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Abstract: The investigation, evaluation, and dynamic monitoring of traditional village buildings are
crucial for the protection and inheritance of their architectural styles. This study takes traditional
villages in Shandong Province, China, as an example, employing UAV images and deep learning
technology. Utilizing the YOLOv8 instance segmentation model, it introduces three key features re-
flecting the condition of traditional village buildings: roof status, roof form, and courtyard vegetation
coverage. By extracting feature data on the condition of traditional village buildings and constructing
a transition matrix for building condition changes, combined with corresponding manual judgment
assistance, the study classifies, counts, and visually outputs the conditions and changes of buildings.
This approach enables the investigation, evaluation, and dynamic monitoring of traditional village
buildings. The results show that deep learning technology significantly enhances the efficiency and
accuracy of traditional village architectural investigation and evaluations, and it performs well in
dynamic monitoring of building condition changes. The “UAV image + deep learning” technical
system, with its simplicity, accuracy, efficiency, and low cost, can provide further data and technical
support for the planning, protection supervision, and development strategy formulation of traditional
Chinese villages.

Keywords: UAV images; deep learning; architectural feature recognition; dynamic monitoring;
traditional Chinese village

1. Introduction
1.1. Background

Traditional Chinese villages harbor a wealth of historical information and cultural
landscapes. Spatial features serve as the spatial carriers that display and bear the historical
and cultural characteristics of these villages. Protecting and inheriting the spatial features
and the cultural factors they contain is essential to preserve the roots of culture and better
achieve the synergy of conservation and development [1]. Architecture is the most direct
reflection of the spatial features and regional characteristics of traditional villages and
is also the spatial element that changes most rapidly and is most susceptible to external
influences. Currently, the integrity and sustainability of architectural styles in traditional
Chinese villages are prominent issues, mainly manifested in two aspects: first, a large
number of traditional buildings suffer from continuous damage due to long-term vacancy
and lack of maintenance; second, unorganized and unconstrained construction activities
in villages cause constructive destruction to the architectural style. Investigating and
evaluating traditional village buildings and dynamically monitoring changes are crucial
prerequisites and means for the protection and inheritance of their architectural styles.
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Current traditional methods of building investigation, evaluation, and dynamic monitoring
rely heavily on manual labor, which not only consumes a significant amount of time and
economic costs but also has considerable issues with data accuracy and the continuity of
monitoring. How to improve the timeliness of traditional village building information
acquisition and reduce costs to achieve continuous, dynamic, and real-time assessment and
change monitoring is a question worth exploring.

With technological advancements, artificial intelligence is increasingly applied to the
field of cultural heritage protection. Image recognition technology based on deep learning
provides an effective method for identifying and extracting spatial features of traditional
villages [2,3]. On one hand, data mining, identifying, and extracting traditional village
spatial feature information that does not rely on subjective judgment, and analyzing the
underlying patterns behind the spatial forms of traditional villages, can provide scientific
data support for their protection. On the other hand, convenient long-term acquisition
of spatial feature data can provide an effective means for monitoring traditional village
protection activities and construction behaviors.

This study, combined with the practice of traditional village protection and utilization,
takes unmanned aerial vehicle (UAV) images as the data foundation and applies deep learn-
ing technology to the identification of traditional village architectural features. Through
deep learning model training, it extracts key feature information that reflects the condition
of traditional village buildings, constructing an efficient, low-cost technical method for the
investigation, evaluation, and dynamic monitoring of traditional village buildings, further
enriching and deepening the connotation of research on traditional Chinese villages.

