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Abstract

Nanozymes are nanomaterials with intrinsic enzyme-like activity with selected

advantages over native enzymes such as simple synthesis, controllable activity,

high stability, and low cost. These materials have been explored as surrogates

to natural enzymes in biosensing, therapeutics, environmental protection, and

many other fields. Among different nanozymes classes, metal- and metal

oxide-based nanozymes are the most widely studied. In recent years, bi- and

tri-metallic nanomaterials have emerged often showing improved nanozyme

activity, some of which even possess multifunctional enzyme-like activity. Tak-

ing this concept even further, high-entropy nanomaterials, that is, complex

multicomponent alloys and ceramics like oxides, may potentially enhance

activity even further. However, the addition of various elements to increase

catalytic activity may come at the cost of increased toxicity. Since many

nanozyme compositions are currently being explored for in vivo biomedical

applications, such as cancer therapeutics, toxicity considerations in relation to

nanozyme application in biomedicine are of vital importance for translation.
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1 | INTRODUCTION

Natural enzymes play an important role in biochemical reactions in every living system and are also employed as cata-
lytic reagents in the food industry, pharmaceuticals, diagnostics, biofuels, and bioremediation. Yet, despite their
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outstanding catalytic efficiency and substrate specificity, natural enzymes are vulnerable to extreme temperature, pH
and ionic strength, resulting in protein denaturation and loss of function. Furthermore, the high cost of preparation,
purification, and storage also hinders their practical applications. Therefore, attempts to develop inexpensive, stable
alternatives with similar catalytic activities have gained a great deal of attention.

Nanozymes are defined as nanoparticles with enzyme-mimetic activity. Their catalytic activity is governed by factors
attributed to nanocatalyst properties (chemical composition, size, morphology, surface modification) and environmen-
tal conditions (pH, temperature, stimuli, etc.). The term “nanozyme” was first coined in 2004 by Manea et al. in refer-
ence to gold-nanoparticle-based transphosphorylation catalysts (Lou-Franco et al., 2021; Manea et al., 2004). A few
years later, in 2007, Gao and co-workers reported that magnetite Fe3O4 nanoparticles possessed intrinsic peroxidase-like
activity which was 40-fold higher than horseradish peroxidase (HRP) at the same molar concentration. It was hypothe-
sized that the abundance of surface ferrous and ferrite ions in Fe3O4 nanoparticles was responsible for the higher cata-
lytic activity compared to HRP. Their investigations led to the idea that Fe2+ ion may play a dominant role in the
catalytic activity of Fe3O4 (Gao et al., 2007). Following this study, the field exploded and a variety of metal and metal
oxide-based nanozymes, comprised of Cu, Ce, Mn, Ag, Fe2O3 and Co3O4 were reported with peroxidase-, catalase-,
oxidase-, as well as superoxide dismutase-like activity (Bhattacharjee et al., 2018; Jiang et al., 2019; Liu, Yang,
et al., 2021; Masud et al., 2019; Ren et al., 2022; S. Singh, 2019). The catalytic activity of nanozymes was mainly reported
to result from the generation of reactive oxygen radicals or electron transfer processes. For an overview of nanozyme
classes and mechanisms of action, the authors refer readers to selected reviews (Huang et al., 2019; Liu, Yang,
et al., 2021; W. Yang, Yang, et al., 2021). After the fruitful investigation of single metallic nanozymes, the next interest-
ing development came about with the incorporation of two or more metallic elements into the metal oxide structure
(Figure 1), which is thought to exploit the unique characteristics of each of the individual elements resulting in an
enhanced catalytic performance via either additive or synergistic effects.

