22 .22 .24 .24 .24 .25 .25 .26 .26 .26 .26 .27 .30 .31 .31
3.1 3.2 3.3 3.4 3.5	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.3.3 3.5.3.4	ndete Chemikalien, Materialien und Geräte niologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates Klonierung und Transformation mit dem pGEM T-Vektorsystem Plasmid-Aufreinigung und Linearisierung.	.22 .22 .24 .24 .24 .25 .25 .25 .26 .26 .26 .26 .26 .27 .30 .31 .31 .32
3.1 3.2 3.3 3.4 3.5	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.3.2 3.5.3.3 3.5.3.4 3.5.3.4 3.5.3.5 3.5.3.4 3.5.3.5 3.5.3.4 3.5.3.5	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates Klonierung und Transformation mit dem pGEM T-Vektorsystem Plasmid-Aufreinigung und Linearisierung. Gradienten PCR Sconzifiet des gDCD Machureizer	.22 .22 .24 .24 .24 .25 .25 .26 .26 .26 .26 .26 .27 .30 .30 .31 .32 .33
3.1 3.2 3.3 3.4 3.5	Verwer Mikrot 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.3.1 3.5.3.2 3.5.3.3 3.5.3.4 3.5.3.5 3.5.3.6 2.5.4	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung führung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates Klonierung und Transformation mit dem pGEM T-Vektorsystem Plasmid-Aufreinigung und Linearisierung Gradienten PCR Spezifität des qPCR-Nachweises	.22 .22 .24 .24 .24 .25 .26 .26 .26 .26 .26 .26 .27 .30 .31 .31 .32 .33 .33
3.1 3.2 3.3 3.4 3.5	Verwer Mikrob 3.2.1 3.2.1.1 3.2.2 Physik 3.3.1 3.3.2 3.3.3 Strome Durch 3.5.1 3.5.1.2 3.5.2 3.5.3 3.5.3.1 3.5.3.2 3.5.3.2 3.5.3.3 3.5.3.4 3.5.3.5 3.5.3.6 3.5.4	ndete Chemikalien, Materialien und Geräte biologische und molekularbiologische Analytik und Methoden Real-Time PCR. DNA-Extraktion Kapillar Gelelektrophorese calisch-Chemische Analyseverfahren Ionenchromatografie Schadstoffanalytik mittels Gaschromatografie Photometrische Bestimmungen erzeugung und Messung Grührung der Experimente Kultivierung und Anreicherung der Mikroorganismen Anreicherung in Flüssigmedium Anreicherung auf sandigem Bodenmaterial Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte Herstellung qPCR-Standards Primer Design Amplifizieren und Aufreinigen des Templates Klonierung und Transformation mit dem pGEM T-Vektorsystem Plasmid-Aufreinigung und Linearisierung Gradienten PCR Spezifität des qPCR-Nachweises Entwicklung einer Mischkultur zur Bioaugmentation des aerob metabolischen cDCE- und TCE-Abbaus	.22 .22 .24 .24 .24 .25 .25 .26 .26 .26 .26 .26 .27 .30 .31 .32 .33 .33 .33 .33

	3.5.5.1	Versuche im Labormaßstab	36
	3.5.5.2	Versuche im technischen Maßstab	38
4	3.5.6	Elektrochemisch unterstutzter Schadstoffabbau	43
4 11	Bioaur	SSE UND DISKUSSION	. 40
4.1	Stando	orte	46
	4.1.1	Bioaugmentationsversuche mit Grundwasser des Standortes NAM	
	4.1.2	Bioaugmentationsversuche mit Grundwasser des Standortes UBELL	49
	4.1.3	Fazit der Bioaugmentationsversuche	52
4.2	Erhalt	ung des Stoffwechsels unter geringer Substratverfügbarkeit	53
	4.2.1	Kleinsäulenversuch mit geringer Substratverfügbarkeit	53
	4.2.2	Fazit der Säulenversuche mit geringer Substratverfügbarkeit	54
4.3	Etablie	erung der qPCR-Methode zum Nachweis des Potentials zum	
	aerobe	en TCE-Abbau	54
	4.3.1	Auswahl der Primer	54
	4.3.2	Erstellen der qPCR-Protokolle	55
	4.3.3	Zusammennang der Genkopie-Zani und des TCE-Abbaus	56
	4.3.4	Untersuchung zur Spezifität der Primer des aerob metabolischen TCE-Abbaus	58
11	4.3.5 Entwic	Pazit der Methodenetablierung	59
7.7	metab	olischen cDCE- und TCE-Abbaus	60
	4.4.1	Schadstoffabbau im Ein-Stoff-Svstem	60
	4.4.2	Schadstoffabbau unter äguimolarem Schadstoffverhältnis im Zwei-Stoff-	
		System	61
	4.4.3	Schadstoffabbau unter nicht-äquimolarem Schadstoffverhältnis im	
		Zweistoffsystem	64
	4.4.4	Fazit der Entwicklung einer Mischkultur zur Bioaugmentation des aerob	60
45	Δushr	eitung der TCE-Abbauenden Bioaugmentationskultur im sandigen	00
4.0	Aquife	r	70
	4.5.1	Bioaugmentation im durchflossenen Säulensystem im Labormaßstab	70
	4.5.1.1	Bioaugmentation durch Injektion einer Flüssigkultur	71
	4.5.1.2	Bioaugmentation durch Einbau eines bewachsenen Trägermaterials	74
	4.5.1.3	Biomarker	/6
	452	Biogugmentation im durchflossenen System im technischen Maßstab	/ /
	4.5.2.1	Ausbreitung des Schadstoffabbaus im Bioaugmentationsansatz	78
	4.5.2.2	Elektrokinetischer Transport von Bioaugmentationskulturen	83
4.6	Elektro	ochemische Stimulation des aeroben TCE-Abbaus	88
	4.6.1	Säulenversuche zur elektrochemischen Stimulation des aeroben TCE-Abbaus	88
_	4.6.2	Fazit der Säulenversuche zur elektrochemischen Stimulation des TCE-Abbaus.	93
5	ZUSAMME		
6	BISHERIG	E VEROFFENTLICHUNGEN	. 96
1	Literatur	verzeichnis	.97
0	ANHANG	anung dar Effizienz der Seuersteff envertung des es metshelischen	100
0.1		haus in Abhängigkeit des Primärsubstrate	108
8.2	Materi	alen Medien- & Chemikalien-Listen	111
	8,2.1	Chemikalien. Reagenzien und Kits	. 111
	8.2.2	Geräteliste und Gerätedaten.	. 113
	8.2.3	Verbrauchsmaterialien	. 118
	8.2.4	Medien und Lösungen	. 119
	8.2.4.1	Kultivierung aerober Chlorethenverwerter	. 119
	8.2.4.2	Kultivierung reduktiver Dechlorierer.	. 120
	8.2.4.3	weaten für die drok-Analytik und wethodenetablierung	. IZ1

	8.2.5	Übersicht der geführten Chlorethen abbauenden Kulturen	124
	8.2.5.1	Aerob metabolisch VC-abbauende Kulturen	124
	8.2.5.2	Aerob metabolisch cDCE-abbauende Kulturen	124
	8.2.5.3	Aerob metabolisch ICE-abbauende Kulturen	125
~ ~	8.2.5.4	Reduktiv dechlorierende Kulturen	126
8.3	Ergebi	1ISSe	127
	8.3.1	Bioaugmentationsversuche	127
	8.3.1.1	Standort NAM Rohdaten	127
	8.3.1.2	Standort UBELL Rohdaten	130
	8.3.1.3	Rohdaten Entwicklung einer Mischkultur zur Bioaugmentation des aerob	
		metabolischen cDCE- und TCE-Abbaus	133
	8.3.2	Rohdaten der Säulenversuche mit geringer Substratverfügbarkeit	158
	8.3.3	Etablierung des qPCR-Nachweises für aerobe TCE-Verwerter	159
	8.3.3.1	Metagenomics	159
	8.3.3.1	Digitale Gelbilder	166
	8.3.4	Ausbreitung der TCE-abbauenden Bioaugmentationskultur im sandigen Aquifer.	172
	8.3.4.1	Rohdaten der Laborsäulen	172
	8.3.4.2	Technischer Maßstab	184
	8.3.4.1	Elektrokinetische Mobilisation der Bioaugmentationskultur	192
	8.3.5	Elektrochemische Stimulation des aeroben TCE-Abbaus	196
	8.3.5.1	Rohdaten der betriebenen Säulen	196
	8.3.5.2	Schadstoff- und Sauerstoff-Verlauf während der Erhöhung der TCE-	
		Zulaufkonzentration	200
	8.3.5.3	Abschätzung der Elektrolyse-Effizienz auf Grundlage der gemessenen	
		Sauerstoffwerte	200
	8.3.5.4	TCE-Konzentrationsverlauf der abiotischen Säule in der elektrochemisch	
		unterstützten Phase	201
	8.3.5.5	Verlauf der pH-Werte in Zu und Ablauf der betriebenen Säulen	201
	8.3.5.6	Verhältnis des abgebauten TCEs zum verbrauchten Sauerstoff bei 100 $\%$	
		Elektrolyse-Effizienz	202

FINANZIELLE FÖRDERUNG

Die vorliegende Dissertation wurde im Rahmen des Horizont 2020 Programmes der Europäischen Union geförderten Projektes "Enhanced In Situ Bioremediation for Contaminated Land Remediation" (EiCLaR) (Fördernummer 965945) angefertigt.

DANKSAGUNG

Eine Promotion ist kein Vorhaben das ohne Unterstützung abläuft. Daher möchte ich an dieser Stelle einigen Personen Danke zu sagen:

Danke an Prof. Dr. Harald Horn für die Betreuung der Dissertation und damit auch die durchgängige Begleitung meines akademischen Werdegangs als Betreuer aller meiner Abschlussarbeiten.

Danke an Prof. Dr. Matthias Franzreb für die Übernahme des Koreferats und das damit verbundene Interesse an dieser Arbeit.

Danke an Hon.-Prof. Dr. Andreas Tiehm für die Vergabe des Themas und den gegebenen Handlungsfreiraum beim Bearbeiten des Projektes.

Danke an die Kollegen der Abteilung Wassermikrobiologie. Besonders bedanken möchte ich mich bei Heico, Rabea und Silke (die durch ihren Anruf die Schuld daran trägt, dass ich promoviert habe) für ein meist freiwillig offenes Ohr und das Anhören wilder Theorien und Tiraden. Danke an Johannes für Unfug und Schabernack sollten wir mal beide zur gleichen Zeit im Büro sein. Danke an Carmen und Carolin für die Unterstützung bei allem PCR-Betreffenden.

Danke an "meine" Studenten Nick de Boni, Annika Behrendt, Annie Schlöffel und Sara Brand die durch Praktikum, Masterarbeit und allgemeine Unterstützung bei der Probenahme im Labor einen nicht unwesentlichen Teil zur Bewältigung der Versuche beigetragen und durch das Hinterfragen meiner Ansätze und Methoden die Versuchsgestaltung positiv beeinflusst haben.

Danke an die Projektpartner der Versuchseinrichtung zur Grundwasser- und Altlastensanierung (VEGAS) an der Universität Stuttgart für die Zusammenarbeit und den Betrieb der Versuche im technischen Maßstab.

Danke an Deniz, Ole, Max und Flo für die gemeinsamen Online-Abende während der Corona-Einschränkungen und die damit verbundene Ablenkung von den Startschwierigkeiten der Promotion.

Danke an die Handballer der HSG LiHoLi und des SSC Karlsruhe für den sportlichen Ausgleich zur Labor- und Büroarbeit und die gemeinsamen Feste.

Zuletzt, Danke an meine Familie, dafür, dass ihr euch jederzeit für meine Bartender-Versuche zur Verfügung gestellt habt, sowie offene Ohren, auch wenn ihr nicht wusstet, worüber ich schon wieder rede.

"Always remember these words: Work hard, study well and eat and sleep plenty" Muten Roshi (Akira Toriyama - Dragon Ball Super)

ZUSAMMENFASSUNG

Chlorethene sind ubiquitär präsente Grundwasserkontaminanten die unter anderem in der Industrie (z.B. Metallindustrie, Farbindustrie) und im Dienstleistungsgewerbe (z.B. Textilreinigung) ihren Einsatz finden. Die höher chlorierten Stoffe Tetrachlorethen und Trichlorethen (TCE) galten lange Zeit nur unter stark anaeroben Bedingungen als abbaubar. Für TCE konnte 2014, an einem Standort in Süddeutschland, erstmalig der aerob metabolische Abbau gezeigt werden. Nachweise an weiteren Standorten bleiben bis heute rar.

Da der aerob metabolische Abbau durch eine vollständige Mineralisation des Schadstoffes, eine hohe Effizienz in der Verwendung des eingesetzten Sauerstoffs sowie die Unabhängigkeit von Auxiliarsubstraten einen deutlichen Vorteil gegenüber der reduktiven Dechlorierung und aerob co-metabolischen Abbauwegen besitzt, birgt der Einsatz einer aerob metabolisch TCE-Abbauenden Kultur im Rahmen von Bioaugmentationsanwendungen großes Potential.

Im Rahmen dieser Arbeit wurden verschiedene Bioaugmentationsansätze untersucht. In Batch-Versuchen wurde erfolgreich die Anwendbarkeit der TCE-abbauenden Bioaugmentationskulturen in realen Grundwässern demonstriert, sowie eine neue, zum gleichzeitigen aerob metabolischen Abbau von cDCE und TCE befähigte, Labor-Mischkultur etabliert.

Die Ausbreitung der TCE-abbauenden Bioaugmentationskultur, in Abhängigkeit der Inokulationsmethode, wurde in Laborsäulen (~10 L) untersucht. Hierbei erwies sich eine Inokulation mit, auf einem Trägermaterial, immobilisierter Biomasse als sehr erfolgreicher Ansatz. Auf technischer Skala (~400 L) konnte mit diesem Ansatz in Box-Systemen ein weiterer Schritt in der Skalierung des Bioaugmentations-Ansatzes hin zur Pilotanwendung im Feld erfolgreich demonstriert werden. Dabei konnte in den Säulenversuchen ein TCE-Abbau von 5 mg_{TCE}/(L*d) und in den Box-Systemen ein Abbau von 6,75 mg_{TCE}/(L*d) erzielt werden.

Durch die Entwicklung spezifischer qPCR-Methoden wurde ein neues Toolkit zur Verfügung gestellt, welches ermöglicht Standortpotentiale zum aerob metabolischen TCE-Abbau zu evaluieren und somit weitere Standorte mit Potential zum aerob metabolischen TCE-Abbau zu identifizieren und die Sanierung nachhaltiger zu gestalten.

Durch die Kombination nicht-biologischer und biologischer Verfahren kann die Anwendbarkeit von Bioremediationsansätzen auf zuvor nicht geeignete Standorte ausgeweitet werden. Im Rahmen des Projektes EiCLaR wurde der aerob metabolische TCE-Abbau durch Anlegen eines Gleichstroms mit elektrokinetischen und elektrochemischen Effekten kombiniert und stimuliert.

Während elektrokinetische Effekte im sandigen Aquifer nur geringfügige Vorteile für die Ausbreitung der Bioaugmentationskultur bedeuteten, führte die elektrolytische Produktion von Sauerstoff im durchflossenen System zu einer signifikanten Zunahme des TCE-Abbaus von 92,6 mg_{TCE}/(L*d) auf 164 mg_{TCE}/(L*d).

ABSTRACT

Chloroethenes are globally prevalent groundwater contaminants that find usage in the metal-, dye- and service-industry. The higher chlorinated ethenes Tetrachloroethene and Trichloroethene (TCE) were regarded as biodegradable only under strongly reducing conditions via reductive dechlorination. The aerobic metabolic degradation of TCE has been demonstrated for the first time in 2014 on a site in southern Germany. Further reports of aerobic metabolic TCE degradation have been scarce.

The aerobic metabolic degradation of chloroethenes excels through complete mineralization of contaminants without stable intermediates, high oxygen consumption efficiency and the independence of auxiliary substrates and, therefore, has a significant advantage over anaerobic reductive dechlorination as well as aerobic co-metabolic degradation processes. Due to the advantages, the usage of the aerobic metabolic TCE-degrading bacteria in the scope of bioaugmentation approaches yields considerable potential in the remediation of TCE-contaminated sites.

Different bioaugmentation approaches have been investigated in this thesis. The viability of the TCE-degrading organisms for bioaugmentation has been demonstrated in batch experiments with groundwater from different contaminated sites. Additionally, a new blended mixed bacterial laboratory culture, capable of simultaneous aerobic metabolic cDCE and TCE degradation was established.

The spread of the TCE-degrading bioaugmentation culture, based on the method of inoculation, has been investigated in laboratory columns (~10 L). The inoculation with, on a carrier material, immobilized biomass was shown to be a very successful approach. With successful scaling of the bioaugmentation approach to technical scale box experiments (~400 L) a major milestone for the transition into a pilot scale field application has been achieved. During the scale up experiments, TCE degradation of 5 mg_{TCE}/(L*d) in the column experiments and 6.75 mg_{TCE}/(L*d) in the box experiments were achieved.

The development of specific qPCR-methods provides a new toolkit to evaluate site potential for the aerobic metabolic TCE degradation and identify additional sites capable of this process.

The combination of non-biological and biological processes can increase the applicability of bioremediation approaches to sites not suitable prior. In the scope of the EiCLaR project, the aerobic metabolic TCE-degradation has been combined with phenomena of a DC electrical field.

While electrokinetic effects showed minor advantages regarding the spread of the bioaugmentation culture, the electrolytic production of oxygen resulted in a significant increase of degraded TCE in the flow through columns, increasing the degradation rate from 92,6 $mg_{TCE}/(L^*d)$ to 164 $mg_{TCE}/(L^*d)$.

TABELLEN- UND ABBILDUNGSVERZEICHNIS

Tabellenverzeichnis

Tabelle 1-1:	Übersicht der Stoffeigenschaften der Chlorethene.
Tabelle 1-2:	Relative Effektivität des biologischen Abbaus der Chlorethene über die Abbaupfade reduktive
	Dechlorierung und mikrobielle Oxidation in Abhängigkeit des vorherrschenden terminalen
	Elektronenakzeptor-Prozesses. Verändert, in Anlehnung an Grandel und Dahmke (2008)7
Tabelle 1-3:	Auflistung der Primer die mit dem reduktiv dechlorierenden Abbau der verschiedenen
	Chlorethene assoziiert sind. Die Primer sind 5'-3' notiert
Tabelle 1-4:	Auflistung der Primer die mit dem aerob metabolischen Abbau der verschiedenen
	Chlorethene assoziiert sind. Die Primer sind 5'-3' notiert.
Tabelle 3-1:	Ubersicht der verwendeten, bereits etablierten, Primer
Tabelle 3-2:	Standort-Grundwasser die in Laborversuchen auf ihre Bioaugmentations-Tauglichkeit gepruft
	Wurden
Tabelle 3-3:	Werte der Vor-Ort-Parameter und der chemischen Analytik nach Ankuntt der
Taballa 2.4.	Grundwasserproben im Labor.
Tabelle 3-4:	Übersicht der Bioaugmentationsversuche mit Grundwasser des Standortes UBELL
Tabelle 3-5.	Vorwondete Deremetersingtellung zur Congrierung der gDCP Drimer durch Drimer Plagt 20
Tabelle 3-0.	Primer für den Nachweis des Detentials zum aareb metabolischen TCE Abbaus. Die Tabolle
	enthält den vergebenen Drimer Namen sowie die Seguenznummer der Metagenomanalyse
	(Anhang 8.3.3.1.1) Die Sequenzen sind in 5'-3'-Richtung notiert
Tabelle 3-8.	Thersicht der untersuchten Negativ- und Positiv-Kontrollen
Tabelle 3-9	Übersicht der angesetzten Versuche in den einzelnen Versuchsnhasen. Die Herkunft der
	verwendeten Kulturen ist in Tabelle 8-23 und Tabelle 8-24 gelistet
Tabelle 3-10 [.]	Übersicht der betriebenen Säulen mit Bioaugmentationsmethode, eingebrachter Zellzahl
	sowie Position der Bioaugmentation
Tabelle 3-11:	Übersicht der Versuchsparameter der Bioaugmentationsversuche in Box-Versuchen in
	technischer Skala
Tabelle 3-12:	Gemessene Parameter, verwendete Messmethoden, zuständiger Partner und Messintervall
	der einzelnen Parameter41
Tabelle 3-13:	Gemessene Parameter, verwendete Messmethoden, zuständiger Partner und Messinverall
	der einzelnen Parameter43
Tabelle 3-14:	Rahmenbedingungen der Kleinsäulenversuche zur elektrochemischen Stimulation des aerob
	metabolischen TCE-Abbaus44
Tabelle 3-15:	Versuchsbedingungen zur Evaluierung der Abbau-Stabilität unter geringer
	Substratverfügbarkeit45
Tabelle 4-1:	Bilanzierung der abgebauten Chlorethene und des freigesetzten Chlorids in den
	Bioaugmentationsversuchen mit Grundwasser des Standortes NAM
Tabelle 4-2:	Bilanzierung der abgebauten Chlorethene und des freigesetzten Chlorids in den
	Bioaugmentationsversuchen mit Grundwasser des Standortes UBELL
l abelle 4-3:	Ubersicht der erzielten maximalen Abbauraten in den Bioaugmentationsversuchen der
T-b-ll- 4 4.	Projektstandorte
l abelle 4-4:	Ubersicht der, mittels Gradienten-PCR ermittelten, optimalen Annealingtemperatur der
Taballa 4 Fr	Verschledenen Primer
Tabelle 4-5.	Voreuches
Taballa 4 6:	Anzahl dar mit dan Drimarn EuR. Pha mañ maR mañ und hdlh nachgawiacanan
	Anzahi der, mit den Frimein Eub, Kho, moa, mob, mob und hum hachgewiesenen, Genkopien in Referenzoroben verschiedener Standorte und aktiver Chlorethen-abhauender
	Kulturen (Tabelle 3.8)
Tabelle 1-7.	libersicht der maximalen Δbhauraten in den einzelnen \/ersuchsansätzen (Tabelle 3-9) 60
Tabelle 4-8	Übersicht der maximalen Abbauraten in den einzelnen Versuchssäulen
Tabelle 4-9	Vergleich der TCE-Abbauraten der verschiedenen Stoffwechselwege 8
Tabelle 4-10 [.]	Fraehnis des asymptotischen Wilcoxon-Test zwischen den Säulen Bio 1 und Bio 2 in den
	Phasen ohne elektro-chemische Unterstützung und den mit 0.5 mA elektro-chemisch
	unterstützten Phasen
Tabelle 8-1:	Vergleich der Effizienz des aerob metabolischen TCE-Abbaus verglichen mit aerob co-
	metabolischen Prozessen
Tabelle 8-2:	Verwendete Chemikalien, Reagenzien und Kits11
Tabelle 8-3:	Liste verwendeter Geräte.
Tabelle 8-4:	Gerätedaten und Betriebsparameter des IC sowie Bestimmungsgrenze der untersuchten
	Anionen
Tabelle 8-5:	Gerätedaten und Betriebsparameter des GC sowie Bestimmungsgrenze der verschiedenen
	Schadstoffe115

Tabelle 8-6:	Gerätedaten und Programm für die PCR mit der SYBR-Polymerase	116
Tabelle 8-7:	Gerätedaten und Programm der PCR zur Amplifikation der Template-DNA.	. 116
Tabelle 8-8:	Gerätedaten und Programm für die Gradienten-PCR.	. 117
Tabelle 8-9:	Auflistung der verwendeten Verbrauchsgegenstände	. 118
Tabelle 8-10:	Zusammensetzung des Mineralmediums zur Kultivierung der aerob metabolisch Chloreth	en-
	abbauenden Organismen, nach Gaza (2015).	. 119
Tabelle 8-11:	Zusammensetzung der Spurenstofflösung nach Lochhead und Chase (1943)	. 119
Tabelle 8-12:	Zusammensetzung des Mineralmediums zur Kultivierung der reduktiv dechlorierenden	
	Mikroorganismen	. 120
Tabelle 8-13:	Spurenelementlösung SP1 nach Kästner (1989).	. 120
Tabelle 8-14:	Spurenelementlösung SP2 nach Scholz-Muramatsu et al. (1995).	. 120
Tabelle 8-15:	Zusammensetzung der Vitaminlösung; Kranzioch (2015).	. 121
Tabelle 8-16:	Zusammensetzung Mastermix 1.	. 121
Tabelle 8-17:	Zusammensetzung Mastermix 2.	. 122
Tabelle 8-18:	Zusammensetzung Mastermix 3 für die Klonierung des PCR-Fragmentes in den Vektor	
	pGEM-T	. 122
Tabelle 8-19:	Zusammensetzung des LB Mediums.	. 122
Tabelle 8-20:	Zusammensetzung des SOC-Mediums	. 122
Tabelle 8-21:	Zusammensetzung des LAXI-Mediums	. 123
Tabelle 8-22:	Übersicht der geführten aerob metabolisch VC-abbauenden Kulturen.	. 124
Tabelle 8-23:	Übersicht der geführten aerob metabolisch cDCE-abbauenden Kulturen	. 124
Tabelle 8-24:	Übersicht der geführten aerob metabolisch TCE-abbauenden Kulturen.	. 125
Tabelle 8-25:	Übersicht der geführten reduktiv dechlorierenden Kulturen	. 126
Tabelle 8-26:	Rohdaten Ansatz NAM 1	. 127
Tabelle 8-27:	Rohdaten Ansatz NAM 2	127
Tabelle 8-28	Rohdaten Ansatz NAM 3	127
Tabelle 8-29:	Rohdaten Ansatz NAM 4	128
Tabelle 8-30	Rohdaten Ansatz NAM 5	128
Tabelle 8-31	Rohdaten Ansatz NAM 6	128
Tabelle 8-32	Rohdaten Ansatz NAM 7	120
Tabelle 8-33	Rohdaten Ansatz NAM 8	120
Tabelle 8-34	Rohdaten Ansatz NAM 9	120
Tabelle 8-35	Rohdaten Ansatz I IRFI I 1	130
Tabelle 8-36	Rohdaten Ansatz UBELL 7	130
Tabelle 8-37	Rohdaten Ansatz UBELL 2	130
Tabelle 8-38	Rohdaten Ansatz UBELL 5	131
Tabelle 8-30	Rohdaten Ansatz UBELL 4	131
	Rohdaten Ansatz UBELL 5	121
	Pohdaten Ansatz UBELL 0	122
	Pohdatan Ansatz UBELL 7	122
	Pohdaten Ansatz UBELL 0	122
	Rohlaten Ansatz D1 TCE Staril	102
Tabelle 0-44.	Rohudien Ansatz P1-10E-31em.	120
	Rohudien Ansatz P1-10E-1	104
Tabelle 0-40.	Rohudien Ansatz D1 TCE 2	124
	Rohudien Ansatz P1-10E-3.	100
	Ronualen Ansatz P1-CDCE-Stern.	100
Tabelle 0-49.	Ronualen Ansatz P1-CDUE-1	130
	Ronualen Ansatz P1-CDUE-2.	100
Tabelle 8-51:	Rondalen Ansalz P I-CDUE-3.	. 13/
	RUNUALEN ANSALZ MZ-TUE-JUENI.	130
Tabelle 8-53:	Rondalen Ansalz P2-10E-1	. 138
Tabelle 8-54:	Rondalen Ansalz P2-10E-2	139
	Ronualen Ansatz P2-10E-3.	1.109
Tabelle 8-50:	Rondalen Ansalz P2-CDUE-Sieni	. 140
	Ronualen Ansatz P2-CDCE-1	. 14 1
Tabelle 8-58:	Rondalen Ansalz P2-CDUE-2.	. 141
Tabelle 8-59:	Rondalen Ansalz P2-CDUE-3	. 142
	RUNUALEN ANSALZ MZ-I UE/CUUE-STERII.	. 142
	Rondalen Ansatz P2-1 LE/CULE-1	. 143
	RUNUALEN ANSALZ MZ-TUE/CUUE-Z	. 143
	Kongalen Ansatz P2-1 CE/CDUE-3.	. 144
Tabelle o-o4.	Chlorid-Freisetzung. "1" bedeutet einen signifikanter Unterschiede im Schadstonabbad und de Chlorid-Freisetzung. "1" bedeutet einen signifikanten Unterschied in der Konzentration, "C bedeutet keinen signifikanten Unterschied in der Konzentration. "n.t." bedeutet, dass die Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Sha Wilk-Test überprüft; die Signifikanz wurde mittels Ein-Weg-ANOVA und anschließendem	piro-
T-1-0.05	I ukey- i est überprüft.	. 144
Tabelle 8-65:	Kongalen Ansatz P3_High TCE 4	. 146
adelle 8-66:	Rondalen Ansatz P3_High ICE-1	. 146

Tabelle 8-67:	Rohdaten Ansatz P3_High TCE-2.	147
Tabelle 8-68:	Rohdaten Ansatz P3_High TCE-3.	147
Tabelle 8-69:	Rohdaten Ansatz P3_High TCE-4.	148
Tabelle 8-70:	Rohdaten Ansatz P3_High TCE-5.	148
Tabelle 8-71:	Rohdaten Ansatz P3_High TCE-6.	149
Tabelle 8-72:	Rondaten Ansatz P3_High TCE-7.	149
Tabelle 8-73:	Rondaten Ansatz P3_High TCE-8.	150
Tabelle 8-75	Romateri Ansalz F5_High TCE-9	150
	Chlorid-Freisetzung 1 ^e bedeutet einen signifikanten Unterschied in der Konzentration 0 ^e	4
	bedeutet keinen signifikanten Unterschied in der Konzentration in t " bedeutet dass die	
	Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Shap	iro-
	Wilk-Test überprüft: die Signifikanz wurde mittels Ein-Weg-ANOVA und anschließendem	
	Tukey-Test überprüft.	151
Tabelle 8-76:	Rohdaten Ansatz P3_High cDCE-Steril	152
Tabelle 8-77:	Rohdaten Ansatz P3_High cDCE-1	152
Tabelle 8-78:	Rohdaten Ansatz P3_High cDCE-2	153
Tabelle 8-79:	Rohdaten Ansatz P3_High cDCE-3	153
Tabelle 8-80:	Rohdaten Ansatz P3_High cDCE-4.	154
Tabelle 8-81:	Rohdaten Ansatz P3_High cDCE-5	154
Tabelle 8-82:	Rohdaten Ansatz P3_High cDCE-6.	155
Tabelle 8-83:	Rohdaten Ansatz P3_High cDCE-7.	155
Tabelle 8-84:	Rondaten Ansatz P3_High cDCE-8.	156
Tabelle 8-85:	Rondalen Ansalz P3_High cDUE-9.	120
Tabelle 0-00.	Chlorid Freigetzung 1 th bedeutet einen eignifikenten Unterschiede im Schladstonabbau und der	
	Chlorid-Freiselzung, "I bedeutet einen signinkanten Onterschied in der Konzentration, "U	
	Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Shan	iro-
	Wilk-Test überprüft die Signifikanz wurde mittels Fin-Weg-ANOVA und anschließendem	-010
	Tukev-Test überprüft	157
Tabelle 8-87:	Rohdaten der Säulenversuche zum Erhalt des Stoffwechsels unter geringer	
	Substratverfügbarkeit	158
Tabelle 8-88:	Primer für den Nachweis des aerob metabolischen TCE-Abbaus, auf Grundlage der	
	Metagenomanalyse, designed wurden. Die Tabelle enthält den vergebenen Primer-Namer	٦,
	die Sequenznummer der Metagenomanalyse (Anhang 8.3.3.1.1), die Basensequenz und d	die
	Fragmentlänge. Die Sequenzen sind in 5'-3'-Richtung.	165
Tabelle 8-89:	Physikalisch/chemische Parameter der Säule S 1	172
Tabelle 8-90:	Physikalisch/chemische Parameter der Säule S 2	173
Tabelle 8-91:	Physikalisch/chemische Parameter der Saule Skontinuierlich.	1/4
Tabelle 8-92:	Physikalisch/chemische Parameter der Saule 5 3	175
Tabelle 8-95.	Dhysikalisch/shomische Darameter der Säule S.4. Ab einer Versuchsdauer von 16 Weshe	1// n
	wurde Medium auf Höhe von 41 cm extrahiert und auf Höhe von 11 cm wieder zugeführt	170
Tabelle 8-95	Molekularbiologischen Parameter der Säule S.4. Ab einer Versuchsdauer von 16 Wochen	175
	wurde Medium auf Höhe von 41 cm extrahiert und auf Höhe von 11 cm wieder zugeführt.	181
Tabelle 8-96:	Physikalisch/chemische Parameter der Säule Skontrolle.	183
Tabelle 8-97:	Rohdaten der Parameter Sauerstoff, pH und Temperatur des Versuchsaufbaus Box 1	184
Tabelle 8-98:	Übersicht der Ergebnisse der molekularbiologischen Untersuchung der bei Versuchsende	
	entnommenen Bodenproben aus Box 1	186
Tabelle 8-99:	Rohdaten der Parameter Sauerstoff, pH und Temperatur des Versuchsaufbaus Box 2	189
Tabelle 8-100:	Rohdaten der Parameter TCE und Chlorid des Versuchsaufbaus Box 2.	190
Tabelle 8-101:	Ubersicht der Ergebnisse der molekularbiologischen Untersuchung der bei Versuchsende	
T I II 0 100	entnommenen Bodenproben aus Box 2.	191
Tabelle 8-102:	Rondaten der Parameter Sauerstoff, pH, Temperatur, TCE und Chlorid des Versuchsauto	aus
Taballa 8 103:	DUX 5	192
	Daten liegen unter der BG, weisen aber ein PCR-Signal auf und sind somit qualitativ posit	iv
		193
Tabelle 8-104:	Rohdaten der Parameter Sauerstoff, pH. Temperatur, TCE und Chlorid des Versuchsaufb	aus
	Box 4.	194
Tabelle 8-105:	Ergebnisse der Biomarker-Untersuchungen der Wasserproben von Box 4. Mit "*" verseher	ne
	Daten liegen unter der BG, weisen aber ein PCR-Signal auf und sind somit qualitativ posit	iv.
	· · · · · · · · · · · · · · · · · · ·	195
Tabelle 8-106:	Rohdaten der bioaugmentierten Säulen Bio 1 und Bio 2. Säule Bio 2 wurde zusätzlich zur	
	Bioaugmentation elektrochemisch stimuliert	196
Tabelle 8-107:	Rohdaten der abiotischen, elektrochemisch behandelten Säule. Die Versuchsdauer wurde	,
	der Lautzeit der biologischen Säulen angepasst.	199
Tabelle 8-108:	Absonatzung der Elektrolyseenizienz annand der gemessenen Ablaut-Werte der EC-	200
	รแทนแอนอกอากอากอากอากอากอากอากอากอากอากอากอากอา	200

Abbildungsverzeichnis

Abbildung 1-1: Abbildung 1-2: Abbildung 1-3:	Mögliche Freisetzungspfade von Grundwasserkontaminanten (Grandel und Dahmke 2008)4 Einordnung der einzelnen NA-Prozesse (nach Grandel und Dahmke (2008))
Abbildung 1-4:	Mikrobiologischer Abbau von Chlorethenen; angelehnt an Schmidt (2009). Die Größe bzw. Breite der Pfeile spiegelt die relative Abbaugeschwindigkeiten der einzelnen
Abbildung 1-5	Schematischer Ablauf der mikrobiellen reduktiven Dechlorierung im Grundwasserleiter 9
Abbildung 1-6:	Aerob produktiver Abbauweg von Ethen und Vinvlchlorid (Mattes et al. 2010)
Abbildung 1-7:	Mögliche Transformationspfade im aerob metabolischen cDCE-Abbau durch <i>Polaromonas</i> Stamm JS666 (Jennings et al. 2009)
Abbildung 1-8:	Auf Grundlage einer metagenomischen Untersuchung von Laborkulturen und Standortproben mögliche Transformationspfade im aerob metabolischen TCE-Abbau
Abbildung 3-1:	Prinzip-Skizze des Ablaufs eines PCR-Zyklus; 1. Denaturierung, 2. Primer Annealing, 3. Elongation (Ho 2018)
Abbildung 3-2:	Beprobung des Piezometers Pz17 am Standort NAM (links); Stahltonnen mit Tedlarbeuteln zur anaeroben Lagerung des Grundwassers bis zum Start der Experimente (rechts),
Abbildung 3-3:	Schematischer Ablauf der Blau-Weis-Selektion: nach Mülhardt (2013).
Abbildung 3-4:	Betrieb der Säulen mit Injektion einer Flüssigkultur (links); Innenansicht einer leeren Säule (rechts).
Abbildung 3-5:	Schematische Darstellung des Versuchsaufbaus
Abbildung 3-6:	Schematischer Aufbau der Boxen (links) und tatsächlicher Aufbau der Boxen mit Holzrahmen
Abbildung 3-7:	zur Verstärkung der Stabilität (Abbildungen bereitgestellt durch VEGAS)
	durch VEGAS)
Abbildung 3-8:	Drautsicht der Boxen mit den einzelnen Ports sowie dem Inokulationsbereich. Die integrierten Probenahmestellen wurden auf einer Höhe von 25 cm (Z-Achse) realisiert. Der schraffierte Bereich markiert die mit Kies gefüllten Zu- und Ablaufbereiche. Die gestrichelte Linie markiert die Trennung des sandigen Innenkörpers von den mit Kies gefüllten Zu- und Ablauf-
Abbildung 3-9:	Einbau der Filterrohre (weiße Rohre) und Probenahmeports (blaue, gelbe und grüne
Abbildung 2,40	Schlauche) (links); Anschließen der Elektroden nach Befullen der Boxen (rechts)
Abbildung 5-10.	Elektroden in der DC-unterstützten Box. Das Innere der Boxen ist mit Dorsilit 8 gefüllt. Der schraffierte Zu- und Ablaufbereich ist, für eine höhere hydraulische Durchlässigkeit, mit grobem Kies gefüllt. Die gestrichelte Linie deutet die Separation der Sandfüllung und des Kieses durch ein Geovlies an Φ = Dummy Elektroden \odot = Kathoden Φ = Anoden 42
Abbildung 3-11:	Aufbau der bioaugmentierten Säulen zur Untersuchung des elektrochemisch unterstützten TCE-Abbaus
Abbildung 4-1:	Verlauf der Chlorethen-Konzentrationen sowie Chlorid-Konzentrationen der Versuchsansätze NAM1-NAM9 (Tabelle 3-4). Der Pfeil in Ansatz NAM 5 markiert eine Nachdosierung mit TCE.
Abbildung 4-2:	Logarithmische Darstellung der Chlorethen-Konzentrationen in den Ansätzen NAM 4 und NAM 5. Der Pfeil in NAM 5 markiert eine Nachdosierung mit TCE
Abbildung 4-3:	Verlauf der Chlorethen-Konzentrationen sowie Chlorid-Konzentrationen der Versuchsansätze UBELL 1-UBELL 9 (Tabelle 3-11). Die Pfeile in den einzelnen Abbildungen markieren eine Nachdesierung von TCE
Abbildung 4-4:	Verlauf der TCE-Konzentration in Zulauf und Ablauf der Kleinsäulen zur Evaluierung des TCE-Abbaus unter geringer Substratverfügbarkeit (Tabelle 3-15) 53
Abbildung 4-5:	Digitales Gelbild für die PCR-Ergebnisse der Primer 38-43. Die zu erwartende Fragmentgröße ist unter der Primer-Bezeichnung notiert. Die markierten Primer wurden für
Abbildung 4-6:	die Standardherstellung ausgewahlt
Abbildung 4-7:	Verlauf der Genkopie-Anzahl der verschiedenen Primer über die Versuchsdauer. Werte die unter der jeweiligen Bestimmungsgrenze liegen sind schraftiert dargestellt 57
Abbildung 4-8:	Verlauf der TCE-, cDCE- und Chlorid-Konzentration in den Ein-Stoff-Ansätzen (Tabelle 3-9, Phase 1). Grafik TCE 1-3 und cDCE 1-3 zeigen den Mittelwert und Abweichung der jeweiligen Triplikat-Ansätze zum jeweiligen Probenahme-Zeitpunkt. Die Achsen wurden
	entsprechend der Stöchiometrie der CE-Mineralisation skaliert61
Abbildung 4-9:	Entwicklung der Biomarker EuB, AceA und moC im Ein-Stoff-System
Abbildung 4-10:	Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 2) sowie dem molaren Verhältnis von cDCE zu
Abbildung 4-11.	Fot an den einzemen Fobenanme-zeitpunkten04 Fntwicklung der Riomarker Fuß ΔαεΔ und moΩ in den Versuchsansätzen mit äguimolarem
	Schadstoffverhältnis

Abbildung 4-12:	Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit nicht äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 3, High TCE) sowie dem molaren
Abbildung 4-13:	Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit nicht äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 3, High cDCE) sowie dem molaren Verhältnis von cDCE zu TCE an den einzelnen Probenahme-Zeitnunkten
Abbildung 4-14:	Entwicklung der Biomarker EuB, AceA und moC in ausgewählten Versuchsansätzen mit nicht-stöchiometrischem Schadstoffverhältnis
Abbildung 4-15:	Verlauf der TCE-Konzentration über die Säulenhöhe und die Auswirkung des TCE-Abbaus auf die Parameter Chlorid-Konzentration, Sauerstoff-Konzentration und pH-Wert nach 10- wöchigem Säulenbetrieb in S 3. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. 70
Abbildung 4-16:	Entwicklung der TCE-Konzentration sowie der Chlorid-Konzentration über die Höhe der Säule S 1. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der Inokulation mit der Elüssickultur 70-2-1
Abbildung 4-17:	Entwicklung der TCE-Konzentration sowie der Chlosigkultur 70 2 frammen über die Höhe der Säule S 2. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der lackuletien mit der Flösigkultur 70 2 1
Abbildung 4-18:	Entwicklung des TCE-Abbaus in S _{Kontinuierlich} . Die Injektion der Flüssigkultur TKS3 (Anhang 8.2.5.3 Tabelle 8-24) dauerte 18 Tage mit einer Rate von ~90 mL/Tag. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der Inokulation.
Abbildung 4-19:	Verlauf der TCE-Konzentration und Chlorid-Konzentration über die Säulenhöhe in der mit bewachsenem Trägermaterial inokulierten Säule S 3. Die Abbildung zeigt die Parameter nach einer, zwei, sechs, zehn, 16 und 22 Wochen Versuchsdauer. Von Woche 16 bis Woche 19 stand kein Sauerstoff zur Verfügung. Der Bereich, der innerhalb der Säule liegt, ist grau hinterleot. 74
Abbildung 4-20:	Verlauf der TCE-Konzentration und Chlorid-Konzentration über die Säulenhöhe in der mit bewachsenem Trägermaterial inokulierten Säule S 4. Die Abbildung zeigt die Parameter nach einer, drei, sechs, zehn, 16 und 22 Wochen Versuchsdauer. Von Woche 16 bis Woche 19 stand kein Sauerstoff zur Verfügung. Ab Woche 20 wurde mit einem Volumenstrom von 0,5 L/d von 41 cm auf 11 cm zirkuliert. Der Bereich, der innerhalb der Säule liegt, ist grau hinterleot. 75
Abbildung 4-21:	Ergebnisse der Biomarker der, bei Versuchsende entnommenen Bodenproben der Säule Skontinuerlich. Alle Proben wurden auf Höhe der PN-Ports entnommen 76
Abbildung 4-22:	Ergebnisse der Biomarker-Untersuchung der, bei Versuchsende entnommenen, Bodenproben der Säulen S 3 (oben) und S 4 (unten). Alle Proben wurden auf Höhe der PN- Ports entnommen
Abbildung 4-23:	Verteilung der Konzentrationen von TCE, Chlorid und Sauerstoff, sowie pH-Wert über Box 2 nach 165 Tagen
Abbildung 4-24:	TCE- und Chlorid-Konzentrationen in den Ports des Versuchsaufbaus Box 2. Der schraffierte Bereich markiert die Zeitspanne, in der der pH-Wert des Zulaufs über 8,0 lag und somit inhibierend auf den Schadstoffabbau wirkt
Abbildung 4-25:	Konzentrationen der einzelnen Biomarker-Befunde an den beprobten Stellen des Aufbaus Box 2
Abbildung 4-26:	Verläufe der TCE-Konzentration und Chlorid-Konzentration in Zulauf und den einzelnen Ablaufkammern in Box 3 und Box 4
Abbildung 4-27:	Gemessene Konzentrationsbereiche des gelösten Sauerstoffs in den jeweiligen Zuläufen sowie den einzelnen Abläufen der Versuchsaufbauten
Abbildung 4-28: Abbildung 4-29:	Qualitative Zusammenfassung der Ergebnisse der Biomarker-Untersuchungen
Abbildung 4-30:	Zu- und Ablaufkonzentrationen des TCE in den bioaugmentierten Säulen (Bio 1 und Bio 2) sowie der prozentuale Abbau des dosierten TCEs. Die Konzentration des gelösten Sauerstoffs ist in der gezeigten Versuchsphase unter 1,0 mg/L. Der Standardfehler der Schadstoffanalvtik beträgt σ _n =10 %
Abbildung 4-31:	Verhältnis der TCE-Abbaurate zur Rate des Sauerstoff-Verbrauchs. Die elektrolytisch produzierte Sauerstoffmenge ist auf Grundlage des Faraday'schen Gesetzes und der Appabme eines 70 % effizienten Elektrolyse-Prozesses berechnet
Abbildung 8-1:	Vergleich der abbaubaren Mengen an TCE unter der Verwendung verschiedener Auxiliarsubstrate, bei einer verfügbaren Sauerstoffmenge von 10 mg
Abbildung 8-2:	Vergleich der ECD-Detektorsignale des Ansatzes P1_TCE-3 (nur TCE), P2_TCE-3 (co- metabolischer cDCE-Abbau) und P3_High TCE-3 (co-metabolischer cDCE-Abbau). Während des co-metabolischen TCE-Abbaus wird bei ~17 min ein neues Signal auf dem ECD
Abbildung 8-3:	Digitales Gelbild der PCR-Ergebnisse des Primertests an TCE-abbauenden Kulturen. Von oben nach unten sind für jeden Primer die NTC, die Anreicherungskultur in Flüssigmedium

	(70231), die Proben der Säule 3 (S3) und 2 (S2) getestet worden. Die Primer sind entsprechend ihrer Nummerierung sortiert und in Tabelle 8-88 zu finden. Oben ist die Fragmentgröße in Basenpaaren (bp) markiert. Gezeigt sind die Ergebnisse der Primer 44-53	3. 36
Abbildung 8-4:	Digitales Gelbild der Gradienten-PCR mit dem Primerpaar 47. Von links nach rechts sind sieben Standards mit einer Konzentration von 10 ¹ -10 ⁷ Genkopien/Reaktion, die NTC, drei Proben mit erwartetem aerobem TCE-Abbau (S3, PP 1b, PP 2) und eine Probe ohne erwarteten aeroben TCE-Abbau (NP 1) aufgetragen. Die gezeigten Temperaturen von links nach rechts liegen bei 68 0 °C 67 3 °C 65 0 °C und 63 2 °C	37
Abbildung 8-5:	Digitales Gelbild der Gradienten-PCR mit dem Primerpaar 47. Von links nach rechts sind sieben Standards mit einer Konzentration von 10 ¹ -10 ⁷ Genkopien/Reaktion, die NTC, drei Proben mit erwartetem aerobem TCE-Abbau (S3, PP 1b, PP 2) und eine Probe ohne erwarteten aeroben TCE-Abbau (NP 1) aufgetragen. Die gezeigten Temperaturen von links nach rechts oben liegen bei 60,1 °C, 57,6 °C, 55,9 °C und 55,0 °C.	58
Abbildung 8-6:	Digitales Gelbild von <i>moA</i> für VC- und cDCE-abbauenden Kulturen, Umweltproben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur TKS3. Die erwartete Fragmentgröße liegt bei 74 bp	<u>59</u>
Abbildung 8-7:	Digitales Gelbild von <i>moB</i> und <i>moC</i> für VC- und cDCE-abbauenden Kulturen, Umweltprober mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur TKS3. Die Fragmentgröße ist links und rechts markiert	ו 70
Abbildung 8-8:	Digitales Gelbild von <i>hdlh</i> für VC- und cDCE-abbauenden Kulturen, Proben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur (TKS3). Die Fragmentgröße ist links markiert und die erwartete Fragmentgröße beträgt 182 bp	71
Abbildung 8-9:	Digitales Gelbild der PCR des Primers <i>Rho</i> für VC- und cDCE-abbauenden Kulturen, Prober mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau. Die Fragmentgröße ist links markie und die erwartete Fragmentgröße beträgt 180 bp	ו rt 1
Abbildung 8-10:	TCE- und Chlorid-Konzentrationen in den Ports des Versuchsaufbaus Box 1. Der schraffierte Bereich markiert die Zeitspanne, in der der pH-Wert des Zulaufs über 8,0 lag und somit inhibierend auf den Schadstoffabbau wirkt. Der ausgegraute Bereich markiert die Versuchsphase mit Komplikationen in der TCE-Dosierung und dadurch nur geringfügiger Substratverfügbarkeit, welche in einer nur geringfügigen Zunahme von Chlorid resultiert18	€ 87
Abbildung 8-11:	Konzentrationen der einzelnen Biomarker-Befunde an den beprobten Stellen des Aufbaus Box 1	38
Abbildung 8-12:	Verlauf der Sauerstoffkonzentration sowie TCE-Konzentration in Zulauf und den Abläufen Bi 1 und Bio 2 während der Startphase zur Erhöhung der TCE-Konzentration	0)0
Abbildung 8-13:	Betrieb der abiotischen, elektrochemisch unterstützen Säule. Die Versuchslaufzeit wurde de Betriebsdauer der biotischen Säulen angepasst	r)1
Abbildung 8-14:	Entwicklung des pH-Wertes durch die Passage der einzelnen Säulen. Die Versuchsdauer de abiotischen Säule wurde an die Laufzeit der biotischen Säulen angepasst	ər)1
Abbildung 8-15:	Verhältnis der abgebauten Menge an TCE mit der verbrauchten Menge an Sauerstoff. DO(Elektrolyse) ist auf Grundlage des Faraday'schen Gesetzes und der Annahme eines 100 % effizienten Elektrolyse-Prozesses berechnet)2

ABKÜRZUNGSVERZEICHNIS

Prokariotische 16S Untereinheit der ribosomalen RNA
1,1-Dichlorethen
Alkenmonooxygenase
Bestimmungsgrenze
Bundesamt für Arbeitsschutz und Arbeitsmedizin
Chloroacetaldehyd-Dehydrogenase
cis-1,2-Dichlorethen
Cyclohexanon-Monooxygenase
Carbonmonoxid-Dehydrogenase
engl. Direct Current; Gleichstrom
Dichlorethan
Dichlorethene
Digitales Multimeter
Dense non aqueous phase liquid
Dissolved Oxygen
electron capture detector (Elektronen-Einfang-Detektor)
Elektrokinetik
Enhanced Natural Attenuation
Flowcytometry, Durchflusszytometrie
Flammen-Ionisations-Detektor
Gas-Chromatograph
Glutathion-S-Transferase
Halogensäure-Dehalogenase
α/β-Hydrolase
Leichtflüchtige chlorierte Kohlenwasserstoffe
Landesanstalt für Umwelt Baden-Württemberg
Mixed-Metal-Oxide; Misch-Metall-Oxid
Monitored Natural Attenuation
Mikroorganismen
Most Probable Number
Messenger Ribonukleinsäure
Natural Attenuation
Avogadro-Konstante; 6,02e+23 mol ⁻¹
Nachweisgrenze
Pump and Treat
Perchlorethen, Tetrachlorethen
Polymerase Chain Reaction
Polyethen
Polyvinylchlorid
quantitative PCR
engl. rounds per minute; Umdrehungen pro Minute
Real Time
Standard Wasserstoff Elektrode
SybrGreen I

T _A	Annealing Temperatur
TCA	1,1,2 - Trichlorethan
TCE	1,1,2 - Trichlorethen
tDCE	trans-1,2-Dichlorethen
te	Elongationsdauer
TEA	Terminaler Elektronenakzeptor
TW	Trinkwasser
UBA	Umwelbundesamt
uf	engl. utilitazion factor; Umsatzfaktor
VC	Vinylchlorid
VEGAS	Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart
VE-Wasser	Vollentsalztes bzw. deionisiertes Wasser

1 EINLEITUNG

In Europa sind Schätzungen zufolge etwa 2,8 Millionen Altlasten und altlastverdächtige Flächen vorhanden (Payá Pérez und Rodríguez Eugenio 2018), davon befinden sich nach Statistik des Umweltbundesamtes (UBA) ca. 370.000 (Umweltbundesamt 2020) in Deutschland. Verursacht werden diese durch industrielle Flächennutzung in einer breiten Anzahl an Gewerben. Die Gruppe der leicht flüchtigen chlorierten Kohlenwasserstoffe (LCKW) stellt dabei, z.B. in Baden-Württemberg, eine der am häufigsten nachgewiesenen Schadstoffgruppen dar (LUBW Landesanstalt für Umwelt Baden-Württemberg 2023). Diese finden aufgrund ihrer guten Eigenschaften unter anderem als Lösemittel in der Metallindustrie sowie der Trockenreinigung ihren Einsatz (Kielhorn et al. 2000) und sind weltweit für Grundwasserschäden verantwortlich. Aufgrund ihres humantoxikologischen und kanzerogenen Potentials sowie der aquatischen Toxizität stellen Verunreinigungen mit Chlorethenen ein ernst zu nehmendes Problem für die menschliche Gesundheit sowie die Umwelt dar (Mattes et al. 2010).

Klassische Verfahren zur Behandlung von Altlasten, wie Bodenaushübe oder Pump and Treat Systeme, sind meist sehr kostspielig und invasiv, und somit mit großem Aufwand verbunden. In den letzten 20 Jahren hat sich der Handlungsansatz "Natural Attenuation" (NA) als Alternative zu diesen klassischen Sanierungsverfahren etabliert. Bei einer in-situ-Behandlung durch einen NA-Ansatz verringert sich der aktive Behandlungsaufwand, da der Schadstoffabbau durch, im Grundwasser vorhandene, Mikroorganismen (MO) durchgeführt und im Rahmen eines "Monitored Natural Attenuation" (MNA) durch regelmäßiges Grundwassermonitoring geprüft wird. Im Rahmen von "Enhanced Natural Attenuation"-Verfahren (ENA) werden die Mikroorganismen, zur Stimulation der Abbauleistung, mit terminalen Elektronenakzeptoren (TEA) und Nährstoffen versorgt. Dies resultiert in einem Verkürzen der Schadstofffahne und dem Verringern des Behandlungszeitraums.

Neben der Einbringung von TEA und Nährstoffen, kann die Stimulation des mikrobiologischen Schadstoffabbaus auch durch ein elektrisches Feld im Rahmen von kombinierten Bio/Elektroverfahren durchgeführt werden. Hierbei kann die Durchmischung von Mikroorganismen, Schadstoffen und Nährstoffen im Porenwasser durch elektrokinetische Effekte verbessert werden (Lohner et al. 2008a, 2008b).

Über Elektrolyse kann sowohl Wasserstoff als Elektronendonor der reduktiven Dechlorierung, als auch Sauerstoff als Elektronenakzeptor des aeroben Schadstoffabbaus, für eine Biostimulation im durchflossenen System erzeugt werden.

Kombinierte Bio/Elektroverfahren können somit eine Alternative zu aufwändigeren ENA-Verfahren, welche eine Sauerstoffanreicherung im Grundwasser als Ziel besitzen, wie Grundwasserzirkulation oder Airsparging, darstellen.

In Deutschland wird ca. 70 % des Trinkwassers aus Grundwasser gewonnen. Um eine sichere Trinkwasserversorgung gewährleisten zu können besteht der Bedarf kontaminierte Grundwässer zu sanieren und somit die Grundwasserqualität zu sichern. Neben der Sicherung der Trinkwasserversorgung ist die Behandlung kontaminierter Standorte für das Flächenrecycling von Nöten. Die Verpflichtung zur Sanierung belasteter Flächen ist hierbei durch die Bundes-Bodenschutz- und Altlastenverordnung vom 9. Juli 2021 (BGBI. I S. 2598, 2716) geregelt und folgt dem "polluter pays"-Prinzip (Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz).

1.1 Stoffeigenschaften der Chlorethene

Zu den LCKW zählen die Chlormethane, Chlorethane, Chlorethene und höher chlorierte Aliphate. Der Fokus dieser Arbeit liegt auf dem mikrobiologischen Abbau der Chlorethene. Tabelle 1-1 gibt eine Übersicht der physikalisch/chemischen Eigenschaften der Chlorethene. Die höher chlorierten Ethene können durch eine direkte Chlorierung von 1,2-Dichlorethan (DCA) mit Chlor sowie eine Oxychlorierung von DCA mit Chlor bzw. Chlorwasserstoff und Sauerstoff produziert werden. (Agency for Toxic Substances and Disease Registry (ATSDR) 2019)

Sowohl Tetrachlorethen (Perchlorethen, PCE) als auch Trichlorethen (TCE) finden ihren Einsatz hauptsächlich als Reinigungs- bzw. Lösemittel. Die beiden Stoffe bieten dabei durch ihre Stabilität, Dichte, Polarität und Flüchtigkeit Vorteile in der Anwendung als Lösemittel (Koenig et al. 2015). Zusätzlich bilden PCE und TCE keine explosiven Gemische mit Luft (Kirsti M. Ritalahti et al. 2005) wodurch die Anwendung der Stoffe recht sicher ist.

Neben den, für die Industrie vorteilhaften Stoffeigenschaften, besitzen die Chlorethene jedoch für die Umwelt bedenkliche Eigenschaften. Bei einer Freisetzung zeigt PCE toxische Effekte in der aquatischen Umwelt und sowohl PCE als auch TCE sind als gesundheitsschädlich einzustufen (Mattes et al. 2010). Chlorethene verursachen, verglichen mit anderen Grundwasserkontaminanten, wie monoaromatische und polyzyklische aromatische Kohlenwasserstoffe, eine deutliche längere Schadstofffahne im Grundwasserleiter (Stupp et al. 2007).

Bei einer reduktiven Dechlorierung von PCE- und TCE-Kontaminationen, welche anthropogenen Ursprungs sind, können als Intermediate im mikrobiellen Schadstoffabbau, die ebenfalls bedenklichen Dichlorethene 1,2-cis-Dichlorethen (cDCE), 1,2-trans-Dichlorethen (tDCE), 1,1-Dichlorethen (1,1-DCE) sowie das kanzerogene Vinylchlorid (VC) entstehen. Da VC unter Standardbedingungen gasförmig ist, werden VC-Kontaminationen im Grundwasser primär durch den unvollständigen mikrobiellen Abbau der höher chlorierten Ethene verursacht (Vogel et al. 1985; Bradley 2003; Mattes et al. 2010), jedoch können auch industrielle Prozesse (z.B. PVC-Produktion) Ursprung einer VC-Kontamination sein (Hartmans et al. 1985).

Bei einer Freisetzung von PCE und TCE sinken diese aufgrund ihrer höheren Dichte gegenüber Wasser auf den Grundwasserstauer ab. In diesem Prozess wird die gesamte Höhe des Grundwasserleiters mit Schadstoffen imprägniert. Auf dem Grundwasserstauer können die Schadstoffe sich als nicht-flüssige Phase (engl. dense non aqueous phase liquid, DNAPL) in Schadstoffpools ansammeln. Die Schadstoffe können sich aus diesen DNAPL-Pools sowie der residualen Phase die sich über die ungesättigte sowie gesättigte Bodenzone erstreckt in den Grundwasserstrom lösen. Eine Zusammenfassung der einzelnen Freisetzungspfade ist in Abbildung 1-1 dargestellt.

Kommt es zu einer Freisetzung von Chlorethenen in die Umwelt besteht daher aufgrund der physikalisch/chemischen und toxischen Eigenschaften sowie des hohen Ausbreitungspotentials der Schadstoffe Handlungsbedarf zur Entfernung dieser.

Substanz	PCE	TCE	1,1-DCE	cDCE	tDCE	C
Summenformel	C ₂ Cl ₄	C ₂ HCl ₃	C ₂ H ₂ Cl ₂	C ₂ H ₂ Cl ₂	C ₂ H ₂ Cl ₂	C ₂ H ₃ Cl
Strukturformel	CI, CI	CI_C_C	CI, CIIC, H	CI CIIC CIIC	H C=C C	E L L L L L L
	a	а́ н	сі ́н	н	а ́н	т Т
CAS-Nummer	127-18-4	79-01-6	75-35-4	156-60-5	156-59-2	75-01-4
Molmasse (g/mol)	165,83	131,39	96,94	96,94	96,94	62,5
Dichte bei 25°C	1,623	1,463	1,213 (20°C)	1,257	1,284	0,911
Wasserlöslichkeit bei 20°C (g/L) ¹⁾	0,16	1,1	2,5	0,6-0,8	0,6-0,8	1,1
Aggregatzustand bei 25°C ¹⁾	flüssig	flüssig	flüssig	flüssig	flüssig	gasförmig
K_H (dimensionslos) bei 24°C ²⁾	0,676	0,411		·	0,162	1,049
log Kow ¹⁾	3,4	2,42	2,13	2,09	1,86	1,52
log Koc ³⁾	2,43	1,26		1,46	1,38	ı
Wassergefährdungsklasse ¹⁾	3	3	З	2	2	0
US EPA priority pollutant ⁴⁾	Ja	ja	ja	ja	nein	ja
Gefahrensymbole ¹⁾						
Risikohinweis "Kann Krebs erzeugen" ¹⁾	Nein	Ja	Nein	Nein	Nein	Ja
Prüfwerte zur Beurteilung des Wirkungspfades Boden- Grundwasser ⁵⁾		20 µg/L als Sum	me der halogenier	ten C1 und C2 Kol	hlenwasserstoffe	
Grenzwert Trinkwasserverordnung (µg/L)	10 als Summe be	eider Stoffe		ı		0,5
1) GESTIS 2023 2) Chen et al. 20 5) Bundesministerium für Umwelt, Naturschu	2 z, nukleare Sichel	3) Wiedemei rheit und Verbraud	er 1999 cherschutz	4) US EPA 2014		

 Tabelle 1-1:
 Übersicht der Stoffeigenschaften der Chlorethene.

Abbildung 1-1: Mögliche Freisetzungspfade von Grundwasserkontaminanten (Grandel und Dahmke 2008).

1.2 Sanierung von Grundwasserkontaminationen

1.2.1 Konventionelle Verfahren

Konventionelle Behandlungsverfahren für Grundwasserkontaminationen sind meist sehr aufwändig (z.B. Pump & Treat-Ansätze (P&T)) oder sehr invasiv (Funnel & Gate Systeme, Erdaushub) und dadurch kostspielig.

Im Rahmen von P&T-Ansätzen wird das kontaminierte Grundwasser aus dem Aquifer extrahiert, durch z.B. Aktivkohle-Filtersysteme behandelt, und nach erfolgter Aufreinigung in das Abwassersystem eingeleitet. P&T-Systeme können zur hydraulischen Sicherung verwendet werden, was in einer Verkürzung der Schadstofffahne resultiert. Neben den Kosten für den Betrieb der Pumpen sowie die Wartung der P&T-Anlage und die Betriebsmittel, fallen durch die Entsorgung des geförderten Wassers sowie die Entsorgung und Nachbehandlung der Betriebsmittel zusätzliche Kosten an.

Weitaus aufwändiger, jedoch kostengünstiger eingeschätzt (Teutsch et al. 1996) als der P&T-Ansatz, ist das Funnel & Gate Verfahren. Bei einem Funnel & Gate Verfahren wird der Grundwasserstrom durch einen Trichter (engl. Funnel) auf eine reaktive Zone (Gate) forciert. Neben der kostspieligen Einrichtung des Funnels, müssen Betriebsmittel (zB. nanoskaliges nullwertiges Eisen (engl. nanoscale zerovalent iron (nZVI) oder granulare Aktivkohle) im Gate zur Behandlung der Schadstoffe eingesetzt werden. Diese können jedoch bereits bei der Errichtung des Gates für eine längere Betriebsdauer ausgelegt werden. Je näher das Funnel & Gate System sich dabei an ein passives System angleicht, desto größer wird die Kostenersparnis über die Betriebsdauer.

Eine kosteneffektivere Alternative zu den beschriebenen Verfahren können natürlich ablaufende Prozesse darstellen (Perelo 2010).

1.2.2 Natural Attenuation

Natural Attenuation (Natürliche Abschwächung, NA) beschreibt die Summe der natürlich ablaufende Prozesse die zu einer Minderung der Schadstoffkonzentration oder

Schadstofffracht im Grundwasser beitragen (US EPA 1999). Die Prozesse können dabei in destruktive und nicht destruktive Prozesse, sowie frachtmindernde und konzentrationsmindernde Prozesse unterteilt werden (Grandel und Dahmke 2008). Destruktive Prozesse führen zu einem Abbau bzw. einer Transformation der Schadstoffe und sind daher immer frachtmindernd. Zu diesen Prozessen zählen chemische Transformationen und der mikrobiologische Schadstoffabbau. Zu den nicht destruktiven Prozessen zählen Volatilisierung, Adsorption, Diffusion, Dispersion und Advektion. Sowohl durch Volatilisierung als auch durch Adsorption kommt es zu einer Minderung der Fracht. Durch Diffusion, Dispersion Advektion wird Minderung und zwar eine der vorliegenden Schadstoffkonzentrationen erreicht, eine Minderung der Schadstofffracht wird durch sie jedoch nicht erreicht. Die Einordung der einzelnen NA-Prozesse ist in Abbildung 1-2 dargestellt, ein schematischer Ablauf der einzelnen Prozesse im Grundwasserleiter ist in Abbildung 1-3 dargestellt.

Abbildung 1-2: Einordnung der einzelnen NA-Prozesse (nach Grandel und Dahmke (2008)).

Bei NA-Ansätzen zur Sanierung von Grundwasserkontaminationen wird das Abbaupotential der im Grundwasserleiter autochthonen Mikrobiota verwendet, um vorhandene Schadstoffe zu mineralisieren. Der Schadstoffabbau kann hierbei sowohl anaerob als auch aerob erfolgen. Obwohl der NA-Ansatz an vielen Standorten potentiell angewendet werden kann, wird er, aufgrund des langsamen Prozess-Ablaufs, selten als alleinige Maßnahme eingesetzt (Mulligan 2001).

Konnte das grundlegende NA-Potential eines Standortes festgestellt werden, kann durch die fehlender TEA, Nährstoffe und Auxiliarsubstrate der mikrobiologische Zugabe Schadstoffabbau stimuliert werden. Die Zugabe höherwertiger TEAs, wie z.B. Sauerstoff, ermöglicht den Mikroorganismen (MO) einen höheren Energiegewinn beim Schadstoffabbau, welcher sich meist auch in höheren Abbauraten wiederspiegelt (Heitkamp 1997; van Cauwenberghe und Roote 1998). Eine solche Stimulation des natürlichen Abbaus wird als "Enhanced Natural Attenuation" (ENA) bezeichnet. Die ENA-Maßnahmen werden dabei durch Langzeit-Monitoring ergänzt, um negative Folgen für Mensch und Umwelt auszuschließen (Mulligan und Yong 2004).

1.2.3 Bioaugmentation

Sollte die autochthone Mikrobiota keinen ausreichenden NA/ENA-Prozess ermöglichen, besteht die Möglichkeit standortfremde, zum Schadstoffabbau befähigte, MO, am Standort einzubringen. Dieses Verfahren wird als Bioaugmentation bezeichnet (Lyon und Vogel 2013) und wird meist in Kombination mit einer Biostimulation durchgeführt.

Der aerob produktive TCE-Abbau konnte, nach erstmaligem Nachweis an einem Standort in Süddeutschland (SF-Standort (Schmidt et al. 2014)) bisher nur an wenigen Standorten nachgewiesen werden (Willmann et al. 2023). Ein Bioaugmentationsansatz der die, zum aerob-metabolischen TCE-Abbau befähigte, Mikrobiota des SF-Standortes einsetzt, kann daher für viele weitere Standorte mit ähnlichen Bedingungen, jedoch ohne intrinsisches Abbaupotential, ein vielversprechendes Konzept in der Sanierung Chlorethen-kontaminierter Standorte darstellen. Das Bioaugmentationspotential einer, aus Grundwasser des SF-Standortes gewonnenen, Laborkultur wurde in Laborversuchen unter feldrelevanten Bedingungen demonstriert (Gaza et al. 2019).

Die Bioaugmentation kann dabei über verschiedene Ansätze erfolgen:

- Animpfung mit Flüssigkultur
- Animpfung mit Grundwasser des aerob produktiv TCE-abbauenden Standortes
- Animpfung durch Einbringen eines mit Biofilm bewachsenen Trägermaterials

1.3 Biologischer Chlorethenabbau

Die Chlorethene können sowohl anaerob als auch aerob durch verschiedene Mikroorganismen abgebaut werden. Der Abbau kann dabei weitergehend in metabolische und co-metabolische Prozesse kategorisiert werden. Die höher chlorierten Schadstoffe PCE und TCE zeigen unter anaeroben Bedingungen einen besseren Abbau. Mit abnehmender Anzahl der Chlor-Substituenten nimmt die Abbaugeschwindigkeit unter anaeroben Bedingungen ab und unter aeroben Bedingungen zu (Grandel und Dahmke 2008). Eine Übersicht der möglichen Abbauwege ist in Abbildung 1-4 dargestellt.

Abbildung 1-4: Mikrobiologischer Abbau von Chlorethenen; angelehnt an Schmidt (2009). Die Größe bzw. Breite der Pfeile spiegelt die relative Abbaugeschwindigkeiten der einzelnen Stoffwechselprozesse wider.

Eine Zusammenfassung der relativen Effektivität der verschiedenen Stoffwechselwege in Abhängigkeit der vorhandenen TEA ist in Tabelle 1-2 gegeben.

Tabelle 1-2:Relative Effektivität des biologischen Abbaus der Chlorethene über die Abbaupfadereduktive Dechlorierung und mikrobielle Oxidation in Abhängigkeit des vorherrschenden terminalenElektronenakzeptor-Prozesses. Verändert, in Anlehnung an Grandel und Dahmke (2008).

			Vorherrs	chender T	EA-Prozes	S
LCKW	Abbaumechanismus	Aerobe	Mn(IV)-	Fe(III)-	Sulfat-	Methano-
		Atmung	i	Reduktion		genese
PCE	red. Dechlorierung	-	++	++	+++	+++
	mikrobielle Oxidation	+1)	-	-	-	-
TCE	red. Dechlorierung	-	+	++	++	+++
	mikrobielle Oxidation	++	-	-	-	-
cDCE	red. Dechlorierung	*	*	*	+	++
	mikrobielle Oxidation	+++	*	*	*	*
VC	red. Dechlorierung	*	*	*	+	+
	Mikrobielle Oxidation	+++	*	*	*	*
-	kein Effekt	++	- gut			
*	schwach bis kein Effekt	++	-+ sehr gi	ut		
+	mittelmäßig	1)	nur aei	rob co-me	tabolisch	

In metabolischen Prozessen werden die Chlorethene sowohl als Energiequelle als auch als Wachstumssubstrat verwendet. In co-metabolischen Prozessen muss den MO ein Auxiliarsubstrat zur Verfügung gestellt werden. Dieses dient als Energiequelle und Wachstumssubstrat. Der Abbau der Chlorethene verläuft hierbei zufällig, unspezifisch und ohne Energiegewinn (Horvath 1972) für die MO.

1.3.1 Anaerob reduktive Dechlorierung

Der anaerob reduktive Stoffwechsel (auch reduktive Dechlorierung, Halorespiration) findet im stark reduzierten Milieu statt. Die Schadstoffe werden als Elektronenakzeptoren in den Stoffwechsel eingebunden. Wasserstoff und Acetat können dabei direkt als Elektronen-Donoren eingesetzt werden, während organische Kohlenstoffverbindungen (z.B. Laktat und BTEX-Verbindungen) als Auxiliarsubstrat dienen können (Grandel und Dahmke 2008; Tiehm und Schmidt 2011). Der Wasserstoff wird meist durch die Fermentation langkettiger Kohlenwasserstoffe (z.B. emulgiertes Öl; engl. emulsified vegetable oil) freigesetzt. Die höherchlorierten Ethene werden durch Austausch eines Chlorsubstituenten mit einem Wasserstoffatom schrittweise über die geringer chlorierten Ethene abgebaut (siehe Abbildung 1-4). Eines der Stoffwechsel-Endprodukte ist Salzsäure, was zu einer Abnahme des pH-Wertes führt.

Der Abbau der einzelnen Chlorethene kann durch verschiedene Organismen wie *Dehalococcoides* sp., *Desulfitobacterium* sp. und *Dehalobacter* sp. durchgeführt werden. Die einzelnen Bakterienstämme können dabei zumeist nur einen Teil der kompletten Dechlorierung durchführen. Eine umfangreiche Übersicht ist in Dolinová et al. (2017) gegeben.

Während die Reduktion des PCE über TCE und cDCE zu VC energiegewinnend verläuft, ist die Reduktion des VC zu Ethen zumeist co-metabolisch (Maymó-Gatell et al. 1997) und somit energetisch nicht rentabel. Der *Dehalococcoides* Stamm BAV1 kann VC unter Energiegewinn zu Ethen umsetzen (He et al. 2003). Der Stamm FL2 reduziert TCE zu VC (He et al. 2005), der Stamm GT kann unter Energiegewinn TCE zu Ethen umsetzen (Sung et al. 2006). Eine erfolgreiche Bioremediation von PCE-Kontaminationen kann daher durch das Zusammenspiel mehrerer *Dehalococcoides*-Stämme ermöglicht werden.

Die vollständige reduktive Dechlorierung kann, nach aktuellem Kenntnisstand, durch Bakterien der Gattung *Dehalococcoides* spp. (PCE/TCE) und *Dehalogenimonas* (TCE) erzielt werden. Aus den beiden Bakteriengattungen sind jedoch nur die Stämme *Dehalococcoides mccartyi* BTF08 und 195 (ehem. *Dehalococcoides ethenogenes*) (Maymó-Gatell et al. 1999; Duhamel et al. 2002; Kranzioch 2015), sowie *Candidatus* Dehalogenimonas etheniformans GP (Yang et al. 2017; Chen et al. 2022) fähig PCE bzw. TCE komplett zu Ethen zu reduzieren.

Aufgrund des stark reduzierten Grundwassermilieus sind jedoch Nebenreaktionen, in denen Methan und Schwefelwasserstoff freigesetzt werden, die Regel. Somit ist auch nach erfolgreichem Schadstoffabbau ein stark reduziertes, und mit den Nebenprodukten belastetes Grundwasser vorhanden (Abbildung 1-5).

Weiterhin kann es, bei fehlender Präsenz der Dehalococcoides-Stämme zu einer Akkumulation des toxischen cDCE und des kanzerogenen VC kommen (Hendrickson et al. 2002; Olaniran et al. 2008).

Anaerobes Milieu

Die reduktive Dechlorierung spielt trotz der Nachteile, die der Prozess mit sich bringen kann, eine zentrale Rolle in der Bioremediation Chlorethen-kontaminierter Standorte, da der biologische Abbau von PCE nach aktuellem Kenntnisstand nur im stark anaeroben Milieu stattfinden kann.

1.3.2 Aerober Chlorethenabbau

Der aerobe Chlorethen-Abbau kann sowohl unspezifisch co-metabolisch als auch gezielt metabolisch stattfinden. Dabei ist ein breites Spektrum an MO, fähig einzelne Chlorethene abzubauen. Eine zusammenfassende Übersicht der aerob Chlorethen-Abbauenden Spezies ist in Dolinová et al. (2017) gegeben. Die Abbaubarkeit der Chlorethene unter aeroben Bedingungen sinkt dabei mit steigender Anzahl der Chlorsubstituenten. Dies korreliert mit der thermodynamischen Energieausbeute, die bei vollständiger Mineralisation der Chlorethene durch einen aeroben Abbau erzielt werden kann. Das am niedrigsten chlorierte Chlorethen VC besitzt das höchste Abbaupotential (Dolfing et al. 1993; Bradley 2003; Field und Sierra-Alvarez 2004). Die vollständige Mineralisation von VC erzielt eine Gibbsche freie Energie von △G°´= - 1.263,5 kJ/Reaktion. Mit höherem Chlorierungsgrad sinkt die theoretisch freisetzbare Energiemenge über ΔG° = -1.142,7 kJ/Reaktion (cDCE) und ΔG° = -1.071,8 kJ/Reaktion (TCE) auf ΔG° = -1.006,0 kJ/Reaktion (PCE) ab (Dolfing et al. 1993). Solange die entsprechenden Enzyme zum Umsatz der Schadstoffe vorhanden sind, ist somit theoretisch mit allen Chlorethenen ein Wachstum möglich (Van Hylckama Vlieg und Janssen 2001). In der Praxis zeigt sich jedoch, dass ein metabolischer Abbau der höher chlorierten Ethene, und damit ein Energiegewinn sowie Biomassewachstum durch den Schadstoffumsatz, sehr selten ist. Die in Dolinová et al. (2017) gelisteten Veröffentlichungen deuten darauf hin, dass sowohl cDCE als auch TCE, verglichen mit VC, unter aeroben Bedingungen bevorzugt co-metabolisch abgebaut werden. Die Häufigkeit der Abbaunachweise der einzelnen Chlorethene sinkt hierbei ebenfalls mit Zunahme der Chlorsubstituenten.

1.3.2.1 Aerob co-metabolischer Chlorethenabbau

Zur Stimulation des aerob co-metabolischen Chlorethen-Abbaus müssen die MO mit Auxiliarsubstraten, die als Energielieferant und Wachstumssubstrat verwendet werden, versorgt werden. Der Abbau der Chlorethene verläuft dabei aufgrund unspezifischer Enzyme zufällig, und nicht zielgerichtet (Horvath 1972). Die Oxidation der Chlorethene bringt den MO dabei keinerlei Vorteile und kann zur Bildung instabiler Metabolite führen (Mattes et al. 2010). Durch die Oxidation des Auxiliarsubstrates wird der überwiegende Teil des zur Verfügung stehenden Sauerstoffs gezehrt, und nur ein kleiner Teil fließt in den eigentlichen Schadstoffabbau. Hierdurch ergibt sich ein sehr ineffizientes Verhältnis von eingesetztem Sauerstoff zu abgebautem Schadstoff.

Der co-metabolische Abbau der Chlorethene kann jedoch durch eine Vielzahl verschiedener Mikroorganismen und Enzyme durchgeführt werden und ist somit weiter verbreitet als der metabolische Abbau der Schadstoffe. Die Enzyme, die den co-metabolischen Stoffwechsel bewirken, sind meist Monooxygenasen und Dioxygenasen, welche ein breites Substanzspektrum verwerten können.

Der co-metabolische Abbau der Chlorethene konnte unter anderem mit den Auxiliarsubstraten Phenol, Toluol (Chang und Alvarez-Cohen 1995; Nelson et al. 1988; Shingleton et al. 2001; Yeager et al. 2004; Lee et al. 2008; Clingenpeel et al. 2012), Methan (Oldenhuis et al. 1989; Van Hylckama Vlieg et al. 1996; Anderson und McCarty, Perry, L. 1997; Hazen et al. 2009; Tovanabootr und Semprini 2010), Propen (Ensign et al. 1992), Propan, Butan (Arp et al. 2001) und Ammonium (Arciero et al. 1989; Vanelli et al. 1990; Kocamemi und Ceçen 2010) nachgewiesen werden. Für alle vier Chlorethene wurde der co-metabolische Abbau in der Literatur beschrieben (VC (Coleman et al. 2002a, 2002b), cDCE (Coleman et al. 2002b; Willmann und Tiehm 2023), TCE (Oldenhuis et al. 1989; Nelson et al. 1988) und PCE (Ryoo et al. 2000)).

Co-metabolische Abbau-Prozesse können jedoch, aufgrund von Enzym-Inhibition durch Toxizität co-metabolischer Intermediate, nicht immer aufrecht erhalten werden (Alvarez-Cohen und Speitel Jr. 2001).

1.3.2.2 Aerob metabolischer Chlorethenabbau

Der aerob, metabolische VC-Abbau wurde bereits in den 1990er-Jahren nachgewiesen (Hartmans und Bont 1992; Verce et al. 2002) und besitzt die Möglichkeit einen cometabolischen cDCE-Abbau zu verursachen (Verce et al. 2002; Tiehm et al. 2008). Der metabolische Umsatz des VC kann dabei durch eine breite Auswahl von MO durchgeführt werden (Dolinová et al. 2017).

Mattes et al. (2010), postulierten den in Abbildung 1-6 dargestellten Abbaupfad für Ethen und VC. Hierbei wird Ethen bzw. VC durch eine Alkenmonooxigenase (AkMO) in Ethenoxid bzw. Chlor-Ethenoxid überführt. Chlor-Ethenoxid ist DNA-schädigend (Melnick 2002) und kann Krebs erzeugen (Bundesamt für Arbeitsschutz und Arbeitsmedizin (BAuA) 2012) Im zweiten Schritt wird das Epoxid durch Anlagerung einer Epoxyalkan-Coenzym M Transferase in einen 2-Hydroxyethyl-CoM bzw. 2-Chlor-Hydroxyethyl-CoM-Komplex überführt. Durch eine Alkohol Dehydrogenase vermittelte Oxidation, bzw. spontane Abspaltung von HCl, transformieren beide Produkte zu 2-Ketoethyl-CoM und folgen einem gemeinsamen weiteren Abbauweg.

Abbildung 1-6: Aerob produktiver Abbauweg von Ethen und Vinylchlorid (Mattes et al. 2010).

Der aerob metabolische Abbau von cDCE wurde in den 2000er Jahren belegt (Bradley und Chapelle 2000; Olaniran et al. 2008; Jennings et al. 2009; Schmidt et al. 2010). Jennings et al. (2009) beschrieben zwei potenzielle Stoffwechselwege, durch die *Polaromonas sp.* JS666 cDCE aerob metabolisch umsetzen kann.

Zum einen wird eine, durch Glutathion-S-Transferase (GST), katalysierte Dehalogenierung diskutiert, bei der cDCE durch GST zu Chloroacetaldehyd transformiert und anschließend durch Chloroacetaldehyd-Dehydrogenase (CAD) zu Chloressigsäure (engl. Chloroacetic Acid) und weiter durch Halogensäure-Dehalogenase (HAD) zu Glycolsäure (Glycolate) umgeformt wird. Der zweite diskutierte Stoffwechselweg beschreibt eine Monooxygenase-katalysierte Epoxidation, bei der cDCE durch Cyclohexanone-monooxygenase (CMO) in DCE-Epoxid

überführt und weiter durch eine α/β -Hydrolase-Faltung (Hlase) und Carbonmonoxid-Dehydrogenase (CODhase) zu Glyoxylsäure (Glyoxylate) transformiert wird.

Der genaue Abbaupfad des cDCE ist trotz vieler Studien noch nicht bekannt. Aufgrund der Ähnlichkeit der Substrate cDCE, VC und Ethen, sowie der Tatsache, dass Ethen assimilierende Bakterien auch unter der Verwendung von VC als Kohlenstoffquelle wachsen können, ist die Evolution der cDCE-Abbauer aus Ethen-Verwertern nicht unwahrscheinlich (Mattes et al. 2010).

Abbildung 1-7: Mögliche Transformationspfade im aerob metabolischen cDCE-Abbau durch *Polaromonas* Stamm JS666 (Jennings et al. 2009).

Ein stöchiometrischer Umsatz des cDCE ohne Berücksichtigung der Biomassebildung verläuft dabei nach Gleichung (I),

$$C_2Cl_2H_2 + 2O_2 \rightarrow 2CO_2 + 2Cl^- + 2H^+$$
 (I)

woraus sich, gemäß Gleichung (II) ein Umsatzfaktor (utilization factor, uf) von 1,43 ergibt.

$$uf_{st,cDCE}\left(\frac{mg(cDCE)}{mg(O_2)}\right) = \frac{1 \text{ mmol } (cDCE) * 96,94 \frac{mg(cDCE)}{mmol (cDCE)}}{2 \text{ mmol } (O_2) * 31,999 \frac{mg(O_2)}{mmol (O_2)}} = 1,43$$
(II)

Der eindeutige Nachweis des aerob metabolischen TCE-Abbaus wurde erstmals durch Schmidt et al. (2014) an einem TCE-kontaminierten Standort im Südwesten Deutschlands erbracht. Vorherige Veröffentlichungen die den oxidativen Umsatz von TCE als alleinige Kohlenstoffquelle beschrieben, hatten z.B. Ammonium als mögliches Auxiliarsubstrat (Kageyama et al. 2005; Wang und Cutright 2005; Dey und Roy 2009; Sayavedra-Soto et al. 2010), keine (stöchiometrische) Chlorid-Freisetzung (Wang und Cutright 2005; Dey und Roy 2009) und nur eine kurze Abbauaktivität (Kageyama et al. 2005; Wang und Cutright 2005; Dey und Roy 2009). Hierdurch lässt sich nicht ausschließen, dass co-metabolische anstelle

metabolischer Effekte beobachtet wurden. (Gaza 2015)

Schmidt et al. (2014) belegen den, wiederholbaren, aeroben TCE-Abbau in einem Mineralsalzmedium ohne bekannte Auxiliarsubstrate, ohne Bildung stabiler Metabolite und der, entsprechend dem TCE-Abbau, stöchiometrischen Freisetzung von Chlorid.

Durch einen aerob metabolischen TCE-Umsatz kann, im Vergleich zum aerob cometabolischen Abbau, abhängig vom verwendeten Auxiliarsubstrat, der zur Verfügung stehende Sauerstoff bis zu 1.000x effizienter für den Schadstoffabbau eingesetzt werden (siehe Anhang 8.1). Der aerob metabolische Abbau läuft dabei ohne Berücksichtigung der Biomassebildung nach folgender stöchiometrischer Gleichung (III) ab.

$$C_2Cl_3H + 1,5 O_2 + H_2O \rightarrow 2 CO_2 + 3 Cl^- + 3H^+$$
 (III)

Die Berechnung des stöchiometrischen Umsatzfaktor ufst erfolgt nach Gleichung (IV)

$$uf_{st,TCE}\left(\frac{mg(TCE)}{mg(O_2)}\right) = \frac{1 \text{ mmol } (TCE) * 131,39 \frac{mg(TCE)}{mmol } (TCE)}{1,5 \text{ mmol } (O_2) * 31,999 \frac{mg(O_2)}{mmol } = 2,74$$
(IV)

Aus dem in Gleichung (III) beschriebenen stöchiometrischen Verhältnis ergibt sich, nach Gleichung (IV) ein uf_{st} von 2,74. Gaza (2015) ermittelte einen Ertragskoeffizienten von 7,2 g Protein/mol_{TCE} im aerob metabolischen TCE-Abbau. Unter der Annahme , dass Proteine 55 % der zellulären Kohlenstoffverbindungen ausmachen (Gossett 2010) entspricht das 13,09 g zelluläre Kohlenstoffverbindung/mol_{TCE}. In Versuchen zeigte sich, dass der tatsächliche Sauerstoffbedarf bei ~64 % des stöchiometrischen Sauerstoffbedarfs ohne Biomassebildung liegt (Gaza 2015). Hierdurch ergibt sich, gemäß Gleichung (V) ein realer Umsatzfaktor von

$$uf_{real,TCE}\left(\frac{mg(TCE)}{mg(O_2)}\right) = \frac{1 \text{ mmol (TCE)} * 131,39 \frac{mg(TCE)}{mmol (TCE)}}{0,64 * 1,5 \text{ mmol } (O_2) * 31,999 \frac{mg(O_2)}{mmol (O_2)}} = 4,28$$
(V)

Da die Präsenz von Glycolsäure den TCE-Abbau nicht hemmt (Gaza 2015), ist ein, dem cDCE-Abbau, ähnlicher Abbaupfad für TCE, bei dem durch eine HAD ein chlorhaltiger Metabolit dechloriert und zu Glycolsäure transformiert wird ein möglicher Abbaupfad. Auf Grundlage einer Metagenomanalyse der TCE-verwertenden Laborkultur und Grundwasserproben des SF-Standortes wurde, basierend auf den vorgefundenen funktionellen Genen, im Rahmen des Projektes der in Abbildung 1-8 dargestellte Stoffwechselweg postuliert.