1.2. Related Work

The architectural investigation, evaluation, and change monitoring of traditional vil-
lages involve assessing the condition of buildings and capturing their changes through
continuous observation to determine the extent of these changes and their impact on the
protection and development of traditional villages. Western countries began attempting
to monitor and plan for the protection of cultural heritage in the 1970s [4], while China
only started incorporating construction development monitoring into urban planning and
design information systems at the beginning of the 21st century [5]. With the application
of digital technology in urban construction [6], heritage conservation [7], monitoring, and
early warning [8], digital monitoring has become a major focus in research and practice.
Current research primarily uses high-resolution remote sensing satellite images [9], terres-
trial 3D laser scanning [10], digital low-altitude photogrammetry [11], and UAV sensors [12];
it is applied in fields such as national spatial development and ecological protection [13],
cultural heritage site conservation [14], resource and environmental carrying capacity
assessment [15], structural safety monitoring of architectural heritage [16], and disaster
prevention [17]. Currently, there is a scarcity of research in China specifically dedicated to
the spatial survey, evaluation, and change monitoring of traditional villages. The existing
studies on the spatial survey and evaluation of traditional villages predominantly focus
on cultural landscapes [18], heritage resources [19], and specific landscape elements such
as soundscapes [20] and color landscapes [21]. These studies typically employ traditional
techniques and methods, including survey statistics, spatial syntax, and topological analy-
sis, which are deficient in providing a systematic and quantitative analysis of traditional
village spaces using modern tools. The monitoring research is even more limited, with the
few available research outcomes concentrating on the monitoring and early warning of
the impact of tourism development on the protection of traditional village spaces [22] and
the construction of monitoring and early warning systems for traditional villages [23,24].
The field of dynamic monitoring research aimed at the protection and development of
traditional villages still lacks a novel holistic perspective and intelligent technologies.

The application of deep learning technology in the protection of traditional villages is
becoming increasingly widespread, with researchers conducting in-depth studies on the
classification of traditional village landscapes [25], landscape evaluation [26], spatial texture
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recognition [27], and classification and quantification of residential buildings [28]. Current
research on the identification of architectural features in traditional Chinese villages mainly
focuses on three aspects: First, the optimization of deep learning algorithm models and the
improvement of recognition accuracy. Hang Xue et al. [29] introduced a multi-scale fusion
and detail enhancement network MAD-UNet for the effective extraction of rural buildings.
Feng Fan et al. [30] enhanced the extraction capability of multi-scale buildings based on
a multi-input multi-output and multi-feature fusion fully convolutional network. Chen
Xuejiao et al. [31] studied methods for extracting buildings from high-resolution remote
sensing images using a densely connected feature pyramid fusion network. By continu-
ously optimizing algorithm models, the accuracy and efficiency of building identification
are improved. Second, research on the selection of extracted features explores common
architectural feature recognition indicators, including color [32], spectrum [33], texture [34],
shape [35], shadow [36], and semantics, designing effective recognition feature systems
to better describe buildings. Third, the specific application of semantic segmentation and
instance segmentation algorithms is explored, with studies investigating the extraction of
buildings from remote sensing and UAV images using improved U-NET [37], HF-FCN [38],
Mask R-CNN [39], and Mask Scoring R-CNN [40] semantic segmentation and instance
segmentation algorithm models, with instance segmentation algorithm models showing
better applicability for the identification of buildings in rural areas.

Deep learning, with its capacity for leveraging vast amounts of data and computational
power, has demonstrated significant technological advantages. Utilizing high-resolution
satellite remote sensing imagery and UAV imagery, deep learning techniques have been em-
ployed by researchers for extensive studies on rapid detection of urban building targets [41],
precise identification and extraction of buildings [42], automatic recognition of urban unau-
thorized constructions [43], post-earthquake damage identification of buildings [44,45],
structural classification of buildings [46], and analysis of architectural features [47]. On this
basis, researchers have also explored the application of deep learning technology in the field
of urban community spatial planning [48], establishing it as a vital technical instrument
and research direction in urban and rural spatial planning. Conversely, the application of
deep learning technology in the domain of traditional Chinese villages remains relatively
scarce, with only preliminary discussions on the intelligent recognition of rural build-
ings [49] and the automatic classification of rural architectural features [50]. Research on
the identification of spatial characteristics and dynamic monitoring of traditional villages
is essentially non-existent. Given the vast number of traditional Chinese villages and
the urgent tasks of protection and development they face, it is imperative to undertake
adaptive and innovative explorations based on existing research and practices. This study
focuses on the application pathways of deep learning in the protection and development of
traditional Chinese villages, aiming to further expand the practical application domains of
deep learning.