In the same year the term nanozyme was coined, high entropy oxides (Figure 1) made their debut. High entropy
materials (HEMs) are defined as materials comprising five or more elements, exhibiting a configurational entropy above

FIGURE 1 Comparison of the lattice structures of six common binary materials (top panel) to the structure of a high entropy oxide

comprised of equimolar concentration of the six elements (Co, Cu, Mg, Na, Ni, Zn). The complex interactions in the high entropy structure

give rise to the so-called “cocktail effect,” that is, the feature that a mixture of elements results in greatly altered properties as compared with

the binary materials. Further, changes in the chemical environment, crystal structure (including lattice distortions) and oxidation state have

a strong effect on the material properties of HEMs. Reprinted with permission from Schweidler et al. (2024). Copyright 2024, Springer

Nature.
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1.5 R (R being the ideal gas constant), or containing five different cations ranging between 5 and 35 atomic %,
depending on the applied nomenclature. Selected HEMs often demonstrate structural stabilization as a result of the
maximized configuration entropy (Schweidler et al., 2024; Zheng et al., 2021), although this phenomenon does not
apply to all HEMs. HEMs are typically characterized by four major effects: (1) the high entropy effect, (2) the lattice dis-
tortion effect (Figure 1), (3) sluggish diffusion (decrease in diffusion rate of individual elements) and 4) the cocktail
effect (Figure 1) (Xin et al., 2020). Due to large lattice distortion and the cocktail effects, HEMs demonstrate unique
mechanical, magnetic, thermal, and electrical characteristics, which can find use in numerous applications across a
wide variety of fields (Zhang et al., 2014). It should be noted that entropic contributions are also important driving
forces in accelerating enzymatic catalysis via a decrease in the material activation energy (Åqvist et al., 2017). This is
why HEMs have been studied for their use as industrial catalysts for the oxidation of methanol (Wang et al., 2014), car-
bon monoxide (Chen et al., 2018), ammonia (P. Xie et al., 2019), the degradation of azo dyes (Z. Y. Lv et al., 2016) and
water splitting catalysis (Lin et al., 2023). However, their suitability as nanozymes has only very recently been explored.
For example, only three studies to date have been published using HEMs with peroxidase-like activity for biomedical
applications. (Ai et al., 2023; J. Feng et al., 2023; Sheng et al., 2024). Following the logic that synergistic effects between
elements in multi-metallic nanozymes may result in dramatic increases in catalytic activity (Schweidler et al., 2024),
the development of HEM-based nanozymes may be a very interesting space to watch.

2 | MORE CAN BE MORE: MULTI-METALLIC NANOZYMES FOR
ENHANCED ENZYME-LIKE ACTIVITY

The first report by Gao et al. demonstrating the peroxidase-like effect of Fe3O4 nanoparticles kicked off a race to
enhance the catalytic performance of this material (Gao et al., 2007). The earliest studies used magnetite (Fe(II)Fe
(III)2O4) as a starting material and substituted the ferrous iron with a different di- or trivalent cations in the spinel lat-
tice to create bimetallic nanozymes (Table 1). For example, the addition of Mn2+, Co2+ or Cr3+ led to significantly
higher catalytic activities compared to magnetite. However, both the choice of element and oxidation state were shown
to be crucial (Alrozi et al., 2018), since not all substitutions led to improved activity. In particular, Ni2+ had a negative
impact on the activity of iron oxide-based bimetallic nanozymes (Alrozi et al., 2018; X. Liang et al., 2013; Vetr
et al., 2018). Later studies of bimetallic nanozymes investigated both cobalt-oxide and ceria-based nanomaterials as the
starting materials, among others. This was followed by multi-metallic systems incorporating up to five different metals
(Table 1).

Since nanozyme activity follows Michaelis–Menten kinetics, most studies evaluate and report the Michaelis–Menten
constant (Km; [mM]) and the maximum velocity (Vmax; [M/s]) of the catalyst for a defined substrate to enable compari-
sons with the literature. As a general rule, a lower Km and higher Vmax indicate a better performance of the nanozyme
material. A comparison of the reported values for the peroxidase-like activity of the materials in Table 1 when using
TMB as a substrate provides some interesting insights (Figure 2). First, it should be noted that Km values reported in
the literature can vary greatly, sometimes over 2–3 magnitudes of order, making relative comparisons between litera-
ture values difficult to interpret. Secondly, it is also essential to note that the reaction temperatures used to determine
Km can also vary substantially (typically between 20 and 40�C) (Cai et al., 2018; Gao et al., 2007; B. Jiang et al., 2018;
Yu et al., 2009), which will have a distinct impact on the Km and Vmax. Higher reaction temperatures typically result in
lower Km values (Box 1). One of the reasons for the variation in reaction temperatures is that many nanozyme systems
may be designed for use in cell culture or in vivo models, where body temperature (37�C) represents the relevant physi-
ological condition. In other studies, ambient room temperature may be chosen as relevant. Within this selected data
set, the iron oxide-based bimetallic nanozymes generally showed a lower overall performance compared to other clas-
ses. However, this observation should be taken with caution, since Table 1 does not include a fully comprehensive list
of all nanozyme studies published in the literature.