Abbildung 1-8: Auf Grundlage einer metagenomischen Untersuchung von Laborkulturen und Standortproben mögliche Transformationspfade im aerob metabolischen TCE-Abbau.

1.3.3 Molekularbiologischer Nachweis des mikrobiologischen Chlorethen-Abbaus

Neben der Quantifizierung der Schadstoffkonzentrationen und der Zusammensetzung des Schadstoffprofils, kann das biologische Abbaupotential über eine quantitative PCR-Analyse nachgewiesen werden.

Durch einen Nachweis der bakteriellen 16S rDNA bzw. rRNA-Gene kann die Anwesenheit bestimmter Bakterien bzw. durch den Nachweis funktioneller Gene die Präsenz der für den Schadstoffabbau relevanten Enzyme, und somit das Abbaupotential am Standort, nachgewiesen werden.

Zur Beurteilung der reduktiven Dechlorierung an kontaminierten Standorten wird dieser Ansatz bereits eingesetzt. Der Nachweis der Bakterien findet hierbei über die Quantifizierung der 16S rRNA-Gene statt. Neben konservativen Regionen die für einen generellen Nachweis der Bakterien verwendet werden kann, können variable Regionen für einen Nachweis spezifischer Organismen verwendet werden (El Fantroussi et al. 1997; Löffler et al. 2000; Hendrickson et al. 2002; Smits et al. 2004). Eine Übersicht der verschiedenen reduktiv dechlorierenden Organismen bzw. funktionellen Gene und der dazugehörige qPCR-Nachweis ist in Tabelle 1-3 dargestellt.

Das Potential zum aeroben VC-Abbau kann durch die Gene *EtnC* und *EtnE* (Jin und Mattes 2010) nachgewiesen werden. Das Gen *EtnC* ist für die Produktion des Enzyms Alkenmonooxygenase (AkMO) zuständig, welches gemäß Abbildung 1-6, den ersten Schritt des VC-Abbaus einleitet. Das Gen *EtnE* führt zur Produktion der Epoxyalkan: Coenzym M Transferase, welche den zweiten Schritt des Abbaus katalysiert.

Während das Enzym Isocitratlyase (AceA), welches durch ein chromosomales Gen synthetisiert wird, nicht direkt in den aerob metabolischen cDCE-Abbaupfad involviert ist, kann dieses als spezifischen Nachweis für *Polaromonas* Stamm JS666, ein cDCE-assimilierendes Bakterium, verwendet werden (Giddings et al. 2010).

Anhand von Metagenomanalysen konnte mit Bakterien der Gattung *Rhodocyclaceae* sp. einer der Schlüsselorganismen des aerob metabolischen TCE-Abbaus identifiziert werden. Analog

zum molekularbiologischen Nachweis des Potentials zur reduktiven Dechlorierung wurde am TZW, im Rahmen des durch das Bundesministerium für Bildung und Forschung (BMBF) geförderten Projektes BioChlor, ein qPCR-Nachweis der 16S-rDNA der *Rhodocyclaceae* sp. (*Rho*), und im Rahmen dieser Arbeit ein Nachweis funktioneller, am aerob metabolischen TCE-Abbau beteiligter, Gene etabliert.

Die funktionellen Gene beziehen sich auf eine Monooxygenase (*pmoABC*) und eine Halogensäure Dehalogenase ähnliche Hydrolase (engl. haloacid dehalogenase like hydrolase; *hdlh*).

Die Primer für den Nachweis des Potentials zum aerob metabolischen CE-Abbau sind in Tabelle 1-4 aufgelistet.

	BvcA		VcrA		TceA		PceA		Dsb		Deha		Deti		Desu		Dhc		Primer
	Reduktive Dehalogenase	Dehalogenase	Vinylchlorid reduktive		TCE Reduktive Dehalogenase		PCE Reduktive Dehalogenase		Desulfitobacterium sp.		Dehalobacter spp.		Desulfomonile tiedjei		Desulfuromonas spp.		Dehalococcoides sp.		Ziel-Organismus bzw. Gen
CAAGACGCATTGTGGACATC	TGGGGACCTGTACCTGAAAA	ATCCCCTCTCCCGTGTAACC	CCCTCCAGATGCTCCCTTTA	TAATCGTATACCAAGGCCCG	GCCACGAATGGCTCACATA	GACTATTGTTGCCGGCACTT	ACCGAAACCAGTTACGAACG	CCCAGGGTTGAGCCCTAGGT	GTACGACGAAGGCCTTCGGGT	CCTCTCCTGTCCTCAAGCCATA	GTTAGGGAAGAACGGCATCTGT	GCTTTCACATTCGACTTATCG	GGGTCAAAGTCGGCCTCTCGACG	GCCGAACTGACCCCTATGTT	AACCTTCGGGTCCTACTGTC	TCAGTGACAACCTAGAAAAC	GATGAACGCTAGCGGCG		Primer-Sequenz
	247		139		306		100		210		250		360		820		069	(dd)	Produktgröße
2008	Behrens et al.	2008	Behrens et al.	2008	Behrens et al.	2008	Behrens et al.		Smits et al. 2004		Smits et al. 2004	al. 1997	El Fantroussi et	2000	Löffler et al.	al. 2002	Hendrickson et		Quelle

Tabelle 1-3:Auflistung der Primer die mit dem reduktiv dechlorierenden Abbau der
verschiedenen Chlorethene assoziiert sind. Die Primer sind 5'-3' notiert.

Primer	Ziel-Organismus bzw. Gen	Primer-Sequenz	Produktgröße	Quelle
			(dq)	
		VC-Abbau		
EtnC	Alken Monooxygenase	ACCCTGGTCGGTGTKSTYTC	106	Jin und Mattes
		TCATGTAMGAGCCGACGAAGTC		2010
EtnE	Epoxyalkan:	CAGAAYGGCTGYGACATYATCCA	151	Jin und Mattes
	Coenzym M Transferase	CSGGYGTRCCCGAGTAGTTWCC		2010
		cDCE-Abbau		
AceA	Isocitrat-Lyase	TGCCGCTGACAACAC	139	Giddings et al.
		ATCAATGCCTTTGGAGTGC		2010
		TCE-Abbau		
Rho	Rhodocyclaceae sp.	GGACGAAACGGTCAGCTCTA	180	TZW; Projekt
		ATTACCGCGGCTGCTGGC		BioChlor
MoA	Monooxygenase	TTGTGGTGGTACATCGGTGG	74	
		TCCACCTGTGGCGTTGATAC		
moB	Monooxygenase	ATGGCATATCATCTGGGCCG	124	
		GCCCGACGTTACCAGTACAT		
moC	Monooxygenase	TGCCTGAGTTTGCTAAGGGG	89	
		GTCTTGCGGATCGAAAGCTG		
hdlh	Halogensäure Dehalogenase	TTTCGCGTCAACAAAGGCAG	182	
	ähnliche Hydrolase	GGGTTGTAGACCGCAATGGA		

Tabelle 1-4: Auflistung der Primer die mit dem aerob metabolischen Abbau der verschiedenen Chlorethene assoziiert sind. Die Primer sind 5'-3' notiert.

1.4 Kombinierte Bio-Elektro-Verfahren

Durch die Kombination von biologischen und nicht-biologischen Prozessen kann die Anwendbarkeit biologischer Abbauprozesse und die Kosteneffizienz von in-situ Bioremediationsverfahren verbessert werden.

Durch die Applikation einer Gleichstromspannung entstehen elektrokinetische sowie elektrochemische Effekte, welche die biologischen Prozesse unterstützen können.

Mithilfe elektrokinetischer Effekte kann der Transport geladener TEA, wie z.B. Nitrat (Lohner et al. 2008b), sowie ein Transport von Schadstoffverwertern (DeFlaun und Condee 1997) und damit eine bessere Verteilung dieser, erzielt werden.

Die an den Elektroden auftretenden elektrochemischen Phänomene führen zur Elektrolyse der Wassermatrix. Hierdurch können H₂ als Elektronendonor der reduktiven Dechlorierung und O₂ als TEA der aeroben Atmung in-situ produziert und in den biologischen Prozessen verwendet werden (Lohner et al. 2011; Aulenta et al. 2013; Hertle et al. 2023).

1.4.1 Elektrokinetische Prozesse

Elektrokinetische Prozesse sind Transportphänomene, die im elektrischen Feld beobachtet werden können. Diese Phänomene können in die Kategorien Elektromigration, Elektrophorese und Elektroosmose unterteilt werden.

Die Elektromigration beschreibt den Transfer elektrischer Ladung durch lonen in einem Elektrolyten. Die Ionen wandern dabei entsprechend ihrer Ladung zur jeweiligen Elektrode. Die Transportgeschwindigkeiten sind höher als durch Elektrophorese und Elektroosmose, sodass für Ionen die Elektromigration den geschwindigkeitsbestimmenden Schritt im Transport darstellt (Koliyabandara et al. 2021).

Elektroosmose beschreibt die Migration von Poren- und Grundwasser von Anode zu Kathode, ausgelöst durch den Kapillareinfluss des angelegten Gleichstroms. Zwischen negativ geladenen Bodenpartikel und des entgegengesetzt geladenen, am Partikel anhaftenden, Wassers und Kationen bildet sich eine diffuse Doppelschicht aus (Gouy-Stern-Layer). Die Stärke der Elektroosmose ist dabei abhängig von der Dicke der diffusiven Doppelschicht. Je größer die diffusive Doppelschicht, desto stärker sind die elektroosmotischen Effekte. (Koliyabandara et al. 2021)

Elektrophorese bezeichnet den Transport von Kolloiden und organischen Partikeln durch ein elektrisches Feld. Die Stärke des Prozesses wird dabei durch die Stärke des elektrischen Feldes beeinflusst. Mit abnehmender Permeabilität des Bodens sinkt auch der Einfluss elektrophoretischer Prozesse an der Gesamtbewegung signifikant (Koliyabandara et al. 2021). Im Umkehrschluss bedeutet dies, dass mit steigender Porosität die elektrophoretischen Effekte verstärkt auftreten. Da in den Versuchen ein sandiges Material (Dorsilit 8, Dorfner GmbH) verwendet wird, werden elektrophoretische Prozesse den elektrokinetischen Transportprozess dominieren.

Der elektrokinetische Transport von Bakterien wurde erstmals durch DeFlaun und Condee (1997) nachgewiesen. Page und Page (2002) postulierten, dass Bodenbakterien bei neutralem pH negativ geladen sind, und somit in einem elektrischen Feld zur Anode wandern. Diese These wurde durch Maillacheruvu und Chinchoud (2011) unterstützt. Der elektrokinetische Transport überwiegt dabei die bakterielle Adhäsion an den Bodenpartikeln,
die Transportraten sind jedoch spezifisch für die verschiedenen Bakterienstämme (DeFlaun und Condee 1997).

Bisherige Studien, die eine elektrokinetische Stimulation des Chlorethen-Abbaus untersuchten, befassten sich mit der reduktiven Dechlorierung. Mao et al. (2012) kamen zu dem Ergebnis, dass elektrokinetische Effekte einen Transport von *Dehalococcoides* sp. in einen gering durchlässigen Boden bewirken und das elektrische Feld keinen Einfluss auf die Aktivität der Bakterien haben. Neben Transportphänomenen besteht die Möglichkeit, dass Dechlorierer die Elektroden direkt als Elektronendonoren verwenden (Strycharz et al. 2008; Aulenta et al. 2009).

Durch einen lokal begrenzten Abfall des pH-Wertes an der Anode und einen pH-Anstieg an der Kathode können die biologischen Prozesse jedoch auch gehemmt werden (Schmidt et al. 2007).

1.4.2 Elektrochemische Prozesse

mit

Zur elektrochemischen Stimulation des biologischen Schadstoffabbaus werden elektrolytische Prozesse verwendet. Durch den angelegten Gleichstrom kann das als Elektrolyt verwendete Wasser in Wasserstoff und Sauerstoff gespalten werden. Die Entstehung des Wasserstoffes, welcher die reduktive Dechlorierung von Chlorethenen stimulieren kann, findet, nach Gleichung (VI), an der Kathode statt. An der Anode entsteht, entsprechend Gleichung (VII), Sauerstoff wodurch in der Umgebung und im Abstrom der Anode der aerob produktive Schadstoffabbau der Chlorethene unterstützt werden kann.

Kathode	$4 H_2 0 + 4 e^- \rightarrow 2 H_2 + 4 0 H^-$	(VI)
	L L	· · · · · · · · · · · · · · · · · · ·

Anode	$6 \text{ H}_20 \rightarrow 0_2 + 4 \text{ H}_30^+ + 4 \text{ e}^-$	(VII)
-------	---	-------

Gesamtreaktion nach Kürzung	$2 H_2 O \rightarrow 2 H_2 + O_2$	(VIII)
-----------------------------	-----------------------------------	--------

Die elektrolytische Produktion von Wasserstoff und Sauerstoff kann dabei anhand des Faraday'schen Gesetzes (Gleichung (IX)) berechnet werden.

$$m = \frac{M * I * t}{z * F}$$
(IX)

m	Masse des elektrolytisch abgeschiedenen Stoffes
Μ	Molare Masse des abgeschiedenen Stoffes
I	Stromstärke
t	Dauer der elektrolytischen Behandlung
Z	Ladungszahl des abgeschiedenen Stoffes
F	Faraday'sche Konstante $F = N_A * e = 96485 \frac{c}{mol}$

Grundsätzlich kann durch elektrochemische Prozesse eine erhöhte Temperatur in der Elektroden-Umgebung festgestellt werden (Hyldegaard et al. 2020a), kann jedoch in einem dauerhaft durchströmten System vernachlässigt werden (Lohner et al. 2011).

1.4.3 Nutzung elektrokinetischer und elektrochemischer Prozesse

Elektrokinetische Effekte können für den gezielten Transport von Schadstoffen und Nährstoffen im Grundwasser verwendet werden. Einsatz findet dieser Prozess primär in Grundwasserleitern mit geringer Durchlässigkeit, in denen der Einsatz hydraulischer Verfahren (z.B. P&T, Funnel & Gate) wenig Erfolg verspricht. Die elektrokinetische Behandlung eignet sich besonders für Schadstoffe, die sich leicht im elektrischen Feld bewegen lassen, wie z.B. Schwermetalle (Alshawabkeh et al. 1999), sowie den Transport geladener TEA und Nährstoffe (Lohner et al. 2008b).

Elektrochemische Effekte können eine gezielte Maßnahme zur Behandlung von Schadstoffen darstellen, treten jedoch auch als Nebenreaktion der elektrokinetischen Effekte auf. Neben der Produktion von H₂ und O₂, welche zur Biostimulation verwendet werden können, kann auch eine direkte Oxidation von Schadstoffen (Rajic et al. 2016; Hyldegaard et al. 2020b), bzw. die Produktion reaktiver Spezies elektrochemisch durchgeführt werden. Im Vergleich zur elektrochemischen Biostimulation ist für eine elektrochemische Oxidation jedoch ein deutlich größerer Energieeintrag erforderlich (Hertle et al. 2023).

2 ZIELSTELLUNG DER ARBEIT

Die vorliegende Dissertation soll einen Beitrag zum besseren Verständnis des aerob metabolischen TCE-Abbaus sowie Ansätze zur Verfahrensimplementation im Rahmen von Bioaugmentationsansätzen liefern.

Neben einer TCE-Altlast bei der die TCE-abbauenden *Rhodocyclaceae* vorgefunden wurden, sind die Nachweise des aerob metabolischen TCE-Abbaus rar. Durch die Kombination der hohen Effizienz des Schadstoffabbaus und den Vorteilen aerob metabolischer Prozesse gegenüber anderen Bioremediations-Optionen bietet sich der Einsatz im Rahmen von Bioaugmentationsansätzen an. Durch das Skalieren des Bioaugmentations-Ansatzes von geschlossenen Batch-Systemen zu durchflossenen Systemen im technischen Maßstab soll die Anwendbarkeit demonstriert und die Brücke zur Pilotanwendung im Feld geschlagen werden.

Ein erfolgreicher Bioaugmentationsverlauf kann anhand molekularbiologischer Nachweise beobachtet werden. Aufgrund der hohen Substratspezifität der TCE-abbauenden *Rhodocyclaceae* müssen die am Stoffwechsel beteiligten Enzyme ebenfalls sehr selektiv sein. Diese Substratspezifität soll für einen qPCR-Nachweis auf Basis der für den Schadstoffabbau funktionellen Gene, und damit dem Potential zum aerob metabolischen TCE-Abbau, dienen und somit als ein Monitoring-Werkzeug und zur Identifikation weiterer Standorte mit Potential zum aerob metabolischen TCE-Abbau eingesetzt werden.

Kontaminierte Standorte bieten meist nicht optimale Verhältnisse für den aeroben TCE-Abbau durch die Präsenz von Co-Kontaminanten und/oder einen Mangel an Sauerstoff. Durch die Kombination der TCE-abbauenden *Rhodocyclacea* mit cDCE-abbauenden *Polaromonas* sollen Chlorethen-Mischkontaminationen für beide Abbauprozesse zugänglich gemacht werden. Kombinierte Bio-Elektro-Verfahren können kostengünstige Optionen zur Stimulation des Schadstoffabbaus darstellen. Hierbei müssen die Auswirkung elektrochemischer und elektrokinetischer Effekte auf den Bioaugmentationsansatz untersucht werden.

3 MATERIAL UND METHODEN

3.1 Verwendete Chemikalien, Materialien und Geräte

Die verwendeten Chemikalien, Geräte, Materialien und Medien sind in Anhang 8.2 aufgeführt.

3.2 Mikrobiologische und molekularbiologische Analytik und Methoden

3.2.1 Real-Time PCR

Anhand der Polymerase-Kettenreaktion (engl. polymerase chain reaction, PCR) kann die Nukleinsäure, bzw. spezifische Stellen der Nukleinsäure, eines Organismus in wenigen Stunden nachgewiesen werden. Ein PCR-Verfahren besteht aus den Schritten Denaturierung, Primer Annealing und Elongation (Abbildung 3-1). In der Denaturierung wird durch Erhitzen (95°C) die Doppelstränge der DNA aufgetrennt. Im Primer Annealing, lagern sich der Forward Primer und Reverse Primer spezifisch an die Einzelstränge an. Durch die Primer wird der Start und der Endpunkt des zu vervielfältigenden DNA-Stückes definiert. Während der Elongation werden die Einzelstränge durch das Enzym DNA-Polymerase wieder zu Doppelsträngen synthetisiert. Durch die Verwendung von fluoreszierenden Farbstoffen (hier SYBRGreen I) kann in der quantitativen PCR (qPCR) die DNA-Menge quantifiziert werden. Der Farbstoff interkaliert während der Elongation in die doppelsträngige DNA. Durch die Bindung an die DNA wird die Fluoreszenz des Farbstoffes verstärkt. Der PCR-Zyklus wird hierbei 30 bis 50-mal wiederholt, wodurch die Anzahl der Genkopien exponentiell zunimmt. Am Ende jedes Zyklus wird im qPCR Thermocycler in Echtzeit (engl. real time, RT) die Fluoreszenz gemessen und somit die DNA-Menge quantifiziert.

Sämtliche Proben wurden im Duplikat gemessen. Zusätzlich wurde in jedem Lauf eine "no template control" (NTC) als Negativkontrolle, sowie Standards der Konzentrationen 10¹-10⁷ Genkopien/Reaktion zur Berechnung der DNA-Konzentration mitgemessen. Tabelle 8-6 (Anhang 8.2.2) listet die Gerätedaten sowie das verwendete PCR-Programm auf, die Zusammensetzung des verwendeten Mastermix 1 ist in Tabelle 8-16 (Anhang 8.2.4.3) aufgeführt. Die Quantifizierung der Genkopie-Anzahl setzt voraus, dass während der PCR nur ein spezifisches Genfragment gebildet wurde. Die Spezifizität wurde durch die Schmelzkurve und durch eine Kapillar-Gelelektrophorese bestimmt. Spezifität des Fragmentes ist gegeben, wenn der Peak der Schmelzkurve mit dem Peak der Standards übereinstimmt oder das digitale Gelbild die erwartete Fragmentgröße aufzeigt. Die verwendeten, bereits etablierten Primer sind in Tabelle 3-1 gelistet.

Abbildung 3-1: Prinzip-Skizze des Ablaufs eines PCR-Zyklus; 1. Denaturierung, 2. Primer Annealing, 3. Elongation (Ho 2018).

Bezeichnung		Sequence	TA	t _E	Quelle
EuB	F	5'-CCTACGGGAGGCAGCAG-3'	68°C	20 s	Muyzer et al.
	R	5'-ATTACCGCGGCTGCTGGC-3'			1993
Rho	F	5'-GGACGAAACGGTCAGCTCTA-3'	63°C	15 s	TZW:DVGW
	R	5'-GGTTAAGCCCGGGGATTTCA-3'			Projekt
					BioChlor

Tabelle 3-1: Übersicht der verwendeten, bereits etablierten, Primer.

Der Primer EuB zielt auf die konservative Region der bakteriellen 16S rDNA und dient somit als allgemeiner Nachweis für die Anwesenheit von Bakterien. Der Primer Rho ist spezifisch für die variable Region der 16S rDNA von Bakterien der Familie *Rhodocyclaceae* sp., welche, im Rahmen des am TZW bearbeiteten Projektes BioChlor (gefördert durch das BMBF, Fördernummer 02WIL1520), als Schlüsselorganismen im aerob metabolischen TCE-Abbau identifiziert wurden.

Die Anzahl der Genkopien in einer Flüssigprobe wird nach Gleichung (X) berechnet. Sofern nicht anders vermerkt, wurden pro Probe 50 mL filtriert, ein halber Filter für die DNA-Extraktion

eingesetzt, die extrahierte DNA in 100 μ L eluiert und 1 μ L als Template in die Thermocycler eingesetzt.

(X)

$$c_{Probe} = n_{PCR} * \frac{1}{V_{Filtration}} * \frac{1}{q_{Filter}} * \frac{V_{Elution}}{V_{PCR}}$$

MitcProbeKonzentration der Genkopiezahl in der Probe [Genkopien/mL]nPCRAnzahl der in die PCR-Reaktion eingesetzten Genkopien [Genkopien]VFiltrationFiltrationsvolumen [mL]qFilterAnteil des extrahierten FiltersVElutionElutionsvolumen [µL]VPCRVolumen des Templates [µL]

Das Template wurde sowohl 1:10 verdünnt, als auch unverdünnt in der PCR eingesetzt. Falls eine Probe, entsprechend dem kleinsten Standard, eine Konzentration von 1,0e+1 Genkopien/PCR-Reaktion enthält, wäre die berechnete Konzentration an Genkopien für die 1:10 verdünnte Probe 4,0e+2 Genkopien/mL und für die unverdünnte Probe 4,0e+1 Genkopien/mL.

3.2.1.1 DNA-Extraktion

Zur DNA-Extraktion wurden 50 mL Probe mit Hilfe einer Wasserstrahlpumpe (Merk Millipore) durch eine Polyethersulfon-Membran (Porengröße 0,2 µm, Pall Corporation, Washington USA) filtriert. Der Filter wurde halbiert und die Hälften jeweils in einem Reaktionsgefäß bis zur DNA-Extraktion bei -20°C gelagert. Für Proben des Trägermaterials wurden ~0,5 g des feuchten Sandes entnommen und bis zur Extraktion ebenfalls bei -20°C gelagert.

Zur DNA-Extraktion wurde das "Fast DNA Spin Kit for Soil" (MPBio, Santa Ana, USA) mit folgenden Abweichungen nach Herstellerangaben verwendet.

Im vierten Schritt, bei dem die DNA-Bindebedingungen angepasst werden, wurde anstelle von 500 μ L 700 μ L verworfen. Im folgenden Schritt (DNA-Bindung) wurden zweimal 700 μ L in die Spin Filter Tubes überführt. Zur Elution wurden 100 μ L einer auf 56°C vorgewärmten DES Elution Solution verwendet. Die extrahierte DNA wurde im Kühlschrank gelagert und als Template in der PCR eingesetzt.

3.2.2 Kapillar Gelelektrophorese

Zur Bestimmung der, in den PCR-Reaktionen entstandenen, Fragmentgröße wurde ein QIAxcel Advanced System (Qiagen, Hilden, Deutschland) für die Kapillar-Gelelektrophorese verwendet. Das Gerät wurde nach Herstellerangeben mit dem QX Alignment Marker 15 bp/3000 bp eingesetzt.

3.3 Physikalisch-Chemische Analyseverfahren

3.3.1 Ionenchromatografie

Die Bestimmung der Anionen Chlorid, Nitrit, Nitrat, Sulfat und Phosphat erfolgte anhand von Ionenchromatografie. Der Chlorid-Gehalt ist in Versuchen zum biologischen Abbau von Chlorethenen ein relevanter Parameter, da beim Abbau bzw. der vollständigen Mineralisierung der Schadstoffe Chlorid-Ionen im stöchiometrischen Verhältnis freigesetzt werden. Somit kann der Parameter als Indikator für den vollständigen mikrobiologischen Schadstoffabbau verwendet werden.

Bei der Probenahme wurden ~10 mL Probe durch einen Spritzenvorsatz-Filter (CHROMAFIL CA, 25mm, 0,45 µm, Macherey & Nagel) gefiltert. Proben die nicht am selben Tag gemessen werden konnten, wurden bei 4°C gelagert. Bei einer Lagerungsdauer von über 2 Tagen wurden die Proben bei -20°C aufbewahrt. Die Auswertung erfolgt anhand einer Mehrpunktkalibrierung externer Standards. Bei den Messungen wurden zur Kontrolle externe Standards mitgeführt.

Geräteparameter und Bestimmungsgrenzen sind in Tabelle 8-4 (Anhang 8.2.2) aufgelistet.

3.3.2 Schadstoffanalytik mittels Gaschromatografie

Die Quantifizierung der Chlorethene, sowie Ethen, Ethan und Methan wurde auf einem GC-System mit statischem Headspace-Sampling durchgeführt. Als Detektoren stehen ein Elektroneneinfang-Detektor (engl. electron capture detector, ECD) und ein Flammenionisations-Detektor (engl. flame ionization detector, FID) zur Verfügung. Die Verwendung verschiedener Detektoren ermöglicht dabei eine sensitive Analytik über einen weiten Konzentrationsbereich durchzuführen. Besonders der ECD-Detektor zeichnet sich durch seine Selektivität und Sensitivität für halogenierte Stoffe aus (Klee 2012).

Bei der Probenahme wurden 5 mL Probe unfiltriert in ein Headspace-Vial, in den ein Tropfen Phosphorsäure vorgelegt wurde, abgefüllt und dieses sofort verschlossen. Die Phosphorsäure stoppt, durch Absenken des pH-Wertes, biologische Prozesse in der abgefüllten Probe und erhält sie dadurch im Zustand des Probenahmezeitpunktes. Die Analytik wurde mindestens in Doppelbestimmung durchgeführt und die Proben am Probenahmetag gemessen oder bei 4°C bis zur Messung gelagert. Die Auswertung erfolgt anhand einer Mehrpunktkalibrierung externer Standards. Bei den Messungen wurden externe Standards zur Kontrolle mitgeführt.

Geräteparameter, Programm und die Bestimmungsgrenzen der einzelnen Stoffe sind in Tabelle 8-5 (Anhang 8.2.2) aufgelistet.

3.3.3 Photometrische Bestimmungen

Zur Bestimmung einzelner Parameter wurden photometrische Rundküvettentests der Firma Macherey & Nagel in Kombination mit einem NANOCOLOR Advance Spektralphotometer verwendet.

Zur Bestimmung des freien Chlors und des Gesamt-Chlors wurden NANOCOLOR Chlor/Ozon 2 Rundküvettentests verwendet.

Zur Bestimmung von Ammonium wurden, abhängig von der Konzentration, die Rundküvettentests NANOCOLOR Ammonium 3, NANOCOLOR Ammonium 10 und NANOCOLOR Ammonium 50 verwendet.

3.4 Stromerzeugung und Messung

Als Strom bzw. Spannungsquellen wurden die DC-Netzgeräte Multi Source Power Supply 1134-150 und Quad DC Power Supply 1145 (Heiden Electronics, Pürgen, Deutschland) verwendet. Die Gleichstromquellen können sowohl potentiostatisch als auch galvanostatisch betrieben werden. Pro Stromquelle stehen mehrere Kanäle zur Verfügung.

Zur Kontrolle der Spannung bzw. der Stromstärke wurden 34411A 6½ Digit digitale Multimeter (DMM; Agilent Keysight, Santa Rosa, USA) eingesetzt.

3.5 Durchführung der Experimente

3.5.1 Kultivierung und Anreicherung der Mikroorganismen

3.5.1.1 Anreicherung in Flüssigmedium

Eine Übersicht der in Flüssigmedium gehaltenen Kulturen ist in Anhang 8.2.5 in Tabelle 8-22, Tabelle 8-23 und Tabelle 8-24 gegeben.

3.5.1.1.1 Aerobe Chlorethenverwerter

Die aeroben Chlorethen-Verwerter wurden in kohlenstofffreiem Mineralmedium (L+C-Medium) kultiviert (Gaza 2015). Die Zusammensetzung des Mediums ist in Tabelle 8-10 (Anhang 8.2.4.1) angegeben. Zur besseren Bilanzierung des Schadstoffabbaus durch die Chlorid-Freisetzung wurde auf die Einwaage von Chlorsalzen verzichtet. Ebenfalls wurde auf Stoffe die als Auxiliarsubstrat im co-metabolischen Schadstoffabbau verwendet werden können, sowie Kohlenstoffquellen verzichtet.

Die eingewogenen Substanzen wurden in vollentsalztem Wasser (ELGA Purelab flex, Veolia Water Technologies Deutschland GmbH, Celle, Deutschland) gelöst und nach Zugabe der Spurenelementlösung für 48 h auf einem Magnetrührer (Ikamag Reo, Ika-Werke, Staufen, Deutschland) gerührt. Zur Kontrolle des Mediums wurden die Anionen bestimmt. Das Medium wurde bei 121°C für 20 min autoklaviert (Laboklav 55-195, SHP Steriltechnik AG, Detzel Schloss, Deutschland).

Es wurden verschiedene Kulturen geführt die VC, cDCE oder TCE aerob produktiv abbauen können.

3.5.1.1.2 Anaerobe Chlorethenverwerter

Die anaeroben CE-Verwerter wurden in einem, nach Tabelle 8-12 (Anhang 8.2.4.2) hergestellten, Phosphat-gepufferten, entgasten, Mineralmedium kultiviert. Analog zum Medium für aerobe CE-Verwerter wurde zur besseren Bilanzierung des CE-Abbaus auf die Zugabe von Chlorsalzen verzichtet (Kranzioch 2015).

Die eingewogenen Substanzen wurden in vollentsalztem Wasser gelöst und für 24 h auf einem Magnetrührer gerührt. Das Medium wurde bei 121°C für 20 min autoklaviert.

Zur Anaerobisierung wurde das Medium direkt nach dem Autoklavieren an einen Stickstoff-Verteilerrechen mit Patenthahn angeschlossen. Am Rechen wird auf einer Seite durch eine Wasserstrahlpumpe ein Unterdruck erzeugt. Die Gegenseite wurde mit Stickstoff-Überdruck beaufschlagt. Durch ein Abwechseln von Vakuumbeaufschlagung und Stickstoffspülung an den angeschlossenen Flaschen kann über mehrere Iterationen des Vorgangs der Sauerstoff aus dem Medium entfernt werden. Nach dreifacher Durchführung des Entgasungsprozesses kühlt das Medium unter Stickstoffüberdruck ab.

Die Inokulation der Ansätze findet in einer Handschuhbox (Custom Chamber; McCoy, USA) unter Stickstoffatmosphäre und Kontrolle des verbliebenen gelösten Sauerstoffs statt. Im gleichen Zug wurde den Ansätzen eine Vitaminlösung (Tabelle 8-15, Anhang 8.2.4.2) und der Schadstoff PCE (99 %, Sigma-Aldrich, USA) zugegeben. Als Substrat erhielten die MO zu Beginn Hefeextrakt. Im Laufe der Kulturpflege wurde von Hefeextrakt auf Acetat und Wasserstoff gewechselt.

3.5.1.2 Anreicherung auf sandigem Bodenmaterial

Aufgrund des hohen Bedarfs an bewachsenem, sandigem Material für nachfolgenden Versuche, wurde zur Anreicherung der TCE-abbauenden Kultur auf sandigem Material eine 70 L Stahlsäule verwendet. Zur initialen Inokulation der 70 L-Säule wurde der bewachsene Sand einer 3 L Glassäule im unteren Säulenbereich verbaut, sowie eine Flüssigkultur im Kreislauf durch die Säule geführt. Durch die Zirkulation der Flüssigkultur konnte die aus der Säule ausgespülte Biomasse wieder zurückgeführt werden.

Nach der Etablierung des aeroben TCE-Abbaus wurde das Säulensystem im Durchfluss betrieben. Aufgrund des relativ hohen Bedarfs an Medium (~5 L/d) wurde ein 1:1-Gemisch aus Leitungswasser und vollentsalztem Wasser (VE-Wasser) verwendet. Dem Medium wurde 20 mg/L TCE zudosiert. Auf die Dosierung von Nährstoffen wurde verzichtet.

3.5.2 Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte

Zur Untersuchung der Anwendbarkeit der TCE-abbauenden Bioaugmentationskultur unter variierenden Milieus wurden Grundwässer verschiedener Chlorethen-kontaminierter Standorte in Laborversuchen untersucht. Die Grundwässer wurden von Projektpartnern zur Verfügung gestellt und weisen unterschiedliche Zusammensetzung im Schadstoffmuster auf. Die Auswahl erfolgte aufgrund der Verfügbarkeit der Standorte als mögliche Pilotstandorte zur Bioaugmentation im späteren Projektverlauf.

Tabelle 3-2:Standort-Grundwässer die in Laborversuchen auf ihre Bioaugmentations-Tauglichkeitgeprüft wurden.

Standort	Projektpartner	Chlorethene
NAM – Belgien	SPAQUE	PCE, TCE, cDCE
UBELL – Belgien	SPAQUE	PCE, TCE

Die Grundwasserprobenahme an den Standorten NAM und UBELL fand am 29/30.03.2022 statt. Nach Stabilisierung der Sofortparameter wurde das Wasser in Tedlarbeuteln gefüllt. Die Tedlarbeutel sind in Stahltonnen verbaut, deren Gasvolumen mit Stickstoff gespült wurde, sodass das Grundwassers bis zum Ansatz der Experimente in sauerstofffreier Atmosphäre gelagert werden konnte. Die Lagerung fand in einer Kühlkammer bei 4°C statt. Abbildung 3-2

zeigt die Beprobung eines Piezometers am Standort NAM sowie die Tonnen mit den Tedlarbeuteln während der Probenahme.

Abbildung 3-2: Beprobung des Piezometers Pz17 am Standort NAM (links); Stahltonnen mit Tedlarbeuteln zur anaeroben Lagerung des Grundwassers bis zum Start der Experimente (rechts).

Tabelle 3-3 zeigt die gemessenen Sofortparamter sowie die Ergebnisse der Laboranalytik nach Ankunft der Grundwasserproben im Labor.

Tabelle 3-4 und Tabelle 3-5 geben eine Übersicht über die im Labor durchgeführten Batch-Versuche. Bei Versuchsansatz wurde pro Batchversuch 1900 mL kontaminiertes Grundwasser in autoklavierte 2,3 L-Borosilikat-Flaschen mit seitlicher GL-18-Öffnung gefüllt. Die GL-18-Öffnung ist durch eine Lochkappe mit Teflonseptum verschlossen, welches für die Probenahme mit einer sterilen Kanüle durchstochen und nach der Probenahme ausgetauscht wird.

Parameter	BG	Einheit	NAM	UBELL
Vor-Ort Parameter				
Sauerstoff	-	mg/L	0,29	0,35
рН	-	-	6,34	6,5
Temperatur	-	°C	11,8	13,2
Leitfähigkeit	-	µS/cm	276	1428
Redoxpotential gemessen (Ag/AgCl)	-	mV	-122,9	-38,8
Redoxpotential korrigiert (SHE)	-	mV	92	176
Anionen				
Chlorid	1,0	mg/L	10,7	35
Nitrit	1,0	mg/L	< BG	< BG
Nitrat	1,0	mg/L	< BG	< BG
Phosphat	1,0	mg/L	< BG	< BG
Sulfat	1,0	mg/L	20	143
Kationen				
Ammonium	0,3	mg/L	0,40	0,45
Schadstoffe				
PCE	0,0008	mg/L	0,0020	0,0014
TCE	0,0007	mg/L	0,5565	0,0023
tDCE	0,005	mg/L	< BG	< BG
cDCE	0,02	mg/L	0,88	< BG
VC	0,13	mg/L	< BG	< BG
1,1-DCE	0,01	mg/L	< BG	< BG
1,1-DCA	0,01	mg/L	< BG	< BG
1,2-DCA	0,01	mg/L	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG
Dichlormethan	0,005	mg/L	< BG	< BG

Tabelle 3-3: Werte der Vor-Ort-Parameter und der chemischen Analytik nach Ankunft der Grundwasserproben im Labor.

Tabelle 3-4: Übersicht der Bioaugmentationsversuche mit Grundwasser des Standortes NAM.

Set	Exp#	Inokulum	TCE-Dosierung	Temp.	O ₂	CuSO ₄
N1	NAM 1	-	-	20°C	+	-
	NAM 2	100 mL Laborkultur	-	20°C	+	-
	NAM 3	-	-	20°C	+	2 g/L
N2	NAM 4	-	20 mg/L	20°C	+	-
	NAM 5	100 mL Laborkultur	20 mg/L	20°C	+	-
	NAM 6	-	20 mg/L	20°C	+	2 g/L
N3	NAM 7	-	20 mg/L	12°C	+	-
	NAM 8	100 mL Laborkultur	20 mg/L	12°C	+	-
	NAM 9	Grundwasser abbauaktiver Standort	20 mg/L	12°C	+	-

Set	Exp#	Inokulum	TCE-Dosierung	Temp.	O ₂	CuSO ₄
UB1	UBELL 1	-	600 µg/L	20°C	+	-
	UBELL 2	100 mL Laborkultur	600 µg/L	20°C	+	-
	UBELL 3	-	600 µg/L	20°C	+	2 g/L
UB2	UBELL 4	-	20 mg/L	20°C	+	-
	UBELL 5	100 mL Laborkultur	20 mg/L	20°C	+	-
	UBELL 6	-	20 mg/L	20°C	+	2 g/L
UB3	UBELL 7	-	20 mg/L	12°C	+	-
	UBELL 8	100 mL Laborkultur	20 mg/L	12°C	+	-
	UBELL 9	Grundwasser abbauaktiver Standort	20 mg/L	12°C	+	-

Tabelle 3-5: Übersicht der Bioaugmentationsversuche mit Grundwasser des Standortes UBELL.

Aufgrund der geringen Konzentrationen an Chlorethenen (< 1 mg/L) wurden in den Sets N2, N3, UB2 und UB3 die TCE-Konzentration auf 20 mg/L aufdotiert. Hierdurch kann bei einer Mineralisation des TCE ein deutlicher Anstieg in der Chloridkonzentration beobachtet werden.

Die Ansätze NAM 9 und UBELL 9 wurden anstelle der Laborkultur mit Grundwasser des SF-Standortes mit aktivem aerob metabolischem TCE-Abbau sowie cDCE-Abbau inokuliert. Da die Laborkultur bei Raumtemperatur gelagert wird, ist durch das Absenken der Temperatur eine Adaptionsphase zu erwarten. Das Grundwasser des SF-Standortes hat eine Temperatur von 10-14°C (saisonale Schwankung), was zu einer Verkürzung der Adaptionsphase führen kann.

Die Ansätze NAM 3, NAM 6, UBELL 3 und UBELL 6 wurden mit 2 g/L CuSO₄ (>98 %, Alfa-Aesar, USA) versetzt. Dieses unterbindet biologische Prozesse und ermöglicht so abiotische Schadstoffverluste zu identifizieren.

3.5.3 Herstellung qPCR-Standards

3.5.3.1 Primer Design

Die verwendeten Primer wurden auf Grundlage der Sequenzen einer Metagenomanalyse (Anhang 8.3.3.1.1) mit dem Online-Tool Primer-Blast von NCBI designed (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Die verwendeten Parameter für das Primerdesign sind in Tabelle 3-6 gelistet. Tabelle 3-7 beinhaltet die Primer für die eine Messmethode etabliert wurde. Eine vollständige Liste aller untersuchten Primer ist in Tabelle 8-88 (Anhang 8.3.3.1.2) gegeben.

Tabelle 3-6:Verwendete Parametereinstellung zur Generierung der qPCR-Primer durch Primer-
Blast.

Produktgröße	T _{A;Range}	T _{A;Optimum}	Datenbank	Organsimen
70-100 bp	57-63°C	60°C	nr	Bakterien
TA	Annealingtempera	tur		

Name	Sequenz-		Sequenz	Fragmentlänge [bp]
	nummer			
38/ moA	1	F:	TTGTGGTGGTACATCGGTGG	74
		R:	TCCACCTGTGGCGTTGATAC	
39/ moB	2	F:	ATGGCATATCATCTGGGCCG	124
		R:	GCCCGACGTTACCAGTACAT	
42/ moC	5	F:	TGCCTGAGTTTGCTAAGGGG	89
		R:	GTCTTGCGGATCGAAAGCTG	
47/ hdlh	10	F:	TTTCGCGTCAACAAAGGCAG	182
		R:	GGGTTGTAGACCGCAATGGA	

Tabelle 3-7: Primer für den Nachweis des Potentials zum aerob metabolischen TCE-Abbaus. Die Tabelle enthält den vergebenen Primer-Namen sowie die Sequenznummer der Metagenomanalyse (Anhang 8.3.3.1.1). Die Sequenzen sind in 5'-3'-Richtung notiert.

3.5.3.2 Amplifizieren und Aufreinigen des Templates

Für die Herstellung der PCR-Standards wird das Ziel-Fragment als Template benötigt. Hierzu wurden mit den jeweiligen Primern im Doppelansatz 50 μ L des Mastermix 2 (Tabelle 8-17, Anhang 8.2.4.3) angesetzt und entsprechend dem Programm in Tabelle 8-7 (Anhang 8.2.2) verwendet. Anhand der Kapillargelelektrophorese wurde die Größe der Fragmente überprüft und 85 μ L des PCR-Ansatzes wurden mit dem "High Pure PCR Product Purification Kit (Roche, Basel, Schweiz) nach Herstellerangaben aufgereinigt. Das aufgereinigte PCR-Fragment wurde in einem Volumen von 50 μ L eluiert.

3.5.3.3 Klonierung und Transformation mit dem pGEM T-Vektorsystem

Die Klonierung der PCR-Fragmente wurde im Vektor pGEM-T (Promega, Fitchburg, USA) durchgeführt. Die Zusammensetzung des verwendeten Mastermix 3 ist Tabelle 8-18 (Anhang 8.2.4.3) zu entnehmen. 1,5 μ L des aufgereinigten PCR-Fragmentes wurde in 3,5 μ L des Mastermix 3 gegeben, gemischt und abzentrifugiert. Der Ansatz wurde über Nacht bei 4°C inkubiert. Die Arbeiten wurden auf Eis durchgeführt.

Der Vektor besitzt zur Selektion eine Antibiotika-Resistenz für Ampicillin. Die Multiple Cloning Site liegt im Gen der ß-Galactosidase. Mittels Blau-Weiß-Selektion kann somit die Integration des PCR-Fragmentes in den Vektor geprüft werden. Der schematische Ablauf der Blau-Weiß-Selektion ist in Abbildung 3-3 dargestellt.

Der Vektor wurde mittels Hitzeschock in *Escherichia coli* K12 JM109 (Promega) transformiert. Hierzu wurden kompetente *E. coli* Zellen auf Eis aufgetaut, gemischt und abzentrifugiert. Zu 25 µL der Zellen wurde 1,5 µL des Ligations-Ansatzes gegeben und für 20 min auf Eis inkubiert. Der Hitzeschock wurde bei 42°C für 45 s durchgeführt. Nach einer zweiminütigen Inkubation auf Eis wurden 475 µL vorgewärmtes SOC-Medium zum Ansatz hinzugegeben. Nach zweistündiger Inkubation auf einer Rotationsplatte (600 rpm) wurden dreimal 100 µL des Transformationsansatzes auf eine LAXI-Platte (Tabelle 8-21, Anhang 8.2.4.3) ausgestrichen. Die Platten wurden 24 h bei 36°C inkubiert. Zur besseren Unterscheidung der blauen und weißen Kolonien wurden die Platten für eine Stunde bei 4°C gelagert.

Anhand einer PCR-Reaktion wurde überprüft, ob der Vektor das richtige Insert enthält. Hierzu wurden die weißen Kolonien gepickt, auf einer neuen Platte ausgestrichen und die Spitze der für den Transfer verwendeten Pipette in ein Reaktionsgefäß mit 100 µL Wasser gegeben. Die

Masterplatte wurde über Nacht bei 36°C inkubiert. Die Reaktionsgefäße wurden für zehn Minuten bei 95°C geschüttelt und anschließend die PCR, mit 11 µL des Mastermix 2 und dem Programm entsprechend Tabelle 8-7 (Anhang 8.2.2), durchgeführt.

Anhand des Primer-Paares M13 (Forward: 5'-GTTTTCCCAGTCACGAC-3', Reverse: 5'-CAGGAAACAGCTATGAC-3'), welches auf dem Vektor bindet, kann auf Grundlage der entstehenden Fragmentgröße die Integration des Fragmentes in den Vektor überprüft werden. Als Template wurden 2 μ L der, mit der Pipetten-Spitze angeimpften, 100 μ L verwendet. Die entstandene Fragmentgröße wurde mittels Kapillar-Gelelektrophorese bestimmt. Die erwartete Größe liegt bei der Größe des eingefügten PCR-Fragmentes plus 236 bp.

Die Amplifizierung der Plasmide wurde mit einem Klon, der in der PCR die richtige Fragmentgröße aufwies, durchgeführt. Hierzu wurde über Nacht ein 250 mL Schikane-Kolben mit 100 mL LB-Medium (Tabelle 8-19, Anhang 8.2.4.3) und 0,05 mg/mL Ampicillin bei 36°C inkubiert. 50 mL der Kultur wurden für 15 min bei 4.500 g abzentrifugiert, der Überstand verworfen und das Pellet bis zur Plasmidaufreinigung bei -20°C gelagert.

Abbildung 3-3: Schematischer Ablauf der Blau-Weis-Selektion; nach Mülhardt (2013).

3.5.3.4 Plasmid-Aufreinigung und Linearisierung

Die Aufreinigung der Plasmide wurde mit dem "Plasmid Purification Midi Kit" (Qiagen) entsprechend der Herstellerangaben mit einem Qiagen Tip 100 durchgeführt. Die aufgereinigte DNA wurde in einer 1:10 Verdünnung mit einem Qubit Fluorometer (invitrogen) nach Herstellerangaben gemessen.

Zur Linearisierung des Plasmids wurden 5 μ g Plasmid-DNA mit 10 μ L Puffer A (Roche) und 2,5 μ L Apal (Roche) gemischt und mit Wasser auf 100 μ L aufgefüllt. Der Ansatz wurde für 2,5 h bei 30°C inkubiert und anschließend für 15 min bei 65°C inaktiviert.

Der linearisierte Vektor wurde zur Kontrolle anhand einer Kapillargelelektrophorese vermessen und mit dem "High Pure PCR Product Purification Kit" (Roche) nach Herstellerangaben aufgereinigt. Das aufgereinigte Produkt wurde in einem Volumen von 50 µL eluiert. Die DNA-Konzentration wurde wiederum mittels Qubit Fluorometer bestimmt. Zur Herstellung der Standards wurde die Anzahl der Genkopien entsprechend Gleichung (XI) berechnet. Das durchschnittliche Molekulargewicht eines Nukleotidpaars beträgt 660 pg/pmol.

$$n_{Genkopien} = \mu g \ DNA * \frac{1 \ pmol}{660 \ pg} * \frac{1,0e+6 \ pg}{1 \ \mu g} * \frac{1}{n_i + n_v} * \frac{N_A}{1,0e+12 \ \frac{pmol}{mol}}$$
(XI)

n _{Genkopien}	Anzahl der Genkopien
ni	Anzahl der Nukleotide des Inserts
nv	Anzahl der Nukleotide im Vektor
N _A	Avogadrokonstante: 6,023e+23 mol ⁻¹

3.5.3.5 Gradienten PCR

Die Bestimmung der Annealingtemperatur der Primer wurde mittels Gradienten-PCR durchgeführt. Hierfür wurden 15 µL des Mastermix 1 in einem CFX96 Deep Well Real-Time System (BioRad) mit den in Tabelle 8-8 (Anhang 8.2.2) gelisteten Programmdaten untersucht.

3.5.3.6 Spezifität des qPCR-Nachweises

Auf Grundlage einer Metagenomanalyse verschiedener TCE-abbauender Kulturen, durchgeführt durch Projektpartner der Ecolé Central de Lyon, wurde eine Auswahl an Primern für potenzielle funktionellen Gene getroffen. Neben der Etablierung der Primer wurde zur Evaluierung der Tauglichkeit in Bezug auf die Selektivität des aeroben TCE-Abbaus, Umweltproben verschiedener Hintergründe sowohl als Positiv-Kontrollen (Bioaugmentationsversuch im Labor; SF-Standort), als auch als Negativ-Kontrollen (kein aerob metabolischer TCE-Abbau beobachtet bzw. erwartet) untersucht. Eine Übersicht der untersuchten Proben und ihrer Herkunft ist in Tabelle 3-8 gegeben.

	Bezeichnung	Herkunft	Schadstoff	
Negativ-Kontrolle	VC	VC-abbauende Kultur ¹⁾	VC	
	cDCE	cDCE-abbauende Kultur ²⁾	cDCE	
	NP 1	Altlast: Lack/Farbindustrie	BTEX	
	NP 2	Ablauf kommunale Kläranlage	-	
	NP 3	Altlast: Sondermülldeponie	BTEX, PAK, NSO-	
			HET, CE	
	NP 4	Altlast: Ehemalige Kokerei	PAK, NSO-HET	
Positiv-Kontrolle	PP 1	Aktiv aerob metabolisch Chlorethen-	cDCE, TCE	
		abbauender Standort		
	PP 2	Bioaugmentationsexperiment mit	PCE, TCE, cDCE,	
		Grundwasser eines Chlorethen	VC	
		kontaminierten Standortes		
		(Willmann et al. 2023)		

Tabelle 3-8: Übe	ersicht der untersuchten	Negativ- und	Positiv-Kontrollen.
------------------	--------------------------	--------------	---------------------

1) Anhang 8.2.5.1 Tabelle 8-22

2) Anhang 8.2.5.2 Tabelle 8-23

3.5.4 Entwicklung einer Mischkultur zur Bioaugmentation des aerob metabolischen cDCE- und TCE-Abbaus

Kontaminationen, die aus mehreren verschiedenen Substanzen zusammengesetzt sind, können den gezielten Schadstoffabbau über spezifische Abbauwege im Rahmen der Bioaugmentation erschweren. So wird beispielsweise der mikrobiologische Abbau von cDCE durch die Präsenz von TCE inhibiert (Zhao et al. 2010). Während im metabolischen TCE-Abbau ein co-metabolischer cDCE-Abbau beobachtet werden kann, wird der Abbau jedoch deutlich verlangsamt, sobald die Stoffmenge an cDCE die Stoffmenge an TCE übersteigt, bis der TCE-Abbau komplett inhibiert wird. Durch die Kombination einer aerob metabolisch cDCE-Abbauenden Kultur und einer aerob metabolisch TCE-Abbauenden Kultur, wurden Mischkulturen erstellt und der Chlorethen-Abbau unter variierenden Schadstoff-Verhältnissen untersucht.

Die Versuche wurden in 1,2 L Borosilikat-Flaschen mit seitlicher GL18-Öffnung zur Probenahme durchgeführt. Um einheitliche Rahmenbedingungen für die Versuchsreihe zu gewährleisten, wurden die Versuche in L+C Medium durchgeführt. Eine Übersicht der einzelnen Versuchsphasen sowie der eingesetzten Kulturen und Schadstoffe ist in Tabelle 3-9 gegeben.

Aktive Ansätze bestehen aus 900 mL L+C-Medium und 100 mL Inokulum, nicht inokulierte Ansätze (Steril) bestehen aus 1000 mL L+C-Medium, sodass alle Ansätze bei Versuchsstart das gleiche Flüssigkeitsvolumen und einheitliche Kopfvolumina an Luft besitzen. Das berechnete und zudosierte Schadstoffvolumen in den einzelnen Phasen beträgt 75 µmol/L bzw. 25 µmol/L. Die tatsächlichen Startwerte weichen davon geringfügig ab.

Die Ansätze wurden auf die Parameter Sauerstoff, pH, Temperatur, Chlorid, cDCE, TCE, sowie ausgewählte Ansätze auf die PCR-Primer AceA (cDCE-Abbau) und moC (TCE-Abbau) untersucht. Um das Flüssigkeit/Gas-Verhältnis in allen Versuchen gleich zu halten, wurde während der Probenahme der sterilen Ansätze, anstelle einer Wasserprobe für PCR-Untersuchungen zu nehmen, 50 mL Flüssigkeit verworfen.

		Inok	kulum	Schadst	off-Konz.
Phase	Bezeichnung	TCE-	cDCE-	TCE	cDCE
	g	abbauende	abbauende		
	P1-TCE-1	Kullul	Kullul		
	P1-TCE-2	TCE 452	_		
	P1-TCE-3			75 µmol/L	-
Phase 1	P1-TCE-Steril	_	_	_	
Ein-Stoff-	P1-cDCE-1				
System	P1-cDCE-2	-	MK 121		
	P1-cDCE-3			-	75 µmol/L
	P1-cDCE-Steril	-	-	_	
	P2-TCE-1	P1-TCE-1	-		
	P2-TCE-2	P1-TCE-2	-		
	P2-TCE-3	P1-TCE-3	-	75 μmol/L	75 µmol/L
Phase 2	P2-TCE-Steril	-	-	_	
Zwei Stoff	P2-cDCE-1	-	P1-cDCE-1		
System	P2-cDCE-2	-	P1-cDCE-2	75	75
	P2-cDCE-3	-	P1-cDCE-3	75 µmoi/L	75 µmoi/L
Aquimolares	P2-cDCE-Steril	-	-	_	
Verhältnis	P2-TCE/cDCE-1	P1-TCE-1	P1-cDCE-1		
	P2-TCE/cDCE-2	P1-TCE-2	P1-cDCE-2	75 um al/l	75 um al/l
	P2-TCE/cDCE-3	P1-TCE-3	P1-cDCE-3	75 µmoi/L	/ 5 μποι/ Ε
	P2-TCE/cDCE-Steril	-	-	_	
	P3-High TCE-1	P1-TCE-1	-		
	P3-High TCE-2	P1-TCE-2	-		
	P3-High TCE-3	P1-TCE-3	-	_	
	P3-High TCE-4	-	P1-cDCE-1		
	P3-High TCE-5	-	P1-cDCE-2	75.umol/l	25 umol/l
	P3-High TCE-6	-	P1-cDCE-3	/5 μποι/L	25 µ1101/L
Phase 3	P3-High TCE-7	P2-TCE	/cDCE-1		
Filase 5	P3-High TCE-8	P2-TCE	/cDCE-2		
Zwei-Stoff-	P3-High TCE-9	P2-TCE	cDCE-3		
System	P3-High TCE-Steril	-	-	_	
Nicht-	P3-High cDCE-1	P1-TCE-1			
Äquimolares	P3-High cDCE-2	P1-TCE-2			
Schadstoff-	P3-High cDCE-3	P1-TCE-3			
vernaitnis	P3-High cDCE-4		P1-cDCE-1	_	
	P3-High cDCE-5		P1-cDCE-2	25 umal/l	75 umal/l
	P3-High cDCE-6		P1-cDCE-3	∠ວ µmoi/L	/ ο μποι/∟
	P3-High cDCE-7	P2-TCE	/cDCE-1		
	P3-High cDCE-8	P2-TCE	/cDCE-2		
	P3-High cDCE-9	P2-TCE	/cDCE-3	_	
	P3-High cDCE-Steril				

Tabelle 3-9:Übersicht der angesetzten Versuche in den einzelnen Versuchsphasen. Die Herkunft
der verwendeten Kulturen ist in Tabelle 8-23 und Tabelle 8-24 gelistet.

3.5.5 Ausbreitung der TCE-abbauenden Bioaugmentationskultur im sandigen Aquifer

3.5.5.1 Versuche im Labormaßstab

Um mehr über das Ausbreitungs- und Wachstumsverhalten der Bakterienkultur in einem Bioaugmentationsverfahren zu erfahren, wurden Säulensysteme im Durchfluss betrieben. Als Bodenmaterial wurde Quarzsand (Dorsilit 8) verwendet. Die Säulen wurden mit Flüssigkultur, als auch mit bewachsenem sandigem Material inokuliert. Während das bewachsene Material beim Zusammenbau der Säulen als bioaktive Zone von ~8-13 cm Höhe in den Säulenaufbau integriert wurde, wurde die Injektion der Bakterienkultur nach Zusammenbau und Start des Säulenversuchs durchgeführt. Neben einer einmaligen Injektion einer Bioaugmentationskultur wurden auch die Auswirkungen einer kontinuierlichen Injektion der Kultur untersucht.

Die verwendete Flüssigkultur 70-2-1 (Anhang 8.2.5.3 Tabelle 8-24) wurde gemäß Kapitel 3.5.1 in Borosilikat-Flaschen angereichert. Das bewachsene Material wurde entsprechend Kapitel 3.5.1.2 angereichert und der 70 L-Säule entnommen. Das entnommene Bodenmaterial wurde vor der Weiterverwendung sorgfältig durchmischt.

Die verwendeten Säulen besitzen ein Fassungsvermögen von ~10 L (Porenvolumen ~4 L bei der Verwendung von Dorsilit 8 als Füllmaterial) und erlauben eine horizontierte Auflösung der einzelnen Parameter durch den Einbau von Probenahmestellen in verschiedenen Höhen (Zulauf, 6 cm, 11 cm, 21 cm, 31 cm; 41 cm, Ablauf). Hierdurch kann ein über die Fließstrecke differenzierter Verlauf des Schadstoffabbaus sowie des Bakterienwachstums erstellt werden. Das Wachstum bzw. die Ausbreitung der Bakterien wird mittels molekularbiologischer Methoden nachgewiesen. Die Säulen werden mit einem TCE-dotierten (20 mg/L) 1:1 Gemisch aus Leitungswasser (TW) und de-ionisiertem Wasser (VE) mit einem Volumenstrom von 1 L/Tag / (Aufenthaltszeit t_R ~4 Tage; Abstandsgeschwindigkeit v_a ~11 cm/Tag) betrieben.

Abbildung 3-4 zeigt zwei der verwendeten Säulen sowie eine Innenansicht einer leeren Säule. Der schematische Versuchsaufbau ist in Abbildung 3-5 dargestellt.

Abbildung 3-4: Betrieb der Säulen mit Injektion einer Flüssigkultur (links); Innenansicht einer leeren Säule (rechts).

Abbildung 3-5: Schematische Darstellung des Versuchsaufbaus.

Tabelle 3-10:	Übersicht der b	petriebenen	Säulen n	nit Bioaugn	nentations	methode,	eingebracht	эr
Zellzahl sowie	Position der Bio	augmentatio	on.					

		Bioaugmentatior	าร-			t _R	Va
Säule	Ansatz	Zellzahl	Volumen/ Menge	Höhe	L/d	d	cm/d
S 1	Einmalige Injektion	6 9e+9/100 ml	100 ml	11 cm			
S 2	Flüssigkultur	0,00° 0,100 me	100 IIIL	TT OIL			
S 3	Einbau	2 20+9/			-		
S 1	bewachsenes	katai asamatai al ¹)	2 kg	8-13 cm			
04	Trägermaterial	Ky ragermaterial ?			1	1	11
	Kontinuierliche					4	
$S_{Kontinuierlich}$	Injektion	3,6e+9/100 mL	1.560 mL	11 cm			
	Flüssigkultur						
Skatall	Keine				-		
OKontrolle	Bioaugmentation	-	-	-			
t _R	Aufenthaltszeit						
1)	Durch mechanische	Elution ablösbare	Zellzahl				

3.5.5.2 Versuche im technischen Maßstab

Im technischen Maßstab wurde die Skalierung des Bioaugmentationsansatzes sowie die Auswirkung eines elektrischen Feldes auf die laterale Ausbreitung der Bioaugmentationskultur untersucht. Die Versuchsbedingungen sind in Tabelle 3-11 aufgeführt.

Tabelle 3-11:	Übersicht der	Versuchsparameter	der Bioaugme	ntationsversuch	ne in Box-Vers	suchen in
technischer Ska	ala					

		Spannungs-	Inokulations-	1	Q	t _R	Va
Box	Ansatz	gradient	Volumen/Masse	Zellzahl	L/d	d	cm/d
Box 1	Bioaugmentation	-	12,6 L	2,2e+9/	31	4,6	21,7
			24,5 kg	kg⊤rägermaterial ¹⁾			
Box 2	Bioaugmentation	-	12,6 L	2,2e+9/	34	4,2	23,8
			24,5 kg	kg _{Trägermaterial} 1)			
Box 3	Bioaugmentation	-	9,2 L	2,2e+9/	36	4,0	25,0
			17,8 kg	kg ⊤rägermaterial ¹⁾			
Box 4	Elektrokinetisch	0,1 V/cm	9,2 L	2,2e+9/	24	6,0	16,7
	unterstütze		17,8 kg	kg⊤rägermaterial ¹⁾			
	Bioaugmentation						
t _R	Retentionszeit						
Va	Abstandsgeschwind	igkeit					

1) Durch mechanische Elution ablösbare Zellzahl

3.5.5.2.1 Bioaugmentationsansatz

Die Versuche für die Ausbreitung des aerob metabolischen TCE-Abbaus im technischen Maßstab wurden an der "Versuchseinrichtung zur Grundwasser und Altlastensanierung" (VEGAS) des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart durchgeführt. Für die Versuche wurden zwei Boxen (50 cm x 100 cm x 80 cm) aus Kunststoff hergestellt und durch Holzrahmen verstärkt. Der schematische Aufbau der Boxen sowie ein Foto einer Box ist in Abbildung 3-6 dargestellt.

Abbildung 3-6: Schematischer Aufbau der Boxen (links) und tatsächlicher Aufbau der Boxen mit Holzrahmen zur Verstärkung der Stabilität (Abbildungen bereitgestellt durch VEGAS).

Die Boxen sind im Ablauf in acht Kammern (A-H) unterteilt, wodurch eine Differenzierung des Chlorethenabbaus über die Breite der Box durchgeführt werden kann. Die Abläufe münden in Constant-Head-Behältern, durch die der Wasserpegel der Boxen und damit der hydraulische Gradient reguliert werden kann (Abbildung 3-7). Beim Füllen der Boxen mit Dorsilit 8 wurden Filterrohre für Elektroden, sowie Probenahmestellen auf einer Höhe von 25 cm (z-Achse), im Inneren der Box installiert (Abbildung 3-9). Die Elektroden wurden in der ersten Versuchsdurchführung nicht verwendet, wurden jedoch installiert um zwischen den Versuchen 3.5.5.2.1 und 3.5.5.2.2 einen gleichbleibenden Versuchsaufbau zu erhalten. Der Wasserpegel war beim Befüllen stets über der Füllhöhe des Dorsilit 8, um den Einschluss von Luftblasen zu verhindern und somit vollständig gesättigte Bedingungen im Füllkörper zu erhalten. Die mit Wasser gefüllte Höhe betrug 45 cm.

Abbildung 3-7: Betriebsschema der Boxen der Versuche im technischen Maßstab (Abbildung bereitgestellt durch VEGAS).

Abbildung 3-8: Draufsicht der Boxen mit den einzelnen Ports sowie dem Inokulationsbereich. Die integrierten Probenahmestellen wurden auf einer Höhe von 25 cm (Z-Achse) realisiert. Der schraffierte Bereich markiert die mit Kies gefüllten Zu- und Ablaufbereiche. Die gestrichelte Linie markiert die Trennung des sandigen Innenkörpers von den mit Kies gefüllten Zu- und Ablauf-Bereichen durch ein Geovlies.

Für eine erhöhte hydraulische Durchlässigkeit in Zu- und Ablaufbereich, wurden diese mit Kies anstelle von Dorsilit verfüllt. Weiterhin wurden der Zulauf- und Ablaufbereich durch ein Geovlies vom sandigen Hauptfüllkörper getrennt. Das Inokulum wurde in Form von bewachsenem Dorsilit 8 in die Boxen eingebracht. Hierzu wurde im zulauf-nahen Bereich ein röhrenförmiges Blech verwendet, um einen klar eingegrenzten Inokulationsbereich zu erhalten und die Ausbreitung des Inokulum während des Einbaus zu minimieren.

Abbildung 3-9: Einbau der Filterrohre (weiße Rohre) und Probenahmeports (blaue, gelbe und grüne Schläuche) (links); Anschließen der Elektroden nach Befüllen der Boxen (rechts).

Die Analytik umfasst neben den Schadstoffen und den Ionen auch biologische Parameter. Eine Übersicht der Parameter, der Analysemethodik, den jeweils zuständigen Partner sowie die Analysehäufigkeit ist in Tabelle 3-12 gegeben.

Deremeter	Mathada	Dortnor	M	essintervall [Woo	itervall [Wochen]	
Farameter	Methode	Faither	Zulauf	Inside Ports	Ablauf	
Chlorethene	HPLC/UV	VEGAS	1	1	1	
Chlorid	Titration	VEGAS	1	1	1	
O ₂ , pH, Temp.	Messelektroden	VEGAS	1	1	1	
Biomarker	qPCR	TZW	2	2	2-4	
Gesamtzellzahl	Durchflusszytometer	TZW	2	2	2	

Tabelle 3-12:Gemessene Parameter, verwendete Messmethoden, zuständiger Partner und
Messintervall der einzelnen Parameter.

3.5.5.2.2 Elektrokinetische unterstützte Ausbreitung der Bioaugmentationskultur

Die verwendeten Versuchsboxen sind die, in Kapitel 3.5.5.2.1; bereits beschriebenen Boxen. Zur besseren Unterscheidung der Versuche wurden die Boxen Box 3 und Box 4 benannt. Der Grundaufbau der Scale-Up-Boxen ist identisch zu Kapitel 3.5.5.2.1, allerdings wurde in der zweiten Versuchsrunde eine der Boxen (Box 4) mit Titan bzw. Titan-Mischmetalloxid (Ti-MMO) -Stabelektroden (Metakem GmbH, Deutschland) bestückt und mit DC-Spannung von 0,1 V/cm (Gesamtspannung 6 V) beaufschlagt. Box 3 erhielt, anstelle von Ti/Ti-MMO-Elektroden, Stahlelektroden, die untereinander kurzgeschlossen wurden. Hierdurch befinden sich alle Stahlelektroden auf dem gleichen elektrischen Potential und das Entstehen eines elektrischen Feldes wird unterbunden.

Das Inokulum wurde in diesem Versuch in rechteckiger Form eingebracht, um eine geringere initiale Ausbreitung über die Boxbreite zu erhalten.

Abbildung 3-10 zeigt den schematischen Aufbau der Boxen und die Positionen des Inokulums, der Elektroden und der Probenahmestellen.

Abbildung 3-10: Positionen der Zu-/Ablauf-Ports, sowie der Probenahmestellen innerhalb der Boxen und der Elektroden in der DC-unterstützten Box. Das Innere der Boxen ist mit Dorsilit 8 gefüllt. Der schraffierte Zu- und Ablaufbereich ist, für eine höhere hydraulische Durchlässigkeit, mit grobem Kies gefüllt. Die gestrichelte Linie deutet die Separation der Sandfüllung und des Kieses durch ein Geovlies an. \oplus = Dummy Elektroden, \odot = Kathoden, \oplus = Anoden.

Die Analytik umfasst neben den Schadstoffen und den Ionen auch Biomarker. Eine Übersicht der Parameter, der Analysemethodik, den jeweils zuständigen Partner sowie die Analysehäufigkeit ist in Tabelle 3-13 gegeben.

Da anhand der Gesamtzellzahl keine Entwicklung im Bioaugmentations-Scaling beobachtet werden konnte, wurden die Analysen aus dem Programm entfernt. Sulfat wurde als Kontrollparameter des Ionen-Transports in das Analyse-Programm aufgenommen. Die Entnahme der Probe-Volumina von ~250 mL pro integriertem Probenahme-Port kann einen Einfluss auf das Fließregime innerhalb der Boxen und damit auch einen Einfluss auf die Ausbreitung der Bioaugmentationskultur nehmen. Auf die Probenahme der Probenahme der Probenahme der Box wurde daher in diesem Versuch verzichtet.

Deremeter	Mathada	Dortnor	Messintervall [Wochen]			
Parameter	Methode	Partner	Zulauf	Inside Ports	Ablauf	
Chlorethene	HPLC/UV	VEGAS	1	-	1	
Chlorid	Titration	VEGAS	1	-	1	
O ₂ , pH, Temp.	Messelektroden	VEGAS	1	-	1	
Biomarker	qPCR	TZW	2	-	2	
Spannung bzw. Stromstärke	Multimeter	VEGAS	dauerhaft	, online		

Tabelle 3-13:Gemessene Parameter, verwendete Messmethoden, zuständiger Partner und
Messinverall der einzelnen Parameter.

3.5.6 Elektrochemisch unterstützter Schadstoffabbau

Für die Versuche zur elektrochemischen Unterstützung des aerob metabolischen TCE-Abbaus wurden zwei Kleinsäulen (Borosilika-Glas, Durchmesser 3,5 cm, Länge 28 cm) mit sandigem Bodenmaterial (Dorsilit 8) gefüllt. In einer der Säulen wurde zusätzlich bei der Befüllung im Zulaufbereich eine Ti-MMO Streckmetallronde als Anode und im Ablaufbereich eine Ti-Streckmetallronde als Kathode (Durchmesser 3,45 cm; Metakem GmbH, Deutschland) verbaut. Die Streckmetall-Form lagen in Maschentyp B des Herstellers vor.

Die Elektrodenfläche der Streckmetallronden beträgt ~1.100 mm². Während des Befüllens wurde durch den Zulauf L+C-Medium in die Säule gepumpt, um den Einschluss von Luftblasen zu verhindern.

Zur Immobilisierung der Mikroorganismen wurde eine zum aerob metabolischen TCE-Abbau fähige Kultur (TCE45, siehe Anhang 8.2.5.3, Tabelle 8-24) über drei Monate im Kreislauf durch die Säulen geführt. Die TCE-Konzentration im Kreislaufmedium wurde regelmäßig gemessen und bei Bedarf wurde TCE nachdosiert. Nach Etablierung der Mikrobiota auf dem sandigen Material wurden die Säulen von der Kreislauf-Führung auf ein Durchfluss-System geändert. Dies ermöglicht eine bessere Bilanzierung des ein und abströmenden Mediums durch konstante Konzentrationen im Säulenzulauf. Als Medium wurde das in Tabelle 8-10 (Anhang 8.2.4.1) beschriebene Mineralmedium verwendet. Die Chlorid-freie Zusammensetzung erlaubt hierbei die bestmögliche Bilanzierung des, im Rahmen des Schadstoffabbaus, freigesetzten Chlorids.

Die Säulen wurden zu Beginn der Durchfluss-Phase mit ~ 250 mL/d (Aufenthaltsdauer ~0,4 d, Abstandsgeschwindigkeit 75 cm/Tag) durchflossen. Im Laufe des Versuches wurde der Volumenstrom auf ~500 mL/d (Aufenthaltsdauer ~0,2 d, Abstandsgeschwindigkeit 150 cm/Tag) erhöht. Die TCE-Konzentration im Zulauf wurde über die Versuchsdauer von 5 mg/L sukzessive auf 30 mg/L erhöht. Durch den im Medium enthaltenen Sauerstoff (~8 mg/L) kann bei stöchiometrischem Schadstoffumsatz ~22 mg/L TCE mineralisiert werden. Bei höheren TCE-Konzentrationen ist Menge an abbaubarem Schadstoff durch die Menge an gelöstem Sauerstoff limitiert. Durch das Überangebot an TCE wird somit der Effekt des angelegten Gleichstroms beobachtbar.

Abbildung 3-11: Aufbau der bioaugmentierten Säulen zur Untersuchung des elektrochemisch unterstützten TCE-Abbaus.

Zur Kontrolle des elektrochemischen TCE-Abbaus, wurde eine abiotische Säule geführt. Hierzu wurde das Bodenmaterial vor dem Einbau autoklaviert und auf die Rezirkulation der Laborkultur verzichtet. In Zu- und Ablaufbereich wurden die entsprechenden Elektroden für den Stromfluss verbaut.

Die bioaugmentierten Säulen und die abiotische Säule wurden durch getrennte Vorratsbehälter versorgt. Durch die vollständige Trennung der Fluidik kann ein Bewuchs der abiotischen Säule, durch zurückwachsen der Bakterien aus Säule Bio 1 und Bio 2 verhindert werden.

Eine Übersicht der durchgeführten Säulenversuche ist in Tabelle 3-14 gegeben.

Tabelle 3-14:	Rahmenbedingungen der	Kleinsäulenversuche zu	r elektrochemischen	Stimulation of	des
aerob metabolis	schen TCE-Abbaus.				

- ...

Säule	Bioaugmentations- kultur	Stromstärke mA	t _R Tage	v _a cm/Tag
Bio 1	TCE 45 ¹⁾	-	0,2 - 0,4	75 - 150
Bio 2	TCE 45 ¹⁾	0,25 - 0,50	0,2 - 0,4	75 - 150
Abiotisch	-	0,50 - 0,75	0,2	150

1) Tabelle 8-24, Anhang 8.2.5.3

Das Medium wurde durch Ismatec Reglo Digital MS-4/12 Pumpen (Avantor, Radnor, USA) gefördert. Sämtliche Schlauchverbindungen wurden durch Viton-Schläuche realisiert. Die Probenahmemöglichkeiten in Zu- und Ablauf der einzelnen Säulen bestehen aus T-Stücken aus Glas mit angeschlossenen Luer-Lock-Ventilen. In den Säulenabläufen wurden Messzellen zur In-Line-Bestimmung des im Medium gelösten Sauerstoffes eingesetzt. Dies ermöglicht, verglichen mit Messungen in einem externen Behältnis, eine genauere Bilanzierung des verbrauchten Sauerstoffs. Die Messung und Aufzeichnung wurde durch ein inoLab Multi 9630 IDS Labormessgerät mit FDO 925 Sauerstoffsensoren durchgeführt. Während der Versuche wurde wöchentlich der Zu- und Ablauf beprobt. Die Sensoren wurden in regelmäßigen Abständen kalibriert. Im Rahmen der Probenahmen wurden die

Sofortparameter gelöster Sauerstoff (engl. dissolved oxygen, DO), pH und Temperatur, sowie Chlorid und TCE untersucht.

Um Veränderungen im Abbauverhalten als Resultat des elektrischen Stroms nachzuweisen, wurde über die Versuchsdauer der Strom mehrfach zu bzw. abgeschaltet. Die Perioden mit bzw. ohne Strom dauerten zwischen 14 und 21 Tagen. Anhand der abiotischen, elektrochemisch unterstützten Säule können, falls vorhanden, abiotische Prozesse bewertet werden.

Des Weiteren wurde ein sequenziell anaerob/aerobes Säulensystem untersucht. Die nach Kapitel 3.5.1.1.2 angereichten Kulturen mit reduktiven Dechlorierern wurde parallel auf einem weiteren Paar Kleinsäulen etabliert. Durch diese soll PCE durch den initialen Schritt der reduktiven Dechlorierung zu TCE transformiert werden, welches anschließend, durch die elektrochemische Manipulation der Redox-Bedingungen in den aerob metabolischen Stoffwechsel übergeht.

Die reduktiven Dechlorierer auf der Säule transformierten das angebotene PCE jedoch hauptsächlich zu cDCE und VC anstelle von TCE. Der weitere, elektrochemisch stimulierte sequentiell aerobe Abbau von cDCE und VC wurde bereits gezeigt (Lohner und Tiehm 2009; Lohner et al. 2011) und daher im Rahmen dieser Arbeit nicht weiter verfolgt.

Da die Transformation von PCE zu TCE in den reduktiv dechlorierenden Säulen, mit der am TZW geführten reduktiv dechlorierenden Kultur, nicht gezielt stimuliert werden konnte, wurden die zuvor unter O₂-gesättigten Bedingungen betriebenen aeroben Säulen mit Sauerstofffreiem, TCE-kontaminierten Medium betrieben.

Zur Anaerobisierung wurde das Medium durch einen Membran-Reaktor (Arcangeli und Arvin 1995) geführt. Der im Medium enthaltene Sauerstoff diffundiert im Reaktor durch eine Silikonmembran und wird in einer Sulfit-Lösung gebunden. Beim Verlassen des Reaktors liegt ein sauerstofffreies Medium vor. Sämtlicher Sauerstoff, der für den Abbau im anaeroben System verwendet wird, wird somit elektrochemisch zur Verfügung gestellt. Die elektrochemisch produzierte Menge an Sauerstoff kann auf Grundlage des Faraday'schen Gesetzes (Gleichung (IX) eingestellt werden. Zur Dosierung des TCE wurde ein kleiner Teil des Mediums an einem Stickstoffverteiler-Rechen entgast (siehe Kapitel 3.5.1.1.2) und nach Abkühlen unter Stickstoff-Gegenstrom das TCE dosiert. Das entgaste TCE-versetzte Medium wurde durch einen Stickstoff-Überdruck in das Medienreservoir überführt.

Nach Beendigung der Versuche zur elektrochemischen Stimulation wurden die Säulen, zur Untersuchung der Stabilität des Abbauprozesses, mit geringer TCE-Konzentration weiterbetrieben.

Tabelle 3-15:	Versuchsbedingungen	zur	Evaluierung	der	Abbau-Stabilität	unter	geringer
Substratverfüg	barkeit.						

Säule	Bioaugmentations- kultur	с _{тсе} mg/L	t _R Tage	_{Va} cm/Tag
Bio 1	TCE 45 ¹⁾	0,1 - 0,4	0,4	150
Bio 2	TCE 45 ¹⁾	0,1 – 0,4	0,4	150

1) Tabelle 8-24, Anhang 8.2.5.3

4 ERGEBNISSE UND DISKUSSION

4.1 Bioaugmentationsversuche mit Grundwasser Chlorethen-kontaminierter Standorte

4.1.1 Bioaugmentationsversuche mit Grundwasser des Standortes NAM

Die Verläufe der Schadstoffkonzentrationen sowie der Chlorid-Konzentrationen der einzelnen Versuche mit Grundwasser des Standortes NAM (Tabelle 3-4) sind in Abbildung 4-1 zusammengefasst. Die Chlorethene PCE und VC spielen nur eine untergeordnete Rolle am Standort.

In NAM 1 konnte, verglichen mit dem Kontrollversuch NAM 3 kein Schadstoffabbau beobachtet werden. In beiden Versuchen ist mit fortschreitender Versuchsdauer eine geringfügige Abnahme der Schadstoff-Konzentration zu beobachten. Da dieser Trend jedoch im aktiven, als auch im inhibierten Ansatz zu beobachten ist, muss von einem Übergang der Schadstoffe in die, mit fortschreitender Versuchsdauer größer werdende, Gasphase im Kopfraum der Batch-Flaschen ausgegangen werden.

Im Vergleich dazu, zeigt der bioaugmentierte Ansatz NAM 2, eine deutliche Abnahme der Schadstoffkonzentration, beginnend 84 Tage nach der Inokulation. Nach 133 Tagen verlangsamt sich der Abbau des TCEs. Dies kann durch das, zum TCE überstöchiometrisch vorliegende, cDCE verursacht sein. Die Präsenz von cDCE kann zu einer Hemmung des TCE-Abbaus führen (Willmann und Tiehm 2023).

Da die Differenz in der TCE-Konzentration zu Versuchsende nur 0,4 mg/L beträgt, ist eine theoretische Zunahme der Chloridkonzentration von 0,32 mg/L zu erwarten. Der Anstieg kann als Trend im Verlauf erkannt werden, liegt allerdings bei einer Hintergrundkonzentration von \sim 12 mg/L Cl⁻ im Bereich der Messungenauigkeit (5 %).

In den Versuchen NAM 4-NAM 9 wurde TCE auf eine Konzentration von ~20 mg/L aufdotiert. Hierdurch kann, trotz des bereits vorhandenen Chlorids, eine eindeutige Bilanzierung des abgebauten Schadstoffes und des dadurch freigesetzten Chlorids durchgeführt werden.

Ansatz NAM 4 zeigt das Abbau-Potential des Standortes bei hohen TCE-Konzentrationen. Nach ~150 Tagen beginnt der Abbau des TCE. Eine lag-Phase des intrinsischen TCE-Abbaus (falls vorhanden) im Bereich von 100-150 Tagen wurde auch in weiteren Versuchen beobachtet (Willmann et al. 2023). Die Aufdotierung des TCE auf 20 mg/L begünstigt den Schadstoffumsatz durch die autochthone Mikrobiota, da hierdurch das Verhältnis der Stoffmengenkonzentration von TCE (~20 mg/L) und cDCE (~0,8 mg/L) zu Versuchsbeginn verändert, und so die hemmende Wirkung des cDCEs gemindert wird. Erst nach nahezu vollständigem TCE-Abbau (Restkonzentration ~50 μ g/L) tritt die inhibierende Wirkung des vorliegende cDCEs (~200 μ g/L) in Kraft.

Der bioaugmentierte Ansatz NAM 5 zeigt bereits nach 27 Tagen einen Rückgang der TCE-Konzentration, welches bis Tag 85 auf ~100 μ g/L (~0,76 μ mol/L) abgebaut wurde. Während durch die Bioaugmentation mit der TCE-Abbauenden Kultur das TCE, in Ein-Stoff-Systemen, auf Konzentrationen unter der Bestimmungsgrenze (0,7 μ g/L) abgebaut werden kann, ist auch hier wieder die hemmende Wirkung des cDCEs zu beobachten (~250 μ g/L; 2,58 μ mol/L).

Konzentration Chlorethene [mg/L]

Abbildung 4-1: Verlauf der Chlorethen-Konzentrationen sowie Chlorid-Konzentrationen der Versuchsansätze NAM1-NAM9 (Tabelle 3-4). Der Pfeil in Ansatz NAM 5 markiert eine Nachdosierung mit TCE.

In den Versuchen NAM 4 und NAM 5 zeigt sich sehr deutlich ein co-metabolischer Abbau von cDCE (Willmann und Tiehm 2023) mit einhergehender Inhibierung des aerob metabolischen TCE-Abbaus bei überstöchiometrischer Präsenz von cDCE zu TCE. Zur besseren Sichtbarkeit des Schadstoffverlaufs, und damit der Co-Metabolik, sind die Schadstoffverläufe der Ansätze NAM 4 und NAM 5 in Abbildung 4-2 logarithmisch dargestellt.

Abbildung 4-2: Logarithmische Darstellung der Chlorethen-Konzentrationen in den Ansätzen NAM 4 und NAM 5. Der Pfeil in NAM 5 markiert eine Nachdosierung mit TCE.

Im Kontroll-Ansatz NAM 6 konnte, wie auch in den Versuchen NAM 1 und NAM 3, eine leichte Abnahme der TCE-Konzentration ohne Zunahme der Chlorid-Konzentration beobachtet werden. Die TCE-Abnahme ist auf das Lösungsgleichgewicht der Schadstoffe zwischen abnehmender Flüssigphase und zunehmender Gasphase zurückzuführen.

Die Versuche NAM 7, NAM 8 und NAM 9 zeigen das Potential zum aeroben TCE-Abbau, das Bioaugmentationspotential mit der Laborkultur sowie dem Grundwasser des aktiv TCEabbauenden Standortes bei Grundwassertemperatur (12°C).

Der intrinsische TCE-Abbau kann nach 160 Tagen beobachtet werden. Trotz der geringeren Inkubationstemperatur ist die lag-Phase der autochthonen Mikrobiota in einem vergleichbaren Zeitrahmen zu Ansatz NAM 4. Da das Grundwasser zwischen Probenahme und Ansatz der Versuche gekühlt gelagert wurde, hatten die Bakterien bereits vor Versuchsbeginn die Möglichkeit sich an die geringere Temperatur zu adaptieren.

In den Versuchen NAM 8 und NAM 9 (Inokulation nach 68 Tagen Versuchsdauer) verging zwischen Inokulation und Start des Abbaus ~100 Tage bzw. ~80 Tage. Das Grundwasser des aktiven Standortes hat hierbei den Vorteil, dass am Standort ebenfalls eine Temperatur von 10-14°C, abhängig von der Jahreszeit, vorliegt und entsprechend eine Adaption an die Temperatur ausbleibt. Da die TCE-Abbauer am Feldstandort jedoch in einer geringeren Konzentration als in den Laborkulturen vorliegen fallen die lag-Phasen in einen ähnlichen zeitlichen Rahmen.

In allen drei Versuchen konnte eine Zunahme der Chlorid-Konzentration unter Abnahme der

TCE-Konzentration beobachtet werden. Der Sprung in der Chloridkonzentration zwischen Tag 55 und Tag 69 in NAM 9 ist durch das Inokulieren mit dem Grundwasser des SF-Standortes bedingt, welches eine Chloridkonzentration von ~250 mg/L besitzt.

Die Bilanzierung der abgebauten Chlorethene und der beobachteten freigesetzten Menge Chlorid ist in Tabelle 4-1 zusammengefasst.

Tabelle 4-1:Bilanzierung der abgebauten Chlorethene und des freigesetzten Chlorids in denBioaugmentationsversuchen mit Grundwasser des Standortes NAM.

	TCE _{abgebaut}	cDCE _{abgebaut}	CI ⁻ freisetzbar	CI ⁻ freigesetzt	Cl ⁻ _{freigesetzt} Cl ⁻ _{freisetzbar}	Maximale A TC	Abbaurate E
	µmol/L	µmol/L	µmol/L	µmol/L	%	µmol/(L*d)	mg/(L*d)
NAM 1	2,361	1,152	9,387	_*	-	-	-
NAM 2	2,922	1,970	12,71	_*	-	0,06	0,01
NAM 3	1,728	0,772	6,728	_*	-	-	-
NAM 4	169,3	6,432	520,8	512,0	98,3	4,41	0,59
NAM 5	236,5	7,292	724,0	668,6	92,3	4,41	0,58
NAM 6	29,42	0,471	89,22	_*	-	-	-
NAM 7	175,3	6,659	539,3	488,8	90,6	3,96	0,52
NAM 8	167,4	6,436	514,9	518,5	100,7	3,50	0,46
NAM 9	165,9	2,889	503,6	501,8	99,7	3,20	0,42

Keine signifikante Veränderung der Chloridkonzentration über die Versuchsdauer

4.1.2 Bioaugmentationsversuche mit Grundwasser des Standortes UBELL

Abbildung 4-3 zeigt die Verläufe der Chlorethen-Konzentrationen sowie der Chlorid-Konzentrationen in den Versuchsansätzen mit Grundwasser des Standortes UBELL (Tabelle 3-11). PCE, cDCE und VC spielen nur eine untergeordnete Rolle.