1.3. Characteristics for Architectural Condition Recognition and Assessment

From the perspective of image recognition, the identification of architectural features
based on UAV orthoimages primarily encompasses three aspects: the condition of building
roofs (intact and damaged), roof forms, and the coverage status of courtyard vegetation [51].
Through summarization and refinement, in the traditional villages of the Shandong region,
the forms of building roofs are categorized into two major types: double-sloped roofs
and flat roofs. The double-sloped roofs can be further refined into three subtypes: red
tile, gray tile, and colored steel tile (as shown in Figure 1). Additionally, influenced by
traditional concepts such as Feng Shui, evergreen coniferous species are rarely planted in
rural courtyards in the Shandong region, with a preference for more practical fruit trees.
The courtyard vegetation exhibits distinct coverage characteristics during the growing
season. Based on the aforementioned classification criteria, the building conditions can
be further divided into six image recognition features, which serve as the basis for deep
learning-based image recognition (see the category division in Figure 2).
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1.4. Dynamic Monitoring of Building Conditions and Assessment Criteria

Through extensive field research combined with relevant literature [52,53] and protec-
tion and utilization requirements [54,55], the conditions and changes of traditional village
buildings primarily include forms such as abandonment, damage, restoration, rehabili-
tation, new construction, demolition, and remaining unchanged. These forms constitute
the main content of the dynamic monitoring of changes in the conditions of traditional
village buildings. Based on the summary of research data from traditional villages in
Shandong Province, the aforementioned monitoring content can be discerned through the
changes in roof condition, roof form and color, courtyard vegetation coverage, and their
interconversion relationships.

The characteristics and criteria for distinguishing the changes in the conditions of
traditional village buildings are as follows:

• Abandonment: The residential status shifts from occupied to unoccupied. This can
be identified by observing the condition of courtyard vegetation and its changes;
unoccupied courtyards exhibit irregular, large areas covered with weeds and vines.

• Damage: Mainly manifested by partial or complete destruction of the roof, which can
be identified by changes in the roof’s condition.

• Restoration: Undertaken to preserve the existing condition of a building or to appro-
priately restore it to its original state, this involves repair, reinforcement, maintenance,
and improvement works with an emphasis on maintaining and restoring the building’s
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original appearance and historical characteristics. In traditional village architecture,
restoration focuses on reviving the traditional materials and styles of the building’s
roof and facade. Therefore, it can be identified through observations of changes in the
roof’s condition, form, and color.

• Rehabilitation: Conducted to enable a building to be reused or to exhibit its original
functions and value, this work emphasizes the restoration of the building’s original
functionality and utility. Traditional building materials and styles may not be used.
It can be identified through observations of changes in the roof’s condition, form,
and color.

• New construction: Construction activities on vacant land during the monitoring
period, which can be identified by the emergence of a roof where there was none before.

• Demolition: The removal of existing buildings to create vacant land, which can be
identified by the disappearance of a roof where there was one before.

• Unchanged: Well-preserved buildings that have not undergone significant changes in
their condition during the monitoring period, which can be identified by the stability
of the roof’s condition.

2. Materials and Methods

The overall workflow and main procedures are illustrated in Figure 2. It contains three
major steps: deep learning model training, architectural feature recognition and extraction,
and dynamic monitoring and visualization output.

Initially, fundamental data was amassed via remote sensing images, field investiga-
tions, and UAV images, followed by the development of deep learning models. Subse-
quently, these models were deployed to identify and extract architectural features from
the sample villages, leveraging image feature extraction to inform subsequent dynamic
monitoring. Utilizing the extracted data, in conjunction with manual discrimination, the
state of buildings and their transformations were categorized, statistically analyzed, and
visually presented, facilitating the assessment and dynamic monitoring of traditional
village buildings.

2.1. Study Area and Data Collection
2.1.1. Study Area

The construction of deep learning model data in this study took traditional villages in
Shandong Province, China, as samples. Shandong Province currently boasts 168 traditional
Chinese villages. The geographical features of the coexistence of land and sea, as well as
the rich terrain and landforms in Shandong Province, and the profound cultural heritage
formed by the integration of diverse cultures, such as Qilu culture and marine culture,
have nurtured traditional villages with diverse types and distinct regional characteristics.
These villages are categorized into five spatial typologies: the Eastern Shandong Peninsula,
Central Shandong Mountainous Region, Southern Shandong Hills, Southwest Shandong
Plain, and Northern Shandong Plain, making the province a significant distribution area
and typical examples of traditional Chinese villages.

