KIT | KIT-Bibliothek | Impressum | Datenschutz

Longitudinal and Transverse $^1$H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T

Nasser Din, Rami; Venu, Aiswarya Chalikunnath 1; Rudszuck, Thomas 2; Vallet, Alicia; Favier, Adrien; Powell, Annie K. 1,3; Guthausen, Gisela ORCID iD icon 4; Ibrahim, Masooma ORCID iD icon 1; Krämer, Steffen
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
4 Engler-Bunte-Institut (EBI), Karlsruher Institut für Technologie (KIT)

Abstract:

The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of $^1$H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln$^{3+}$) can become very strong. Longitudinal and transverse $^1$H NMRD for Gd$^{3+}$, Dy$^{3+}$, Er$^{3+}$ and Ho$^{3+}$ were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the 1H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy$^{3+}$, Er$^{3+}$ and Ho$^{3+}$. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176133
Veröffentlicht am 11.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Engler-Bunte-Institut (EBI)
Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 1420-3049
KITopen-ID: 1000176133
Erschienen in Molecules
Verlag MDPI
Band 29
Heft 20
Seiten 4956
Vorab online veröffentlicht am 19.10.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page