Wie bereits in den Versuchen des Standortes NAM, zeigt der Standort bei geringen TCE-Konzentrationen kein intrinsisches Potential zum TCE-Abbau und verhält sich ähnlich wie der mit CuSO₄ versetzte Ansatz UBELL 3. UBELL 2 zeigt eine deutliche Differenz im Verlauf der TCE-Konzentration. Nach bereits 41 Tagen beginnt die TCE-Konzentration zu sinken und erreicht einen Wert von 1,4 µg/L. Da im Versuchsansatz kein cDCE in quantifizierbarer Menge vorhanden ist (Bestimmungsgrenze 10 µg/L), erreicht der TCE-Abbau Konzentrationen nahe der Bestimmungsgrenze von 0,7 µg/L. Eine Hemmung des Abbaus, welche mit einer Restkonzentration im Bereich von über 100 µg/L liegt bleibt somit aus. Nach einer Hungerperiode von Tag 68 -Tag 134 wurden ~650 µg/L TCE aufdotiert. Somit wurde die Reproduzierbarkeit des Prozesses, sowie die Widerstandsfähigkeit der Bakterien gegenüber Hungerphasen bei geringen Substrat-Konzentrationen nachgewiesen.

Aufgrund der Hintergrundkonzentration von ~35 mg/L Chlorid ist die, im TCE-Abbau begründete, Zunahme des Anions nicht signifikant.

Konzentration Chlorethene [mg/L]

Abbildung 4-3: Verlauf der Chlorethen-Konzentrationen sowie Chlorid-Konzentrationen der Versuchsansätze UBELL 1-UBELL 9 (Tabelle 3-11). Die Pfeile in den einzelnen Abbildungen markieren eine Nachdosierung von TCE.

Der intrinsische bedingte Abbau des TCE zeigt sich in Ansatz UBELL 4 ab 100 Tagen mit einem sehr schnellen Abbau des Schadstoffes. Im augmentierten Ansatz UBELL 5 konnte der TCE-Abbau bereits nach 26 Tagen beobachtet werden. Die zudosierten ~25 mg/L TCE sind bereits nach 68 Tagen vollständig umgesetzt. In beiden Versuchen zeigt sich die entsprechende Zunahme der Chlorid-Konzentration in den Phasen des TCE-Abbaus. Beide Versuche wurden, zur Demonstration der Prozessstabilität, nach einer Hungerphase erneut mit TCE aufdotiert. Der erneut dosierte Schadstoff wurde in beiden Versuchen ebenfalls umgesetzt. Der mit CuSO₄ versetzte Ansatz UBELL 6 zeigt über die Versuchsdauer von 228 Tagen einen leichten Rückgang der TCE-Konzentrationen bei einer gleichbleibenden Chlorid-Konzentration, sodass auch hier, analog zu UBELL 3, NAM 3 und NAM 6, von einer Verflüchtigung der Schadstoffe ausgegangen werden kann.

UBELL 7 und UBELL 8, welche Die Ansätze das intrinsische Potential bei Grundwassertemperatur sowie das Bioaugmentationspotential mit der Laborkultur bei 12°C aufzeigen sollen, zeigen keine, durch biologische Prozesse bedingte, Abnahme des TCEs über die gesamte Versuchsdauer. In UBELL 8 ist vom Versuchsstart bis zu Tag 68 eine lineare Abnahme des TCEs ohne Zunahme der Chlorid-Konzentration zu beobachten. Der Verlust an TCE konnte dabei auf eine kleine Kerbe am Glasgewinde der GL18-Öffnung zurückgeführt werden, wodurch das Teflonseptum die Flasche nicht vollständig abgedichtet hatte und es zur Verflüchtigung des TCEs kam. Nach Entdecken der Kerbe wurde der Ansatz in eine neue Flasche überführt und auf ~15 mg/L TCE aufdotiert. In der weiteren Versuchsdauer konnte keine erneute Abnahme der TCE-Konzentration festgestellt werden.

Der mit Grundwasser des SF-Standortes inokulierte Ansatz UBELL 9 zeigt ab 50 Tagen nach der Inokulation eine, mit einer Chlorid-Zunahme verbundene, Abnahme des TCEs. Der Abbau der ~25 mg/L TCE dauert hierbei 80 Tage.

Die Bilanzierung der abgebauten Chlorethene und der freigesetzten Menge Chlorid ist in Tabelle 4-2 zusammengefasst.

	TCEabgebaut	CI⁻freisetzbar	CI ⁻ freigesetzt	Cl ⁻ _{freigesetzt} Cl ⁻ _{freisetzbar}	Maximale Abbaurate TCE	
	µmol/L	µmol/L	µmol/L	%	µmol/(L*d)	mg/(L*d)
UBELL 1	1,473	4,419	_*	-	-	-
UBELL 2	11,04	33,11	-*	-	0,37	0,05
UBELL 3	0,366	1,099	-*	-	-	-
UBELL 4	196,3	588,8	692,2	117,6	11,17	1,47
UBELL 5	243,2	729,5	631,1	86,5	7,23	0,95
UBELL 6	21,49	64,48	-*	-	-	-
UBELL 7	20,33	61,00	_*	-	-	-
UBELL 8	63,91	191,7	_*	-	-	-
UBELL 9	176,0	528,1	663,4	125,6	4,09	0,54

Tabelle 4-2:Bilanzierung der abgebauten Chlorethene und des freigesetzten Chlorids in denBioaugmentationsversuchen mit Grundwasser des Standortes UBELL.

-*

Keine signifikante Veränderung der Chloridkonzentration über die Versuchsdauer

4.1.3 Fazit der Bioaugmentationsversuche

Der Start des intrinsischen TCE-Abbaus im Bereich von 50-100 Tagen ist vergleichbar mit der lag-Phase anderer untersuchter Standorte mit hoher TCE-Konzentration (~20 mg/L), wobei auch lag-Phasen von über 200 Tagen bei geringer TCE-Konzentration (2 mg/L) beobachtet wurden (Willmann et al. 2023).

Bioaugmentierte Ansätze wiesen bei Raumtemperatur eine deutlich kürzere lag-Phase gegenüber den NA-Versuchen auf, wodurch der Abbau, sowohl bei hohen als auch niedrigen TCE-Konzentrationen im Zeitraum von 0-50 Tagen (NAM 5, UBELL 2, UBELL 5) bzw. 50-100 Tagen (NAM 2) beobachtet werden konnte. Die zu beobachtende lag-Phase variiert dabei mit den verschiedenen Standort-Wässern. Eine lag-Phase bis zu 100 Tagen ist dabei durch die Literatur beschrieben (Gaza et al. 2019).

In den, bei Grundwassertemperatur inkubierten Ansätzen, zeigt sich das eine Bioaugmentation mit frischem Grundwasser des abbauaktiven Standortes, verglichen mit der Laborkultur schneller zu einem TCE-Abbau, als auch zu einer schnelleren Abbaukinetik, führt. Dies kann auf die längere Adaptionsdauer der Laborkultur an die neue Umgebungstemperatur zurückgeführt werden. Der Temperaturbereich der Laborkultur, in dem Abbau beobachtet wurde, liegt zwischen 9°C-27°C mit dem Optimum bei 23°C (Gaza et al. 2019). Das Absenken der Temperatur führt daher zu einer Verlangsamung des Schadstoffabbaus. Das Grundwasser des TCE-Abbauenden Standortes besitzt eine saisonal bedingte Temperatur von 9°C-14°C, wodurch eine Adaption an geringere Umgebungstemperaturen entfällt.

Tabelle 4-3 gibt eine zusammenfassende Übersicht der Versuche und der Effizienz der einzelnen Ansätze.

Stand- ort	Abbau-Potential	Inokulum	Temp. °C	c(TCE) _{Start} < 1 mg/L	c(TCE) _{Start} > 10 mg/L
NAM	Intrinsisch	-	20	_0	0,59+
		-	12	n.t.	0,52++
	Bioaugmentation	Labor-Kultur	20	0,01++	0,58+++
		Labor-Kultur	12	n.t.	0,46+
		Grundwasser SF-Standort	12	n.t.	0,42++
UBELL	Intrinsisch	-	20	_0	1,47+
		-	12	n.t.	_0
	Bioaugmentation	Labor-Kultur	20	0,05+++	0,95+++
		Labor-Kultur	12	n.t.	_0
		Grundwasser SF-Standort	12	n.t.	0,54++
	ATT 1 1 1				

Tabelle 4-3:Übersicht der erzielten maximalen Abbauraten in den Bioaugmentationsversuchen der
Projektstandorte.

+++ Abbau beginnt nach ~0-50 Tagen

++ Abbau beginnt nach ~50-100 Tagen

+ Abbau beginnt nach ~100-150 Tagen

0 Kein Abbau in der Versuchsdauer beobachtet

n.t. Nicht getestet

4.2 Erhaltung des Stoffwechsels unter geringer Substratverfügbarkeit

Die Bioaugmentationsversuche zeigten den wiederholbaren Abbau geringer TCE-Konzentrationen in einem Batchsystem unter Berücksichtigung einer Hungerphase. Im Falle einer Feldanwendung ist jedoch, Standortspezifisch, mit einer stetig vorliegenden Schadstofffracht zu rechnen. Da der aerob metabolische TCE-Abbau verglichen mit dem aerob metabolischen Stoffwechsel der geringer chlorierten Substanzen cDCE und VC einen deutlich geringeren Energiegewinn besitzt (Dolfing et al. 1993), kann die Langzeit-Stabilität des Prozesses verglichen mit dem aeroben Abbau von cDCE und VC abweichen.

Die Langzeitstabilität des Schadstoffabbaus wurde in Kleinsäulen untersucht (Tabelle 3-15).

4.2.1 Kleinsäulenversuch mit geringer Substratverfügbarkeit

Abbildung 4-4 zeigt den Verlauf der TCE-Konzentration im Zulauf und den beiden Säulenabläufen. Die TCE-Konzentration im Zulauf der Säulen betrug über die gesamte Versuchsdauer von 0-200 Tagen zwischen 300-500 µg/L und nach 200 Tagen bei ~100 µg/L. Über die Versuchsdauer von ~300 Tagen konnte bei einer Aufenthaltszeit von 0,24 Tagen ein Abbau von >95 % der Schadstofffracht aufrechterhalten werden. Abbildung 4-4 zeigt den Verlauf der TCE-Konzentrationen sowie der Chlorid-Konzentrationen im Zulauf sowie den beiden Säulen-Abläufen.

Abbildung 4-4: Verlauf der TCE-Konzentration in Zulauf und Ablauf der Kleinsäulen zur Evaluierung des TCE-Abbaus unter geringer Substratverfügbarkeit (Tabelle 3-15).

Aufgrund der geringen Konzentration an TCE kann, bei einer Mineralisation des Schadstoffes, nur eine geringfügige Zunahme der Chlorid-Konzentration festgestellt werden. Die Mineralisation einer TCE-Menge von 400 μ g/L würde in einer Chlorid-Zunahme von 320 μ g/L resultieren. Aufgrund der Hintergrund-Konzentration von 3,1 mg/L Chlorid ist die Zunahme des Chlorids nicht signifikant, liegt aber außerhalb der Messungenauigkeit von 5 %.

Das Medium im Reservoir wurde an Tag 55, Tag 102, Tag 133 wieder aufgefüllt und TCE nachdosiert.

Nach 118 Tagen und 202 Tagen Betriebsdauer fiel die Zulaufkonzentration auf ~11 µg/L ab. Dies lässt darauf schließen, dass die Bakterien trotz geringer Substratverfügbarkeit durch die Schlauchverbindung zum Reservoir zurückwachsen konnten. Die Zunahme der Chloridkonzentration im Reservoir weist hierbei auf die Schadstoffmineralisation hin. Alle Zulauf-Verbindungen und Schläuche, sowie das Medium-Reservoir, wurden daraufhin ausgetauscht und neu befüllt.

Solange TCE im Zulauf verfügbar war, wurde über die gesamte Versuchsdauer von knapp 300 Tagen der Schadstoff während einer Säulenpassage abgebaut. Der Metabolismus der TCE-Abbauer kann dementsprechend auch über einen längeren Zeitraum unter geringer Substratverfügbarkeit aufrechterhalten werden, wodurch ein Einsatz im Rahmen einer Bioaugmentation zur Behandlung gering belasteter Grundwässer, unter der Beachtung der Rahmenbedingungen (neutraler pH, Sauerstoffverfügbarkeit) realisierbar ist. Auch bei weiterem Absenken der verfügbaren Menge an TCE auf ~100 µg/L konnte nach einer kurzen Anpassungsphase ein vollständiger Abbau unter die Bestimmungsgrenze erzielt werden. Der mikrobiologische Schadstoffumsatz kann laut Schmidt et al. (2014) ab einer Konzentration von 0,5 mg/L gelöstem Sauerstoff stattfinden. Aufgrund der, in diesem Versuch, geringen Schadstoffkonzentration sollte der Abbau. durch den einhergehend niedrigen Sauerstoffbedarf, jedoch auch unter mikro-oxischen (gelöster Sauerstoff unter 0,5 mg/L) Bedingungen stattfinden können.

4.2.2 Fazit der Säulenversuche mit geringer Substratverfügbarkeit

Auf Grundlage der, in den Kleinsäulenversuchen, erzielten Ergebnisse ist auch eine Bioaugmentation an Standorten mit geringer TCE-Konzentration, und damit auch geringer Substrat-Konzentration aussichtsreich. Über eine Versuchsdauer von ~300 Tagen konnte ein stabiler, gleichbleibender TCE-Abbau beobachtet werden.

4.3 Etablierung der qPCR-Methode zum Nachweis des Potentials zum aeroben TCE-Abbau

4.3.1 Auswahl der Primer

in Tabelle 3-7 gelisteten Primer wurden anhand einer TCE-abbauenden Die Anreicherungskultur (R-70-2-3-1, Anhang 8.2.5.3 Tabelle 8-24) sowie Proben des Porenwassers der Säulen S 2 und S 3 (Kapitel 3.5.5.1) auf ihre Bindungsfähigkeit an die DNA überprüft. Abbildung 4-5 zeigt die digitalen Gelbilder der PCR-Fragmente der Primer 38-43. Die Ergebnisse der weiteren Primer sind in Anhang 8.3.3 aufgeführt. Sowohl für die Anreicherungskultur als auch die Proben der Säule S3 konnte mit allen Primern die erwartete Fragmentgröße auf dem Gelbild nachgewiesen werden. Für die weitergehende Etablierung des PCR-Nachweises wurden die Primer 38, 39, 42, 46, 47 und 52 ausgewählt, da bei diesen in der PCR-Reaktion die geringste Anzahl unspezifischer Banden gebildet wurden. Weiterhin lag der Fokus auf Enzymen der Enzymklassen der Monooxygenasen und Halogensäure-Dehalogenase ähnliche Hydrolase. Verschiedene Monooxygenasen sind nachweislich am aerob metabolischen Abbau von VC und cDCE (Dolinová et al. 2017) beteiligt, Ammoniumund Methan-Monooxygenase wurden mit dem aerob co-metabolischen TCE-Abbau assoziiert (Arp et al. 2001). Durch Mutationen der Enzyme können sich die Eigenschaften sowie die
Substratspezifizität der Enzyme verändern (Bradley 2003), wodurch die Möglichkeit besteht, dass die am aerob metabolischen TCE-Abbau beteiligten Enzyme aus anderen Monooxygenasen hervor gegangen sind.

Da Haloacid Dehalogenasen unter dem Einsatz von Wasser Kohlenstoff-Halogen-Bindungen aufspalten (IUBMB 2023), und auch im aerob metabolischen cDCE-Abbau beteiligt sein sollen (Jennings et al. 2009), wurde, auf Grundlage des stöchiometrischen TCE-Umsatzes, ein Vertreter der Enzymgruppe in den weiteren Untersuchungen berücksichtigt.

Abbildung 4-5: Digitales Gelbild für die PCR-Ergebnisse der Primer 38-43. Die zu erwartende Fragmentgröße ist unter der Primer-Bezeichnung notiert. Die markierten Primer wurden für die Standardherstellung ausgewählt.

4.3.2 Erstellen der qPCR-Protokolle

Die Spezifizität der einzelnen Primer steht in Abhängigkeit zur eingestellten Annealingtemperatur. Zur Bestimmung der optimalen Annealingtemperatur (T_A) wurde eine

Gradienten-PCR durchgeführt. Ziel der Gradienten-PCR ist eine möglichst hohe Temperatur für das Annealing zu finden, bei der die Effizienz zwischen 90-110% und R²>0,99 liegt. Während es bei niedrigen Temperaturen zu unspezifischeren Bindungen der Primer kommen kann, führen überhöhte Temperaturen zu einer Effizienzabnahme der Reaktion (Müller und Prange 2016). Die Kontrolle der Fragmentgröße wurde durch die Schmelzkurven und die Kapillargelelektrophorese kontrolliert.

Neben den Standards zur Erstellung des Protokolls wurden in den PCR-Läufen Umweltproben mitgeführt. Die Positiv-Kontrollen wiesen bei höheren T_A nur das spezifische Fragment auf. Die Negativ-Kontrolle wies bei allen T_A mehrere Fragmente einer nicht erwarteten Größe auf. Mit steigender T_A nimmt die Anzahl nicht erwarteter Fragmentgrößen ab. Die optimalen T_A der Primer 38, 39, 42 und 47 sind in Tabelle 4-4 gelistet. Die Effizienz der Reaktion der Primer 46 und 52 lag unter 90 %. Aufgrund der geringen Effizienz wurden die Primer im weiteren Verlauf nicht mehr berücksichtigt.

Eine schlechte Effizienz kann in der nicht-spezifischen Bindung der Primer oder der Bildung von Sekundärstrukturen, welche die PCR-Reaktion stören können, begründet liegen. Eine Minimierung der Bildung von Sekundärstrukturen kann durch die Zugabe von Dimethylsulfoxid oder Betain erreicht werden (Kang et al. 2005).

Tabelle 4-4: Übersicht der, mittels Gradienten-PCR ermittelten, optimalen Annealingtemperatur der verschiedenen Primer.

Primer	38/moA	39/moB	42/moC	47/hdlh
T _A [°C]	67	67	67	68

Die Primer moA und moB weisen bei einer Wiederholung von 45 Zyklen für die Standards 1,0e+4-1,0e+7 Genkopien/Reaktion in der Schmelzkurve einen, im Verhältnis zu den restlichen Standards, verschobenen oder einen doppelten Peak auf. Auf dem Gelbild sind wenige Banden (moA) oder mehrere Banden einer größeren, als der erwarteten, Fragmentlänge (moB) zu finden. Die Standards mit 1,0e+1-1,0e+3 Genkopien/Reaktion weisen auf dem Gelbild nur das Fragment der erwarteten Größe auf. Die Entstehung unspezifischer Banden sowie der Verlust des PCR-Produktes kann eine Folge einer überhöhten Zyklen-Anzahl sein (Cha und Thilly 1993). BioRad, der Hersteller der Thermocycler, empfiehlt eine Zyklusanzahl zwischen 20 und 35. Bei einer Anzahl von 35 Zyklen ist die Fluoreszenz aller Standards über dem Schwellenwert, nur ein Peak in der Schmelzkurve zu finden und nur die erwartete Fragmentgröße auf dem Gelbild zu sehen.

4.3.3 Zusammenhang der Genkopie-Zahl und des TCE-Abbaus

Mit Proben eines Kulturversuches (R-70-2-3-1, Anhang 8.2.5.3 Tabelle 8-24) wurde der Verlauf der Genkopie-Zahlen während des TCE-Abbaus untersucht. Hierzu wurden über einen Zeitraum von 72 Tagen Proben für die chemische Analytik (TCE und Chlorid) sowie die molekularbiologische Analytik genommen. Die molekularbiologische Analytik umfasst PCR-Untersuchungen mit den bereits etablierten Primern EuB und Rho sowie den neuen Primern moA, moB, moC und hdlh. EuB und Rho dienen als Referenzwerte für die neuen Primer.

Abbildung 4-6 zeigt den Verlauf der TCE-Konzentration sowie der Chlorid-Konzentration. Das TCE nimmt über den Versuchsverlauf ab, während das Chlorid entsprechend zunimmt.

Abbildung 4-7 zeigt den Verlauf der Anzahl der Genkopien, die mit den unterschiedlichen Primern nachgewiesen wurden. Mit sämtlichen Primern wurde dabei ein ähnlicher Verlauf nachgewiesen. Während der ersten 18 Tage des Versuchs steigen die Genkopie-Zahlen von EuB (bakterielle 16S rRNA-Gen) und Rho (16S rDNA der *Rhodocyclaceae*) von 1,0e+2 auf 1,0e+5 an. Der Abbau des TCEs führt somit, wie bereits durch Schmidt et al. (2014) beschrieben, zum Biomassewachstum und damit einhergehend einer Zunahme der Genkopiezahlen. Die Anzahl der Genkopien stagniert jedoch nach 18 Tagen Versuchsdauer bis zum Versuchsende nach 72 Tagen, was sich auch in einer relativ linearen Abbaukurve widerspiegelt. Die Genkopie-Anzahl der Primer moA, moB, moC und hdlh liegt jeweils eine log-Stufe unter denen der 16S rRNA-Gen bezogenen Primer EuB und Rho. Die Diskrepanz zwischen der Genkopie-Anzahl zwischen EuB/Rho und den funktionellen Genen deutet zum einen darauf hin, dass die vorhanden Kultur keine Reinkultur ist (belegt durch die Ergebnisse der Metagenomanalyse), kann aber auch durch die Präsenz mehrerer 16S rDNA-Kopien/Bakterium beeinflusst sein (Sun et al. 2013).

Abbildung 4-6: Verlauf der TCE-Konzentration sowie der Chlorid-Konzentration im Ansatz R70-2-3-1 (Anhang 8.2.5.3 Tabelle 8-24).

Abbildung 4-7: Verlauf der Genkopie-Anzahl der verschiedenen Primer über die Versuchsdauer. Werte die unter der jeweiligen Bestimmungsgrenze liegen sind schraffiert dargestellt.

Ausgehend von der Wachstumsphase der ersten 18 Tage kann ein Biomasse-Ertrag (Yield, Anstieg Genkopien pro abgebautem mg TCE bzw. freigesetztem μ M Chlorid) berechnet werden. Im folgenden Versuchsverlauf bleiben die Genkopie-Zahlen konstant, wodurch hier ein Erhalt der Biomasse und kein weiterer Ertrag zu beobachten ist.

Tabelle 4-5 enthält die Yield der nachgewiesenen Gene. Der Biomasse-Ertrag des aerob metabolischen TCE-Abbaus ist damit etwas geringer als der Biomasseertrag der reduktiven Dechlorierung. Diese liegen, für *Dehalococcoides* sp., in verschiedenen Studien in einem Bereich von 1,0e+5-1,0e+8 Genkopien/µM Chlorid (Amos et al. 2008; Cupples 2008; Ise et al. 2011; Aktaş et al. 2012; Kranzioch et al. 2015).

Tabelle 4-5:Yield des aerob metabolischen TCE-Abbaus in einer Laborkultur in den ersten18 Tagen des Versuches.

	ΔΤCΕ	∆Genkopien	Yield (Genkopien)	
	mg/L	1/mL	/mg TCE	/µmol Chlorid
EuB		2,40e+5	2,95e+7	1,29e+6
Rho		1,20e+5	1,48e+7	6,48e+5
moA	0 1 2	7,06e+3	8,68e+5	3,80e+4
moB	0,13	2,19e+4	2,69e+6	1,18e+5
moC		4,97e+3	6,11e+5	2,68e+4
hdlh		2,80e+3	3,44e+5	1,51e+4

Aufgrund der geringen Yield, der Stagnation des Zellwachstums nach einer anfänglichen Wachstumsperiode, sowie der langen lag-Phase bevor TCE-Abbau beobachtet werden kann, erschwert sich der Nachweis des Prozesses, welcher bisher nur vereinzelt an Feldstandorten und Laborversuchen nachgewiesen wurde (Willmann et al. 2023).

4.3.4 Untersuchung zur Spezifität der Primer des aerob metabolischen TCE-Abbaus

Zur Überprüfung der Spezifität der neu entwickelten Primer wurden diese mit Umweltproben verschiedener Herkunft, sowie verschiedenen Kulturen getestet (siehe Tabelle 3-8). Die Ergebnisse der Untersuchungen sind in Tabelle 4-6 zusammengefasst.

Tabelle 4-6:Anzahl der, mit den Primern EuB, Rho, moA, moB, moC und hdlh nachgewiesenen,
Genkopien in Referenzproben verschiedener Standorte und aktiver Chlorethen-abbauender Kulturen
(Tabelle 3-8).

	Anzahl an Genkopien/mL					
	EuB	Rho	moA	moB	moC	hdlh
VC (1)	8,3+e6	-	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
VC (2)	3,4+e6	-	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
cDCE (1)	2,9e+4	(3,0e+1)	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE (2)	1,4e+6	(9,5e+1)	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
NP 1	3,0e+6	(6,0e+3)	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
NP 2	4,4e+4	(1,5e+2)	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
NP 3a	6,1e+4	(2,2e+2)	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
NP 3b	6,4e+5	-	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
NP 4a	4,4e+7	(6,1e+3)	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
NP 4b	2,4e+5	1,2e+3	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
NP 4c	1,0e+4	4,8e+2	<bg< td=""><td><bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>(<bg)< td=""></bg)<></td></bg<></td></bg<>	<bg< td=""><td>(<bg)< td=""></bg)<></td></bg<>	(<bg)< td=""></bg)<>
PP 1a	2,7e+5	(7,2e+4)	1,1e+4	5,9e+2	2,7e+3	6,4e+3
PP 1b	2,1e+5	(7,2e+4)	2,7e+2	3,3e+1	1,9e+2	1,7e+2
PP 2	1,1e+7	4,3e+4	1,7e+4	1,6e+3	1,3e+4	1,7e+2

()

Schmelzkurve stimmt nicht mit Standard überein, richtige Fragmentgröße auf Gelbild Weder Schmelzkurve, noch Gelbild stimmt mit Standard überein Anhand des Primers EuB, der die bakterielle 16S rDNA nachweist, kann für alle untersuchten Proben die Präsenz von Bakterien nachgewiesen werden. Der Primer Rho, welcher spezifisch die 16S rDNA der *Rhodocyclaceae* sp. nachweist, findet sich in einem Großteil der Proben. Da *Rhodocyclaceae* Umweltbakterien sind, und mit einem Anteil von 0,01-4,8 % der 16S rDNA (Rho/EuB), in den angenommen negativen Proben in einer vergleichbaren Proportion der Probe des Bioaugmentationsansatzes (PP 2, 0,39 %, Rho/EuB) vorliegen, unterstreicht die Notwendigkeit eines spezifischeren Nachweises für das Aufzeigen des Potentials zum aerob metabolischen TCE-Abbau. Im Vergleich dazu steht das Rho/EuB-Verhältnis aufgrund der sehr langen Abbauaktivität am SF-Standort bei 26,7-34,3 %, was eine Anreicherung der TCE-assimilierenden Bakterien verdeutlicht.

Die neu entwickelten Primer moA, moB, moC und hdlh waren in sämtlichen Negativproben unter der Bestimmungsgrenze. Von besonderer Bedeutung ist hierbei die Selektivität gegenüber den Anreicherungskulturen die VC bzw. cDCE aerob metabolisch umsetzen können. Die Selektivität der funktionellen Gene, in Kombination mit dem co-metabolischen cDCE-Abbau (siehe Kapitel 4.1.1) und Willmann und Tiehm (2023)) deutet auf einen substratspezifischen ersten Abbauschritt und einen ähnlichen weiteren Abbauweg hin.

Für den aktiv aerob metabolisch TCE abbauenden Standort (PP 1a und PP 1b) sowie den Bioaugmentationsansatz (PP2), konnte mit allen Primern ein Nachweis erbracht werden. Im Rahmen der untersuchten Proben konnte somit die Spezifizität der neuen Primer gezeigt werden. Es wird empfohlen weitere Proben, sowohl negativ (ohne erwarteten aeroben TCE-Abbau), als auch positiv (mit erwartetem aeroben TCE-Abbau; Standorte aus Willmann et al. (2023)) zu untersuchen.

4.3.5 Fazit der Methodenetablierung

Die qPCR-Analytik kann als ein Nachweis für das Standortpotential verschiedener Abbauprozesse von Schadstoffen eingesetzt werden. Neben Primern für Bakterien (Dhc (Hendrickson et al. 2002), Desu (Löffler et al. 2000), Dsb und Deha (Smits et al. 2004)) sowie funktionellen Gene (PceA, TceA, VcrA, BvcA (Behrens et al. 2008)) der reduktiven Dechlorierung, wurden in der Literatur auch Primer für funktionelle Gene des aerob metabolischen VC-Abbaus (EtnABCD, EtnE (Jin und Mattes 2010)) sowie mit dem aerob metabolischen cDCE-Abbaus assoziierte Gene (AceA (Giddings et al. 2010)) beschrieben. Mit den neu entwickelten Primern (moA, moB, moC, hdlh) stehen nun auch Primer für funktionelle Gene, welche mit dem aerob metabolischen TCE-Abbau assoziiert sind, zur Verfügung. Aufgrund der Abwesenheit von unspezifischen Banden auf dem Gelbild wird die primäre Verwendung des Primers moC empfohlen. Die Untersuchung einer breiten Herkunft von Umweltproben wies die Spezifität der Primer nach, sodass diese bei der Identifikation weiterer Standorte mit Potential zum aerob metabolischen TCE-Abbau verwendet werden können.

4.4 Entwicklung einer Mischkultur zur Bioaugmentation des aerob metabolischen cDCE- und TCE-Abbaus

Die Präsenz von Kontaminanten, die nicht in den primären Stoffwechsel der Bioaugmentationskultur eingebunden sind, können einen hemmenden Effekt auf den primären Schadstoffabbau besitzen. Dies wird in mit den Ergebnissen der Versuche mit Grundwasser der Standorte NAM und UBELL deutlich (Kapitel 4.1). Während am Standort UBELL keine Zweitkontaminante vorliegt und der TCE-Abbau in den Laborversuchen bis unter die Bestimmungsgrenze (0,7 µg/L) durchgeführt wird, stagniert der TCE-Abbau in den Versuchen mit Grundwasser des Standort NAM, sobald die TCE-Konzentration unter die Konzentration des cDCE fällt (siehe Abbildung 4-2). Während die überstöchiometrische Präsenz von cDCE zur Inhibierung des aerob metabolischen TCE-Abbaus führt. wirkt auch die überstöchiometrische Präsenz von TCE hemmend auf den aerob metabolischen cDCE-Abbau (Zhao et al. 2010). Hierdurch kann der Stoffwechsel deutlich verlangsamt, oder auch komplett zum Erliegen kommen. Da Chlorethen-kontaminierte Standorte meist mehrere Chlorethene aufweisen stellen diese Inhibierungen ein Hindernis in der Standortsanierung durch die Bioaugmentation mittels spezialisierter Bakterienkulturen dar.

Durch die Kombination einer aerob metabolisch cDCE-abbauenden Kultur und einer aerob metabolisch TCE-abbauenden Kultur (Tabelle 3-9), konnte eine Mischkultur erhalten werden, die sowohl cDCE als auch TCE, bei variierenden Schadstoffverhältnissen, bis unter die jeweilige Bestimmungsgrenze mineralisiert und somit auch regulatorische Grenzwerte erreichen kann.

4.4.1 Schadstoffabbau im Ein-Stoff-System

Im Ein-Stoff-System zeigt sich, dass der cDCE-Abbau deutlich schneller verläuft als der aerob metabolische TCE-Abbau. Die zu Beginn dosierten ~75 μ mol/L cDCE wurden innerhalb von 21 Tagen mineralisiert, während der vollständige Abbau der ~75 μ mol TCE erst nach 70 Tagen festgestellt wurde. In allen aktiven Ansätzen wurden die Schadstoffe jedoch bis unter die jeweilige Bestimmungsgrenze (10 μ g/L für cDCE und 0,7 μ g/L für TCE) abgebaut.

Aufgrund des leicht ansteigenden Trends des Ansatzes TCE-Steril, wurde nach 152 Tagen noch einmal eine Probe genommen. Die TCE-Konzentration liegt dabei bei 64,5 µmol/L (Tag 70: 64,6 µmol/L) und die Chlorid-Konzentration bei 90,26 µmol/L (Tag 70: 90,26 µmol/L), wodurch ein TCE-Umsatz, und somit eine Kontamination des Ansatzes mit der TCE-abbauenden Kultur ausgeschlossen werden kann.

Abbildung 4-9 zeigt die Entwicklung der Biomarker EuB, AceA und moC in den Versuchen. Diese zeigen das erwartete Verhalten während des Versuchsverlaufs. Im Ansatz P1_cDCE-3 mit den cDCE-verwertenden MO nimmt die Anzahl der Genkopien von EuB (16S rDNA) und AceA (funktionelles Gen im cDCE-Abbau) zu, während der Biomarker moC (funktionelles Gen im TCE-Abbau) stets unter der Bestimmungsgrenze liegt. Im Ansatz P1_TCE-3, welcher TCE-Verwerter enthält, ist der Verlauf entsprechend umgekehrt. Während EuB und moC einen deutlichen Anstieg verzeichnen, liegt der Biomarker AceA stets unter der Bestimmungsgrenze. Auf Grundlage der Biomarker wird das deutlich langsamere Bakterienwachstum nochmals deutlich.

Abbildung 4-8: Verlauf der TCE-, cDCE- und Chlorid-Konzentration in den Ein-Stoff-Ansätzen (Tabelle 3-9, Phase 1). Grafik TCE 1-3 und cDCE 1-3 zeigen den Mittelwert und Abweichung der jeweiligen Triplikat-Ansätze zum jeweiligen Probenahme-Zeitpunkt. Die Achsen wurden entsprechend der Stöchiometrie der CE-Mineralisation skaliert.

Abbildung 4-9: Entwicklung der Biomarker EuB, AceA und moC im Ein-Stoff-System.

4.4.2 Schadstoffabbau unter äquimolarem Schadstoffverhältnis im Zwei-Stoff-System

Im Zwei-Stoff-System wurde der Abbau von TCE und cDCE mit der TCE-abbauenden Kultur, der cDCE-abbauenden Kultur und einer Mischkultur aus TCE- und cDCE-abbauender Kultur untersucht. Die Ergebnisse sind in Abbildung 4-10 dargestellt.

In den nicht angeimpften Ansätzen blieben Schadstoff- und Chlorid-Konzentration wie bereits in den Ein-Stoff-Systemen über die Versuchsdauer stabil.

Die cDCE-abbauende Kultur wird durch die äquimolare Präsenz von TCE deutlich in ihrer Abbauleistung gehemmt, sodass nach 130 Tagen noch 13,6-20,0 µmol cDCE übrig sind. Die hemmende Wirkung des TCE auf den cDCE-Abbau wurde bereits in der Literatur beschrieben

(Zhao et al. 2010) und spiegelt daher die Erwartungen wieder. Dass gegenüber den nicht angeimpften Versuchen eine deutliche Abnahme des TCEs beobachtet werden kann, deutet auf einen co-metabolischen Umsatz des TCEs unter Verwendung von cDCE als Primärsubstrat hin.

Der Abbau des TCE durch die TCE-abbauende Kultur wurde ebenfalls durch die Präsenz eines weiteren Chlorethens inhibiert. Diese Inhibierung ist jedoch in einem geringeren Ausmaß. Zusätzlich kann ein co-metabolischer Abbau des cDCE beobachtet werden, welcher bereits durch Willmann und Tiehm (2023) beschrieben wurde und auch in Kapitel 4.1.1 zu sehen ist. Eine hemmende Wirkung des cDCE auf den TCE-Abbau kann erst nach 46 Tagen und einem cDCE/TCE-Verhältnis von ~3:1 beobachtet werden. Der weitere Schadstoffabbau ist dabei vollständig inhibiert, sodass auch nach 130 Tagen kein weiterer Abbau beobachtet werden konnte.

Die Kombination der beiden Kulturen resultiert in einem ähnlich verlaufenden Abbau von cDCE und TCE. Der im Ein-Stoff-System beobachtete deutlich schnellere Abbau des cDCE ist hier, aufgrund der Präsenz des TCE, unterbunden. Mit fortschreitender Mineralisation des TCE wird jedoch auch das cDCE mineralisiert, sodass zu Versuchsende beide Schadstoffe unter der jeweiligen Bestimmungsgrenze liegen. Die Abbaugeschwindigkeit des TCEs ist hierbei der Geschwindigkeitsbestimmende Schritt des gesamten Schadstoffabbaus.

Während in den nicht angeimpften Versuchen das molare Verhältnis von cDCE zu TCE konstant auf dem Ausgangsniveau liegt, sind in den aktiven Ansätzen aufgrund des mikrobiologischen Schadstoffabbaus Veränderungen über die Versuchsdauer zu beobachten.

In den Ansätzen P2_TCE 1-3, welche die TCE-Abbauer beinhalten, ist ein deutlicher Anstieg des cDCE/TCE-Verhältnisses, und damit ein vorrangiger TCE-Abbau, welcher zu einer relativen Anreicherung von cDCE führt, zu beobachten. Bereits nach einer Versuchsdauer von 48 Tagen kann bei einem cDCE/TCE-Verhältnis von ~3:1 eine Hemmung des TCE-Abbaus beobachtet werden. Das cDCE/TCE-Verhältnis verschiebt sich bis zu einer Versuchsdauer von 130 Tagen weiter auf ~5:1 was zu einer weiteren Verlangsamung des Schadstoffabbaus führt.

Die Ansätze P2_cDCE 1-3 zeigen nach 14 Tagen eine leichte, stetige Abnahme des Molen-Verhältnisses, sodass bei Versuchsende mit einem Verhältnis von 0,32-0,55 eine relative Anreicherung des TCE zu beobachten ist. Bei einer Restkonzentration von 13,6-20,0 µmol cDCE nach 130 Tagen Versuchsdauer ist, verglichen mit dem Ein-Stoff-System eine starke Hemmwirkung zu beobachten.

Die Versuche P2_TCE/cDCE 1-3 weisen bis zu einer Versuchsdauer von 48 Tagen eine leicht überstöchiometrisch vorliegende cDCE-Konzentration auf, was wiederum den TCE-Abbau als Geschwindigkeitsbestimmenden Schritt des CE-Abbaus unterstreicht. In der Versuchsphase ab 62 Tagen ist das cDCE bereits bis nahe der BG abgebaut, sodass das Molen-Verhältnis zugunsten des TCEs verschoben wird und sich der 0 annähert.

Unter Einbezug der Chlorethen-Verluste in den abiotischen Kontrollen (Steril) ergibt sich für die jeweiligen Triplikate eine Chlorid-Wiederfindung (freigesetzt/freisetzbar) von 92 % (TCE 1-3), 124 % (cDCE 1-3) und 100 % (TCE/cDCE 1-3).

Während des co-metabolischen cDCE-Abbaus wird im Chromatogramm des GC ein neuer, nicht identifizierter Peak beobachtet (Anhang 8.3.1.3.2 Abbildung 8-2). Hierbei kann es sich

um einen chlorierten Metaboliten handeln, wodurch das cDCE nicht vollständig mineralisiert, und damit die freisetzbare Chlorid-Menge überschätzt wurde.

Während die Startkonzentrationen zwischen den Versuchen keine signifikante Abweichung voneinander aufweisen, unterscheiden sich die Endkonzentrationen signifikant voneinander. Eine Übersicht der Signifikanz der Unterschiede zwischen den Ansätzen ist in Tabelle 8-64 (Anhang 8.3.1.3.2) angegeben.

Die Hemmung des Schadstoff-Abbaus durch die Präsenz eines weiteren Chlorethens zeigt sich auch in der Entwicklung der, in Abbildung 4-11 dargestellten, Biomarker. Durch den gehemmten Schadstoffumsatz wird das Biomasse-Wachstum verlangsamt. Dies zeigt sich am deutlichsten im Ansatz P2_cDCE-2, in welchem cDCE-Verwerter eingesetzt wurden. Während im Ein-Stoff-System nach bereits 21 Tagen bereits eine Konzentration des Biomarkers AceA von 6,74e+4 Genkopien/mL gemessen werden konnte, liegt die Konzentration im Ansatz P2_cDCE-2 nach 70 Tagen erst bei 4,30e+3 Genkopien/mL. Auch im Ansatz P2_TCE-3 kommt es durch die Präsenz eines weiteren Chlorethens zu einem verringerten Biomassewachstum. Nach einer Versuchsdauer von 76 Tagen konnte für den Biomarker moC eine Konzentration von 3,10e+3 Genkopien/mL gemessen werden, während im Ein-Stoff-System bereits nach 36 Tagen eine Konzentration von 1,96e+4 Genkopien/mL vorlag. Die anschließende Stagnation der Biomarker-Konzentration verdeutlicht hierbei nochmals die hemmende Wirkung des cDCEs auf die TCE-verwertenden Bakterien.

Im Ansatz P2_TCE/cDCE-2 zeigen sowohl Schadstoffabbau als auch Biomarker der funktionellen Gene einen nahezu identischen Verlauf. Durch Kombination beider Kulturen konnte eine symbiotische Kultur erhalten werden, in der, durch den gleichzeitigen Schadstoffabbau, auf die Einzel-Kulturen toxische und hemmende Effekte überwunden werden. Die symbiotische Beziehung zwischen den verschiedenen abbaukompetenten MO zeigt sich auch in erhöhten Biomarker-Konzentrationen im Ansatz P2_TCE/cDCE-2 verglichen mit den Ansätzen P2_cDCE-2 und P2_TCE-3.

Mit Eintritt der Hungerphase nach vollständigem Abbau der Chlorethene sinken die Biomarker-Konzentrationen wieder ab.

Abbildung 4-10: Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 2) sowie dem molaren Verhältnis von cDCE zu TCE an den einzelnen Probenahme-Zeitpunkten.

Abbildung 4-11: Entwicklung der Biomarker EuB, AceA und moC in den Versuchsansätzen mit äquimolarem Schadstoffverhältnis.

4.4.3 Schadstoffabbau unter nicht-äquimolarem Schadstoffverhältnis im Zweistoffsystem

Die Verläufe des Chlorethen-Abbaus der verschiedenen Kulturen unter nicht äquimolaren Ausgangskonzentrationen sind in Abbildung 4-12 (1:3 molares Verhältnis von cDCE zu TCE) und Abbildung 4-13 (3:1 molares Verhältnis von cDCE zu TCE) dargestellt.

Bei überstöchiometrisch vorliegendem TCE zeigt sich in den Ansätzen der TCE-Verwerter

(P3_High TCE-1-3) der Abbau der Schadstoffe mit einer relativen Anreicherung von cDCE. Während der exponentiellen Abbauphase von 14-42 Tagen Versuchsdauer ist auch der cometabolische Abbau des cDCE zu erkennen. Der TCE-Abbau wird ab einem cDCE zu TCE-Verhältnis von ~8,6 gehemmt und kommt bei einem Restgehalt von 1,21 µmol TCE (~160µg/L) zum Erliegen.

Die Ansätze mit den cDCE-Verwertern (P3_High TCE-4-6) zeigen keinen Schadstoffabbau über die Versuchsdauer.

Die Ansätze mit der Mischkultur (P3_High TCE-7-9) zeigen zu Beginn einen identischen Verlauf des Schadstoffabbaus wie in den Ansätzen P3_High TCE-1-3. Nach 28 Tagen Versuchsdauer, mit dem Erreichen eines äquimolaren Schadstoff-Verhältnisses beginnt der metabolische cDCE-Abbau. Während in den Ansätzen der TCE-Verwerter wieder eine Hemmung des TCE-Abbaus auf Grund der cDCE-Präsenz beobachtet werden kann, werden in der Mischkultur beide Schadstoffe unter die Bestimmungsgrenze abgebaut.

Abbildung 4-12: Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit nicht äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 3, High TCE) sowie dem molaren Verhältnis von cDCE zu TCE an den einzelnen Probenahme-Zeitpunkten.

In den Ansätzen mit überstöchiometrischer cDCE-Präsenz kann über die Versuchsdauer eine starke Hemmung des TCE-Abbaus in den Ansätzen mit den TCE-Verwertern (P3_High cDCE-1-3) beobachtet werden.

Ansätze die cDCE-Verwerter enthalten (P3_High cDCE-4-6) zeigen bereits zu Beginn einen schnellen cDCE-Abbau, sodass nach 28 Tagen der Schadstoff nahezu vollständig abgebaut

ist. In der Versuchsdauer von 14-28 Tagen ist eine sprunghafte Abnahme der TCE-Konzentration zu beobachten. Aufgrund der fehlenden Präsenz von cDCE und der nachfolgenden stagnierenden TCE-Konzentration wird der, in Kapitel 4.4.2 bereits angedeutete, co-metabolischen Umsatz von TCE unter Verwendung von cDCE als Primärsubstanz nochmals verdeutlicht. Bisherige Studien beschreiben einen cometabolischen TCE-Abbau unter Verwendung einer breiten Auswahl von Auxiliarsubstraten wie Alkane (Methan (Oldenhuis et al. 1989; Little et al. 1988; Tovanabootr und Semprini 2010) Propan (Connon et al. 2005; Chang und Alvarez-Cohen 1995), Butan (Arp et al. 2001) Hexan (Frascari et al. 2013), Ammonium (Arciero et al. 1989; Vanelli et al. 1990; Kocamemi und Cecen 2010)), sowie aromatische Kohlenwasserstoffe und Halogenkohlenwasserstoffe (Benzol, Chlorbenzol (Elango et al. 2011)), jedoch nicht unter Verwendung anderer Chlorethene. Da an Chlorethen-kontaminierten Standorten in der Regel mehrere Chlorethene präsent sind, besitzt dieser co-metabolische Abbauweg einen Vorteil gegenüber den genannten anderen Auxiliarsubstraten, welche verschiedene Schadstoffquellen, und damit eine Mischkontamination, oder die Zugabe der Auxiliarsubstrate voraussetzen würden. Hinzukommend ergibt sich aus den Versuchen ein Umsatzfaktor von welcher deutlich über den erzielten Faktoren anderer 0,145 mg_{TCE}/mg_{Auxiliarsubstrat}, Auxiliarsubstrate liegt (siehe Anhang 8.1 Tabelle 8-1). Der deutlich höhere Umsatzfaktor kann in der Ähnlichkeit der Substrat-Struktur begründet liegen. Weiterhin besteht die Annahme, dass sowohl im aerob metabolischen cDCE-Abbau (Jennings et al. 2009; Mattes et al. 2010), als auch im aerob metabolischen TCE-Abbau (Kapitel 1.3.2.2) die Stoffwechselwege einen Monooxygenase-induzierten initialen Angriff auf das jeweilige Chlorethen und einen darauf folgenden Haloacid-Dehalogenase Schritt besitzen, wodurch nicht nur eine Ähnlichkeit des Substrates, sondern auch ein ähnlicher Abbauweg verwendet werden kann. Da jedoch kein Abbau der jeweiligen Zweitkontaminante ohne das Primärsubstrat beobachtet werden kann, muss von einer Substratspezifität des initialen Abbauschrittes ausgegangen werden.

In der Anfangsphase des Versuches unterscheiden sich die TCE-Gehalte in den Ansätzen P3_High cDCE-4-6 und P3_High cDCE-7-9 nicht. Nach erfolgtem cDCE-Abbau stagniert die TCE-Konzentration in den Ansätzen P3_High cDCE-4-6 jedoch, während in den Ansätzen P3_High cDCE-7-9 beide Schadstoffe, wie bereits in den Versuchen mit überstöchiometrischer TCE-Konzentration, bis unter die Bestimmungsgrenze abgebaut werden.

Abbildung 4-13: Verlauf der TCE-, cDCE-, Chlorid-Konzentration in den Zwei-Stoff-Systemen mit nicht äquimolaren Ausganskonzentrationen (Tabelle 3-9, Phase 3, High cDCE) sowie dem molaren Verhältnis von cDCE zu TCE an den einzelnen Probenahme-Zeitpunkten.

Die Entwicklung der Biomarker in ausgewählten Versuchsansätzen ist in Abbildung 4-14 dargestellt. Der Verlauf der Schadstoffkonzentrationen spiegelt sich im Verlauf der Biomarker-Konzentrationen wider. In den Ansätzen P3_High TCE-6 und P3_High cDCE-2, in denen kein Schadstoffabbau beobachtet wurde, liegen auch, trotz Inokulation, die Biomarker stets unter der Bestimmungsgrenze. In den Ansätzen P3_High TCE-3 und P3_High cDCE-5, steigt neben dem Biomarker EuB nur der Biomarker moC bzw. AceA an. Das selektive Wachstum der jeweiligen Bakterien zeigt nochmals auf, dass es sich tatsächlich um einen co-metabolischen Schadstoffumsatz des in geringerer Menge vorliegenden Substrates handelt, welcher im Rahmen des primären Schadstoffabbaus stattfindet. Eine Kontamination der Ansätze mit der jeweils anderen Kultur kann auf Grundlage der Biomarker ausgeschlossen werden.

Mit Eintritt der Hungerphasen sinken die Biomarker-Konzentration in allen Versuchen.

Abbildung 4-14: Entwicklung der Biomarker EuB, AceA und moC in ausgewählten Versuchsansätzen mit nicht-stöchiometrischem Schadstoffverhältnis.

Eine Übersicht der Signifikanz zwischen den verschiedenen Versuchsansätzen ist in Tabelle 8-75 und Tabelle 8-86 (Anhang 8.3.1.3.3) gegeben.

4.4.4 Fazit der Entwicklung einer Mischkultur zur Bioaugmentation des aerob metabolischen cDCE- und TCE-Abbaus

Durch Kombination der beiden Kulturen konnte eine Mischkultur entwickelt werden, die sowohl TCE als auch cDCE gleichzeitig abbauen kann. Wie in Tabelle 4-7 deutlich wird, hat die Mischkontamination, sowie das Verhältnis der Kontaminanten zueinander einen Einfluss auf die maximalen Abbauraten der jeweiligen Chlorethene.

	Schadstoff-Konz.		Maximale Abbaurate			
Bezeichnung	TCE cDCE		TCE cDCE			CE
			µmol/(L*d)	mg/(L*d)	µmol/(L*d)	mg/(L*d)
P1-TCE-1			0,99	0,13	-	-
P1-TCE-2	75		1,60	0,21	-	-
P1-TCE-3	75 μmoi/L	-	1,75	0,23	-	-
P1-TCE-Steril	-		-	-	-	-
P1-cDCE-1			-	-	4,95	0,48
P1-cDCE-2		75	-	-	5,16	0,50
P1-cDCE-3	-	75 µmoi/L	-	-	5,16	0,50
P1-cDCE-Steril	-		-	-	-	-
P2-TCE-1			2,28	0,30	0,93*	0,09*
P2-TCE-2	75 14	76 14	1,45	0,19	0,62*	0,06*
P2-TCE-3	75 μmol/L	75 µmol/L	1,98	0,26	0,62*	0,06*
P2-TCE-Steril	-		-	-	-	-
P2-cDCE-1			0,53	0,07*	1,24	0,12
P2-cDCE-2			0,61	0,08*	0,83	0,08
P2-cDCE-3	75 µmol/L	75 µmol/L	0,68	0,09*	0,93	0,09
P2-cDCE-Steril	_		-	-	-	-
P2-TCE/cDCE-1			1,90	0,25	2,06	0,20
P2-TCE/cDCE-2			1,83	0,24	2,79	0,27
P2-TCE/cDCE-3	75 µmol/L	75 µmol/L	1,52	0,20	1,96	0,19
P2-TCE/cDCE-Steril	-			-	-	-
P3-High TCE-1			3,27	0,43	0,41*	0,04*
P3-High TCE-2	-		3,42	0,45	0,41*	0,04*
P3-High TCE-3			3,81	0,50	0,41*	0,04*
P3-High TCE-4				-	-	-
P3-High TCE-5				-	-	-
P3-High TCE-6	75 µmol/L	25 µmol/L		-	-	-
P3-High TCE-7	-		2,89	0,38	0,83	0,08
P3-High TCE-8			2,36	0,31	0,52	0,05
P3-High TCE-9			3,42	0,45	0,93	0,09
P3-High TCE-Steril	-			-	-	-
P3-High cDCE-1			_	-	_	-
P3-High cDCE-2				-	-	-
P3-High cDCE-3		- - 75 µmol/L		-	_	-
P3-High cDCE-4	_		0.46*	0.06*	4.75	0.46
P3-High cDCE-5			0.61*	0.08*	4.95	0.48
P3-High cDCE-6	25 µmol/L		0.38*	0.05*	4.33	0.42
P3-High cDCE-7	_		0.68	0.09	4,33	0.42
P3-High cDCE-8			0.91	0,12	4.44	0.43
P3-High cDCE-9		-	0.68	0.09	4 64	0.45
P3-High cDCE-Steril	-		-	-	-, 0 -	-
*	Co-metaboli	scher Schade	stoffabbau			

Tabelle 4-7: Übersicht der maximalen Abbauraten in den einzelnen Versuchsansätzen (Tabelle 3-9).

Co-metabolischer Schadstoffabbau

4.5 Ausbreitung der TCE-Abbauenden Bioaugmentationskultur im sandigen Aquifer

4.5.1 Bioaugmentation im durchflossenen Säulensystem im Labormaßstab

Die Ausbreitung der Bioaugmentationskulturen auf Grundlage unterschiedlicher Bioaugmentationsansätze wurde in durchströmten, über die Höhe horizontal beprobbaren, Säulen durchgeführt (Tabelle 3-10).

Durch den mikrobiellen Abbau wird das TCE mineralisiert. Hierbei werden sowohl Chlorid-Ionen als auch Protonen im stöchiometrischen Verhältnis freigesetzt. Neben der Zunahme der Chlorid-Konzentration kann daher, in einem nicht bzw. schwach gepufferten System, eine Abnahme des pH-Wertes beobachtet werden. Da der Abbau aerober Natur ist, sinkt der Gehalt des gelösten Sauerstoffs zusammen mit der TCE-Konzentration über die Fließstrecke.

Die drei genannten Parameter weisen das beschriebene Verhalten in allen durchgeführten Säulenversuchen auf. Der Verlauf der Parameter in Relation zur gemessenen TCE-Konzentration ist exemplarisch in Abbildung 4-15. Da ein identisches Verhalten der Parameter in allen Säulenversuchen zu beobachten war, werden im Weiteren nur die Parameter TCE und Chlorid, dargestellt. Die Chlorid-Konzentration dient hierbei als ausreichender Nachweis, dass es sich bei der Abnahme des TCE um einen Schadstoffabbau bzw. eine Mineralisation und keine Verflüchtigung handelt.

Abbildung 4-15: Verlauf der TCE-Konzentration über die Säulenhöhe und die Auswirkung des TCE-Abbaus auf die Parameter Chlorid-Konzentration, Sauerstoff-Konzentration und pH-Wert nach 10wöchigem Säulenbetrieb in S 3. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt.

In der nicht angeimpften Säule S_{Kontrolle} konnte über die volle Betriebsdauer von 10 Wochen kein Schadstoffabbau beobachtet werden.

4.5.1.1 Bioaugmentation durch Injektion einer Flüssigkultur

Die Inokulation der Säulen mit Kultur wurde sowohl mit einer einmaligen Injektion der in Mineralmedium gehaltenen Kultur (S 1 und S 2), als auch einer kontinuierlichen Injektion (S_{Kontinuierlich}) über eine 18-tägige Injektionsdauer durchgeführt.

Einmalige Injektion

Sowohl im Verlauf der Säule S 1 (Abbildung 4-16), als auch im Verlauf der Säule S 2 (Abbildung 4-17) ist in der ersten Woche nach Inokulation im oberen Teil der Säule (Port 5 und Ablauf) eine Abnahme des TCE unter Zunahme des Chlorids zu beobachten. In beiden Säulen ist ab Woche 2 keine Abbauaktivität mehr zu beobachten. Während S 1 erst in Woche 9 wieder eine geringe Abbauaktivität aufweist, ist diese in S 2 bereits ab Woche 5 zu beobachten. In S 2 nimmt die Umsatzmenge bis Woche 11 zu. Der Abbau des TCE kann dabei ab der Inokulationshöhe (11 cm) beobachtet werden.

Durch die Injektion der Bioaugmentationskultur in das fließende Medium wird, wie in Woche 1 durch den TCE-Umsatz am Säulenende deutlich wird, die Kultur größtenteils ausgespült. Der Abtransport der injizierten Biomasse, der in einer hohen Grundwasser-Fließgeschwindigkeit begründet liegt, stellt daher ein Ausschlusskriterium für die Verfahrensimplementation an. Ähnliches wurde durch Jennings et al. (2013) beschrieben, welche in einem Feldversuch *Polaromonas* sp Stamm JS666 in einen Aquifer mit einer Fließgeschwindigkeit von 21,3-54,9 m/Jahr injizierten. Während zu Beginn positive Biomarker-Befunde nur im Injektionsbereich vorlagen, konnte nach einer Versuchsdauer von 7 Monaten keine Biomarker im Injektionsbereich, dafür aber in den abströmig gelegenen Brunnen vorgefunden werden. In beiden Säulen ist nach einer Betriebsdauer von 9 Wochen bzw. 5 Wochen eine Zunahme des TCE-Abbaus zu beobachten. Da der Abbau von der Inokulationshöhe ausgeht, ist anzunehmen, dass sich Bakterien in geringer Menge an die Bodenmatrix gebunden haben oder im geschützten Bereich des Injektionsports verblieben sind und somit das Ausspülen eines geringen Anteils des Inokulums vermieden wurde.

Die daraufhin folgende Etablierung des TCE-Abbaus trotz Ausspülen eines großen Teils der Bakterien, und somit sehr geringen verbliebenen Bakterienzahl ist hierbei sehr positiv zu werten.

Abbildung 4-16: Entwicklung der TCE-Konzentration sowie der Chlorid-Konzentration über die Höhe der Säule S 1. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der Inokulation mit der Flüssigkultur 70-2-1.

Abbildung 4-17: Entwicklung der TCE-Konzentration sowie der Chlorid-Konzentration über die Höhe der Säule S 2. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der Inokulation mit der Flüssigkultur 70-2-1.

Kontinuierliche Injektion

Nach Ende der Inokulation nach 18 Tagen mit einer Injektionsrate von ~90 mL/Tag konnte ein TCE-Abbau von ~15 mg/L beobachtet werden (Woche 1 – Woche 2) ehe der Abbau wieder nachlässt und nach 8 Wochen nur noch ~8 mg/L beträgt. Somit ist auch bei der kontinuierlichen Injektion ein Auswaschen der Kultur zu beobachten. Aufgrund der Injektionsdauer, sowie des damit verbundenen höheren Injektionsvolumens, konnte sich jedoch ein kleiner Teil der injizierten Kultur auf der Säule etablieren (Woche 11).

Die erhöhten Chlorid-Werte im Zeitraum von Woche 0-2 sind durch den Chlorid-Gehalt der Inokulationskultur (~160 mg/L) bedingt und verdünnen sich über die Fließstrecke.

Die Zunahme der TCE-Konzentration im Ablauf, sowie die einhergehende Abnahme der Chlorid-Konzentration im zeitlichen Rahmen von 0-6 Wochen sind auf Vermischungseffekte des Säulenflusses zurückzuführen.

Die Injektion der Kulturen, sowie die Probenahmen werden durch die Ports durchgeführt. Diese enden im mittleren Bereich des Säulenquerschnitts und sind nur am Lanzen-Ende verfiltert. Hierdurch wird entsprechend primär der innere Ringraum der Säule bioaugmentiert und beprobt. Im äußeren Bereich ist dadurch mit weniger Bioabbau zu rechnen und die Restkonzentration nach ~50 cm Fließstrecke höher als im inneren Ringbereich, der bei ~5-10 mg/L liegt.

Abbildung 4-18: Entwicklung des TCE-Abbaus in S_{Kontinuierlich}. Die Injektion der Flüssigkultur TKS3 (Anhang 8.2.5.3 Tabelle 8-24) dauerte 18 Tage mit einer Rate von ~90 mL/Tag. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt. Die gestrichelte Linie markiert die Höhe der Inokulation.

4.5.1.2 Bioaugmentation durch Einbau eines bewachsenen Trägermaterials

Analog zu den Versuchen mit Kultur in Flüssigmedium, wurde die Inokulation im Bereich um 11 cm vorgenommen Hierzu wurde beim Zusammenbau der Säulen das bewachsene Trägermaterial (Kapitel 3.5.1.2) zwischen einer Höhe von 8-13 cm über den gesamten Säulenquerschnitt eingesetzt.

Beide Säulen, die mit immobilisierter Biomasse inokuliert wurden, wiesen bereits nach einer relativ kurzen Adaptionsphase von drei Wochen einen TCE-Abbau im Abstrombereich der Inokulation auf (Abbildung 4-19 und Abbildung 4-20). Über den weiteren Versuchsverlauf erhöht sich der TCE-Abbau in beiden Säulen. Das zugegebene TCE (~20 mg/L) konnte in S 3 bereits nach sechs Wochen Versuchsdauer, im zur Verfügung stehenden Reaktionsvolumen, vollständig abgebaut werden. S 4 wies zum gleichen Zeitpunkt eine Ablaufkonzentration von ~5 mg/L auf. Während S 3 bis zu Woche 15 einen vollständigen Abbau des TCEs durchführte, lies die Abbauleistung in S 4 nach, sodass in Woche 15 noch ~10 mg/L TCE im Ablauf zu finden waren. Da beide Säulen unter gleichen Bedingungen und aus dem gleichen Vorrat betrieben wurden, ist die Ursache schwer zu definieren. Beide Säulen wiesen zwischen Woche 16 und Woche 19 aufgrund des Sauerstoffmangels im Zulauf (< 0,5 mg/L) keinen Abbau des TCEs auf. Mit erneuter Zufuhr von Sauerstoff-gesättigtem Wasser (~8 mg/L) konnte in S 3 wieder ein Abbau des gesamten TCEs über die Säulenhöhe beobachtet werden, während S 4 wie bereits vor der sauerstoff-freien Phase nur ~10 mg/L des zugeführten TCEs abbaut.

Abbildung 4-19: Verlauf der TCE-Konzentration und Chlorid-Konzentration über die Säulenhöhe in der mit bewachsenem Trägermaterial inokulierten Säule S 3. Die Abbildung zeigt die Parameter nach einer, zwei, sechs, zehn, 16 und 22 Wochen Versuchsdauer. Von Woche 16 bis Woche 19 stand kein Sauerstoff zur Verfügung. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt.

Durch eine Rückführung des Fließmediums kann das benötigte Reaktionsvolumen für den Schadstoffabbau deutlich verringert werden, jedoch muss die Verteilung des zurückgeführten Mediums über den gesamten Querschnitt sichergestellt werden.

Abbildung 4-20: Verlauf der TCE-Konzentration und Chlorid-Konzentration über die Säulenhöhe in der mit bewachsenem Trägermaterial inokulierten Säule S 4. Die Abbildung zeigt die Parameter nach einer, drei, sechs, zehn, 16 und 22 Wochen Versuchsdauer. Von Woche 16 bis Woche 19 stand kein Sauerstoff zur Verfügung. Ab Woche 20 wurde mit einem Volumenstrom von 0,5 L/d von 41 cm auf 11 cm zirkuliert. Der Bereich, der innerhalb der Säule liegt, ist grau hinterlegt.

Der in Säule S 3 beobachtete Schadstoffabbau wies nach 10 Wochen Betriebsdauer eine Abbauleistung von ~5 mg_{TCE}/(L*d) auf. Aufgrund der schwankenden Zulaufwerte sank die Abbauleistung bei gleichbleibenden Ablaufwerten nach der Sauerstoff-freien Phase auf 4,5 mg_{TCE}/(L*d). In Säule S 4, in welcher die zugegebenen 20 mg/L TCE nicht vollständig umgesetzt wurden, konnte die Abbauleistung durch die Rückführung des Fließmediums von ~2,5 mg_{TCE}/(L*d) in Woche 10 auf ~3,5 mg_{TCE}/(L*d) über die gesamte Säule, bzw. 6,3 mg_{TCE}/(L*d) bei Betrachtung der PN-Ports erhöht werden.

Eine Bioaugmentations-Anwendung in Form einer permeablen reaktiven Barriere, welche in Säule S 3 und S 4 verfolgt wurde, stellt einen vielversprechenden Ansatz für den aerob metabolischen TCE-Abbau dar. Der Ansatz der reaktiven Barrieren wird bereits zur Behandlung von Chlorethenen auf Grundlage einer anaerob reduktiven Dechlorierung bzw. sequentiell anaerob/aeroben Dechlorierung im Rahmen von NA beziehungsweise ENA-Ansätzen eingesetzt (Semkiw und Barcelona 2011; Casiraghi et al. 2022). Durch die Verwendung immobilisierter Biomasse wird das, mit Injektion einer Flüssigkultur verbundene, in den Versuchen beobachtete und durch Jennings et al. (2013) beschrieben, Auswaschen des Inokulums vermieden. Die Sauerstoffzufuhr für den aeroben CE-Abbau kann dabei durch Air-Sparging (Devlin et al. 2004; Davis et al. 2009), die Verwendung einer Sauerstoffquelle (engl. oxygen releasing compound, ORC) wie z.B. CaO2 (Kao et al. 2001; Wang et al. 2016), oder Elektrochemie (Lohner und Tiehm 2009; Aulenta et al. 2013) durchgeführt werden. Sollte nur ein kleines Reaktionsvolumen zur Verfügung stehen, kann eine Grundwasserzirkulation, in deren Rahmen das Grundwasser aerobisiert wird, sowohl zur Sauerstoff-Zugabe, also auch zur Verbesserung der Abbauleistung realisiert werden.

4.5.1.3 Biomarker

Nach Versuchsende wurde das Wasser aus den Säulen abgelassen und die Bodenmatrix für eine Bestimmung der Biomarker beprobt.

Abbildung 4-21 zeigt die Ergebnisse der Biomarker-Untersuchung der kontinuierlich beimpften Säule S_{Kontinuierlich}. Im äußeren Bereich des Säulenquerschnitts beträgt das Verhältnis moA/Rho zwischen 4-7 %. Im inneren Bereich, der durch die Injektion des Inokulums stärker angeimpft wurde steigt der Anteil der *Rhodocyclaceae* mit einem moA-Biomarker von 3 %-4 % (6 cm und 11 cm Port-Höhe) auf 32 % in Port 5 (41 cm) an, sodass trotz einer Abnahme der Rho-Genkopiezahlen von einer relativen Anreicherung der TCE-Abbau kompetenten *Rhodocyclaceae* ausgegangen werden kann.

Abbildung 4-21: Ergebnisse der Biomarker der, bei Versuchsende entnommenen Bodenproben der Säule $S_{Kontinuierlich}$. Alle Proben wurden auf Höhe der PN-Ports entnommen.

Abbildung 4-22 zeigt die Ergebnisse der Biomarker-Untersuchung in Säule S 3 und S 4. In S 3 sind die Genkopie-Zahlen der Biomarker im inneren (Radius 0-5 cm) als auch im äußeren Bereich (Radius 5-8 cm) recht einheitlich. Wie auch in Kapitel 4.3.3 zu sehen, befinden sich die Genkopiezahlen des Biomarkers des funktionellen Gens (moA) eine Größenordnung unter dem 16S rDNA-Biomarker Rho. Im Inokulations-Bereich konnten dabei die größten Konzentrationen an Biomarkern festgestellt werden. Die nach Versuchsende entnommenen Sediment-Proben der Säule S 4 wiesen im inneren Ringraum, im Umfeld der Filterlanzen, eine geringere Konzentration der untersuchten Biomarker (Rho, moA) auf als im äußeren Ringbereich nahe der Säulenwand. Aufgrund der höheren Fließgeschwindigkeit ist im inneren Bereich mit einem größeren Abtrag der immobilisierten Biomasse zu rechnen. Die PCR-Untersuchungen unterstützen diese Vermutung. Aufgrund der Verdünnung, aber auch der Rückführung planktonischer TCE-Abbauer, welche in den untersuchten Sedimentproben nicht erfasst werden, konnte trotzdem ein verbesserter Abbau des Schadstoffes erreicht werden.

4.5.1.4 Fazit der Säulenversuche

Sowohl das Inokulieren mit einer Flüssigkultur als auch das Inokulieren durch den Einbau einer, auf der Bodenmatrix, immobilisierten Bioaugmentationskultur führte zu einem Schadstoffabbau. Die mit immobilisierter Biomasse angeimpften Säulen zeigten jedoch eine deutlich kürzere Lag-Phase, bis der TCE-Abbau beobachtet werden konnte. Während die immobilisierte Biomasse als dauerhafte Quelle für neue Bakterien fungierte, wurde ein Großteil des Inokulums aus den, mit Flüssigkultur inokulierten Säulen, ausgespült. Die höhere Biomassekonzentration in den Säulen S 3 und S 4 zeigt sich auch in höheren beobachteten maximalen Abbauraten (Tabelle 4-8).

Säule	Bioaugmentationsansatz	max. Abbaurate	
		mg⊤c⊧/(L*d)	
S 1	Einmolige Injektion Elüppigkultur	2,1	
S 2		3,3	
S 3	Einhau howachconos Trägormatorial	4,5-5	
S 4	Ellibad bewachsenes Tragernaterial	3,5-6,3	
SKontinuierlich	Kontinuierliche Injektion Flüssigkultur	3,5	
SKontrolle	Keine Bioaugmentation	Kein Schadstoffumsatz	

Tabelle 4-8:	Übersicht der maximalen Abbauraten in den einzelnen Versuchssäulen.

Aufgrund der deutlich kürzeren Lag-Phase bis der Schadstoffabbau einsetzt, sowie der recht hohen Fließgeschwindigkeit in den technischen Systemen (v_a~22 cm/d), wurden die in Kapitel 3.5.5.2 beschriebenen großskaligen Versuche mit immobilisierter Biomasse angeimpft.

4.5.2 Bioaugmentation im durchflossenen System im technischen Maßstab

Die Versuche in Box-Systemen technischer Skala wurden mit, auf Dorsilit 8 immobilisierten, aerob metabolischen TCE-Verwertern angeimpft. Das Inokulum wurde der in Kapitel 3.5.1.2 beschriebenen 70 L Säule entnommen.

Die Versuche wurden durch VEGAS an der Universität Stuttgart betreut.

4.5.2.1 Ausbreitung des Schadstoffabbaus im Bioaugmentationsansatz

Abbildung 4-23 zeigt die Konzentrationen von TCE, Chlorid, gelöstem Sauerstoff und den pH-Wert in den verschiedenen Ports des Versuchsaufbaus Box 2 (Tabelle 3-11) nach 165 Tagen Versuchsdauer. Wie bereits in den vorhergehenden Säulenversuchen (Kapitel 4.5.1) zu sehen war, sinken bei aktivem mikrobiologischen Schadstoffabbau die Konzentrationen von TCE und Sauerstoff (mikrobieller Schadstoffabbau) sowie der pH-Wert ab, während die Chloridkonzentration zunimmt (Freisetzung von Salzsäure im Zuge des Schadstoffabbaus). Auffällig ist dabei die überstöchiometrische Zunahme des Chlorids bezogen auf die gemessenen Konzentrationen an TCE im Zulauf.

Abiotische Verluste sind zum ersten durch den Versuchsaufbau selbst, nach oben offene, mit Acryl-Glas abgedeckte, Boxen nicht auszuschließen. Ein Verlust des Schadstoffes ist dabei über die gesamte Fließstrecke in Form von Evaporation möglich. Da eine Evaporation allerdings zu einem Verlust des TCE aus dem System führt, wird hierbei kein Chlorid freigesetzt und somit auch die überstöchiometrische Zunahme des Chlorids nicht erklärt. Die Proben wurden zur Vorbereitung der HPLC/UV-Messung durch Cellulose-Acetat-Filter gefiltert. Bei unzureichendem Vorspülen des Filters mit der Probe kann das TCE an das Filtermaterial adsorbieren, sodass ein Minderbefund des TCEs vorliegt.

Abbildung 4-24 zeigt den zeitlichen Verlauf der TCE- sowie Chlorid-Konzentration in den einzelnen Ports des Versuchsaufbaus Box 2 über die Versuchslaufzeit von 207 Tagen.

Während der ersten 50 Tagen konnte kein Schadstoffabbau beobachtet werden, wobei die Inhibierung auf den leicht basischen pH-Wert (zwischen 8,0-8,5) des eingesetzten Trinkwassers zurückgeführt werden kann (Gaza et al. 2019).

Abbildung 4-23: Verteilung der Konzentrationen von TCE, Chlorid und Sauerstoff, sowie pH-Wert über Box 2 nach 165 Tagen.

Der pH-Wert des Zulauf-Mediums wurde, nach 50 Tagen Versuchsdauer, durch eine, an ein Messsystem gekoppelte, CO₂-Injektion in einen Bereich von 7,0-7,6 eingestellt. Kurz nach der Korrektur des pH-Wertes des Zulauf-Mediums wurde über die gesamte Breite der Boxen ein Abbau des TCE in den Ablaufkammern A-H beobachtet. In den inneren Probenahmeports zeigt sich der Schadstoffabbau zuerst nach ~75 Tagen in den Ports 1-1, 2-1, 3-1, welche im Abstrombereich des Inokulums liegen. Der vollständige Abbau des TCEs konnte hier in einer Versuchsdauer von unter 100 Tagen beobachtet werden. In den Ports 1-2, 2-2 und 3-2 begann

der Schadstoffabbau ebenfalls nach ~75 Tagen, der vollständige Abbau des TCEs konnte in den Ports allerdings erst nach über 100 Tagen beobachtet werden.

Abbildung 4-24:TCE- und Chlorid-Konzentrationen in den Ports des Versuchsaufbaus Box 2. Der schraffierte Bereich markiert die Zeitspanne, in der der pH-Wert des Zulaufs über 8,0 lag und somit inhibierend auf den Schadstoffabbau wirkt.

In den Ports 1-3, 2-3 und 3-3 beginnt der Schadstoffabbau erst nach ~100 Tagen, der vollständige Abbau wird hier erst nach 116 Tagen beobachtet.

Die in der Box installierten PN-Ports zeigen dabei den Verlauf der lateralen Ausbreitung des TCE-Abbaus und somit auch die Besiedelung des sandigen Materials durch die TCE-verwertenden Mikroorganismen. Auf Grundlage der vorhandenen Datenpunkte breitet sich der TCE-Abbau innerhalb von 21 Tagen von der ersten Reihe der PN-Ports zur zweiten Reihe und in weiteren 21 Tagen zur dritten Reihe aus. Dies resultiert in einer lateralen Ausbreitung des TCE-Abbaus von 0,95 cm/d.

Durch die erhöhte TCE-Konzentration an Tag 193 erfährt die etablierte Mikrobiota einen Schock, wodurch der Schadstoffabbau kurzzeitig abnimmt. Über die Fließstrecke durch die Box kann jedoch weiterhin, wenn auch geringer ausgeprägt, der Schadstoffabbau beobachtet

werden, sodass nach einer Versuchsdauer von 207 Tagen in den Ablaufkammern geringere TCE-Konzentrationen und höhere Chlorid-Konzentrationen als in den Ports 3-1, 3-2 und 3-3 beobachtet werden können.

In Box 2 konnte über eine Versuchsdauer von 100-150 Tagen der Abbau der gesamten zugegebenen Menge an TCE beobachtet werden. Da bereits in der ersten Reihe der diskreten Probenahmestellen kein Schadstoff mehr vorgefunden werden kann, ergibt sich ein Umsatz von 6,4 mg_{TCE}/(L*d) auf eine Fließstrecke von 55 cm. Der Umsatz ist hierbei als minimaler Wert zu betrachten. Eine vergleichbare Abbauleistung zwischen Säule S 3 (Kapitel 4.5.1.2) und Box 2 wäre bei einem vollständigen Schadstoffumsatz nach 30 cm erreicht. Aufgrund fehlender Probenahmemöglichkeiten konnte dies jedoch nicht bestätigt werden.

Verglichen mit einer Bioaugmentationsanwendung zur Stimulation der reduktiven Dechlorierung von TCE in einem physischen Aquifer-Modell ist durch den aerob metabolischen Schadstoffabbau ein deutlich schnellerer Schadstoffumsatz zu beobachten. Lee et al. (2010) berichten von einer TCE-Transformation von 10,5-31,8 μ M_{TCE}/d (entspricht 1,4-4,2 mg_{TCE}/(L*d)) durch eine, an einem TCE-kontaminierten Standort gewonnene, Kultur welche *Dehalococcoides* spp. enthält und deren Fähigkeit zur vollständigen Dechlorierung belegt war (Pon und Semprini 2004; Yu et al. 2005). Die Ethen-Produktionsrate lag jedoch in einem Bereich von 0,5-17,3 μ M_{Ethen}/d, sodass das TCE nicht vollständig zu Ethen umgesetzt wurde. Yuan et al. (2021) berichten von Umsatzraten im Bereich von 0,2-0,4 mg_{TCE}/(L*d) einem elektrolytischen Grundwasser Zirkulations-System. Der TCE-Abbau wird dabei einem aerob co-metabolischen Prozess zugeordnet. Das hier beschrieben Versuchssystem auf technischer Skala besitzt einen Schadstoffumsatz von 6,4 mg_{TCE}/(L*d). Die Ergebnisse zeigen somit die höhere Effizienz des aerob metabolischen Schadstoffabbaus gegenüber der reduktiven Dechlorierung und einem aerob co-metabolischen Schadstoffabbau auf. Eine zusammenfassende Übersicht ist in Tabelle 4-9 gegeben.

Quelle	Biologischer Abbauprozess	Abbaurate
		mg⊤cε/(L*d)
Lee et al. (2010)	Anaerob reduktiv dechlorierend	1,4 - 4,2
Yuan et al. (2021)	Aerob co-metabolisch	0,2 - 0,4
Diese Arbeit	Aerob metabolisch	6,4

 Tabelle 4-9:
 Vergleich der TCE-Abbauraten der verschiedenen Stoffwechselwege

4.5.2.1.1 Biomarker

Zu Versuchsende wurden Bodenproben aus den Boxen entnommen. Die Stellen wurden auf X-Position der integrierten Probenahme-Ports (20 cm, 40 cm, 60 cm) im zulaufnahen Bereich (15 cm Y-Position), auf Höhe der Inokulation (35 cm Y-Position), an den integrierten Probenahme-Ports (55 cm, 70 cm, 85 cm Y-Position) sowie im ablaufnahen Bereich (95 cm Y-Position) auf einer Höhe von 25 cm (Z-Position) beprobt. Die Ergebnisse der einzelnen Biomarker-Befunde sind in Abbildung 4-25 dargestellt.

Abbildung 4-25:Konzentrationen der einzelnen Biomarker-Befunde an den beprobten Stellen des Aufbaus Box 2.

Wie bereits während der Methodenetablierung des moC-Biomarkers (Kapitel 4.3.3) beobachtet werden konnte, liegen die Nachweise der Biomarker EuB und Rho in einer höheren Größenordnung vor. Da die Biomarker EuB und Rho in ähnlichen Konzentrationen vorgefunden werden können, ist davon auszugehen, dass es sich bei der etablierten, immobilisierten, Mikrobiota nahezu vollständig um die, zum aerob metabolischen TCE-Abbau befähigte, Bioaugmentationskultur handelt.

Das zufließende TCE konnte über einen weiten Teil des Versuches bereits in den integrierten Probenahmestellen 1-1, 1-2 und 1-3 nicht mehr vorgefunden werden, sodass der Schadstoffabbau im Bereich zwischen Zulauf und der ersten Reihe der integrierten PN-Ports verortet werden kann. Dies drückt sich auch in den, verglichen mit den Werten zwischen 50 cm und 100 cm Y-Position, höheren Biomarker-Konzentrationen von Rho und moC aus, sodass der, durch die chemische Analytik beobachtete, Schadstoffabbau mit erhöhter Präsenz der Biomarker im Bereich zwischen Zulauf und den integrierten Probenahmestellen bestätigt werden kann. Neben der lateralen Ausbreitung des Inokulums zeigen die Biomarker auch die Ausbreitung der Bakterien entgegen der Fließrichtung.

Anhand der Durchflusszytometrie konnten keine Veränderungen in der Gesamtzellzahl beobachtet werden. Die Analyseergebnisse lagen über die gesamte Versuchsdauer in einem Bereich von 4,1e+5 - 1,8e+6.

4.5.2.1.2 Fazit der Boxversuche im technischen Maßstab

In beiden Versuchsaufbauten konnten sich die TCE-Verwerter erfolgreich etablieren und im gesamten Box-Volumen, sowohl lateral als auch entgegen der Fließrichtung, ausbreiten. Mit sinkenden TCE-Werten konnte ein Anstieg der Chlorid-Werte beobachtet werden. Aufgrund der Probenbehandlung (Filtration für HPLC/UV Untersuchung), welche einen Minderbefund des TCE verursachte, konnte die Massenbilanz von abgebautem TCE und freigesetztem

Chlorid nicht geschlossen werden.

Ausgehend von einem kleinen Inokulum (hier ~1/20 des Gesamtvolumens) kann eine Bioaugmentation erfolgreich verlaufen und sich die Bakterien ausgehend vom Inokulum über das zur Verfügung stehende Volumen ausbreiten. Das Skalieren der Anwendung auf größere Systeme ist somit vielversprechend.

4.5.2.2 Elektrokinetischer Transport von Bioaugmentationskulturen

Nach Abschluss der in 4.5.2.1.2 beschriebenen Versuche wurden die Boxen geleert, gereinigt und desinfiziert. Im neuen Versuchsaufbau wurde der Inokulationsbereich enger gestaltet und die eingebrachten Elektroden mit Gleichstrom beaufschlagt. Hierdurch wurde ein elektrisches Feld mit einem Spannungsgradienten von 0,1 V/cm (U_{gesamt} = 6 V) erstellt.

4.5.2.2.1 Ausbreitung des Schadstoffabbaus

Der zeitliche Verlauf der TCE- und Chlorid-Konzentration der Versuchsaufbauten Box 3 und Box 4 sind in Abbildung 4-26 dargestellt.

Während nach einer Versuchsdauer von 23 Tagen der Schadstoffabbau in beiden Boxen noch im Abflussbereich des Inokulums befindet (Abläufe A und B), differenziert sich die laterale Ausbreitung des Schadstoffabbaus in der folgenden Versuchsdauer. Nach 36 Tagen ist in Box 3 der Schadstoffabbau nach wie vor auf den Inokulationsbereich A-B begrenzt, jedoch steigt die Menge an abgebautem Schadstoff und die damit verbundene Chlorid-Freisetzung. Eine geschlossene Bilanz aus TCE-Abnahme und Chlorid-Freisetzung ist, wie bereits in 4.5.2 erwähnt, aufgrund der Probenaufbereitung für die angewandte Analytik nicht möglich. Box 4 zeigt zu diesem Zeitpunkt den deutlichsten Schadstoffabbau im Bereich C-D, wobei auch in den Abläufen B, E und F eine Schadstoffabnahme beobachtet werden kann. Im Abstrombereich der Inokulation (A-B) sinkt die Schadstoffabnahme im Vergleich zur Abbauleistung nach 23 Tagen Versuchsdauer ab. Die Verschiebung des Schadstoffabbaus kann hierbei auf die Applikation des elektrischen Feldes zurückgeführt werden. Aus dem Inokulum gelöste, planktonische Bakterien können durch das elektrische Feld durch den Versuchsaufbau zu den Anoden bewegt werden und der Schadstoffabbau kann während des elektrokinetischen Transports der Bakterien stattfinden (DeFlaun und Condee 1997; Mao et al. 2012). Aufgrund der Inokulation im Zustrom des elektrischen Feldes ist nicht mit einem elektrokinetischen Abtrag der immobilisierten Biomasse (DeFlaun und Condee 1997) zu rechnen.

In Box 3 breitet sich der Schadstoffabbau jedoch, wie bereits in 4.5.2 beobachtet, auch ohne Unterstützung durch ein elektrisches Feld lateral zur Strömungsrichtung aus. Dies kann durch das Wachstum sowie die Eigenbewegung der Bakterien gefördert werden. Die Ausbreitung auf Grundlage eines nicht-idealen Fließregimes konnte auf Grundlage von Tracer-Versuchen ausgeschlossen werden.

Nach einer Versuchsdauer von 57 Tagen ist im elektrokinetisch unterstützten System (Box 4) über die gesamte Breite der Box der Schadstoffabbau zu erkennen. Im stromlosen System (Box 3) ist der Schadstoffabbau und eine damit verbundene Freisetzung von Chlorid über die gesamte Breite der Box erst nach 78 Tagen zu erkennen.

Der grundsätzliche Anstieg der Chloridkonzentration weist die Mineralisation des TCE nach. Wie auch in den Versuchen in Kapitel 4.5.2 kann die TCE-Chlorid-Bilanz auf Grund der Probenbearbeitung, und der damit verbundenen Unterrepräsentation des TCE, jedoch nicht geschlossen werden.

Zusätzlich werden die freigesetzten Chlorid-Ionen in Box 4 durch Elektromigration zur Anode bewegt, sodass der Chlorid-Befund nicht den Schadstoffabbau im direkten Zustrom der jeweiligen Ablauf-Kammer widerspiegelt. Dies äußert sich deutlich nach nahezu vollständiger Umsetzung des TCE ab 64 Tagen Versuchsdauer in einer höheren Chloridkonzentration im Ablauf H verglichen mit den restlichen Ablaufkammern sowie den Chlorid-Konzentrationen der Ablaufkammern der Box 3. Auf Grundlage der Chlorid-Freisetzung in Box 3 ergibt sich, nach 78 Tagen Versuchsdauer und einer Abnahme der TCE-Konzentration von >98 % ein TCE-Umsatz von 19,6 mg/L über die Länge der Box. Wie bereits im vorherigen Versuchsaufbau kann diese TCE-Konzentration nur stellenweise im Zulauf vorgefunden werden.

Dies entspricht einem Umsatz von 0,196 $mg_{TCE}/(L^*cm)$ bzw. 4,9 $mg_{TCE}/(L^*d)$ auf die gesamte Fließdistanz von 100 cm. Unter der Annahme, dass auch in diesem Versuchssystem das TCE mit Erreichen der ersten Reihe Probenahmeports vollständig umgesetzt ist, entspricht das einem Umsatz von 0,36 $mg_{TCE}/(L^*cm)$ bzw. 8,9 $mg_{TCE}/(L^*d)$. Diese im Vergleich zu Box 2 erhöhte theoretische Umsatzleistung ist durch die höhere TCE-Konzentration im Zulauf bedingt.

Der pH-Wert lag über die gesamte Versuchsdauer im neutralen Bereich. Aufgrund des TCE-Abbaus und der damit verbundenen Freisetzung von Protonen, kann jedoch durch eine Passage der Boxen eine leichte Abnahme des pH-Wertes beobachtet werden.

Abbildung 4-26: Verläufe der TCE-Konzentration und Chlorid-Konzentration in Zulauf und den einzelnen Ablaufkammern in Box 3 und Box 4.

Obwohl die Bodenbeschaffenheit die elektrokinetische Effekte nicht limitieren (Alshawabkeh et al. 1999) zeigen diese im gewählten Modellsystem nur einen geringfügigen Einfluss auf die laterale Ausbreitung des Schadstoffabbaus.