3 | A SUMMARY OF MECHANISMS RELEVANT FOR MULTI-METALLIC
CATALYTIC ACTIVITY

Researchers investigating the effects of increasing the diversity of nanozyme composition have listed a variety of puta-
tive mechanisms which may explain enhanced catalytic performance. These reported mechanisms are listed below, cit-
ing the original studies in which the mechanisms were investigated or postulated.
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TABLE 1 Summary of the catalytic properties of selected bimetallic/trimetallic alloys/oxides and high entropy nanomaterials with

enzyme-like activities.

Materials Enzyme-like activity Substrate Km (mM) Vmax (10
�8 M/s) Reference(s)

Iron oxide-based NPs

CoFe2O4 POD TMB 0.007 0.083 (Zhang et al., 2015)

H2O2 0.036 0.502

CoFe2O4 POD H2O2 0.075 - (Shi et al., 2011)

ZnFe2O4 POD TMB 0.509 9.18 (Sahoo et al., 2016)

H2O2 490.72 6.32

CuFe2O4 Protease BSA 0.380 - (Chen et al., 2022)

Casein 0.74 -

CuFe2O4 POD TMB 2.26 2.07 (F. Xia et al., 2020)

H2O2 0.5 2.61

Cu-CuFe2O4 TMB 0.69 16.87

H2O2 0.087 32.18

MnFe2O4 POD OPD 27.5 10.4 (Vetr et al., 2018)

CoFe2O4 32.7 7.8

NiFe2O4 8.4 0.86

ZnFe2O4 22.6 0.82

MgFe2O4 POD
CAT

TMB 0.67 2.09 (Su et al., 2015)

ABTS 0.14 12.54

H2O2 4.61 13.46

NiFe2O4 TMB 0.55 4.57

ABTS 0.46 17.48

H2O2 2.6 14.11

Co@Fe3O4 POD TMB 1.17 37.9 (Wang, Huang, et al., 2019)

H2O2 0.19 71.5

Fe3O4-MnO2 POD TMB 0.101 0.57 (Wang, Li, et al., 2019)

H2O2 0.041 2.94

PtFe@ Fe3O4 POD
CAT

TMB 0.213 5.477 (S. Li et al., 2019)

H2O2 53.55 10.78

Fe3O4@SiO2@CuO POD TMB 3.69 47.6 (Tao et al., 2022)

H2O2 9.89 202.2

MnFeO POD TMB 0.11 - (Lu et al., 2021)

H2O2 0.01 -

OXD TMB 0.04

Cobalt oxide-based NPs

Mo-Co3O4 POD TMB 0.0558 9.54 (Gao et al., 2018)

H2O2 22.48 5.245

Co3O4/MoO3 POD TMB 0.0352 2.83 (Zhang et al., 2020)

H2O2 0.134 2.91

Mn@ Co3O4 POD TMB 0.15 5.0 (Isho et al., 2022)

H2O2 0.025 2.5

Pt@ Co3O4 POD TMB 0.0705 - (Cao et al., 2022)

ZnCo2O4 POD ODP 0.4 5.9 (Chen et al., 2021)
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TABLE 1 (Continued)

Materials Enzyme-like activity Substrate Km (mM) Vmax (10
�8 M/s) Reference(s)

H2O2 0.23 4.75

Ce-ZnCo2O4 POD
OXD

TMB 0.0886 18.796 (Yin et al., 2020)

H2O2 0.553 2.618

CdCo2O4 POD, OXD, CAT TMB 0.317 2.19 (Wei, Chen, et al., 2020)