2.1.2. UAV Photography

UAV images offer a higher planar data acquisition rate for upper areas such as building
roofs, enabling the collection of multi-directional data information, and serving as an
effective method for the investigation, evaluation, and change monitoring of traditional
village architecture. The research team conducted field investigations of traditional villages
within the jurisdiction of Shandong Province. Considering the limitations of the accuracy of
remotely sensed images available to the public and the complexity of the traditional village
architectural environment, this study utilized UAV photography to obtain orthoimages of
168 traditional Chinese villages. These images are used as the data source for the training
set of the deep learning model, and the image data acquisition process is depicted in
Figure 3.
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2.2. Deep Learning-Based Feature Extraction Model
2.2.1. Building Feature Extraction by YOLOv8

Currently, deep learning models applied to image recognition are primarily divided
into two major categories: one-stage algorithm models represented by YOLO [56] and
SSD [57], and two-stage algorithm models represented by Mask R-CNN [58] and Faster
R-CNN [59]. Compared to two-stage algorithm models, one-stage algorithm models can
directly classify samples without the need for generating region proposal boxes, obtaining
recognition results in a single phase, thus demonstrating superior advantages in terms of
speed and efficiency.

Among the one-stage algorithm models, the YOLO series is a typical example. With
the algorithm optimization of the YOLOv8 model [60], particularly in processing speed
and data capacity, it has shown excellent performance in building image analysis tasks. In
the preliminary model selection phase of this study, for the recognition of rural building
features, YOLOv8 demonstrated good reliability and accuracy; therefore, this study adopts
the instance segmentation model of YOLOv8 as the basic model for the study.

YOLOv8 is a version within the object detection and image segmentation series models
developed by Ultralytics. YOLOv8 enhances the network’s gradient flow by introducing the
C2f module in place of the traditional C3 structure [61]. It incorporates the Mosaic technique
during the data augmentation phase to enrich the diversity of image backgrounds and
simultaneously turns off this enhancement during the later stages of training to stabilize
model convergence [62], thereby improving the model’s learning capabilities. In terms of
loss functions, YOLOv8′s detection head employs CIoU and DFL, while the classification
head uses the binary cross-entropy (BCE) loss function, further enhancing the model’s
performance [63]. To accommodate varying data capacity requirements, YOLOv8 fine-tunes
the model’s channel configuration, offering five different versions: n, s, m, l, and x [64].
Considering the data set capacity of this study, YOLOv8n was selected as the specific model
for research.

This study utilized the YOLOv8n instance segmentation model, based on the high-
resolution UAV orthoimagery obtained, and through the comparison of multi-period image
data recognition results, combined with manual assistance, to determine the changes in
the state of buildings, identify the impacts of these changes, and accordingly conduct
investigations, evaluations, and dynamic monitoring of traditional village buildings.

2.2.2. Data Preprocess

To meet the requirements for sample size and image resolution during the training
phase of the YOLOv8 model, the output accuracy of the collected orthoimages was set to
10 cm. Subsequently, the original orthoimagery was cropped into 640*640 pixel images
and different types of buildings and courtyards in the orthoimages were semantically
segmented and annotated using the labeling software Labelme 2014 (Figure 4).

To achieve image enhancement and expansion of the training dataset, avoid unneces-
sary loss of image resolution during processing, and enhance the model’s generalization
ability, the following data augmentation measures were taken: First, horizontal flipping
was performed on each input image (Figure 5a); Second, random rotation was applied to
the images (Figure 5b), with the angle varying between −15◦ and +15◦ to reflect the possible
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orientations of buildings in actual scenes; Third, blur effects were introduced (Figure 5c),
with a maximum blur radius of 2.5 pixels, to mimic image blur caused by camera shake
or rapid movement. Through the enhancement of the sample dataset, an average of three
variants was generated for each original image, expanding the scale of the training set and
improving the quality of the model’s training dataset through augmentation measures.
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2.2.3. Model Training and Evaluation

This study employed the YOLOv8n-seg.pt model for instance segmentation of build-
ings and courtyards in orthoimagery, utilizing the deep learning framework of PyTorch
1.1.2, coupled with CUDA 11.7 for GPU-accelerated optimization during model training.
To ensure the quality of input data, the image size was uniformly set to 640*640 pixels
during training, and the training epochs were set to 15, 30, 60, 100, 200, and 500 epochs to
thoroughly train the model and achieve stable performance.