Durch den Abbau der zudosierten Schadstoffmenge kommt es zu keiner Zeit zu einer vollständigen Zehrung des im Zulauf gemessenen Sauerstoffs. Weiterhin kann aufgrund fehlender Daten keine Aussage zu einem möglichen unterschiedlichen Schadstoffabbau innerhalb der Boxen getroffen werden. Dementsprechend kann keine Verbesserung des biologischen Schadstoffabbaus in Anoden-Nähe, welcher in anderen Studien gezeigt wurde (Olszanowski und Piechowiak 2006; Czinnerová et al. 2020), beobachtet werden.

Aufgrund der elektrochemischen Effekte konnte jedoch, im Ablaufbereich der Anoden (G & H) gegenüber den restlichen Abläufen eine deutlich erhöhte, und im Kathodenbereich (A & B) eine deutlich geringere Sauerstoffkonzentration gemessen werden. Eine damit einhergehende Stimulation des TCE-Abbaus im Ablaufbereich der Anoden kann jedoch nur bei vorheriger vollständiger Zehrung des gelösten Sauerstoffs und einem entsprechenden Überangebot an TCE beobachtet werden. Auf Grundlage der gemessenen Chlorid-Freisetzung in Box 3 kommt es jedoch nicht zu einer vollständigen Zehrung des Sauerstoffs (~8 mg/L im Zulauf) über die gesamte Breite der Box sowie der Versuchsdauer. Die beobachteten Sauerstoff-Konzentrationen sind aufgrund der externen Sauerstoffmessungen nicht aussagekräftig genug. Die gemessenen Sauerstoffbereiche der Zu- und Abläufe der Boxen 3 und 4 sind in Abbildung 4-26 dargestellt.

4.5.2.2.2 Biomarker

In den untersuchten Biomarker-Proben zeigt sich in Box 3 in der ersten Probe nach 18 Tagen Versuchsdauer die Präsenz des Biomarkers Rho im Bereich der Abläufe A-C in einem Konzentrationsbereich von 1,0e+2-1,0e+3 Genkopien/mL. Dies deckt sich mit den Erwartungen, da diese Ablaufkammern im Abstrom des Inokulums liegen. In Box 4 hingegen kann der Biomarker Rho über die gesamte Breite der Box in einem Konzentrationsbereich von 1,0e+2-1,0e+3 Genkopien. Aufgrund des geringen zur Verfügung gestellten Probenvolumens von 50 mL schwanken die Nachweise im Versuchsverlauf, nach

71 Tagen Versuchsdauer konnte jedoch in beiden Boxen quantifizierbare Mengen des Biomarkers in Höhe von 1,0e+2-1,0e+3 Genkopien/mL über die gesamte Breite der Box erfasst werden. Ein eindeutiger Unterschied in der Verteilung der Biomarker-Konzentrationen aufgrund des applizierten elektrischen Feldes kann hier jedoch nicht erkannt werden. Eine qualitative Übersicht der Biomarker-Befunde ist in Abbildung 4-28 gegeben.

Abbildung 4-28: Qualitative Zusammenfassung der Ergebnisse der Biomarker-Untersuchungen.

Wie in Kapitel 4.3.3 zu erkennen war, liegt der Biomarker moC in der Regel eine log-Stufe unter der Konzentration des Biomarkers Rho. Aufgrund der bereits geringen Konzentrationen an Rho, konnte für weite Teile keine quantifizierbare Menge an moC in den Proben gefunden werden.

Während nach 18 Tagen in Box 3, analog zum Biomarker Rho, im Ablaufbereich von A-C der Biomarker moC gefunden werden kann (8-16 % moC/Rho), ist der erste quantifizierbare Nachweis in Box 4 erst nach 57 Tagen Versuchsdauer in den Ablaufkammern A, im Abstrom der Inokulation, und Ablaufkammer H, im Abstrom der Anoden, zu beobachten. Sowohl in Box 3 als auch Box 4 liegen qualitative Befunde des Biomarkers (Signal in der qPCR-Analyse vorhanden, Resultat allerdings unter der Bestimmungsgrenze des PCR-Laufs) bereits ab einer Versuchsdauer von 29 Tagen vor. Nach 57 Tagen konnte über die gesamte Breite beider Boxen ein qualitativer Nachweis des Biomarkers vorgefunden werden. Diese qualitativen Nachweise decken sich mit dem beobachteten TCE-Umsatz in Box 4. Trotz der Befunde kann in den Abläufen C-H der Box 3 erst ab einer Versuchsdauer von 78 Tagen eine Abnahme der TCE-Konzentration beobachtet werden.

Die leicht unterschiedliche Ausbreitungsgeschwindigkeit des TCE-Abbaus ist in der Ausbreitung des Biomarkers moC nicht zu erkennen. In den Untersuchungen wurden jedoch

nur Wasserproben, und somit nur die planktonische Biomasse, auf ihren Biomarker-Gehalt untersucht.

4.5.2.2.3 Fazit der Versuche zur elektrokinetischen Mobilisation der Bioaugmentationskulturen

In der frühen Versuchsphase (0-50 Tage) ist ein Trend, der für eine schnellere laterale Ausbreitung des TCE-Abbaus spricht, zu beobachten. Dieser TCE-Abbau ist, aufgrund der Verteilung der vorhandenen, TCE-Abbauenden Biomasse, jedoch geringer als im Abstrom des Inokulationsbereichs der Box 3. Gleichzeitig wird das Chlorid durch die Polarisation der Elektroden hin zur Anode bewegt. Unabhängig von der Verteilung des Schadstoffabbaus wird daher immer im Abstrombereich der Anoden eine höhere Chlorid-Konzentration zu messen sein als in den anderen Abläufen.

Allerdings ist auch im stromlosen System eine laterale Ausbreitung zu beobachten und nach ~90 Tagen ist in beiden Systemen über die gesamte Breite der Boxen eine Abnahme der gemessenen TCE-Zulaufkonzentration von über 96 % zu beobachten. Der zeitliche Vorteil, den das elektrokinetisch unterstützte System in Bezug auf die Ausbreitung der Bioaugmentationskultur in den beschriebenen Versuchen aufweist, ist somit gering.

Aufgrund des geringen zur Verfügung gestellten Probenvolumens gestaltet es sich schwierig eine fundierte Aussage auf Grundlage der Biomarker zu treffen. Da die Nachweise und die Konzentrationen der ermittelten Genkopiezahlen jedoch über die Versuchsdauer zunehmen kann von einer erfolgreichen Besiedelung der Versuchsräume ausgegangen werden. Ein weiteres positives Fazit ist, dass trotz geringer Biomarker-Konzentrationen ein deutlicher Schadstoffumsatz beobachtet werden kann.

4.6 Elektrochemische Stimulation des aeroben TCE-Abbaus

Die Ergebnisse dieses Versuches wurden im Journal "Environmental Science and Pollution Research" veröffentlicht:

Hertle, Steffen; Boni, Nick de; Schell, Heico; Tiehm, Andreas (2023): Electrochemical biostimulation of aerobic metabolic TCE degradation in a bioaugmentation approach. In: *Environmental Science and Pollution Research. DOI:* 10.1007/s11356-023-29839-1.

4.6.1 Säulenversuche zur elektrochemischen Stimulation des aeroben TCE-Abbaus

Direkt nach der Umstellung der Kreislaufführung zur Anreicherung der Biomasse im Säulensystem wurde die zudosierte Menge von 5 mg/L an TCE vollständig abgebaut. Bei der Erhöhung der Zulaufkonzentrationen kam es, wie bereits in Kapitel 4.5.2 beobachtet, zu einem Schock der etablierten Mikrobiota, welcher im kurzzeitigen Durchbruch des TCE resultierte. Der TCE-Abbau der erhöhten Konzentration wurde wieder nach 14 Tagen beobachtet (siehe Anhang 8.3.5.2).

Nach einem stufenweisen Erhöhen der TCE-Konzentration im Zulauf auf ~ 30 mg/L konnte bei einer Aufenthaltsdauer von ~ 0,5 d immer noch kein Restgehalt an Schadstoff im Ablauf festgestellt werden. Das Erhöhen des Volumenstroms auf 0,5 L/d (0,2 d Aufenthaltszeit) nach 67 Tagen resultierte in einer Restkonzentration TCE von ~ 10 mg/L bei einer vollständigen Sauerstoffzehrung. Durch die vorhandene Sauerstoff-Konzentration von ~8 mg/L kann, ohne Berücksichtigung der Biomassebildung, entsprechend dem uf_{st.TCE} ~22 mg/L TCE abgebaut werden. Eine Restkonzentration von ~10 mg/L ist daher unter den gegebenen Bedingungen realistisch. Zeitgleich kann neben der Abnahme des TCE eine Zunahme der Chloridkonzentration beobachtet werden. In den Säulen konnte jeweils ~80 % des im TCE enthaltenen Chlors als Chlorid wiedergefunden werden. Verluste durch Volatilisierung können daher nicht vollständig ausgeschlossen werden, spielen aber nur eine untergeordnete Rolle. Die Chromatogramme des ECD-Detektors weisen keine neuen Signale auf. Das Entstehen chlorierter Zwischenprodukte kann somit ausgeschlossen werden. Weiterhin konnte über die gesamte Versuchsdauer in den Ablaufproben der Säule Bio 2 sowie der abiotischen Kontrollsäule in photometrischen Messungen kein freies Chlor nachgewiesen werden (BG = 0,05 mg/L).

Die Übersicht der Versuche ist in Tabelle 3-14 gegeben. Abbildung 4-29 zeigt den Verlauf der Sauerstoff und der TCE-Konzentrationen im Zeitraum von 70-190 Tagen. Durch das Zuschalten eines elektrischen Gleichstroms von 0,25 mA (~2,28 mA/dm²) nach 84 Tagen konnte in der Säule Bio 2 ein TCE-Rückgang von bis zu 95 % (Restgehalt ~1,4 mg/L), bei einer Abbauleistung von 131 mg_{TCE}/(L*d) beobachtet werden. Die nicht stromunterstützte Säule Bio 1 blieb bei einem TCE-Rückgang von ~ 66 %, welches einer Rest-Konzentration von etwa 10 mg/L und einer Abbauleistung von 92,6 mg_{TCE}/(L*d) entspricht. Um einen vollständigen Abbau des TCE in der stromunterstützten Säule zu erzielen, wurde an Tag 95 die Stromstärke auf 0,5 mA (~4,56 mA/dm²), und damit die Sauerstoffproduktion von 3,6 mg/L auf 7,2 mg/L, erhöht. In Folge der Erhöhung der Stromstärke wurde ein TCE-Abbau von 99,97 % mit einer Abbauleistung von ~164 mg_{TCE}/(L*d) erzielt und zeitgleich eine Zunahme des DO im Ablauf der Säule beobachtet. Nach Abschalten des elektrischen Stroms stieg die TCE-Konzentration im Ablauf wieder auf ~ 10 mg/L an. Der Abbau der, ausgehend von der

DO-Konzentration im Zulauf, überstöchiometrischen Menge an TCE ist daher klar mit der angelegten Stromstärke verknüpft. Bei einem uf_{st} von 2,7 mg_{TCE}/mg_{O2} sind für 30 mg/L TCE eine Sauerstoffmenge von 11,1 mg/L nötig. Durch den bereits im Medium enthaltenen Sauerstoff und den elektrolytisch produzierten Sauerstoff steht, bei 100 % Effizienz des Elektrolyse-Prozesses, eine Gesamtmenge von 15,2 mg/L zur Verfügung. Im Ablauf der elektrisch unterstützten Säule ist daher bei einer Stromstärke von 0,5 mA rein rechnerisch eine Sauerstoffkonzentration ~4 mg/L zu finden. Tatsächlich gemessen werden konnte eine DO-Konzentration von 1,5 mg/L nach 144 Versuchstagen. Der elektrische Strom lag zu diesem Zeitpunkt 21 Tage an. Der dauerhafte Anstieg der DO-Konzentration nach Zuschalten des elektrischen Gleichstroms ist dabei auf den Verdünnungseffekt des Sauerstoff-freien Wassers in der Messzelle zurückzuführen. In der dritten elektrochemisch unterstützten Phase von 160-172 Tagen erreicht die in der Messzelle gemessene DO-Konzentration einen Wert von ~2mg/L über die gesamte Phase. Aufgrund der Stabilität der DO-Konzentration wird davon ausgegangen, dass das System ein Gleichgewicht erreicht hat. Aus der gemessenen DO-Konzentration von 2 mg/L im Ablauf ergibt sich hiermit eine Effizienz des Elektrolyseprozesses von ~70 % (siehe Anhang 8.3.5.3).

Da sich die Abbauleistung der Säule Bio 2 in den stromlosen Phasen der Abbauleistung der Säule Bio 1 angleicht, kann davon ausgegangen werden, dass die Mikrobiota durch den angelegten Strom keine Schäden erleidet. Durch die ausbleibende elektrochemische Bildung von freiem Chlor ist auch hier keine Schädigung der Mikrobiota zu erwarten.

Ein strom-unterstütztes, abiotisches Referenzsystem wurde verwendet, um einen elektrochemischen Abbau des TCE in der Versuchsdurchführung auszuschließen. Zunächst gleichbleibenden wurde das System stromlos durchflossen. Bei Zuund Ablaufkonzentrationen können abiotische Effekte wie Adsorption und Volatilisierung ausgeschlossen werden. Im zweiten Schritt wurde eine Stromstärke von 0,5 mA DC zur Kontrolle eines potenziellen elektrochemischen TCE-Abbaus an die Elektroden angelegt. Eine weitere Erhöhung der Stromstärke auf 0,75 mA (~6,84 mA/dm²) hatte ebenfalls keinen Einfluss auf die TCE-Konzentration, resultierte aber in einer deutlichen Gas-Produktion durch elektrolytische Prozesse. Der Verlauf des gelösten Sauerstoffs und der TCE-Konzentrationen der abiotischen Säule ist in Abbildung 8-13 (Anhang 8.3.5.4) dargestellt.

Über die gesamte Versuchsdauer konnte kein Einfluss der Elektrolyse auf den pH-Wert beobachtet werden. In der abiotischen, elektrochemisch unterstützten, Säule konnte durch die Säulenpassage keine Veränderung des pH-Wertes festgestellt werden.

Sowohl Säule Bio 1 und Bio 2 zeigen eine Abnahme im pH-Wert durch die Säulenpassage (Abbildung 8-14, Anhang 8.3.5.5). Diese liegt in der Freisetzung von HCI während der Mineralisation des TCE begründet. Lokale Veränderungen im pH zwischen den Elektroden lassen sich aufgrund der Position der Probenahmestellen nicht ausschließen, auf das Gesamtsystem hatte die Elektrolyse mit den gewählten Stromstärken allerdings keinen negativen Einfluss. Weiterhin zeigen die Bakterien nur im neutralen pH eine Abbauaktivität (Gaza et al. 2019). Hierdurch sind extreme pH-Werte im Bereich zwischen den Elektroden auszuschließen.

Abbildung 4-29: Sauerstoff- und TCE-Konzentrationen in Zu- und Ablauf der Kleinsäulen im Durchfluss nach Einstellen der TCE-Zulaufkonzentration von 30 mg/L und einer Aufenthaltszeit von 0,2 d. Der Standardfehler der TCE-Messungen beträgt σ_n =10%; die Fehlerbalken sind von den Markierungen überdeckt.

Zur Evaluation der elektrolytischen Sauerstoffproduktion in Kombination mit einem aerob metabolischen TCE-Abbau in anaeroben Systemen wurde wie in Kapitel 3.5.6 beschrieben auf ein sauerstofffreies Medium umgestellt. Hierdurch konnte, verglichen mit TCE-Verfügbarkeit aus einem vorhergehenden reduktiv dechlorierenden Schritt, ein höherer, gleichbleibender TCE-Gehalt, unabhängig von Vorläuferprozessen, eingestellt werden.

Abbildung 4-30 zeigt den Verlauf der TCE-Konzentrationen sowie den prozentualen Abbau der Säulen Bio 1 und Bio 2 in der Versuchszeit von 270-330 Tagen. In dieser Versuchsphase lag die Zulaufkonzentration des Sauerstoffs unter 1,0 mg/L und Bio 2 wurde durchgehend mit einer Stromstärke von 0,5 mA DC beaufschlagt. Über die Dauer der Phase hinweg, nimmt die Differenz zwischen der Abbauleistung beider Säulen stetig zu. Am Ende der Versuchsphase liegt mit einem Abbau von 17,3 mg/L TCE in Bio 2 ein mehr als doppelt so großer Abbau wie in Bio 1 vor (8,7 mg/L). Nach Abschalten des Stroms liegt die Abbauleistung beider Säulen auch nach dieser Phase wieder gleichauf.

Da aber auch in Bio 1 durchgängig TCE umgesetzt wird, muss davon ausgegangen werden, dass auf der Zulaufseite Sauerstoff in das Medium gelangte, da in einem sauerstofffreien System kein TCE abgebaut werden sollte (vgl. Kapitel 4.5.1).

Abbildung 4-30:Zu- und Ablaufkonzentrationen des TCE in den bioaugmentierten Säulen (Bio 1 und Bio 2) sowie der prozentuale Abbau des dosierten TCEs. Die Konzentration des gelösten Sauerstoffs ist in der gezeigten Versuchsphase unter 1,0 mg/L. Der Standardfehler der Schadstoffanalytik beträgt σ_n =10 %.

Abbildung 4-31 zeigt die Korrelation des Sauerstoff-Verbrauchs zur TCE-Umsatzrate bei einer Effizienz des Elektrolyseprozesses von 70 %. Durch die Abbildungen verdeutlicht sich die Abhängigkeit der TCE-Abbaurate vom Sauerstoffverbrauch und damit letztendlich vom zur Verfügung stehenden Sauerstoffs. Durch die beiden Umsatzfaktoren uf_{st} und uf_{real} ergibt sich ein Fenster, in dem die Umsatzrate des TCE zu erwarten ist.

Die Differenz im TCE-Abbau zwischen Bio 1 und Bio 2 ist in den stromlosen Phasen nicht signifikant (p<0,05) (Mittelwert Bio 1 21,42 mg/L, Mittelwert Bio 2 21,96 mg/L; asymptotischer Wilcoxon Test: z=-1,7838, p=0,07508, n=10).

Die zwischen Bio 1 und Bio 2 erzielte Differenz im TCE-Abbau durch das Anlegen einer Stromstärke von 0,5 mA an Bio 2 ist signifikant (p<0,05) (Mittelwert Bio 1 21,78, Mittelwert Bio 2 27,84 mg/L; asymptotischer Wilcoxon Test: z=-3,0594, p=0,0022, n=12). Die Effektstärke liegt bei r=0,88 und entspricht nach Cohen (1992) einem starken Effekt (r>0,5). Die Ergebnisse der asymptotischen Wilcoxon-Tests sind in Tabelle 4-10 zusammengefasst.

Abbildung 4-31: Verhältnis der TCE-Abbaurate zur Rate des Sauerstoff-Verbrauchs. Die elektrolytisch produzierte Sauerstoffmenge ist auf Grundlage des Faraday'schen Gesetzes und der Annahme eines 70 % effizienten Elektrolyse-Prozesses berechnet.

Tabelle 4-10:	Ergebnis des asymptotischen Wilcoxon-Test zwischen den Säulen Bio 1 und Bio 2 in
den Phasen oh	ne elektro-chemische Unterstützung und den mit 0,5 mA elektro-chemisch
unterstützten Pl	hasen.

Säule	Strom- stärke mA	∆TCE mg/L	Stich- proben- größe n	Signifikanz- niveau	W- Wert	kritischer W-Wert	z-Wert	p-Wert
Bio 1	0	21,42	10	p<0.05	10	0	1 7020	0.075
Bio 2	0	21,96	10	p<0,05	10	0	-1,7030	0,075
Bio 1	0	21,78	10	p<0.05	0	12	2 0504	0.002
Bio 2	0,5	27,84	12	p<0,05	0	15	-3,0394	0,002

Durch die Elektrodenfläche von ~ 1.100 mm² ergibt sich bei einer Stromstärke von 0,5 mA eine Stromdichte von 4,55 mA/dm².

In einem sauerstofffreien System konnte durch den angelegten Strom eine initiale Zunahme des Abbaus von 5 mg_{TCE}/L beobachtet werden. Mit andauernder elektrochemischer Unterstützung stieg die Zunahme des Abbaus gegenüber der nicht unterstützten Säule um 10 mg/L an. Die resultierende Stromdichte ist dabei vergleichbar mit Lohner und Tiehm (2009), die einen aeroben VC Abbau mit einer Stromdichte von 5 mA/dm² stimuliert haben.

Die Behandlung von TCE in Bio-Elektro-Durchflussreaktoren erfolgte in bisher beschriebenen Systemen reduktiv dechlorierend, während die Nachfolgeprodukte cDCE, VC und Ethen oxidativ abgebaut wurden (Lohner et al. 2011; Verdini et al. 2015; Lai et al. 2017; Zeppilli et al. 2019). Da im Versuch der aerobe TCE-Abbau untersucht wurde, und das System keinen vorhergehenden reduktiven Dechlorierungs-Schritt besitzt, ist die Elektrodenreihenfolge umgekehrt und die Anode am Säuleneingang positioniert. Dies hat auch zur Folge, dass der, an der Kathode, produzierte Wasserstoff keinen Einsatz findet. Optimalerweise wird dieser, wie in den erwähnten Publikationen, zur Stimulation einer vorhergehenden reduktiven Dechlorierung von PCE eingesetzt.

Durch den Einsatz eines aerob metabolischen Abbauprozesses, anstelle einer reduktiven Dechlorierung, wird die potenzielle Akkumulation der toxischen Metabolite cDCE und VC umgangen. Weiterhin werden, verglichen mit einem aerob-co-metabolischen Prozess, keine Auxiliarsubstrate benötigt. Hierdurch wird der Remediations-Prozess vereinfacht, da der Schadstoff sowohl Energiequelle als auch Wachstumssubstrat darstellt und der eingebrachte Sauerstoff effizienter verwendet wird.

Neben dem mikrobiologischen Abbau kann TCE auch durch eine elektrochemische Hydrodechlorierung transformiert werden (Rajic et al. 2015). Die für einen elektrochemischen CE-Abbau eingesetzten Stromstärken (60-180 mA (Rajic et al. 2016; Hyldegaard et al. 2020b)) übersteigen die für eine Biostimulation eingesetzten Stromstärken deutlich (0,5 mA (dieser Versuch), 4,3-4,5 mA (Aulenta et al. 2013)). Während die benötigte Stromstärke in abiotischen Prozessen mit sinkender Schadstoffkonzentration ansteigt (Hyldegaard et al. 2020b), weist der beschriebene Bio-Elektro-Prozess einen konstanten, niedrigen Energiebedarf auf.

4.6.2 Fazit der Säulenversuche zur elektrochemischen Stimulation des TCE-Abbaus

Der aerob metabolische TCE-Abbau kann durch die elektrolytische Produktion von Sauerstoff stimuliert werden. Die produzierte Menge an Sauerstoff ist hierbei durch die angelegte Stromstärke regulierbar.

Die elektrolytische Sauerstoffproduktion kann in sauerstofffreien Systemen zur Stimulation des aeroben TCE-Abbaus eingesetzt werden und bietet gegenüber der elektrochemischen Transformation des Schadstoffes einen deutlichen Vorteil im Energiebedarf.

5 ZUSAMMENFASSUNG UND AUSBLICK

Obwohl der aerob metabolische TCE-Abbau zum Zeitpunkt dieser Arbeit bereits 10 Jahre bekannt ist, sind noch viele Details des Abbauprozesses unklar.

Die vorliegende Arbeit konnte, durch die Identifikation funktioneller Gene, erste Einblicke in mögliche Abbauwege und, anhand der durchgeführten Skalierungsversuche, erste Ansätze zu Verfahrensimplementation der Bioaugmentation bzw. den Übergang zu Pilotstandorten geben.

Die durchgeführte Metagenomanalyse der verschiedenen Anreicherungskulturen sowie das Etablieren eines enzymspezifischen PCR-Nachweises dienen als Basis für die weitergehende Identifizierung der beteiligten Bakterien sowie der Enzymatik die mit dem Schadstoffabbau assoziiert ist.

Mit den PCR-Primern moA, moB, moC und hdlh wurden für den aerob metabolischen TCE-Abbau spezifische Primer auf Grundlage funktioneller Gene etabliert. Batchversuche in Kulturmedium zeigten auf, dass Nachweise der funktionellen Gene mit der Anzahl der 16S rDNA-Genkopien (EuB und Rho) und somit dem Biomassewachstum korreliert. Die Zunahme der Genkopie-Anzahl gemessen am Schadstoff-Umsatz liegt dabei leicht unter den Werten reduktiv dechlorierender Organismen. Die Spezifizität der Primer wurde anhand Umweltproben unterschiedlicher Herkunft nachgewiesen. Die entwickelten Primer stellen somit ein neues Toolkit zur Standortvalidierung, der Identifikation weiterer Standorte mit Potential zum aerob metabolischen TCE-Abbau, sowie ein Monitoring-Werkzeug im Rahmen der Bioaugmentation dar. Zur weitergehenden Verifizierung der Spezifizität wird empfohlen weitere Umweltproben verschiedener Herkunft zu untersuchen. Die Durchführung von reverse Transkriptase PCRs kann die Beteiligung der einzelnen Ziel-Enzyme am TCE-Abbau bestätigen.

Der Erfolg des aerob metabolischen TCE-Abbaus kann durch die Präsenz weiterer Chlorethene eingeschränkt werden. Durch die Kombination der TCE-abbauenden Kultur mit einer cDCE-abbauenden Kultur konnte eine neue Mischkultur erhalten werden, die den simultanen Abbau beider Schadstoffe bis unter die jeweilige Bestimmungsgrenze ermöglicht.

Im durchflossenen System konnte, sowohl im Labor- als auch im technischen Maßstab, eine verhältnismäßig schnelle Ausbreitung der für den TCE-Abbau verantwortlichen *Rhodocyclaceae* sowie des Schadstoffabbaus festgestellt werden. Hierbei zeigte sich die Inokulation mit immobilisierter Biomasse, welche als stationäre Quelle der TCE-Abbauer dient, der Injektion einer Flüssigkultur überlegen. Während die injizierte Flüssigkultur zu großen Teilen ausgespült wurde und der Abbau erst nach 9 bzw. 5 Wochen zu beobachten war, wurde bereits in der zweiten Versuchswoche im Bereich des eingebauten bewachsenen Materials ein Schadstoffabbau beobachtet, der sich nach 6 Wochen über die gesamte Säule ausgebreitet hatte. In den Versuchen im technischen Maßstab ist die Ausbreitung des Abbaus ebenfalls nach 6 Wochen im Ablauf zu beobachten.

In Versuchen im technischen Maßstab konnte durch die Anwendung eines elektrischen Feldes eine leichte Verbesserung in der lateralen Ausbreitung der Bioaugmentationskultur, gegenüber einem regulären Bioaugmentationsansatz, beobachtet werden. Jedoch wurde auch im regulären Bioaugmentationsansatz eine laterale Ausbreitung beobachtet, sodass die Implementation eines Gleichstromfeldes im untersuchten porösen Medium einen geringen Vorteil in Bezug auf die Ausbreitung der Bioaugmentationskultur bietet.

Die elektrolytische Sauerstoffproduktion, welche als Nebenprodukt im elektrokinetischen Ansatz an den Anoden auftritt, ist ein möglicher Ansatz zur Stimulation des aerob metabolischen TCE-Abbaus, der zu einer signifikanten Zunahme im TCE-Abbau führt. Das kombinierte Bio-Elektro-Verfahren zeichnet sich dabei durch seinen geringen Energiebedarf aus. Die Menge an produziertem Sauerstoff kann durch das Anpassen der angelegten Stromstärke beeinflusst werden, sodass eine ausreichende Menge, für den Schadstoffabbau und das auf-oxidieren des Grundwasserleiters, produziert und ein Überschreiten der Löslichkeitsgrenze vermieden werden kann. Der angelegte Strom zeigte in den Versuchen keine negativen Effekte gegenüber der etablierten Mikrobiota, wodurch ein Einsatz der Technologie aus mikrobiologischer Sicht kein Hindernis darstellt.

Eine Steuerung des sequenziell anaerob/aeroben PCE-Abbaus mit einer reduktiven Dechlorierung des PCE zu TCE mit anschließender oxidativer Mineralisierung des TCE konnte nicht erzielt werden. Der Einsatz der Technologie zur Stimulation des aerob metabolischen TCE-Abbaus in anoxischen Wässern konnte jedoch erfolgreich demonstriert werden.

Das Bioaugmentationspotential der TCE-Abbauenden Kultur konnte im Labormaßstab als auch im technischen Maßstab nachgewiesen werden. Der nächste Schritt zur kommerziellen Nutzung dieses Bioaugmentationsansatzes zur Altlastensanierung ist die gewonnenen Erkenntnisse an Pilotstandorten anzuwenden und somit die Anwendbarkeit im Feldmaßstab zu demonstrieren. Die elektrochemische Bereitstellung des Sauerstoffs kann dabei eine Möglichkeit der Biostimulation darstellen. Die, wenn auch nur gering ausgeprägte, elektrokinetische Bewegung der Bioaugmentationskultur hin zur Anode, und somit hin zur Sauerstoffproduktion, kann den Gesamtprozess begünstigen.

6 BISHERIGE VERÖFFENTLICHUNGEN

Beiträge in wissenschaftlichen Zeitschriften

<u>Hertle, S.</u>; de Boni, N.; Schell, H.; Tiehm, A. (2023): Electrochemical biostimulation of aerobic metabolic TCE degradation in a bioaugmentation approach. In: *Environmental Science and Pollution Research.* DOI: 10.1007/s11356-023-29839-1.

Konferenzbeiträge

<u>Hertle, S.</u>; Tiehm, A. (2022): Electro-supported aerobic TCE-degradation; The 18th International Symposium on Electrokinetic Remediation (EREM), LeHavre, Frankreich.

<u>Hertle, S.;</u> Popova, M.; Wildemeersch, S.; Bardos, P.; Vogel, T.M.; Tiehm, A. (2023): Stimulation of metabolic aerobic TCE degradation by bioaugmentation and in bio-electro-systems; AquaConSoil 2023, Prag, Tschechische Republik.

<u>Hertle, S.</u>; Behrendt, A.; Willmann, A.; Stelmaszyk, L.; Ho, J.; Müller, A.; Tiehm, A. (2023): Vorkommen, Stimulationspotential und Nachweis des aeroben metabolischen TCE-Abbaus; DECHEMA 25. Symposium Strategien zur Sanierung von Boden & Grundwasser 2023, Frankfurt am Main, Deutschland.

Leicht, K.; Kleinknecht, S.M.; Klaas, N.; Junginger, T.; <u>Hertle, S.</u>; Tiehm, A. (2023): Up-Scaling elektrokinetischer Mobilisierung aerober Trichlorethen-abbauender Bakterien; DECHEMA 25. Symposium Strategien zur Sanierung von Boden & Grundwasser 2023, Frankfurt am Main, Deutschland.

Hertle, S.; Behrendt, A.; Willmann, A.; Stelmaszyk, L.; Ho, J.; Müller, A.; Tiehm, A. (2024): Anwendung und Nachweis des aeroben TCE-Abbaus im Rahmen der Bioaugmentation kontaminierter Grundwässer; Fortbildungsverbund Boden und Altlasten Baden-Württemberg; Seminar "Natural Attenuation (NA) in der Praxis der Altlastenbearbeitung", Karlsruhe, Deutschland.

7 Literaturverzeichnis

Agency for Toxic Substances and Disease Registry (ATSDR) (2019): Toxicological Profile for Trichloroethylene. Online verfügbar unter https://www.atsdr.cdc.gov/toxprofiles/tp19.pdf, zuletzt geprüft am 22.05.2024.

Aktaş, Özgür; Schmidt, Kathrin R.; Mungenast, Sarah; Stoll, Claudia; Tiehm, Andreas (2012): Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination rates and growth of *Dehalococcoides* spp. In: *Bioresource technology* 103 (1), S. 286–292. DOI: 10.1016/j.biortech.2011.09.119.

Alshawabkeh, Akram N.; Yeung, Albert T.; Bricka, Mark R. (1999): Practical Aspects of in-situ electrokinetic extraction. In: *Journal of Environmental Engineering*, S. 27–35.

Alvarez-Cohen, Lisa; Speitel Jr., Gerald E. (2001): Kinetics of aerobic cometabolism of chlorinated solvents. In: *Biodegradation* (12), S. 105–126.

Amos, Benjamin K.; Ritalahti, Kirsti M.; Cruz-Garcia, Claribel; Padilla-Crespo, Elizabeth; Löffler, Frank E. (2008): Oxygen effect on *Dehalococcoides* viability and biomarker quantification. In: *Environmental science & technology* 42 (15), S. 5718–5726. DOI: 10.1021/es703227g.

Anderson, James E.; McCarty, Perry, L. (1997): Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. In: *Applied and environmental microbiology* 63 (2), S. 687–693.

Arcangeli, Jean-Pierre; Arvin, Erik (1995): A membrane de-oxygenator for the study of anoxic processes. In: *Water Research* 29 (9), S. 2220–2222. DOI: 10.1016/0043-1354(95)00113-Y.

Arciero, David M.; Vanelli, Todd; Logan, Myke; Hooper, Alan B. (1989): Degradation of trichloroethylene by the ammonia-oxidizing bacterium *Nitrosomonas Europaea*. In: *Biochemical and biophysical research communications* 159 (2), S. 640–643.

Arp, Daniel J.; Yeager, Chris M.; Hyman, Michael R. (2001): Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. In: *Biodegradation* (12), S. 81–103.

Aulenta, Federico; Canosa, Andrea; Reale, Priscilla; Rossetti, Simona; Panero, Stefania; Majone, Mauro (2009): Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. In: *Biotechnology and bioengineering* 103 (1), S. 85–91. DOI: 10.1002/bit.22234.

Aulenta, Federico; Verdini, Roberta; Zeppilli, Marco; Zanaroli, Giulio; Fava, Fabio; Rossetti, Simona; Majone, Mauro (2013): Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture. In: *New Biotechnology* 30 (6), S. 749–755. DOI: 10.1016/j.nbt.2013.04.003.

Behrens, Sebastian; Azizian, Mohammad F.; McMurdie, Paul J.; Sabalowsky, Andrew; Dolan, Mark E.; Semprini, Lewis; Spormann, Alfred M. (2008): Monitoring abundance and expression of *"Dehalococcoides"* species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. In: *Applied and environmental microbiology* 74 (18), S. 5695–5703. DOI: 10.1128/AEM.00926-08.

Bradley, Paul M. (2003): History and Ecology of Chloroethene Biodegradation. A Review. In: *Bioremediation Journal* 7 (2), S. 81–109. DOI: 10.1080/713607980.

Bradley, Paul M.; Chapelle, Francis H. (2000): Aerobic Microbial Mineralization of Dichloroethene as Sole Carbon Substrate. In: *Environ. Sci. Technol.* 34 (1), S. 221–223. DOI: 10.1021/es990785c.

Bundesamt für Arbeitsschutz und Arbeitsmedizin (BAuA) (2012): Merkblatt zur BK Nr. 1302. Erkrankungen durch Halogenkohlenwasserstoffe. Online verfügbar unter https://www.baua.de/DE/Themen/Praevention/Koerperliche-Gesundheit/Berufskrankheiten/pdf/Merkblatt-1302.pdf, zuletzt geprüft am 11.08.2023.

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz: Bundes-Bodenschutz- und Altlastenverordnung vom 9. Juli 2021 (BGBI. I S. 2598, 2716). BBodSchV, vom 09.07.2021. Online verfügbar unter https://www.gesetze-iminternet.de/bbodschv_2023/BBodSchV.pdf, zuletzt geprüft am 29.12.2023.

Casiraghi, Giulia; Pedretti, Daniele; Beretta, Giovanni Pietro; Masetti, Marco; Varisco, Simone (2022): Assessing a Large-Scale Sequential In Situ Chloroethene Bioremediation System Using Compound-Specific Isotope Analysis (CSIA) and Geochemical Modeling. In: *Pollutants* 2 (4), S. 462–485. DOI: 10.3390/pollutants2040031.

Cha, Rita S.; Thilly, William G. (1993): Specificity, Efficiency, and Fidelity of PCR. In: *Genome Research* 3 (3), S. 18–29.

Chang, Hsiao-Lung; Alvarez-Cohen, Lisa (1995): Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. In: *Biotechnology and bioengineering* 45 (5), S. 440–449. DOI: 10.1002/bit.260450509.

Chen, Gao; Kara-Murdoch, Fadime; Xie, Yongchao; Murdoch, Robert W.; Cui, Yiru; Yang, Yi et al. (2022): Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, "*Candidatus* Dehalogenimonas etheniformans". In: *Applied and environmental microbiology* 88 (12), e0044322. DOI: 10.1128/aem.00443-22.

Clingenpeel, Scott R.; Moan, Jaina L.; McGrath, Danielle M.; Hungate, Bruce A.; Watwood, Mary E. (2012): Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases. In: *Frontiers in microbiology* 3, S. 63. DOI: 10.3389/fmicb.2012.00063.

Cohen, J. (1992): A power primer. In: *Psychological bulletin* 112 (1), S. 155–159. DOI: 10.1037//0033-2909.112.1.155.

Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C. (2002a): Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. In: *Applied and environmental microbiology* 68 (6), S. 2726–2730. DOI: 10.1128/aem.68.6.2726-2730.2002.

Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C. (2002b): Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. In: *Applied and environmental microbiology* 68 (12), S. 6162–6171. DOI: 10.1128/aem.68.12.6162-6171.2002.

Connon, Stephanie A.; Tovanabootr, Adisorn; Dolan, Mark E.; Vergin, Kevin; Giovannoni, Stephen J.; Semprini, Lewis (2005): Bacterial community composition determined by culture-independent and - dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. In: *Environmental microbiology* 7 (2), S. 165–178. DOI: 10.1111/j.1462-2920.2004.00680.x.

Cupples, Alison M. (2008): Real-time PCR quantification of *Dehalococcoides* populations. Methods and applications. In: *Journal of microbiological methods* 72 (1), S. 1–11. DOI: 10.1016/j.mimet.2007.11.005.

Czinnerová, Marie; Vološčuková, Ondřejka; Marková, Kristýna; Ševců, Alena; Černík, Miroslav; Nosek, Jaroslav (2020): Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: A long-term field study. In: *Water Research* 175. DOI: 10.1016/j.watres.2020.115692.

Davis, Gregory B.; Patterson, Bradley M.; Johnston, Colin D. (2009): Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale. In: *Journal of contaminant hydrology* 107 (1-2), S. 91–100. DOI: 10.1016/j.jconhyd.2009.04.004.

DeFlaun, Mary; Condee, Charles W. (1997): Electrokinetic transport of bacteria. In: *Journal of hazardous materials* 55, S. 263–277.

Devlin, John F.; Katic, D.; Barker, J. F. (2004): In situ sequenced bioremediation of mixed contaminants in groundwater. In: *Journal of contaminant hydrology* 69 (3-4), S. 233–261. DOI: 10.1016/S0169-7722(03)00156-6.

Dey, Kaushik; Roy, Pranab (2009): Degradation of trichloroethylene by *Bacillus* sp. Isolation strategy, strain characteristics, and cell immobilization. In: *Current microbiology* 59 (3), S. 256–260. DOI: 10.1007/s00284-009-9427-6.

Dolfing, Jan; van den Wijngaard, Arjan J.; Janssen, Dick B. (1993): Microbial aspects of the removal of chlorinated hydrocarbons from air. In: *Biodegradation* 4, S. 261–282.

Dolinová, Iva; Štrojsová, Martina; Černík, Miroslav; Němeček, Jan; Macháčková, Jiřina; Ševců, Alena (2017): Microbial degradation of chloroethenes. A review. In: *Environmental science and pollution research international* 24 (15), S. 13262–13283. DOI: 10.1007/s11356-017-8867-y.

Duhamel, Melanie; Wehr, Stephan D.; Yu, Lawrence; Rizvi, Homa; Seepersad, David; Dworatzek, Sandra M. et al. (2002): Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. In: *Water Research* 36, S. 4193–4202.

El Fantroussi, Saïd; Mahillon, Jaques; Naveau, Henry; Agathos, Spiros N. (1997): Introduction of Anaerobic Dechlorinating Bacteria into Soil Slurry Microcosms and Nested-PCR Monitoring. In: *Applied and environmental microbiology* 63 (2), S. 806–811.

Elango, Vijai; Kurtz, Harry D.; Freedman, David L. (2011): Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. In: *Chemosphere* 84 (2), S. 247–253. DOI: 10.1016/j.chemosphere.2011.04.007.

Ensign, Scott A.; Hyman, Michael R.; Arp, Daniel J. (1992): Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown *Xanthobacter* strain. In: *Applied and environmental microbiology* 58 (9), S. 3038–3046.

Field, Jim A.; Sierra-Alvarez, Reyes (2004): Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. In: *Reviews in Environmental Science & Bio/Technology* (3), S. 185–254.

Frascari, Dario; Fraraccio, Serena; Nocentini, Massimo; Pinelli, Davide (2013): Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors. In: *Bioresource technology* 128, S. 479–486. DOI: 10.1016/j.biortech.2012.10.026.

Gaza, Sarah (2015): Aerob-produktiver Abbau von Chlorethenen. Nachweis eines neuen Abbauweges für Trichlorethen (Veröffentlichungen aus dem Technologiezentrum Wasser, 66).

Gaza, Sarah; Schmidt, Kathrin R.; Weigold, Pascal; Heidinger, Michael; Tiehm, Andreas (2019): Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. In: *Water Research*, S. 343–348. DOI: 10.1016/j.watres.2018.12.022.

Giddings, Cloelle G. S.; Jennings, Laura K.; Gossett, James M. (2010): Microcosm Assessment of a DNA Probe Applied to Aerobic Degradation of cis-1,2-Dichloroethene by *Polaromonas* sp. Strain JS666. In: *Ground Water Monitoring & Remediation* 30 (2), S. 97–105. DOI: 10.1111/j.1745-6592.2010.01280.x.

Gossett, James M. (2010): Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. In: *Environmental science & technology* 44 (4), S. 1405–1411. DOI: 10.1021/es9033974.

Grandel, Sibylle; Dahmke, Andreas (2008): Leitfaden "Natürliche Schadstoffminderung bei LCKWkontaminierten Standorten". Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung ; [KORA-Themenverbund 3 "Chemische Industrie, Metallverarbeitung"] im BMBF-Förderschwerpunkt "Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwässer und Böden" (KORA). Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung. Kiel: Univ. Institut für Geowissenschaften Abt. Angewandte Geologie.

Hartmans, Sybe.; Bont, Jan A.M. de (1992): Aerobic vinyl chloride metabolism in *Mycobacterium aurum* L1. In: *Applied and environmental microbiology* 58 (4), S. 1220–1226.

Hartmans, Sybe.; Bont, Jan A.M. de; Tramper, J.; Luyben, K. Ch. A. M. (1985): Bacterial degradation of vinyl chloride. In: *Biotechnology letters* 7 (6), S. 383–388.

Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis et al. (2009): Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. In: *Archives of microbiology* 191 (3), S. 221–232. DOI: 10.1007/s00203-008-0445-8.

He, Jianzhong; Ritalahti, Kirsti M.; Aiello, Michael R.; Löffler, Frank E. (2003): Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. In: *Applied and environmental microbiology* 69 (2), S. 996–1003. DOI: 10.1128/aem.69.2.996-1003.2003.

He, Jianzhong; Sung, Youlboong; Krajmalnik-Brown, Rosa; Ritalahti, Kirsti M.; Löffler, Frank E. (2005): Isolation and characterization of *Dehalococcoides* sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. In: *Environmental microbiology* 7 (9), S. 1442–1450. DOI: 10.1111/j.1462-2920.2005.00830.x.

Heitkamp, Michael A. (1997): Effects of Oxygen-Releasing Materials on Aerobic Bacterial Degradation Processes. In: *Bioremediation Journal* 1 (2), S. 105–114. DOI: 10.1080/10889869709351325.

Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen et al. (2002): Molecular analysis of *Dehalococcoides* 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. In: *Applied and environmental microbiology* 68 (2), S. 485–495. DOI: 10.1128/AEM.68.2.485-495.2002.

Hertle, Steffen; Boni, Nick de; Schell, Heico; Tiehm, Andreas (2023): Electrochemical biostimulation of aerobic metabolic TCE degradation in a bioaugmentation approach. In: *Environmental Science and Pollution Research* 30 (49), S. 107673–107680. DOI: 10.1007/s11356-023-29839-1.

Ho, Johannes (2018): Molekularbiologische Lebend/tot-Unterscheidung bei Viren und Bakterien nach Desinfektionsverfahren (Veröffentlichungen aus dem Technologiezentrum Wasser, 81).

Horvath, Raymond S. (1972): Microbial Co-Metabolism and the Degradation of Organic Compounds in Nature. In: *Bacteriological Reviews* 36 (2), S. 146–155.

Hyldegaard, Bente H.; Jakobsen, Rasmus; Ottosen, Lisbeth M. (2020a): Electrochemical transformation of an aged tetrachloroethylene contamination in realistic aquifer settings. In: *Chemosphere* 243, S. 125340. DOI: 10.1016/j.chemosphere.2019.125340.

Hyldegaard, Bente H.; Ottosen, Lisbeth M.; Alshawabkeh, Akram N. (2020b): Transformation of tetrachloroethylene in a flow-through electrochemical reactor. In: *The Science of the total environment* 707, S. 135566. DOI: 10.1016/j.scitotenv.2019.135566.

Ise, Kotaro; Suto, Koichi; Inoue, Chihiro (2011): Microbial Diversity and Changes in the Distribution of Dehalogenase Genes during Dechlorination with Different Concentrations of cis -DCE. In: *Environ. Sci. Technol.* 45 (12), S. 5339–5345. DOI: 10.1021/es104199y.

IUBMB (2023): EC 3.8.1. Hg. v. INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY. Online verfügbar unter https://iubmb.qmul.ac.uk/enzyme/EC3/07p.html#381, zuletzt geprüft am 18.08.2023.

Jennings, Laura K.; Chartrand, Michelle M. G.; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Spain, Jim C.; Gossett, James M. (2009): Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in *Polaromonas* sp. strain JS666. In: *Applied and environmental microbiology* 75 (11), S. 3733–3744. DOI: 10.1128/AEM.00031-09.

Jennings, Laura K.; Giddings, Cloelle G. S.; Gossett, James M.; Spain, Jim C. (2013): Bioaugmentation for aerobic degradation of cis-1,2-dichloroethene. In: Hans F. Stroo, Andrea Leeson und C. Herb Ward (Hg.): Bioaugmentation for Groundwater Remediation. New York, NY: Springer (SERDP ESTCP Environmental Remediation Technology, 5), S. 199–217.

Jin, Yang Oh; Mattes, Timothy E. (2010): A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. In: *Environmental science & technology* 44 (23), S. 9036–9041. DOI: 10.1021/es102232m.

Kageyama, Chizuko; Ohta, Toshiya; Hiraoka, Kazuyo; Suzuki, Morimasa; Okamoto, Tetsuji; Ohishi, Kazuo (2005): Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in *Wautersia numadzuensis* sp. nov. In: *Archives of microbiology* 183 (1), S. 56–65. DOI: 10.1007/s00203-004-0746-5.

Kang, Jonghoon; Lee, Myung Soog; Gorenstein, David G. (2005): The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine. Application to in vitro combinatorial selection of aptamers. In: *Journal of biochemical and biophysical methods* 64 (2), S. 147–151. DOI: 10.1016/j.jbbm.2005.06.003.

Kao, Chih-Ming; Chen, S. C.; Su, M. C. (2001): Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. In: *Chemosphere* 44 (5), S. 925–934. DOI: 10.1016/S0045-6535(00)00578-6.

Kästner, Matthias (1989): Anreicherung und Isolierung von CKW-Abbauenden Mikroorganismen unter verschiedenen physiologischen Bedingungen. Abbaukinetik und Test auf technische Nutzbarkeit zur Sanierung kontaminierter Grundwässer. Dissertation. Technische Universität Braunschweig, Braunschweig. Institut für Mikrobiologie.

Kielhorn, Janet; Melber, Christine; Wahnschaffe, Ulrich; Aito, Antero; Mangelsdorf, Inge (2000): Vinyl Chloride. Still a Cause for Concern. In: *Environmental Health Perspectives* 108 (7), S. 579–588.

Kirsti M. Ritalahti; Frank E. Löffler; Erin E. Rasch; Koenigsberg, Stephen S. (2005): Bioaugmentation for chlorinated ethene detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. In: *Industrial Biotechnology* 1 (2), S. 114–118. DOI: 10.1089/ind.2005.1.114.

Klee, Matthew S. (2012): Chapter 12. Detectors. In: C. F. Poole (Hg.): Gas Chromatography. 1. ed. Amsterdam, Boston: Elsevier, S. 307–347.

Kocamemi, B. Alpaslan; Ceçen, F. (2010): Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems. In: *Bioresource technology* 101 (1), S. 430–433. DOI: 10.1016/j.biortech.2009.07.079.

Koenig, Joanna C.; Lee, Matthew J.; Manefield, Mike (2015): Aliphatic organochlorine degradation in subsurface environments. In: *Rev Environ Sci Biotechnol* 14 (1), S. 49–71. DOI: 10.1007/s11157-014-9345-3.

Koliyabandara; S.M.P.A; Siriwardhana, Chamika; Silva, Sakuni M. de; Walpita, Janitha; Cooray, Asitha T. (2021): Electrokinetic Remediation for the Removal of Organic Waste in Soil and Sediments. In: Alexandra B. Ribeiro und M. N. V. Prasad (Hg.): Electrokinetic remediation for environmental security and sustainability. Hoboken, NJ, USA: Wiley, S. 453–478.

Kranzioch, Irene (2015): Anaerober Abbau von chlorierten Schadstoffen. Molekularbiologischer Nachweis, Substanzspektrum und Isotopenfraktionierung (Veröffentlichungen aus dem Technologiezentrum Wasser, 67).

Kranzioch, Irene; Ganz, Selina; Tiehm, Andreas (2015): Chloroethene degradation and expression of *Dehalococcoides* dehalogenase genes in cultures originating from Yangtze sediments. In: *Environmental science and pollution research international* 22 (4), S. 3138–3148. DOI: 10.1007/s11356-014-3574-4.

Lai, Agnese; Aulenta, Federico; Mingazzini, Marina; Palumbo, Maria Teresa; Papini, Marco Petrangeli; Verdini, Roberta; Majone, Mauro (2017): Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). In: *Chemosphere* 169, S. 351–360. DOI: 10.1016/j.chemosphere.2016.11.072.

Lee, Jae-Hyuk; Dolan, Mark; Field, Jennifer; Istok, Jonathan (2010): Monitoring bioaugmenation with single-well push-pull tests in sediment systems contaminated with trichloroethene. In: *Environmental science & technology* 44 (3), S. 1085–1092. DOI: 10.1021/es9019645.

Lee, M. Hope; Clingenpeel, Scott C.; Leiser, Owen P.; Wymore, Ryan A.; Sorenson, Kent S.; Watwood, Mary E. (2008): Activity-dependent labeling of oxygenase enzymes in a trichloroethenecontaminated groundwater site. In: *Environmental pollution (Barking, Essex : 1987)* 153 (1), S. 238– 246. DOI: 10.1016/j.envpol.2007.07.034.

Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J. (1988): Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium. In: *Applied and environmental microbiology* 54 (4), S. 951–956.

Lochhead, A. G.; Chase, F. E. (1943): Qualitative Studies of soil microorganisms. V. Nutritional requirements of the predominant bacterial flora. In: *Soil Science* (55), S. 185–196.

Löffler, Frank E.; Sun, Qing; Li, Jieran; Tiedje, James M. (2000): 16S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorination *Desulfuromonas* and *Dehalococcoides* Species. In: *Applied and environmental microbiology* 66 (4), S. 1369–1374.

Lohner, Svenja T.; Becker, Dirk; Mangold, Klaus-Michael; Tiehm, Andreas (2011): Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. In: *Environmental science & technology* 45 (15), S. 6491–6497. DOI: 10.1021/es200801r.

Lohner, Svenja T.; Katzoreck, Daniel; Tiehm, Andreas (2008a): Electromigration of microbial electron acceptors and nutrients: (I) transport in synthetic media. In: *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 43 (8), S. 913–921. DOI: 10.1080/10934520801974434.

Lohner, Svenja T.; Katzoreck, Daniel; Tiehm, Andreas (2008b): Electromigration of microbial electron acceptors and nutrients: (II) transport in groundwater. In: *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 43 (8), S. 922–925. DOI: 10.1080/10934520801974442.

Lohner, Svenja T.; Tiehm, Andreas (2009): Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. In: *Environmental science & technology* 43 (18), S. 7098–7104. DOI: 10.1021/es900835d.

LUBW Landesanstalt für Umwelt Baden-Württemberg (2023): Altlastenstatistik 2022. Zahlen und Fakten zum Stand der Altlastenbearbeitung in Baden-Württemberg. 1. Aufl. Hg. v. LUBW Landesanstalt für Umwelt Baden-Württemberg. Karlsruhe.

Lyon, Delina Y.; Vogel, Timothy M. (2013): Bioaugmentation for Groundwater Remediation. An Overview. In: Hans F. Stroo, Andrea Leeson und C. Herb Ward (Hg.): Bioaugmentation for Groundwater Remediation. New York, NY: Springer (SERDP ESTCP Environmental Remediation Technology, 5), S. 1–37.

Maillacheruvu, Krishnanand Y.; Chinchoud, Preethi R. (2011): Electrokinetic transport of aerobic microorganisms under low-strength electric fields. In: *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 46 (6), S. 589–595. DOI: 10.1080/10934529.2011.562832.

Mao, Xuhui; Wang, James; Ciblak, Ali; Cox, Evan E.; Riis, Charlotte; Terkelsen, Mads et al. (2012): Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. In: *Journal of hazardous materials* 213-214, S. 311–317. DOI: 10.1016/j.jhazmat.2012.02.001.

Mattes, Timothy E.; Alexander, Anne K.; Coleman, Nicholas V. (2010): Aerobic biodegradation of the chloroethenes. Pathways, enzymes, ecology, and evolution. In: *FEMS microbiology reviews* 34 (4), S. 445–475. DOI: 10.1111/j.1574-6976.2010.00210.x.

Maymó-Gatell, Xavier; Anguish, Timothy; Zinder, Stephen H. (1999): Reductive Dechlorination of Chlorinated Ethenes and 1,2-Dichloroethane by "Dehalococcoides ethenogenes" 195. In: *Applied and environmental microbiology* 65 (7), S. 3108–3113.

Maymó-Gatell, Xavier; Chien, Y.; Gossett, James M.; Zinder, Stephen H. (1997): Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. In: *Science (New York, N.Y.)* 276 (5318), S. 1568–1571. DOI: 10.1126/science.276.5318.1568.

Melnick, Ronald L. (2002): Carcinogenicity and Mechanistic Insights on the Behavior of Epoxides and Epoxide - Forming Chemicals. In: *Ann NY Acad Sci* (982), S. 177–189.

Mülhardt, Cornel (2013): Der Experimentator Molekularbiologie/Genomics. Berlin, Heidelberg: Springer Berlin Heidelberg.

Müller, Hans-Joachim; Prange, Daniel Ruben (Hg.) (2016): PCR - Polymerase-Kettenreaktion. 2. Aufl. Berlin, Heidelberg: Springer Berlin Heidelberg.

Mulligan, Catherine N. (2001): An overview of in situ bioremediation processes. In: Proceedings of the 29th Annual Conference of the Canadian Society for Civil Engineering. Victoria, BC, Canada, 30.05.-02.06. Montreal, PC: Canadian Society of Civil Engineering.

Mulligan, Catherine N.; Yong, Raymond N. (2004): Natural attenuation of contaminated soils. In: *Environment international* 30 (4), S. 587–601. DOI: 10.1016/j.envint.2003.11.001.

Muyzer, G.; Waal, E. C. de; Uitterlinden, A. G. (1993): Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. In: *Applied and environmental microbiology* 59 (3), S. 695–700. DOI: 10.1128/aem.59.3.695-700.1993.

Nelson, Michael J. K.; Montgomery, Stacy O.; Pritchard, P. H. (1988): Trichloroethylene Metabolism by Microorganisms That Degrade Aromatic Compounds. In: *Applied and environmental microbiology* 54 (2), S. 604–606.

Olaniran, Ademola O.; Pillay, Dorsamy; Pillay, Balakrishna (2008): Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa. In: *Chemosphere* 73 (1), S. 24–29. DOI: 10.1016/j.chemosphere.2008.06.003.

Oldenhuis, Roelof; Vink, Ruud L.J.M.; Janssen, Dick B.; Witholt, Bernard (1989): Degradation of chlorinated aliphatic hydrocarbons by *Methylosinus trichosporium* OB3b expressing soluble methane monooxygenase. In: *Applied and environmental microbiology* 55 (11), S. 2819–2826.

Olszanowski, A.; Piechowiak, K. (2006): The Use of an Electric Field to Enhance Bacterial Movement and Hydrocarbon Biodegradation in Soil. In: *Polish Journal of Environmental Studies* 15 (2), S. 303–309.

Page, Mary M.; Page, Christopher L. (2002): Electroremediation of Contaminated Soils. In: *J. Environ. Eng.* 128 (3), S. 208–219. DOI: 10.1061/(ASCE)0733-9372(2002)128:3(208).

Payá Pérez, Ana; Rodríguez Eugenio, Natalia (2018): Status of local soil contamination in Europe. Revision of the indicator 'Progress in the management contaminated sites in Europe'. Luxembourg: Publications Office (EUR. Scientific and technical research series, 29124).

Perelo, Louisa Wessels (2010): Review. In situ and bioremediation of organic pollutants in aquatic sediments. In: *Journal of hazardous materials* 177 (1-3), S. 81–89. DOI: 10.1016/j.jhazmat.2009.12.090.

Pon, George; Semprini, Lewis (2004): Anaerobic reductive dechlorination of 1-chloro-1-fluoroethene to track the transformation of vinyl chloride. In: *Environmental science & technology* 38 (24), S. 6803–6808. DOI: 10.1021/es0498383.

Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N. (2015): Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution. In: *Applied catalysis. B, Environmental* 174-175, S. 427–434. DOI: 10.1016/j.apcatb.2015.03.018.

Rajic, Ljiljana; Nazari, Roya; Fallahpour, Noushin; Alshawabkeh, Akram N. (2016): Electrochemical degradation of trichloroethylene in aqueous solution by bipolar graphite electrodes. In: *Journal of Environmental Chemical Engineering* 4 (1), S. 197–202. DOI: 10.1016/j.jece.2015.10.030.

Ryoo, Doohyun; Shim, Hojae; Canada, Keith; Barbieri, Paola; Wood, Thomas K. (2000): Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of *Pseudomonas stutzeri* OX1. In: *Nature Biotechnology* (18), 775-778.

Sayavedra-Soto, Luis A.; Gvakharia, Barbara; Bottomley, Peter J.; Arp, Daniel J.; Dolan, Mark E. (2010): Nitrification and degradation of halogenated hydrocarbons--a tenuous balance for ammoniaoxidizing bacteria. In: *Applied microbiology and biotechnology* 86 (2), S. 435–444. DOI: 10.1007/s00253-010-2454-1.

Schmidt, Celina A. B.; Barbosa, Maria Claudia; Almeida, Márcio S. S. de (2007): A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil. In: *Journal of hazardous materials* 143 (3), S. 655–661. DOI: 10.1016/j.jhazmat.2007.01.009.

Schmidt, Kathrin R. (2009): Natural Attenuation am Standort Frankenthal. mikrobiologischer sequentiell anaerob-aerober Chlorethen-Abbau mit Kohlenstoff-Isotopenfraktion (Veröffentlichungen aus dem Technologiezentrum Wasser, 43).

Schmidt, Kathrin R.; Augenstein, Tobias; Heidinger, Michael; Ertl, Siegmund; Tiehm, Andreas (2010): Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source. Stable carbon isotope fractionation and growth characteristics. In: *Chemosphere* 78 (5), S. 527–532. DOI: 10.1016/j.chemosphere.2009.11.033.

Schmidt, Kathrin R.; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas (2014): Aerobic biodegradation of trichloroethene without auxiliary substrates. In: *Water Research* (59), S. 112–118. DOI: 10.1016/j.watres.2014.04.008.

Scholz-Muramatsu, Heidrun; Neumann, Anke; Meßmer, Michael; Moore, Edward; Diekert, Gabriele (1995): Isolation and characterization of *Dehalospirillum multivorans* gen. nov., sp. nov., a tetrachloroethene-utillizing, strictly anaerobic bacterium. In: *Arch Microbiol* (163), S. 48–56.

Semkiw, Elizabeth S.; Barcelona, Michael J. (2011): Field Study of Enhanced TCE Reductive Dechlorination by a Full-Scale Whey PRB. In: *Ground Water Monitoring & Remediation* 31 (1), S. 68–78. DOI: 10.1111/j.1745-6592.2010.01321.x.

Shingleton, J. T.; Applegate, B. A.; Baker, A. J.; Sayler, Gary S.; Bienkowski, P. R. (2001): Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by *Pseudomonas putida* TVA8. In: *Biotechnology and bioengineering* 76 (4), S. 341–350. DOI: 10.1002/bit.10083.

Smits, Theo H. M.; Devenoges, Christiane; Szynalski, Katia; Maillard, Julien; Holliger, Christof (2004): Development of a real-time PCR method for quantification of the three genera *Dehalobacter*, *Dehalococcoides*, and *Desulfitobacterium* in microbial communities. In: *Journal of microbiological methods* 57 (3), S. 369–378. DOI: 10.1016/j.mimet.2004.02.003.

Strycharz, Sarah M.; Woodard, Trevor L.; Johnson, Jessica P.; Nevin, Kelly P.; Sanford, Robert A.; Löffler, Frank E.; Lovley, Derek R. (2008): Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by *Geobacter lovleyi*. In: *Applied and environmental microbiology*, S. 5943–5947. DOI: 10.1128/AEM.00961-08.

Stupp, Hans Dieter; Bakenhus, Albrecht; Gass, Michael; Lorenz, Dietmar; Schwaar, Ivonne (2007): MNA als Strategie zur Bearbeitung von CKW-Grundwasserschäden – Grundlagen und Kriterien zur Anwendung –. In: *altlasten spektrum* (6). DOI: 10.37307/j.1864-8371.2007.06.05.

Sun, Dong-Lei; Jiang, Xuan; Wu, Qinglong L.; Zhou, Ning-Yi (2013): Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. In: *Applied and environmental microbiology* 79 (19), S. 5962–5969. DOI: 10.1128/AEM.01282-13.

Sung, Youlboong; Ritalahti, Kirsti M.; Apkarian, Robert P.; Löffler, Frank E. (2006): Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring *Dehalococcoides* isolate. In: *Applied and environmental microbiology* 72 (3), S. 1980–1987. DOI: 10.1128/AEM.72.3.1980-1987.2006.

Teutsch, Georg; Grathwohl, Peter; Schad, Hermann; Werner, Peter (1996): In-situ-Reaktionswände – ein neuer Ansatz zur passiven Sanierung von Boden- und Grundwasserverunreinigungen. In: *Grundwasser* 1 (1), S. 12–20. DOI: 10.1007/s767-1996-8451-8.

Tiehm, Andreas; Schmidt, Kathrin R. (2011): Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application. In: *Current Opinion in Biotechnology* 22 (3), S. 415–421. DOI: 10.1016/j.copbio.2011.02.003.

Tiehm, Andreas; Schmidt, Kathrin R.; Pfeifer, Brigitte; Heidinger, Michael; Ertl, Siegmund (2008): Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. In: *Water Research* 42 (10-11), S. 2431–2438. DOI: 10.1016/j.watres.2008.01.029.

Tovanabootr, Adisorn; Semprini, Lewis (2010): Comparison of TCE Transformation Abilities of Methane- and Propane-Utilizing Microorganisms. In: *Bioremediation Journal* 2 (2), S. 105–124. DOI: 10.1080/10889869891214259.

Umweltbundesamt (2020): Bundesweite Übersicht zur Altlastenstatistik. Umweltbundesamt. Online verfügbar unter https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/boden/altlasten-ihre-sanierung, zuletzt geprüft am 14.10.2021.

US EPA (1999): Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive Number 9200.4-17P. Hg. v. US EPA. Office of Solid Waste and Emergency Response. Washington D.C.

van Cauwenberghe, Liesbet; Roote, Diane S. (1998): *In Situ* Bioremediation. Ground-Water Remediation Technologies Analysis Center. Pittsburgh, PA, USA (GWRTAC O Series, TO-98-01). Online verfügbar unter https://clu-in.org/download/toolkit/insbio_o.pdf, zuletzt geprüft am 17.01.2024.

Van Hylckama Vlieg, Johan E.T.; Janssen, Dick B. (2001): Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. In: *Journal of Biotechnology* (85), S. 81–102.

Van Hylckama Vlieg, Johan E.T.; Koning, Wim de; Janssen, Dick B. (1996): Transformation Kinetics of Chlorinated Ethenes by *Methylosinus trichosporium* OB3b and Detection of Unstable Epoxides by On-Line Gas Chromatography. In: *Applied and environmental microbiology* 62 (9), S. 3304–3312.

Vanelli, Todd; Logan, Myke; Arciero, David M.; Hooper, Alan B. (1990): Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium *Nitrosomonas europaea*. In: *Applied and environmental microbiology* 56 (4), S. 1169–1171.

Verce, Matthew F.; Gunsch, Claudia K.; Danko, Anthony S.; Freedman, David L. (2002): Cometabolism of cis-1,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate. In: *Environmental science & technology* 36 (10), S. 2171–2177. DOI: 10.1021/es011220v.

Verdini, Roberta; Aulenta, Federico; Tora, Francesca de; Lai, Agnese; Majone, Mauro (2015): Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrochemical reactor. In: *Chemosphere* 136, S. 72–78. DOI: 10.1016/j.chemosphere.2015.03.092.

Vogel, Timothy M.; McCarty; Perry, L. (1985): Biotransformation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Conditions. In: *Applied and environmental microbiology* 49 (5), S. 1080–1083.

Wang, Hefei; Zhao, Yongsheng; Li, Tianyi; Chen, Zhen; Wang, Yinan; Qin, Chuanyu (2016): Properties of calcium peroxide for release of hydrogen peroxide and oxygen. A kinetics study. In: *Chemical Engineering Journal* 303, S. 450–457. DOI: 10.1016/j.cej.2016.05.123.

Wang, Jian; Cutright, Teresa J. (2005): Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation. In: *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering* 40 (8), S. 1569–1584. DOI: 10.1081/ese-200060640.

Willmann, Anna; Tiehm, Andreas (2023): Aerobic co-metabolic cis-Dichloroethene degradation with Trichloro-ethene as primary substrate and effects of concentration ratios. In: *Chemosphere*, S. 141000. DOI: 10.1016/j.chemosphere.2023.141000.

Willmann, Anna; Trautmann, Anna-Lena; Kushmaro, Ariel; Tiehm, Andreas (2023): Intrinsic and bioaugmented aerobic trichloroethene degradation at seven sites. In: *Heliyon* 9 (2), e13485. DOI: 10.1016/j.heliyon.2023.e13485.

Yang, Yi; Higgins, Steven A.; Yan, Jun; Şimşir, Burcu; Chourey, Karuna; Iyer, Ramsunder et al. (2017): Grape pomace compost harbors organohalide-respiring *Dehalogenimonas* species with novel reductive dehalogenase genes. In: *The ISME journal* 11 (12), S. 2767–2780. DOI: 10.1038/ismej.2017.127.

Yeager, Chris M.; Arthur, Kristin M.; Bottomley, Peter J.; Arp, Daniel J. (2004): Trichloroethylene Degradation by Toluene-Oxidizing Bacteria Grown on Non-aromatic Substrates. In: *Biodegradation* (15), S. 19–28.

Yu, Seungho; Dolan, Mark E.; Semprini, Lewis (2005): Kinetics and Inhibition of Reductive Dechlorination of Chlorinated Ethylenes by Two Different Mixed Cultures. In: *Environ. Sci. Technol.* 39 (1), S. 195–205. DOI: 10.1021/es0496773.

Yuan, Songhu; Liu, Yang; Zhang, Peng; Tong, Man; Liu, Hui (2021): Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer. In: *Sci. China Technol. Sci.* 64 (2), S. 251–260. DOI: 10.1007/s11431-019-1521-7.

Zeppilli, Marco; Dell'Armi, Edoardo; Cristiani; Papini, Petrangeli; Majone (2019): Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal. In: *Water* 11 (12), S. 2579. DOI: 10.3390/w11122579.

Zhao, He-Ping; Schmidt, Kathrin R.; Tiehm, Andreas (2010): Inhibition of aerobic metabolic cis-1,2-dichloroethene biodegradation by other chloroethenes. In: *Water Research* 44 (7), S. 2276–2282. DOI: 10.1016/j.watres.2009.12.023.

8 ANHANG

8.1 Berechnung der Effizienz der Sauerstoffverwertung des co-metabolischen TCE-Abbaus in Abhängigkeit des Primärsubstrats

$$uf_{st,Aux}\left(\frac{\mathrm{mg}(\mathrm{Aux})}{\mathrm{mg}(\mathrm{O}_{2})}\right) = \frac{\mathrm{Y}\,\mathrm{mmol}\,(\mathrm{Aux})*M_{Aux}\,\frac{\mathrm{mg}\,(\mathrm{Aux})}{\mathrm{mmol}\,(\mathrm{Aux})}}{\mathrm{X}\,\mathrm{mmol}\,(\mathrm{O}_{2})*31,999\,\frac{\mathrm{mg}(\mathrm{O}_{2})}{\mathrm{mmol}\,(\mathrm{O}_{2})}}$$

$$\frac{\text{uf}_{\text{st}} \text{Auxiliarsubstrate}}{\text{Ammonium}}$$

$$2 \, NH_4 + 4 \, O_2 \rightarrow 2 \, NO_3 + 2 \, H_2 O + 4 \, H^+ \qquad uf_{st} \left(\frac{\text{mg}(NH_4)}{\text{mg}(O_2)}\right) = \frac{2 \, \text{mmol} \, (\text{Aux}) * 26 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (Aux)}}{4 \, \text{mmol} \, (O_2) * 31,999 \, \frac{\text{mg}(O_2)}{\text{mmol} \, (O_2)}} = 0,282$$
Methan
$$CH_4 + 2 \, O_2 \rightarrow CO_2 + 2 \, H_2 O \qquad uf_{st} \left(\frac{\text{mg}(CH_4)}{\text{mg}(O_2)}\right) = \frac{1 \, \text{mmol} \, (\text{Aux}) * 16 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (Aux)}}{2 \, \text{mmol} \, (O_2) * 31,999 \, \frac{\text{mg}(O_2)}{\text{mmol} \, (O_2)}} = 0,25$$
Propan
$$C_3H_8 + 5 \, O_2 \rightarrow 3 \, CO_2 + 4 \, H_2 O \qquad uf_{st} \left(\frac{\text{mg}(C_2H_8)}{\text{mg}(O_2)}\right) = \frac{1 \, \text{mmol} \, (\text{Aux}) * 44 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (Auz)}}{5 \, \text{mmol} \, (O_2) * 31,999 \, \frac{\text{mg}(O_2)}{\text{mmol} \, (O_2)}} = 0,275$$
Toluol
$$C_7H_8 + 9 \, O_2 \rightarrow 7 \, CO_2 + 4 \, H_2 O \qquad uf_{st} \left(\frac{\text{mg}(C_2H_8)}{\text{mg}(O_2)}\right) = \frac{1 \, \text{mmol} \, (\text{Aux}) * 92.14 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (O_2)}}{9 \, \text{mmol} \, (O_2)} = 0,32$$
Phenol
$$C_6H_6O + 7 \, O_2 \rightarrow 6 \, CO_2 + 3 \, H_2 O \qquad uf_{st} \left(\frac{\text{mg}(C_2H_8)}{\text{mg}(O_2)}\right) = \frac{1 \, \text{mmol} \, (\text{Aux}) * 94.11 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (O_2)}}{7 \, \text{mmol} \, (O_2) * 31,999 \, \frac{\text{mg}(O_2)}{\text{mmol} \, (O_2)}} = 0,42$$
Natrium Acetat
$$CH_3C00Na + 2 \, O_2 \rightarrow 2 \, CO_2 + H_2O + Na^+ + OH^- \qquad uf_{st} \left(\frac{\text{mg}(CH_3C00Na)}{\text{mg}(O_2)}\right) = \frac{1 \, \text{mmol} \, (\text{Aux}) * 62.03 \, \frac{\text{mg}(Aux)}{\text{mmol} \, (Aux)}} = 0,42$$

Ту	llfet	Schmidt et al. 2014	Diese Arbeit		Chang und Alvarez-Cohen 1995		Tovanabootr und Semprini 2010	Anderson und McCarty, Perry, L. 1997	Kocamemi und Ceçen 2010								Quelle
Transformation yi	Stöchiometrischer	·	cDCE	Phenol	Toluol	Propan	Methan	Methan	Ammonium							substrat	Auxiliar-
eld; Umsatz	· Umsatzfak	2,74	1,43	0,392	0,320	0,276	0,251	0,251	0,282	$\left[\frac{mg_{Aux}}{mg_{O2}}\right]$							uf _{st}
von TCE dur	tor	27,4	14,3	3,92	3,20	2,76	2,51	2,51	2,82	[mg]					10 mg O ₂	Aux. mit	Abbau
ch Abbau d			0,145	0,019	0,003	0,012	0,068	0,016	0,019	[mg _{TCE}] mg _{Aux}							Τ _y
es Auxiliarsubst			2,073	0,074	0,008	0,033	0,171	0,040	0,050	[mg]			substrates	Auxiliar-	Abbau des	während	TCE-Abbau
rats; Literaturwe		27,4	16,373	3,994	3,208	2,793	2,681	2,550	2,870	[mg]				Stoffe	abgebauter	masse	Gesamt-
erte			87,3	98,14	99,75	98,82	93,63	98,43	98,30	[%]	substrat	Auxiliar-	des	Abbau	für	Einsatz	O ₂ -
		100	12,7	1,86	0,25	1,18	6,37	1,57	1,70	[%]		TCE	des	Abbau	für	Einsatz	O ₂ -
			13,2	363	3.375	822	158	672	540	Ξ					TCEcomet	TCE _{met} /	Ratio

Tabelle 8-1:Vergleich der Effizienz des aerob metabolischen TCE-Abbausverglichen mit aerob co-metabolischen Prozessen.

10 mg O₂ ermöglichen den Abbau von

Abbildung 8-1: Vergleich der abbaubaren Mengen an TCE unter der Verwendung verschiedener Auxiliarsubstrate, bei einer verfügbaren Sauerstoffmenge von 10 mg.

8.2 Materialen-, Medien- & Chemikalien-Listen

8.2.1 Chemikalien, Reagenzien und Kits

Einsatzbereich	Bezeichnung	Hersteller
Analytik	Rundküvettentest Nanocolor Chlor/Ozon 2	Macherey-Nagel
	Rundküvettentest Nanocolor Ammonium 3, 10, 50	Macherey-Nagel
Gase	Wasserstoff 5.0	Linde
Gen Klonierung	Ampicillin, ≥97%	Carl Roth
	IPTG, ≥99%	Carl Roth
	X-Gal, ≥99%	Carl Roth
	T4 DNA-Ligase	Promega,
	Vektor pGEM-T	Promega,
Standardherstellung	Chlorid, Standardlösung 1000 mg/L	Merck
	Nitrat, Standardlösung 1000 mg/L	Merck
	Nitrit, Standardlösung 1000 mg/L	Merck
	Phosphat, Standardlösung 1000 mg/L	Merck
	Sulfat, Standardlösung 1000 mg/L	Merck
	Ethanol, Rotipuran ≥99,8%, p.a.	Carl Roth
Kalibrierlösung	рН 4,01	WTW
	рН 7,00	WTW
Medien-Herstellung	Natriumacetat, p.a.	Merck
	Hefeextrakt, für Mikrobiologie	Merck
	Cobalt(II)-Chlorid Hexahydrat, ≥ 98%	Fluka
	Dikaliumhydrogenphosphat (Trihydrat), p.a.	Merck
	Dinatriumsulfit, p.a.	Carl Roth
	Kaliumdihydrogenphosphat, p.a.	Merck
	Natriumcarbonat, p.a.	Merck
	Natriumhydrogencarbonat, p.a.	Merck
	Natriumnitrat, p.a.	Merck
	Magnesium(II)-sulfat (Heptahydrat), für Zellkulturen	AppliChem
	Calcium(II)-sulfat (Dihydrat), p.a.	Fluka
	Zink(II)-sulfat (Heptahydrat), >99%	Sigma-Aldrich
	Eisen(II)-sulfat (Heptahydrat), p.a.	Sigma-Aldrich
	Mangan(II)-chlorid (Tetrahydrat), p.a.	Carl Roth
	Borsäure, p.a.	Merck
	Kupfer(II)-sulfat (Dihydrat), >98%	Alfa-Aeser
	Nickel(II)-chlorid (Hexahydrat), ≥ 98%	Fluka
	Natrium Molybdat (Dihydrat), p.a.	Merck
	Diammoniumhydrogenphosphat, p.a.	Merck
	Dinatriumhydrogenphosphat (Dihydrat), p.a.	Merck
	Mangan(II)-sulfat (Heptahydrat), für Zellkultur	AppliChem
	Calcium(II)-chlorid, p.a.	Merck
	Natriumwolframat (Dihydrat), p.a.	Carl Roth
	Natriumselenit (Heptahydrat), p.a.	Fluka

 Tabelle 8-2:
 Verwendete Chemikalien, Reagenzien und Kits.

Fortsetzung Tabelle 8-2.

Einsatzbereich	Bezeichnung	Hersteller
Medien-herstellung	Biotin, >99%	Fluka
	Folsäure, >97%	Fluka
	Pyridoxamin (B6), >99%	Fluka
	Riboflavin (B₂), >99%	Fluka
	Thiamin (B1), >99%	Fluka
	Cyanocobalamin (B ₁₂), >98%	Fluka
	Nicotinamid (B3), >99%	Fluka
	p-Aminobenzoesäure (H1), >99%	Fluka
	Liponsäure, >98%	Fluka
	Panthothensäure,	Fluka
	Natriumchlorid, p.a.	Carl Roth
	Trypton, für Mikrobiologie	Carl Roth
	Agar	Carl Roth
	Kaliumchlorid, p.a.	Carl Roth
Molekularbiologie	Apal	Roche
	Escherichia coli K12 JM109	Promega
	Fast DNA Spin Kit for Soil	MPBio
	High Pure PCR Product Purification Kit	Roche
	Isopropanol, p.a.	VWR
	LyseBlue	Qiagen
	pGEM-T Vektor	Promega
	Plasmid Purification Midi Kit	Qiagen
	PrestoBlue	Invitrogen
	Propidium Iodid	Carl Roth
	Puffer A	Roche
	QBT Puffer	Qiagen
	QC Puffer	Qiagen
	QX Alignment Marker 15 bp/3000 bp	Qiagen
	Rapid Ligation Buffer	Promega
	RNase A	Thermo Fisher
	SsoAdvanced Universal SYBR Green Supermix	BioRad
	SYBR Green I	Thermo Fisher
	MyTaq Red Mix	Bioline
Säuren/Laugen	Phosphorsäure, 85 % p.a.	Sigma-Aldrich
	Salzsäure, 37 %	Merck
Schadstoffe	cDCE, 97 %	Sigma-Aldrich
	PCE, 99 %	Sigma-Aldrich
	TCE, 99.9 %	Sigma-Aldrich
	tDCE, 98 %	Sigma-Aldrich
	Vinylchlorid 3.6	Linde
	Ethen 3.0	Linde
	Ethan 2.5	Linde
	Methan 3.5	Linde

8.2.2 Geräteliste und Gerätedaten

Tabelle 8-3:	Liste ve	erwendeter	Geräte.

Gerät	Bezeichnung	Hersteller
Autosampler GC	7697A Headspace Sampler	Agilent
Gaschromatograph	7890 GC-System	Agilent
Digitale Multimeter	34411A 6 1/2 Digit Multimeter	Agilent Keysight
Thermoblock mit	MB-102	Bioer Technology
Schüttelfunktion PCR-System	CEX96 Deen Well Real-Time System	BioRad
PCR-Bank	DNA/RNA LIV-cleaner box	BioSan
	Custom Chamber	Cov
Kulturflaschen	1 und 2 Elaschen mit zusätzlicher	Duran Group
Kanamasonon	seitlicher GL-18-Öffnung	GmbH
DOC-Gerät	Vario TOC Cube	Elementar Analvsensvsteme
Reinstwasseranlage	Purelab flex	ELGA Veolia
Peristaltikpumpe	Minipuls 3	Gilson
Glasspritzen	Gasdichte Glasspritzen (verschiedene Volumina)	Hamilton
Spannungsquelle	Multi Source Power Supply 1134-150	Heiden Electronics
Spannungsquelle	Quad DC Power Supply 1145	Heiden Electronics
Magnetrührer	Ikamag Reo	IKA
Sterilbank	TecnoFlow 3F120-II-GS	Integra Bioscience
Autosampler Flowcytometer	CytKick MAX Autosampler	Invitrogen
Flowcytometer	Attune Nxt, Acoustic Focusing Cytometer	Invitrogen
DNA-Quantifizierung	Qubit Fluorometer	Invitrogen
Photometer	Spektralphotometer NANOCOLOR Advance	Macherey-Nagel
Peristaltikpumpe	Reglo Digital MS-4/12	Masterflex Ismatec
Autosampler IC	813 Compact Autosampler	Metrohm
Ionenchromatograph	761 Compact IC	Metrohm
Filtrationsleiste	EZ-Fit™ Basisleiste	Millipore
Glasspritzen (gasdicht, verschiedene Volumina)	Fortuna Optima	Poulten & Graf GmbH
PCR-Cycler	Rotor-Gene O	Qiagen
DGGE-Analyse	QIAxcel Advanced-System	Qiagen
Vortex	Vortex-Genie 2	Scientific Industries
PCR-Thermocycler	Labcycler	Sensoquest
Autoklav	Laboklav 55-195	SHP Steriltechnik
Sterile Plastikspritzen (verschiedene Volumina)	Sterile Plastikspritzen (verschiedene Volumina)	VWR International GmbH
pH-Sonde	SenTix 41 Sonde	WTW
Messgerät	Multi 3420 Taschenmessgerät	WTW
O2 Kalibrierhülle	OxiCal	WTW
O2 Sonde	FDO 925	WTW
Messgerät	inoLab Multi 9630 IDS Labormessoerät	WTW

Messgerät	761 Compact IC; Metrohm	
Autosampler	813 Compact Autosampler; Metrohm	
Eluent	3,2 mM Na ₂ CO ₃	
	1 mM NaHCO₃	
	2 % Methanol	in 2 L Reinstwasser
Injektionsvolumen	20 µL	
Regenerent	0,1 % H ₂ SO ₄	
Säulenfluss	0,7 mL/min	
Trennsäule	Metrosep A Supp 5-150	
Parameter	Bestimmungsgrenze	
Chlorid	1 mg/L	
Nitrit	1 mg/L	
Nitrat	1 mg/L	
Sulfat	1 mg/L	
Phosphat	1 mg/L	

Tabelle 8-4:Gerätedaten und Betriebsparameter des IC sowie Bestimmungsgrenze der
untersuchten Anionen.

• •	
Messgerät	7890 GC-System Agilent Technologies
Autosampler	7697A headspace sampler
Vialtyp	Headspace Vial 10 mL, flat bottom, Agilent Technologies
Deckeltyp	Aluminium crimp cap, PTFE-Septum, 20 mm, Agilent Technologies
Vorheizen	70°C, 60 min
Temperatur	180°C
Druck	287 kPa
Injektionsvolumen	1 mL
Split-Ratio	1:15
Split-Fluss	24 mL/min
Trägergas	Helium
Säulenfluss	1,6 mL/min
Säulendruck	186,99 kPa
Kapillarsäule	Pona, Hewlett Packard
Säulenlänge	50 m
Innendurchmesser	200 µm
Filmdicke	0,5 μm
Temperatur-Programm	30°C (7 min)
	-> 1,5°C/min auf 60°C (t _h : 12 sec)
	-> 15°C/min auf 200°C (t _h : 7 min)
FID-Temperatur	250°C
ECD-Temperatur	300°C
Parameter	Bestimmungsgrenze
PCE	0,8 µg/L
TCE	0,7 µg/L
1,1-DCE	1 µg/L
cDCE	20 µg/L
tDCE	5 µg/L
VC	130 µg/L
Ethan	100 µg/L
Ethen	100 µg/L
Methan	100 µg/L

Tabelle 8-5:Gerätedaten und Betriebsparameter des GC sowie Bestimmungsgrenze der
verschiedenen Schadstoffe.

Gerätedaten					
Cycler	Rotor-Gene Q, Qiagen				
Reaktionsgefäß	Strip Tubes 0,1 mL, Qiagen				
Deckel	Strip Caps, Qiagen				
Programm					
Initiale Denaturierung	98°C, 120 s				
Denaturierung	98°C, 15 s, 45 x				
Annealing	55°C, 15 s, 45 x				
Elongation	72°C, 20 s, 45 x				
Schmelzkurve	58-99°C				

Tabelle 8-6: Gerätedaten und Programm für die PCR mit der SYBR-Polymerase.

Tabelle 8-7: Gerätedaten und Programm der PCR zur Amplifikation der Template-DNA.

	Gerätedaten
Cycler	Labcycler, Sensoquest (Göttingen, Deutschland)
	Programm
Initiale Denaturierung	95°C, 180 s
Denaturierung	95°C, 15 s, 45 x
Annealing	55°C, 15 s, 45 x
Elongation	72°C, 20 s, 45 x
Finale Elongation	72°C, 600 s

Gerätedaten					
Cycler	CFX96 Deep Well Real-Time System, BioRad				
Programm					
Initiale Denaturierung	95°C, 120 s				
Denaturierung	95°C, 15 s, 45 x				
Annealing	55-68°C, 15 s, 45 x				
Elongation	72°C, 20 s, 45 x				
Schmelzkurve	55-95°C				

Tabelle 8-8: Gerätedaten und Programm für die Gradienten-PCR.

8.2.3 Verbrauchsmaterialien

lersteller
gilent Technologies
gilent Technologies
rand
rand bzw. VWR
rand bzw. VWR
rand bzw. VWR
arl Roth
arl Roth
ebrüder Dorfner GmbH & Co, lirschau, Deutschland
soversinic
ensen Inert Products, Coral Springs, ISA
lacherey & Nagel
lacherey & Nagel
lacherey & Nagel
1erck Millipore
lerck Millipore
letakem GmbH
letakem GmbH
UNC
all Corporation
all Corporation
liagen
liagen
Diagen
WR
WR
WR International GmbH

 Tabelle 8-9:
 Auflistung der verwendeten Verbrauchsgegenstände.

8.2.4 Medien und Lösungen

8.2.4.1 Kultivierung aerober Chlorethenverwerter

Tabelle 8-10: Zusammensetzung des Mineralmediums zur Kultivierung der aerob metabolisch Chlorethen-abbauenden Organismen, nach Gaza (2015).

Substanz	Einwaage	
K ₂ HPO ₄ x 3 H ₂ O	1,050	mg
KH ₂ PO ₄	200	mg
NaNO ₃	170	mg
MgSO4x 7 H2O	40	mg
CaSO ₄ x 2 H ₂ O	23	mg
Spurenstofflösung	2	mL
Reinstwasser	Auf 1.000 mL auffüllen	
pH = 7,2		

Tabelle 8-11: Zusammensetzung der Spurenstofflösung nach Lochhead und Chase (1943).