H2O2 0.325 3.75

NiCo2O4 POD
OXD

TMB 0.23 59.665 (Q. Mu et al., 2021)

H2O2 28.33 26.773

NiCo2O4-Au TMB 0.1523 56.163

H2O2 13.17 29.25

Ceria-based NPs

Au@CeO2 POD TMB 0.29 3.9 (Bhagat et al., 2018)

H2O2 44.69 2.23

Pr-doped CeO2 OXD
Phosphatase

- - - (L. Jiang et al., 2021)

Bi-doped CeO2 Haloperoxidase Phenol red 0.177 1.76 (Frerichs et al., 2020)

Cr-doped CeO2 POD TMB 0.08 13.8 (Zhang et al., 2021)

H2O2 0.867 15.9

Fe-doped CeO2 POD TMB 0.087 14.36 (Yue et al., 2021)

H2O2 29.37 14.05

Co-doped CeO2 TMB 0.0554 29.29

H2O2 52.88 25.06

Mn-doped CeO2 TMB 0.1048 21.60

H2O2 59.61 12.32

Other bimetallic and trimetallic NPs

Co1.5Mn1.5O4 POD TMB 0.016 1.88 (Liu, Yang, et al., 2021)

H2O2 14.46 8.76

OXD TMB 0.0029 1.894

CAT H2O2 210

Laccase Dopamine 0.0128 7.92

Cu1.5Mn1.5O4 POD H2O2 1.453 714.09 (Wu et al., 2022)

Co-MnO2 Uricase Uric acid 0.022 0.0148 (Parmekar & Salker, 2020)

LaNiO3 POD TMB 0.105 36.2 (Wang et al., 2017)

H2O2 90.05 260

PtPdCu POD OPD 0.091 7.53 (Mao et al., 2021)

H2O2 1 23.18

CAT H2O2 50.172 9.62 � 10�4

CoAlCe POD TMB 0.273 (Chen et al., 2020)

H2O2 32.9

PtRuTe POD TMB 0.037 58.1 (Shang et al., 2022)

H2O2 2.272 116.7

PdIr POD TMB 0.4 89 (Xi et al., 2020)

PdPtIr POD TMB 0.08 31.7 (He et al., 2022)

H2O2 4.08 85.9

(Continues)
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1. Increases in the specific surface area and the number of surface hydroxyl groups via doping with different transition
metal cations (Ramankutty & Sugunan, 2001; Vetr et al., 2018; Zhong et al., 2013)

2. Oxidation state of the doped cations (Mei et al., 2020)
3. Distribution of metal ions among tetrahedral and octahedral sites of spinel lattice (Goyal et al., 2014; X. Liang

et al., 2014)
4. Interactions (e.g., electrostatic, π-π and coordinate interactions) and molar ratios between individual metal compo-

nents (B. Hu, Xiao, et al., 2022; C. Liu et al., 2020; Tseng et al., 2012; J. Wu et al., 2018)
5. Number of oxygen vacancies on the surface, which act as active sites for effective heterogeneous catalytic reactions

(D. Feng et al., 2020; L. Jiang et al., 2021; Lee et al., 2018; Parmekar & Salker, 2020; Polarz et al., 2006; Shu
et al., 2020; L. Xu et al., 2016; Yin et al., 2020; X. Zhang et al., 2020)

6. Changes in the electronic structure (e.g., changes to d-band center position as a result of incorporating transition
metals) (Kong et al., 2021; Luo & Guo, 2017; Shao et al., 2019; B. Wang, Yao, et al., 2021; Z. Xia & Guo, 2019; Xin
et al., 2020; Y. Yang et al., 2018)

7. Changes in the phase structure (e.g., crystalline to amorphous transitions) (Shang et al., 2022)

TABLE 1 (Continued)

Materials Enzyme-like activity Substrate Km (mM) Vmax (10
�8 M/s) Reference(s)

PdPt OXD TMB 0.058 11.4 (Jin et al., 2019)

AgPt POD OPD 0.129 8971 (Gharib et al., 2019)