To assess the model’s stability, three performance metrics are introduced: Precision,
Recall, and Mean Average Precision (Table 1). Precision is used to evaluate the proportion of
correctly predicted positive samples by the model; Recall is used to assess the proportion of
all true positive samples that the model can identify; Mean Average Precision represents the
average accuracy of predictions across multiple classes, used to evaluate the quality of the
model’s algorithm. It can be divided into two metrics, mAP50 and mAP50-95. The mAP50
metric indicates the average precision at a 50% Intersection over Union (IoU) threshold,
which is the ratio of the intersection area to the union area between the predicted region
and the true region. The mAP50-95 metric indicates the average precision across the 50–95%
IoU threshold range.
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Table 1. Model stability evaluation metrics.

Metrics Formula

Precision TP ∗

TP+FP ∗

Recall TP
TP+FN *

Mean Average
Precision

mAP50 the mAP value at the 50% IoU * threshold
mAP50-90 the mAP value within the 50–95% IoU threshold range

* TP: Number of buildings correctly classified; FP: Number of buildings incorrectly classified as this category (i.e.,
buildings of other categories incorrectly identified as this category); FN: Number of buildings that should have
been identified as this category but were not; IoU threshold represents the ratio of the intersection area to the
union area between the predicted region and the true region.

Following the training process described previously, and in conjunction with the
comparison of the loss function across different training epochs (Figure 6), it can be observed
that after 30 epochs, the loss function metric becomes stable, indicating effective model
fitting. After 100 training epochs, the model reaches a plateau, and continued training leads
to a decrease in overall accuracy due to overfitting. A comprehensive evaluation indicates
that the training effect at the 60th epoch is superior to other batches, with the precision of
detection boxes and instance segmentation on the training set stabilizing at 94.6% (Table 2),
representing the optimal performance. Therefore, the training results from 60 epochs are
selected as the predictive weights for the model. Concurrently, to enhance understanding of
the model’s recognition process and for further analysis, the prediction results are visually
processed. Figure 7 illustrates the visualization starting from the original.
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2.3. Model Transferability

To assess the transferability of the trained model, this study selected 24 typical villages
from five traditional village spatial style areas in Shandong Province as test samples, refer-
ring to the style types and regional divisions of traditional villages in Shandong [65]. The
selection of test sample villages took into account factors such as style features, village area,
settlement morphology, preservation status, altitude, topography, and landforms, ensuring
that the test samples cover all types of architectural characteristics of traditional villages in
Shandong Province. A total of 57,738 validation data points were obtained (Figure 8). The
test results were compared with actual data, as shown in Table 3. The model achieved high
recognition accuracy for damaged buildings, flat-roofed buildings, red-tiled roof buildings,
and gray-tiled roof buildings, all above 95%, with the recognition accuracy for red-tiled
roof buildings reaching 97.1%. The recognition accuracy for abandoned buildings and
buildings with colored steel tile roofs was relatively lower; the accuracy for abandoned
buildings was 91.3%, mainly because the primary identification feature for abandoned
buildings is the vegetation coverage in the courtyards, which can be easily misidentified
due to the large area and high density of vegetation in public spaces and green areas within
the villages. The recognition accuracy for buildings with colored steel tile roofs was 86.7%.
Combining field research, the relatively low accuracy is attributed to some colored steel
tiles exhibiting features similar to red tiles due to rust. On the other hand, some buildings
have adopted colored steel tiles that imitate the gray roof style to protect the traditional
village appearance, which also increases the difficulty of identification. Considering the
limitations of the actual collected data and the diversity of architectural characteristics
in traditional villages, the trained model demonstrates high accuracy in identifying key
features such as roofs and courtyard vegetation coverage, meeting the requirements for
practical work such as the investigation, evaluation, and dynamic monitoring of changes in
traditional village buildings within the Shandong Province.
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Table 3. Test sample villages building feature recognition results.