Substanz	Einwaage	
ZnSO ₄ x 7 H ₂ O	10	mg
FeSO ₄ x 7 H ₂ O	200	mg
MnCl ₂ x 4 H ₂ O	30	mg
H ₃ BO ₃	30	mg
CoCl ₂ x 6 H ₂ O	20	mg
CuSO ₄ x 2 H ₂ O	10	mg
NiCl ₂ x 6 H ₂ O	6	mg
Na ₂ MoO ₄ x 2 H ₂ O	3	mg
H ₃ PO ₄ konzentriert	2	mL
Reinstwasser	Auf 1.000 mL auffüllen	

8.2.4.2 Kultivierung reduktiver Dechlorierer

Die Zusammensetzung des Mineralmediums, der Spurenelementlösungen sowie der Vitaminlösung wurden Kranzioch (2015) entnommen.

Tabelle 8-12:Zusammensetzung des Mineralmediums zur Kultivierung der reduktiv dechlorierendenMikroorganismen.

Substanz	Einwaage	
KH ₂ PO ₄	1,810	mg
Na ₂ HPO ₄	2,840	mg
MgSO ₄ x 7 H ₂ O	120	mg
(NH4)2HPO4	450	mg
SP1-Lösung	10	mL
SP2-Lösung	0,1	mL
Reinstwasser	Auf 1.000 mL auffüllen	
pH = 7,2		

Tabelle 8-13: Spurenelementlösung SP1 nach Kästner (1989).

Substanz	Einwaage	
FeSO ₄ x 7 H ₂ O	400	mg
MnSO4 x 5 H2O	40	mg
CoCl ₂	8	mg
ZnSO4 x 7 H2O	40	mg
CuSO4 x 5 H ₂ O	40	mg
CaCl ₂	1,060	mg
H ₃ BO ₃	6	mg
Na ₂ MoO ₄ x 2 H ₂ O	8	mg
H ₃ PO ₄ konzentriert	2.000	mg
Reinstwasser	Auf 1.000 mL auffüllen	

Tabelle 8-14: Spurenelementlösung SP2 nach Scholz-Muramatsu et al. (1995).

Substanz	Einwaage	
Na ₂ WO ₄ x 2 H ₂ O	50	mg
Na ₂ SeO ₃ x5 H ₂ O	5	mg
NiCl ₂	250	mg
Reinstwasser	Auf 1.000 mL auffüllen	

Substanz	Einwaage	
Biotin	2	mg
Folsäure	2	mg
Pyridoxamin	10	mg
Riboflavin (B ₂)	5	mg
Thiamin	5	mg
Cyanocobalamin (B ₁₂)	0,1	mg
Nicotinamid	5	mg
p-Aminobenzoesäure	5	mg
Liponsäure	5	mg
Panthothensäure	5	mg
Reinstwasser	Auf 100 mL auffüllen	

Tabelle 8-15: Zusammensetzung der Vitaminlösung; Kranzioch (2015).

8.2.4.3 Medien für die qPCR-Analytik und Methodenetablierung

Tabelle 8-16: Zusammensetzung Mastermix 1.

Substanz	Volumen (Endvolumen 10 µL)
Wasser	3,2 µL
SsoAdvanced Universal SYBR Green Supermix (BioRad, Hercules, USA)	5 µL
Primer forward (10 pmol/µL)	0,4 µL
Primer reverse (10 pmol/µL)	0,4 µL
Template	1 µL

122 | ANHANG

Substanz	Volumen (Endvolumen 50 µL)
Wasser	15 µL
MyTaq Red Mix (2x)	25 µL
Primer forward (10 pmol/µl)	2,5 µL
Primer reverse (10 pmol/µl)	2,5 µL
Template	5 μL

Tabelle 8-17: Zusammensetzung Mastermix 2.

Tabelle 8-18:Zusammensetzung Mastermix 3 f
ür die Klonierung des PCR-Fragmentes in den
Vektor pGEM-T.

Substanz	Volumen (Endvolumen 1,5 μL)
T4 DNA-Ligase (Promega)	0,5 µL
pGEM-T Vektor (Promega)	0,5 µL
2x Rapid Ligation Buffer (Promega)	0,5 µL

 Tabelle 8-19:
 Zusammensetzung des LB Mediums.

Substanz	Einwaage	
NaCl	10	g/L
Hefeextrakt	5	g/L
Trypton	10	g/L

Tabelle 8-20: Zusammensetzung des SOC-Mediums.

Substanz	Einwaage	
Trypton	20	g/L
Hefeextrakt	5	g/L
NaCl	10	g/L
Agar	15	g/L
pH-Wert	7	-

Tabelle 8-21:	Zusammensetzung	des LAXI-Mediums.
---------------	-----------------	-------------------

Substanz	Einwaage	
Trypton	10	g/L
Hefeextrakt	5	g/L
NaCl	0,548	g/L
KCI	0,18	g/L
Ampicillin	0,5	mL/L 100 mg/L
IPTG	2,5	mL/L 0,1 M
X-Gal	0,25	mL/L 160 mg/mL
pH-Wert	7	

8.2.5 Übersicht der geführten Chlorethen abbauenden Kulturen

8.2.5.1 Aerob metabolisch VC-abbauende Kulturen

Tabelle 8-22: Übersicht der geführten aerob metabolisch VC-abbauenden Kulturen.

1 Generation	Anmerkung	2. Generation	Anmerkung	3. Generation	Anmerkung
VC1	Kulturpflege	VC1-1	Kulturpflege	-	-
		VC1-2	Kulturpflege	-	-
VC2	Aus TZW-Kultur- pflege übernommen	VC2-1	Kulturpflege	VC2-1-1	Kulturpflege
		VC2-2	Kulturpflege	VC2-2-1	Kulturpflege

8.2.5.2 Aerob metabolisch cDCE-abbauende Kulturen

Tabelle 8-23: Übersicht der geführten aerob metabolisch cDCE-abbauenden Kulturen.

1 Generation	Anmerkung	2. Generation	Anmerkung	3. Generation	Anmerkung
MK1 Aus Mikro eines		MK1-1	Kulturpflege	MK1-1-1	Kulturpflege
	Aus Mikrokosmos eines aktiv	6 MK1-2	Kulturpflege	MK1-2-1	Verwendung in 3.5.3
MK2	Abbauenden Standortes gewonnen	MK2-1	Kulturpflege	MK2-1-1	Kulturpflege
		MK2-2	Kulturpflege	MK2-1-2	Kulturpflege

8.2.5.3 Aerob metabolisch TCE-abbauende Kulturen

Tabelle 8-24: Übersicht der geführten aerob metabolisch TCE-abbauenden Kulturen.

1. Generation	Anmerkung	2. Generation	Anmerkung	3. Generation	Anmerkung
R70-1	R70-15L-Reservoir der, in Zirkulation betriebenen, 70L Säule (3.5.1.2) Austausch des Reservoirs nach Erreichen von pH 6,5R70-2Ursprüngliches Inokulum aus TZW Kulturpflege 	-		-	-
		R70-2-1	Kulturpflege	-	-
R70-2		R70-2-2	Kulturpflege	R70-2-3-1	Verwendung in 4.3.3)
		R70-2-3	Kulturpflege	-	-
R70-3		-	-	-	-
Zirkulationsbetrieb zur Immobilisierung der Mikrobiota auf Kleinsäulen TCE45 (3.5.6) Austausch der Kultur nach Erreichen von pH 6,5 Ursprüngliches Inokulum aus TZW Kulturpflege (SF-Kultur) übernommen	TCE45-1	Verwendung in 3.5.2	-	-	
	Zirkulationsbetrieb zur Immobilisierung der Mikrobiota auf Kleinsäulen (3.5.6) Austausch der Kultur nach Erreichen von pH 6,5 Ursprüngliches Inokulum aus TZW Kulturpflege (SF-Kultur) - übernommen	TCE45-2	Verwendung in 3.5.3	-	-
		TKS1	Durch zurückwachsen der Bakterien ins		
		TKS2	etablierte Kulturen; vollständiger		
		TKS3	Reservoire nach festgestelltem Schadstoffabbau		
TCE90		-	-	-	-

8.2.5.4 Reduktiv dechlorierende Kulturen

Tabelle 8-25: Übersicht der geführten reduktiv dechlorierenden Kulturen.

1. Generation	Anmerkung	2. Generation	Anmerkung	3. Generation	Anmerkung
HPb1		-	-	-	-
HPb2		-	-	-	-
HPb3		HPb3-1	Kulturpflege	HPb3-1-1	Kulturpflege
	Aus TZW- Kulturpflege gewonnen	HPb3-2	Kulturpflege	HPb3-2-1	Kulturpflege
HPb4		-	-	-	-
HPb5		HPb5-1	Kulturpflege	HPb5-1-1	Kulturpflege
		HPb5-2	Kulturpflege	HPb5-2-1	Durch Klein- säulen zirkuliert
AcP		-	-	-	-
8.3 Ergebnisse

8.3.1 Bioaugmentationsversuche

8.3.1.1 Standort NAM Rohdaten

Tabelle 8-26: Rohdaten Ansatz NAM 1.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff	-	mg/L	6,4	7,2	7,0	6,9	7,2	7,2	7,1	7,9	7,6	7,7	7,8	8,6	n.b.	8,4	8,4	8,4
pН	-	-	6,5	7,1	7,1	7,0	7,1	7,0	7,0	7,0	7,0	7,0	7,1	6,9	n.b.	7,2	6,9	7,1
Temperatu	r -	°C	22,0	21,3	22,8	22,4	23,8	22,4	23,7	23,5	23,2	23,6	21,4	21,3	n.b.	21,1	20,3	19,7
CE																		
PCE	0,00	008 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0,00	007 mg/L	0,6632	0,5823	0,6103	0,6323	0,5477	0,5716	0,5839	0,5376	0,5549	0,5659	0,5577	0,5237	n.b.	0,4550	0,5127	0,3520
tDCE	0,0	005 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE	0	,02 mg/L	0,83	0,78	0,80	0,82	0,77	0,77	0,79	0,74	0,77	0,76	0,79	0,73	n.b.	0,70	0,73	0,71
VC	0	,13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen	0	,11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	13,0	11,7	11,6	9,7	9,7	9,8	9,8	10,0	10,6	10,0	10,6	10,1	n.b.	10,7	11,1	11,1
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		2 mg/L	<bg< td=""><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,1	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		2 mg/L	23,0	21,2	20,2	17,2	16,7	16,4	16,6	17,5	16,7	16,9	17,8	16,8	n.b.	n.b.	n.b.	19,4
C_org																		
DOC		1 mg/L	8,64	7,66	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,99
Kationen																		
Ammonium	ı 0	,05 mg/L	0,27	0,5	0,3	0,4	0,4	0,4	0,48	0,51	0,51	0,56	0,34	0,25	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""></bg<></td></bg<>	n.b.	<bg< td=""></bg<>

Tabelle 8-27: Rohdaten Ansatz NAM 2.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff	-	mg/L	6,9	7,1	7,3	7,3	7,3	7,7	7,6	7,6	8,1	8,0	8,3	8,6	8,5	8,4	8,5	8,6
pН	-	-	7,1	7,1	7,1	7,1	7,1	7,0	7,1	7,0	7,0	7,0	7,1	7,0	7,0	7,1	6,9	7,3
Temperatu	r -	°C	22,1	21,2	22,2	22,1	23,1	22,2	23,5	23,6	22,9	23,6	21,6	21,4	21,3	21,1	20,3	20,0
CE																		
PCE	0,0	008 mg/L	0,0010	0,0018	0,0017	0,0015	0,0017	0,0016	0,0016	0,0016	0,0015	0,0014	0,0015	0,0015	0,0014	0,0013	0,0013	0,0013
TCE	0,0	007 mg/L	0,5735	0,6012	0,5692	0,5357	0,5725	0,5477	0,5439	0,4644	0,3740	0,2614	0,2674	0,2572	0,2402	0,2099	0,1955	0,1895
tDCE	0,	005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE	C),02 mg/L	0,78	0,77	0,76	0,74	0,76	0,75	0,74	0,71	0,72	0,63	0,67	0,65	0,64	0,60	0,60	0,59
VC	C),13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen	C),11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	15,1	13,6	13,6	11,3	11,4	11,4	11,5	11,7	11,7	12,5	12,5	11,9	12,9	12,9	13,3	13,1
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	4,8	4,1	1,7	4,0	3,9	3,8	4,1	4,1	3,7	4,1	4,5	4,0	4,9	2,4	<bg< td=""><td>2,1</td></bg<>	2,1
Phosphat		2 mg/L	12,4	10,3	8,1	5,3	5,0	5,5	4,0	5,2	3,4	2,8	5,3	4,6	2,3	n.b.	n.b.	n.b.
Sulphat		2 mg/L	25,6	23,4	22,1	19,4	18,6	18,6	18,3	19,2	20,0	18,1	20,0	18,9	18,3	n.b.	n.b.	21,7
C_org																		
DOC		1 mg/L	9,39	7,37	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,96
Kationen																		
Ammonium	ı (),05 mg/L	0,26	0,50	0,30	0,40	0,40	0,40	0,45	0,48	0,46	0,52	0,38	0,51	0,53	0,53	n.b.	0,46

Tabelle 8-28: Rohdaten Ansatz NAM 3.

	BG	Einneit																	
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229	
s.p.																			
Sauerstoff	-	mg/L	6,9	6,9	7,5	7,4	7,5	7,6	7,5	7,7	8,0	7,8	8,5	8,8	n.b.	8,7	8,7	8,7	
pН	-	-	5,6	5,4	5,2	5,1	5,2	2,1	5,0	5,2	5,2	5,1	5,2	5,0	n.b.	5,0	5,0	5,2	
Temperatur	-	°C	22,2	21,9	21,6	22,0	22,6	22,2	23,3	22,5	22,0	23,0	21,4	20,8	n.b.	20,7	19,7	19,7	
CE																			
PCE	0,00	08 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
TCE	0,00	07 mg/L	0,69881	0,71933	0,6078	0,5907	0,61234	0,68736	0,51938	0,57871	0,51266	0,53293	0,52186	0,4838	n.b.	0,47112	0,41799	0,4718	
tDCE	0,0	05 mg/L	0,006	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>0,005</td><td></td></bg<></td></bg<>	<bg< td=""><td>0,005</td><td></td></bg<>	0,005	
cDCE	0,	02 mg/L	0,82	0,81	0,79	0,80	0,80	0,80	0,73	0,81	0,76	0,76	0,77	0,72	n.b.	0,76	0,69	0,75	
VC	0,	13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
Ethen	0,	11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
Anionen																			
Chlorid		2 mg/L	12,4	11,7	11,5	9,7	9,8	9,9	9,8	10,1	9,8	9,8	10,3	10,0	n.b.	10,0	10,3	10,7	
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
Nitrat		2 mg/L	<bg< td=""><td><bg< td=""><td>3,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>3,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	3,1	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>3,4</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	3,4	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>3,0</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	3,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
Phosphat		2 mg/L	3,9	5,4	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>2,4</td><td></td></bg<></td></bg<>	<bg< td=""><td>2,4</td><td></td></bg<>	2,4	
Sulphat		2 mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
C_org																			
DOC		1 mg/L	4,78	5,13	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,50	
Kationen																			
Ammonium	0,	05 mg/L	0.63	0.80	0.80	0.80	0.80	0.70	0.84	0.84	0.82	0.85	n.b.	0.82	n.b.	0.80	n.b.	0.80	

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff		- mg/L	6,9	7,0	7,0	7,2	7,4	7,5	7,5	7,5	7,8	8,2	8,4	8,3	8,3	8,0	8,4	8,5
pН			7,3	7,1	7,1	7,1	7,1	7,1	7,1	7,0	7,0	7,0	7,1	6,8	6,5	6,6	6,4	6,8
Temperatur	r	- °C	22,4	22,3	22,1	22,4	23,0	22,4	23,5	23,5	22,6	23,3	21,4	21,1	21,2	21,0	20,3	20,0
CE																		
PCE		0,0008 mg/L	0,0011	0,0011	0,0010	<bg< td=""><td>0,0010</td><td><bg< td=""><td><bg< td=""><td>0,0010</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,0010	<bg< td=""><td><bg< td=""><td>0,0010</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>0,0010</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,0010	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE		0,0007 mg/L	22,2921	21,9601	20,1048	19,4558	21,1298	20,8098	20,5171	20,3804	19,8102	18,7449	18,8725	10,6561	2,7732	0,0824	0,0423	0,0461
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	0,81	0,82	0,77	0,77	0,80	0,78	0,77	0,80	0,79	0,76	0,78	0,72	0,56	0,21	0,17	0,18
VC		0,13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	12,5	12,7	11,4	9,7	10,0	9,8	10,0	10,1	10,3	10,1	10,4	17,7	24,6	30,0	30,7	30,7
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	<bg< td=""><td><bg< td=""><td>2,4015</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,4015</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,4015	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		2 mg/L	3,1	3,4	1,5	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		2 mg/L	23,8	23,5	19,4	17,7	16,7	16,6	16,7	17,4	19,5	16,7	17,5	17,0	16,2	n.b.	n.b.	19,2
C_org																		
DOC		1 mg/L	8,79	7,55	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,91
Kationen																		
Ammonium		0,05 mg/L	0,28	0,30	0,40	0,40	0,30	0,40	0,46	0,51	0,50	0,54	0,40	0,50	0,50	0,49	n.b.	0,54

Tabelle 8-29: Rohdaten Ansatz NAM 4.

Tabelle 8-30: Rohdaten Ansatz NAM 5.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff	-	- mg/L	6,5	7,1	7,1	6,8	6,9	7,0	7,2	7,3	7,8	7,9	8,4	8,3	8,3	8,1	8,6	8,4
pН	-		7,2	7,1	7,6	6,9	6,6	6,5	6,5	6,5	6,5	6,4	6,6	6,5	6,3	6,4	6,3	6,6
Temperatur		- °C	22,5	21,8	21,9	22,2	23,0	22,6	23,6	23,5	22,6	23,4	21,4	21,2	21,0	21,0	20,1	20,0
CE																		
PCE	0),0008 mg/L	<bg< td=""><td><bg< td=""><td>0,00083</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>0,00083</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,00083	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0),0007 mg/L	21,3493	17,1260	18,8350	15,0097	6,8910	1,8492	0,0852	0,1051	0,0781	0,0940	9,8111	8,3495	2,1289	0,0130	0,0123	0,0489
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	0,80	0,73	0,77	0,74	0,65	0,54	0,24	0,24	0,22	0,23	0,25	0,23	0,20	0,10	0,10	0,09
VC		0,13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	15,1	14,9	13,5	14,1	20,2	24,7	26,1	26,6	27,0	26,6	27,4	28,0	31,8	36,6	37,2	37,2
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	4,7	4,5	n.b.	3,9	3,9	4,2	4,0	4,1	4,0	3,8	4,2	4,1	5,3	2,4	3,0	n.b.
Phosphat		2 mg/L	13,2	24,8	7,5	5,3	5,3	5,5	4,4	5,6	3,5	3,7	5,3	4,9	2,7	63,7	n.b.	n.b.
Sulphat		2 mg/L	26,6	26,9	21,8	19,0	18,6	18,5	18,4	19,3	18,5	18,5	19,5	18,8	18,4	n.b.	n.b.	21,7
C_org																		
DOC		1 mg/L	9,32	7,55	n.b.	7,70	n.b.	n.b.	7,00	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,29
Kationen						_	_		_			_				_	_	
Ammonium		0,05 mg/L	0,25	0,30	0,30	0,40	0,40	0,30	0,42	0,46	0,51	0,50	0,37	0,48	0,48	0,50	n.b.	0,50

Tabelle 8-31: Rohdaten Ansatz NAM 6.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff		- mg/L	7,2	7,6	7,3	7,5	6,5	7,8	7,7	7,7	8,2	8,2	8,5	8,7	n.b.	8,4	8,7	8,4
pН			5,4	5,2	5,2	5,2	5,2	5,2	5,1	5,2	5,2	5,1	5,3	5,1	n.b.	5,1	5,0	5,2
Temperatur	r	- °C	22,1	22,0	22,0	22,2	22,7	22,0	23,6	22,9	22,4	23,0	21,2	21,2	n.b.	20,7	20,1	20,0
CE																		
PCE	(0,0008 mg/L	<bg< td=""><td>0,00113</td><td>0,0011</td><td><bg< td=""><td>0,00115</td><td>0,00125</td><td>0,00105</td><td><bg< td=""><td>0,00106</td><td>0,00104</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,00113	0,0011	<bg< td=""><td>0,00115</td><td>0,00125</td><td>0,00105</td><td><bg< td=""><td>0,00106</td><td>0,00104</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,00115	0,00125	0,00105	<bg< td=""><td>0,00106</td><td>0,00104</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,00106	0,00104	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	(0,0007 mg/L	0,5801	21,9928	21,2113	23,7496	22,5869	21,6825	20,2677	17,7361	21,3128	20,5457	18,8311	18,9040	n.b.	19,2658	17,4008	18,1268
tDCE		0,005 mg/L	0,007	<bg< td=""><td><bg< td=""><td><bg< td=""><td>0,006</td><td>0,005</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>0,006</td><td>0,005</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>0,006</td><td>0,005</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,006	0,005	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	0,79	0,80	0,78	0,84	0,80	0,82	0,76	0,78	0,80	0,79	0,75	0,75	n.b.	0,76	0,73	0,74
VC		0,13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	12,7	12,8	11,7	9,8	9,9	10,0	9,9	10,2	10,1	10,1	10,4	10,1	n.b.	10,4	10,7	10,6
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	4,7	n.b.	3,9	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	3,5	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>3,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	3,1	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		2 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		2 mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
C_org																		
DOC		1 mg/L	5,05	5,31	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,30
Kationen																		
Ammonium	1	0,05 mg/L	0,77	0,80	0,80	0,80	0,80	0,80	0,88	0,88	0,87	0,90	n.b.	0,85	n.b.	0,84	n.b.	0,85

	BG	Einhei	t															
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff		- mg/L	7,0	n.b.	7,5	n.b.	8,1	7,8	7,7	7,8	8,2	7,5	8,5	8,8	n.b.	8,4	9,2	9,2
pН			7,3	n.b.	7,1	n.b.	7,1	7,1	7,1	7,0	7,1	7,2	7,1	7,1	n.b.	6,9	6,6	6,9
Temperatu	r	- °C	22,4	n.b.	19,9	n.b.	21,3	22,7	21,8	21,4	19,5	18,9	22,2	20,0	n.b.	19,7	19,3	18,9
CE																		
PCE		0,0008 mg/L	0,0011	n.b.	<bg< td=""><td>n.b.</td><td>0,0010</td><td>0,0011</td><td>0,00095</td><td>0,00112</td><td>0,00106</td><td>0,0010</td><td>0,0010</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	0,0010	0,0011	0,00095	0,00112	0,00106	0,0010	0,0010	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE		0,0007 mg/L	23,1826	n.b.	20,0486	n.b.	21,6616	22,9972	18,0324	23,9538	22,3111	21,7964	21,2585	19,8510	n.b.	11,7955	1,4983	0,1455
tDCE		0,005 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	0,82	n.b.	0,75	n.b.	0,80	0,81	0,69	0,85	0,81	0,82	0,79	0,76	n.b.	0,70	0,31	0,18
VC		0,13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	12,7	n.b.	11,6	n.b.	9,8	9,8	9,9	10,1	10,4	10,6	10,7	10,2	n.b.	17,6	25,2	27,1
Nitrit		2 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		2 mg/L	2,7	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		2 mg/L	22,9	n.b.	19,2	n.b.	16,6	16,6	16,7	17,4	16,9	16,6	17,6	16,8	n.b.	n.b.	n.b.	19,0
C_org																		
DOC		1 mg/L	9,37	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,82
Kationen																		
Ammonium	1	0,05 mg/L	0,26	n.b.	0,30	n.b.	0,40	0,40	0,41	0,44	0,39	0,44	0,31	0,42	n.b.	0,40	n.b.	0,38

Tabelle 8-32: Rohdaten Ansatz NAM 7.

Tabelle 8-33: Rohdaten Ansatz NAM 8.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff	-	mg/L	7,1	n.b.	7,7	n.b.	8,0	8,2	7,7	8,3	8,3	7,6	8,4	8,5	8,3	8,5	8,7	8,8
pН	-	-	7,2	n.b.	7,1	n.b.	7,1	7,1	7,1	7,0	6,9	6,8	6,7	6,5	6,5	6,6	6,5	6,8
Temperatu	r -	°C	22,4	n.b.	20,6	n.b.	21,3	20,9	21,7	20,5	19,7	18,0	20,0	20,0	19,9	19,7	19,0	18,7
CE																		-
PCE	0,00)08 mg/L	0,0015	n.b.	0,0014	n.b.	0,0014	0,0013	0,0014	0,0014	0,0014	0,0014	0,0014	0,0014	0,0013	<bg< td=""><td>0,0011</td><td>0,0012</td></bg<>	0,0011	0,0012
TCE	0,00)07 mg/L	22,0539	n.b.	20,0723	n.b.	20,9187	19,6535	19,7641	20,3972	16,0982	11,9922	5,0895	1,7749	0,1366	0,0747	0,0656	0,0772
tDCE	0,0)05 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE	0	,02 mg/L	0,79	n.b.	0,75	n.b.	0,77	0,75	0,75	0,79	0,74	0,75	0,64	0,51	0,21	0,16	0,14	0,17
VC	0	,13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen	0	,11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	14,8	n.b.	13,6	n.b.	11,6	11,5	11,7	12,7	15,0	18,2	24,1	26,5	26,8	29,3	30,0	29,9
Nitrit		2 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	4,6	n.b.	n.b.	n.b.	4,3	4,0	4,3	4,4	3,8	4,0	4,1	4,0	5,0	2,5	4,8	2,2
Phosphat		2 mg/L	12,6	n.b.	7,3	n.b.	5,0	5,2	4,3	5,3	5,3	3,7	5,1	5,1	3,5	n.b.	n.b.	<bg< td=""></bg<>
Sulphat		2 mg/L	25,5	n.b.	21,7	n.b.	18,5	18,4	18,4	19,1	18,7	18,5	19,4	19,0	18,5	n.b.	n.b.	21,7
C_org																		
DOC		1 mg/L	8,65	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,97
Kationen																		
Ammonium	n 0,	,05 mg/L	0,29	n.b.	0,30	n.b.	0,30	0,50	0,40	0,40	0,36	0,40	0,27	0,36	0,38	0,40	n.b.	0,42

Tabelle 8-34: Rohdaten Ansatz NAM 9.

	BG	Einheit																
Dauer		Tage	0	12	27	41	55	69	85	105	118	132	147	161	179	195	215	229
s.p.																		
Sauerstoff	-	mg/L	5,9	n.b.	6,2	n.b.	6,7	7,4	7,3	7,6	7,9	7,8	8,3	8,4	8,1	8,1	8,6	8,7
pН	-	-	7,1	n.b.	7,0	n.b.	6,9	7,0	6,9	6,9	7,0	7,0	6,9	6,9	6,7	6,7	6,6	6,9
Temperatur	• -	°C	22,4	n.b.	20,5	n.b.	21,5	20,4	21,6	20,8	19,7	20,1	20,3	20,1	20,0	19,9	18,8	18,9
CE																		
PCE	0,0	008 mg/L	0,0011	n.b.	0,0010	n.b.	0,0012	0,0011	0,0010	0,0010	0,0011	0,0010	0,0011	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0,0	007 mg/L	21,8284	n.b.	18,3280	n.b.	21,9390	20,3566	17,2690	18,3453	19,9563	18,0155	18,3703	14,2667	6,6826	1,0800	0,0256	0,0310
tDCE	0,	005 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE	(),02 mg/L	0,79	n.b.	0,71	n.b.	0,78	0,75	0,67	0,71	0,75	0,72	0,74	0,69	0,67	0,61	0,40	0,51
VC	(),13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen	(),11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		2 mg/L	13,9	n.b.	12,4	n.b.	10,8	24,1	24,1	24,5	24,5	24,9	25,3	28,2	32,9	40,9	42,4	42,3
Nitrit		2 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,3</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	2,3	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		2 mg/L	2,3	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		2 mg/L	26,0	n.b.	22,1	n.b.	19,0	32,6	33,0	34,0	33,2	33,2	33,7	33,4	30,9	30,0	n.b.	36,9
C_org																		
DOC		1 mg/L	9,17	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,72
Kationen																		
Ammonium	(),05 mg/L	0,18	n.b.	0,20	n.b.	0,30	0,20	0,31	0,34	0,33	0,38	0,28	0,34	0,36	0,35	n.b.	0,40

8.3.1.2 Standort UBELL Rohdaten

Tabelle 8-35: F	Rohdaten Ansatz UBELL	1.
-----------------	-----------------------	----

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff		- mg/L	3,5	4,8	5,0	5,3	5,0	5,7	5,9	7,5	6,3	7,0	6,1	7,0	n.b.	8,0	7,6	7,3
pН			6,8	6,8	6,8	6,8	6,8	6,9	6,8	6,9	6,8	6,9	6,9	6,8	n.b.	7,1	6,9	7,0
Temperatu	r	- °C	21,8	22,3	22,8	22,5	22,7	23,1	23,4	23,2	23,1	23,3	21,8	21,3	n.b.	20,1	21,2	19,4
CE																		
PCE		0,0008 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE		0,0007 mg/L	0,0018	0,7867	0,6941	0,6238	0,7309	0,6829	0,6457	0,6195	0,6295	0,5860	0,4906	0,5583	n.b.	0,5666	0,4623	0,5932
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	40,7	39,3	33,8	32,7	33,1	32,5	33,2	33,5	34,5	34,6	35,1	33,4	n.b.	36,9	37,8	38,2
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td><bg< td=""><td>1,2</td><td>2,6</td><td>2,9</td><td>2,5</td><td>2,7</td><td>2,7</td><td>2,2</td><td>2,6</td><td>1,8</td><td>3,9</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>1,2</td><td>2,6</td><td>2,9</td><td>2,5</td><td>2,7</td><td>2,7</td><td>2,2</td><td>2,6</td><td>1,8</td><td>3,9</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	1,2	2,6	2,9	2,5	2,7	2,7	2,2	2,6	1,8	3,9	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<>	<bg< td=""><td>2,4</td></bg<>	2,4
Sulphat		1 mg/L	130	130	144	150	150	150	151	155	154	154	165	150	n.b.	150	150	123
C_org																		
DOC		1 mg/L	10,10	8,81	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	1	0,05 mg/L	n.b.	n.b.	0,19	0,25	0,30	0,34	0,38	0,42	0,47	0,45	0,21	n.b.	n.b.	n.b.	n.b.	<bg< td=""></bg<>

Tabelle 8-36: Rohdaten Ansatz UBELL 2.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff	-	mg/L	3,1	3,8	4,7	5,5	5,3	5,6	6,2	6,7	6,4	7,2	7,2	8,2	7,8	7,8	7,8	8,0
pН	-	-	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,9	6,9	6,9	6,9	6,9	6,9	7,0	6,9	7,0
Temperatur	r -	°C	21,8	22,4	22,9	22,5	22,5	23,3	23,2	23,3	23,1	23,4	21,1	21,0	21,5	19,6	20,6	19,3
CE																		
PCE	0,	,0008 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0,	,0007 mg/L	0,0016	0,6657	0,7005	0,6301	0,2944	0,0014	0,0013	0,0012	0,0011	0,0014	0,6494	0,7510	0,7391	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
tDCE	(0,005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	41,0	40,1	34,1	33,5	33,4	34,1	34,2	35,0	35,0	34,4	36,5	34,5	34,3	38,3	39,4	39,8
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td>4,0</td><td>3,5</td><td>4,9</td><td>4,8</td><td>5,2</td><td>5,1</td><td>5,4</td><td>5,6</td><td>6,8</td><td>5,8</td><td>6,9</td><td>6,4</td><td>4,6</td><td>n.b.</td><td>4,8</td></bg<>	4,0	3,5	4,9	4,8	5,2	5,1	5,4	5,6	6,8	5,8	6,9	6,4	4,6	n.b.	4,8
Phosphat		1 mg/L	<bg< td=""><td>7,9</td><td>4,8</td><td>2,2</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	7,9	4,8	2,2	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<>	<bg< td=""><td>2,4</td></bg<>	2,4
Sulphat		1 mg/L	130	130	140	150	144	146	147	150	149	148	161	146	150	144	150	120
C_org																		
DOC		1 mg/L	10,92	8,72	n.b.	n.b.	8,90	n.b.	n.b.	9,40	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium		0,05 mg/L	n.b.	n.b.	0,37	0,41	0,50	0,52	0,55	0,49	0,36	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Tabelle 8-37. Rohdaten Ansatz UBELL 3.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff		- mg/L	4,6	5,7	6,3	5,9	6,9	7,0	6,9	7,4	7,3	7,7	7,9	8,9	n.b.	8,4	8,4	8,2
pН			5,7	5,6	5,4	5,3	5,1	5,1	5,0	5,1	5,1	5,0	5,1	5,2	n.b.	5,5	5,1	5,2
Temperatu	r	- °C	21,8	22,4	22,0	22,5	22,4	22,7	22,6	23,0	22,2	23,8	21,4	21,1	n.b.	19,1	20,6	19,4
CE																		
PCE	(0,0008 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	(0,0007 mg/L	0,2571	0,6108	0,7396	0,6369	0,6386	0,6337	0,6588	0,6047	0,5798	0,4379	0,5221	0,5118	n.b.	0,5543	0,4831	0,5626
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	42,6	40,9	40,4	33,7	34,2	33,6	33,4	34,0	34,0	33,8	36,9	34,0	n.b.	36,5	36,8	38,0
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td><bg< td=""><td>4,9</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>4,9</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	4,9	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,5</td><td><bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,5	<bg< td=""><td>1,2</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	1,2	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		1 mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
C_org																		
DOC		1 mg/L	9,00	7,84	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	1	0,05 mg/L	0,42	n.b.	0,44	n.b.	0,40	0,37	0,41	0,41	0,41	0,40	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff		- mg/L	3,9	3,4	4,4	5,3	5,4	6,2	5,9	6,6	5,8	6,6	7,1	7,6	7,3	7,8	7,4	7,3
pН			6,8	6,8	6,8	6,8	6,9	6,9	6,8	6,9	6,8	6,8	6,8	6,8	6,8	7,0	6,8	6,9
Temperatu	r	- °C	21,9	22,5	22,9	22,5	22,4	23,2	23,1	23,2	22,8	23,4	21,1	20,7	21,3	19,6	20,6	19,1
CE																		
PCE		0,0008 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE		0,0007 mg/L	24,6248	21,8604	22,3921	20,8390	22,1151	21,8572	20,2823	17,6097	0,0021	0,0012	8,6081	0,0089	0,0010	<bg< td=""><td>7,1192</td><td>5,9554</td></bg<>	7,1192	5,9554
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	40,8	39,4	34,3	32,8	33,2	32,9	33,6	34,8	52,4	51,8	54,8	60,8	60,8	63,5	65,5	65,3
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td><bg< td=""><td>1,4</td><td>2,5</td><td>2,5</td><td>2,9</td><td>2,8</td><td>2,8</td><td>2,1</td><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>1,4</td><td>2,5</td><td>2,5</td><td>2,9</td><td>2,8</td><td>2,8</td><td>2,1</td><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	1,4	2,5	2,5	2,9	2,8	2,8	2,1	2,1	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		1 mg/L	130	130	145	150	151	150	153	156	155	154	166	152	150	148	150	122
C_org																		
DOC		1 mg/L	10,15	9,11	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	1	0,05 mg/L	n.b.	n.b.	0,20	0,19	0,20	0,25	0,29	0,30	0,25	0,34	0,32	0,33	0,40	0,33	n.b.	<bg< td=""></bg<>

Tabelle 8-38: Rohdaten Ansatz UBELL 4.

Tabelle 8-39: Rohdaten Ansatz UBELL 5.

	BG	Einhei	it															
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff		- mg/L	4,1	3,8	4,9	5,5	5,0	6,0	6,0	6,8	6,6	7,5	7,9	8,4	7,7	8,0	7,7	7,7
pН			6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,8	6,9	6,8	6,9	6,8	6,9
Temperatu	r	- °C	22,1	22,4	22,6	22,6	22,7	23,1	23,3	23,2	22,6	23,7	21,5	20,8	21,4	19,6	21,0	18,9
CE																		
PCE	(0,0008 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	(0,0007 mg/L	23,5223	19,3877	20,8475	15,3071	2,0060	0,0044	0,0021	0,0060	0,0018	0,0017	8,4317	8,2103	7,3419	0,0017	0,0082	0,0045
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	41,3	40,3	34,5	37,4	47,7	48,5	50,1	50,6	50,3	43,9	53,4	50,9	51,7	62,7	63,7	50,5
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	4,2	4,0	3,8	5,2	5,6	5,2	5,9	5,5	5,4	5,1	4,1	5,2	5,6	2,1	n.b.	2,9
Phosphat		1 mg/L	10,6	7,8	5,0	2,3	1,3	29,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,4
Sulphat		1 mg/L	130	130	141	150	146	149	148	151	148	127	162	149	150	145	150	120
C_org																		
DOC		1 mg/L	10,20	8,79	n.b.	n.b.	9,60	n.b.	n.b.	9,50	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	ı	0,05 mg/L	n.b.	n.b.	0,29	0,31	0,30	0,33	0,37	0,36	0,38	0,41	0,41	0,43	0,44	0,43	n.b.	0,39

Tabelle 8-40: Rohdaten Ansatz UBELL 6.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff	-	mg/L	5,2	5,7	5,6	5,7	5,6	6,0	6,0	7,2	6,6	0,0	7,1	7,7	n.b.	7,9	7,8	7,7
pН	-	-	5,7	5,4	5,2	5,2	5,1	5,1	5,0	5,1	5,0	5,0	5,0	n.b.	n.b.	5,3	5,0	5,1
Temperatur	-	°C	22,1	22,2	22,1	22,4	22,7	22,7	23,2	22,9	22,4	23,9	21,3	n.b.	n.b.	19,4	20,9	19,2
CE																		
PCE	0	,0008 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0	,0007 mg/L	21,4045	19,4192	21,6949	22,4260	19,0766	20,6961	20,6621	19,7056	21,6374	16,9350	19,3413	19,3907	n.b.	19,1750	16,4492	18,5806
tDCE		0,005 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	44,8	40,6	40,2	33,7	33,3	33,8	34,2	34,7	35,1	34,0	37,3	34,6	n.b.	36,8	37,9	38,3
Nitrit		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td><bg< td=""><td>6,6</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>6,6</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	6,6	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,7</td><td>2,7</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,7	2,7	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		1 mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
C_org																		
DOC		1 mg/L	9,48	7,83	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium		0,05 mg/L	0,52	n.b.	0,67	n.b.	0,40	0,42	0,43	0,42	0,43	0,42	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff		- mg/L	4,6	n.b.	2,9	n.b.	3,9	4,8	5,2	6,2	6,8	6,9	6,9	8,1	n.b.	8,0	8,0	7,5
pН			6,7	n.b.	6,7	n.b.	6,7	6,7	6,7	6,7	6,8	6,7	6,7	6,8	n.b.	7,0	6,8	6,9
Temperatur	r	- °C	22,1	n.b.	22,6	n.b.	20,9	22,5	20,8	21,2	20,0	20,7	19,3	20,5	n.b.	18,5	20,4	18,2
CE																		
PCE		0,0008 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE		0,0007 mg/L	22,0989	n.b.	21,1899	n.b.	22,2631	22,2501	20,8810	21,3943	21,4463	18,7484	19,6736	19,0474	n.b.	19,6392	19,8318	19,4275
tDCE		0,005 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	42,1	n.b.	35,3	n.b.	34,7	34,3	35,4	35,8	36,4	35,9	37,3	35,3	n.b.	39,1	39,9	39,6
Nitrit		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>2,9</td><td>2,5</td><td>3,0</td><td>2,8</td><td>2,7</td><td>2,7</td><td><bg< td=""><td>2,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td>2,9</td><td>2,5</td><td>3,0</td><td>2,8</td><td>2,7</td><td>2,7</td><td><bg< td=""><td>2,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	2,9	2,5	3,0	2,8	2,7	2,7	<bg< td=""><td>2,1</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	2,1	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulphat		1 mg/L	130	n.b.	137	n.b.	142	142	145	147	146	143	157	144	n.b.	143	150	120
C_org																		
DOC		1 mg/L	11,15	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium		0,05 mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	0,05	0,08	0,13	0,18	0,23	0,19	0,26	n.b.	0,36	n.b.	0,50

Tabelle 8-41:Rohdaten Ansatz UBELL 7.

Tabelle 8-42: Rohdaten Ansatz UBELL 8.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff	-	mg/L	5,2	n.b.	5,7	n.b.	8,9	9,1	8,5	8,8	8,8	9,2	8,9	9,6	n.b.	8,8	9,1	8,9
pН	-	-	6,8	n.b.	6,7	n.b.	8,2	7,9	7,9	7,9	7,9	7,9	7,9	7,9	n.b.	7,8	7,8	7,9
Temperatur	r -	°C	22,0	n.b.	22,5	n.b.	21,4	22,4	23,1	21,7	20,2	20,3	19,2	20,2	n.b.	19,0	19,8	17,9
CE																		
PCE	0,00	008 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0,00	007 mg/L	20,6883	n.b.	10,4968	n.b.	5,9574	3,3928	13,9111	14,9389	14,7097	13,6344	14,0223	14,1123	n.b.	13,0175	12,2912	13,2392
tDCE	0,0	005 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE	0),02 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC	0),13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen	0),11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	48,7	n.b.	36,3	n.b.	35,1	35,0	35,7	36,8	36,6	36,0	38,2	36,2	n.b.	39,4	40,2	40,7
Nitrit		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	5,6	n.b.	3,8	n.b.	5,0	4,9	5,4	5,8	5,4	5,5	4,1	4,9	n.b.	2,4	2,6	2,4
Phosphat		1 mg/L	10,8	n.b.	1,8	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<>	<bg< td=""><td>2,4</td></bg<>	2,4
Sulphat		1 mg/L	130	n.b.	134	n.b.	137	135	137	141	140	138	150	137	n.b.	138	150	113
C_org																		
DOC		1 mg/L	9,90	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	0),05 mg/L	n.b.	n.b.	0,37	n.b.	0,50	0,47	0,49	0,51	0,53	0,55	0,42	0,58	n.b.	0,57	n.b.	0,61

Tabelle 8-43: Rohdaten Ansatz UBELL 9.

	BG	Einheit																
Dauer		Tage	0	12	26	41	55	68	88	104	116	134	144	161	179	195	211	228
s.p.																		
Sauerstoff	-	mg/L	4,5	n.b.	3,4	n.b.	5,4	6,3	6,2	7,0	6,8	7,4	7,8	8,4	7,4	7,9	8,1	7,8
pН	-	-	6,7	n.b.	6,7	n.b.	6,8	6,8	6,7	6,8	6,7	6,7	6,9	6,9	6,7	6,9	6,8	6,9
Temperatur	r-	°C	22,1	n.b.	21,0	n.b.	21,0	22,5	21,0	21,4	20,2	22,8	19,5	20,5	20,0	18,6	20,0	18,4
CE																		
PCE	0	,0008 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
TCE	0	,0007 mg/L	23,1309	n.b.	21,0448	n.b.	22,5859	21,8265	19,8327	20,2999	20,8221	17,3487	16,0646	12,3123	2,6481	0,0045	0,0085	0,0022
tDCE		0,005 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
cDCE		0,02 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
VC		0,13 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ethen		0,11 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Anionen																		
Chlorid		1 mg/L	46,4	n.b.	41,8	n.b.	34,5	46,7	47,2	47,9	48,1	47,1	51,3	52,8	62,1	67,2	69,3	70,2
Nitrit		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		1 mg/L	<bg< td=""><td>n.b.</td><td>6,6</td><td>n.b.</td><td>2,5</td><td>2,9</td><td>3,0</td><td>2,9</td><td>2,4</td><td>2,6</td><td>1,3</td><td>2,5</td><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	6,6	n.b.	2,5	2,9	3,0	2,9	2,4	2,6	1,3	2,5	2,5	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Phosphat		1 mg/L	<bg< td=""><td>n.b.</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>2,4</td></bg<></td></bg<>	<bg< td=""><td>2,4</td></bg<>	2,4
Sulphat		1 mg/L	130	n.b.	158	n.b.	142	151	152	154	154	150	165	150	150	149	150	120
C_org																		
DOC		1 mg/L	10,77	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Kationen																		
Ammonium	1	0,05 mg/L	n.b.	n.b.	0,15	n.b.	0,20	0,05	0,26	0,30	0,31	0,31	0,23	0,63	0,40	0,43	n.b.	0,54

8.3.1.3 Rohdaten Entwicklung einer Mischkultur zur Bioaugmentation des aerob metabolischen cDCE- und TCE-Abbaus

8.3.1.3.1 Schadstoffabbau im Ein-Stoff-System

	BG	Einheit						
Dauer		Tage	0	7	21	36	70	152
s.p.								
Sauerstoff		mg/L	8,6	8,4	8,5	8,8	8,7	8,9
pН		-	7,4	7,4	7,2	7,2	7,2	7,4
Temperatur		°C	22,8	23,2	23,6	21,7	20,6	20,6
CE								
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG	i < BG	< BG
TCE	0,0007	mg/L	9,3299	9,3444	8,9682	9,015	0 8,4876	8,4705
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG	s < BG	< BG
cDCE	0,02	mg/L	< BG	< BG	< BG	< BG	s < BG	< BG
VC	0,13	mg/L	< BG	< BG	< BG	< BG	s < BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG	s < BG	< BG
Anionen								
Chlorid	2	mg/L	2,6	2,6	2,8	2,7	3,2	3,2
Nitrit	2	mg/L	< BG	< BG	< BG	< BG	s < BG	< BG
Nitrat	2	mg/L	111	110	110	111	114	117
Phosphat	2	mg/L	555	555	577	570	536	543
Sulfat	2	mg/L	33,7	34,8	38,9	38,0	30,0	31,0

Tabelle 8-44: Rohdaten Ansatz P1-TCE-Steril.

	BG	Einheit					
Dauer		Tage	0	7	21	36	70
s.p.							
Sauerstoff		mg/L	8,5	8,6	8,3	8,9	8,8
рН		-	7,4	7,4	7,3	7,3	7,1
Temperatur		°C	23,1	23,1	23,5	21,9	20,4
CE							
PCE	0,00	08 mg/L	< BG	< BG	< BG	< BG	< BG
TCE	0,00	07 mg/L	7,6700	7,2961	5,4190	3,6033	< BG
tDCE	0,0	05 mg/L	< BG	< BG	< BG	< BG	< BG
cDCE	0,	02 mg/L	< BG	< BG	< BG	< BG	< BG
VC	0,	13 mg/L	< BG	< BG	< BG	< BG	< BG
Ethen	0,	11 mg/L	< BG	< BG	< BG	< BG	< BG
Anionen							
Chlorid		2 mg/L	5,4	5,5	6,9	8,0	11,2
Nitrit		2 mg/L	< BG	< BG	< BG	< BG	< BG
Nitrat		2 mg/L	111	109	109	111	114
Phosphat		2 mg/L	554	553	577	570	542
Sulfat		2 mg/L	35,0	34,4	37,9	30,0	31,0

Tabelle 8-45: Rohdaten Ansatz P1-TCE-1.

Tabelle 8-46: Rohdaten Ansatz P1-TCE-2.

	BG	Einheit	:				
Dauer		Tage	0	7	21	36	70
s.p.							
Sauerstoff		mg/L	8,6	8,6	8,5	8,9	9,1
рН		-	7,4	7,4	7,3	7,3	7,0
Temperatur		°C	23,0	23,2	23,9	22,4	20,0
CE							
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG	< BG
TCE	0,0007	mg/L	8,0678	7,0693	4,1292	1,2826	< BG
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG	< BG
cDCE	0,02	mg/L	< BG	< BG	< BG	< BG	< BG
VC	0,13	mg/L	< BG	< BG	< BG	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG	< BG
Anionen							
Chlorid	2	mg/L	5,3	5,5	7,7	9,8	11,3
Nitrit	2	mg/L	< BG	< BG	< BG	< BG	< BG
Nitrat	2	mg/L	111	110	110	111	113
Phosphat	2	mg/L	547	547	567	562	529
Sulfat	2	mg/L	33,2	33,3	37,4	34,0	25,0

	BG	Einheit					
Dauer		Tage	0	7	21	36	70
s.p.							
Sauerstoff		mg/L	8,5	8,6	8,4	8,9	9,0
pН		-	7,4	7,4	7,3	7,2	7,0
Temperatur		°C	23,0	22,9	23,7	22,4	20,1
CE							
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG	< BG
TCE	0,0007	mg/L	8,7617	7,6118	4,4039	1,6754	< BG
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG	< BG
cDCE	0,02	mg/L	< BG	< BG	< BG	< BG	< BG
VC	0,13	mg/L	< BG	< BG	< BG	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG	< BG
Anionen							
Chlorid	2	mg/L	5,3	5,6	7,5	9,6	11,4
Nitrit	2	mg/L	< BG	< BG	< BG	< BG	< BG
Nitrat	2	mg/L	110	109,5	109,5	111	113
Phosphat	2	mg/L	553	555	576	571	541
Sulfat	2	mg/L	35,3	35,4	38,2	37,0	31,0
Biomarker							
16S	2	Kopien/mL	2,7E+03	n.b.	6,0E+03	6,1E+04	n.b.
AceA	2	Kopien/mL	2,0E+00	n.b.	2,0E+01	2,0E+01	n.b.
moC	2	Kopien/mL	2,0E+00	n.b.	2,5E+02	2,0E+04	n.b.

Tabelle 8-47: Rohdaten Ansatz P1-TCE-3.

Tabelle 8-48: Rohdaten Ansatz P1-cDCE-Steril.

	BG	Einheit				
Dauer		Tage	0	7	21	36
s.p.						
Sauerstoff		mg/L	8,6	8,3	8,5	8,8
pН		-	7,4	7,4	7,4	7,4
Temperatur		°C	22,9	23,4	23,7	22,1
CE						
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG
TCE	0,0007	mg/L	< BG	< BG	< BG	< BG
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG
cDCE	0,02	mg/L	7,89	7,98	8,04	7,59
VC	0,13	mg/L	< BG	< BG	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG
Anionen						
Chlorid	2	mg/L	2,6	2,6	2,7	2,7
Nitrit	2	mg/L	< BG	< BG	< BG	< BG
Nitrat	2	mg/L	110	110	110	110
Phosphat	2	mg/L	548	554	580	567
Sulfat	2	mg/L	33,3	34,7	37,8	35,0

B	G Ein	heit			
Dauer	Тас	je O	7	21	36
s.p.					
Sauerstoff	mg/	′L 8,5	8,6	8,5	8,8
рН	-	7,3	7,3	7,2	7,2
Temperatur	°C	23,1	23,0	23,4	21,8
CE					
PCE	0,0008 mg/	′L < BG	< BG	< BG	< BG
TCE	0,0007 mg/	′L < BG	< BG	< BG	< BG
tDCE	0,005 mg/	′L < BG	< BG	< BG	< BG
cDCE	0,02 mg/	′L 7,44	6,84	< BG	< BG
VC	0,13 mg/	′L < BG	< BG	< BG	< BG
Ethen	0,11 mg/	′L < BG	< BG	< BG	< BG
Anionen					
Chlorid	2 mg/	′L 8,6	8,8	12,8	12,8
Nitrit	2 mg/	′L < BG	< BG	< BG	< BG
Nitrat	2 mg/	′L 112	111	110	111
Phosphat	2 mg/	′L 551	551	572	562
Sulfat	2 mg/	′L 35,3	34,7	36,7	35,0

Tabelle 8-49: Rohdaten Ansatz P1-cDCE-1.

Tabelle 8-50: Rohdaten Ansatz P1-cDCE-2.

	BG	Einheit	t			
Dauer		Tage	0	7	21	36
s.p.						
Sauerstoff		mg/L	8,5	8,6	8,5	8,9
рН		-	7,3	7,3	7,2	7,2
Temperatur		°C	23,2	23,1	23,5	21,9
CE						
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG
TCE	0,0007	mg/L	< BG	< BG	< BG	< BG
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG
cDCE	0,02	mg/L	7,15	7,01	< BG	< BG
VC	0,13	mg/L	< BG	< BG	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG
Anionen						
Chlorid	2	mg/L	8,6	8,6	12,7	12,7
Nitrit	2	mg/L	< BG	< BG	< BG	< BG
Nitrat	2	mg/L	111	110	110	111
Phosphat	2	mg/L	547	549	571	562
Sulfat	2	mg/L	34,4	34,8	36,7	36,0

	BG	Einheit				
Dauer		Tage	0	7	21	36
s.p.						
Sauerstoff		mg/L	8,5	8,6	8,6	8,8
рН		-	7,3	7,3	7,5	7,4
Temperatur		°C	23,1	22,8	23,9	22,4
CE						
PCE	0,0008	mg/L	< BG	< BG	< BG	< BG
TCE	0,0007	mg/L	< BG	< BG	< BG	< BG
tDCE	0,005	mg/L	< BG	< BG	< BG	< BG
cDCE	0,02	mg/L	7,28	7,05	< BG	< BG
VC	0,13	mg/L	< BG	< BG	< BG	< BG
Ethen	0,11	mg/L	< BG	< BG	< BG	< BG
Anionen						
Chlorid	2	mg/L	8,8	9,0	13,1	13,1
Nitrit	2	mg/L	< BG	< BG	< BG	< BG
Nitrat	2	mg/L	111	110	110	111
Phosphat	2	mg/L	548	550	569	562
Sulfat	2	mg/L	33,1	35,8	39,5	36,0
Biomarker						
16S	2	Kopien/mL	5,3E+03	n.b.	5,0E+05	1,4E+05
AceA	2	Kopien/mL	2,0E+01	n.b.	6,7E+04	1,4E+04
moC	2	Kopien/mL	2,0E+00	n.b.	2,0E+00	2,0E+00

Tabelle 8-51: Rohdaten Ansatz P1-cDCE-3.

8.3.1.3.2 Schadstoffabbau unter äquimolarem Schadstoffverhältnis im Zwei-Stoff-System

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	9,0	8,8	9,1	8,9	9,1	8,9
pН	-	-	7,2	7,3	7,5	7,3	7,3	7,3	7,3
Temperatur	-	°C	20,4	19,7	20,6	20,2	19,2	20,1	20,8
CE									
PCE	0,000)8 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
TCE	0,000)7 mg/L	9,1013	8,8964	8,8232	7,8097	8,0935	7,6591	6,8199
tDCE	0,00)5 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
cDCE	0,0)2 mg/L	7,26	7,44	7,13	6,47	6,85	6,65	6,11
VC	0,1	3 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Ethen	0,1	1 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Anionen									
Chlorid		2 mg/L	3,1	3,1	3,1	3,1	3,2	3,1	3,1
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	115	115	117	117	117	118	120
Phosphat		2 mg/L	572	571	548	542	539	554	556
Sulfat		2 mg/L	32,5	33,1	32,0	29,7	29,0	31,4	31,5

Tabelle 8-52: Rohdaten Ansatz P2-TCE-Steril.

Tabelle 8-53: Rohdaten Ansatz P2-TCE-1.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,3	9,1	8,8	9,2	9,3	9,2	9,0
pН	-	-	7,1	7,3	7,5	7,2	7,2	7,2	7,3
Temperatur	-	°C	20,6	19,9	19,9	20,0	18,7	20,2	20,8
CE									
PCE	0,000	18 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
TCE	0,000	7 mg/L	8,8827	8,3627	4,1735	1,7875	1,5624	1,2655	1,2376
tDCE	0,00	5 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
cDCE	0,0	2 mg/L	7,05	7,39	6,24	5,27	5,33	5,04	4,69
VC	0,1	3 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Ethen	0,1	1 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Anionen									
Chlorid		2 mg/L	3,9	4,0	6,5	8,5	8,8	8,9	8,9
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	116	115	118	118	117	118	121
Phosphat		2 mg/L	573	575	550	548	549	552	560
Sulfat		2 mg/L	32,0	33,0	32,0	33,3	33,0	32,7	34,4

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,3	9,0	9,1	9,1	9,1	9,2	9,1
pН	-	-	7,1	7,3	0,5	7,3	7,2	7,2	7,3
Temperatur	-	°C	20,7	20,0	19,8	20,0	18,7	20,2	20,7
CE									
PCE	0,000	18 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
TCE	0,000	7 mg/L	7,5628	7,9417	5,3075	2,2247	1,6877	1,4021	1,3482
tDCE	0,00	5 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
cDCE	0,0	2 mg/L	6,36	6,69	5,88	5,38	5,17	4,70	4,76
VC	0,1	3 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Ethen	0,1	1 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Anionen									
Chlorid		2 mg/L	3,9	3,9	5,5	8,0	8,6	8,6	8,8
Nitrit		2 mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat		2 mg/L	114	115	118	118	116	117	120
Phosphat		2 mg/L	572	575	551	552	550	552	562
Sulfat		2 mg/L	34,4	34,0	31,0	32,6	33,0	32,4	33,0

Tabelle 8-54: Rohdaten Ansatz P2-TCE-2.

Tabelle 8-55: Rohdaten Ansatz P2-TCE-3.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	9,0	9,2	9,2	9,2	9,2	9,1
pН	-	-	7,2	7,4	7,6	7,3	7,3	7,3	7,3
Temperatur	-	°C	20,7	20,0	20,0	20,0	18,8	20,2	20,8
CE									
PCE	0,000	3 mg/L	< BG	< BG					
TCE	0,000	7 mg/L	9,0077	8,5274	7,1011	3,2318	1,8181	1,2621	1,2385
tDCE	0,00	5 mg/L	< BG	< BG					
cDCE	0,02	2 mg/L	6,97	7,49	6,57	5,75	5,20	4,40	4,71
VC	0,13	3 mg/L	< BG	< BG					
Ethen	0,1	1 mg/L	< BG	< BG					
Anionen									
Chlorid	:	2 mg/L	3,9	4,0	4,3	7,0	8,3	8,5	8,8
Nitrit		2 mg/L	< BG	< BG					
Nitrat		2 mg/L	116	116	118	117	118	117	122
Phosphat		2 mg/L	564	568	542	540	542	543	554
Sulfat		2 mg/L	33,1	34,0	31,0	32,5	30,0	32,1	34,4
Biomarker									
16S		2 Kopien/mL	1,6E+03	1,7E+03	6,2E+01	1,7E+04	1,2E+03	1,2E+04	n.b.
AceA	2	2 Kopien/mL	< BG	n.b.					
moC		2 Kopien/mL	< BG	< BG	< BG	4,6E+03	8,2E+02	3,1E+03	n.b.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	9,2	8,8	9,1	9,1	9,3	8,9
pН	-	-	7,2	7,3	7,5	7,3	7,3	7,3	7,4
Temperatur	-	°C	20,3	19,7	20,2	20,2	19,0	20,1	20,6
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	9,0394	9,2860	8,2791	7,8287	8,4081	7,2101	6,9115
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	7,06	7,65	6,63	6,40	6,95	6,32	6,19
VC	0,1	I3 mg/L	< BG						
Ethen	0,1	l1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,1	3,1	3,1	3,1	3,1	3,1	3,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	116	116	118	118	118	122	120
Phosphat		2 mg/L	573	572	551	545	548	572	560
Sulfat		2 mg/L	32,9	35,0	33,0	32,9	32,0	34,4	34,4

Tabelle 8-56: Rohdaten Ansatz P2-cDCE-Steril.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,1	8,7	9,1	9,2	9,4	9,2	9,2
pН	-	-	7,1	7,4	7,6	7,4	7,4	7,4	7,4
Temperatur	-	°C	20,5	19,9	20,1	20,7	18,6	20,3	20,9
CE									
PCE	0,000	8 mg/L	< BG						
TCE	0,000	7 mg/L	8,1526	8,8042	7,8137	7,0316	7,0060	6,6982	6,1255
tDCE	0,00	5 mg/L	< BG						
cDCE	0,0	2 mg/L	6,91	8,33	6,51	5,68	5,22	4,52	1,94
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,0	4,1	4,5	4,5	4,8	5,1	6,8
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	115	116	118	118	119	118	123
Phosphat		2 mg/L	560	564	539	536	340	542	549
Sulfat		2 mg/L	33,3	33,0	32,0	30,0	33,0	31,5	30,4

Tabelle 8-57: Rohdaten Ansatz P2-cDCE-1.

Tabelle 8-58: Rohdaten Ansatz P2-cDCE-2.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,4	8,8	9,0	9,2	9,4	9,1	9,2
pН	-	-	7,1	7,3	7,5	7,3	7,3	7,3	7,3
Temperatur	-	°C	20,5	19,9	20,0	20,2	18,8	20,3	20,5
CE									
PCE	0,00	08 mg/L	< BG	< BG					
TCE	0,00	07 mg/L	8,1191	8,1619	7,5208	7,2024	6,7625	5,6321	5,4716
tDCE	0,0	05 mg/L	< BG	< BG					
cDCE	0,	02 mg/L	6,84	7,08	6,09	5,22	4,09	2,96	1,32
VC	0,	13 mg/L	< BG	< BG					
Ethen	0,	11 mg/L	< BG	< BG					
Anionen									
Chlorid		2 mg/L	4,0	4,1	4,2	4,8	5,3	5,9	7,4
Nitrit		2 mg/L	< BG	< BG					
Nitrat		2 mg/L	115	115	117	118	117	118	120
Phosphat		2 mg/L	570	575	561	550	548	552	558
Sulfat		2 mg/L	32,6	33,0	31,0	30,9	32,0	34,7	33,6
Biomarker									
16S		2 Kopien/mL	5,0E+02	1,3E+04	9,0E+02	7,7E+03	1,5E+03	6,4E+04	n.b.
AceA		2 Kopien/mL	< BG	8,0E+01	< BG	2,4E+02	9,8E+01	4,3E+03	n.b.
moC		2 Kopien/mL	< BG	n.b.					

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,3	9,0	9,1	9,1	9,2	9,1	9,1
рН	-	-	7,1	7,3	7,5	7,3	7,3	7,3	7,3
Temperatur	-	°C	20,6	19,8	20,1	20,4	18,8	20,1	20,8
CE									
PCE	0,000	08 mg/L	< BG						
TCE	0,000)7 mg/L	7,6017	8,3164	6,9858	7,1791	6,9974	6,3011	4,4215
tDCE	0,00	05 mg/L	< BG						
cDCE	0,0	02 mg/L	6,21	7,01	5,65	5,84	5,20	4,14	1,80
VC	0,1	13 mg/L	< BG						
Ethen	0,1	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	4,1	4,0	4,1	4,6	5,3	8,2
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	115	115	118	119	117	118	120
Phosphat		2 mg/L	573	576	558	554	548	555	564
Sulfat		2 mg/L	33,0	34,0	33,0	32,7	32,0	32,7	34,4

Tabelle 8-59: Rohdaten Ansatz P2-cDCE-3.

Tabelle 8-60: Rohdaten Ansatz P2-TCE/cDCE-Steril.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	8,8	9,1	9,2	9,2	9,2	9,2
pН	-	-	7,2	7,3	7,5	7,3	7,3	7,3	7,4
Temperatur	-	°C	20,7	19,3	19,9	20,2	18,9	20,0	20,8
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	7,9429	9,1718	8,7545	8,5569	8,1594	7,4373	6,6588
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	6,33	7,43	6,97	7,08	6,80	6,44	5,96
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,1	3,1	3,1	3,1	3,2	3,1	3,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	115	115	118	117	117	118	120
Phosphat		2 mg/L	578	576	554	548	553	557	562
Sulfat		2 mg/L	33,1	33,0	32,0	31,1	32,0	34,4	32,7

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	8,5	9,1	9,0	9,3	9,1	9,0
pН	-	-	7,1	7,3	7,4	7,2	7,2	7,2	7,2
Temperatur	-	°C	20,5	19,8	20,1	20,0	18,9	20,2	20,8
CE									
PCE	0,000	8 mg/L	< BG						
TCE	0,000	7 mg/L	7,4969	8,0504	4,3319	1,9945	1,0262	0,4318	0,0031
tDCE	0,00	5 mg/L	< BG						
cDCE	0,0	2 mg/L	6,45	7,24	6,17	2,28	0,07	0,05	< BG
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,9	5,0	7,1	11,0	13,5	13,8	14,6
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	115	115	118	117	117	118	120
Phosphat		2 mg/L	569	576	548	549	545	555	560
Sulfat		2 mg/L	34,7	35,0	33,0	32,2	33,0	32,1	33,4

Tabelle 8-61: Rohdaten Ansatz P2-TCE/cDCE-1.

Tabelle 8-62: Rohdaten Ansatz P2-TCE/cDCE-2.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,3	9,0	8,9	9,0	9,2	9,0	9,1
pН	-	-	7,1	7,3	7,4	7,2	7,1	7,1	7,2
Temperatur	-	°C	20,6	20,2	20,2	20,3	18,8	20,3	21,0
CE									
PCE	0,0008	mg/L	< BG	< BG					
TCE	0,0007	mg/L	8,1284	7,9593	5,5321	1,0467	0,0016	0,0009	0,0026
tDCE	0,005	mg/L	< BG	< BG					
cDCE	0,02	mg/L	7,08	7,09	5,14	0,09	< BG	< BG	< BG
VC	0,13	mg/L	< BG	< BG					
Ethen	0,11	mg/L	< BG	< BG					
Anionen									
Chlorid	2	mg/L	4,9	5,0	5,7	13,3	14,2	14,3	14,6
Nitrit	2	mg/L	< BG	< BG					
Nitrat	2	mg/L	114	115	117	116	117	117	120,8
Phosphat	2	mg/L	566	576	551	581	548	552	560
Sulfat	2	mg/L	33,3	36,0	33,0	33,6	31,0	34,1	35,0
Biomarker									
16S	2	Kopien/mL	9,4E+03	6,0E+03	1,1E+04	5,0E+05	1,3E+04	2,9E+04	n.b.
AceA	2	Kopien/mL	< BG	8,0E+01	1,3E+03	4,2E+04	8,4E+02	8,1E+02	n.b.
moC	2	Kopien/mL	< BG	1,2E+02	3,1E+03	3,0E+04	3,7E+02	8,7E+02	n.b.

	BG	Einheit							
Dauer		Tage	0	14	29	48	62	76	130
s.p.									
Sauerstoff	-	mg/L	9,2	9,0	9,0	8,9	9,2	9,0	9,1
pН	-	-	7,1	7,3	7,5	7,2	7,2	7,1	7,2
Temperatur	-	°C	20,7	20,0	20,3	20,5	19,0	20,2	20,9
CE									
PCE	0,00	08 mg/L	< BG						
TCE	0,00	07 mg/L	8,0269	8,6808	5,9085	2,0921	0,4513	0,0026	0,0022
tDCE	0,0	05 mg/L	< BG						
cDCE	0,	02 mg/L	6,93	7,72	6,03	2,41	0,02	< BG	< BG
VC	0,	13 mg/L	< BG						
Ethen	0,	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,9	5,0	6,8	10,9	13,8	14,3	14,4
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	115	115	117	117	117	117	118
Phosphat		2 mg/L	568	578	546	554	550	551	560
Sulfat		2 mg/L	32,8	33,0	31,0	32,0	33,0	33,4	32,6

Tabelle 8-63: Rohdaten Ansatz P2-TCE/cDCE-3.

Tabelle 8-64: Bewertungsmatrix zur Darstellung signifikanter Unterschiede im Schadstoffabbau und der Chlorid-Freisetzung. "1" bedeutet einen signifikanten Unterschied in der Konzentration, "0" bedeutet keinen signifikanten Unterschied in der Konzentration. "n.t." bedeutet, dass die Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Shapiro-Wilk-Test überprüft; die Signifikanz wurde mittels Ein-Weg-ANOVA und anschließendem Tukey-Test überprüft.

				P2-T0	CE 1-:	3				P2 c	DCE				P	2 TCE	E/cDC	Έ				P2 8	Steril		
		TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	Cl ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI [®] Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI [®] Start	Cl ⁻ Ende
	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	
	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.		
Stel	cDCE Ende	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0			
50	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.		•		
1	TCE Ende	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0		-			
	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.						
ш	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1							
DO	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.		-						
Ц	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1		•							
12	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.		-								
2	TCE Ende	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1		-									
-	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.												
	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1		_											
Щ	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.		_												
۱ <u>۵</u>	cDCE Ende	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.	1		-													
2	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.																
"	TCE Ende	1	1	n.t.	n.t.	n.t.	n.t.	1		-															
	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.		-																
	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1																			
1-3	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.																				
빙	cDCE Ende	n.t.	n.t.	1		-																			
Ĕ.	cDCE Start	n.t.	n.t.		-																				
۱ <u>۲</u>	TCE Ende	1																							
	TCE Start																								

Abbildung 8-2: Vergleich der ECD-Detektorsignale des Ansatzes P1_TCE-3 (nur TCE), P2_TCE-3 (cometabolischer cDCE-Abbau) und P3_High TCE-3 (co-metabolischer cDCE-Abbau). Während des cometabolischen TCE-Abbaus wird bei ~17 min ein neues Signal auf dem ECD vorgefunden.

8.3.1.3.3 Schadstoffabbau unter nicht-äquimolarem Schadstoffverhältnis im Zwei-Stoff-System

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,68	8,84	8,98	8,81	8,67	8,64	8,57
рН	-	-	7,46	7,49	7,34	7,54	7,46	7,40	7,42
Temperatur	-	°C	20,6	20,1	20,4	20,7	20,8	21,8	22,1
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	8,8887	8,9641	8,4268	7,8183	7,9231	7,3083	6,4110
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	2,59	2,60	2,53	2,41	2,47	2,43	2,17
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,1	3,1	3,1	3,1	3,1	3,1	3,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	116	117	117	119	120	120	123
Phosphat		2 mg/L	527	511	523	552	540	534	548
Sulfat		2 mg/L	29,2	26,5	30,4	32,8	29,7	30,7	33,2

Tabelle 8-65: Rohdaten Ansatz P3_High TCE-Steril.

Tabelle 8-66:	Rohdaten	Ansatz P3	High TCE-1.
---------------	----------	-----------	-------------

E	3G	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,02	9,02	8,63	8,59	8,58	9,02	8,48
pН	-	-	7,41	7,15	7,40	7,25	7,23	7,23	7,24
Temperatur	-	°C	20,7	20,5	20,8	20,9	21,6	20,7	23,0
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	9,9272	9,1097	2,9696	0,2728	0,2132	0,1970	0,1699
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	2,51	2,43	1,92	1,36	1,28	1,25	1,10
VC	0,1	13 mg/L	< BG						
Ethen	0,1	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,9	4,0	7,5	9,9	10,1	9,9	10,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	117	120	120	128	120	120	125
Phosphat		2 mg/L	542	536	530	568	559	537	551
Sulfat		2 mg/L	31	30,1	31,4	32	33,1	31,2	32,4

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,07	9,08	8,77	8,74	8,78	9,05	8,59
pН	-	-	7,42	7,13	7,42	7,28	7,25	7,25	7,25
Temperatur	-	°C	20,4	20,5	20,8	20,8	21,5	20,4	23,000
CE									
PCE	0,000	18 mg/L	< BG						
TCE	0,000	7 mg/L	9,0485	8,3412	1,9512	0,2749	0,2111	0,1930	0,1576
tDCE	0,00	5 mg/L	< BG						
cDCE	0,0	2 mg/L	2,40	2,30	1,74	1,34	1,24	1,17	1,00
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,0	3,9	8,0	9,7	9,8	9,6	9,8
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	117	119	120	121	120	121	125
Phosphat		2 mg/L	539	535	534	538	557	542	550
Sulfat		2 mg/L	33,8	31,6	33,8	33,7	35	33,3	34,9

 Tabelle 8-67:
 Rohdaten Ansatz P3_High TCE-2.

Tabelle 8-68: Rohdaten Ansatz P3_High TCE-3.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,19	9,10	8,82	8,87	8,84	9,30	8,57
pН	-	-	7,41	7,14	7,40	7,28	7,26	7,26	7,25
Temperatur	-	°C	20,3	20,4	20,8	20,9	21,5	20,3	23,2
CE									
PCE	0,000)8 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
TCE	0,000)7 mg/L	9,3732	8,4159	1,3809	0,2342	0,1772	0,1769	0,1482
tDCE	0,00)5 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
cDCE	0,0)2 mg/L	2,41	2,31	1,67	1,24	1,13	1,17	1,01
VC	0,1	I3 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Ethen	0,1	l1 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Anionen									
Chlorid		2 mg/L	4,0	3,9	8,5	9,9	9,9	9,9	10,1
Nitrit		2 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Nitrat		2 mg/L	118	119	120	123	120	121	125
Phosphat		2 mg/L	544	538	535	554	559	542	552
Sulfat		2 mg/L	33,9	32	33,1	34	35,1	33,1	36,3
Biomarker									
16S		2 Kopien/mL	2,72E+03	6,04E+03	1,13E+05	2,28E+05	3,84E+04	9,38E+03	n.b.
AceA		2 Kopien/mL	< BG	< BG	< BG	< BG	< BG	< BG	n.b.
moC		2 Kopien/mL	<bg< td=""><td>2,08E+02</td><td>5,68E+04</td><td>1,17E+05</td><td>3,03E+04</td><td>6,52E+03</td><td>n.b.</td></bg<>	2,08E+02	5,68E+04	1,17E+05	3,03E+04	6,52E+03	n.b.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,17	9,33	9,08	8,83	8,91	9,00	8,66
pН	-	-	7,19	6,94	7,26	7,16	7,15	7,15	7,12
Temperatur	-	°C	20,0	20,3	20,9	21,1	21,4	20,6	23,4
CE									
PCE	0,000	08 mg/L	< BG						
TCE	0,000)7 mg/L	9,0414	7,8641	7,6611	7,7280	7,4801	6,8958	5,8862
tDCE	0,00	05 mg/L	< BG						
cDCE	0,0	02 mg/L	2,34	2,07	2,10	2,15	2,14	2,06	1,85
VC	0,1	13 mg/L	< BG						
Ethen	0,1	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	4,0	4,1	4,0	4,0	4,0	4,0
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	119	120	121	127	120	122	126
Phosphat		2 mg/L	596	586	584	614	612	591	608
Sulfat		2 mg/L	33,6	33,4	31,9	33,9	34,0	32,9	34,4

Tabelle 8-69: Rohdaten Ansatz P3_High TCE-4.

Tabelle 8-70: Rohdaten Ansatz P3_High TCE-5.

B	3G	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,14	9,31	9,13	8,86	8,92	8,95	8,67
pН	-	-	7,21	6,95	7,27	7,16	7,15	7,13	7,13
Temperatur	-	°C	20,7	20,3	21,0	21,0	21,4	20,7	23,3
CE									
PCE	0,00	08 mg/L	< BG						
TCE	0,00	07 mg/L	8,8744	8,3381	7,9283	8,0083	7,3252	6,8098	4,0726
tDCE	0,0	05 mg/L	< BG						
cDCE	0,0	02 mg/L	2,35	2,29	2,21	2,29	2,20	2,09	1,39
VC	0,	13 mg/L	< BG						
Ethen	0,	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	4,0	4,1	4,5	4,0	4,0	4,0
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	119	120	122	123	120	122	126
Phosphat		2 mg/L	599	590	50	597	613	596	609
Sulfat		2 mg/L	34,7	34,2	30,7	28,8	35,0	35,0	35,2

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,16	9,26	8,97	8,96	8,90	9,04	8,58
pН	-	-	7,41	7,15	7,48	7,35	7,37	7,35	7,34
Temperatur	-	°C	20,2	20,4	21,0	21,0	21,3	20,7	23,5
CE									
PCE	0,00	08 mg/L	< BG	< BG					
TCE	0,00	07 mg/L	7,6800	6,8800	6,7939	6,5733	6,2032	5,7521	4,8846
tDCE	0,0	05 mg/L	< BG	< BG					
cDCE	0,	02 mg/L	2,36	2,20	2,22	2,18	2,13	2,08	1,86
VC	0,	13 mg/L	< BG	< BG					
Ethen	0,	11 mg/L	< BG	< BG					
Anionen									
Chlorid		2 mg/L	4,2	4,0	4,1	4,0	4,1	4,0	4,1
Nitrit		2 mg/L	< BG	< BG					
Nitrat		2 mg/L	118	119	120	142	119	120	125
Phosphat		2 mg/L	542	536	535	570	557	538	554
Sulfat		2 mg/L	34,6	33,2	33,0	35,0	33,2	31,8	35,3
Biomarker									
16S		2 Kopien/mL	2,22E+03	3,20E+03	1,22E+03	1,84E+03	1,18E+03	7,20E+02	n.b.
AceA		2 Kopien/mL	< BG	n.b.					
moC		2 Kopien/mL	< BG	n.b.					

Tabelle 8-71: Rohdaten Ansatz P3_High TCE-6.

Tabelle 8-72: Rohdaten Ansatz P3_High TCE-7.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,82	8,82	8,68	8,84	8,59	8,70	8,48
pН	-	-	7,39	7,39	7,08	7,32	7,24	7,23	7,21
Temperatur	-	°C	20,5	20,2	20,2	20,8	20,8	21,4	22,1
CE									
PCE	0,000	3 mg/L	< BG	< BG					
TCE	0,000	7 mg/L	9,0143	7,0379	1,7231	0,0012	< BG	0,0009	0,0010
tDCE	0,00	5 mg/L	< BG	< BG					
cDCE	0,02	2 mg/L	2,58	2,22	1,01	< BG	< BG	< BG	< BG
VC	0,13	3 mg/L	< BG	< BG					
Ethen	0,1	1 mg/L	< BG	< BG					
Anionen									
Chlorid	:	2 mg/L	4,1	5,0	9,3	11,4	11,3	11,3	11,5
Nitrit	2	2 mg/L	< BG	< BG					
Nitrat	2	2 mg/L	118	118	120	121	121	122	125
Phosphat		2 mg/L	538	522	535	561	549	545	560
Sulfat	2	2 mg/L	31,8	29,6	33,4	33,1	31,7	32,3	34,7
Biomarker									
16S		2 Kopien/mL	2,48E+03	5,07E+04	3,54E+05	4,51E+05	9,52E+03	1,78E+03	n.b.
AceA	2	2 Kopien/mL	< BG	1,62E+03	2,17E+04	4,80E+04	2,32E+03	9,60E+01	n.b.
moC		2 Kopien/mL	6,00E+01	7,82E+03	6,64E+04	3,62E+04	3,14E+03	2,00E+00	n.b.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,09	8,92	8,81	8,80	8,63	8,75	8,53
pН	-	-	7,43	7,43	7,15	7,37	7,29	7,26	7,23
Temperatur	-	°C	20,4	20,5	20,5	20,7	21,0	21,3	22,3
CE									
PCE	0,000	08 mg/L	< BG						
TCE	0,000	07 mg/L	9,1761	8,9901	4,6437	0,6829	0,3175	0,3135	0,0020
tDCE	0,00	05 mg/L	< BG						
cDCE	0,0	02 mg/L	2,50	2,49	2,21	1,57	1,05	0,77	< BG
VC	0,1	13 mg/L	< BG						
Ethen	0,1	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	4,3	6,6	9,8	10,2	10,4	11,4
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	117	117	120	120	121	122	124
Phosphat		2 mg/L	531	513	530	553	545	539	554
Sulfat		2 mg/L	28,9	29,7	31,6	33,5	31,2	31,6	33,0

Tabelle 8-73: Rohdaten Ansatz P3_High TCE-8.

Tabelle 8-74: Rohdaten Ansatz P3_High TCE-9.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,02	8,94	8,74	8,74	8,63	8,80	8,52
pН	-	-	7,39	7,39	7,03	7,31	7,24	7,22	7,22
Temperatur	-	°C	20,4	20,5	20,7	20,9	21,1	21,3	22,3
CE									
PCE	0,000)8 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
TCE	0,000)7 mg/L	8,6738	7,6445	1,3527	< BG	< BG	< BG	< BG
tDCE	0,00)5 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
cDCE	0,0)2 mg/L	2,28	2,06	1,36	< BG	< BG	< BG	< BG
VC	0,1	3 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Ethen	0,1	1 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Anionen									
Chlorid		2 mg/L	4,1	4,6	9,3	11,4	11,3	11,3	11,5
Nitrit		2 mg/L	< BG	< BG	< BG	< BG	< BG	< BG	< BG
Nitrat		2 mg/L	118	118	120	120	121	122	125
Phosphat		2 mg/L	537	515	543	561	550	455	561
Sulfat		2 mg/L	29,3	29,0	32,7	32,6	31,1	33,4	32,6

Tabelle 8-75: Bewertungsmatrix zur Darstellung signifikanter Unterschiede im Schadstoffabbau und der Chlorid-Freisetzung. "1" bedeutet einen signifikanten Unterschied in der Konzentration, "0" bedeutet keinen signifikanten Unterschied in der Konzentration. "n.t." bedeutet, dass die Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Shapiro-Wilk-Test überprüft; die Signifikanz wurde mittels Ein-Weg-ANOVA und anschließendem Tukey-Test überprüft.

			P3	-High	TCE	1-3			P3	High	TCE	4-6			P3	-High	TCE	7-9	1		P3-l	ligh T	TCE S	teril	
		TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	Cl ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI [®] Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	Cl [®] Start	Cl [¯] Ende
Ē	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	
Stel	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.		
TCE	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1			
igh .	cDCE Start	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.				
3-H	TCE Ende	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0					
<u> </u>	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.						
6	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1							
E 7-	Cl⁻ Start	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	0	n.t.	n.t.	n.t.	n.t.								
10	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1									
High	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.										
P3-I	TCE Ende	1	0	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1											
	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.												
9	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0													
Е 4-	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.														
TC	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1															
High	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.																
P3-I	TCE Ende	0	1	n.t.	n.t.	n.t.	n.t.	1																	
	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.																		
ņ	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1																			
Щ.	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.																				
TC	cDCE Ende	n.t.	n.t.	0																					
High	cDCE Start	n.t.	n.t.	J																					
P3-	TCE Ende	1																							
	TCE Start																								

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,92	8,79	8,97	8,71	8,75	8,90	8,58
pН	-	-	7,44	7,46	7,19	7,5	7,42	7,39	7,39
Temperatur	-	°C	20,3	20,4	20,7	21,1	21,3	21,2	22,4
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	3,4193	3,3159	3,0520	2,8263	2,6811	2,6808	2,3421
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	7,35	7,30	6,81	6,43	6,34	6,66	5,80
VC	0,1	I3 mg/L	< BG						
Ethen	0,1	l1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,1	3,1	3,1	3,1	3,1	3,1	3,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	119	119	123	122	122	123	126
Phosphat		2 mg/L	538	514	547	564	550	541	560
Sulfat		2 mg/L	30,5	29,0	31,4	35,0	31,1	28,6	33,3

 Tabelle 8-76:
 Rohdaten Ansatz P3_High cDCE-Steril.

Tabelle 8-77: Rohdaten Ansatz P3_High cDCE-1.

E	3G	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,96	9,16	9,10	8,93	8,92	9,19	8,60
pН	-	-	7,19	6,94	7,26	7,16	7,17	7,14	7,12
Temperatur	-	°C	20,4	20,4	20,7	20,9	21,3	20,5	23,2
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	3,0597	2,7696	2,5943	2,6930	2,4624	2,0465	1,1546
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	7,07	6,79	6,47	6,68	6,43	5,55	5,12
VC	0,1	I3 mg/L	< BG						
Ethen	0,1	l1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,9	3,8	3,9	3,9	3,8	3,9	5,3
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	119	121	121	128	121	122	126
Phosphat		2 mg/L	602	592	587	616	616	596	612
Sulfat		2 mg/L	32,9	32,3	34,9	34,6	36,9	35,2	34,1

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,96	9,16	9,06	8,86	8,89	9,17	8,48
pН	-	-	7,21	7,01	7,27	7,18	7,16	7,14	7,15
Temperatur	-	°C	20,5	20,6	20,9	21,0	21,1	20,4	23,1
CE									
PCE	0,00	08 mg/L	< BG	< BG					
TCE	0,00)7 mg/L	3,1470	2,6481	2,5458	2,6800	2,5606	2,3272	1,8440
tDCE	0,00	05 mg/L	< BG	< BG					
cDCE	0,0	02 mg/L	7,24	6,52	6,16	6,61	6,54	6,25	5,48
VC	0,	13 mg/L	< BG	< BG					
Ethen	0,	11 mg/L	< BG	< BG					
Anionen									
Chlorid		2 mg/L	3,9	3,8	3,9	3,8	3,8	3,8	4,0
Nitrit		2 mg/L	< BG	< BG					
Nitrat		2 mg/L	119	120	120	124	121	121	126
Phosphat		2 mg/L	597	590	586	598	616	595	609
Sulfat		2 mg/L	35,7	33,1	33,5	33,1	36,1	35,2	37,2
Biomarker									
16S		2 Kopien/mL	9,20E+02	1,22E+03	9,00E+02	1,18E+03	5,60E+02	7,40E+02	n.b.
AceA		2 Kopien/mL	< BG	n.b.					
moC		2 Kopien/mL	< BG	n.b.					

Tabelle 8-78: Rohdaten Ansatz P3_High cDCE-2.

Tabelle 8-79: Rohdaten Ansatz P3_High cDCE-3.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,10	9,24	9,07	8,83	8,90	9,05	8,68
pН	-	-	7,43	7,15	7,50	7,37	7,38	7,36	7,35
Temperatur	-	°C	20,4	20,4	21,0	21,0	21,4	20,6	23,3
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	2,7159	2,4724	2,4963	2,4025	2,2485	2,0488	1,4821
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	6,79	6,47	6,66	6,43	6,36	6,01	5,05
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	3,9	3,8	3,9	4,4	3,9	3,9	4,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	118	119	120	121	119	121	125
Phosphat		2 mg/L	544	534	535	541	556	540	551
Sulfat		2 mg/L	33,4	31,8	32,3	29,0	36,2	34,7	36,1

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,16	9,23	8,70	8,89	8,86	9,01	8,61
pН	-	-	7,44	7,15	7,40	7,29	7,29	7,28	7,27
Temperatur	-	°C	20,5	20,1	21,0	21,1	21,3	20,4	23,4
CE									
PCE	0,00	08 mg/L	< BG						
TCE	0,000	07 mg/L	3,2056	2,8539	2,0383	1,8589	1,5675	1,5447	1,3310
tDCE	0,0	05 mg/L	< BG						
cDCE	0,0	02 mg/L	7,24	6,53	0,08	0,03	0,03	0,03	0,03
VC	0,	13 mg/L	< BG						
Ethen	0,	11 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	4,1	8,1	8,3	8,4	8,3	8,4
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	119	120	119	121	120	121	125
Phosphat		2 mg/L	542	541	532	539	561	542	555
Sulfat		2 mg/L	32,5	31,0	33,3	33,4	33,7	32,5	32,5

Tabelle 8-80: Rohdaten Ansatz P3_High cDCE-4.