H2O2 76.05 12849

CAT H2O2 62.98 610

FePt OXD TMB 0.03 1.42 (Shah et al., 2018)

Au@Pt POD TMB 2.431 � 10�3 4.425 (Wei, Zhang, et al., 2020)

H2O2 4.076 � 10�3 6.013

Au@Pd@Pt POD TMB 0.065 24.78 (Sun et al., 2022)

H2O2 4.59 19.82

Pd@Pt POD TMB 0.0865 6.228 (Wei et al., 2015)

H2O2 2.231 5.0

RuCu POD H2O2 0.25 0.146 (Hu, Xiao, et al., 2022)

CuFeMn-ATP POD TMB 0.046 4.3 (Xu et al., 2021)

H2O2 0.14 10

FexCuySe POD TMB 1.837 12.75 (Hu, Shuai, et al., 2022)

H2O2 8.525 4.738

PdCuAu POD TMB 0.54 17 (Nie et al., 2020)

H2O2 0.16 12

High entropy NPs

FeCuAgCeGd POD TMB 6.6 16.9 (Sheng et al., 2024)

H2O2 765 9.65

MnFeCoNiCu POD TMB 0.07 6.26 (J. Feng et al., 2023)

H2O2 0.6 16.62

PtPdRuRhIr POD TMB 0.034 24.57 (Ai et al., 2023)

H2O2 4094 18.82

Note: The Michaelis–Menten constant (Km) and the maximum velocity of an enzymatically catalyzed reaction (Vmax) are listed for various substrates (TMB,
3,30,5,50-tetramentylbenzidine; H2O2, hydrogen peroxide; OPD, O-phenylenediamine dihydrochloride; ABTS, 2,20-azinobis [3-ethylbenzothiazoline-6-sulfonic
acid]-diammonium salt; BSA, Bovine serum albumin). The class of enzyme-like activity is abbreviated as peroxidase-(POD), catalase-(CAT) and oxidase-(OXD)-
like, respectively.
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The reported mechanisms provide us important insights into the impact of multi-metal doping which can be used
as guide to prepare multi-metallic nanoparticles with enhanced catalytic activity. For example, cerium can be consid-
ered as a metal of choice due to its high capacity to form oxygen vacancies. Variation of elemental concentration may
also be a promising strategy to modify the affinity towards a certain substrate (Kong et al., 2021).

4 | HIGH ENTROPY NANOMATERIALS—AN UPGRADE TO THE MULTI-
METALLIC DOPING STRATEGY

As stated above, HEMs consist of five or more cations in equimolar ratios with maximized configurational entropy,
Sconfig ≥1.5R (where R is the universal gas constant). What makes these materials interesting are their unique effects
including catalytic activity (Wang, Guo, & Fu, 2021; Wang, Yao, et al., 2021). The high entropy effect can play an
important role in the phase stability of these materials, which as reported above can improve catalytic activity. Gener-
ally, the thermodynamic potential of multi-metallic systems can be determined through the Gibbs free energy equation.
The difference in Gibbs free energy between reactants and products (ΔG) often allows conclusions to be drawn about
the stability of the formed material. Tphase stability of multi-metallic systems can be determined through the Gibbs free
energy equation:

FIGURE 2 Comparison of the Michaelis–Menten constants reported for selected multi-metallic nanozymes when investigated for POD-

like activity using TMB as a substrate. Values are presented according to the respective groups listed in Table 1 (Box 1).

BOX 1 Michaelis–Menten kinetics: A hot topic!

Although it is useful to compare nanozyme performance using Michaelis–Menten kinetic parameters, it is
important to realize that such studies are conducted over a variety of temperatures in the literature. Since catal-
ysis reactions are highly temperature-dependent processes, direct comparisons of Michaelis–Menten parameters
between studies reported in the literature are difficult, unless the conditions are comparable. Therefore, it is
good practice to control and report the reaction conditions, such as temperature and pH, at which studies are
conducted. Including an appropriate reference material, such as commonly studied nanozymes like magnetite
(Fe3O4), to act as a standard can also be useful for comparison with literature values.