Classification Original
Quantity

Identify
Quantity

Correct
Classification Unrecognized Identify

Errors Precision Recall

Abandonment 552 579 528 24 51 91.3% 95.7%
Damage 408 394 377 31 17 95.6% 92.4%
Red-tiled 25340 25940 25187 153 753 97.1% 99.4%
Gray-tiled 4230 4278 4111 119 167 96.1% 97.2

Colored steel-tiled 3608 3524 3056 552 468 86.7% 84.7%
Flat roof 23600 24343 23199 401 1144 95.3% 98.3%

3. Results

This study selects Dongfanliu Village in Zhangqiu District, Jinan City, Shandong
Province as the sample village for model application (Figure 9). Dongfanliu Village is
a traditional Chinese village and a famous historical and cultural village in Shandong
Province, with complete preservation of the spatial pattern and traditional architectural
forms, making it a typical example of traditional villages in the central Shandong region [66].
In 2022, Dongfanliu Village was included in the national demonstration of concentrated
protection and utilization of traditional villages. The construction of the demonstration
zone has led to overall protection and enhancement of the traditional village. Concurrently,
the construction of the Jiwei Expressway, which started in the same period, passes through
the northern part of the village. These protective and constructive actions have had certain
impacts on the village’s architectural style and spatial texture. The significant spatial
changes in Dongfanliu Village provide an excellent sample for architectural investigation
evaluation and dynamic monitoring. The research team conducted field investigation in
Dongfanliu Village in June 2020 and June 2024, and obtained orthoimages of the village
using unmanned aerial vehicles (Figure 10).
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3.1. Building Condition Assessment
3.1.1. UAV Image Recognition

Inputting the UAV images from 2020 and 2024 into the deep learning model, this
study extracts the building condition features from the two periods of village images
(Figures 11 and 12) and compares the changes in the data between the two periods. The
results (Table 4) indicate that compared to 2020, in 2024, the number of damaged buildings
in the village decreased from 31 to 15; the number of abandoned buildings decreased from
30 to 26; the number of red tile roofs decreased from 1343 to 1297; the number of gray tile
roofs increased from 17 to 36; the number of colored steel tile roofs decreased from 44 to 24;
and the number of flat-roofed buildings decreased from 1222 to 1200.
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Table 4. Analysis of changes in building condition recognition results between 2020 and 2024 in
Dongfanliu village.

Classification 2020 2024 Change Quantity

Abandonment 30 26 4
Damage 31 15 16
Red-tiled 1343 1297 46
Gray-tiled 17 38 19

Colored steel-tiled 44 24 20
Flat roof 1222 1200 22
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3.1.2. Changes in Building Condition

Based on the extracted data, a differential analysis was conducted on the building
condition patches from the two periods (Figure 13). By combining manual discrimination
to eliminate recognition errors, a transition matrix of building condition changes was
constructed (Table 5), which analyzes the interconversion relationships between different
types of building conditions. Specifically, four abandoned buildings were transformed
into gray-tiled buildings; seven damaged buildings were changed into red-tiled buildings,
and nine into gray-tiled buildings; five red-tiled buildings were converted into gray-tiled
buildings, and 27 were demolished; 12 colored steel tile-roofed buildings were demolished,
and four were changed into red-tiled buildings; 30 flat-roofed buildings were demolished;
and three new gray-tiled buildings were constructed.
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Table 5. Transition matrix of building condition changes from 2020 to 2024.

2020

2024

Abandonment Damage Red-Tiled Gray-Tiled Colored
Steel-Tiled

Flat
Roof Demolition Redundancy Total

Quantity

Abandonment 26 0 0 4 0 0 0 0 30
Damage 0 15 7 9 0 0 0 0 31
Red-tiled 0 0 1286 5 0 0 27 15 1343
Gray-tiled 0 0 0 17 0 0 0 0 17

Colored steel-tiled 0 0 4 0 24 0 12 4 44
Flat roof 0 0 0 0 0 1200 30 −8 1222

New construction —— 0 0 3 0 0 —— —— 3
Total quantity 26 15 1297 38 24 1200 69 11 ——

3.2. Building Condition Dynamic Monitoring

In accordance with the definitions of traditional village building conditions and their
forms of change, as described earlier, the data from the building condition change transition
matrix were further transformed and categorized into types such as abandonment, damage,
restoration, rehabilitation, new construction, demolition, and remaining unchanged, to
obtain dynamic monitoring indicator data for building condition changes (Table 6). Specifi-
cally, there were 18 restored buildings, including the restoration of nine originally damaged
buildings, four originally abandoned buildings, and the traditional-style restoration of five
originally red-tiled buildings; 11 rehabilitated buildings, comprising the rehabilitation of
seven damaged buildings and four colored steel tile-roofed buildings; three newly built
traditional-style buildings; 69 demolished buildings, all of which were of modern style; and
2527 unchanged buildings. The dynamic monitoring results of building condition changes
from 2020 to 2024 are shown in Figure 14.
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Table 6. Dynamic monitoring indicator data of building condition changes from 2020 to 2024.