Tabelle 8-81: Rohdaten Ansatz P3_High cDCE-5.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,18	9,07	8,66	8,82	8,81	9,14	8,56
pН	-	-	7,40	7,15	7,40	7,29	7,28	7,27	7,24
Temperatur	-	°C	20,3	20,2	21,0	21,0	21,0	20,3	23,4
CE									
PCE	0,00	08 mg/L	< BG	< BG					
TCE	0,00	07 mg/L	2,7568	2,6991	1,6468	1,5600	1,4889	1,3431	< BG
tDCE	0,0	05 mg/L	< BG	< BG					
cDCE	0,	02 mg/L	7,09	6,69	0,03	0,02	0,02	< BG	< BG
VC	0,	13 mg/L	< BG	< BG					
Ethen	0,	11 mg/L	< BG	< BG					
Anionen									
Chlorid		2 mg/L	4,1	4,2	8,3	8,8	8,5	8,3	10,0
Nitrit		2 mg/L	< BG	< BG					
Nitrat		2 mg/L	118	119	120	126	119	121	125
Phosphat		2 mg/L	538	534	539	565	557	542	556
Sulfat		2 mg/L	31,1	32,1	32,2	27,9	34,3	34,9	32,5
Biomarker									
16S		2 Kopien/mL	1,18E+02	4,24E+03	8,39E+05	4,87E+05	1,06E+05	1,44E+04	n.b.
AceA		2 Kopien/mL	< BG	< BG	< BG	< BG	1,93E+04	2,06E+03	n.b.
moC		2 Kopien/mL	< BG	n.b.					

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	9,12	9,13	8,84	8,80	8,86	9,13	8,62
pН	-	-	7,46	7,13	7,39	7,28	7,27	7,28	7,27
Temperatur	-	°C	20,4	20,1	21,3	21,0	21,3	20,4	23,4
CE									
PCE	0,000)8 mg/L	< BG						
TCE	0,000)7 mg/L	1,6134	1,4185	0,7760	0,7035	0,6494	0,5142	0,4358
tDCE	0,00)5 mg/L	< BG						
cDCE	0,0)2 mg/L	7,29	5,88	< BG				
VC	0,1	I3 mg/L	< BG						
Ethen	0,1	l1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,2	4,2	8,3	10,9	8,3	8,2	8,4
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	118	118	119	150	119	119	125
Phosphat		2 mg/L	538	531	535	582	557	538	557
Sulfat		2 mg/L	33,0	31,1	31,6	29,4	33,6	31,8	33,3

Tabelle 8-82: Rohdaten Ansatz P3_High cDCE-6.

Tabelle 8-83: Rohdaten Ansatz P3_High cDCE-7.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,81	8,45	8,78	8,76	8,68	8,80	8,46
pН	-	-	7,32	7,28	7,07	7,29	7,20	7,19	7,17
Temperatur	-	°C	20,3	20,5	20,7	21,4	21,4	21,1	22,5
CE									
PCE	0,000	18 mg/L	< BG						
TCE	0,000	7 mg/L	3,1862	2,7318	1,5452	1,2085	0,2652	0,0024	0,0017
tDCE	0,00	5 mg/L	< BG						
cDCE	0,0	2 mg/L	6,79	0,91	0,04	0,04	0,02	< BG	< BG
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	7,3	8,8	9,1	9,7	9,9	10,1
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	117	117	120	119	121	121	124
Phosphat		2 mg/L	547	532	555	570	563	554	573
Sulfat		2 mg/L	30,9	29,4	34,7	33,7	31,2	33,0	35,1

BG		Einheit	Einheit												
Dauer		Tage	0	14	28	42	56	70	131						
s.p.															
Sauerstoff -		mg/L	8,88	8,35	8,76	8,63	8,70	8,75	7,47						
pН	-	-	7,38	7,33	7,05	7,32	7,24	7,23	7,2						
Temperatur	-	°C	20,6	20,9	20,5	21,5	21,4	21,1	22,6						
CE															
PCE	0,00	08 mg/L	< BG	< BG											
TCE	0,00	07 mg/L	3,1467	2,7529	1,7031	0,0090	< BG	< BG	< BG						
tDCE	0,0	05 mg/L	< BG	< BG											
cDCE	0,0	02 mg/L	6,95	0,97	0,05	< BG	< BG	< BG	< BG						
VC	0,	13 mg/L	< BG	< BG											
Ethen	0,	11 mg/L	< BG	< BG											
Anionen															
Chlorid		2 mg/L	4,1	7,2	8,6	10,1	9,9	9,8	10,1						
Nitrit		2 mg/L	< BG	< BG											
Nitrat		2 mg/L	118	118	121	119	121	122	125						
Phosphat		2 mg/L	537	523	556	558	561	541	563						
Sulfat		2 mg/L	29,4	29,4	32,4	34,2	31,6	32,0	32,4						
Biomarker															
16S		2 Kopien/mL	8,08E+03	1,22E+06	5,17E+05	2,76E+05	2,05E+04	1,41E+04	n.b.						
AceA		2 Kopien/mL	< BG	1,38E+05	7,70E+04	2,90E+04	2,99E+03	1,25E+03	n.b.						
moC		2 Kopien/mL	< BG	2,18E+03	8,58E+03	3,22E+04	1,62E+04	1,90E+03	n.b.						

Tabelle 8-84: Rohdaten Ansatz P3_High cDCE-8.

Tabelle 8-85: Rohdaten Ansatz P3_High cDCE-9.

	BG	Einheit							
Dauer		Tage	0	14	28	42	56	70	131
s.p.									
Sauerstoff	-	mg/L	8,95	8,31	8,82	8,70	8,73	8,71	8,51
pН	-	-	7,41	7,37	7,06	7,35	7,27	7,27	7,25
Temperatur	-	°C	20,4	20,9	20,5	21,4	21,1	21,3	22,5
CE									
PCE	0,000	18 mg/L	< BG						
TCE	0,000	7 mg/L	3,2982	2,3761	1,3076	0,0037	0,0019	0,0016	0,0016
tDCE	0,00	5 mg/L	< BG						
cDCE	0,0	2 mg/L	7,04	0,79	0,05	< BG	< BG	< BG	< BG
VC	0,1	3 mg/L	< BG						
Ethen	0,1	1 mg/L	< BG						
Anionen									
Chlorid		2 mg/L	4,1	7,3	8,9	10,2	10,1	10,0	10,2
Nitrit		2 mg/L	< BG						
Nitrat		2 mg/L	118	117	119	120	121	121	125
Phosphat		2 mg/L	533	514	552	557	548	537	559
Sulfat		2 mg/L	30,0	27,7	32,4	32,9	31,4	31,8	32,3

Tabelle 8-86: Bewertungsmatrix zur Darstellung signifikanter Unterschiede im Schadstoffabbau und der Chlorid-Freisetzung. "1" bedeutet einen signifikanten Unterschied in der Konzentration, "0" bedeutet keinen signifikanten Unterschied in der Konzentration. "n.t." bedeutet, dass die Beziehung nicht auf Signifikanz überprüft wurde. Die Normalverteilung wurde mittels Shapiro-Wilk-Test überprüft; die Signifikanz wurde mittels Ein-Weg-ANOVA und anschließendem Tukey-Test überprüft.

		P3-High cDCE 1-3					P3-High cDCE 4-6					P3-High cDCE 7-9					P3-High cDCE Steril								
		TCE Start	TCE Ende	cDCE Start	cDCE Ende	Cl [®] Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	Cl ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI [®] Start	CI ⁻ Ende	TCE Start	TCE Ende	cDCE Start	cDCE Ende	CI ⁻ Start	Cl ⁻ Ende
Ē	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	0	
Ste	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.		
DCE	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1			
gh c	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.				
3-Hi	TCE Ende	1	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1					
ē.	TCE Start	1	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.						
ဂု	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.	1							
E 7.	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.								
G	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.	1									
ligh	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.										
3-1	TCE Ende	1	1	n.t.	n.t.	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.	1											
_	TCE Start	0	1	n.t.	n.t.	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.												
မှ	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1													
Щ 4	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.	1	0	n.t.	n.t.	n.t.	n.t.														
G G	cDCE Ende	n.t.	n.t.	1	1	n.t.	n.t.	n.t.	n.t.	1															
ligh	cDCE Start	n.t.	n.t.	0	1	n.t.	n.t.	n.t.	n.t.																
3-1	TCE Ende	1	0	n.t.	n.t.	n.t.	n.t.	1																	
Ľ	TCE Start	0	0	n.t.	n.t.	n.t.	n.t.																		
ကု	Cl ⁻ Ende	n.t.	n.t.	n.t.	n.t.	0																			
Щ. Т	Cl ⁻ Start	n.t.	n.t.	n.t.	n.t.																				
SDC	cDCE Ende	n.t.	n.t.	1																					
ligh	cDCE Start	n.t.	n.t.																						
P3-F	TCE Ende	1																							
	TCE Start																								

8.3.2 Rohdaten der Säulenversuche mit geringer Substratverfügbarkeit

Tabelle 8-87: Rohdaten der Säulenversuche zum Erhalt des Stoffwechsels unter geringer Substratverfügbarkeit.

			Zulauf				Bio1		Bio2						
Dauer	Sauerstoff	pН	Temperatur	TCE	Chlorid	Sauerstoff	pН	Temperatur	TCE	Chlorid	Sauerstoff	pН	Temperatur	TCE	Chlorid
Tage	mg/L	-	°C	mg/L	mg/L	mg/L	-	°C	mg/L	mg/L	mg/L	-	°C	mg/L	mg/L
BG	-	-	-	0,0007	1,0	-	-	-	0,0007	1,0	-	-	-	0,0007	1,0
-2	8,59	7,50	22,1	0,3302	2,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3	6,88	7,47	22,4	0,3384	2,7	4,48	7,49	21,5	0,0019	2,9	4,72	7,47	21,4	0,2930	2,8
6	7,34	7,49	21,3	0,4569	2,7	7,92	7,47	21,5	0,0031	3	8,42	7,46	21,5	0,1600	2,8
13	7,6	7,52	21	0,3112	2,7	8,13	7,52	21	0,0353	2,9	8,32	7,52	21	0,0150	2,9
20	8,13	7,32	21,5	0,3912	2,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
27	7,96	7,39	21,3	0,3965	2,7	8,34	7,37	21	0,0067	3	8,3	7,37	21,3	0,0097	3
41	8,05	7,38	21	0,3614	3,1	8,25	7,35	20,7	0,0128	3,3	8,27	7,33	21	0,0117	3,4
48	8,13	7,35	20,5	0,3460	3,1	8,6	7,34	20,4	0,0369	3,3	8,41	7,33	20,3	0,0117	3,3
55	8,74	7,58	20,5	0,3509	3,1	8,64	7,63	20,6	0,0041	3,3	8,64	7,61	20,4	0,0032	3,3
83	8,52	7,65	20,3	0,3160	3,1	8,77	7,62	20,4	0,0166	3,3	8,73	7,59	20,5	0,0637	3,3
102	n.b.	n.b.	n.b.	0,4483	3,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
104	8,44	7,31	20,9	0,3523	3,2	8,62	7,37	20,1	0,1183	n.b.	8,6	7,33	20,1	0,1155	n.b.
118	8,68	7,33	19,5	0,0085	3,4	8,91	7,31	20	0,0024	3,4	8,97	7,29	19,7	0,0025	3,4
132	8,92	7,29	20,2	0,0118	3,5	9,09	7,34	20,3	0,0086	3,4	9,08	7,29	20,2	0,0097	3,5
133	n.b.	n.b.	n.b.	0,3827	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
139	8,55	7,30	20,3	0,3795	3,1	8,5	7,3	20,2	0,0000	3,4	8,58	7,27	20,3	0,0000	3,4
146	8,6	7,28	20,6	0,3678	3,1	9	7,3	20,2	0,0007	3,4	8,81	7,27	20,5	0,0000	3,4
153	n.b.	n.b.	n.b.	0,3949	3,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
160	8,72	7,16	20,6	0,3608	3,1	8,34	7,17	20,9	0,0000	3,3	8,48	7,12	20,8	0,0000	3,3
174	8,6	7,20	21,3	0,3402	3,2	8,6	7,21	21,3	0,0000	3,4	8,57	7,2	21,2	0,0018	3,4
188	8,45	7,24	20,8	0,0071	3,3	8,66	7,26	20,7	0,0018	3,3	8,49	7,26	20,6	0,0013	3,3
194	n.b.	n.b.	n.b.	0,4513	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
202	8,6	7,25	21,2	0,0072	3,3	8,65	7,25	21,2	0,0000	3,3	8,71	7,24	21,2	0,0000	3,3

8.3.3 Etablierung des qPCR-Nachweises für aerobe TCE-Verwerter

8.3.3.1 Metagenomics

8.3.3.1.1 Ergebnisse der Metagenomanalyse der aerob metabolisch TCE-Abbauenden Bioaugmentationskultur

Die Metagenomanalysen wurden an der Ecole Centrale de Lyon durch A. Valencia-Ruiz und T.M. Vogel (Environmental Microbial Genomics Group) durchgeführt. Die Proben entstammen aus verschiedenen Laborversuchen sowie einem aktiv TCE-abbauenden Standort und wurden vom TZW zur Verfügung gestellt. Die Sequenzen sind von 5' nach 3' notiert.

1: Ammonia monooxygenase subunit A [EC:1,14,18,3 1,14,99,39]

2: Monooxygenase subunit B protein

ATGAAATTCAACATATTCAATAAGCTTAAGAAAGCTGCATTTATTACAGCAACGACTGTA GTCGGGCTACTGTCGTTGGCTGCGTCTCCTGATGCAATGGCCCATGGCGAACGGGCAC AGGAGCCCTTCTTGCGCATGCGCTCGATTCAGTGGTACGACATGCAATGGAGTAAGGA TACCGTCAAGGTCAATGATGAAATGACGCTGAGTGGGAAGTTCCGTGTTTTCCCCCGACT GGCCGAATGCGCTTCATGAGCCGAAGGTATCTTTTTGAATATCGGCATTCCTGGCTCG GTATTTTTGCGTACCTCGACTGAAATCGGCGGTGAGGTACAGTTTTTCTCCGGCCCGCT GGAAATTGGCAAAGACTACTCTTTCAAGGTCACCGTAAAGGCGCGCAAGCCAGGTGAA TACCACATGCATTCTCAACTCAACATGTTGAGCAATGGCCCTGTCGCCGGTCCCGGTTC CTGGGTCAAGGTTGTGGGTGACGAGAAGGATTTCAGCAACCCGATAACGACGCTGACT GGCCGTACCGTCGACACCATGACCGTCGGCAAGGCGGAGGGCATCACATGGCATATC ATCTGGGCCGTCTTTGGCGCTGCTTGGTTGCTGTACTGGCTCACCCAGCCGCTGTTCC TGGCACGTTTCCGTGCACTGAACAACGGACGGGAGGATGTACTGGTAACGTCGGGCCA CATGAAGCTCGGTGTGGCGGTATTGGTTGTTAGCCTTGGTTTGATTTTCTACGGCTATC AGTCGGCCACTGCAAAATACCCGAACGTTGTACCGCTCCAGTCGGGCAAGGCTGTATA CAAGTCTATTGATCTGCCCCAGTCACCAGCCGTGGTTACAGTTGAAAGCGCGAACTATG ATGTACCTGGTCGCGCCATGCGGATTACTGCGACGATCACCAACAAGGGTGACAAGCC GTTGCGCATTGGCGAGTTTTCGACAGCCGGTGTGCGCTTCCTCAATCCTGAGTCCGGC

3: Monooxygenase subunit B protein

4: Ammonia monooxygenase/methane monooxygenase, subunit C

5: Ammonia monooxygenase/methane monooxygenase, subunit C

ATGAAACGTGATGCCTTGATTACGAGGGCTACTTGGGCAGTCGAGCAAGGTTCGCTTCT GATTGCTGTGGCGGGTGTTGCCGTCATGCTCTTGGTTGGCTTGTATCTGGCAGGCTGG ATTGGCAGCGAGACAGCCGCAGGTTCGCGGGAATCTTTCTCGCCCGGAAGCATGTTTG GTTATCTGCCGATATGGCTTGCGGAAGCCATGTTTACGCTGTTTTTATGGCGCCCGGATA TGGCAGACGCAGAATGTGGCGAATATGGCTGCCGGTGGCGACAAGCGCGTAGCGCAA GCCTTTCTTCTCATGATCTGGCTGAGCCTTGATTTACTCATGGTTGTTTTTGGGGGGCGG CTTGCTTGCGCATATGGATGCTCCTTGGGTACAGATGAGTACTGCGGCTATCAGCCCTG CGCATCTGGTGACTTTTATTGCCGTAATGCCCGCATATATCGTCTTTGGCGTTTCGTCCT GGCTGTTTGCGCGTACTCGATTGCCTGAGTTTGCTAAGGGGAATCTCGACCATTTCGTG ATTGTCACCATTGCTCCCTTCATGTTTCTGCCAGCTTTCGATCCGCAAGACTTGATCCAT TCGCTCGATCCAAACAGTAATTTGTACCTGGTTATCTACTGGGTCATAACAATCGCTTGG GTTGTCAATGTTGGTTGGTTGTTCACGAAACTATTTCGCTATGCGTTGCTCCAATTCCCA AGGAGCGGGTAG

6: Haloacid dehalogenase-like hydrolase

ATGGCCAGGTTCGAACTGATTGTCTTTGACTGGGATGGCACCTTGATGGATTCGACGG GGATGATTGCCACTTCGATTCAGGCCGCTGCGTGCGATCTTGGCATTCCACCGCCATC GGACGAGTGCGCCCGGCATATCATTGGCCTCGGTCTGGACGATGCCCTGCGCCAGGC ATTGCCTGAGTTGCCACCGCATCGGTATCCCGAGTTGTCGGCGCGGTATCGCCATCAC TATCTGGCGCGTGATCATGAACTGCTGCTTTTCGCTGGGACTGAGCAACTTCTGACAGG CCTCGCGACGGCTGGTTTTCAGTTGGCGGTGGCGACGGGCAAGTCTCGCCACGGGCT TGATCGCGCGCTGGAGAGCAGCGGTCTGGGCCGCTATTTTGATGCTTCGCGCTGTGCT GACGAGTGCTTTTCAAAGCCCCATCCGCAGATGCTGGAAGAACTGATGGACGAATTCG GCGTCTCGCCAGCGACGACCTTTGATGATCGGCGATACCACCCATGACCTGCAAATGGC CAGGAATGCAGGTGTCACCGGCATTGCCGTGACGTATGGCGCGCATTCCCGAGCCCTG CTGGAGGCGGAGTCTCCTGCTTTTTGCGCCGCGATGTTGCCCAACTTGAAGCATGGC TACGCACGAACGCCTGA

7: haloacid dehalogenase-like hydrolase

ATGAGTGACACGAATTTTCTTGGCAAAGCGGCCCGGCTCTCCCTGATGGGCTTCGACG TCGATGGCGTGCTGACCGACGGCACACTGTATTTCACGGCCCAGGGCGATACGATGAA GGCCTTTTCCAGCCTCGACGGCCACGGCCTGAAGATGCTGCAACAGGCCGGCATCGA GGTCGTCATCATCAGCGGTCGCACCTCATCCGCGCTCGAACTGCGCGCACAGAACCTC GGCATCGACGAGCTTTACATGGGCGTCGGGGACAAGCGCAAGGTCATGACGGAAATCC TGCAGCAGCGCGGGATGGATTTTTCCGCCGCCGGCTACATGGGCGATGACGTGGTCG ACCTTCCTCTCCTGCGCGCCTGCGGCTTTTCCGCCACGGTTGCCGACGGCCATGCCGA AGTTATTTCGCGGGTCGATTACGTATCGCAAAAAGTCGGCGGTCGCGGTGCGGTGCGC GAAGTCTGCGACCTGATTCTGCGTGCCCAGGGCAAATGGGACGCGTCGCGGAA TATCTGGCATGA

8: haloacid dehalogenase-like hydrolase

CACACCCCGATCGCCGTCGATGCCGATCCCATCCTGACCGAAATCGCTACCACACGA GGCTGGCCGCACATCAGCCTGCGCGACTAA

9: Haloacid dehalogenase-like hydrolase

10: haloacid dehalogenase-like hydrolase

ATGTCTAAGAAGTTCATCCCTATGGCGATTGCCTATGACTTCGACGGGACGCTCGCACC GGGGAATATGCAGGAGTACGACTTTATCCCCGCCCTAAAGCTCCCCTCAAAACATTTCT GGGACAAGGTTAACGAGCTTGCGAAAAAGCATGAGGCCGACCCGATCCTTGTGTACAT GTATGCCATGCTGGAAGAAGCTCGCACCGCAGGCCTTCCCGTCCGCAAAGCCGACTTC AAGAATTATGGGGTGAATATCGAACTGTTTCCGGGCGTCAAGGAATGGTTCAAGCGCAT CAACGACCATGCCAAGACCAAAGGAATTCGGCTGGAGCATTTCATCATTTCATCGGGTA TCCGCGAGATGGTTGAGGGCACGCCGATTCACAAGGCGTTCAAGAAAATTTATGCGTC GAGTTTTGTGTTCGACGCAAACGGCGTTGCCTGCTGGCCGCGCGGCGATCAACTAC ACGACCAAAACTCAGTACTTGTTTCGCGTCAACAAAGGCAGCTTGGATGTTCACGACAA TTCCGTGATCAATAAATTTGTGCCGAAGGAGCAACGCCCCGTTCCATTCGAGCACATGA TTTTTATCGGCGACGGCGAAACCGATATTCCATGTATGCGCCTGGTGAAAGATCAGGGT GGGCATTCCATTGCGGTCTACAAACCCGGCCGGCGAGGCCACAAAAAACATGCCGAGC AATTGGTCAAGGATGGGCGTGCAACATTGGCAGCTACCGCCGACTATCAGGATGGAGG CCCGATAGATCGGGCTGTAAGAGCCATCATTGACAAGATTGAAGCATCCGCAAGGATTG CCTAA

11: Haloacid dehalogenase-like hydrolase

ATGCACATCCGCTCGGTCACGCTCGATCTCGACGGCACCCTGCTCGACACCCTTCCCG ATCTCACCGCCGCCGCCAACGGCATGCTGCGCGAGCTGGGACGTGCGGAATATCCGC CACAGGTAATCGCCACCTTCGTCGGGGCGCGGCGACAACCTGGTTGAACGCTGCCT GCCGGACCTTTCCGGTGCCCCGCTGACGGCGGCCAAGCACCTGTTCCGCGAGCACTA CGCGCGCGAGAACGGCCGCCAGGCAACGCTGTTCCCCGGCGTGCGGGAAGGGCTGG AGCTCTTTCGCGCAGCCGACCTGCCACTGGCCGTGATCACCAACAAGGCCGCTGCCTT CACCGAACCCCTGCTCGCCGCCAGGGCCTGGCGCCGTATTTCCGCTTCGCCATTTCC GGCGACAGCGTGGCACACAAAAAACCGCATCCGCTGCCGCTCATCGAAGCCTGCAAAC
GCCTCGGCGTCGCGCCGGCGAGAACCTGCACATCGGCGATTCCAGCCACGACGCCG TCGCCGCACGCGCCGCCGGCTGCCGGTGTGGCTGGTACCCTACGGCTACAACGCAG GCAGGAGCGTGCAGCAAGGTATGCAGGATGGCGGCTGCGATGCTATAGTCACATCGCT GGATGAGGCAGCCCGACGCATCATTGACGCAGCGCTCGCCGCTCCACCAGCGCCGAC TTTTTAA

12: Aromatic ring-opening dioxygenase, catalytic subunit, LigB family (LigB) (PDB:2PW6) (PUBMED:23258706)

ATGCCCGGCTTGCCGCAGGCGCAGCCGCGCGTTTCAAGCCGGCATCGGCGCGGAACG CCTGAGCCCTGGCACGAATACCCGGCCATGACCAAAGCCCCGGTCTTCTTCATCTCCC ACGCCCCCGACCTTCGCCCTCGAACCCGGGAAACTCGGCGGCCGTCTGAGCGTCC TGGGCAAGAAGCTGTGCGGCGTGAAGGCGGTCCTGGTGGTCTCGCCGCATTGGCAGA CCGATGGCGTAAAGGTCATGGCGAACGAATCGCCGGCCACGCTGCACGACTTCGGCG GCTTTCCGCGGCCGCTCTACGACCTGCAGTATCCGGCGCCCGGTCACCTGCAGTTCGC GGTCGAGGCACGTCAGCTGCTGGTCGAAGCCGGTTTCAAGGTCAGCCTTGACGACGG GCGCGGACTGGATCACGGCGCCTGGGTTCCGCTACTGCATCTGTTGCCGGCTGCCGA CTTGGCCGGACGCTGGCCCCGTTGCGGCAACGCGGTGTGCTGCTCGTCGGCTCGGGC AGCATGACACACACCTTTACGAAGTCCGCCAGTCCGCTGCGGGCGAGGCAGCCTATG CACGGGAATTCACTTCATGGGTGCGCGAAGCGGTACTTGCCGACGCGGCGCATCAGCT GGCGGATTACCGCCGTCTGGCGCCGCATGCCGAGCGATCACATCCCACCGAGGAACA CTTCCTGCCACTGCTGGTGGCCATCGGCGCCAATGGCGGAGAAAGCGCGGTGCAGGT CATCGAGGGTGGGATCACCTACGGCGTGCTGTCCATGGAGTCCTATGTCTGGGGGGCTG GCCGACCGATGCGCAGTCCCCGGTAGGAACGCGGACTGCGCGAACAGCCTTAATTGA

13: Redox-sensitive bicupin YhaK, pirin superfamily (YhaK) (PDB:1J1L) (PUBMED:18561187)

ATGAGCAGCCATCAAGTTCGCCAGTCGCGCAGCATCGAACGCCAGGTCGCCGGCAAG CCGACGTCCGACGGCGCCGGCGTCAAGCTGACGCGGGTGCTGACGCAGCCGTTGCAA CGCCGGCTGGATCCCTTCCTGATGCTCGATGCCTTCGGCAGCGACAACCCGGATGACT ACATCGCCGGCTTTCCCGACCATCCGCATCGCGGCTTCGAAACGGTGACCTACATGAT CGCCGGCCGCATGCAGCACAAGGACAGTGCCGGCCATGAAGGCCTGCTGGAAAACGG CGGCGTGCAGTGGATGACTGCCGGCCGCGGCGTGATCCATTCCGAGATTCCGCAGCA GGAAGCCGGCGTCATGGAAGGCTTCCAGCTCTGGCTGAACCTGCCCGCCAGCGACAA GATGAGCGCGCCCTGGTATCGCGATTTTTCCGCCGCCGAGTTGCCGCCGCCGCGC GGTGACGCGCGCTGACGGTGATCGCCGGCGAAAGCCATGGCGTCGCCGGCG GGTGACGCGCGCGAGGCGACGCGCCCTTGTATCTCGACCTGCACCTGCCCGCCGGC GAAGTCGGCATCGGCGGGGAGACCCTGCCGGCGCAGCGCATGGGGATACTCGCCGC GAAGTGCGCATCGGCGGGGAGACCCTGCCGGCGCAGCGCATGGGGATACTCGCCAAC GATGCCGAAGCCGACGGCGTGGTGATCGAAGCCGCGGCGCAGCGAAAGTCTTGCTG ATCGCCGGCCGGCCGCTAAATGAACCGATCGCCCAATACGGCCCCTTCGTCATGAACA CCGACCAGGAGATTTACCAGGCGCTGAACGACTTCCGTGACGGCCCTTGCACGACAC 14: Predicted class III extradiol dioxygenase, MEMO1 family (Mho1) (PDB:3BCZ)

15: NAD(P)H-nitrite reductase, large subunit (NirB)

ATGAGATACGTCATCATTGGTAATGGCCCAACCGGGCTGGTCGCAGCCGAGGCCTTGC GCCGTCTGCAGCCCGCTGCCGAAATCACACTCATCGGCGACGAGCATGAACCGCCGTA TTCGCGCATGGCGATTCCTTACTTCCTGATCGGCAACATTACGGATCAGGGCACGCATC TGCGCAAGGATCCGCAGCATTTCCAGAAGCACAACCTGAAGCTGGTGGTGGGCCGTGC AGCCAGGATCGATCCGGCTGCCAAACAGGTCGAATTGGCCGATGGGCAGAAACTGCC GTATGACAAACTGTTAATTGCAACCGGCTCGTATCCGGTGCGTCCGCCGGTTCCCGGC CTAAAACCAAGCCGGGTTCACGCGTGCTGCAACTGGGCGCCGGTTTCATCGGTTGCAT CATCATGGAATCCCTGGCCAGCCGCGCGTCAAGCTGAACGTCGTCGAAATGGGCGAC CGCATGGTGCCGCGCATGATGACCGAGCGCGCCGGCAACATGATTCGTCGCTGGGTC GAGCAAAAGGGTGTTGGCGTCCATGTCAATGCCGGCGTCACGGCGGTTGCCCAAGAG GGCGATGCGCTGCGGGTCAAGCTCAGTACCGGCGAGGATCTTGTCGTCGATCTCGTGA TCTGTGCCGCAGGGGTGCGACCCGCGATCGGGTTCCTGGCCGGAACCGGCATCGCCA TGGAACGCGGCATTCGTGTTGACAATGGCATGCGCACCAATATTCCCCGATATTTACGCG GCCGGGGACGTCACCGAGGCCATCGGCTTCCATTCCGGCCAGCCGGAACTCAATGCC ATTCAACCCAATGCGGCGGATCAGGCCCGCGTCGCAGCTGCCAACATGGCCGGTGGC AATACGGCCAGCGGCGGCAGTCTGGCGATCAACGTGCTTGATACCCTGGGGCTGATTT GAGTTGTGCGACGAAGAAAATTTCCGCTATCTGTCATTGCAGTTCAAGGGCGACGTGCT GATCGGCGCCACCTCGATTGGTTGGACCGACCACGTTGGCGTGTTGCGCGGCCTGGT GCAGACCAGGCATCCCCTCGGGCACTGGAAGCAGCGCCTGCTTGAGGATCCAACCCA CTTCATGGCGGCTTATCTGGCTACAGCACAGGCTGCTGCGTGA

16: Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family (GloA) (PDB:3R4Q) (PUBMED:11830595)

ATGAGAATACTGCACACCATGCTCCGTGTCGGCGACCTGGAACGCTCAATCGCCTTTTA TACCGAAGTCCTCGGCATGCGTCTGCTGCGGCGCACGGATTATCCGGAAGGCAAATTC ACCCTCGCCTTCGTCGGCTTCGATGACGAAGATAAAAGCGCGGTGATCGAGCTCACCC ACAACTGGGGTGTCACGCATTACGAACTCGGCACCGGCTTTGGTCATATCGCCCTCGC CGTGCCGGATGCGGCAGCAGCCTGCGCCGCAATACGCGCACGCGGCGGCAAGGTAGT GCGCGAAGCCGGCCCGATGAAGGGCGGCAGCACAGTCATCGCCTTCGCCGAAGACCC CGACGGCTACAAGATCGAATTGATCGAGCGCAAAGACGCGTGA

8.3.3.1.2 Auf Grundlage der Metagenomanalyse erstellte Primer

Tabelle 8-88: Primer für den Nachweis des aerob metabolischen TCE-Abbaus, auf Grundlage der Metagenomanalyse, designed wurden. Die Tabelle enthält den vergebenen Primer-Namen, die Sequenznummer der Metagenomanalyse (Anhang 8.3.3.1.1), die Basensequenz und die Fragmentlänge. Die Sequenzen sind in 5'-3'-Richtung.

Name	Sequenz-		Sequenz	Fragmentlänge [bp]
20/ m c A		г.	TTOTOCTOCTACATOCOTOC	74
38/ MOA	1	F:	TIGIGGIGGIACAICGGIGG	74
20/ m = D	0	R:		404
39/ MOB	2	F:	AIGGCATAICAICIGGGCCG	124
40	•	R:	GUUUGAUGTTAUUAGTAUAT	
40	3	F:	IGCCACICGAGAAGAAICCG	/1
		R:	CATCGAACGACCCCGGTACAT	
41	4	F:	AAIGGGGTCAIGCCTTCTGG	147
	_	R:	AAACCIIGICCGAGAGCIGG	
42/ moC	5	F:	IGCCIGAGIIIGCIAAGGGG	89
	-	R:	GICIIGCGGAICGAAAGCIG	
43	6	F:	TATCATIGGCCTCGGTCTGG	145
	_	R:	TIGCICAGICCCAGCGAAAA	
44	7	F:	ACGTATCGCAAAAAGTCGGC	102
		R:	CCAGATATTCCGCCAGCGAC	
45	8	F:	CATACTGAATGCGGCGACCT	86
		R:	GGAATACCGAATTCACGGGC	
46	9	F:	TCCCGGACTCCCTACATCTG	151
		R:	TTTCCCGTGCCGAGATAACC	
47/ hdlh	10	F:	TTTCGCGTCAACAAAGGCAG	182
		R:	GGGTTGTAGACCGCAATGGA	
48	11	F:	CCTGTTCCGCGAGCACTAC	148
		R:	GAGCAGGGGTTCGGTGAAG	
49	12	F:	CAACCTTTACGAAGTCCGCC	166
		R:	GAAGTGTTCCTCGGTGGGAT	
50	13	F:	ATGGGGATACTCGCCAACGA	81
		R:	GGCGATCAGCAAGACTTTCG	
51	14	F:	GGTGCATCGAACCTGGACA	165
		R:	ACTTCGAGCGAATGTTCCCC	
52	15	F:	ATACCCTGGGGCTGATTTCG	165
		R:	GGTCGGTCCAACCAATCGAG	
53	16	F:	TGATCGAGCTCACCCACAAC	70
		R:	AGGGCGATATGACCAAAGCC	

8.3.3.1 Digitale Gelbilder

Abbildung 8-3: Digitales Gelbild der PCR-Ergebnisse des Primertests an TCE-abbauenden Kulturen. Von oben nach unten sind für jeden Primer die NTC, die Anreicherungskultur in Flüssigmedium (70231), die Proben der Säule 3 (S3) und 2 (S2) getestet worden. Die Primer sind entsprechend ihrer Nummerierung sortiert und in Tabelle 8-88 zu finden. Oben ist die Fragmentgröße in Basenpaaren (bp) markiert. Gezeigt sind die Ergebnisse der Primer 44-53.

Abbildung 8-4: Digitales Gelbild der Gradienten-PCR mit dem Primerpaar 47. Von links nach rechts sind sieben Standards mit einer Konzentration von 10¹-10⁷ Genkopien/Reaktion, die NTC, drei Proben mit erwartetem aerobem TCE-Abbau (S3, PP 1b, PP 2) und eine Probe ohne erwarteten aeroben TCE-Abbau (NP 1) aufgetragen. Die gezeigten Temperaturen von links nach rechts liegen bei 68,0 °C, 67,3 °C, 65,0 °C und 63,2 °C.

Abbildung 8-5: Digitales Gelbild der Gradienten-PCR mit dem Primerpaar 47. Von links nach rechts sind sieben Standards mit einer Konzentration von 10¹-10⁷ Genkopien/Reaktion, die NTC, drei Proben mit erwartetem aerobem TCE-Abbau (S3, PP 1b, PP 2) und eine Probe ohne erwarteten aeroben TCE-Abbau (NP 1) aufgetragen. Die gezeigten Temperaturen von links nach rechts oben liegen bei 60,1 °C, 57,6 °C, 55,9 °C und 55,0 °C.

Abbildung 8-6: Digitales Gelbild von *moA* für VC- und cDCE-abbauenden Kulturen, Umweltproben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur TKS3. Die erwartete Fragmentgröße liegt bei 74 bp.

Abbildung 8-7: Digitales Gelbild von *moB* und *moC* für VC- und cDCE-abbauenden Kulturen, Umweltproben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur TKS3. Die Fragmentgröße ist links und rechts markiert.

Abbildung 8-8: Digitales Gelbild von *hdlh* für VC- und cDCE-abbauenden Kulturen, Proben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau sowie die aerob TCE-abbauende Anreicherungskultur (TKS3). Die Fragmentgröße ist links markiert und die erwartete Fragmentgröße beträgt 182 bp.

Abbildung 8-9: Digitales Gelbild der PCR des Primers *Rho* für VC- und cDCE-abbauenden Kulturen, Proben mit (PP) und ohne (NP) erwarteten aeroben TCE-Abbau. Die Fragmentgröße ist links markiert und die erwartete Fragmentgröße beträgt 180 bp.

8.3.4 Ausbreitung der TCE-abbauenden Bioaugmentationskultur im sandigen Aquifer

8.3.4.1 Rohdaten der Laborsäulen

BG Einheit 2 5 6 7 8 10 11 Dauer Wochen 3 9 1 Sauerstof Zulauf mg/L 7,38 8,09 8,16 8,55 8,44 8,43 8,11 8,31 8,56 8,01 mg/L 7,73 8,13 8,17 8,54 8,68 8,11 8,28 8,27 7,85 7,97 mg/L 2 7,46 7,79 8,20 8,47 8,32 8,28 7,81 8,29 7,03 7,75 mg/L 7,85 7,85 8,31 8,47 8,41 8,33 8,18 8,42 7,83 7,87 3 4 mg/L 7,30 7,88 8,13 8,44 8,36 8,25 8,63 8,38 7,72 7,70 5 mg/L 7,20 7,44 7,71 8,41 8,36 8,15 8,30 8,24 7,20 7,46 mg/L Ablauf 6,78 7,13 7,95 8,46 8,12 6,41 7,87 7,66 6,51 7,43 pH Zulauf 7,48 7,46 7,51 7,50 7,41 7,35 n.b. 7,22 7,09 7,14 7,35 7,44 7,44 7,21 7,10 7,49 7,42 7,37 7,23 7,18 7,46 7,44 7,40 2 7,35 7,43 7,35 7,23 7,14 7,11 7,13 7,42 7,35 7,35 3 _ 7,34 7,34 7,27 7,18 7,15 7,12 7,08 4 -7,27 7,51 7,44 7,38 7,37 7,31 7,36 7,14 7,15 7,03 5 7,09 7,42 7,35 7,34 7,33 7,31 7,35 7,30 7,14 7,00 Ablauf 7,17 7,52 7,53 7,38 7,36 7,32 7,38 7,16 7,01 7,00 Temperatur °C 20,2 20,7 20,8 18,9 19,8 19,8 18,6 19,3 18,7 n.b. Zulauf °C 19,8 19,8 20,3 18,8 18,9 19,7 19,1 19,8 18,8 20,1 °C °C 2 20,2 19,3 20,4 18,8 19,1 18,6 19,5 19,2 20,6 19,2 3 20,0 19,8 20,7 19,3 19,3 18,4 19,2 19,9 19,7 19,7 °C 20,2 19,7 4 19,8 19,5 19,5 19,8 18,9 19,8 19,2 20,2 °C 19,9 19,2 19.1 20.1 19.3 18,6 19.3 18.9 20,6 20,1 5 -°C Ablauf 19,7 19,7 19,6 19.7 20,1 18,7 19,3 19,4 19,3 21,4 CE TCE 0,0007 Zulauf mg/L 22,5987 22,9009 20,4311 18,8387 18,2597 21,2084 22,3269 21,6105 18,3636 20,5497 0,0007 mg/L 22,4931 23,1304 21,6359 23,2012 19,5382 19,4206 19,3355 18,5590 19,0022 20,0347 0,0007 mg/L 2 21,9487 22,9146 21,8085 21,4122 18,9082 18,0222 18,1035 17,8897 17,5757 19,4289 0.0007 mg/L 22,2504 21,8436 22,1667 21,7604 17,6602 16,7266 16,8300 17,6060 17,0283 18,6018 3 0.0007 mg/L 22,5069 22,0714 22,4697 21,7782 21,3906 17,2845 18,0900 15,9360 16,8810 17,7913 Δ 0.0007 ma/L 5 15 4265 22 7798 21 7614 20 1805 20 5601 19.0116 18 1181 16 6843 16 9007 14 9254 0,0007 Ablauf mg/L 12,5915 21,7523 21,9051 20,7296 19,7412 20,6340 17,5338 14,3137 14,3989 12,8635 Anionen Chlorid 1,0 mg/L Zulauf 16,1 16,5 16,1 17,2 15,8 15,6 15,7 16,1 15,5 14,8 1,0 mg/L . 16,5 . 15,2 15,3 . 15,8 17,3 16,1 17,0 16,0 16,0 15,6 2 1,0 mg/L 15,6 16,6 16,3 17,7 15,4 15,4 15,9 16,5 16,1 16,8 3 1.0 mg/L 16,1 16,8 16,4 18,1 15,9 16,2 16,7 16,5 17,1 17,8 4 1,0 mg/L 16,7 16,7 16,2 17,8 15,3 16,3 16,6 17,0 16,7 17,9 1,0 mg/L 5 23.2 16.8 16.4 17.3 15.9 16.3 17.5 17.5 17.7 18.7 1,0 mg/L Ablauf 19.0 16.4 16.3 16.8 15.2 16,1 16,3 18,6 19,1 20.2 Nitrit 1,0 mg/L Zulau <BG 1,0 mg/L <BG 2 1.0 mg/L <BG 3 1.0 mg/L <BG 1,0 4 mg/L <BG 1,0 mg/L 5 <BG 1,0 mg/L Ablauf <BG Nitrat 1,0 Zulauf mg/L <BG <BG <BG <BG 3,8 3,9 3,7 3,7 3,8 3,6 1,0 mg/L <BG <BG <BG <BG 3,2 3,8 4,0 4,0 3,8 3,5 1.0 mg/L 2 <BG <BG <BG <BG 3,9 3,4 3,3 3,6 3,5 4,2 3 1.0 mg/L <BG <BG <BG <BG 3,7 4,1 4,1 3,6 4,2 4,2 4 1,0 mg/L <BG <BG <BG <BG 3,9 3,6 4,0 3,8 3,2 4,0 1,0 mg/L 5 9,2 <BG <BG <BG 3,7 4,0 4,4 3,5 3,9 3,6 1,0 mg/L Ablauf 3,7 <BG <BG <BG 3,4 3,8 3,6 4,5 3,9 3,2 Phosphat 1,0 Zulauf mg/L <BG 1,0 mg/L <BG 1.0 mg/L <BG 2 <BG <BG <BG <BG <BG <BG <BG <BG <BG 1.0 mg/L 3 <BG <BG <BG <BG <BG <BG 1,9 <BG <BG <BG 1.0 mg/L <BG 4 5 1,0 mg/L <BG 1,0 mg/L Ablauf <BG <BG <BG <BG <BG <BG <BG <BG <BG 2,0 Sulfat 1,0 mg/L Zulauf 27,4 26,5 27,0 27,9 31,4 31,2 30,4 30,3 26,7 25,2 1,0 mg/L 33,8 31,1 30,5 29,7 26,3 25,3 27,4 26,6 26,9 28,1 1,0 mg/L 2 29,6 30,8 29,9 26,0 26,7 26,7 28,9 31,3 25,4 27,6 1.0 mg/L 29,7 3 30,6 31,7 31,1 30,1 26,0 26,3 29,0 27,4 28,4 4 1.0 mg/L 33,7 31,5 30,6 29,9 25,3 25,5 27,5 25,6 26,8 29,6 5 1,0 mg/L 31,6 31,7 31,7 31,5 26.0 26.6 26,4 26.4 27,8 27,7 1,0 Ablauf mg/L 34.8 31.9 31 7 31.4 27.6 27.8 26.1 26.9 25.9 27.4

Tabelle 8-89: Physikalisch/chemische Parameter der Säule S 1.

	PC	Finhait										
Dauer	BG	Wochen	1	2	3	5	6	7	8	9	10	11
Sauerstoff				-			-		-	-		
Zulauf	-	mg/L	7 38	8 09	8 16	8 55	8 56	8 44	8 43	8 11	8 01	8 31
1	-	mg/L	7 82	7 78	8 10	8 59	8 55	8 71	8 36	7.88	7 96	7 64
2	-	mg/L	7.35	7.99	8.12	8.13	8.05	7.83	7.69	7,48	6.58	6.85
3	-	mg/L	7.27	7.63	7.92	8.18	7.70	7.76	7.25	7.12	6.62	6.87
4	-	mg/L	7.77	7.56	7.23	8.25	7.63	7.64	7.70	6.95	6.42	6.35
5	-	mg/L	7.18	7.24	7.47	8.03	7.74	7.59	7.62	7.11	6.37	6.34
Ablauf	-	mg/L	7.07	5.48	7.43	6.62	8.16	6.27	8.28	7.60	6.23	6.49
pН		-	.,	-,	.,	-,	-,	-,	0,20	.,	-,	-,
Zulauf	-	-	7.48	7.46	7.51	7.50	7.41	7.35	n.b.	7.22	7.09	7.139
1	-	-	7.37	7.44	7.44	7.45	7.45	7.32	7.23	7.21	7.22	7.13
2	-	-	7.39	, 7.41	7.43	7.37	7.31	7.23	7.12	7.08	6.99	7.042
3	-		7.38	7.28	7.33	7.33	7.29	7.15	7.01	6.92	6.90	6.941
4	-		7.10	7.50	7.31	7.32	7.27	7.19	7.18	6.95	6.91	6.892
5	-		7.12	7.48	7.30	7.31	7.29	7.21	7.23	7.12	6.91	6.852
Ablauf	-		7.36	7.49	7.37	7.33	7.37	7.27	7.32	7.08	6.88	6.871
Temperatur			.,	.,	.,	.,	.,	.,	.,==	.,	-,	-/
Zulauf	-	°C	20.2	20.7	20.8	18.6	19.3	18.7	n.b.	18.9	19.8	19.8
1	-	°C	20,2	19.7	202.0	18.7	19 1	19 1	19.9	18.8	19.4	19.3
2		°C	19.9	19 7	20.4	18 7	19.0	18 7	19 7	19 1	19 7	19 1
3	-	°C	20,5	19.6	20.4	19.4	19.7	18.6	195	19.4	19.0	19.6
4	-	°C	20,4	19 7	20 1	19.4	19 7	19 3	20.6	18.8	19.7	19.6
5	-	°C	19.8	19 3	19 5	20.4	19.6	18.8	195	18 9	19.7	20.1
- Ablauf	-	°C	20.0	19.6	19.8	19 5	20 3	19.0	19 3	19 2	21.8	19 5
CE		~	20,0	0,01	0,01	درد	20,3	<i>10,01</i>	10,0	2,5	21,0	19,0
TCE												
Zulauf	0,0007	ma/L	22 2260	22 5987	21 6105	22 <u>9000</u>	20 4311	18 8387	18 2597	18 3636	20 5497	21 2084
1	0,0007	ma/l	21 7/100	21,5507	22,0103	22,3003	19 5577	18 1220	17 9156	17 7112	18 9894	20,2004
2	0.0007	ma/L	21,7455	21,0329	22,0042	20,3407	17 512	16 9937	15 7152	14 3792	14 2126	15 3330
3	0,0007	ma/l	23 6625	21, 3230	22,0304	20,0430	15 5674	14 2702	12 2772	10 2027	8 2171 8 2171	10 6661
4	0.0007	ma/l	23,0823	21,0099	20,2043	10 0306	18 1640	14,3792	13 5217	10,2937	0,3121 8 3300	10,0001 Q /017
5	0.0007	g/∟ ma/l	15 1202	21,0333	21,2/09	10 2042	18 0200	15 /0/C	13 2200	11 0442	0,2200 0 5000	7 2010
Ablauf	0.0007		12 5170	22,4040	21,000/	13,2042	10,0306	10 5010	15,3396	12 2102	0,3050	7,3019
Anionan	0,0007	g/⊏	13,51/0	21,5390	21,3435	22,1004	20,0095	10,5210	15,501/	13,2183	10,4176	1,0530
Chlorid												
Zuleuf	1.0	ma/l	16 1	16 5	16 1	17.2	15 0	1/ 0	15 6	15 7	16 1	15 5
1	1.0		17 1	16 6	16 1	17.0	15,0	15 0	16.0	16 1	16 /	15 7
2	1,0		16.0	16.0	16.5	18.0	15,5	15,2 16 0	17.0 17.6	10,1 18 C	10,4	10.0
-	1,0	g/∟ ma/l	16 1	17 1	17 1	10,U	17.2	10,0 10 C	10 6	10,0 21 0	13,1 72 1	13,3 24 2
4	10		17.0	16 0	16 6	10 0	17.0	10,0	10 4	21,9	23,1 22 0	24,3 23 C
+ 5	1,0	ma/L	21.0	16.0	16 7	10.2	17.1	10,3	10.0	21,0	23,0	23,0
Ablant	1,0	mc/	21,ŏ	10,9	10,/	17.5	1/,1	17.4	13,0	21,3	23,3	24,7
Nitet	1,0	iiig/L	18,9	10,4	10,4	1/,1	10,1	1/,1	1/,3	19,6	22,4	24,2
NITE	10	mc/l	-00	-00	-00	-00	-00	-00	-00	-00	-00	-00
∠uiaut 1	1,0	mg/L	<bc< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bc<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td><8G</td><td><bg< td=""><td><80 - 10 C</td><td><bg< td=""><td><8G</td><td><bg< td=""><td><8G</td><td><8G</td><td><80 <80</td></bg<></td></bg<></td></bg<></td></bg<>	<8G	<bg< td=""><td><80 - 10 C</td><td><bg< td=""><td><8G</td><td><bg< td=""><td><8G</td><td><8G</td><td><80 <80</td></bg<></td></bg<></td></bg<>	<80 - 10 C	<bg< td=""><td><8G</td><td><bg< td=""><td><8G</td><td><8G</td><td><80 <80</td></bg<></td></bg<>	<8G	<bg< td=""><td><8G</td><td><8G</td><td><80 <80</td></bg<>	<8G	<8G	<80 <80
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<></td></bg<></td></bc<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bc< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<></td></bg<></td></bc<></td></bg<></td></bg<>	<bg< td=""><td><bc< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<></td></bg<></td></bc<></td></bg<>	<bc< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<></td></bg<></td></bc<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<></td></bg<>	<bg< td=""><td><bc< td=""><td><bc< td=""></bc<></td></bc<></td></bg<>	<bc< td=""><td><bc< td=""></bc<></td></bc<>	<bc< td=""></bc<>
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat	4.0						a -	a -				
∠ulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,554</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,554</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,554</td></bg<></td></bg<>	<bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,554</td></bg<>	3,7	3,7	3,8	3,8	3,9	3,554
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td>3,6</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,483</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td>3,6</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,483</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,4</td><td>3,6</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,483</td></bg<></td></bg<>	<bg< td=""><td>3,4</td><td>3,6</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,483</td></bg<>	3,4	3,6	3,8	3,8	3,9	3,483
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>4,0</td><td>3,4</td><td>3,4</td><td>3,5</td><td>3,4</td><td>4,201</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>4,0</td><td>3,4</td><td>3,4</td><td>3,5</td><td>3,4</td><td>4,201</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>4,0</td><td>3,4</td><td>3,4</td><td>3,5</td><td>3,4</td><td>4,201</td></bg<></td></bg<>	<bg< td=""><td>4,0</td><td>3,4</td><td>3,4</td><td>3,5</td><td>3,4</td><td>4,201</td></bg<>	4,0	3,4	3,4	3,5	3,4	4,201
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>4,0</td><td>3,9</td><td>4,0</td><td>3,9</td><td>4,584</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>4,0</td><td>3,9</td><td>4,0</td><td>3,9</td><td>4,584</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,7</td><td>4,0</td><td>3,9</td><td>4,0</td><td>3,9</td><td>4,584</td></bg<></td></bg<>	<bg< td=""><td>3,7</td><td>4,0</td><td>3,9</td><td>4,0</td><td>3,9</td><td>4,584</td></bg<>	3,7	4,0	3,9	4,0	3,9	4,584
4	1,0	mg/L	3,7	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,8</td><td>3,5</td><td>3,2</td><td>4,1</td><td>3,3</td><td>4,024</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,8</td><td>3,5</td><td>3,2</td><td>4,1</td><td>3,3</td><td>4,024</td></bg<></td></bg<>	<bg< td=""><td>3,8</td><td>3,5</td><td>3,2</td><td>4,1</td><td>3,3</td><td>4,024</td></bg<>	3,8	3,5	3,2	4,1	3,3	4,024
5	1,0	mg/L	8,9	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,8</td><td>4,0</td><td>3,9</td><td>3,4</td><td>3,8</td><td>3,742</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,8</td><td>4,0</td><td>3,9</td><td>3,4</td><td>3,8</td><td>3,742</td></bg<></td></bg<>	<bg< td=""><td>3,8</td><td>4,0</td><td>3,9</td><td>3,4</td><td>3,8</td><td>3,742</td></bg<>	3,8	4,0	3,9	3,4	3,8	3,742
Ablauf	1,0	mg/L	3,7	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,4</td><td>3,9</td><td>3,6</td><td>4,0</td><td>3,9</td><td>3,205</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,4</td><td>3,9</td><td>3,6</td><td>4,0</td><td>3,9</td><td>3,205</td></bg<></td></bg<>	<bg< td=""><td>3,4</td><td>3,9</td><td>3,6</td><td>4,0</td><td>3,9</td><td>3,205</td></bg<>	3,4	3,9	3,6	4,0	3,9	3,205
Phosphat												
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	2,5	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulfat												
Zulauf	1,0	mg/L	31,4	31,2	30,4	30,3	26,7	25,2	27,4	26,5	27,0	27,9
1	1,0	mg/L	33,5	31,2	30,4	29,9	26,4	25,2	27,5	26,5	26,8	27,9
2	1,0	mg/L	30,2	31,1	30,7	29,8	25,8	25,4	27,4	26,4	26,7	28,7
3	1,0	mg/L	30,8	31,4	31,2	29,8	25,5	25,7	28,3	27,1	27,4	29,2
4	1,0	mg/L	30,1	31,2	30,5	29,7	25,9	25,4	27,5	25,5	26,9	29,6
5	1,0	mg/L	33,2	31,8	31,5	31,2	26,0	26,0	26,4	26,1	27,7	28,0
ALL 6	4.0	ma/l	24.0	21.0	24.7		26.0	26.5	25.0	26.6	26.0	

Tabelle 8-90: Physikalisch/chemische Parameter der Säule S 2.

Date: Wochen 1 2 3 4 5 6 7 9 Searchard - mgl, 3,85 5,71 4,29 7,87 7,51 7,89 7,23 8,56 1 - mgl, 4,20 6,52 7,23 6,54 6,84 6,74 6,74 7,48 7,28 7,57 7,55 7,86 6,32 6,28 6,78 6,72 6,76 6,72 6,76 6,72 6,76 6,72 7,05 7,56 6,92 6,80 6,81 7,29 7,49 <th></th> <th>BG</th> <th>Einheit</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		BG	Einheit									
sum <th< th=""><th>Dauer</th><th></th><th>Wochen</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>9</th><th>11</th></th<>	Dauer		Wochen	1	2	3	4	5	6	7	9	11
Lular - mpl 3,85 5,71 4,29 7,87 7,87 7,89 7,29 7,56 55 5,83 6,74 7,88 2 - mpl 6,24 6,80 8,05 6,32 5,28 6,32 6,30 6,31 6,32	Sauerstoff											
1 - mpl 4,20 6,32 7,23 6,56 6,55 6,73 6,47 7,18 2 - mpl 2,00 4,33 5,41 6,15 4,32 4,35 4,86 4,81 6,51 5,26 3,31 6,21 6,20 8,35 6,15 4,32 4,35 4,88 4,41 6,51 Pit - - 7,28 7,31 7,44 7,40 7,36 7,30 7,49 7,47 7,19 7,12 7,22 7,22 7,22 7,22 7,22 7,22 7,22 7,23 7,30 7,49 7,40 7,40 7,63 7,01 7,14 7,04 6,02 6,62 6,71 6,76 6,71 6,70 7,07 7,15 7,14 7,14 7,14 7,10 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14 7,14	Zulauf	-	mg/L	3,85	5,71	4,29	7,87	7,51	7,89	7,29	8,56	7,68
2 - mpl 6,44 6,80 8,65 6,32 5,32 6,73 6,73 6,48 7,48 4 - mpl 3,08 3,09 5,97 n,b. 5,52 4,82 5,51 6,60 6,404 - mpl 3,08 5,07 n,b. 5,48 4,82 5,21 6,60 6,60 5,61 6,52 pit - - 7,28 7,21 7,26 7,30 7,15 7,29 7,26 1 - - 7,28 7,20 7,06 7,07 7,16 6,80 6,82 6,82 6,77 7,08 2 - - - 7,29 7,06 7,07 n,b. 6,82 6,82 6,77 7,08 4 - - - 7,29 7,07 7,18 7,07 7,18 7,07 7,18 7,07 7,18 7,07 7,18 7,07 7,18 7,01 7,02 <td>1</td> <td>-</td> <td>mg/L</td> <td>4,20</td> <td>6,92</td> <td>7,23</td> <td>6,56</td> <td>6,55</td> <td>6,83</td> <td>6,74</td> <td>7,18</td> <td>7,69</td>	1	-	mg/L	4,20	6,92	7,23	6,56	6,55	6,83	6,74	7,18	7,69
3 - mpL 2.90 4.33 5.41 6.15 4.25 4.88 4.41 6.51 5 - mpL 5.26 3.31 6.21 4.66 6.85 4.82 5.21 6.60 Ablant - 7.28 7.31 7.24 7.40 7.35 7.32 7.49 7.47 7.30 7.93 7.32 7.22 7.26 2 - - 6.71 6.76 6.74 7.14 7.05 6.62 7.77 7.08 8.68 4.70 4 - - 7.73 7.13 7.23 7.20 7.14 6.92 6.82 6.87 7.08 Ablant - - 7.23 7.13 7.23 7.13 7.14 6.91 7.23 7.13 7.14 6.91 7.14 6.91 7.14 6.91 7.14 6.91 7.14 7.14 7.14 7.14 7.14 7.14 <th7.14< th=""> <th7.14< th=""> 7.14</th7.14<></th7.14<>	2	-	mg/L	6,34	6,89	8,05	6,32	5,28	6,73	6,37	6,40	6,82
4 - mpl. 3,08 3,90 5,97 n.b. 4,85 4,88 4,41 6,51 5 mpl. 5,26 3,31 6,21 6,66 6,82 5,80 6,01 6,76 pt - - 7,28 7,31 7,24 7,40 7,30 7,39 7,30 7,39 7,30	3	-	mg/L	2,90	4,53	5,41	6,15	4,32	4,95	4,68	7,05	7,52
5 - mg4. 4,69 2,88 5,86 n.b. 5,84 4,82 5,21 6,60 Pit Zuluut - - 7,28 7,31 7,24 7,40 7,35 7,30 7,49 7,47 Zuluut - - 6,71 6,76 6,74 7,30 7,08 6,80 6,84 7,99 3 - - 7,28 7,29 7,23 7,29 7,17 7,18 5,00 6,01 7,07 n.b. 6,82 6,85 6,75 7,08 4 (int - - 7,29 7,17 7,18 7,01 1,1 2,00 2,13 2,13 2,13 2,13 2,13 2,13 2,13 2,10 2,13 2,10 2,13 2,10 2,02 2,07 2,00 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,07 2,00 2,00 7,00 <td< td=""><td>4</td><td>-</td><td>mg/L</td><td>3,08</td><td>3,90</td><td>5,97</td><td>n.b.</td><td>4,55</td><td>4,88</td><td>4,41</td><td>6,51</td><td>6,44</td></td<>	4	-	mg/L	3,08	3,90	5,97	n.b.	4,55	4,88	4,41	6,51	6,44
Abauf-mgL5,263,316,216,666,825,806,016,62pH7,287,317,247,407,307,307,307,327,227,2616,816,726,747,307,197,157,227,2626,816,726,747,007,147,057,025,927,1337,756,566,777,086,626,826,777,0857,297,197,107,127,122,102,12,132,11,01,12,152,1477,727,197,107,102,102,122,02,02,122,132,12,02,02,122,132,12,02,02,02,122,327,22,102,12,02,02,02,02,12,02,02,02,12,02,02,02,12,0 <td>5</td> <td>-</td> <td>mg/L</td> <td>4,69</td> <td>2,88</td> <td>5,86</td> <td>n.b.</td> <td>5,48</td> <td>4,82</td> <td>5,21</td> <td>6,60</td> <td>6,83</td>	5	-	mg/L	4,69	2,88	5,86	n.b.	5,48	4,82	5,21	6,60	6,83
pit n	Ablauf	-	mg/L	5.26	3.31	6.21	6.66	6.82	5.80	6.01	6.62	7.14
Zalaut - 7,28 7,31 7,24 7,40 7,36 7,30 7,49 7,47 1 - - 6,81 6,72 6,74 7,30 7,19 7,15 7,22 7,26 3 - - 7,05 6,56 6,77 7,06 6,82 6,82 6,77 7,08 4 - - 7,39 7,19 7,23 7,29 7,17 7,14 6,91 7,13 Temperitur - - 7,29 7,06 7,07 h.b. 6,82 6,82 6,77 7,08 Type 7,10 7,12 2,10 2,13 2,11 2,10 2,02 2,22 2,12 2,13 3 - - - 2,12 2,12 2,08 2,13 n.b. 2,03 2,02 2,01 2,02 2,07 2,07 5 - - - 2,12 2,08 2,13 n.b. 2,03 </td <td>рΗ</td> <td></td> <td></td> <td>-, -</td> <td>-,-</td> <td>-,</td> <td>.,</td> <td>-, -</td> <td>-,</td> <td>-,-</td> <td>-,-</td> <td>,</td>	рΗ			-, -	-,-	-,	.,	-, -	-,	-,-	-,-	,
1 - 6.81 6.72 6.74 7.30 7.15 7.15 7.22 7.26 2 - - 6.71 6.76 6.74 7.14 7.05 7.05 7.05 6.96 6.97 7.06 6.96 6.80 6.84 7.09 4 - - 7.18 7.29 7.06 7.07 h.6 6.82 6.87 7.08 5 - - 7.29 7.07 7.15 6.92 7.13 Temperatu - - 7.29 7.29 7.17 7.14 6.91 7.13 Temperatu - - C 2.21 2.0 2.13 2.1 2.00 2.0	Zulauf	-		7.28	7.31	7.24	7.40	7.36	7.30	7.49	7.47	7.47
2 -	1	-		6.81	6 72	6 74	7 30	7 19	7 15	7 22	7 26	7 40
3 - - 7,75 6,75 6,97 7,76 6,71 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,70 7,70 6,71 7,70 <td>2</td> <td>-</td> <td></td> <td>6 71</td> <td>6 76</td> <td>6 74</td> <td>7 14</td> <td>7.05</td> <td>7 02</td> <td>6 92</td> <td>7 13</td> <td>7,40</td>	2	-		6 71	6 76	6 74	7 14	7.05	7 02	6 92	7 13	7,40
3 - 7,18 7,04 7,07 7,07 7,07 7,07 7,07 7,08 7,07 7,07 7,10 6,21 6,25 6,77 7,08 Ablauf - - 7,29 7,17 7,14 6,91 7,13 Temperatur - - C 2,1,2 2,1,3 2,00 2,1,5 2,1,4 1,4 <td>2</td> <td></td> <td></td> <td>7.05</td> <td>6.96</td> <td>6.97</td> <td>7,14</td> <td>6.01</td> <td>6.80</td> <td>6.84</td> <td>7,15</td> <td>7,22</td>	2			7.05	6.96	6.97	7,14	6.01	6.80	6.84	7,15	7,22
* - - 7,29 7,03 1,1.0. 6,842 6,827 7,77 7,08 Ablard - - 7,29 7,19 7,22 7,29 7,17 7,14 6,821 6,727 7,08 Temporatur - - 7,20 2,11 2,13 2,11 2,00 2,15 2,14 1 - - C 2,2,3 2,17 n.b. 2,02 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 20,0 2,07 2,07 2,00 2,07 2,00 2,07 2,00 2,07 2,00 2,07 2,00 2,07 2,00 2,07 2,01 2,03 2,04 2,03 2,04 2,03 2,04 2,03 2,04 2,03 2,03 1,03 1,03 1,03 1,03 1,03 1,03 2,020 2,13 1,1	4	_	_	7,05	7.04	7.02	7,07 m.h	6.92	0,00	0,04	7,05	7,14
b -	4	-	-	7,18	7,04	7,03	n.p.	0,82	0,00	0,75	7,08	7,15
Addition -<	5	-	-	7,29	7,06	7,07	n.b.	6,92	6,82	6,77	7,08	7,16
Temperatur Zuhauf - 'C 21,1 21,0 21,3 21,1 20,0 21,5 21,4 1 - 'C 21,1 21,3 20,0 21,3 20,1 21,3 20,0 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,0 20,7 20,7 20,0 20,7 21,5 24,00 20,7 20,0 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,5 24,00 20,7 21,7 20,00 20,7 21,1 20,00 20,7 21,1 20,00 21,20 20,00 21,20 20,00	Ablaut	-	-	7,39	7,19	7,23	7,29	7,17	7,14	6,91	7,13	7,24
Zulaul - - C 21,2 21,9 21,0 21,1 21,0 20,0 21,5 21,4 1 - - C 21,1 21,3 20,8 21,0 20,0 20,0 20,9 21,3 3 - - C 23,9 22,1 20,6 20,7 20,7 20,7 20,7 5 - - C 20,8 21,1 21,3 n.b. 20,0 20,0 20,7 20,7 5 - - C 20,8 2,1 20,9 23,1 20,6 20,2 20,7 20,7 5 - - C 20,8 2,1 20,9 23,1 20,6 20,7 20,7 20,7 5 20,0007 mg/L 8,394 9,348 6,6609 14,7387 11,9862 14,780 15,862 14,780 15,862 14,780 11,8621 14,780 11,81,0 10,80 12,114	Temperatur	r										
1 - - -C 21,1 21,3 20,8 21,0 20,5 20,2 21,1 21,3 3 - -C 22,3 21,7 n.b. 21,6 20,0 20,0 20,0 20,0 20,7 20,0 20,7 20,0 4 - -C 20,6 20,7 21,2 20,8 21,3 20,6 20,7 21,2 20,9 23,1 20,6 20,7 21,2 20,0 20,7 21,5 Ablauf - -C 20,8 21,1 20,9 23,1 20,6 20,7 21,5 20,0 20,7 21,5 2 0.0007 mg4 18,2416 18,6550 18,483 16,7405 18,8562 18,939 18,9219 15,839 1 0.0007 mg4 9,5881 6,809 14,7387 11,9707 12,353 10,038 10,03 10,038 10,03 10,038 10,038 10,038 10,038 10,038	Zulauf	-	°C	21,2	21,9	21,0	21,3	21,1	20,0	21,5	21,4	21,8
2 - ^C C 22,3 21,7 n.b. 21,5 20,5 19,7 20,9 21,3 3 - ^C C 23,9 22,1 20,6 20,7 20,0 20,7 12,8 14,780 15,883 16,7405 18,1885 18,939 18,9219 15,583 14,780 12,8662 14,780 12,8662 12,134 12,79 14,6 14,720 13,861 10,2007 mg4 12,2840 <	1	-	°C	21,1	21,3	20,8	21,0	20,5	20,2	21,1	21,3	21,0
3 - 'C 23,9 23,9 22,1 20,6 20,7 20,0 20,7 20,0 20,7 20,7 20,7 4 - 'C 20,8 21,2 20,9 23,1 20,6 20,7 21,07 21,5 Ablard - 'C 20,8 22,1 20,9 23,1 20,6 20,5 20,07 21,5 Zeluard 0.0007 mg/L 9,5981 6,8050 18,4838 16,7405 18,185 18,0393 18,9219 15,839 1 0.0007 mg/L 9,5981 6,8050 14,4338 10,700 12,3383 10,0306 12,134 2 0.0007 mg/L 14,0356 13,2371 15,150 14,9707 16,3330 7,2830 4,6498 10,036 12,134 4 0.0007 mg/L 0,5700 14,4506 14,3702 13,877 13,130 7,2830 4,860 20,2 23,1 21,10 10,0 10,0 1	2	-	°C	22,3	21,7	n.b.	21,5	20,5	19,7	20,9	21,3	21,4
4 - 'C 20,6 20,9 20,9 n.b. 20,3 20,2 20,7 21,5 Ablauf - 'C 21,2 20,8 21,3 n.b. 20,3 20,2 20,7 21,5 TCE - 'C 20,8 21,1 20,9 23,1 20,6 20,5 20,0 20,7 21,5 CE - 'C 20,007 mgL 18,2416 18,6550 18,4838 16,7405 18,1885 18,0393 18,9219 15,839 2 0,0007 mgL 18,3394 9,3826 6,6809 14,7387 11,9707 12,338 10,806 12,338 3 0,0007 mgL 4,2397 15,1421 15,1583 15,838 n.b. 3,2760 1,8351 1,821 15,583 1,8,491 1,0351 1,22 1,333 2,282 2,31 2,1,1 1,0 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 <	3	-	°C	23,9	23,9	22,1	20,6	20,7	20,0	20,7	20,9	20,5
5 - 'C 21,2 20,8 21,3 n.b. 20,3 20,2 20,7 21,5 Ablauf - 'C 20,8 22,1 20,9 23,1 20,6 20,7 21,5 TCE - - - - - - - - - 10,0007 00,007 mgL 18,2416 18,6550 18,4838 16,7003 14,7387 11,9707 12,5381 10,8006 12,134 3 0,0007 mgL 14,0036 13,8297 13,1485 12,0896 5,9376 5,5298 6,400 8,331 4 0,0007 mgL 4,2347 15,2821 15,5838 n.b. 4,9915 3,0351 2,8240 9,8311 Ablauf 0,0007 mgL 4,2347 15,2821 15,5838 n.b. 4,9915 3,0351 2,8240 9,331 Ablauf 1.0 mgL 4,2347 15,22 15,5 14,9 19,8 15,9 <	4	-	°C	20,6	20,9	20,9	n.b.	20,9	20,6	20,7	20,7	21,1
Ablaut - 'C 20,8 22,1 20,9 23,1 20,6 20,5 20,0 20,7 DE Zulaut 0,0007 mgl. 18,2416 18,6550 18,4838 16,7405 18,1885 18,0333 18,9219 15,863 14,7820 15,8662 14,7820 15,8626 14,7820 15,8662 14,7820 15,8662 14,7820 15,8662 14,7820 15,8690 14,7820 15,9676 5,5298 6,4936 10,0038 12,279 13,1485 12,0896 5,9376 5,5298 6,4936 10,0384 4 0,0007 mgl. 4,2347 15,221 15,583 n,0. 3,4801 10,330 7,2830 4,8609 8,533 Ablauf 0,0007 mgl. 4,2347 15,5 14,3702 13,8861 10,330 7,2830 4,8699 8,533 Ablauf 1.0 mgl. 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,4 1	5	-	°C	21,2	20,8	21,3	n.b.	20,3	20,2	20,7	21,5	21,0
CE TOC Zulauf 0.0007 mgl. 18,2416 18,6550 18,4838 16,7405 18,1885 18,0393 18,9219 15,863 2 0.0007 mgl. 9,5981 6,8708 7,1177 17,0248 14,7820 15,8662 14,7956 12,134 3 0.0007 mgl. 14,0356 13,8297 13,1485 12,0896 6,59376 5,5286 6,4936 10,0383 1,279 5 0.0007 mgl. 9,2279 14,7901 15,1797 n.b. 3,2760 1,8556 2,7213 11,279 5 0.0007 mgl. 0,25700 14,4506 14,3702 13,8861 10,3300 7,2830 4,8609 8,539 Aniauf 0.0007 mgl. 15,15 15,2 15,5 14,9 19,8 15,9 14,6 14,44 1 1.0 mgl. 18,5 23,1 1,1 10,1 15,7 2,1 1,8 1,0 14,25,2 2,1,7 <td>Ablauf</td> <td>-</td> <td>°C</td> <td>20,8</td> <td>22,1</td> <td>20,9</td> <td>23,1</td> <td>20,6</td> <td>20,5</td> <td>20,0</td> <td>20,7</td> <td>21,5</td>	Ablauf	-	°C	20,8	22,1	20,9	23,1	20,6	20,5	20,0	20,7	21,5
TCE Zulaut 0.0007 mg.L 18,2416 18,6550 18,4838 16,7405 18,1885 18,0393 18,9219 15,839 1 0.0007 mg.L 9,5981 6,8708 7,1177 17,0248 14,7820 15,5662 14,7956 14,7387 2 0.0007 mg.L 14,0356 13,8297 13,1485 12,0896 5,9376 5,5298 6,4930 10,213 4 0.0007 mg.L 4,2397 15,1797 n.b. 3,2760 1,8556 2,7213 11,279 5 0.0007 mg.L 0,5700 14,4506 14,3702 13,8861 10,3300 7,2830 4,8609 8,533 Aniauf 0.0007 mg.L 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,44 1 1.0 mg.L 51,9 50,2 54,8 20,1 2,8 20,3 19,8 19,0 2 1.0 mg.L 2,8,2 2,2,1	CE			-								
	TCE											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zulauf	0,0007	mg/L	18.2416	18.6550	18.4838	16.7405	18.1885	18.0393	18.9219	15.8395	18.0987
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0,0007	mg/L	9.5981	6.8708	7.1177	17.0248	14,7820	15.8662	14,7956	14,7803	16,2695
3 0.0007 mgA 14,035 13,248 12,036 5,376 5,5286 6,4936 10,038 4 0.0007 mgA 9,9279 14,7001 15,1797 n.b. 3,2760 1,8556 2,7713 11,279 5 0.0007 mgA 0,2700 14,4506 14,3702 13,8861 10,333 7,2830 4,809 8,5337 Nation 0.0007 mgA 0,5700 14,4506 14,3702 13,8861 10,333 7,2830 4,808 8,5337 National 10 mgA 14,55 15,2 15,5 14,9 19,8 15,9 14,6 14,41 1 10 mgA 25,19 50,2 54,8 20,1 22,8 20,3 21,7 18,1 17,0 16,7 2 10 mgA 23,8 26,2 2,7,7 26,3 2,7,2 20,3 22,3 20,3 22,3 20,3 22,3 20,3 22,3 20,3 22,3<	2	0,0007	mg/L	8 3 3 9 4	9 3486	6 6809	14 7387	11 9707	12 3538	10,8306	12 1347	13 7090
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	0.0007	ma/L	14 0356	13 8297	13 1485	12 0896	5 9376	5 5 2 98	6 4936	10 0387	13 3343
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0.0007	ma/L	0 0 0 7 0	1/ 7001	15 1707	n h	3 2760	1 8556	2 7212	11 2702	12 1000
blauf 0.0007 mg/L 0,25700 14,4504 13,383 11.0. 4,8213 3,031 2,2240 9,8535 Anioar 00007 mg/L 0,5700 14,4506 14,3702 13,8861 10,3300 7,2830 4,8609 8,535 Anioar mg/L 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,4 1 1.0 mg/L 48,8 52,9 48,8 20,2 21,7 18,1 17,0 16,7 2 1.0 mg/L 23,8 26,2 2,6,2 22,7,7 26,3 21,2 20,3 19,8 19,0 3 1.0 mg/L 23,8 26,1 21,1 n.b. 23,8 26,9 27,3 22,3 Ablauf 1.0 mg/L 18,5 23,1 21,1 n.b. 23,8 26,6 27,7 26,3 21,1 N Nitrit Zulauf 1.0 mg/L 48,6 48,6 <td>-</td> <td>0.0007</td> <td>ma/l</td> <td>1 22/2</td> <td>15 2021</td> <td>15,1757</td> <td>n.b.</td> <td>3,2700 4 001E</td> <td>2,0350</td> <td>2,7213</td> <td>0.0216</td> <td>11 0601</td>	-	0.0007	ma/l	1 22/2	15 2021	15,1757	n.b.	3,2700 4 001E	2,0350	2,7213	0.0216	11 0601
Abiliant Oxford Tigh 0,3700 14,3502 13,8881 10,3330 7,2830 4,8603 8,3333 Chlorid Zulauf 1.0 mgl. 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,4 1 1.0 mgl. 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,4 1 1.0 mgl. 48,8 52,9 48,8 20,2 21,7 18,1 17,0 16,3 21,2 28,8 21,2 28,8 20,1 22,8 20,3 19,8 19,0 3 10,0 mgl. 18,5 23,1 21,1 n.b. 25,2 27,7 26,3 21,2 2,3 Ablauf 1.0 mgl. 18,5 23,1 21,1 n.b. 25,6 27,7 26,3 21,2 3 Ablauf 1,0 mgl. 14,82 26,6 26,6 486 486 486 486 486 486 <td< td=""><td>a hi na hi</td><td>0.0007</td><td>mal</td><td>4,2347</td><td>13,2021</td><td>14 2702</td><td>12 0001</td><td>4,0913</td><td>3,0331</td><td>2,0240</td><td>9,0310</td><td>10 5051</td></td<>	a hi na hi	0.0007	mal	4,2347	13,2021	14 2702	12 0001	4,0913	3,0331	2,0240	9,0310	10 5051
Non-nerr Chlorid Zulauf 1.0 mg/L 15,5 15,2 15,5 14,9 19,8 15,9 14,6 14,4 1 1.0 mg/L 28,8 52,9 48,8 20,2 21,7 18,1 17,0 16,7 2 1.0 mg/L 23,8 26,2 22,9 29,5 26,0 23,2 20,8 4 1.0 mg/L 23,8 26,2 2,7,7 26,3 21,2 5 1.0 mg/L 18,5 23,1 21,1 n.b. 23,8 26,9 27,3 22,3 Ablauf 1.0 mg/L 18,5 23,1 21,1 n.b. 23,8 26,9 27,3 22,3 Ablauf 1.0 mg/L 18,5 23,1 21,1 n.b. 23,8 26,9 27,3 22,3 Zulauf 1.0 mg/L 26,2 27,7 26,3 21,9 21,9 21,9 Nitrit </td <td>Abiaui</td> <td>0,0001</td> <td></td> <td>0,3700</td> <td>14,4300</td> <td>14,5702</td> <td>15,0001</td> <td>10,5550</td> <td>7,2030</td> <td>4,0009</td> <td>6,3339</td> <td>10,3936</td>	Abiaui	0,0001		0,3700	14,4300	14,5702	15,0001	10,5550	7,2030	4,0009	6,3339	10,3936
Crinora $Zulauf$ 1.0mg/L15,515,514,919,815,914,614,411.0mg/L51,950,254,820,221,718,117,016,721.0mg/L23,826,226,522,929,526,023,220,841.0mg/L20,425,223,1n.b.26,227,726,321,251.0mg/L16,720,218,816,719,423,924,721,9NitriZulauf1.0mg/L48G <t< td=""><td>Anionen</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Anionen											
	Zulauf	1.0	mal	45.5	45.2	45.5	44.0	40.0	45.0	44.0		44.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zulaur	1,0	mg/L	15,5	15,2	15,5	14,9	19,8	15,9	14,6	14,4	14,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1,0	mg/L	48,8	52,9	48,8	20,2	21,7	18,1	17,0	16,7	18,8
3 1.0 mgL 23,8 26,2 26,5 22,9 29,5 26,0 22,2 20,8 4 1.0 mgL 20,4 25,2 23,1 n.b. 26,2 27,7 26,3 21,2 5 1.0 mgL 16,7 20,2 18,8 16,7 19,4 23,9 24,7 21,9 Nitrit Zulauf 1.0 mgL <66	2	1,0	mg/∟	51,9	50,2	54,8	20,1	22,8	20,3	19,8	19,0	17,9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1,0	mg/L	23,8	26,2	26,5	22,9	29,5	26,0	23,2	20,8	17,9
b 1.0 mg/L 18,5 23,1 21,1 n.b. 23,8 26,9 27,3 22,3 Ablauf 1.0 mg/L 16,7 20,2 18,8 16,7 19,4 23,9 24,7 21,3 Nitrit Zulauf 1.0 mg/L <bg< td=""> <bg< td=""></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<>	4	1,0	mg/L	20,4	25,2	23,1	n.b.	26,2	27,7	26,3	21,2	19,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	1,0	mg/L	18,5	23,1	21,1	n.b.	23,8	26,9	27,3	22,3	19,2
Num Zulauf 1.0 mgl. <8G	Ablaut	1,0	mg/L	16,7	20,2	18,8	16,7	19,4	23,9	24,7	21,9	19,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrit	4.0										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zulaut	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
s i.v. ivg.L j.4.b cBG cBG<	2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1,0	mg/L	1,426	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
s 1.0 mgL 1,778 < <	4	1,0	mg/L	1,482	<bg< td=""><td>1,366</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	1,366	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
notatr i.u mg/L 1,079 <bg< th=""> <</bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<>	5	1,0	mg/L	1,778	<bg< td=""><td>0,657</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	0,657	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nutrat Zulauf 1.0 mg/L 3,1 2,8 3,2 3,4 9,7 4,1 3,4 4,1 1 1.0 mg/L 65,3 71,5 62,1 8,2 6,0 3,6 4,2 4,0 2 1.0 mg/L 66,3 65,4 71,2 7,4 5,9 3,3 3,5 3,4 3 1.0 mg/L 16,1 22,0 20,6 6,3 9,3 4,0 3,2 4,1 4 1.0 mg/L 9,7 18,4 15,5 n.b. 3,8 3,3 3,1 3,3 5 1.0 mg/L 3,4 8,8 8,2 3,7 3,3 4,2 8,5 Phosphat mg/L 38,4 428,7 366,7 <66	Ablauf	1,0	mg/L	1,079	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrat			_			-			-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zulauf	1,0	mg/L	3,1	2,8	3,2	3,4	9,7	4,1	3,4	4,1	4,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1,0	mg/L	65,3	71,5	62,1	8,2	6,0	3,6	4,2	4,0	4,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1,0	mg/L	69,3	65,4	71,2	7,4	5,9	3,3	3,5	3,4	3,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1,0	mg/L	16,1	22,0	20,6	6,3	9,3	4,0	3,2	4,1	3,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1,0	mg/L	9,7	18,4	15,5	n.b.	3,8	3,3	3,1	3,3	3,5
Ablauf 1.0 mg/L 3,4 8,8 8,2 3,7 3,3 4,2 3,5 3,6 Phosphat - 3,5 3,6 - 3,6 -	5	1,0	mg/L	7,1	14,0	13,3	n.b.	3,8	3,1	4,1	4,1	4,0
Phosphat Žulauf 1.0 mg/L 7,0	Ablauf	1,0	mg/L	3,4	8,8	8,2	3,7	3,3	4,2	3,5	3,6	4,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Phosphat											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zulauf	1,0	mg/L	<bg< td=""><td>17,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	17,0	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,8</td><td><bg< td=""></bg<></td></bg<>	2,8	<bg< td=""></bg<>
2 1.0 mg/L 377,7 341,9 365,8 <bg< th=""> <b< td=""><td>1</td><td>1,0</td><td>mg/L</td><td>398,4</td><td>428,7</td><td>368,7</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></b<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<>	1	1,0	mg/L	398,4	428,7	368,7	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3 1.0 mg/L 65,9 106,8 98,5 <bg< th=""> 4,1 1,2 <bg< th=""> 1,3 4 1.0 mg/L 34,9 76,7 81,5 n.b. 3,8 1,1 1,3 <bg< td=""> 5 1.0 mg/L 5,3 62,0 76,4 n.b. 3,5 <bg< td=""> 1,9 1,5 Ablauf 1.0 mg/L <bg< td=""> 38,1 35,4 14,1 2,2 <bg< td=""> <bg< td=""> <bg< td=""> Suffat 1.0 mg/L 27,0 31,7 27,3 25,9 37,0 28,8 28,1 28,0 27,6 2 1.0 mg/L 27,0 31,7 27,3 25,9 37,0 28,8 28,1 28,0 27,6 2 1.0 mg/L 31,5 33,2 32,4 30,4 36,1 29,5 29,0 27,6 2 1.0 mg/L 32,6 35,2 35,1 28,5 35,7 29,8</bg<></bg<></bg<></bg<></bg<></bg<></bg<></bg<>	2	1,0	mg/L	377,7	341,9	365,8	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1,0	mg/L	65,9	106,8	98,5	<bg< td=""><td>4,1</td><td>1,2</td><td><bg< td=""><td>1,3</td><td><bg< td=""></bg<></td></bg<></td></bg<>	4,1	1,2	<bg< td=""><td>1,3</td><td><bg< td=""></bg<></td></bg<>	1,3	<bg< td=""></bg<>
5 1,0 mg/L 5,3 62,0 76,4 n.b. 3,5 <8G 1,9 1,5 Ablauf 1.0 mg/L <8G	4	1,0	mg/L	34,9	76,7	81,5	n.b.	3,8	1,1	1,3	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf 1.0 mg/L <bg< th=""> 38,1 35,4 14,1 2,2 <bg< th=""> <bg< th=""> <bg< th=""> Suifat -</bg<></bg<></bg<></bg<>	5	1,0	mg/L	5,3	62,0	76,4	n.b.	3,5	<bg< td=""><td>1,9</td><td>1,5</td><td><bg< td=""></bg<></td></bg<>	1,9	1,5	<bg< td=""></bg<>
Sulfat ng/L 27,0 31,7 27,3 25,9 37,0 28,8 28,1 28,0 1 1.0 mg/L 31,5 33,2 32,4 30,4 36,1 29,5 29,0 27,6 2 1.0 mg/L 32,6 35,2 35,1 28,5 35,7 29,8 28,0 27,6 3 1.0 mg/L 33,2 31,4 28,6 37,8 29,9 28,1 29,2 4 1.0 mg/L 30,3 33,7 33,1 n.b. 28,5 30,2 29,2 30,2	Ablauf	1,0	mg/L	<bg< td=""><td>38,1</td><td>35,4</td><td>14,1</td><td>2,2</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	38,1	35,4	14,1	2,2	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Zulauf 1.0 mg/L 27,0 31,7 27,3 25,9 37,0 28,8 28,1 28,0 1 1.0 mg/L 31,5 33,2 32,4 30,4 36,1 29,5 29,0 27,6 27,6 27,9 35,1 28,5 35,7 29,8 28,0 27,9 27,6 28,0 27,9 28,1 28,0 27,6 28,1 28,0 27,6 28,1 28,0 27,6 28,1 28,0 27,6 28,1 28,0 27,9 28,1 28,0 27,9 28,1 28,0 27,9 28,1 28,0 27,9 28,1 28,0 27,9 28,1 28,0 27,9 28,1 29,0 27,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 28,1 29,9 24,1 1,0 mg/L 30,3 33,7 33,1 n.b. 28,5 </td <td>Sulfat</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sulfat					-	-					
1 1.0 mg/L 31,5 33,2 32,4 30,4 36,1 29,5 29,0 27,6 2 1.0 mg/L 32,6 35,2 35,1 28,5 35,7 29,8 28,0 27,9 3 1.0 mg/L 31,0 33,2 31,4 28,6 37,8 29,9 28,1 29,2 4 1.0 mg/L 30,3 33,7 33,1 n.b. 28,5 30,2 29,2 30,2	Zulauf	1,0	mg/L	27,0	31,7	27,3	25,9	37,0	28,8	28,1	28,0	26,7
2 1.0 mg/L 32,6 35,2 35,1 28,5 35,7 29,8 28,0 27,9 3 1.0 mg/L 31,0 33,2 31,4 28,6 37,8 29,9 28,1 29,2 4 1.0 mg/L 30,3 33,7 33,1 n.b. 28,5 30,2 29,2 30,2	1	1,0	mg/L	31,5	, 33,2	32,4	30,4	36,1	29,5	29,0	27,6	27,3
3 1.0 mg/L 31.0 33.2 31.4 28.6 37.8 29.9 28.1 29.2 4 1.0 mg/L 30.3 33.7 33.1 n.b. 28.5 30.2 29.2 30.2	2	1,0	mg/L	32.6	35.2	35.1	28.5	35.7	29.8	28.0	27.9	27.3
4 1,0 mg/L 30,3 33,7 33,1 n.b. 28,5 30,2 29,2 30,2	3	1,0	mg/L	31.0	33.2	31.4	28.6	37.8	29.9	28 1	29.2	26.9
· · · · · · · · · · · · · · · · · · ·	4	1,0	mg/L	30 3	33.7	33.1	_0,0	28 5	30.2	29,2	30.2	20,5 28.8
5 1.0 mg/L 293 339 301 nh 263 304 201 209	5	1.0	ma/L	20,5 29 2	33,7 33 Q	30.1	n h	26,3	30.2	30.1	30,2	20,0
- ····································	Ableuf	10	ma/l	29,5	33,5	30,1	78 5	20,5 25 G	30,4	20.1	21 1	20,4 29 E

Tabelle 8-91: Physikalisch/chemische Parameter der Säule SKontinuierlich.

