

Numerical investigations of a prototype monolithic channel receiver in the SOLTEC-1 high temperature sodium loop

Alexandru Onea 1*, Joachim Fuchs1, Sebastian Ruck1

Karlsruhe Institute of Technology, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany *Corresponding author: alexandru.onea@kit.edu, +49-721-608-22949

Background, motivation and tasks

- 1000 K SOLTEC-1 (SOdium Loop to TEst Corrosion and materials) facility
- Developed in the frame of the Helmholtz Energy Material Characterization Platform (HEMCP) and Helmholtz Alliance on Liquid Metal Technology (LIMTECH) at KIT-INR.
- SOLTEC-2: Similar construction; Facility is presently used for corrosion investigations of high temperature steels.
- Monolithic channel receiver (Inconel 718) to be integrated in SOLTEC-1 facility and qualified at sodium temperatures > 700°C.
- Task 1: Numerical investigations of the thermo-dynamic behavior of the test monolithic channel.
- Task 2: Assessment of the required heat energy throughput for the preparation of the experimental campaign in SOLTEC-1.

Technical specifications SOLTEC-1

- Mass flow rate: 300 kg/h (3kW permanent magnet pump)
- Velocities: up to ~ 4.8 m/s in test sample (Re: 114 824)
- Pressure loss: S-1: ~ 1.6 bar; S-2: ~ 0.45 bar
- Temperature: cold loop 700 K; hot loop 1000 K
- Max. pressure: 3.5 bar g
- Compact configuration: 1.2 × 1.6 × 1.9 m³
- Na inventory: ~ 14 L
- Main components: Na-pump, Na-air HX coupled to a Na-Na heat recuperator (with integrated flow distributor), storage tank (expansion vessel)
- · Ar is used as cover gas to fill/drain the facility and pressure monitoring

Additive manufactured receiver prototype

- 3D printed monolithic channel receiver manufactured using the Selective Laser Melting method and the Cold Spray metal powder deposition.
- Prototype manufactured at KIT from Inconel 718 powder.
- Inner and outer spiral rectangular channels and feed hoppers at the ends.
- Internal flow channels are integrated for improved mixing and heat transfer

SOLTEC-1: CFD model and numerical results

- · ANSYS CFX 2023: Conjugate heat transfer model (Na, air, stainless steel, Inconel).
- Numerical grid: 41.2 mio. cells (49% hexagonal, 45% tetrahedral, 3% pyramids, 3% prisms); y+ < 1 (regions of interest).
- Heat transfer model: thermal energy
- Turbulence modelling: ω-RS (Na) and SST (air).
- Air, Na and material properties implemented as temperature dependent.
- Turbulent Prandtl number: Pr _{turb} (air) = 0.85; Pr¹_{tb}(Na)=0.014 Re ^{0.045} Pr ^{0.2} {1-exp[-1/(0.014 Re ^{0.045} Pr ^{0.2})]} [Aoki, 1963]
- Thermal losses based on experimental data from SOLTEC-2. Thermal effectiveness of the Na-Na heat recuperator:
- \in = c_h (t_{h1} t_{h2}) / c_{min} (t_{h1} t_{c1})

Sodium flow rate [kg/h]	Air flow rate [kg/h]	Thermal energy heater [kW]	Heat flux test receiver [MW/m²]	Temperatur e inlet receiver [°C]	Temperature outlet receiver [°C]	Temperature gradient receiver [°C]	Mean velocity inlet receiver [m/s]	Therm. effectiveness [%]
300	67.4	2.97	1.0	730.6	788.9	58.3	0.49	78.0
300	67.4	2.97	1.5	795.7	881.3	85.6	0.51	79.4
300	67.4	0	2	749.7	863.9	114.2	0.50	77.9

References:

S. Aoki, Bull. Tokyo Inst. Tech. 54, 63-73, 1963. A. Onea, W. Hering, S. Ulrich et al., SolarPaces 2020, vol. 2445 (1), doi: https://doi.org/10.1063/5.0087110.

J. Fuchs, F. Arbeiter, M Böttcher et al., SolarPaces 2021, vol. 2815 (1) S. Guth, T. Babinský, S. Antusch et al., Adv. Eng. Mat. 25, 2023

High t

SOLTEC -1: Piping and instrumentation diagram

Additive manufactured monolithic channel receiver prototype (L = 195 mm)

m_{Na} = 300 kg/h

📕 Na

Conclusions

- Developed numerical model of the SOLTEC-1 facility integrating a
- monolithic channel design, proposed as material for a CSP receiver. Optimized heat transfer in the heat recuperator (flow distributor): uniform
- temperature distribution and increased efficiency of the heat recuperator. Operating range of the facility investigated for preparation of the experimental campaign.
- Numerical investigation of the monolithic channel design performed up to 2 MW/m².

www.kit.edu