Abandonment Damage Restoration Rehabilitation New
Construction Demolition Unchanged

2020 30 31 —— —— —— —— ——
2024 26 15 18 11 3 69 2527

Quantity changes −4 −16 18 11 3 69 2527
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In conjunction with the “Conservation and Development Plan for Dongfanliu Tradi-
tional Village,” restoration, rehabilitation, and newly built traditional-style buildings are
all located within the core protection area of the traditional village. The restored buildings
are mainly in the southern part of the village, representing the restoration and protection of
the Taihe Hall traditional residential building complex, which has formed a more complete
historical building cluster in the area through restoration. The rehabilitated buildings are
primarily concentrated in the central part of the village, including the rehabilitation of the
Gong Family Ancestral Hall and the former residence of the martial scholar, which has
provided better protection for key historical buildings in the village and further enriched
the traditional village’s architectural style. The restoration and rehabilitation of buildings
reflect the positive effects of the concentrated protection and utilization of traditional
villages carried out in 2022.

Newly built buildings are mainly located in the northwest of the village, where
some original modern buildings have been demolished to make way for new traditional-
style constructions, demonstrating the strict control of construction activities in the core
protection area as stipulated by the conservation and development plan, which has been
well implemented. Demolished buildings are concentrated in the eastern part of the village,
all within the construction control zone designated by the traditional village conservation
and development plan, mainly due to the occupation of the village by a newly built
expressway. The construction of the expressway has significantly impacted the integrity of
the village’s spatial pattern and the completeness of its style. In the construction of major
infrastructure projects, it is necessary to enhance the awareness of protecting traditional
villages and strengthen the scientific demonstration of site (route) selection to reduce the
disturbance and impact on cultural heritage resources such as traditional villages.



Sustainability 2024, 16, 8954 14 of 18

4. Discussion
4.1. Enhancing the Work Efficiency and Precision of Traditional Village Architecture Investigation
and Evaluation

Architectural investigation and evaluation are essential for the protection and inher-
itance of traditional village architectural styles. Currently, traditional methods of archi-
tectural investigation and evaluation rely heavily on field investigations, which involve
conducting individual research on village buildings to obtain relevant information. These
conventional approaches are time-consuming, costly, labor-intensive, and subject to human
error, which affects the accuracy and efficiency of the research. In contrast, this study
proposes a cost-effective solution that combines UAV images with deep learning tech-
nology for the investigation and evaluation of traditional village architecture. According
to traditional research methods, a team of six people spends a total of 20 h conducting
field investigations and feature labeling for 2556 buildings in a single case study village,
and an additional five hours on data analysis and visualization. The same village’s UAV
image collection and processing can be completed by one person in 90 min (including
30 min for UAV outdoor flight preparation and aerial photography, and 60 min for UAV
orthoimage output). With a well-trained deep learning model, pre-processing of UAV aerial
data, architectural feature recognition, data statistics, and visualization image output can
be completed within 90 min (Figure 15). In terms of the overall time consumption, the
former is 50 times longer than the latter, and with the expansion of the research area and
the increase in the number of case study villages, the new method proposed in this study
can significantly improve work efficiency. Moreover, the architectural feature recognition
method and judgment dimensions proposed in this study, which mainly focus on the status
of building roofs, roof forms, and courtyard vegetation coverage, have few indicators and
high recognition accuracy. In the verification of traditional village architectural features
in Shandong Province, the overall model recognition accuracy reached 95.3%, meeting
the requirements for the actual work of traditional village architectural investigation and
evaluation and change monitoring. Its advantages of being fast, accurate, and low-cost
make it suitable for large-scale traditional village research.
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4.2. The Potential for Diversified Applications in the Conservation and Development of
Traditional Villages