	PC	Finhait										
Dauer	BG	Wochen	1	2	3	5	6	7	8	9	10	11
Sauerstoff												
Zulauf	-	mg/L	7,38	8,09	8,16	8,55	8,56	8,44	8,43	8,11	8,01	8,31
1	-	mg/L	8,27	8,08	8,25	8,28	8,53	8,67	8,43	7,98	7,66	8,14
2	-	mg/L	7,41	7,99	8,00	7,84	7,47	6,99	7,92	7,77	5,92	7,21
3	-	mg/L	7,20	6,98	7,33	7,43	7,52	6,95	6,69	7,04	6,51	6,66
4	-	mg/L	7,57	674	5.83	6,93	0,11	6,3U 5.19	5,60	6,14	2,03	5.04
Ablauf		mg/L	4.78	4.73	3.00	5.84	4,52	4.38	1.51	1.64	4,00	1.83
pH			1,70	1,70	0,00	0,01	1,00	1,00	1,01	1,01	1,10	1,00
Zulauf	-	-	7,48	7,46	7,51	7,50	7,41	7,35	n.b.	7,22	7,09	7,14
1	-	-	7,34	7,40	7,44	7,50	7,48	7,37	7,22	7,28	7,07	7,13
2	-	-	7,39	7,35	7,40	7,35	7,32	7,20	7,16	7,09	7,01	6,99
3	-	-	7,31	7,16	7,19	7,25	7,23	7,15	7,05	7,01	6,97	6,97
4	-	-	7,21	7,31	7,04	7,13	7,06	7,03	7,06	6,91	6,88	6,83
5	-	-	7,18	7,36	7,06	7,06	6,95	6,91	7,03	6,95	6,84	6,75
Ablaut		-	7,13	7,42	6,99	7,02	0,84	0,84	0,81	0,78	0,77	6,70
Zulauf	· _	°C	20.2	20.7	20.8	18.6	19.3	18.7	n.b.	18.9	19.8	19.8
1	-	°C	20,4	20,4	20,2	18,7	18,8	18,8	20,9	19,2	19,5	19,8
2	-	°C	19,9	19,3	19,9	18,8	18,9	18,6	19,8	19,3	21,9	18,9
3	-	°C	20,9	20,1	20,3	19,3	19,4	18,6	19,3	19,6	19,5	19,6
4	-	°C	20,1	19,7	20,2	19,4	20,0	18,9	20,0	19,1	19,9	19,9
5	-	°C	20,3	19,6	19,6	19,9	20,3	18,6	19,5	19,0	19,9	20,0
Ablauf	-	°C	20,0	19,5	19,8	19,7	20,2	18,9	19,4	19,2	21,2	19,7
CE												
TCE	0.0007	mal	22,2260	22 50 97	21 6105	22,0000	20 4211	10 0 0 0 7	10 2507	10 2626	20 5407	21 2094
Zulaul	0,0007	mg/L	22,3209	22,5967	21,0105	22,9009	10 01/13	20 4624	19,2097	18,3030	18 2000	10 0240
2	0.0007	ma/L	19,9920	21,0607	20.2470	20,5384	17.0061	15.6739	15,2966	15,5604	15.3212	17.2804
3	0,0007	mg/L	20,0384	15,7879	15,0512	17,7897	13,6729	13,2999	11,7459	11,4886	12,0130	13,1156
4	0,0007	mg/L	22,9703	15,6955	13,2350	14,2522	11,0769	9,7351	9,8295	8,1159	8,2349	9,5362
5	0,0007	mg/L	21,8440	16,1558	9,4718	8,7790	3,3629	5,8171	5,7349	5,5597	4,7537	4,3482
Ablauf	0,0007	mg/L	11,4905	15,9694	6,8072	7,5150	0,2757	0,8787	0,6065	0,7641	0,6517	0,8675
Anionen		mg/L										
Chlorid		mg/L										
Zulauf	1,0	mg/L	16,1	16,5	16,1	17,2	15,8	14,8	15,6	15,7	16,1	15,5
1	1,0	mg/L	17,2	16,6	16,0	17,3	15,8	15,0	15,6	15,9	16,0	16,0
2	1,0	mg/L	17.6	21.0	20.8	20.6	18.4	10,2	20.0	20.2	10.0	20.8
4	1.0	ma/L	17,9	21.6	22.9	23.3	21.5	21.9	22.8	23.7	24.4	23.9
5	1,0	mg/L	18,0	21,2	25,5	25,0	26,9	25,4	24,4	27,0	25,9	26,7
Ablauf	1,0	mg/L	17,9	20,3	27,5	31,3	29,5	28,6	28,6	27,6	28,4	29,4
Nitrit												
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4 5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1.0	ma/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat												
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,6</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,6</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,6</td></bg<></td></bg<>	<bg< td=""><td>3,7</td><td>3,7</td><td>3,8</td><td>3,8</td><td>3,9</td><td>3,6</td></bg<>	3,7	3,7	3,8	3,8	3,9	3,6
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,8</td><td>4,0</td><td>4,3</td><td>4,3</td><td>4,0</td><td>4,1</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,8</td><td>4,0</td><td>4,3</td><td>4,3</td><td>4,0</td><td>4,1</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,8</td><td>4,0</td><td>4,3</td><td>4,3</td><td>4,0</td><td>4,1</td></bg<></td></bg<>	<bg< td=""><td>3,8</td><td>4,0</td><td>4,3</td><td>4,3</td><td>4,0</td><td>4,1</td></bg<>	3,8	4,0	4,3	4,3	4,0	4,1
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,6</td><td>4,2</td><td>3,9</td><td>3,8</td><td>3,3</td><td>3,5</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,6</td><td>4,2</td><td>3,9</td><td>3,8</td><td>3,3</td><td>3,5</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,6</td><td>4,2</td><td>3,9</td><td>3,8</td><td>3,3</td><td>3,5</td></bg<></td></bg<>	<bg< td=""><td>3,6</td><td>4,2</td><td>3,9</td><td>3,8</td><td>3,3</td><td>3,5</td></bg<>	3,6	4,2	3,9	3,8	3,3	3,5
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,9</td><td>3,4</td><td>3,1</td><td>3,4</td><td>3,4</td><td>4,2</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,9</td><td>3,4</td><td>3,1</td><td>3,4</td><td>3,4</td><td>4,2</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,9</td><td>3,4</td><td>3,1</td><td>3,4</td><td>3,4</td><td>4,2</td></bg<></td></bg<>	<bg< td=""><td>3,9</td><td>3,4</td><td>3,1</td><td>3,4</td><td>3,4</td><td>4,2</td></bg<>	3,9	3,4	3,1	3,4	3,4	4,2
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,3</td><td>3,7</td><td>3,3</td><td>4,2</td><td>3,7</td><td>3,5</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,3</td><td>3,7</td><td>3,3</td><td>4,2</td><td>3,7</td><td>3,5</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,3</td><td>3,7</td><td>3,3</td><td>4,2</td><td>3,7</td><td>3,5</td></bg<></td></bg<>	<bg< td=""><td>3,3</td><td>3,7</td><td>3,3</td><td>4,2</td><td>3,7</td><td>3,5</td></bg<>	3,3	3,7	3,3	4,2	3,7	3,5
5 Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,5</td><td>3,3</td><td>4,1</td><td>3,3</td><td>4,0</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,7</td><td>3,5</td><td>3,3</td><td>4,1</td><td>3,3</td><td>4,0</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,7</td><td>3,5</td><td>3,3</td><td>4,1</td><td>3,3</td><td>4,0</td></bg<></td></bg<>	<bg< td=""><td>3,7</td><td>3,5</td><td>3,3</td><td>4,1</td><td>3,3</td><td>4,0</td></bg<>	3,7	3,5	3,3	4,1	3,3	4,0
Phoenhat	1,0	iiig/L	-00	-00	-00	-00	0,0	0,1	0,0	0,1	0,0	0,0
Zulauf	1.0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulfat	10	m ~ /	24.4	24.0	20.4	20.2	26.7	25.0	07.4	26.5	27.0	27.0
∠uiaut 1	1,0	mg/L	31,4	31,2	30,4	30,3	20,7	20,2 25 0	21,4	20,5 27.4	21,U 277	21,9
2	1,0	mg/∟	33,0 29.8	31,3	30,5	30,4	20,0	25,6	20,0 27 6	26.3	21,1 26.4	20,0 28.3
2	1,0	ma/L	30.1	31.2	30.7	30.0	26.1	25.5	27.4	26.8	26.9	29.4
4	1,0	mg/L	33,3	31,7	30,9	30,2	25,7	25,5	27,3	25,6	27,1	29,5
5	1,0	mg/L	34,6	31,7	31,7	0,0	26,3	25,8	26,3	26,4	27,1	27,8
Ablauf	1,0	mg/L	34,9	32,1	31,1	31,2	25,9	27,4	25,9	26,4	27,0	27,1

Tabelle 8-92: Physikalisch/chemische Parameter der Säule S 3.

	80											
Davia	BG	40	40		45	40	47	40	40	20	20	05
Dauer		12	13	14	15	10	17	18	19	20	22	25
Sauerstoff		nh	9.04	9.05	6.06	6.00	6.05	4.00	7 70	7 40	7 49	7 2 2
Zuiaut	-	11.D.	0,04	0,05	0,00	0,00	0,95	4,28	1,10	7,48	1,43	1,32
1	-	6,78	7,08	7,91	2,77	5,50	n.b.	n.b.	6,13	7,23	0,28	0,91
2	-	5,74	6,81	7,01	2,90	6,21	n.b.	n.b.	5,80	6,10	5,76	7,38
3	-	4,74	5,88	6,70	3,51	4,24	3,03	n.b.	5,59	6,00	5,99	6,30
4	-	3,84	6,08	5,92	2,76	4,55	n.b.	n.b.	6,22	5,02	5,22	6,17
5	-	2,77	5,25	5,56	3,02	3,09	n.b.	n.b.	3,09	4,52	405,00	5,28
Ablauf	-	1,65	1,92	2,57	1,04	0,00	1,40	0,02	0,02	0,91	0,50	1,60
pН												
Zulauf	-	n.b.	7,36	7,36	7,35	7,34	7,40	7,36	7,38	7,21	7,32	7,54
1	-	n.b.	7,37	7,36	7,26	7,34	n.b.	n.b.	7,48	7,25	7,32	7,42
2	-	n.b.	7,18	7,17	7,32	7,32	n.b.	n.b.	7,42	7,22	7,17	7,44
3	-	n.b.	7,06	7,08	7,33	7,30	7,26	n.b.	7,19	6,96	6,97	7,23
4	-	n.b.	6,97	6,99	7,25	7,27	n.b.	n.b.	7,09	6,91	6,94	7,13
5	-	n.b.	6,87	6,96	7,14	7,23	n.b.	n.b.	7,00	6,95	6,82	7,11
Ablauf	-	n.b.	6,75	6,84	6,92	7,20	7,19	7,21	7,14	6,79	6,76	6,88
Temperatu	r											
Zulauf	-	n.b.	21,0	20,4	21,4	21,7	21,7	21,6	21,6	20,2	21,9	21,4
1	-	n.b.	21.6	20.2	21.0	20.9	n.b.	n.b.	20.8	20.3	20.9	21.0
2	-	n.b.	22.1	19.8	21.6	22.0	n.b.	n.b.	21.0	20.1	21.2	21.0
3	-	n.b.	22.4	19.3	23.9	22.0	23.3	n.b.	21.3	20.0	20.8	21.0
4	-	nb	20.4	20.3	20,0	21 2	_0,0	n.b.	21.0	20,0	210	21,0
4	-	n.D.	20,4	20,3	20,9	21,0	n.D.	n.D.	21,0	20,4	21,0	21,1
5	-	n.D.	20,5	20,1	21,2	21,1	11.D.	11.D.	20,0	20,5	21,7	21,U
Ablauf	-	n.b.	20,2	20,2	20,8	21,1	20,7	22,6	20,7	20,3	21,0	21,8
CE												
TCE												
Zulauf	0,0007	n.b.	19,3507	20,6142	17,8984	17,3144	16,4732	18,7202	17,6083	18,2086	17,7245	16,9266
1	0,0007	n.b.	19,4685	19,6041	16,5497	16,6704	n.b.	<bg< td=""><td>17,6961</td><td>16,3636</td><td>17,1933</td><td>17,8504</td></bg<>	17,6961	16,3636	17,1933	17,8504
2	0,0007	n.b.	15,5441	16,1253	16,8293	16,5315	n.b.	<bg< td=""><td>15,5027</td><td>14,4823</td><td>14,6843</td><td>14,5572</td></bg<>	15,5027	14,4823	14,6843	14,5572
3	0,0007	n.b.	11,9761	12,8234	15,4943	16,0688	16,0502	<bg< td=""><td>11,7829</td><td>10,5832</td><td>11,9430</td><td>12,1607</td></bg<>	11,7829	10,5832	11,9430	12,1607
4	0,0007	n.b.	10,0419	11,8934	8,2180	17,2099	n.b.	<bg< td=""><td>12,3388</td><td>6,9767</td><td>8,4541</td><td>11,4201</td></bg<>	12,3388	6,9767	8,4541	11,4201
5	0,0007	n.b.	7,4626	8,7668	3,2988	16,8232	n.b.	<bg< td=""><td>9,2037</td><td>0,4654</td><td>3,7615</td><td>9,5938</td></bg<>	9,2037	0,4654	3,7615	9,5938
Ablauf	0,0007	n.b.	4,0344	4,2507	5,7662	16,1817	13,8103	14,2940	15,3125	0,3877	0,3237	3,4503
Anionen												
Chlorid												
Zulauf	1,0	n.b.	15,2	15,4	16,2	19,2	19,5	15,5	17,9	15,6	14,1	15,0
1	1,0	n.b.	16,5	16,6	15,8	19,9	n.b.	n.b.	17,5	16,0	15,1	16,6
2	1.0	n.b.	18.1	18.1	16.5	19.9	n.b.	n.b.	17.3	17.4	17.0	15.6
3	1.0	n.b.	20.6	19.9	16.5	19.6	19.8	n.b.	20.6	20.6	19.0	17.7
4	1.0	nb	22.5	21.4	16.0	19.9	nb	n b	17.3	23.6	21.9	18.8
5	1.0	n b	24.3	22.1	17.6	16.3	n b	n b	19.3	28.4	25.5	19.7
Ablauf	1,0	n.b.	27.0	24.8	23.0	15.3	21.9	16.9	16.5	20,4	20,0	24.3
ADIAUI	1,0	11.0.	21,0	24,0	20,9	10,0	21,0	10,0	10,5	21,5	21,2	24,5
NITIT	1.0		~80	-PC	-80	-PC	-80	~PC	-80	-PC	-PC	-80
Zulaul	1,0	II.D.	NBG	~BG	~BG	-00	<u>чво</u>	<u>чво</u>	NBG	NBG	NDG	-00
1	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.p.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.p.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.p.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat												
Zulauf	1,0	n.b.	3,6	3,7	3,6	3,8	3,4	3,5	8,7	4,2	4,0	4,0
1	1,0	n.b.	4,5	3,9	<bg< td=""><td>3,9</td><td>n.b.</td><td>n.b.</td><td>10,0</td><td>4,2</td><td>3,2</td><td>3,1</td></bg<>	3,9	n.b.	n.b.	10,0	4,2	3,2	3,1
2	1,0	n.b.	3,5	3,8	<bg< td=""><td>4,1</td><td>n.b.</td><td>n.b.</td><td>8,9</td><td>4,9</td><td>2,8</td><td>4,2</td></bg<>	4,1	n.b.	n.b.	8,9	4,9	2,8	4,2
3	1,0	n.b.	3,9	3,5	<bg< td=""><td>3,7</td><td>3,7</td><td>n.b.</td><td>10,4</td><td>3,6</td><td>3,6</td><td>3,6</td></bg<>	3,7	3,7	n.b.	10,4	3,6	3,6	3,6
4	1,0	n.b.	3,8	3,9	<bg< td=""><td>3,4</td><td>n.b.</td><td>n.b.</td><td>3,9</td><td>4,1</td><td>3,3</td><td>4,2</td></bg<>	3,4	n.b.	n.b.	3,9	4,1	3,3	4,2
5	1,0	n.b.	3,6	3.5	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>4,0</td><td>3,4</td><td>3,9</td><td>3,6</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td>4,0</td><td>3,4</td><td>3,9</td><td>3,6</td></bg<>	n.b.	n.b.	4,0	3,4	3,9	3,6
Ablauf	1.0	n.b.	3.6	3.3	2.7	<bg< td=""><td>3.5</td><td>2.6</td><td>3.2</td><td>3.6</td><td>4.2</td><td>3.9</td></bg<>	3.5	2.6	3.2	3.6	4.2	3.9
Phoenhat	,-		.,-	.,-	,.		.,-	,-	- ,	.,-	,=	.,-
7ulauf	10	nb	<rg< td=""><td><rg< td=""><td><rg< td=""><td><bg< td=""><td>20</td><td>0.0</td><td>3.5</td><td><bg< td=""><td><bg< td=""><td><rg< td=""></rg<></td></bg<></td></bg<></td></bg<></td></rg<></td></rg<></td></rg<>	<rg< td=""><td><rg< td=""><td><bg< td=""><td>20</td><td>0.0</td><td>3.5</td><td><bg< td=""><td><bg< td=""><td><rg< td=""></rg<></td></bg<></td></bg<></td></bg<></td></rg<></td></rg<>	<rg< td=""><td><bg< td=""><td>20</td><td>0.0</td><td>3.5</td><td><bg< td=""><td><bg< td=""><td><rg< td=""></rg<></td></bg<></td></bg<></td></bg<></td></rg<>	<bg< td=""><td>20</td><td>0.0</td><td>3.5</td><td><bg< td=""><td><bg< td=""><td><rg< td=""></rg<></td></bg<></td></bg<></td></bg<>	20	0.0	3.5	<bg< td=""><td><bg< td=""><td><rg< td=""></rg<></td></bg<></td></bg<>	<bg< td=""><td><rg< td=""></rg<></td></bg<>	<rg< td=""></rg<>
1	10	n.b.	<rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>_,0 n b</td><td>n h</td><td><rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></rg<></td></bg<></td></bg<></td></bg<></td></rg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>_,0 n b</td><td>n h</td><td><rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></rg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>_,0 n b</td><td>n h</td><td><rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></rg<></td></bg<></td></bg<>	<bg< td=""><td>_,0 n b</td><td>n h</td><td><rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></rg<></td></bg<>	_,0 n b	n h	<rg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></rg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1.0	n.b.	-00	-DG	-DG	-DG	n.b.	n.v.	24	-DG	1 0	-00
2	1,0	n.u.	-00	-00	-00	-00	10.0	11.D.	2,1	-00	1,0	-00
3	1,0	n.D.	<bg< td=""><td><8G</td><td><bg< td=""><td><8G</td><td>10,6</td><td>n.D.</td><td>2,2</td><td><8G</td><td>5,9</td><td><bg< td=""></bg<></td></bg<></td></bg<>	<8G	<bg< td=""><td><8G</td><td>10,6</td><td>n.D.</td><td>2,2</td><td><8G</td><td>5,9</td><td><bg< td=""></bg<></td></bg<>	<8G	10,6	n.D.	2,2	<8G	5,9	<bg< td=""></bg<>
4	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td>1,3</td><td>5,1</td><td>1,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>1,3</td><td>5,1</td><td>1,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>1,3</td><td>5,1</td><td>1,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	1,3	5,1	1,1	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulfat												
Zulauf	1,0	n.b.	25,3	26,5	26,5	35,4	35,8	26,7	33,4	24,9	27,8	28,7
1	1,0	n.b.	25,6	26,3	26,1	35,2	n.b.	n.b.	32,0	25,3	27,5	28,4
2	1,0	n.b.	25,9	26,1	26,9	36,5	n.b.	n.b.	33,0	24,9	27,8	25,7
3	1,0	n.b.	26,9	25,7	26,2	35,4	38,1	n.b.	33,3	25,0	28,1	25,9
4	1,0	n.b.	26,6	26,6	27,5	36,7	n.b.	n.b.	22,7	24,9	28,8	26,3
5	1.0	n.b.	26.7	25.4	28.3	27.4	n.b.	n.b.	23.9	25.1	30.0	26.7
Ablant	10	n b	26.0	26 /	26 /	27.0	37 1	27.6	25.3	24.0	20.5	26.3
ADIAUT	1,0	n. D .	20,9	20,4	20,4	21,0	57,1	21,0	∠J,3	24,9	20,0	20,0

Data Vochen 1 2 3 5 6 7 8 9 10 11 PCR 2163 2 GenkopienhL 5,74E-04 n.b. 1,05E-03 n.b. n.b. 0,56E-03 n.b. n.b. 6,56E-03 n.b. n.b. 1,36E-04 n.b. n.b. 1,37E-03 n.b. n.b. 1,37E-04 n.b. n.b. 1,37E-04 n.b. n.b. 1,37E-04 n.b. n.b. 1,37E-03 n.b. n.b. <t< th=""><th></th><th>BG</th><th>Einheit</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		BG	Einheit										
PCR 155 Zulauf 2 Genkopien/mL 5,74E+04 n.b. 1,80E+03 1,31E+03 n.b. n.b. 2,82E+04 n.b. n.b. 0,84E+02 1 2 Genkopien/mL 1,11E+04 n.b. 1,24E+04 n.b.	Dauer		Wochen	1	2	3	5	6	7	8	9	10	11
156 Zulauf 2 Genkoplen/mL 5.74E+04 n.b. 1.09E+03 1.31E+03 n.b. n.b. 6.50E+03 n.b. n.b. 6.22E+03 n.b. n.b. 6.22E+04 n.b. n.b. 6.22E+04 n.b. n.b. 6.26E+02 n.b. 1.02E+04 n.b. n.b. n.b. 0.26E+02 n.b. n.b. 1.22E+03 n.b. n.b. 0.25E+02 n.b.	PCR												
Ziladr 2 Genkopien/mL 5.86-04 n.b. 1.000-03 1.315-03 n.b. n.b. 6.802-03 n.b. n.b. 6.844-03 1 2 Genkopien/mL 1.815-04 n.b. 1.000+03 4.535+03 n.b. n.b. 1.545+04 n.b. n.b. 4.86 3 2 Genkopien/mL 1.025+04 n.b. 1.650+04 n.b.	16S												
1 2 Genkopien/mL 1.11E+04 n.b. 2.71E+03 1.74E+04 n.b. n.b. 7.80E+03 n.b. n.b. 1.54E+04 n.b. n.b. eBG 3 2 Genkopien/mL 1.02E+04 n.b.	Zulauf	2	Genkopien/mL	5,74E+04	n.b.	1,80E+03	1,31E+03	n.b.	n.b.	2,82E+04	n.b.	n.b.	9,44E+02
2 CenkopienML 1.161-04 n.b. 7.71E+03 1.72E+04 n.b. n.b. 1.54E+04 n.b. n	1	2	Genkopien/mL	1,81E+04	n.b.	1,09E+03	4,53E+03	n.b.	n.b.	6,50E+03	n.b.	n.b.	<bg< td=""></bg<>
3 2 Genkopien/mL 4,02E+04 n.b. 7,30E+03 n.b. n.b. 5,99E+04 n.b. n.b. 6,99E+04 n.b. n.b. 1,95E+04 n.b. n.b. 6,22E+03 S 2 Genkopien/mL 5,05E+04 n.b. 1,16E+03 n.b. n.b. 1,30E+04 n.b. n.b. 48G Ablauf 2 Genkopien/mL 5,05E+01 n.b. 1,42E+03 n.b. n.b. 1,77E+04 n.b. n.b. 2,82E Zulauf 2 Genkopien/mL 5,06E+01 n.b. 7,11E+01 3,41E+03 n.b. n.b. 1,72E+03 n.b. n.b. 2,86E 3 2 Genkopien/mL 1,02E+03 n.b. 3,05E+02 1,31E+02 n.b. n.b. 1,02E+02 n.b. n.b. 1,02E+02 n.b. 1,04E+03 n.b. 1,02 4 2 Genkopien/mL 4,86E n.b. n.b. n.b. n.b. 1,02 1,02 0,05E+02 n.b. n.b. 1,02 1,02	2	2	Genkopien/mL	1,11E+04	n.b.	2,71E+03	1,74E+04	n.b.	n.b.	1,54E+04	n.b.	n.b.	<bg< td=""></bg<>
4 2 Genkopien/mL 102E+04 n.b. 149E+04 n.b. 149E+04 n.b. 150E+04 n.b. 42E+03 n.b. 150E+04 n.b. 42E+03 n.b. 150E+04 n.b. 42E Zulauf 2 Genkopien/mL 30E+01 n.b. 78G n.b. n.b. 1.77E+04 n.b. n.b. 7.8E 2 Genkopien/mL 5,08E+01 n.b. 7.11E+01 3.41E+03 n.b. 1.22E+04 n.b. n.b. n.b. 7.8E 3 2 Genkopien/mL 5,08E+01 n.b. 0.51E+02 1.61E+03 n.b. n.b. 1.22E+04 n.b. n.b. n.b. 4.8G 3 2 Genkopien/mL 5,08E+01 n.b. n.b. 1.50E+02 n.b. n.b. n.b. n.b. n.b. n.b. 1.52E+02 n.b.	3	2	Genkopien/mL	4,36E+03	n.b.	7,30E+03	1,02E+03	n.b.	n.b.	5,99E+03	n.b.	n.b.	<bg< td=""></bg<>
5 2 Genkopien/mL 5,08E+04 n.b. 1,19E+03 4,8E+03 n.b. 1,07E+04 n.b. n.b. 4BG OTUI Zulauf 2 Genkopien/mL 3,08E+01 n.b. ~8G ~8G n.b. n.	4	2	Genkopien/mL	1,02E+04	n.b.	1,66E+04	1,21E+03	n.b.	n.b.	1,95E+04	n.b.	n.b.	6,22E+02
Ablauf 2 Genkopien/mL 3,66E+04 n.b. <8B 8,18E+03 n.b. n.b. 1,77E+04 n.b. n.b. <8BG OTU 2 Genkopien/mL 5,06E+01 n.b. -711E+01 3,41E+03 n.b. 1,22E+03 n.b. n.b. 4,26E 2 Genkopien/mL 2,05E+01 n.b. 7,11E+01 3,41E+03 n.b. 1,22E+03 n.b. n.b. 2,08E+02 3 2 Genkopien/mL 5,06E+01 n.b. 7,21E+01 n.b. n.b. 2,02E+02 n.b. 1,22E+03 n.b. n.b. 8,05E+02 5 2 Genkopien/mL 5,86E+01 n.b. 1,88E+02 7,27E+01 n.b. n.b. 1,82E+03 n.b. n.b. n.b. 1,82E+02 7,2E+01 n.b. n.b. 1,82E+02 7,2E+01 n.b. n.b. 1,82E+03 n.b. n.b. n.b. n.b. n.b. n.b. 1,82E+03 n.b. n.b. n.b. 1,82E+02	5	2	Genkopien/mL	5,05E+04	n.b.	1,15E+03	4,45E+03	n.b.	n.b.	1,50E+04	n.b.	n.b.	<bg< td=""></bg<>
OTUI Zulauf 2 Genkopien/mL S0E n.b. <bg< th=""> N.b. N.B.</bg<>	Ablauf	2	Genkopien/mL	3,66E+04	n.b.	<bg< td=""><td>8,18E+03</td><td>n.b.</td><td>n.b.</td><td>1,77E+04</td><td>n.b.</td><td>n.b.</td><td><bg< td=""></bg<></td></bg<>	8,18E+03	n.b.	n.b.	1,77E+04	n.b.	n.b.	<bg< td=""></bg<>
Zulauf 2 Genkopien/mL 5/08+01 n.b. r.6G r.8G n.b. n.b. n.b. 1.22+04 n.b. n.b. r.48G 2 2 Genkopien/mL 2/75+03 n.b. 6,12+02 161+03 n.b. n.b. 1.72+03 n.b. 6,12 4 2 Genkopien/mL 1/95+03 n.b. 3,05+02 1.31+02 n.b. n.b. 2,08+02 n.b. n.b. 2,08+02 5 2 Genkopien/mL 5,38+01 n.b. 1,456+02 7,27+01 n.b. n.b. 1,525+03 n.b. n.b. n.b. 1,86+02 3,025+02 n.b. n.b. 1,825+02 n.b. n.b. 1,86+03 n.b. n.b. 1,86+03 n.b. n.b. 1,86+02 3,025+02 n.b. n.b. n.b. n.b. 1,86+02 3,05+03 n.b. n.b. n.b. n.b. 1,86 0,8 n.b. n.b. 1,86 0,8 n.b. 1,8 0,8 0,8 0,8 0,8	OTU1												
1 2 Genkopien/mL 2,05E+03 n.b. 7,11E+01 3,41E+03 n.b. 1,22E+04 n.b. n.b. 4,36 3 2 Genkopien/mL 1,96E+03 n.b. 6,13E+02 1,81E+02 n.b. n.b. 2,08E+02 4 2 Genkopien/mL 5,90E+02 n.b. 1,02E+02 n.b. n.b. 2,84E+02 n.b. n.b. 8,05E+02 5 2 Genkopien/mL 5,90E+02 n.b. 1,02 2,84E+02 n.b. n.b. 1,08 0,05E+02 n.b. n.b. 1,08 0,05E+02 n.b. n.b. 1,08 0,05E+02 n.b. n.b. n.b. n.b. 1,08 0,05E+02 n.b. n.b. n.b. 1,08 0,05E+02 n.b. n.b. n.b. 1,08 0,05 0,05E+02 n.b. n.b. n.b. <t< td=""><td>Zulauf</td><td>2</td><td>Genkopien/mL</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td></bg<></td></bg<></td></bg<></td></bg<></td></t<>	Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td></bg<>	n.b.	n.b.	2,15E+03
2 2 Genkopien/mL 2,75E+03 n.b. 6,13E+02 1,31E+03 n.b. n.b. n.b. 2,09E+02 n.b. n.b. 2,09E+02 n.b. n.b. 2,09E+02 n.b. n.b. 8,08E+02 4 2 Genkopien/mL 5,90E+01 n.b. 1,72E+02 5,02E+01 n.b. n.b. 2,24E+02 n.b. n.b. 1,81E+02 Ablauf 2 Genkopien/mL 6,48E+01 n.b. 1,88E+02 7,27E+01 n.b. n.b. <td>1</td> <td>2</td> <td>Genkopien/mL</td> <td>5,08E+01</td> <td>n.b.</td> <td>7,11E+01</td> <td>3,41E+03</td> <td>n.b.</td> <td>n.b.</td> <td>1,22E+04</td> <td>n.b.</td> <td>n.b.</td> <td><bg< td=""></bg<></td>	1	2	Genkopien/mL	5,08E+01	n.b.	7,11E+01	3,41E+03	n.b.	n.b.	1,22E+04	n.b.	n.b.	<bg< td=""></bg<>
3 2 Genkopien/mL 1.96E+03 n.b. 3.05E+02 n.b. n.b. 2.09E+02 n.b. 8.06E+02 4 2 Genkopien/mL 5.90E+02 n.b. 1.55 2.92E+03 n.b. n.b. 2.25E+03 n.b. n.b. 3.05E+02 n.b. n.b. 1.62E+03 n.b. 1.62E+03 n.b. n.b. 3.05E+02 n.b. n.b. n.b. 3.05E+02 n.b. n.b. 1.62E+03 n.b. 3.05E+02 n.b. n.b. 1.62E+03 n.b. 1.16E+03 n.b. 1.16E+03 n.b. 1.15E+02 n.b.	2	2	Genkopien/mL	2,75E+03	n.b.	6,13E+02	1,61E+03	n.b.	n.b.	1,72E+03	n.b.	n.b.	<bg< td=""></bg<>
4 2 Genkopien/mL 5,90E+02 n.b. 4,56E+02 5.02E+01 n.b. n.b. 2,24E+02 n.b. n.b. 8,16E+01 S 2 Genkopien/mL 5,38E+01 n.b. 1,72E+02 5.02E+02 n.b. n.b. 1,64E+03 n.b. n.b. 1,86E+02 7.27E+01 n.b.	3	2	Genkopien/mL	1,96E+03	n.b.	3,05E+02	1,31E+02	n.b.	n.b.	2,09E+02	n.b.	n.b.	2,08E+03
5 2 Genkopien/mL 5,38E+01 n.b. 1,72E+02 5,02E+02 n.b. n.b. 2,52E+03 n.b. n.b. n.b. 3,08E+02 Ablauf 2 Genkopien/mL 6,48E+01 n.b.	4	2	Genkopien/mL	5,90E+02	n.b.	4,56E+02	5,02E+01	n.b.	n.b.	2,84E+02	n.b.	n.b.	8,16E+02
Abiauf 2 Genkopien/mL 6,48E+01 n.b. 1,88E+02 7,27E+01 n.b. n.b. 1,84E+03 n.b. n.b. n.b. Zulauf 2 Genkopien/mL 4BG n.b.	5	2	Genkopien/mL	5,38E+01	n.b.	1,72E+02	5,02E+02	n.b.	n.b.	2,52E+03	n.b.	n.b.	3,05E+03
amoA Zulauf 2 Genkopien/mL N.b. N.b. <td>Ablauf</td> <td>2</td> <td>Genkopien/mL</td> <td>6,48E+01</td> <td>n.b.</td> <td>1,88E+02</td> <td>7,27E+01</td> <td>n.b.</td> <td>n.b.</td> <td>1,64E+03</td> <td>n.b.</td> <td>n.b.</td> <td>1,18E+03</td>	Ablauf	2	Genkopien/mL	6,48E+01	n.b.	1,88E+02	7,27E+01	n.b.	n.b.	1,64E+03	n.b.	n.b.	1,18E+03
Zulauf 2 Genkopien/mL eBG n.b.	amoA												
1 2 Genkopien/mL < Rb. nb. nb.<	Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2 2 Genkopien/mL 1,16E+02 n.b.	1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>9,55E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	9,55E+02	n.b.	n.b.	n.b.
3 2 Genkopien/mL <bg< td=""> n.b. n.b.<td>2</td><td>2</td><td>Genkopien/mL</td><td>1,16E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>9,65E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	2	2	Genkopien/mL	1,16E+02	n.b.	n.b.	n.b.	n.b.	n.b.	9,65E+02	n.b.	n.b.	n.b.
4 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5 2 Genkopien/mL 3,90E+04 n.b. n.b. <td>4</td> <td>2</td> <td>Genkopien/mL</td> <td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<></td>	4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf 2 Genkopien/mL <bg< th=""> n.b. n.b.</bg<>	5	2	Genkopien/mL	3,90E+04	n.b.	n.b.	n.b.	n.b.	n.b.	8,72E+03	n.b.	n.b.	n.b.
amoB Zulauf 2 Genkopien/mL SBG n.b. n.b. n.b. n.b. n.b. sBG n.b.	Ablauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>6,48E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	6,48E+01	n.b.	n.b.	n.b.
Zulauf 2 Genkopien/mL <bg< th=""> n.b. n.b.</bg<>	amoB												
1 2 Genkopien/mL <8G	Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2 2 Genkopien/mL 1,10E+02 n.b.	1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,44E+03</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	1,44E+03	n.b.	n.b.	n.b.
3 2 Genkopien/mL <bg< th=""> n.b. n.b. n.b. n.b. sBG n.b. <th< td=""><td>2</td><td>2</td><td>Genkopien/mL</td><td>1,10E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>5,75E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></th<></bg<>	2	2	Genkopien/mL	1,10E+02	n.b.	n.b.	n.b.	n.b.	n.b.	5,75E+01	n.b.	n.b.	n.b.
4 2 Genkopien/mL <8G	3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf 2 Genkopien/mL 1,29E+03 n.b. n.b. n.b. n.b. 6,35E+01 n.b. n.b. </td <td>5</td> <td>2</td> <td>Genkopien/mL</td> <td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>7,17E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td>	5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>7,17E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	7,17E+01	n.b.	n.b.	n.b.
amoC Zulauf 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	Ablauf	2	Genkopien/mL	1,29E+03	n.b.	n.b.	n.b.	n.b.	n.b.	6,35E+01	n.b.	n.b.	n.b.
Zulauf 2 Genkopien/mL <bg< th=""> n.b. n.b.</bg<>	amoC												
1 2 Genkopien/mL <bg< td=""> n.b. n.b. n.b. n.b. n.b. n.b. 2.27E+03 n.b. n.b.</bg<>	Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,27E+03</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	2,27E+03	n.b.	n.b.	n.b.
3 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	2	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
4 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf 2 Genkopien/mL <bg< th=""> n.b. n.b. n.b. n.b. <bg< th=""> n.b. n.b.</bg<></bg<>	5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
hdlh5 Zulauf 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	Ablauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Zulauf 2 Genkopien/mL n.b.	hdlh5												
1 2 Genkopien/mL <bg< td=""> n.b. n.b.</bg<>	Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2 2 Genkopien/mL 1,29E+02 n.b.	1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>7.35E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	7.35E+02	n.b.	n.b.	n.b.
3 2 Genkopien/mL Genkopien/mL	2	2	Genkopien/ml	1.29E+02	n.b.	n.b.	n.b.	n.b.	n.b.	6.22E+01	n.b.	n.b.	n.b.
4 2 Genkopien/mL BG n.b. n.b	3	2	Genkopien/ml	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5 2 Genkopien/mL <bg 1,82e+02="" n.b.="" n.b.<br="">Ablauf 2 Genkopien/mL <bg 1.26e+02="" n.b.="" n.b.<="" td=""><td>4</td><td>2</td><td>Genkopien/mL</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<></td></bg></bg>	4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf 2 Genkopien/mL <bg 1.26e+02="" n.b.="" n.b.<="" td=""><td>5</td><td>2</td><td>Genkopien/mL</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,82E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg>	5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,82E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	1,82E+02	n.b.	n.b.	n.b.
	Ablauf	2	Genkopien/ml	<bg< td=""><td>n b</td><td>n b</td><td>n.b</td><td>n.b</td><td>n b</td><td>1.26F+02</td><td>n.b</td><td>n b</td><td>n b</td></bg<>	n b	n b	n.b	n.b	n b	1.26F+02	n.b	n b	n b

 Tabelle 8-93:
 Molekularbiologischen Parameter der Säule S 3.

	BG											
Dauer		12	13	14	15	16	17	18	19	20	22	25
PCR												
16S												
Zulauf	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,21E+03</td><td>n.b.</td><td>n.b.</td><td>3,92E+02</td></bg<>	n.b.	n.b.	n.b.	n.b.	1,21E+03	n.b.	n.b.	3,92E+02
1	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,61E+03</td><td>n.b.</td><td>n.b.</td><td>1,61E+03</td></bg<>	n.b.	n.b.	n.b.	n.b.	2,61E+03	n.b.	n.b.	1,61E+03
2	2	n.b.	n.b.	6,46E+03	n.b.	n.b.	n.b.	n.b.	2,93E+03	n.b.	n.b.	1,93E+03
3	2	n.b.	n.b.	1,19E+03	n.b.	n.b.	n.b.	n.b.	2,46E+03	n.b.	n.b.	4,51E+03
4	2	n.b.	n.b.	7,94E+02	n.b.	n.b.	n.b.	n.b.	4,04E+03	n.b.	n.b.	3,72E+03
5	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,44E+03</td><td>n.b.</td><td>n.b.</td><td>9,80E+03</td></bg<>	n.b.	n.b.	n.b.	n.b.	2,44E+03	n.b.	n.b.	9,80E+03
Ablauf	2	n.b.	n.b.	1,56E+03	n.b.	n.b.	n.b.	n.b.	2,78E+03	n.b.	n.b.	3,91E+03
OTU1												
Zulauf	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
1	2	n.b.	n.b.	9,60E+02	n.b.	n.b.	n.b.	n.b.	2,63E+02	n.b.	n.b.	7,33E+03
2	2	n.b.	n.b.	2,70E+03	n.b.	n.b.	n.b.	n.b.	8,01E+02	n.b.	n.b.	2,57E+03
3	2	n.b.	n.b.	3,98E+03	n.b.	n.b.	n.b.	n.b.	1,84E+03	n.b.	n.b.	2,66E+03
4	2	n.b.	n.b.	3,85E+03	n.b.	n.b.	n.b.	n.b.	2,35E+03	n.b.	n.b.	4,85E+02
5	2	n.b.	n.b.	2.69E+03	n.b.	n.b.	n.b.	n.b.	5.33E+02	n.b.	n.b.	8.27E+03
Ablauf	2	n.b.	n.b.	4.42E+03	n.b.	n.b.	n.b.	n.b.	2.45E+03	n.b.	n.b.	7.17E+03
amoA				,					,			,
Zulauf	2	n.b.	n.b.	4.76E+02	n.b.	n.b.	n.b.	n.b.	1.12E+03	n.b.	n.b.	n.b.
1	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>6.35E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	6.35E+02	n.b.	n.b.	n.b.
2	2	n.b.	n.b.	5,88E+02	n.b.	n.b.	n.b.	n.b.	1,73E+03	n.b.	n.b.	n.b.
3	2	n.b.	n.b.	6.21E+01	n.b.	n.b.	n.b.	n.b.	2.67E+03	n.b.	n.b.	n.b.
4	2	n.b.	n.b.	7.46E+01	n.b.	n.b.	n.b.	n.b.	9.96E+02	n.b.	n.b.	n.b.
5	2	n.b.	n.b.	6.95E+02	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	2	n.b.	n.b.	2.03E+03	n.b.	n.b.	n.b.	n.b.	8.66E+02	n.b.	n.b.	n.b.
amoB				,					-,			
Zulauf	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
1	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
3	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
4	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4.88E+01	n.b.	n.b.	n.b.
amoC									,			
Zulauf	2	n.b.	n.b.	7.34E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
1	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
3	2	n.b.	n.b.	5.84E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
4	2	n.b.	n.b.	7.42E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5	2	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	- 2	n b	nb	1.56E+02	nb	nb	nb	n b	7 18E+01	nb	nb	n b
hdih5	-			.,002 02					.,			
Zulauf	2	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b
1	2	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b
2	2	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b	n b
- 3	2	n.b.	n.b.	n,b.	n.b.	n.b.	n,b.	n.b.	n.b.	n.b.	n.b.	n.b.
4	2	n.b.	n.b.	n,b.	n.b.	n.b.	n,b.	n.b.	n.b.	n.b.	n.b.	n.b.
5	2	n.b.	n.b.	n,b.	n.b.	n.b.	n,b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ablauf	2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

	BG	Einheit											
Dauer		Wochen	1	2	3	5	6	7	8	9	10	11	12
Sauerstoff				-				,					
Zulauf		mg/L	7,38	8,09	8,16	8.55	8,56	8,44	8,43	8,11	8,01	8,31	n.b.
1	-	mg/L	7,78	7,95	8,23	8,38	7,99	8,60	7,91	7,93	7,10	7,72	6,30
2		mg/L	7,22	7,46	7,93	7,88	7,76	7,31	7,10	8,13	6,56	7,47	6,13
3	-	ma/L	7.16	7.44	7.26	7.42	7.24	7.28	6.82	7.05	7.13	7.47	5.54
4	-	ma/L	8.16	6.94	7.25	7.24	6.33	6.65	6.83	7.34	7.01	7.15	5.02
5		ma/L	6.97	7.05	6.39	6.73	5.96	5.69	5.56	6.57	6.61	6.80	4.57
Ablauf		ma/L	6.06	6.94	4.81	6.50	2,99	5.41	2.01	3.64	4.31	4.35	3,73
			0,00	0,01	1,01	0,00	2,00	0,11	2,01	0,01	1,01	1,00	0,10
Zulouf		_	748	7.46	7.51	7 50	7 4 1	7 35	nh	7 22	7 09	7 14	nb
201801	-	-	7.45	7.44	7.4.4	7,50	7.43	7.28	7 17	7 14	7,00	7,14	n.b.
1	-		7,45	7.94	7,44	7,51	7,43	7,20	7,17	7,14	7,07	7,10	n.b.
2	-	-	7,30	7,34	7,37	7,33	7,32	7,20	7,10	7,10	7,04	7,07	n.b.
3	-	-	7,31	7,22	7,23	7,30	7,20	7,14	7,07	7,06	7,08	7,04	n.b.
4	-	-	7,33	7,41	0,87	7,18	7,03	7,07	7,18	7,04	7,06	7,04	n.b.
5	-	-	7,25	7,37	7,12	7,10	7,03	6,97	7,08	7,13	7,02	7,01	n.b.
Ablauf	-	-	7,33	7,43	7,11	7,11	6,90	6,83	6,85	6,93	6,86	6,88	n.b.
Temperatur	r												
Zulauf	-	°C	20,2	20,7	20,8	18,6	19,3	18,7		18,9	19,8	19,8	n.b.
1	-	°C	20,2	20,6	20,2	18,5	19,2	19,1	19,3	19,1	19,7	19,6	n.b.
2	-	°C	20,4	20,2	20,0	18,9	19,3	18,6	19,6	19,3	20,9	19,5	n.b.
3	-	°C	20,5	19,9	20,1	19,5	19,4	18,5	19,7	19,6	19,3	19,5	n.b.
4	-	°C	20,1	19,1	20,3	19,5	20,6	19,2	20,1	19,3	20,0	19,7	n.b.
5	-	°C	20,1	19,5	19,6	20,0	20,2	19,1	19,4	18,9	20,3	20,2	n.b.
Ablauf	-	°C	19,9	19,5	19,6	19,4	20,1	18,9	19,5	19,3	20,7	19,3	n.b.
CE													
TCE													
Zulauf	0,0007	mg/L	22,3269	22,5987	21,6105	22,9009	20,4311	18,8387	18,2597	18,3636	20,5497	21,2084	n.b.
1	0,0007	mg/L	21,7962	21,9436	21,7274	22,5229	18,9292	17,1317	16,8505	16,7535	18,0592	18,9463	n.b.
2	0,0007	mg/L	20,6036	19,7715	20,4816	20,2416	15,1541	14,4687	14,1700	14,8689	16,3412	17,3575	n.b.
3	0,0007	mg/L	20,3979	16,9719	16,6990	17,0661	13,3984	12,6361	12,8305	14,0337	14,4782	17,4688	n.b.
4	0,0007	ma/L	21,6494	16,5882	14,7803	14,7410	11,3430	9,9168	12,1073	12,9253	14,2010	15,2400	n.b.
5	0,0007	ma/L	18,1925	17.2612	12.6690	11.5292	7,0296	5,4063	8,7723	12.3781	13.0254	12.4632	n.b
Ablauf	0.0007	mo/l	4.6873	16,7429	12.0149	10.6755	4,7676	1,4501	4.3528	8,7816	10.5400	10.2691	n b
Anionen	0,0001	g/⊏ mo/l	.,3070		. 2,5 145	,	.,. 070	.,	1,0020	5,. 510	.0,0400		
Chlorid		g/⊏ mc/l											
Zulouf	10	mg/⊑	16.1	16.5	16.1	17 2	15.8	14.8	15.6	15.7	16.1	15.5	nb
∠uiaul 1	1,0	mg/L	17.4	10,0	16.2	17.0	16.0	16.2	16.5	17 5	16.0	17.0	n.J.
1	1,0	mg/L	16.2	17.0	17.6	10.6	10,0	10,3	10,0	10.4	10,9	17.4	n.D.
2	1,0	ing/L	10,3	17,8	0,11	19,0	17,5	10,2	10,7	10,4	17,5	17,4	a.n
3	1,0	mg/L	1/,/	20,2	20,0	21,2	18,8	19,7	19,8	19,6	18,4	18,4	n.b.
4	1,0	mg/L	18,1	20,6	21,5	23,0	21,4	21,8	22,7	19,6	19,3	19,9	n.b.
5	1,0	mg/L	17,8	20,1	23,1	23,8	24,6	25,8	22,9	20,9	19,8	20,9	n.b.
Ablauf	1,0	mg/L	20,0	19,4	23,9	24,0	27,1	29,5	26,5	22,3	21,5	22,9	n.b.
Nitrit													
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td>75,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>75,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>75,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	75,0	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
Nitrat		5	-	-	-		-	-	-	-	-	-	
Zulauf	1.0	ma/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3.7</td><td>3.7</td><td>3.8</td><td>3.8</td><td>3.9</td><td>3,6</td><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3.7</td><td>3.7</td><td>3.8</td><td>3.8</td><td>3.9</td><td>3,6</td><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3.7</td><td>3.7</td><td>3.8</td><td>3.8</td><td>3.9</td><td>3,6</td><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>3.7</td><td>3.7</td><td>3.8</td><td>3.8</td><td>3.9</td><td>3,6</td><td>n.b.</td></bg<>	3.7	3.7	3.8	3.8	3.9	3,6	n.b.
1	1.0	g/⊏ ma/l	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>37</td><td>4.0</td><td>3.3</td><td>39</td><td>4.0</td><td>4.5</td><td>n b</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>37</td><td>4.0</td><td>3.3</td><td>39</td><td>4.0</td><td>4.5</td><td>n b</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>37</td><td>4.0</td><td>3.3</td><td>39</td><td>4.0</td><td>4.5</td><td>n b</td></bg<></td></bg<>	<bg< td=""><td>37</td><td>4.0</td><td>3.3</td><td>39</td><td>4.0</td><td>4.5</td><td>n b</td></bg<>	37	4.0	3.3	39	4.0	4.5	n b
2	10	g/⊏ mc/l	<rg< td=""><td><rg< td=""><td><bg< td=""><td><rg< td=""><td>3.4</td><td>37</td><td>37</td><td>3.6</td><td>3.8</td><td>3.5</td><td>n b</td></rg<></td></bg<></td></rg<></td></rg<>	<rg< td=""><td><bg< td=""><td><rg< td=""><td>3.4</td><td>37</td><td>37</td><td>3.6</td><td>3.8</td><td>3.5</td><td>n b</td></rg<></td></bg<></td></rg<>	<bg< td=""><td><rg< td=""><td>3.4</td><td>37</td><td>37</td><td>3.6</td><td>3.8</td><td>3.5</td><td>n b</td></rg<></td></bg<>	<rg< td=""><td>3.4</td><td>37</td><td>37</td><td>3.6</td><td>3.8</td><td>3.5</td><td>n b</td></rg<>	3.4	37	37	3.6	3.8	3.5	n b
~	1.0	mg/⊑	-00	-DG	-DG	-00	30	3.4	3.2	3.0	3.4	4.0	n.v.
3	1,0	mg/L	<bg< td=""><td><8G</td><td>SBG</td><td><8G</td><td>3,8 2 4</td><td>3,4</td><td>3,3</td><td>3,0</td><td>3,4</td><td>4,2</td><td>n.D.</td></bg<>	<8G	SBG	<8G	3,8 2 4	3,4	3,3	3,0	3,4	4,2	n.D.
4	1,0	mg/L	<bg< td=""><td><8G</td><td>SBG</td><td><8G</td><td>3,1</td><td>3,1</td><td>3,2</td><td>4,0</td><td>3,5</td><td>3,5</td><td>n.D.</td></bg<>	<8G	SBG	<8G	3,1	3,1	3,2	4,0	3,5	3,5	n.D.
5	1,0	mg/L	<bg< td=""><td><8G</td><td><bg< td=""><td><bg< td=""><td>3,1</td><td>3,4</td><td>3,5</td><td>3,9</td><td>3,3</td><td>3,8 0 7</td><td>n.D.</td></bg<></td></bg<></td></bg<>	<8G	<bg< td=""><td><bg< td=""><td>3,1</td><td>3,4</td><td>3,5</td><td>3,9</td><td>3,3</td><td>3,8 0 7</td><td>n.D.</td></bg<></td></bg<>	<bg< td=""><td>3,1</td><td>3,4</td><td>3,5</td><td>3,9</td><td>3,3</td><td>3,8 0 7</td><td>n.D.</td></bg<>	3,1	3,4	3,5	3,9	3,3	3,8 0 7	n.D.
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>3,5</td><td>4,0</td><td>3,7</td><td>3,5</td><td>3,9</td><td>3,7</td><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>3,5</td><td>4,0</td><td>3,7</td><td>3,5</td><td>3,9</td><td>3,7</td><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>3,5</td><td>4,0</td><td>3,7</td><td>3,5</td><td>3,9</td><td>3,7</td><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>3,5</td><td>4,0</td><td>3,7</td><td>3,5</td><td>3,9</td><td>3,7</td><td>n.b.</td></bg<>	3,5	4,0	3,7	3,5	3,9	3,7	n.b.
Phosphat					_	_	_		_	_	_	_	
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td></bg<>	n.b.
Sulfat													
Zulauf	1,0	mg/L	31,4	31,2	30,4	30,3	26,7	25,2	27,4	26,5	27,0	27,9	n.b.
1	1.0	ma/L	33.7	31.2	30.7	29.9	26.1	25.6	27.4	27.2	27.5	28.4	n.b.
2	1.0	ma/L	30.0	31.1	31.0	30.0	25.6	25.2	27.5	26.8	26.6	18.3	n.b.
3	1.0	ma/l	30.8	31.2	30.9	30.0	25.9	25.3	27.5	26.8	26.9	29.0	n b
	.,0		00,0	ے, ب	00,0	00,0	20,0	-0,0	2.,0	20,0	-0,0	20,0	

25,7

26,2

26,9

25,4

26,3

25,8

29,9

31,3

31,3

26,2

26,2

25,9

25,5

25,4

26,3

26,9

27,1

27,1

29,5

28,2

27,2

n.b.

n.b.

n.b.

1,0

1,0

1,0

4

5

Ablauf

mg/L

mg/L

mg/L

31,7

31,9

32,1

30,7

31,8

31,3

33,0

34,5

39,1

Tabelle 8-94:Physikalisch/chemischeParameterderSäuleS 4.AbeinerVersuchsdauervon16 Wochen wurde Medium auf Höhe von 41 cm extrahiert und auf Höhe von 11 cm wieder zugeführt.

	PC	Finhoit										
Dauer	BG	Einheit	13	14	15	16	17	18	19	20	22	25
Sauerstoff			13	14	15	10		10	15	20		25
Zulauf		ma/L	8,04	8,05	6.06	6.00	6,95	4,28	7,70	7,48	7,43	7.32
1	-	mg/L	7.10	7.67	2.44	4.87	n.b.	-,20 n.b.	6.33	7,34	7,67	7.40
2		ma/l	6.93	7.20	2.65	2.61	n.b	n.b	3.53	5.40	4.16	3.75
2	-	ma/L	5,79	7.08	2,95	2,59	3,15	n,b.	3,56	5,81	4,20	3,95
4	-	mg/L	7 23	6.64	3.08	3.66	n.h	n b	4.37	4 56	3.80	3.66
+ 5		mg/L	6 15	5.94	3 13	3 50	n.b.	n.b.	3,87	4,30	413.00	3 4 3
Ablauf	-	mg/L	3.40	3,60	0.05	0.00	1.26	0.02	2.23	4,71	413,00	1.60
Ablaul	-	mg/L	3,40	3,09	0,05	0,00	1,20	0,02	2,23	0,60	1,14	1,09
рн			7.00	7.00	7.05	7.04	7.40	7.00	7.00	7.04	7.00	754
Zulaul	-	-	7,30	7,30	7,30	7,34	7,40 n.h	7,30	7,30	7,21	7,32	7,04
1	-		7,39	7,28	7,27	7,34	n.b.	n.b.	7,38	7,19	7,32	7,39
2	-	•	7,27	7,25	7,17	7,22	n.b.	n.b.	7,01	6,92	6,97	7,02
3	-	•	7,11	7,17	7,15	7,31	7,24	n.b.	7,16	6,87	6,90	7,05
4	-	-	7,10	7,10	7,17	7,27	n.b.	n.b.	7,14	7,02	6,92	6,93
5	-	-	6,96	7,04	7,15	7,25	n.b.	n.b.	7,06	6,89	6,89	6,92
Ablauf	-	-	6,79	6,93	7,16	7,18	7,15	7,21	7,02	6,76	6,80	6,86
Temperatu	ır											
Zulauf	-	°C	21,0	20,4	21,4	21,7	21,7	21,6	21,6	20,2	21,9	21,4
1	-	°C	21,7	19,6	21,2	20,9	n.b.	n.b.	20,6	20,2	21,3	21,4
2	-	°C	22,8	19,9	21,0	21,7	n.b.	n.b.	20,1	20,3	21,3	21,3
3	-	°C	13,3	18,9	23,3	21,7	22,9	n.b.	20,8	19,7	20,7	20,9
4	-	°C	20,3	20,5	20,5	21,1	n.b.	n.b.	20,9	20,6	21,1	21,0
5	-	°C	20,3	20,1	20,9	21,4	n.b.	n.b.	20,2	20,5	21,4	21,0
Ablauf	-	°C	20,4	20,1	21,1	21,1	21,4	22,1	21,0	20,5	21,4	22,2
CE												
TCE				-			-	-				
Zulauf	0,0007	mg/L	19,3507	20,6142	17,8984	17,3144	16,4732	18,7202	17,6083	18,2086	17,7245	16,9266
1	0,0007	mg/L	16,5424	18,2628	16,7008	17,0306	n.b.	n.b.	16,9007	18,5729	16,5627	15,7176
2	0,0007	mg/L	16,7940	16,7200	10,9594	15,0189	n.b.	n.b.	6,4711	5,1161	1,1765	3,5236
3	0,0007	mg/L	14,7983	14,8244	9,8103	14,1978	14,6704	n.b.	6,3723	0,1343	0,4458	0,4952
4	0,0007	mg/L	12,1384	13,3185	8,7119	13,4878	n.b.	n.b.	9,4873	0,6781	0,0141	0,0250
5	0,0007	mg/L	10,5034	11,8150	9,4093	14,9418	n.b.	n.b.	8,2521	0,2619	0,0564	0,1596
Ablauf	0,0007	mg/L	7,9414	8,2245	6,1534	16,8255	13,3527	16,8281	10,2556	1,4413	3,8956	3,5580
Anionen		mg/L										
Chlorid		mg/L										
Zulauf	1,0	mg/L	15,2	15,4	16,2	19,2	19,5	15,5	17,9	15,6	14,1	15,0
1	1,0	mg/L	15,9	16,4	16,3	19,6	n.b.	n.b.	18,2	15,6	15,2	15,8
2	1.0	mg/L	17.2	17.5	18.3	18.1	n.b.	n.b.	27.9	25.5	25.8	24.2
3	1.0	mg/L	19.3	19.8	19.3	18.1	19.4	n.b.	27.2	27.7	26.2	25.2
4	1.0	ma/l	19.7	19.2	19.3	16.9	n.b	n.b	20.0	26.4	26.1	26.5
5	1.0	ma/l	21.6	21.0	19.2	18.4	n.b	n.b	21.0	27.7	27.3	26.0
Ablauf	10	ma/l	24.1	22.4	17.6	17.8	21.8	16.5	19.0	27.2	25.3	25.0
Nitrit	.,0	g/⊏	- *, I	,-	,0	,0	2.,0	. 5,5	. 5,0	£ . ,£	20,0	20,0
Zulauf	1.0	ma/l	<rg< td=""><td><rg< td=""><td><bg< td=""><td><bg< td=""><td><rg< td=""><td><bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<></td></rg<></td></bg<></td></bg<></td></rg<></td></rg<>	<rg< td=""><td><bg< td=""><td><bg< td=""><td><rg< td=""><td><bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<></td></rg<></td></bg<></td></bg<></td></rg<>	<bg< td=""><td><bg< td=""><td><rg< td=""><td><bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<></td></rg<></td></bg<></td></bg<>	<bg< td=""><td><rg< td=""><td><bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<></td></rg<></td></bg<>	<rg< td=""><td><bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<></td></rg<>	<bg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<></td></bg<>	<rg< td=""><td><rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<></td></rg<>	<rg< td=""><td><rg< td=""><td><rg< td=""></rg<></td></rg<></td></rg<>	<rg< td=""><td><rg< td=""></rg<></td></rg<>	<rg< td=""></rg<>
∠uiaUI 1	1.0	mg/L	<bg< td=""><td><bc< td=""><td><bc< td=""><td><bc< td=""><td>n h</td><td>n h</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bg<></td></bc<></td></bc<></td></bc<></td></bg<>	<bc< td=""><td><bc< td=""><td><bc< td=""><td>n h</td><td>n h</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bg<></td></bc<></td></bc<></td></bc<>	<bc< td=""><td><bc< td=""><td>n h</td><td>n h</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bg<></td></bc<></td></bc<>	<bc< td=""><td>n h</td><td>n h</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bg<></td></bc<>	n h	n h	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<>	<bg< td=""><td><bc< td=""></bc<></td></bg<>	<bc< td=""></bc<>
2	1.0	ma/l	36	-00	-00	-00	n.v.	n.b.	-00	-00	-00	-00
2	1,0	mg/L	3,0 <bc< td=""><td>~BG</td><td>~BG</td><td>~BG</td><td>11.D.</td><td>n.b.</td><td>~DG</td><td>~DG</td><td>~BG</td><td></td></bc<>	~BG	~BG	~BG	11.D.	n.b.	~DG	~DG	~BG	
3	1,0	mc/	-00	~00	-00	-00	~00	n.u.	~00	~00	~00	-00
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Nitrat												
Zulauf	1,0	mg/L	3,6	3,7	3,6	3,8	3,4	3,5	8,7	4,2	4,0	4,0
1	1,0	mg/L	4,1	3,1	<bg< td=""><td>4,0</td><td>n.b.</td><td>n.b.</td><td>9,9</td><td>3,6</td><td>3,9</td><td>3,4</td></bg<>	4,0	n.b.	n.b.	9,9	3,6	3,9	3,4
2	1,0	mg/L	<bg< td=""><td>3,7</td><td><bg< td=""><td>4,6</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	3,7	<bg< td=""><td>4,6</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	4,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3	1,0	mg/L	4,0	4,2	<bg< td=""><td><bg< td=""><td>2,5</td><td>n.b.</td><td>10,3</td><td>4,2</td><td>4,1</td><td>4,1</td></bg<></td></bg<>	<bg< td=""><td>2,5</td><td>n.b.</td><td>10,3</td><td>4,2</td><td>4,1</td><td>4,1</td></bg<>	2,5	n.b.	10,3	4,2	4,1	4,1
4	1,0	mg/L	3,2	3,0	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>3,5</td><td>4,2</td><td>3,4</td><td>4,3</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td>3,5</td><td>4,2</td><td>3,4</td><td>4,3</td></bg<>	n.b.	n.b.	3,5	4,2	3,4	4,3
5	1,0	mg/L	3,8	3,5	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>3,3</td><td>3,2</td><td>4,8</td><td>3,5</td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td>3,3</td><td>3,2</td><td>4,8</td><td>3,5</td></bg<>	n.b.	n.b.	3,3	3,2	4,8	3,5
Ablauf	1,0	mg/L	3,6	3,2	<bg< td=""><td><bg< td=""><td>2,8</td><td>3,2</td><td>4,0</td><td>2,9</td><td>3,9</td><td>4,1</td></bg<></td></bg<>	<bg< td=""><td>2,8</td><td>3,2</td><td>4,0</td><td>2,9</td><td>3,9</td><td>4,1</td></bg<>	2,8	3,2	4,0	2,9	3,9	4,1
Phosphat												
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>2,0</td><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>2,0</td><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>2,0</td><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>2,0</td><td><bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,0	<bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	3,5	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td>3,5</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	3,5	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	mg/L	25,5	1,9	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>1,9</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td>1,9</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	1,9	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	mg/L	<bg< td=""><td><bg< td=""><td>6,5</td><td><bg< td=""><td>1,3</td><td>n.b.</td><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>6,5</td><td><bg< td=""><td>1,3</td><td>n.b.</td><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	6,5	<bg< td=""><td>1,3</td><td>n.b.</td><td>2,1</td><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	1,3	n.b.	2,1	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
4	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
5	1.0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
- Ablauf	1.0	ma/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>1.3</td><td>2.5</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	1.3	2.5	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulfat	.,0		.50	.50	.50	.50	.50	.50	.,0	2,0	.50	.00
Zulouf	10	ma/l	25.3	26.5	26.5	35.4	35.8	26.7	33.4	24 9	27 8	28.7
∠uiaŭĭ 1	1,0	mg/L	20,0	20,0	20,0	35,4 35 3	JU,0	20,1	32,4	24,9	21,0	20,1
1	1,0	mg/L	∠ວ,ŏ	20,0	20,0	35,3	n.D.	n.D.	32,2	24,9	21,1	∠8,4
2	1,0	mg/L	U,0	26,3	26,7	29,8	n.b.	n.b.	35,7	26,0	27,9	27,0
3	1,0	mg/L	26,0	26,0	28,1	30,3	33,9	n.b.	37,8	25,8	28,4	26,5
4	1,0	mg/L	25,7	25,7	26,8	27,3	n.b.	n.b.	26,5	24,7	28,1	27,3
5	1,0	mg/L	26,8	25,9	26,0	29,7	n.b.	n.b.	25,4	25,6	28,7	27,1
Ablauf	1,0	mg/L	26,3	25,5	27,8	27,4	35,5	27,4	22,4	25,1	28,4	26,8

	BG	Finheit											
Dauer	50	Wochen	1	2	3	5	6	7	8	9	10	11	12
PCR			•	-		•	•	•	•	•		••	
165													
Zulauf	2	Genkopien/mL	5.74E+04	n.b.	1.80E+03	1.31E+03	n.b.	n.b.	2.82E+04	n.b.	n.b.	9.44E+02	n.b.
1	2	Genkopien/mL	1.81E+04	n.b.	1.09E+03	4.53E+03	n.b.	n.b.	6.50E+03	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
2	2	Genkopien/mL	1.11E+04	n.b.	2.71E+03	1.74E+04	n.b.	n.b.	1.54E+04	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
3	2	Genkopien/mL	4.36E+03	n.b.	7.30E+03	1.02E+03	n.b.	n.b.	5.99E+03	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
4	2	Genkopien/mL	1,02E+04	n.b.	1,66E+04	1,21E+03	n.b.	n.b.	1,95E+04	n.b.	n.b.	6,22E+02	n.b.
5	2	Genkopien/mL	5,05E+04	n.b.	1,15E+03	4,45E+03	n.b.	n.b.	1,50E+04	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
Ablauf	2	Genkopien/mL	3,66E+04	n.b.	<bg< td=""><td>8,18E+03</td><td>n.b.</td><td>n.b.</td><td>1,77E+04</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td></bg<></td></bg<>	8,18E+03	n.b.	n.b.	1,77E+04	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
OTU1													
Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td><td>n.b.</td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td><td>n.b.</td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>2,15E+03</td><td>n.b.</td></bg<>	n.b.	n.b.	2,15E+03	n.b.
1	2	Genkopien/mL	5,08E+01	n.b.	7,11E+01	3,41E+03	n.b.	n.b.	1,22E+04	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
2	2	Genkopien/mL	2,75E+03	n.b.	6,13E+02	1,61E+03	n.b.	n.b.	1,72E+03	n.b.	n.b.	<bg< td=""><td>n.b.</td></bg<>	n.b.
3	2	Genkopien/mL	1,96E+03	n.b.	3,05E+02	1,31E+02	n.b.	n.b.	2,09E+02	n.b.	n.b.	2,08E+03	n.b.
4	2	Genkopien/mL	5,90E+02	n.b.	4,56E+02	5,02E+01	n.b.	n.b.	2,84E+02	n.b.	n.b.	8,16E+02	n.b.
5	2	Genkopien/mL	5,38E+01	n.b.	1,72E+02	5,02E+02	n.b.	n.b.	2,52E+03	n.b.	n.b.	3,05E+03	n.b.
Ablauf	2	Genkopien/mL	6,48E+01	n.b.	1,88E+02	7,27E+01	n.b.	n.b.	1,64E+03	n.b.	n.b.	1,18E+03	n.b.
amoA													
Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>9,55E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	9,55E+02	n.b.	n.b.	n.b.	n.b.
2	2	Genkopien/mL	1,16E+02	n.b.	n.b.	n.b.	n.b.	n.b.	9,65E+02	n.b.	n.b.	n.b.	n.b.
3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
5	2	Genkopien/mL	3.90E+04	n.b.	n.b.	n.b.	n.b.	n.b.	8,72E+03	n.b.	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>6.48E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	6.48E+01	n.b.	n.b.	n.b.	n.b.
amoB									-,				
Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,44E+03</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	1,44E+03	n.b.	n.b.	n.b.	n.b.
2	2	Genkopien/mL	1,10E+02	n.b.	n.b.	n.b.	n.b.	n.b.	5,75E+01	n.b.	n.b.	n.b.	n.b.
3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>7,17E+01</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	7,17E+01	n.b.	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	1,29E+03	n.b.	n.b.	n.b.	n.b.	n.b.	6,35E+01	n.b.	n.b.	n.b.	n.b.
amoC													
Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,27E+03</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	2,27E+03	n.b.	n.b.	n.b.	n.b.
2	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
hdlh5													
Zulauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>7,35E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	7,35E+02	n.b.	n.b.	n.b.	n.b.
2	2	Genkopien/mL	1,29E+02	n.b.	n.b.	n.b.	n.b.	n.b.	6,22E+01	n.b.	n.b.	n.b.	n.b.
3	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
4	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.
5	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,82E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	1,82E+02	n.b.	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,26E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	1,26E+02	n.b.	n.b.	n.b.	n.b.

Tabelle 8-95:MolekularbiologischenParameterderSäuleS 4.AbeinerVersuchsdauervon16 Wochen wurde Medium auf Höhe von 41 cm extrahiert und auf Höhe von 11 cm wieder zugeführt.

	BG	Einheit										
Dauer		Wochen	13	14	15	16	17	18	19	20	22	25
PCR												
16S												
Zulauf	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>1,21E+03</td><td>n.b.</td><td>n.b.</td><td>3,92E+02</td></bg<>	n.b.	n.b.	n.b.	n.b.	1,21E+03	n.b.	n.b.	3,92E+02
1	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,61E+03</td><td>n.b.</td><td>n.b.</td><td>1,61E+03</td></bg<>	n.b.	n.b.	n.b.	n.b.	2,61E+03	n.b.	n.b.	1,61E+03
2	2	Genkopien/mL	n.b.	6,46E+03	n.b.	n.b.	n.b.	n.b.	2,93E+03	n.b.	n.b.	1,93E+03
3	2	Genkopien/mL	n.b.	1,19E+03	n.b.	n.b.	n.b.	n.b.	2,46E+03	n.b.	n.b.	4,51E+03
4	2	Genkopien/mL	n.b.	7,94E+02	n.b.	n.b.	n.b.	n.b.	4,04E+03	n.b.	n.b.	3,72E+03
5	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>2,44E+03</td><td>n.b.</td><td>n.b.</td><td>9,80E+03</td></bg<>	n.b.	n.b.	n.b.	n.b.	2,44E+03	n.b.	n.b.	9,80E+03
Ablauf	2	Genkopien/mL	n.b.	1,56E+03	n.b.	n.b.	n.b.	n.b.	2,78E+03	n.b.	n.b.	3,91E+03
OTU1												
Zulauf	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	n.b.	9,60E+02	n.b.	n.b.	n.b.	n.b.	2,63E+02	n.b.	n.b.	7,33E+03
2	2	Genkopien/mL	n.b.	2,70E+03	n.b.	n.b.	n.b.	n.b.	8,01E+02	n.b.	n.b.	2,57E+03
3	2	Genkopien/mL	n.b.	3,98E+03	n.b.	n.b.	n.b.	n.b.	1,84E+03	n.b.	n.b.	2,66E+03
4	2	Genkopien/mL	n.b.	3,85E+03	n.b.	n.b.	n.b.	n.b.	2,35E+03	n.b.	n.b.	4,85E+02
5	2	Genkopien/mL	n.b.	2,69E+03	n.b.	n.b.	n.b.	n.b.	5,33E+02	n.b.	n.b.	8,27E+03
Ablauf	2	Genkopien/mL	n.b.	4,42E+03	n.b.	n.b.	n.b.	n.b.	2,45E+03	n.b.	n.b.	7,17E+03
amoA												
Zulauf	2	Genkopien/mL	n.b.	4,76E+02	n.b.	n.b.	n.b.	n.b.	1,12E+03	n.b.	n.b.	n.b.
1	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>6,35E+02</td><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.	n.b.	6,35E+02	n.b.	n.b.	n.b.
2	2	Genkopien/mL	n.b.	5,88E+02	n.b.	n.b.	n.b.	n.b.	1,73E+03	n.b.	n.b.	n.b.
3	2	Genkopien/mL	n.b.	6,21E+01	n.b.	n.b.	n.b.	n.b.	2,67E+03	n.b.	n.b.	n.b.
4	2	Genkopien/mL	n.b.	7,46E+01	n.b.	n.b.	n.b.	n.b.	9,96E+02	n.b.	n.b.	n.b.
5	2	Genkopien/mL	n.b.	6,95E+02	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	n.b.	2,03E+03	n.b.	n.b.	n.b.	n.b.	8,66E+02	n.b.	n.b.	n.b.
amoB												
Zulauf	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
1	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
3	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
4	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,88E+01	n.b.	n.b.	n.b.
amoC												
Zulauf	2	Genkopien/mL	n.b.	7,34E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
1	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
2	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
3	2	Genkopien/mL	n.b.	5,84E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
4	2	Genkopien/mL	n.b.	7,42E+01	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
5	2	Genkopien/mL	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td><td>n.b.</td><td><bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<></td></bg<>	n.b.	n.b.	n.b.	n.b.	<bg< td=""><td>n.b.</td><td>n.b.</td><td>n.b.</td></bg<>	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	n.b.	1,56E+02	n.b.	n.b.	n.b.	n.b.	7,18E+01	n.b.	n.b.	n.b.
hdlh5												
Zulauf	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
1	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
4	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
5	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ablauf	2	Genkopien/mL	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

	PC	Finhoit								
Dauer	BG	Wochen	1	2	3	4	5	6	7	10
Sauerstoff				_	-		-	-		
Zulauf	-	mg/L	6,35	5,78	8,13	7,83	8,06	7,81	8,25	8,17
1	-	mg/L	5,34	6,86	n.b.	7,84	8,00	n.b.	7,84	8,17
2	-	mg/L	5,02	6,75	n.b.	7,15	7,82	n.b.	7,72	7,91
3	-	mg/L	4,13	5,10	n.b.	7,78	8,32	n.b.	8,12	8,11
4	-	mg/L	4,68	6,71	n.b.	7,63	7,91	n.b.	7,96	7,72
5 Ablauf	-	mg/L	3,22	5,57	n.b. 7 19	6,97	8,12	n.b.	7,86 8 76	/31,00
nH	-	iiig/L	4,21	3,40	7,10	7,04	0,10	0,13	0,20	0,10
Zulauf	-	-	7,33	7,20	7,45	7,34	7,22	7,44	7,45	7,56
1	-	-	7,29	7,29	n.b.	7,34	, 7,23	n.b.	7,38	7,48
2	-	-	7,27	7,34	n.b.	7,35	7,22	n.b.	7,49	7,50
3	-	-	7,20	7,24	n.b.	7,34	7,09	n.b.	7,41	7,45
4	-	-	7,22	7,36	n.b.	7,36	7,22	n.b.	7,40	7,50
5	-	-	7,21	7,23	n.b.	7,27	7,16	n.b.	7,35	7,43
Ablauf	-	-	7,41	7,39	7,43	7,45	7,27	7,20	7,44	7,59
Temperatur	r	**								
Zulauf	-	-0	21,7	21,0	21,3	20,8	19,7	21,4	21,50	21,9
1	-	د د	21,6	21,3	n.b.	20,6	20,3	n.b.	21,4	20,5
2	-	°C	21,5	21,7	n.p.	20,6	19,9 10.6	n.p.	21,4	21,5
4		°C	25,4	25,1	n.b.	20,7	20.5	n.b.	20,7	21,0
5	-	°C	20,0	21,2	n.b.	21,0	20,5	n.b.	21,5	21,5
Ablauf	-	°C	20,0	22.3	22.1	20,4	20,7	19.5	21,5	20,8
CE			22,0	22,5		20,0	20,1	10,0		21,0
TCE										
Zulauf	0,0007	mg/L	18,5925	18,3853	17,9147	17,9973	18,8693	17,7158	17,3742	16,3497
1	0,0007	mg/L	18,5548	18,3798	n.b.	17,5506	18,5411	n.b.	17,8360	18,7654
2	0,0007	mg/L	18,8611	17,9969	n.b.	19,5231	18,3405	n.b.	19,2853	18,4853
3	0,0007	mg/L	18,9376	16,3722	n.b.	18,1181	19,3640	n.b.	17,9815	18,8948
4	0,0007	mg/L	19,3533	18,7501	n.b.	18,2765	18,3292	n.b.	18,4801	18,3200
5	0,0007	mg/L	18,5343	19,3307	n.b.	19,8004	19,5149	n.b.	19,2553	18,0161
Ablauf	0,0007	mg/L	16,3726	16,7210	15,4147	15,5172	16,7760	16,8020	15,7875	14,2718
Chlorid										
Zulauf	1.0	ma/L	15.2	15.3	15 1	10.2	15.2	14.3	14.8	14.2
1	1,0	mg/L	15.4	15,5	n h	18.5	15,5	n h	14.2	14.8
2	1,0	mg/L	15.8	15.6	n.b.	19,4	15,9	n.b.	15.0	15.6
3	1,0	mg/L	15,8	15,4	n.b.	18,8	16,1	n.b.	15,0	14,6
4	1,0	mg/L	15,9	16,1	n.b.	15,0	15,9	n.b.	15,3	15,0
5	1,0	mg/L	15,8	15,5	n.b.	14,9	16,3	n.b.	16,9	15,5
Ablauf	1,0	mg/L	15,3	15,3	15,6	15,1	16,1	15,7	15,7	15,8
Nitrit										
Zulauf	1,0	mg/L	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	mg/L	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
3	1,0	mg/L	<bg< td=""><td><bc< td=""><td>n.b.</td><td><bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<></td></bc<></td></bg<>	<bc< td=""><td>n.b.</td><td><bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<></td></bc<>	n.b.	<bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bc< td=""></bc<></td></bg<>	<bc< td=""></bc<>
4	1,0	mg/L	<bg< td=""><td><bc< td=""><td>n.b.</td><td><bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<></td></bc<></td></bg<>	<bc< td=""><td>n.b.</td><td><bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<></td></bc<>	n.b.	<bc< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<></td></bc<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bc< td=""></bc<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bc< td=""></bc<></td></bg<>	<bc< td=""></bc<>
Ablauf	1.0	ma/L			/BG			<bg< td=""><td></td><td></td></bg<>		
Nitrat	.,-		~ DO	100	100	100	~00	~00	~00	100
Zulauf	1,0	mg/L	3.7	2.6	3.1	8.3	3.5	3.9	4.0	3.0
1	1,0	mg/L	2,8	2,6	n.b.	8,5	4,0	n.b.	3,0	4,2
2	1,0	mg/L	3,3	3,5	n.b.	9,1	4,0	n.b.	4,1	4,2
3	1,0	mg/L	3,0	3,0	n.b.	9,0	3,4	n.b.	3,8	3,6
4	1,0	mg/L	3,4	3,3	n.b.	3,9	3,5	n.b.	4,3	3,6
5	1,0	mg/L	<bg< td=""><td>3,3</td><td>n.b.</td><td>3,9</td><td>4,1</td><td>n.b.</td><td>4,8</td><td>3,9</td></bg<>	3,3	n.b.	3,9	4,1	n.b.	4,8	3,9
Ablauf	1,0	mg/L	<bg< td=""><td>3,5</td><td>3,8</td><td>3,3</td><td>4,0</td><td>4,1</td><td>3,6</td><td>4,2</td></bg<>	3,5	3,8	3,3	4,0	4,1	3,6	4,2
Phosphat		-								
Zulauf	1,0	mg/L	<bg< td=""><td>1,3</td><td><bg< td=""><td>2,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	1,3	<bg< td=""><td>2,0</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	2,0	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
1	1,0	mg/L	<bg< td=""><td>16,5</td><td>n.b.</td><td>2,0</td><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	16,5	n.b.	2,0	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
2	1,0	ma/L	<bg 1 F</bg 		11.D.	3,2		11.D.	<bu< td=""><td></td></bu<>	
4	1,0	ma/L	1,5		11.D.	3,U		11.D.	1,0 2PC	
5	1.0	ma/L	<bg< td=""><td>-DG - C - C</td><td>n.b.</td><td><bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	-DG - C - C	n.b.	<bg< td=""><td><bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td>n.b.</td><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	n.b.	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Ablauf	1.0	mg/L	<bg< td=""><td><8G</td><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<8G	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>
Sulfat		<u> </u>	-00	.00	.00	.00	.00	.00	.00	.50
Zulauf	1,0	mg/L	27.5	28.1	26.8	38.2	28.6	27.9	27.4	26.5
1	1,0	mg/L	27,9	31,6	n.b.	37,4	29,1	n.b.	27,4	27,3
2	1,0	mg/L	28,7	28,3	n.b.	38,7	29,4	n.b.	28,7	27,5
3	1,0	mg/L	28,0	28,4	n.b.	37,5	29,8	n.b.	28,6	27,8
4	1,0	mg/L	29,1	28,3	n.b.	25,9	29,4	n.b.	29,8	28,3
5	1,0	mg/L	28,2	28,5	n.b.	25,8	30,3	n.b.	30,7	29,3
Ablauf	1,0	mg/L	28,2	28,4	27,5	26,0	30,2	32,1	31,0	29,8

Tabelle 8-96: Physikalisch/chemische Parameter der Säule SKontrolle.

8.3.4.2 Technischer Maßstab

	BG	Einheit																		
Dauer		Tage	5	12	39	60	67	74	88	95	116	123	130	137	144	151	165	193	200	207
s.p.																				
Sauerstoff																				
Zulauf	-	mg/L	9,13	9,23	8,82	8,47	9,14	6,83	8,11	8,34	8,73	7,96	n.b.	7,78	7,70	3,42	7,45	8,17	7,35	5,89
1-1	-	mg/L	8,17	9,05	7,25	8,42	9,12	9,50	6,61	4,73	5,78	6,66	n.b.	7,38	7,52	3,83	5,89	6,87	5,15	4,03
2-1	-	mg/L	8,49	9,01	7,85	8,52	8,88	9,33	8,17	3,42	4,98	6,83	n.b.	7,11	7,47	3,29	6,43	5,01	5,90	5,48
3-1	-	mg/L	7,26	8,84	7,80	8,47	8,90	8,93	8,88	6,92	4,15	5,23	n.b.	7,43	7,41	3,09	5,96	2,94	5,80	6,20
1-2	-	mg/L	7,92	9,37	7,22	8,42	9,10	9,61	6,66	4,69	6,13	6,61	n.b.	7,64	7,66	3,71	5,56	6,64	4,64	5,74
2-2	-	mg/L	7,18	8,87	7,21	8,46	8,92	9,26	9,02	5,65	6,92	7,89	n.b.	7,46	7,63	3,51	6,70	4,77	5,92	6,69
2-3	-	mg/L	8,11	8,82	7,91	8,61	8,91	8,82	8,98	6,62	3,68	4,55	n.b.	7,40	7,40	3,23	6,26	2,74	5,45	6,80
3-1	-	mg/L	7,31	9,20	7,19	8,45	8,97	9,62	7,56	6,80	7,40	8,37	n.b.	7,62	7,51	3,43	6,46	5,33	7,02	4,93
3-2	-	mg/L	7,40	9,08	7,88	8,54	8,76	9,35	8,80	4,25	3,98	7,22	n.b.	7,37	7,42	3,15	6,08	4,58	5,91	5,41
3-3	-	mg/L	7,50	9,00	8,22	8,63	8,93	8,83	9,07	8,17	7,05	6,82	n.b.	7,46	7,37	3,20	6,21	3,42	3,40	6,80
A	-	mg/L	6,77	4,53	7,30	8,34	8,20	1,79	2,01	3,34	0,66	5,77	n.b.	4,05	5,45	2,00	5,05	2,32	1,87	2,10
В	-	mg/L	7,24	8,45	4,95	8,38	8,30	2,40	1,92	2,62	0,86	6,04	n.b.	4,21	4,40	1,95	5,45	2,60	2,80	2,69
С	-	mg/L	7,55	6,70	3,11	7,81	7,85	8,03	7,59	7,29	3,98	5,09	n.b.	4,71	4,87	2,23	4,79	2,60	2,20	2,40
D	-	mg/L	7,59	8,38	7,42	8,69	9,79	8,09	7,57	7,19	4,23	5,28	n.b.	3,82	2,52	1,73	4,79	3,03	2,74	2,20
E	-	mg/L	7,37	7,32	4,27	6,95	9,34	8,38	8,03	7,82	4,53	6,52	n.b.	5,54	5,74	2,46	5,27	2,80	2,98	2,28
F	-	mg/L	7,06	6,94	5,33	8,36	9,40	8,50	8,44	8,60	5,75	6,73	n.b.	5,32	4,86	2,33	4,89	3,97	2,80	2,40
G	-	mg/L	6,75	8,75	7,55	7,98	9,39	8,46	8,39	8,61	5,92	1,78	n.b.	6,24	3,86	1,71	4,03	4,26	3,25	2,19
H	-	mg/L	5,95	8,41	6,45	8,10	9,47	8,19	8,05	7,75	4,97	1,98	n.b.	5,58	6,40	1,36	3,22	4,53	2,36	1,49
Ablaut	-	mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	7,82	7,95	5,42	6,00	n.b.	6,58	4,88	2,32	5,05	4,12	3,65	3,80
pn Zulouf	-		0 27	7 40	0.25	7 56	0 50	0 20	7 47	7.02	7 55	n h	nh	0 00	7 90	7 1 1	7 57	7.02	7 1 0	7 20
Zulaui	-	-	7 97	7,49	0,35	7,50	7.04	0,30	7 20	6.09	7,00	n.b.	n.b.	7 20	7,00	7,11	7,57	6 75	6.62	6 90
1-1 2-1	-	-	7,07	8.27	7,57	7,03	7,94	7 20	7,20	7 10	7 18	n.b.	n.b.	7,30	7,51	7,20	7,05	6 77	0,03	6.06
2-1	-	-	7 01	0,21	7,02	7,50	7.46	7.29	7,50	7,10	7,10	n.b.	n.b.	7,34	7,25	7,00	6 99	6 77	0,02	6,90
1-2	-	-	7,01	7 01	7.58	7,55	7,40	8 10	7,33	7,40	7 38	n.b.	n.b.	7,55	7,10	7,01	6.06	6 77	6 70	6.06
2-2	-	-	7,90	8.07	7,50	7,09	7 78	7 57	7,42	7 34	7 20	n.b.	n h	7 31	7,25	7,15	6,90	6.93	6.64	6 90
2-2	-		8.07	8 31	7,33	7 52	7 47	7 26	7 38	7,34	7.04	n.b.	n.b.	7,31	7 15	7,01	6,89	6.87	6.63	7 09
2-0	-		7.87	7 20	7,75	7,32	7 95	9 01	7,30	7,35	7 37	n.b.	n.b.	7,30	6 70	7.26	6.92	6.82	6 71	6.87
3-2	-	_	7 97	8 31	7,67	7,50	7 69	7 38	7.63	7 21	7 22	n.b.	n.b.	7 35	7 18	7.04	6 89	6.80	6 60	7.00
3-3	-	-	7 98	8 29	7 69	7 48	7,50	7 26	7,56	7.68	6.98	n b	n b	7 24	7 28	6.84	6,00	6,96	6 62	7 11
A	-	-	7.38	7 24	7 75	6.63	7 21	7 15	7 41	7 46	6,98	n b	n b	7 60	7.04	6.92	6.88	6 72	678	6.38
В	-	-	7.19	7.77	8.31	6.89	7.24	7.20	7.55	7.40	7.00	n.b.	n.b.	7.25	7.12	6.98	7.01	6.95	6.65	6.73
c	-	-	7.29	8.22	8.29	7.07	7.35	7.19	7.51	7.77	6.87	n.b.	n.b.	7.26	7.09	7.00	6.94	6.84	6.64	6.74
D	-	-	7.33	8.35	8.48	7.24	7.16	7.30	7.32	7.10	6.91	n.b.	n.b.	7.25	7.03	6.96	6.94	6.79	6.63	6.76
E	-	-	7.60	8.40	8.41	7.45	6.98	7.40	7.35	7.39	6.95	n.b.	n.b.	7.55	7.10	6.98	6.94	6.79	6.65	6.76
F	-	-	7.50	8.40	8.45	7.40	6.93	7.45	7.59	7.34	6.93	n.b.	n.b.	7.36	7.12	6.98	6.91	6.83	6.65	6.76
G	-	-	7.54	8.37	8.49	7.49	6.92	7.61	7.62	8.05	6.99	n.b.	n.b.	7.40	7.03	6.90	6.85	6.85	6.68	6.75
Н	-	-	7.30	8.34	8.42	7.36	7.09	7.20	7.65	7.78	6.95	n.b.	n.b.	7.29	7.18	6.88	6.82	6.89	6.65	6.78
Ablauf	-	-	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	7,45	7,25	6,81	n.b.	n.b.	7,44	7,02	6,88	6,91	6,86	6,67	6,85
Temperatur																				
Zulauf	-	°C	18,0	16,7	17,8	18,5	18,8	18,6	18,8	19,6	21,0	n.b.	n.b.	22,3	22,3	22,3	22,7	20,7	22,9	24,2
1-1	-	°C	n.b.	17,0	17,2	18,2	18,6	18,9	18,9	19,0	20,2	n.b.	n.b.	21,6	22,4	22,7	22,9	20,4	21,9	23,3
2-1	-	°C	n.b.	17,1	17,6	18,3	18,4	18,8	19,0	19,3	19,9	n.b.	n.b.	21,5	22,6	22,0	22,5	20,4	21,9	23,9
3-1	-	°C	18,2	16,9	17,9	18,2	18,1	18,5	19,2	18,8	20,1	n.b.	n.b.	21,8	22,2	22,3	23,0	20,3	22,0	23,3
1-2	-	°C	n.b.	17,0	17,7	18,2	18,4	18,9	18,9	19,0	20,3	n.b.	n.b.	22,0	22,6	22,9	23,0	20,6	22,0	23,4
2-2	-	°C	n.b.	16,8	17,5	18,2	18,6	18,7	18,9	19,2	20,2	n.b.	n.b.	21,4	22,4	22,4	22,7	20,3	22,0	23,4
2-3	-	°C	18,0	16,8	17,4	18,3	18,5	18,6	18,9	18,9	19,9	n.b.	n.b.	21,7	22,5	22,3	22,7	20,4	22,0	23,6
3-1	-	°C	n.b.	17,2	17,9	18,2	18,6	18,7	19,1	18,8	20,3	n.b.	n.b.	22,0	22,9	22,7	23,0	20,8	22,1	23,4
3-2	-	°C	n.b.	16,8	17,7	18,1	18,4	18,9	19,1	19,2	19,8	n.b.	n.b.	21,6	22,5	22,2	22,5	20,4	22,0	23,3
3-3	-	°C	18,2	17,0	17,0	18,3	18,4	18,9	19,1	19,1	19,7	n.b.	n.b.	21,1	22,5	22,2	22,5	20,4	22,0	23,7
A	-	°C	18,3	17,1	17,7	18,1	17,7	19,0	18,2	19,2	19,9	n.b.	n.b.	21,0	21,7	21,7	22,6	20,4	21,9	22,6
В	-	°C	18,6	17,1	17,1	18,4	17,5	18,9	18,0	18,9	19,9	n.b.	n.b.	20,9	21,6	21,6	22,4	20,2	21,8	22,6
С	-	°C	18,4	17,3	17,4	18,6	17,8	19,0	17,9	19,0	20,0	n.b.	n.b.	20,9	21,8	21,6	22,5	20,3	21,8	22,5
D	-	°C	18,3	17,3	17,4	18,8	17,5	18,8	18,2	19,1	20,0	n.b.	n.b.	20,9	21,8	21,7	22,5	20,2	21,8	22,5
E	-	°C	18,4	17,1	17,4	18,4	17,7	18,8	18,3	19,1	20,0	n.b.	n.b.	21,3	21,9	21,6	22,4	20,4	21,7	22,5
F	-	°C	18,4	17,0	17,3	18,5	17,5	18,7	18,3	19,1	19,8	n.b.	n.b.	21,0	21,8	21,7	22,6	20,5	21,7	22,6
G	-	°C	18,5	16,9	17,2	18,4	17,7	16,7	18,0	19,0	19,8	n.b.	n.b.	21,1	21,9	21,7	22,4	20,7	21,8	22,6
Н	-	°C	18,2	16,9	17,1	18,4	17,6	18,7	18,3	19,0	20,0	n.b.	n.b.	21,3	21,9	21,9	22,5	20,6	21,8	22,6
Ablauf	-	°C	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	18,5	19,2	20,3	n.b.	n.b.	22,1	22,8	21,9	22,5	20,4	22,2	23,6

Tabelle 8-97: Rohdaten der Parameter Sauerstoff, pH und Temperatur des Versuchsaufbaus Box 1.

	BG	Einheit																		
Dauer		Tage	5	12	39	60	67	74	88	95	116	123	130	137	144	151	165	193	200	207
CE																				
TCE																				
Zulauf	0,01	mg/L	20,32	20,60	18,40	13,93	12,69	17,13	15,73	14,55	10,28	1,35	5,10	3,67	4,52	9,10	11,50	14,20	13,40	12,10
1-1	0,01	mg/L	15,93	17,76	7,07	20,05	14,54	12,62	6,27	0,45	0,46	0,17	0,12	0,11	0,11	10,50	5,59	6,74	0,37	3,55
2-1	0,01	mg/L	16,96	17,51	2,38	19,43	15,81	12,55	3,81	0,34	0,41	0,19	0,24	0,11	0,06	12,50	4,81	6,87	0,38	1,90
3-1	0,01	mg/L	16,65	17,76	2,31	16,92	17,21	14,44	11,94	4,73	0,46	0,38	0,08	0,08	0,07	9,20	3,03	3,68	0,09	0,13
1-2	0,01	mg/L	16,78	18,72	6,08	19,80	18,36	1,26	9,04	2,81	0,81	0,20	0,14	0,08	0,09	10,20	4,16	5,66	0,29	4,11
2-2	0,01	mg/L	17,22	18,00	2,87	19,76	18,76	14,36	10,14	15,14	1,39	0,35	0,21	0,14	0,08	10,20	2,95	9,09	1,17	1,83
2-3	0,01	mg/L	16,91	17,61	2,78	18,19	16,14	13,13	8,75	2,01	0,30	0,21	0,11	0,08	0,07	12,30	2,65	6,93	0,18	0,41
3-1	0,01	mg/L	16,82	17,42	3,09	18,49	16,50	11,88	16,61	15,13	2,03	0,36	0,22	0,14	0,12	8,42	3,48	9,64	1,69	4,46
3-2	0,01	mg/L	16,01	17,91	2,65	19,14	17,69	14,98	5,71	3,47	0,45	0,16	0,26	0,10	0,06	10,90	3,57	6,08	0,17	1,48
3-3	0,01	mg/L	17,34	18,09	1,84	18,62	15,89	13,46	16,24	14,77	1,93	0,35	0,11	0,08	0,10	12,20	1,33	10,10	0,53	0,97
A	0,01	mg/L	15,38	2,56	3,39	1,59	1,20	0,68	1,96	0,39	0,35	0,17	0,05	n.b.	0,05	9,27	1,92	2,95	0,06	0,66
В	0,01	mg/L	16,87	17,79	6,56	1,63	4,58	1,44	2,17	1,28	0,67	0,25	0,08	0,05	0,09	12,30	4,69	0,28	0,12	1,42
С	0,01	mg/L	16,83	2,95	3,25	1,57	1,02	15,71	15,50	11,79	1,23	0,08	0,10	0,05	0,09	11,00	4,79	7,38	0,22	2,44
D	0,01	mg/L	17,22	3,41	1,60	2,83	17,00	15,35	11,02	4,11	0,30	0,27	n.b.	0,07	0,08	12,30	4,03	7,48	0,21	2,44
E	0,01	mg/L	16,68	3,35	2,76	2,50	17,01	15,20	13,82	7,04	0,51	0,06	0,05	0,04	0,08	10,80	3,79	8,04	0,54	2,10
F	0,01	mg/L	16,28	3,27	2,70	15,04	15,77	15,15	16,52	12,74	1,07	0,11	0,06	0,05	0,08	11,00	2,89	9,12	0,35	2,24
G	0,01	mg/L	14,60	18,07	4,35	2,55	15,63	15,83	16,39	13,99	3,10	1,14	0,08	0,06	0,05	4,60	2,61	6,75	0,20	1,45
н	0,01	mg/L	10,22	14,84	5,99	1,83	14,25	14,14	14,33	13,21	1,97	1,46	0,07	0,03	0,02	6,88	1,60	6,93	1,08	2,23
Ablauf	0,01	mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	14,31	10,70	1,31	0,59	0,11	0,08	0,07	10,10	3,22	5,41	0,24	1,21
Anionen																				
Chlorid																				
Zulauf	1,0	mg/L	n.b.	8,4	8,3	8,5	32,3	8,8	8,5	4,1	8,4	8,2	8,4	8,5	8,7	8,8	8,1	8,5	10,0	8,5
1-1	1,0	mg/L	8,6	8,3	8,7	8,5	9,3	10,3	18,5	19,9	9,4	8,3	8,3	8,4	8,7	9,4	17,7	18,1	24,5	20,3
2-1	1,0	mg/L	8,7	8,4	15,9	8,7	9,3	10,4	19,4	19,4	10,6	8,5	8,3	8,5	8,7	9,6	18,1	17,5	24,7	22,2
3-1	1,0	mg/L	8,8	8,6	16,1	8,5	8,7	8,9	11,6	13,2	11,8	9,3	8,9	9,0	9,0	10,3	21,5	22,3	25,7	25,2
1-2	1,0	mg/L	8,7	8,4	10,1	8,4	9,7	9,4	15,4	17,1	9,5	8,5	8,3	8,3	8,7	9,6	19,5	18,7	24,9	19,9
2-2	1,0	mg/L	8,6	8,4	11,7	8,4	8,8	8,6	8,4	4,6	10,8	8,7	8,5	8,5	8,8	9,8	21,6	14,7	24,2	21,9
2-3	1,0	mg/L	8,4	8,7	11,9	8,5	9,1	9,7	15,2	18,3	11,2	8,6	8,4	8,5	8,7	9,6	21,9	18,0	25,0	24,4
3-1	1,0	mg/L	8,5	8,5	10,8	8,5	10,4	8,8	8,4	4,2	9,6	8,5	8,3	8,4	8,7	9,6	20,9	15,1	23,6	18,9
3-2	1,0	mg/L	8,7	8,6	15,6	8,5	10,1	9,5	14,4	16,9	10,4	8,6	8,4	8,4	8,8	9,7	20,7	18,5	25,2	22,8
3-3	1,0	mg/L	8,4	9,5	11,4	8,6	8,7	9,6	8,4	4,3	17,3	9,0	8,4	8,7	8,8	9,8	23,3	15,1	25,3	23,3
A	1,0	mg/L	8,9	8,5	12,2	9,6	8,9	9,0	8,4	4,3	8,6	10,5	9,8	8,5	9,4	11,1	22,1	22,9	25,3	24,3
В	1,0	mg/L	9,2	8,6	10,1	9,7	9,0	8,8	8,5	4,5	9,6	9,9	8,7	9,7	9,0	9,5	18,2	24,8	24,9	23,8
С	1,0	mg/L	9,2	8,4	9,6	9,6	8,5	8,8	10,1	7,7	20,1	9,5	8,7	8,8	9,1	9,4	17,9	17,9	24,3	22,6
D	1,0	mg/L	9,4	8,5	8,5	9,6	8,8	9,8	14,7	11,3	19,3	9,0	9,1	8,9	9,0	9,6	19,6	17,9	24,7	22,2
E	1,0	mg/L	9,6	8,4	9,4	9,6	9,1	9,3	11,9	12,7	19,2	9,8	8,2	8,6	9,2	9,6	19,8	17,0	24,1	22,5
F	1,0	mg/L	9,4	8,6	9,4	8,5	8,9	8,8	9,1	5,8	19,9	11,8	9,2	8,9	9,4	9,9	21,0	15,8	24,1	22,5
G	1,0	mg/L	9,5	8,6	9,3	9,5	8,9	8,8	8,6	4,3	18,4	8,8	9,6	9,2	10,2	10,5	21,7	16,8	25,0	23,3
н	1,0	mg/L	11,0	8,9	12,3	9,6	9,0	8,7	8,6	4,3	20,4	9,5	10,8	10,2	8,9	12,5	22,8	16,6	24,0	22,2
Ablauf	1,0	mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10,5	8,9	20,5	11,7	9,6	9,8	22,5	10,5	20,8	19,2	24,6	23,1

		X-Position	Y-Position	16S	Rho	MoC
	Einheit	cm	cm	Genko	opien/g _{Trocken}	substanz
	BG	-	-	2	2	2
	Zulauf 1	20	15	1,49E+06	3,07E+06	8,60E+04
Zulauf-Bereich	Zulauf 2	40	15	7,37E+05	2,50E+06	6,99E+04
	Zulauf 3	60	15	7,11E+05	3,29E+06	1,08E+05
	Inokulum 1	20	35	6,60E+05	2,33E+06	2,73E+04
Höhe Inokulum	lnokulum 2	40	35	7,73E+05	1,66E+06	2,00E+04
	Inokulum 3	60	35	1,35E+06	1,54E+06	6,98E+04
	1-1	20	55	1,65E+05	1,54E+05	3,31E+03
	1-2	40	55	1,16E+05	1,42E+04	3,33E+03
	1-3	60	55	5,80E+04	3,88E+04	1,11E+04
Diskrete	2-1	20	70	2,85E+04	1,68E+05	8,37E+03
	2-2	40	70	4,76E+04	3,51E+04	4,68E+03
Probenahmestellen	2-3	60	70	1,58E+05	8,62E+04	3,12E+04
	3-1	20	85	7,03E+04	7,62E+03	4,05E+03
	3-2	40	85	4,00E+04	1,09E+05	1,53E+04
	3-3	60	85	5,66E+04	1,18E+05	5,83E+03
	Ab 1 Boden	20	95	1,03E+05	3,55E+05	9,03E+03
Ablauf-Bereich	Ab 2 Boden	40	95	4,00E+05	5,36E+05	3,52E+03
	Ab 3 Boden	60	95	6,07E+04	3,39E+05	4,65E+03

Tabelle 8-98: Übersicht der Ergebnisse der molekularbiologischen Untersuchung der bei Versuchsende entnommenen Bodenproben aus Box 1.

Abbildung 8-10:TCE- und Chlorid-Konzentrationen in den Ports des Versuchsaufbaus Box 1. Der schraffierte Bereich markiert die Zeitspanne, in der der pH-Wert des Zulaufs über 8,0 lag und somit inhibierend auf den Schadstoffabbau wirkt. Der ausgegraute Bereich markiert die Versuchsphase mit Komplikationen in der TCE-Dosierung und dadurch nur geringfügiger Substratverfügbarkeit, welche in einer nur geringfügigen Zunahme von Chlorid resultiert.

Abbildung 8-11:Konzentrationen der einzelnen Biomarker-Befunde an den beprobten Stellen des Aufbaus Box 1.

	BG	Finheit																		
Dauer	20	Tage	5	12	39	60	67	74	88	95	116	123	130	137	144	151	165	193	200	207
S.D.		Tugo	•	- 14			0,	17				120	100	107			100	100	200	201
Sauerstoff																				
Zulauf	-	ma/l	9 10	9.32	873	8 69	9 59	6 68	7 37	8 07	8 4 8	7 61	nh	7 93	7.83	4 02	7 77	8 25	672	5 50
1-1	-	ma/l	8.04	8.92	7 64	9.22	10.67	5 58	5.28	5 48	4 97	5.82	n b	6.09	5.31	10.06	4 02	7 30	3 75	4 90
2-1	-	ma/l	6.93	8 65	7 79	9.18	9 79	6.31	4 93	4 58	5.01	5 65	n b	6 4 9	5.03	n b	5.94	7 68	4 87	4 06
3-1	-	ma/l	6,00	8 64	7 77	9 10	9.67	7 70	4 99	5 39	5 48	5 87	5.39	5 68	5 21	10 70	5 75	7 25	4 50	3 14
1-2	-	ma/l	7 77	8 72	7 64	9 16	10.09	6 72	5.91	5 68	5 26	5 74	n b	5 20	6.52	8 65	4 87	7 35	3.94	3.97
2-2	-	ma/l	5 77	8 74	6.57	9.11	9 19	8 60	6 1 1	6.93	5 75	6.09	n h	7 19	6.82	10 13	5.33	6.86	5.02	4 40
2-3	-	ma/l	6 44	8.36	7 60	9 10	9.31	9.29	4 33	5 80	5 75	5.34	5 11	5 80	6 67	9.66	4 17	7 12	5 24	4 24
3-1	-	ma/l	6,91	8,00	6 69	9.25	9 70	8 44	7 07	7 49	6.08	4 69	n b	5 73	4 75	7 08	5 18	7 22	5 13	4 84
3-2	-	ma/l	6.48	8 88	6.81	9.03	9.41	8 61	5.88	5 77	5.33	6.01	n h	6.07	6.63	n h	5 13	6.97	3 50	2 23
3-3	-	ma/l	5 90	8.62	7 19	9.23	9.12	9.94	6.34	7 13	5.32	5 69	5.42	5.09	6 29	3.50	6.09	7 26	5.31	2,20
A	-	ma/l	5.01	4 32	7 48	8 86	9 16	8.31	5,92	6.53	5 17	4 88	2.94	5.05	5.06	2 59	2 84	2 53	1 26	1 69
B	-	ma/l	5.62	7 42	8 71	9.21	9.32	9 15	5.38	6.31	5 16	4 83	3 40	3.42	5 11	2 94	3 55	2,50	2 22	1,00
C	-	ma/l	6.51	8 17	8 4 7	9.31	9.50	8 81	4 44	4 83	5.37	4 77	3 78	4 96	1 21	2 42	3.68	3.28	2 18	2 25
D	-	mg/L	6 92	6 27	8 80	9,01	0,00 0 20	9.12	4 55	4 57	5 42	3.01	3 80	4 62	2 30	2,72	3 73	4 10	2,10	2,20 n h
F	-	mg/L	7 00	5.05	8 96	9,00 9,29	9,20	9.45	4,00 6 14	5.82	4 57	4 05	4 63	4 10	3.46	2,00	3 50	1 71	1 16	n.b.
F	-	mg/L	7.62	6.22	8 QQ	9,20	0,02 0,71	0, 1 0 0,36	5 91	6 93	4.88	3 12	3 95	4 07	4 15	2,00	3.68	2.03	3 16	n.b.
G	_	mg/L	7 99	6.03	9,00 9,77	9.26	0,71 0,30	3.03	2.63	6.04	4.06	3 92	4 16	5.82	4 22	2,00	3 14	2,00	4 79	1.67
н	-	mg/L	9 77	3,61	12 54	8.96	8.68	8 10	4 07	0,04 1 11	4 18	2 65	3 60	4 57	3 80	2,00	3 36	2,07	3 70	2 18
Δblauf	-	mg/L	n h	0,01 n.h	n h	0,00 n h	0,00 n h	n h	5.03	5 4 9	6 18	5 78	6.93	6 10	4 93	2,27	6.48	6 36	5 71	5.96
nH		iiig/L	11.0.	11.D.	п.р.	n. <i>b</i> .	п.р.	II.D.	5,55	3,43	0,10	5,70	0,95	0,13	4,30	2,12	0,40	0,50	5,71	5,50
Zulauf	-	_	8 4 5	8 27	8 28	7 5 1	7 51	7 36	7 56	7 65	6 98	nh	nh	7 4 3	7 10	7 18	7 53	6.96	7 13	7 29
1_1	-	_	7 90	8 17	7.85	7.46	7 74	6.82	6.93	7 20	7 00	n.b.	n b	7 12	6.93	6 78	6.93	7.04	6.80	7.88
2_1	-	-	7,30	8.05	7,00	7,40	7 77	6,62	7.01	7,20	6.87	n.b.	7.04	7,12	6.03	6 75	7 10	7,04	678	7,00
2-1	-	-	7,00	0,00 8 1 2	7.86	7/0	7.40	6 70	7,01	7,01	6.80	n.b.	7,04	7,13	6.80	6 70	7,10	7 13	6.86	7 15
1-2	-	-	7,05	0,12 8 10	7,00	7,43	7,40	6.95	7,03	7 34	7.02	n.b.	7,55 n.h	7,10	7 12	6.87	6.06	7,13	674	7,13
2.2	-	-	7,95	8.26	7,92	7,52	7,73	6,90	7,21	7,34	6.83	n.b.	n.b.	7.02	7,12	6 70	7.01	7,00	6.85	7 10
2-2	-	-	7.85	0,20 8.16	7.84	7,52	7 35	6 75	7,75	7 36	6.82	n.b.	6.95	6.95	7,13	6 71	6.80	7.07	6 70	7,15
2-0	-	-	7,05	0,10	7,04	762	7,55	7.51	7,10	7,50	7.05	n.b.	0,30 n.h	7.07	6.95	6 75	7.04	7,00	6 92	7,13
3.2	-	-	1,95	8.25	7,00	7,03	7,59	6.83	7,05	7 10	6.86	n.b.	n.b.	7,07	7 10	6 72	6 00	7,00	673	7 12
3.3	-	-	7 70	0,20 8 15	7 70	7.45	7/3	6 76	7.40	7,13	6.80	n.b.	6.96	6.04	7,10	6 78	7 10	7,02	6.88	7,12
J-J	-	-	7 10	0,10	0 10	7.45	7 15	7.52	7,40	7,57	6.05	n.b.	7.02	7.54	7,00	7 11	7,13	6.07	6 90	6 97
	-	-	7,19	0,20	0,40	7,40	7,15	7,52	7,00	7 42	7.04	n.b.	7,02	7,04	7,10	7,11	7,11	7.01	0,09	6.07
Б С	-	-	7,57	0,00	0,00	7,55	6.06	7,30	7,01	7,42	6.02	n.b.	6.92	7,00	7,22	6.06	7,22	6.02	6 90	6.01
	-	-	7,51	0,04	0,52	7,57	6.90	7,50	7,12	7,00	6.00	n.b.	6.94	6.04	7,05	0,90	7,09	6.00	6 75	0,91 n.h
	-	-	7,55	0,27	0,44	7,70	0,00	7,50	7,23	7,10	0,99	n.b.	0,04	0,94	7,07 6.05	7 10	7,03	7 44	0,75	n.b.
	-	-	7,50	<i>1,11</i>	0,44	7,07	0,90 6 76	7,59	7,55	7,10	0,95	n.d.	0,00	7,12	0,95	7,10	0,95	7,41	0,03	n.b.
F	-	-	7,30	0,01	0,42	7,09	6,70	7,57	7,50	7,41	6,94	n.d.	0,00	7,00	0,09	0,90	0,93	0,93	7,12	7.00
G LI	-	-	1,31	0,00	7,01	7,09	0,02	7,52	7,20	7,44	0,90	n.d.	0,09	7,50	0,00	0,70	7,40	6,95	7,13	7,20
Ablauf	-	-	0,95 n.h	0,07	7,41 n.h	1,13 nh	0,99 n.h	7,57 n.h	7,34	7,24	7,09	n.b.	0,90	7,70	6,90	0,07	7,01	0,99	7,12	7,19
Tomporatur	-	-	II.D.	II.D.	II.D.	n.d.	II.D.	II.D.	7,44	7,24	0,00	II.D.	7,33	7,20	0,73	0,91	1,32	7,14	7,00	7,11
Zulauf		ംറ	nh	177	17.2	18 7	18.0	10/	18.0	20.5	20.0	n h	nh	22.0	23.1	22.5	23.3	20.7	22.6	24.0
1_1	-	ں د	18 0	17.5	17.7	18.5	18.0	180	18.0	20,0 10 1	20,9	n.b.	n.b.	22,0	20,1	22,0	20,0 22.0	20,1 21.1	22,0 22 0	24,0
2.1	-	÷C	10,0	17.0	17.7	10,0	10,9	10,9	10,9	19,1	20,1	11.D.	11.D. 20.2	21,0	22,4	22,0	∠0,∠ วว ว	21,1	22,0 22.1	23,4
2-1	-	°C	10,1	17.2	17.6	10,7	10,0	10,7	10,0	10,7	21,1	n.b.	20,2	21,0	22,1	22,4	23,2	20,0	22,1	23,4
1.2	-	ں د	18.0	17.3	18.0	18.5	18 /	18.0	18.6	18.9	20,0	n.b.	20,4 n.h	21,7	22,0 22.2	20,0 22 F	∠J, I 23.1	20,3	22,3 22.0	23,4
1-2	-	°C	10,0	17,3	10,0	10,5	10,4	10,9	10,0	10,0	21,1	n.b.	n.b.	21,0	22,3	22,5	23,1	20,6	22,0	23,3
2-2	-		10,2	17,3	10,3	10,0	10,0	19,0	10,7	10,9	21,0	n.d.	11.D.	21,7	22,2	22,0	23,1	20,5	22,2	23,3
2-3	-		10,2	17,0	17,5	10,0	10,0	10,4	10,7	19,0	20,9	n.b.	20,5	21,7	21,9	23,0	23,1	20,7	22,2	23,3
30	-	ں د	10,0	17,4	10,0	10,0	10,0	19,∠ 10.0	10,7	10,9	∠1,0 21.1	n.D.	n.D.	∠1,0 21.6	22,3 22.0	22,4 22 F	∠J, I 22.1	∠0,0 20.4	22,2 22.2	23,1
3-2	-		10,1	17,4	17,0	10,7	10,0	10,0	10,9	19,0	21,1	n.d.	20.0	21,0	22,0	22,5	23,1	20,4	22,2	23,5
3-3 A	-	с •С	17,9	17,4	17.0	10,0	10,4	10,0	10,9	19,0	∠∪,ŏ 20.4	II.D.	∠U,U 20.0	∠1,1 01 0	22,1	22,2 22.2	23,2 22.6	∠0,5 20.4	22,2 22.4	∠3,4 22.2
A	-		10,3	17,3	17,0	10,2	17,7	19,0	10,7	10,9	20,4	n.D.	∠U,U	21,2	22,2	22,2	22,0 22.7	20,4	22,1	23,2
в	-	-C	18,0	17,3	17,0	18,2	17,3	18,8	18,7	18,9	20,4	n.b.	19,8	21,0	22,1	22,0	22,7	20,4	22,0	23,1
	-	С •С	17,9	17,3	17,0	10,5	17,0	10,0	10,4	19,1	20,1	n.D.	19,8	21,3	22,3	21,9	22,8 00.0	20,0	22,U	∠3,0
D F	-	- <u>C</u>	19,2	17,2	17,1	18,4	17,5	18,6	18,4	18,9	20,3	n.b.	19,8	21,3	22,2	22,1	22,9	20,1	21,8	n.b.
E	-	O.	19,2	17,3	1/,1	18,5	17,7	18,3	18,4	19,0	20,2	n.b.	19,7	21,1	21,9	21,9	22,9	20,4	21,9	n.b.
F	-	°C	18,5	17,3	17,1	18,5	17,4	18,8	18,2	18,9	20,2	n.b.	19,5	20,8	22,0	21,7	22,9	20,2	22,0	n.b.
G	-	O.	18,4	17,2	16,9	18,3	17,6	18,5	18,3	19,1	20,2	n.b.	19,8	21,1	22,1	21,7	22,9	20,5	21,9	23,0
Н	-	ъС	18,5	17,1	17,1	18,3	17,5	18,3	18,4	19,1	20,3	n.b.	19,8	20,9	22,0	21,7	23,1	20,3	22,0	23,0
Ablauf	-	°C	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	18,9	19,2	20,4	n.b.	20,2	21,7	23,2	22,1	23,1	20,6	22,6	23,5

Tabelle 8-99:	Rohdaten der	Parameter	Sauerstoff, pl	-l und ⁻	Temperatur c	les Ver	suchsaufbaus	Box 2.
---------------	--------------	-----------	----------------	---------------------	--------------	---------	--------------	--------

	BG	Einheit																		
Dauer		Tage	5	12	39	60	67	74	88	95	116	123	130	137	144	151	165	193	200	207
CE		v																		
TCE																				
Zulauf	0,01	mg/L	15,45	16,10	13,25	8,61	10,87	8,39	16,76	11,07	9,09	12,96	10,30	8,31	7,08	7,58	8,11	15,40	17,20	15,70
1-1	0,01	mg/L	11,79	13,47	8,42	12,14	10,87	5,63	0,52	0,24	0,50	0,42	0,15	0,27	0,08	0,34	0,14	15,90	9,41	13,40
2-1	0,01	mg/L	12,21	14,39	6,13	10,95	9,30	4,86	0,43	0,35	0,19	0,40	0,11	0,18	0,19	0,28	0,03	15,10	9,87	12,90
3-1	0,01	mg/L	11,45	14,31	6,68	12,56	11,50	6,55	2,14	0,23	0,14	0,09	0,03	0,17	0,20	0,44	0,04	15,90	8,96	13,50
1-2	0,01	mg/L	11,64	14,80	6,91	12,06	10,69	8,42	4,82	2,16	0,64	0,51	0,13	0,66	0,26	0,37	0,08	12,60	5,50	13,40
2-2	0,01	mg/L	11,02	13,43	5,27	11,28	7,65	7,20	13,69	12,05	0,22	0,15	0,19	0,06	0,06	0,56	0,54	16,30	9,71	11,00
2-3	0,01	mg/L	11,56	13,70	5,57	11,97	11,79	7,21	3,26	0,81	0,13	0,22	0,03	0,05	0,06	0,43	0,12	15,70	7,39	10,00
3-1	0,01	mg/L	12,23	14,30	8,56	11,81	11,03	8,41	13,67	13,13	0,50	0,20	0,15	0,12	0,16	0,84	0,44	15,40	10,60	11,50
3-2	0,01	mg/L	12,23	13,33	6,07	11,33	10,61	8,34	10,17	5,75	0,17	0,14	0,07	0,14	0,18	0,22	0,45	14,30	6,71	10,70
3-3	0,01	mg/L	11,08	13,30	5,50	12,16	13,25	8,77	12,65	11,28	0,16	0,09	0,04	0,03	0,03	0,42	0,69	14,40	10,60	10,30
A	0,01	mg/L	6,56	1,24	10,64	11,67	12,30	10,30	10,77	9,91	1,16	0,20	0,03	0,04	0,07	0,05	0,86	9,22	2,16	8,41
В	0,01	mg/L	6,42	1,33	11,83	12,65	12,57	9,08	7,37	5,80	0,66	0,43	0,04	0,02	0,03	0,01	1,01	13,20	7,99	8,82
С	0,01	mg/L	8,13	11,33	11,41	12,49	12,73	7,28	3,79	0,68	0,15	0,17	0,12	0,03	0,02	0,01	0,05	14,80	5,98	8,96
D	0,01	mg/L	5,16	1,01	11,25	12,48	11,59	7,65	4,61	0,66	0,09	0,18	0,08	0,05	0,03	0,02	0,38	14,30	5,20	8,17
E	0,01	mg/L	6,11	1,22	11,85	12,71	13,15	10,59	10,95	6,69	0,02	0,04	0,02	0,02	0,02	0,01	0,13	0,13	5,45	4,35
F	0,01	mg/L	5,42	1,36	11,08	12,56	13,65	10,25	10,48	11,22	0,48	0,04	0,03	0,01	0,06	0,14	0,62	10,70	10,00	4,20
G	0,01	mg/L	5,38	1,15	10,63	12,01	12,23	3,05	2,24	4,27	0,08	0,08	0,03	0,01	0,04	0,08	0,03	0,21	0,17	0,05
Н	0,01	mg/L	4,30	0,88	10,07	10,85	9,38	5,55	1,52	0,64	0,02	0,06	n.b.	n.b.	0,01	0,01	0,15	0,10	2,12	0,25
Ablauf	0,01	mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	5,25	4,54	0,27	0,16	0,03	0,03	0,03	0,07	0,14	8,13	3,18	5,17
Anionen																				
Chlorid																				
Zulauf	1,0	mg/L	n.b.	8,4	8,1	8,4	16,8	9,9	8,3	4,9	8,4	8,5	8,4	8,4	8,5	8,3	8,2	8,5	8,2	8,3
1-1	1,0	mg/L	8,7	8,6	8,2	8,6	9,6	13,5	21,3	16,0	20,2	20,6	20,6	20,1	20,9	19,4	20,1	12,2	17,7	12,8
2-1	1,0	mg/L	8,8	8,6	8,1	8,5	9,9	14,5	22,7	17,3	20,4	20,3	20,7	20,8	21,2	19,3	20,4	11,4	16,7	12,8
3-1	1,0	mg/L	8,5	8,5	8,2	8,5	9,6	12,3	21,5	17,9	19,5	19,9	21,4	20,1	20,8	19,0	20,5	11,5	16,0	12,6
1-2	1,0	mg/L	8,5	9,1	8,2	8,3	9,1	10,4	17,3	14,7	20,0	20,6	20,8	20,1	20,4	19,4	20,6	13,9	23,0	12,9
2-2	1,0	mg/L	8,4	8,7	8,0	8,6	8,7	9,1	8,7	6,2	19,4	20,9	20,6	20,3	21,0	19,0	19,8	10,9	15,1	14,5
2-3	1,0	mg/L	8,8	8,6	8,3	8,4	9,3	11,3	19,5	17,6	19,9	20,9	20,4	20,5	21,1	19,8	20,4	12,9	19,0	15,9
3-1	1,0	mg/L	8,5	8,5	8,2	8,3	8,8	9,0	8,6	5,2	19,8	20,6	20,8	20,6	20,5	18,9	19,9	11,1	15,3	14,2
3-2	1,0	mg/L	8,5	8,4	8,1	8,5	8,9	9,5	13,4	13,0	19,4	20,2	21,3	20,5	21,1	19,6	20,0	12,8	20,0	15,9
3-3	1,0	mg/L	8,3	8,5	8,4	8,4	8,8	9,1	9,1	7,7	20,5	21,3	21,2	20,0	20,6	19,3	19,3	12,4	14,9	15,7
A	1,0	mg/L	10,1	8,5	7,8	8,5	8,9	8,8	9,7	8,3	11,1	21,3	21,6	13,0	12,3	9,5	18,3	17,1	24,4	15,8
В	1,0	mg/L	11,0	8,4	7,9	8,4	9,1	9,9	13,1	12,2	20,5	20,5	21,2	20,7	14,6	9,5	18,3	13,1	14,9	15,7
C	1,0	mg/L	11,5	8,6	7,7	8,6	9,6	12,3	17,4	17,8	20,2	21,5	21,0	10,0	11,3	10,3	20,9	12,7	19,4	17,6
D	1,0	mg/L	15,1	8,5	8,1	8,6	9,8	11,6	16,3	17,5	20,4	20,8	20,0	19,8	20,9	9,7	19,0	13,2	19,8	19,7
E	1,0	mg/L	13,3	8,5	8,1	8,4	8,9	9,1	10,0	11,3	20,7	21,8	20,4	20,1	21,3	9,1	19,6	12,5	20,6	22,8
F	1,0	mg/L	13,8	8,4	8,4	8,5	8,8	9,2	10,2	6,4	12,7	20,1	20,0	20,3	19,7	19,5	23,4	14,9	13,8	25,8
G	1,0	mg/L	13,7	8,6	8,2	8,6	9,4	8,9	12,6	12,9	10,1	19,7	19,5	8,9	20,0	19,1	12,7	19,2	10,7	8,5
Н	1,0	mg/L	16,4	8,7	10,1	9,3	12,1	13,5	1/,/	16,1	11,6	18,2	19,1	9,6	19,8	19,2	19,4	20,0	24,2	9,8
Ablaut	1,0	mg/L	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	13,6	12,8	21,3	21,2	22,4	20,6	21,4	19,8	19,8	14,5	22,6	19,1

Tabelle 8-100: Rohdaten der Parameter TCE und Chlorid des Versuchsaufbaus Box 2.

		X-Position	Y-Position	16S	Rho	МоС
	Einheit	cm	cm	Genko	opien/g _{Trocken}	substanz
	BG	-	-	2	2	2
	Zulauf 1	20	15	7,27E+05	1,06E+06	3,47E+04
Zulauf-Bereich	Zulauf 2	40	15	7,94E+05	1,43E+06	3,19E+04
	Zulauf 3	60	15	4,76E+05	1,02E+06	8,84E+03
	Inokulum 1	20	35	5,01E+05	2,88E+05	6,62E+03
Höhe Inokulum	lnokulum 2	40	35	5,68E+05	8,27E+05	6,62E+03
	Inokulum 3	60	35	3,70E+05	6,20E+05	1,31E+04
	1-1	20	55	1,22E+06	1,97E+05	8,41E+03
	1-2	40	55	7,65E+04	1,79E+05	8,36E+03
	1-3	60	55	4,32E+04	3,36E+05	2,86E+03
Diskrete	2-1	20	70	5,26E+04	9,68E+04	1,31E+03
	2-2	40	70	2,69E+05	6,91E+04	8,18E+03
Probenahmestellen	2-3	60	70	3,24E+04	1,01E+05	2,69E+03
	3-1	20	85	3,93E+05	6,08E+05	5,98E+03
	3-2	40	85	1,33E+06	8,82E+04	7,64E+02
	3-3	60	85	4,34E+05	3,31E+04	7,27E+02
	Ab 1 Boden	20	95	5,11E+05	1,06E+05	2,48E+02
Ablauf-Bereich	Ab 2 Boden	40	95	6,46E+05	1,15E+05	6,67E+02
	Ab 3 Boden	60	95	8,59E+05	2,23E+05	3,67E+03

Tabelle 8-101: Übersicht der Ergebnisse der molekularbiologischen Untersuchung der bei Versuchsende entnommenen Bodenproben aus Box 2.

8.3.4.1 Elektrokinetische Mobilisation der Bioaugmentationskultur

Tabelle 8-102: Rohdaten der Parameter Sauerstoff, pH, Temperatur, TCE und Chlorid des Versuchsaufbaus Box 3.

	BG	Einheit														
Dauer		Tage	18	23	29	36	43	50	57	64	71	78	85	92	99	113
s.p.																
Sauerstoff																
Zulauf	-	mg/L	6,26	6,82	7,55	7,64	7,41	7,07	9,60	7,55	7,81	7,89	8,39	8,50	8,51	8,11
А	-	mg/L	4,78	4,60	4,87	4,08	5,53	6,20	3,91	4,38	2,80	4,28	4,49	4,06	3,00	3,35
В	-	ma/L	5.49	4.79	4.83	4.67	4,93	6.23	4.29	5.94	4.74	4.44	5.15	4.75	3.38	4.15
Ċ	_	ma/l	5 67	4 98	6 11	6,39	5.84	6,97	6,30	7 24	3 40	4 93	5 18	4 73	3 14	3.62
С П		mg/L	6.01	5.85	6 50	7 11	6 71	7 20	6 20	7 47	5 13	1,00	5.81	1,70	3.62	4 71
5	-	mg/L	5.05	5,05	6.40	692	6.55	7,20	6 16	7.24	1 59	4,00	5,01	4,11	1 10	2,61
	-	mg/L	5,95	5,05	0,49	0,02	0,55	7,11	0,10	7,24	4,50	3,55	5,00	4,05	4,19	3,01
F	-	mg/∟	6,08	5,63	0,49	0,69	0,71	7,35	0,21	7,08	4,79	3,80	5,78	4,69	3,84	3,38
G	-	mg/L	5,72	5,27	6,31	6,56	6,16	7,10	6,00	6,88	4,40	5,15	5,61	3,85	3,83	3,47
Н	-	mg/L	4,77	4,07	4,72	5,62	5,41	6,82	5,65	6,38	3,89	3,80	4,09	3,35	2,94	4,00
Ablauf	-	mg/L	6,91	6,97	7,12	7,00	6,82	7,40	7,23	7,18	6,87	6,38	7,27	7,35	7,79	7,33
рН																
Zulauf	-	-	6,87	7,27	7,15	7,50	6,52	7,12	6,51	6,80	7,43	7,11	7,24	7,19	7,17	7,60
A	-	-	7,25	7,34	7,03	7,08	6,09	7,05	7,08	6,60	6,59	6,86	6,92	6,84	6,88	6,77
В	-	-	7,27	7,30	6,94	7,08	6,13	7,02	6,95	6,75	6,50	6,89	7,02	6,87	6,78	6,81
С	-	-	7.28	7.32	7.18	7.33	6.21	6.96	7.16	6.69	6.49	6.90	7.01	6.83	6.79	6.80
D	_	-	7 29	7.51	7 21	7 39	6.26	6,98	7 29	6 77	6.53	6 85	7 05	6 79	6 78	6,83
F	_	_	7 28	7 50	7 20	7 33	6.21	6 97	7 20	6 91	6 53	6 70	6 99	6 77	6 78	6 77
	-	-	7,20	7 45	7 10	7 36	6 17	7.01	7 20	6.92	6.57	6 91	6.04	6 75	6.90	6 76
F O	-	-	7,29	7,45	7,10	7,30	0,17	7,01	7,30	0,02	0,57	0,01	0,94	0,75	0,00	0,70
G	-	-	7,30	7,46	7,18	7,35	6,17	6,97	7,33	6,81	6,57	6,88	6,96	6,73	6,83	6,87
н	-	-	7,25	7,24	7,11	7,25	5,88	7,05	7,32	6,78	6,69	6,83	6,90	6,74	6,84	6,84
Ablauf	-	-	7,33	7,53	7,39	7,50	6,29	7,11	7,15	6,64	6,77	6,90	7,01	7,05	7,07	7,06
Temperatur																
Zulauf	-	°C	22,6	22,4	7,6	21,2	19,6	19,0	20,2	18,6	19,4	19,0	19,3	19,5	18,9	19,0
A	-	°C	21,3	21,7	22,1	20,9	19,8	19,1	19,6	18,6	19,2	18,9	19,3	19,6	18,7	18,3
В	-	°C	21,5	21,7	22,0	20,8	19,7	19,1	19,6	18,6	19,2	18,9	19,3	19,6	18,4	18,2
С	-	°C	21,6	21,6	22,0	20,6	19,4	19,1	19,6	18,4	19,1	19,0	19,5	19,7	18,3	18,3
D	-	°C	21.5	21.6	22.0	21.1	19.3	19.0	19.6	18.4	19.1	18.7	19.0	19.6	18.5	18.1
F	_	°C	214	21.8	21.9	20 9	19.6	18.9	19.6	18 2	19 1	18.5	19.0	19.4	18 7	18.3
F	_	°C	21.5	21,0	22.0	20,0	10,0	18.0	10,0	18.2	10,1	18.3	18.0	10,1	18.5	18.2
G		°C	21,0	21,7	22,0	20,7	10,0	18.0	10,0	18.2	10.2	18.0	10,5	10,7	18.6	18.2
G	-	°C	21,4	21,0	21,9	20,0	19,0	10,9	19,0	10,2	19,2	10,9	19,0	19,2	10,0	10,2
	-	С °С	21,3	21,7	22,1	21,0	19,3	10,9	19,7	10,3	19,3	10,9	19,0	19,4	10,7	10,2
Ablaut	-	10	21,9	22,3	22,3	20,7	19,6	18,9	19,7	18,6	19,5	18,7	19,4	19,2	19,0	18,4
CE																
TCE																
Zulauf	0,01	mg/L	20,90	21,00	19,70	19,30	8,90	15,60	10,30	15,90	13,60	15,30	15,53	16,26	14,41	11,22
A	0,01	mg/L	10,50	10,30	10,20	8,20	8,90	3,70	4,70	4,60	0,80	0,50	0,48	0,42	0,67	1,32
В	0,01	mg/L	11,70	11,60	5,90	6,30	7,50	0,50	15,70	12,50	2,20	0,10	0,10	0,08	0,29	0,96
С	0,01	mg/L	12,30	11,90	13,20	15,30	13,30	2,90	28,70	20,30	0,50	0,20	0,08	0,06	0,07	0,29
D	0,01	mg/L	12,90	12,90	14,90	13,00	11,70	3,90	30,00	16,30	2,70	0,20	0,11	0,07	0,07	0,22
Е	0,01	mg/L	13,40	11,70	15,80	14,30	12,20	4,40	30,80	13,40	2,30	0,10	0,08	0,05	0,06	0,27
F	0.01	ma/L	13.70	12.80	15.80	14.20	12.40	4.50	24.00	13.60	2.40	0.10	0.09	0.05	0.05	0.25
G	0.01	ma/l	13 80	11 70	15 00	14 20	12 10	4 90	23,90	12 60	3 00	0.20	0.10	0.07	0.13	0.46
н	0.01	ma/l	12 50	9.80	13,80	11.80	12 80	6.40	11 90	9 10	1 80	0.30	0.28	0.26	0.63	0.75
Ablauf	0.01	mg/L	0,00	6.80	8 50	7 00	7 60	3 30	18 50	1/ 10	1,00	0.20	0.10	0,20	0.22	0.38
Abiaui	0,01	IIIg/L	9,00	0,80	0,00	7,90	7,00	3,30	10,50	14,10	1,70	0,20	0,19	0,13	0,22	0,50
Anionen																
Chioria	4.0		• •	• •		• •			00.4	44.0	00.4	.		0 4		40.5
Zulauf	1,0	mg/L	8,1	9,3	9,0	8,0	9,3	8,4	22,1	14,2	22,4	9,4	8,2	8,1	8,2	13,5
A	1,0	mg/L	8,8	10,6	10,6	12,7	13,8	14,5	32,7	26,7	25,2	25,1	21,0	25,2	25,4	22,1
В	1,0	mg/L	9,6	9,9	16,4	9,5	16,1	15,1	35,8	20,3	25,1	24,5	19,4	22,6	23,4	24,2
С	1,0	mg/L	8,6	9,6	9,7	8,2	10,1	11,6	23,0	16,5	24,4	24,9	19,3	23,2	23,7	23,4
D	1,0	mg/L	8,5	8,5	8,6	7,9	9,7	11,0	22,7	15,8	22,5	27,1	20,8	25,5	24,1	25,5
E	1,0	mg/L	8,5	8,6	8,2	8,1	9,6	11,0	21,1	16,1	22,8	24,7	18,9	23,4	26,2	23,6
F	1.0	ma/L	8.5	8.5	8.1	8.1	11.1	11.4	23.5	16.6	22.3	24.8	18.9	23.6	24.2	24.7
G	10	ma/l	84	8.6	8 1	78	9.6	11.8	43.4	16.4	22.2	24 5	20.4	23.4	23.5	23.2
- Н	10	ma/l	87	2,0 8.8	80	,,; Я 1	0,0 Q⊿	12.8	24.7	19.0	24 5	25.1	21.3	23.3	23.5	24 Q
Ablauf	1.0	ma/l	۵, <i>۱</i>	0,0	0,0 0 7	10.1	11 1	1/1 2	28.2	18.2	23.7	25.1	20.2	25.6	26.6	23.2
1 10/00/1	1,0	y/∟	3,0	,∠	3,1	10,1	, .	· − ,∠	20,2	10,0	<i>د</i> ر, <i>ا</i>	L, U, I	20,J	∠0,0	20,0	<u>ح</u> ر, ح

	BG	Einheit							
Dauer		Tage	18	29	57	71	85	134	176
Biomarker									
EuB									
A	2	Genkopien/mL	1,57E+05	5,79E+03	7,98E+03	9,68E+03	6,13E+02	7,60E+02	4,20E+03
В	2	Genkopien/mL	2,60E+04	1,09E+02	4,26E+02	1,45E+04	1,89E+03	7,64E+02	1,28E+03
С	2	Genkopien/mL	2,02E+04	2,67E+03	9,26E+01	1,25E+02	2,30E+02	8,97E+01	7,49E+03
D	2	Genkopien/mL	5,85E+04	5,96E+03	9,63E+01	1,70E+03	6,34E+02	2,05E+03	5,01E+03
E	2	Genkopien/mL	8,29E+04	2,41E+06	< BG*	1,24E+04	4,99E+02	4,94E+03	2,32E+05
F	2	Genkopien/mL	8,42E+03	1,03E+06	5,03E+02	1,20E+03	1,16E+02	1,38E+04	8,62E+03
G	2	Genkopien/mL	4,89E+04	8,46E+02	2,80E+03	8,95E+03	1,46E+03	7,76E+02	1,39E+04
Н	2	Genkopien/mL	1,00E+05	1,73E+03	5,80E+02	1,92E+04	8,48E+02	1,80E+04	7,72E+05
Rho									
А	2	Genkopien/mL	2,54E+03	1,00E+03	1,80E+03	8,80E+02	2,30E+02	1,06E+03	< BG*
В	2	Genkopien/mL	3,34E+03	1,99E+02	1,83E+02	1,95E+03	3,00E+02	5,36E+02	1,10E+03
С	2	Genkopien/mL	6,81E+02	< BG*	< BG*	< BG*	5,86E+01	1,27E+03	3,16E+02
D	2	Genkopien/mL	6,19E+02	< BG*	< BG*	2,77E+02	7,60E+02	1,10E+03	8,04E+01
Е	2	Genkopien/mL	< BG*	4,96E+03	< BG*	3,27E+03	< BG*	2,89E+04	2,62E+03
F	2	Genkopien/mL	< BG*	2,30E+03	7,89E+01	4,52E+02	< BG*	1,38E+03	2,00E+03
G	2	Genkopien/mL	3,17E+03	< BG*	6,10E+02	1,71E+03	2,28E+03	1,81E+04	2,70E+03
Н	2	Genkopien/mL	< BG*	< BG*	6,80E+01	4,73E+03	< BG*	2,96E+04	2,73E+03
moC									
A	2	Genkopien/mL	2,76E+02	2,49E+01	2,70E+02	1,20E+02	< BG*	< BG*	9,13E+01
В	2	Genkopien/mL	5,37E+02	< BG	< BG*	1,84E+02	< BG*	< BG*	< BG*
С	2	Genkopien/mL	5,70E+01	< BG	< BG*	< BG*	< BG	< BG*	2,64E+03
D	2	Genkopien/mL	< BG*	1,07E+01	< BG*	< BG*	< BG*	8,11E+01	7,74E+01
E	2	Genkopien/mL	< BG	4,91E+02	< BG*	< BG*	< BG*	< BG*	1,32E+03
F	2	Genkopien/mL	< BG	2,01E+02	< BG*	< BG*	< BG*	< BG*	1,15E+03
G	2	Genkopien/mL	< BG*	< BG	9,97E+01	2,80E+02	< BG*	< BG*	5,61E+02
Н	2	Genkopien/mL	< BG	4,24E+00	< BG*	6,85E+02	< BG*	1,74E+02	1,23E+03

Tabelle 8-103: Ergebnisse der Biomarker-Untersuchungen der Wasserproben von Box 3. Mit "*" versehene Daten liegen unter der BG, weisen aber ein PCR-Signal auf und sind somit qualitativ positiv.

Tabelle 8-104: Rohdaten der Parameter Sauerstoff, pH, Temperatur, TCE und Chlorid des Versuchsaufbaus Box 4.

	BG	Einheit														
Dauer		Tage	18	23	29	36	43	50	57	64	71	78	85	92	99	113
s.p.																
Sauerstoff																
Zulauf	-	mg/L	6,11	6,77	7,56	7,70	7,17	6,90	8,66	7,76	7,42	7,93	8,37	8,37	8,32	7,90
А	-	mg/L	3,00	4,19	3,55	3,58	2,76	4,88	2,74	2,84	2,86	3,25	3,20	3,14	1,56	2,52
В	-	ma/L	4.45	6.13	5.76	5.64	4.40	5.73	3.38	4.07	2.08	3.36	2.66	4.43	2.82	2.02
С	_	ma/L	4.98	5.87	6.03	6.53	5.60	6.13	3.99	5.00	3.44	3.29	3.87	4.48	4.60	2.68
D	-	ma/l	5 62	5 84	5,81	6 85	5 73	6 25	4 30	5 57	4 40	3 64	3 85	3 05	4 51	3 74
F	-	ma/l	5 59	5 73	6 29	7 15	6 50	6 45	4 00	5 65	4 06	4 43	3,80	3 09	3 95	3 94
F	-	ma/l	5 68	6 63	6 4 1	7 07	7 09	7 39	5 42	5.06	4 24	4 21	4 02	3.02	3,92	3 24
G	_	mg/L	7 15	7 31	7.63	7 53	8 34	8 4 2	6 99	6 65	1,21	1,21	5 18	7 32	4.62	1 A7
U Ц		mg/L	8 01	0.12	0,70	0.21	10 / 2	0,42	6.08	6,65	7 1/	7,30	7 17	5 15	7.02	7 70
Ablauf	-	mg/L	6.22	9,12 6 70	5,70 7 1 2	3,21 7 / Q	6 97	9,10 6,00	6.07	6.53	6.52	7 17	7,17	6 79	6 70	6.54
Abiaui nu	-	iiig/L	0,55	0,75	7,15	7,40	0,07	0,33	0,97	0,55	0,55	7,17	7,01	0,70	0,70	0,54
рп Zulouf			6.00	7 50	7 00	7.60	6 40	7 40	6 54	6.04	7 40	7 1 1	7 55	7 00	7.04	7 74
Zulauf	-	-	6,99	7,53	7,20	7,62	6,43	7,18	6,51	6,21	7,48	7,11	7,55	7,28	7,24	7,71
A	-	-	7,41	7,49	7,60	7,73	6,50	7,02	7,06	6,75	6,81	7,03	7,04	6,86	6,94	7,04
В	-	-	7,33	7,29	7,47	7,56	6,32	6,70	6,94	6,69	6,58	6,94	6,90	6,85	6,80	6,95
С	-	-	7,30	7,29	7,50	7,52	6,33	6,70	6,95	6,55	6,41	6,81	6,81	6,85	6,87	6,89
D	-	-	7,28	7,31	7,52	7,43	6,38	6,68	6,95	6,65	6,43	6,85	6,73	6,70	6,82	6,91
E	-	-	7,22	7,18	7,47	7,33	6,30	6,06	6,85	6,72	6,43	6,85	6,74	6,68	6,80	6,89
F	-	-	7,14	7,23	7,42	7,29	6,24	6,68	6,63	6,65	6,48	6,85	6,72	6,69	6,83	6,85
G	-	-	6,87	6,92	6,98	7,07	6,18	6,61	6,68	6,49	6,37	6,79	6,71	6,22	6,55	6,71
Н	-	-	6,58	6,51	6,50	6,66	6,05	6,51	6,59	6,49	6,01	6,26	6,21	6,49	6,27	6,34
Ablauf	-	-	7,35	7,20	7,33	7,42	6,38	n.b.	7,08	6,60	6,62	7,03	6,77	6,98	7,04	6,91
Temperatur																
Zulauf	_	°C	22.5	22.5	22.1	21.3	19.6	19.3	19.9	18.6	19.8	19.0	19.7	19.7	19.3	18.3
Δ	-	°Ĉ	21.8	22.0	22.1	20.2	19.3	19.0	19.4	18.3	19.4	18.9	19.1	19.4	18.4	18.3
B	_	°C	21.0	21.9	22.1	20.2	19.0	19.0	19.4	18.4	19.4	19.0	19.2	19.2	18.5	18.3
C	_	°C	21,0	22,0	21.8	20,2	10,4	10,0	10,4	18.3	10,4 10 /	18.0	10,2	10,2	18.5	18.3
D	-	°C	21,0	22,0	21,0	20,0	10,0	10,1	10,5	10,0	10,4	10,5	10.2	10,0	10,0	10,5
	-	0 °C	21,9	22,0	22,0	20,5	19,0	19,1	19,5	10,1	19,5	10,0	19,2	19,1	10,0	10,4
	-	0 °C	21,9	22,0	21,9	20,3	19,0	19,0	19,5	10,2	19,5	19,0	19,2	19,1	10,7	10,4
F	-	-C	21,7	22,0	21,8	20,2	19,5	19,3	19,6	18,2	19,3	18,8	19,0	19,1	18,7	18,4
G	-	-C	21,9	22,0	21,8	20,4	19,4	19,2	19,5	18,3	19,4	18,9	19,1	19,0	18,7	18,4
Н	-	°C	21,6	22,1	22,1	20,3	19,2	19,0	19,6	18,3	19,4	18,9	19,1	19,1	18,8	18,4
Ablauf	-	°C	22,3	22,4	22,1	20,2	19,9	n.b.	19,6	18,6	19,5	18,8	19,4	19,5	19,0	18,4
CE																
TCE																
Zulauf	0,01	mg/L	16,50	17,30	17,20	19,60	14,60	16,80	16,90	16,10	16,20	15,00	17,48	18,79	17,12	14,02
A	0,01	mg/L	13,40	15,00	16,90	14,00	14,10	9,90	2,30	1,20	1,50	0,40	1,76	1,84	3,34	3,66
В	0,01	mg/L	15,40	12,80	16,60	13,00	16,20	11,60	2,90	0,70	0,90	1,50	0,50	0,32	2,59	1,14
С	0,01	mg/L	15,90	17,20	17,20	12,30	14,70	9,50	2,80	0,60	0,50	0,30	0,18	0,21	2,48	0,38
D	0,01	mg/L	15,00	16,70	16,40	12,30	14,00	9,70	3,70	0,80	0,60	0,20	0,05	0,18	2,24	0,44
E	0,01	mg/L	15,70	16,10	16,90	13,00	15,30	11,30	3,70	0,80	0,50	0,10	0,05	0,07	1,95	0,26
F	0,01	mg/L	17,00	16,00	17,10	13,40	16,10	13,90	6,40	1,00	0,50	0,10	0,04	0.03	1,85	0,34
G	0.01	ma/l	16 30	17 70	19 10	14 90	16 60	12 80	7 20	1 60	1 20	0 10	0 14	0.13	2 46	0.46
н	0.01	ma/l	14 80	15,90	16,80	16.30	16,00	13,30	7.30	1 70	1 10	0.40	0.31	0.65	2 95	3 13
Ablauf	0.01	mg/L	12 60	10,00	13.40	10,00	9 70	9.00	2 90	1 20	0.70	0.30	0.35	0.26	1 79	0.76
Anionon	0,01	iiig/∟	12,00	10,00	10,40	10,50	5,70	3,00	2,30	1,20	0,70	0,50	0,00	0,20	1,75	0,70
Chlorid																
Chioria	4.0		0.0	0.0	0.4	• •	0.0	10.0	40.0	0.0	0.7	0.0	0.4	0.4	0.4	0.4
	1,0	ing/L	0,0	0,3 7 1	0,1	0,U	9,3	10,8	10,0	9,0	ō,/	0,0 00 0	0,1	0,1	0,1	0,4 02.1
A	1,0	mg/L	7,6	7,4	7,4	7,6	10,6	18,5	46,6	26,2	24,7	23,3	22,9	25,5	20,3	23,1
В	1,0	mg/L	8,6	8,1	7,9	8,2	11,6	19,8	48,2	27,4	24,2	25,7	24,0	24,4	23,7	23,9
С	1,0	mg/L	9,4	8,0	7,8	8,6	11,4	21,0	48,9	30,4	28,3	27,0	27,3	27,3	24,0	26,1
D	1,0	mg/L	8,1	8,0	7,3	8,9	11,1	22,4	49,1	28,0	27,8	27,5	25,2	27,6	26,9	29,6
E	1,0	mg/L	8,2	8,4	7,8	8,7	11,5	20,4	49,9	28,2	31,4	28,1	26,4	27,7	25,7	27,3
F	1,0	mg/L	8,4	8,9	8,2	8,5	9,4	19,4	51,2	28,1	28,8	31,1	29,3	27,5	25,5	27,0
G	1,0	mg/L	8,6	9,1	8,3	8,4	14,2	20,5	27,3	30,4	29,0	29,4	27,4	29,7	28,8	28,1
Н	1,0	mg/L	9,7	11,1	11,0	10,7	14,1	24,6	53,9	36,7	38,5	37,2	36,5	37,4	32,5	31,9
Ablauf	1,0	mg/L	8,5	13,1	8,5	9,2	9,5	23,0	53,4	8,1	29,1	28,2	26,9	28,3	25,4	28,8

	BG	Einheit							
Dauer		Tage	18	29	57	71	85	134	176
Biomarker		-							
EuB									
A	2	Genkopien/mL	7,49E+04	2,24E+03	2,21E+03	1,19E+04	1,52E+04	1,28E+03	3,93E+04
В	2	Genkopien/mL	4,74E+04	1,21E+03	2,49E+03	7,37E+01	4,91E+03	1,65E+04	9,87E+04
С	2	Genkopien/mL	1,36E+04	1,77E+03	2,34E+03	8,10E+02	4,37E+03	9,25E+02	1,81E+04
D	2	Genkopien/mL	4,66E+04	5,85E+02	< BG*	1,94E+02	8,61E+02	8,48E+03	8,90E+03
E	2	Genkopien/mL	2,09E+05	< BG*	8,53E+02	4,99E+01	9,21E+02	1,85E+03	8,90E+03
F	2	Genkopien/mL	7,08E+04	< BG*	2,23E+02	7,37E+01	1,32E+04	1,97E+03	4,54E+03
G	2	Genkopien/mL	1,01E+06	< BG*	9,19E+02	1,51E+03	8,87E+03	3,37E+03	3,47E+04
Н	2	Genkopien/mL	2,74E+05	< BG*	5,76E+03	4,80E+02	8,16E+03	5,42E+03	1,82E+04
Rho									
A	2	Genkopien/mL	1,19E+03	< BG*	3,86E+02	2,60E+03	6,86E+02	1,14E+04	8,56E+02
В	2	Genkopien/mL	7,46E+02	1,42E+03	< BG*	8,07E+01	1,26E+03	2,16E+04	6,92E+02
С	2	Genkopien/mL	1,74E+02	1,26E+02	1,83E+02	1,38E+02	1,32E+02	8,90E+03	2,46E+02
D	2	Genkopien/mL	7,96E+02	1,36E+02	< BG*	1,35E+03	3,96E+02	4,01E+03	2,09E+02
E	2	Genkopien/mL	2,30E+03	< BG*	1,27E+02	8,99E+02	1,64E+02	1,65E+03	2,37E+03
F	2	Genkopien/mL	5,38E+02	< BG*	1,37E+02	< BG*	1,40E+03	1,15E+03	4,24E+03
G	2	Genkopien/mL	1,17E+04	< BG*	< BG*	1,23E+03	< BG*	1,70E+02	6,16E+03
Н	2	Genkopien/mL	3,02E+02	< BG*	1,28E+03	8,04E+02	2,76E+03	1,88E+02	4,07E+03
moC									
A	2	Genkopien/mL	< BG	< BG	7,26E+01	1,08E+02	8,36E+01	< BG*	7,19E+02
В	2	Genkopien/mL	< BG	< BG*	< BG*	< BG*	3,06E+01	1,69E+02	2,00E+02
С	2	Genkopien/mL	< BG	< BG*	< BG*	< BG*	1,46E+02	< BG*	1,68E+02
D	2	Genkopien/mL	< BG	< BG*	< BG*	< BG*	1,41E+02	6,30E+01	4,78E+01
E	2	Genkopien/mL	< BG	< BG	< BG*	< BG*	1,38E+02	< BG*	1,37E+02
F	2	Genkopien/mL	< BG	< BG	< BG*	< BG*	2,61E+02	< BG*	2,33E+02
G	2	Genkopien/mL	< BG	< BG	< BG*	1,08E+02	7,84E+01	< BG*	4,68E+02
Н	2	Genkopien/mL	< BG	< BG	1,76E+02	< BG*	2,16E+02	< BG*	2,09E+02

Tabelle 8-105: Ergebnisse der Biomarker-Untersuchungen der Wasserproben von Box 4. Mit "*" versehene Daten liegen unter der BG, weisen aber ein PCR-Signal auf und sind somit qualitativ positiv.

8.3.5 Elektrochemische Stimulation des aeroben TCE-Abbaus

8.3.5.1 Rohdaten der betriebenen Säulen

Tabelle 8-106: Rohdaten der bioaugmentierten Säulen Bio 1 und Bio 2. Säule Bio 2 wurde zusätzlich zur Bioaugmentation elektrochemisch stimuliert.

Port					Zulauf			
			s.p.		CE	Anionen	с	hlor
	Dauer	Sauerstoff	рН	Temperatur	TCE	Chlorid	Freies Chlor	Gesamt-Chlor
BG		-	-	-	0,0007	1,0	0,05	0,05
Einheit	Tage	mg/L			mg/L	mg/L	mg/L	mg/L
	0	n.b.	n.b.	n.b.	4,2500	n.b.	n.b.	n.b.
	4	7,91	7,5	21,2	4,7000	1,2	n.b.	n.b.
	11	8,30	7,5	22,4	4,3533	1,2	n.b.	n.b.
	18	8,60	7,4	20,9	6,4100	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	22	n.b.	n.b.	n.b.	11,5865	n.b.	n.b.	n.b.
	26	8,34	7,3	20,3	11,1600	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	29	7,60	7,4	20,8	10,4865	<bg< th=""><th>n.p.</th><th>n.b.</th></bg<>	n.p.	n.b.
	32	8,10	7,4	21,2	11,4655	<bg< th=""><th>n.p.</th><th>n.b.</th></bg<>	n.p.	n.b.
	35	n.p.	n.p.	n.p. 21.1	19,2000	n.p.	n.p.	n.p.
	39 12	7,99	7,4	21,1	10,0950		11.U. n.h	n.p.
	45	7,00	7,5	20,8	18 8912	<bg< th=""><th>n h</th><th>n.b.</th></bg<>	n h	n.b.
	53	7,95	7,5	21 9	28 8824	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	61	7,50	74	21,5	28,3024	<bg< th=""><th>n h</th><th>n.b.</th></bg<>	n h	n.b.
	67	7,74	7.4	21.0	28 2886	1.0	n h	n b
	70	6.82	7.5	21.5	29.4131	1.0	n.b.	n.b.
	74	7.61	7.5	20.6	31.3626	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	78	7,50	7,4	21,1	31,0120	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	82	7,00	7,4	21,4	30,5833	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	84	8,85	7,6	21,5	30,4294	1,2	n.b.	n.b.
	88	7,04	7,3	21,5	29,6582	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	92	7,01	7,3	21,7	28,9494	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	95	6,15	7,4	21,6	27,4559	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	97	7,40	7,3	21,6	28,7489	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	102	7,72	7,3	21,2	30,4283	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	110	8,03	7,6	21,2	31,1791	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	116	7,97	7,6	21,6	31,4894	1,4	n.b.	n.b.
	123	8,25	7,6	22,0	31,7086	1,4	n.b.	n.b.
	130	7,53	7,6	22,0	33,0366	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	137	7,48	7,4	23,1	33,1485	2,0	n.b.	n.b.
	144	7,90	7,5	21,9	31,3609	1,4	n.b.	n.b.
	151	8,56	7,5	21,7	31,4232	2,8	n.b.	n.b.
	158	8,21	7,5	22,3	29,4440	1,4	n.p.	n.b.
	172	7,87 9.16	7,7	22,3	31,1303	1,4	n.p.	n.b.
	172	8,10	7,0	21,8	32,7113 40 1164	2,1	n.b.	n.b.
	186	8.45	7,5	22,1	35 5990	1,5	n.b.	n.b.
	195	7.88	74	23.6	30 5770	57	n h	n.b.
	200	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
	207	7.59	7.1	21.7	0.1434	28.5	n.b.	n.b.
	209	n.b.	n.b.	n.b.	0,2170	28,5	n.b.	n.b.
	214	6,46	7,1	21,3	32,1139	9,4	n.b.	n.b.
	221	7,14	20,7	8,7	10,7318	24,6	n.b.	n.b.
	256	2,87	n.b.	n.b.	18,8477	2,7	n.b.	n.b.
	260	2,97	n.b.	n.b.	14,9395	2,6	n.b.	n.b.
	263	2,97	n.b.	n.b.	15,5752	2,6	n.b.	n.b.
	267	2,97	7,7	21,3	15,4481	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	270	2,97	7,7	20,7	15,6512	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	277	1,27	7,8	20,2	23,6260	<bg< th=""><th>n.b.</th><th>n.b.</th></bg<>	n.b.	n.b.
	284	1,27	7,8	20,5	15,3536	<bg< th=""><th><bg< th=""><th><bg< th=""></bg<></th></bg<></th></bg<>	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>
	291	0,97	7,7	20,0	30,3162	3,4	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>
	298	0,97	7,5	20,5	26,2/16	2,5	<bc< th=""><th><bc< th=""></bc<></th></bc<>	<bc< th=""></bc<>
	305 21F	0,50	7,7	20,7	24,3038	2,9	<bc< th=""><th><rc< th=""></rc<></th></bc<>	<rc< th=""></rc<>
	212 277	0,45	7,5 7 =	20,0	18 1200	2,0 2 4		
	322 330	0,00 0 83	7,5 7/1	20,0 10 0	12 2207	2,4 1 0		
	356	0,05	7,4	19,9 10 2	11 9362	4,9 4 2	n h	n h
	362	0.63	7,5	20.1	9,7102	-,.5 5.7	n.b.	n.b.
	368	0,63	7,5	21,0	9,4409	5,7	n.b.	n.b.

Port		Ablauf Bio 1								
			s.p.		CE	Anionen	Chlor			
	Dauer	Sauerstoff	рН	Temperatur	TCE	Chlorid	Freies Chlor	Gesamt-Chlor		
BG	_	- //	-	-	0,0007	1,0	0,05	0,05		
Einheit	Tage	mg/L	7.4	20.7	mg/L	mg/L	mg/L	mg/L		
	0	n.b. 8 11	7,4	20,7	n.p. 0.0565	n.p. 20	n.b.	n.b.		
	4	0,11 8 /1	7,4	21,2	0,0303	3,9	n.b.	n.b.		
	18	8 70	7,3	19.9	0,0212	3,5	n.b.	n.b.		
	22	0,70 n h	7,4	20.0	0,0570 n h	5,5 n h	n.b.	n.b.		
	26	8.65	7.3	20,0	5,7000	4.3	n.b.	n.b.		
	29	8 34	n b	_0,5	0.2290	7.1	n b.	n b		
	32	7.63	7.2	21.3	0.0148	7.0	n.b.	n.b.		
	35	n.b.	7,2	21,0	n.b.	n.b.	n.b.	n.b.		
	39	4,73	7,2	20,9	3,1900	9,4	n.b.	n.b.		
	43	2,91	7,2	21,1	0,0287	11,8	n.b.	n.b.		
	46	7,02	7,2	20,8	0,0078	12,1	n.b.	n.b.		
	53	n.b.	7,2	21,0	5,3620	13,0	n.b.	n.b.		
	61	0,89	7,2	21,4	0,0869	17,6	n.b.	n.b.		
	67	0,35	7,3	21,0	0,9314	17,7	n.b.	n.b.		
	70	0,26	7,2	21,2	2,1016	18,4	n.b.	n.b.		
	74	1,06	7,2	21,2	10,9556	14,6	n.b.	n.b.		
	78	0,15	7,4	22,1	6,2174	17,2	n.b.	n.b.		
	82	0,12	7,1	22,5	7,9880	15,7	n.b.	n.b.		
	84	0,15	7,1	22,0	7,0167	19,9	n.b.	n.b.		
	88	0,09	7,2	22,3	7,9364	18,3	n.b.	n.b.		
	92	0,10	7,1	21,4	8,0997	13,6	n.b.	n.b.		
	95	0,10	7,2	21,6	9,3881	13,2	n.b.	n.b.		
	97	0,10	7,4	21,7	9,0252	14,1	n.b.	n.b.		
	102	0,10	7,4	21,8	7,3798	15,1	n.p.	n.p.		
	110	0,10	7,5 7.2	22,2	5,5385	16,4	n.p.	n.b.		
	172	0,09	7,5	22,0	0,9078	14 1	n.b.	n.b.		
	125	0,07	7,1	22,3	7 1050	14,1	n.b.	n.b.		
	137	0.07	73	21.6	4 9304	16.8	n h	n.b.		
	144	0.08	7.3	22.3	2.3536	19,2	n.b.	n.b.		
	151	0.05	7.3	22.4	1.4868	18.8	n.b.	n.b.		
	158	0,03	7,3	22,0	1,5993	18,6	n.b.	n.b.		
	165	0,05	7,3	22,1	1,1146	19,1	n.b.	n.b.		
	172	0,05	7,2	22,1	0,9127	19,4	n.b.	n.b.		
	179	0,02	7,1	23,0	9,7282	20,3	n.b.	n.b.		
	186	0,02	7,0	21,9	6,6161	25,1	n.b.	n.b.		
	195	0,02	6,9	21,2	7,2424	22,3	n.b.	n.b.		
	200	0,10	7,1	21,0	0,0079	29,6	n.b.	n.b.		
	207	n.b.	7,1	21,5	0,0090	29,3	n.b.	n.b.		
	209	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.		
	214	3,77	n.b.	n.b.	22,8330	13,8	n.b.	n.b.		
	221	2,09	n.b.	n.b.	0,0112	29,1	n.b.	n.b.		
	256	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.		
	260	0,32	7,7	20,4	11,4687	4,4	n.b.	n.b.		
	203	2,10	7,0	20,6	5,8383	10.9	n.p.	n.p.		
	207	0,90	7,0	21,2	0,0241	10,8	n.o.	n.p.		
	270	0,02	7,0	20,2	12 61/12	7.6	n h	<bg< td=""></bg<>		
	277	0,10	7,4	10,9 20 R	4 1956	69		<rg< td=""></rg<>		
	291	0,00	74	20,0	19 2704	70	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	298	0.02	7.4	20.6	16,4864	9.3	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	305	0.02	7.3	20,6	14,9346	95	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	315	0.02	7.3	18.7	13.3290	9.0	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	322	0,03	7,4	20,8	8,1379	8,4	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	330	0,02	7,3	20,7	3,3163	9,5	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>		
	356	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.		
	362	0,07	7,3	20,2	1,3973	10,4	n.b.	n.b.		
	368	0.04	73	20.5	1 3570	10.7	n h	nh		

Port		Ablauf Bio 2									
		s.p.			CE Anionen		Chlor		DC		
	Dauer	Sauerstoff	рН	Temperatur	TCE	Chlorid	Freies Chlor	Gesamt-Chlor	Stromstärke		
BG		-	-	-	0,0007	1,0	0,05	0,05	-		
Einheit	Tage	mg/L			mg/L	mg/L	mg/L	mg/L	mA		
	0	7,67	7,4	21,1	0,0845	3,7	n.b.	n.b.	0		
	4	8,01	7,4	20,8	0,0310	3,8	n.p.	n.p.	0		
	10	0,92 n h	7,5	20,8	0,0300	3,2 n.h	n.b.	n.b.	0		
	10 22	0.25	7,4	20,0	1.0.	11.D. 2 E	n.b.	n.b.	0		
	22	6,25 7.62	7,5	20,1	4,3400	5,5 6 7	n h	n.b.	0		
	20	7,02	,, ,	20,0 n h	0,1133	6.8	n.b.	n.b.	0		
	32	n h	73	21.3	n h	0,0 n h	n.b.	n.b.	0		
	35	4.73	7.2	20.9	3.7055	9.8	n.b.	n.b.	0		
	39	3,24	7,2	20,9	0,0477	11,9	n.b.	n.b.	0		
	43	6.30	, 7.2	20.9	0.0130	12.3	n.b.	n.b.	0		
	46	3,73	, 7,2	21,0	11,1686	10,5	n.b.	n.b.	0		
	53	0,86	7,2	21,0	0,1443	17,8	n.b.	n.b.	0		
	61	0,35	, 7,2	21,4	0,4868	17,8	n.b.	n.b.	0		
	67	0,26	7,3	20,9	1,6187	18,3	n.b.	n.b.	0		
	70	1,06	7,2	21,3	9,0270	16,6	n.b.	n.b.	0		
	74	0,15	7,2	21,2	5,3513	17,6	n.b.	n.b.	0		
	78	0,12	7,3	22,6	6,5929	16,6	n.b.	n.b.	0		
	82	0,01	7,1	21,9	2,1516	24,3	n.b.	n.b.	0		
	84	0,04	7,1	22,1	1,3242	24,2	n.b.	n.b.	0,25		
	88	0,10	7,1	22,4	1,7763	18,2	n.b.	n.b.	0,25		
	92	0,14	7,1	21,6	1,1725	19,1	n.b.	n.b.	0,25		
	95	0,22	7,2	22,1	0,4267	21,3	n.b.	n.b.	0,25		
	97	0,45	7,4	22,0	0,0069	21,0	n.b.	n.b.	0,5		
	102	0,82	7,4	21,1	0,0051	20,6	n.b.	n.b.	0,5		
	110	0,26	7,4	22,8	6,5637	15,3	n.b.	n.b.	0,5		
	116	0,13	7,3	22,8	7,2753	14,6	n.b.	n.b.	0		
	123	0,75	7,0	21,8	0,0172	20,0	n.b.	n.b.	0		
	130	1,21	7,2	22,3	0,0079	20,1	n.b.	n.b.	0,5		
	137	1,52	7,3	21,6	0,0077	20,4	n.b.	n.b.	0,5		
	144	0,28	7,3	22,2	2,4577	18,1	n.b.	n.b.	0,5		
	151	0,25	7,3	22,4	2,1825	18,3	n.b.	n.b.	0		
	158	1,95	7,3	22,2	0,0214	19,7	n.b.	n.b.	0		
	165	2,05	7,2	22,3	0,0118	20,0	n.b.	n.b.	0,5		
	1/2	1,74	7,1	22,3	6,14/1	22,5	n.b.	n.b.	0,5		
	1/9	1,66	7,1	23,3	0,0597	30,5	n.b.	n.b.	0		
	105	1,48	7,0	22,0	0,3474	27,5	n.b.	n.p.	0,5		
	195	2,13 n.h	6,9 7 1	21,9	0,0092	29,3	n.p.	n.p.	0,5		
	200	11.D.	7,1 71	21,2	0,0201	29,0 n h	n.b.	n.b.	0,5		
	207	2.20	7,1 n.h	21,0 n.h	21 7621	14.2	n.b.	n.b.	0,5		
	205	3,30	n.b.	n.b.	0.0479	28.9	n.b.	n.b.	0,5		
	214	5,20 n h	n h	n.b.	0,0479	20,5 n h	n h	n.b.	0,5		
	256	3.82	n b	n.b.	14 1250	2.8	n.b.	n.b.	0,5		
	260	3.80	7.7	20.5	14.6191	2,9	n.b.	n.b.	0.5		
	263	3.60	7.7	20.2	13.1774	2.2	<bg< td=""><td>n.b.</td><td>0.5</td></bg<>	n.b.	0.5		
	267	2,86	, 7,7	20,3	8,8005	3,9	<bg< td=""><td><bg< td=""><td>0</td></bg<></td></bg<>	<bg< td=""><td>0</td></bg<>	0		
	270	0,17	7,7	20,2	13,9278	8,2	n.b.	n.b.	0		
	277	1,12	, 7,3	19,8	0,0582	9,9	<bg< td=""><td><bg< td=""><td>0</td></bg<></td></bg<>	<bg< td=""><td>0</td></bg<>	0		
	284	0,88	7,6	21,2	14,7843	9,9	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	291	0,90	7,4	20,8	12,1284	12,9	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	298	0,43	7,3	20,8	8,5656	13,7	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	305	0,22	7,3	20,3	4,6538	15,8	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	315	0,10	7,2	18,7	8,3389	8,1	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	322	n.b.	7,4	2,4	1,9731	10,6	<bg< td=""><td><bg< td=""><td>0,5</td></bg<></td></bg<>	<bg< td=""><td>0,5</td></bg<>	0,5		
	330	n.b.	7,3	20,8	n.b.	n.b.	n.b.	n.b.	0		
	356	0,18	n.b.	n.b.	0,6765	11,4	n.b.	n.b.	0		
	362	0,10	7,3	20,4	0,9840	11,2	n.b.	n.b.	0		
	368	n.b.	7,3	20,6	n.b.	n.b.	n.b.	n.b.	0		
Tabelle 8-107:	Rohdaten	der abi	iotischen,	elektrochemisch	behandelten	Säule.	Die	Versuchsdauer			
----------------	---------------	----------	------------	-----------------	-------------	--------	-----	---------------			
wurde der Lauf	fzeit der bio	logische	en Säulen	angepasst.							

Port		Zulauf							
		s.p.		CE	Anionen	Chlor			
	Dauer	Sauerstoff	рН	Temperatur	TCE	Chlorid	Freies Chlor	Gesamt-Chlor	
BG		-	-	-	0,0007	1,0	0,05	0,05	
Einheit	Tage	mg/L	-	°C	mg/L	mg/L	mg/L	mg/L	
	214	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
	221	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
	235	8,45	7,5	20,8	10,5678	2,5	n.b.	n.b.	
	239	7,34	7,5	20,8	10,8495	2,5	n.b.	n.b.	
	242	8	7,47	21,4	10,5762	2,5	n.b.	n.b.	
	256	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
	260	2,6	n.b.	n.b.	9,6342	2,6	n.b.	n.b.	
	263	2,6	7,72	20,3	9,3712	2,8	n.b.	n.b.	
	267	2,6	7,72	20,8	9,2807	< 2,0	n.b.	n.b.	
	270	2,6	7,73	20	9,4110	< 2,0	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>	
	277	2,6	7,45	20,5	8,6653	< 2,0	n.b.	n.b.	
	284	2,6	7,71	20,6	8,7937	2,4	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>	
	291	2,6	7,49	21	8,8257	2,4	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>	
	298	2,6	7,48	20	8,7640	2,4	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>	
	305	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
	315	0,85	7,44	19	4,3016	2,1	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>	

Port					Ablauf				
			s.p.		CE	Anionen	C	hlor	DC
	Dauer	Sauerstoff	рН	Temperatur	TCE	Chlorid	Freies Chlor	Gesamt-Chlor	Stromstärke
BG		-	-	-	0,0007	1,0	0,05	0,05	-
Einheit	Tage	mg/L	-	°C	mg/L	mg/L	mg/L	mg/L	mA
	214	4,74	7,11	21,2	24,8288	10,7	n.b.	n.b.	0
	221	3,9	7,12	21,4	5,4227	25,7	n.b.	n.b.	0
	235	7,56	7,46	21,2	10,1328	2,8	n.b.	n.b.	0
	239	7,29	7,4	20,6	10,3456	2,8	n.b.	n.b.	0
	242	6,3	7,46	21,3	10,1138	2,9	n.b.	n.b.	0
	256	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0
	260	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,5
	263	4,26	7,75	20,2	9,5126	2,5	n.b.	n.b.	0,5
	267	3,92	7,74	20,2	9,4605	0,5	n.b.	n.b.	0,5
	270	3,4	7,73	20,1	9,4720	0,5	<bg< td=""><td>0,29</td><td>0,5</td></bg<>	0,29	0,5
	277	3,63	7,7	20	9,0875	0,5	n.b.	n.b.	0,5
	284	3,22	7,69	20,7	9,1337	2,4	<bg< td=""><td><bg< td=""><td>0,75</td></bg<></td></bg<>	<bg< td=""><td>0,75</td></bg<>	0,75
	291	3,53	7,49	20,6	9,1908	2,4	<bg< td=""><td><bg< td=""><td>0,75</td></bg<></td></bg<>	<bg< td=""><td>0,75</td></bg<>	0,75
	298	<bg< td=""><td>7,48</td><td>20,6</td><td>8,5650</td><td>2,5</td><td><bg< td=""><td><bg< td=""><td>0,75</td></bg<></td></bg<></td></bg<>	7,48	20,6	8,5650	2,5	<bg< td=""><td><bg< td=""><td>0,75</td></bg<></td></bg<>	<bg< td=""><td>0,75</td></bg<>	0,75
	305	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,75
	315	2,66	7,47	18,5	4,0679	1,9	<bg< td=""><td><bg< td=""><td>0,75</td></bg<></td></bg<>	<bg< td=""><td>0,75</td></bg<>	0,75

8.3.5.2 Schadstoff- und Sauerstoff-Verlauf während der Erhöhung der TCE-Zulaufkonzentration

Abbildung 8-12 zeigt den Verlauf der Sauerstoffkonzentration sowie der TCE-Konzentration im Zulauf und den beiden Säulenabläufen. Durch die Erhöhung der TCE-Konzentration erfährt die Mikrobiota einen Schock, durch den der Schadstoff kurzzeitig durch die Säule durchbricht. Der TCE-Abbau erholt sich jedoch nach jeder Erhöhung der TCE-Zulaufkonzentration innerhalb von 14 Tagen wieder.

Abbildung 8-12: Verlauf der Sauerstoffkonzentration sowie TCE-Konzentration in Zulauf und den Abläufen Bio 1 und Bio 2 während der Startphase zur Erhöhung der TCE-Konzentration

8.3.5.3 Abschätzung der Elektrolyse-Effizienz auf Grundlage der gemessenen Sauerstoffwerte

Die elektrolytische Sauerstoffproduktion für die Abschätzung der Elektrolyse-Effizienz basiert auf einem Volumenstrom von 0,5 L/d und einer Stromstärke von 0,5 mA. An Tag 165 und 172 lagen die gemessenen Sauerstoffkonzentrationen im Ablauf bei 1,95 mg/L und 2,05 mg/L und wurden als Equilibrium angenommen.

Tabelle 8-108: Abschätzung der Elektrolyseeffizienz anhand der gemessenen Ablauf-Werte der ECstimulierten Bioaugmentationssäule.

Sauerstoff Zulauf	Stöchiometrischer Sauerstoffverbrauch durch Schadstoffabbau	Elektrolyse Effizienz	Sauerstoffproduktion	DO Ablauf, berechnet
mg/L	mg/L	%	mg/L	mg/L
		100	7,20	4,10
		90	6,48	3,38
8,0	11,1	80	5,76	2,66
		70	5,04	1,94
		60	4,32	1,22

8.3.5.4 TCE-Konzentrationsverlauf der abiotischen Säule in der elektrochemisch unterstützten Phase

Abbildung 8-13: Betrieb der abiotischen, elektrochemisch unterstützen Säule. Die Versuchslaufzeit wurde der Betriebsdauer der biotischen Säulen angepasst.

8.3.5.5 Verlauf der pH-Werte in Zu und Ablauf der betriebenen Säulen

Abbildung 8-14: Entwicklung des pH-Wertes durch die Passage der einzelnen Säulen. Die Versuchsdauer der abiotischen Säule wurde an die Laufzeit der biotischen Säulen angepasst.

8.3.5.6 Verhältnis des abgebauten TCEs zum verbrauchten Sauerstoff bei 100 % Elektrolyse-Effizienz

Abbildung 8-15: Verhältnis der abgebauten Menge an TCE mit der verbrauchten Menge an Sauerstoff. DO(Elektrolyse) ist auf Grundlage des Faraday'schen Gesetzes und der Annahme eines 100 % effizienten Elektrolyse-Prozesses berechnet.