This study achieves the investigation, evaluation, and dynamic monitoring of changes
in traditional village architecture through the transformation and classification of architec-
tural feature recognition and feature change transition matrices, with the results visualized
for spatial analysis. Taking Dongfanliu Village as an example, abandoned and damaged
buildings are mainly distributed within the core protection area, showing a generally
scattered and locally concentrated pattern, which is extensive and requires enhanced pro-
tective measures. Between 2020 and 2024, buildings that were repaired and renovated were
relatively concentrated, all located at significant spatial nodes of the village, positively
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contributing to the protection of the village’s spatial structure and texture. During the
same period, demolished buildings were concentrated in the eastern part of the village,
primarily due to the construction of a highway affecting the village. By analyzing the
spatial distribution and change characteristics, long-term, dynamic, and precise monitoring
of traditional villages can be realized.

Additionally, the technical methods proposed in this study have broad application
prospects in other aspects of the protection and development of traditional villages. For
instance, by analyzing the extracted architectural feature data, it is possible to accurately
identify whether buildings are inhabited or uninhabited and assess the state of building
abandonment without the need for field research. Furthermore, rapid quantitative assess-
ment of damage and abandonment in the core protection areas of traditional villages can be
conducted, which not only helps to accurately identify the protection status of traditional
villages but also determines key protective spaces and directions. By analyzing the spatial
distribution of historical and characteristic buildings in the village, detailed data support
can also be provided for the optimization of traditional village spatial patterns and the
direction of architectural renewal.

4.3. Limitations and Further Research Directions

This study innovatively applies deep learning technology for the investigation, eval-
uation, and dynamic monitoring of changes in traditional village architecture, but it also
has certain limitations. Although UAVs can conveniently obtain image data, the collected
samples are limited. In the future, it may be possible to supplement the data by acquiring
high-precision remote-sensing satellite images or commercial UAV images. Moreover,
this study uses traditional villages within Shandong Province as samples, but the spatial
characteristics of traditional villages in China vary greatly by region. To enhance the appli-
cability of the model, it is necessary to collect spatial feature information from traditional
villages in different regions of China, expand the sample training set data, and broaden the
scope of the model application. Due to the consideration of obtaining courtyard vegetation
coverage features, the data collected are mostly from summer images. Further refinement
of recognition features and enhancement of the model’s accuracy and reliability are still
needed for identifying the characteristics of traditional village architecture in other seasons,
especially in northern regions.

The study primarily employs the YOLOv8 instance segmentation model to recognize
the architectural features of traditional villages, with research results focusing on the
statistics of the number of buildings with different features and their changes. This technical
method still has significant potential for expansion in the automated extraction of other
spatial feature data. It can be combined with related analysis software such as ArcGIS
Pro 3 to obtain specific spatial data, including building area, building spacing, building
orientation, building density, settlement morphology and boundary shape, and distribution
of public spaces. By extracting various types of spatial parameters, it can provide data
support for the research and practice of traditional village conservation.

5. Conclusions

This study utilizes UAV image and deep learning technology to explore a new tech-
nical approach and workflow for the investigation, evaluation, and dynamic monitoring
of traditional village architecture. By employing the YOLOv8 instance segmentation
model and incorporating three key features reflecting the condition of traditional village
architecture—namely, the state of building roofs, roof forms, and the coverage of courtyard
vegetation—the study extracts feature data of traditional village buildings, constructs a
matrix of building condition changes, and combines manual judgment assistance to classify,
count, and visually output the conditions and changes of buildings, achieving investigation,
evaluation, and dynamic monitoring of traditional village architecture. The results indicate
that deep learning technology can significantly enhance the efficiency and accuracy of the
investigation and evaluation of traditional village architecture and has a good application
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effect in the dynamic monitoring of the condition of traditional village buildings. The “UAV
image + deep learning” technical system, with its simplicity, accuracy, efficiency, and low
cost, can provide timely and reliable data and technical support for the planning, protection
supervision, and development strategy formulation of traditional villages. As the model
dataset expands and the algorithms continue to be optimized, deep learning technology is
also expected to play a greater role in the protection of urban and rural cultural heritage.
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