PHAN-XUAN ET AL. 7 of 18
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ΔG¼ΔH�TΔS

where ΔG, ΔH and ΔS are changes in the Gibbs free energy, mixing enthalpy and mixing entropy, respectively, and
T is the thermodynamic temperature (George et al., 2019). The major part of the entropy, when including many differ-
ent elements in one single phase crystal structure, is the configurational entropy (ΔS), which can become the driving
factor for the phase stability of the multi-element system at sufficiently high temperatures, thereby enabling the incor-
poration of a higher number of components into a lattice structure. From a catalysis point of view, maintaining a
single-phase state may be vital since the formation of phase impurities with different surface properties may interfere
with the active sites which are necessary for the catalytic reaction (Sun & Dai, 2021). This effect was demonstrated by
Chao et al, who produced quinary CoMoFeNiCu nanoparticles in a single solid-solution phase with 20-fold higher cata-
lytic activity (of ammonia decomposition) compared to the standard Ru catalyst, the most active metal for ammonia
decomposition (Xie et al., 2019).

Importantly, the incorporation of multiple components with differing atomic sizes results in an inevitable lattice dis-
tortion in HEMs (Figure 1). In addition to the atomic size differences, different bonding energy and crystal structure
tendencies among constituent components are also believed to cause even higher lattice distortion because of asymmet-
rical binding and electronic structure between an atom and its first neighbors (Yeh, 2013). This deformation behavior
can induce a thermodynamic nonequilibrium state (Xin et al., 2020), which may reduce the energy barrier for the
adsorption, activation, and conversion of molecules (Sun & Dai, 2021). The distortion also has a significant impact on
modifying the energy levels of bound intermediates (Khorshidi et al., 2018) or changes the mechanical, electrical, ther-
mal, optical and chemical properties of materials (Sun & Dai, 2021). In high entropy oxides, this effect also produces
oxygen defects which have been shown to improve the catalytic performances in various oxidation reactions (D. Feng
et al., 2020; Shu et al., 2020).

Lastly, the “cocktail effect” (Figure 1) may be an essential property of the nanozyme activity of HEMs. The concept
was first proposed by Ranganathan (2003) to emphasize that the performance of multi-component systems does not
simply result from the properties of individual primary components but the totality of their inter-element interactions.
In other words, mixing multiple elements can offer unexpected properties which are not manifested by using a single
independent component. The cocktail effect can be considered as a complex synergistic mechanism that is attributed to
the outstanding catalytic performance of HEMs. However, due to the complicated multicomponent context, the mecha-
nism of inter-element interactions is still unknown. More in-depth investigations into electronic properties and lattice
structures may be useful to determine the underlying mechanism.

5 | MULTI-METALLIC NANOZYMES UNDER INVESTIGATION FOR
BIOMEDICAL APPLICATIONS

Despite a variety of interesting potential biomedical applications of novel metallic nanozymes with enhanced catalytic
activity, care must be taken when approaching the question of the suitability of such systems for different biomedical
applications. Applications, such as the use of metallic nanozymes in biosensors or ex vivo diagnostic assays, where the
materials do not interact with living systems may pose a very low risk in terms of toxicity concerns. In contrast,
the implementation of nanozymes in cell-based assays or in vivo studies, either as diagnostic or therapeutic agents, are
associated with higher risks of toxicity and adverse reactions. Paradoxically, increasing the catalytic performance of
multi-metallic nanozymes via the incorporation of an increasing variety of metal species may in turn increase the risk
of toxicity.

The use of multi-metallic nanozymes for a variety of biomedical applications is increasing rapidly. Table 2 provides
selected examples of different applications highlighting the variety of uses of nanozymes both in ex vivo and in vivo sce-
narios. Further applications of bimetallic and trimetallic nanozymes can be found in the selected review articles (Cui
et al., 2024; Q. Liu, Yang, et al., 2021; Pietrzak & Ivanova, 2021).

6 | WHAT IS KNOWN ABOUT METAL NANOPARTICLE TOXICITY?

Nanomaterial toxicity is complicated and governed not only by material properties such as size, shape, coatings, surface
charge, surface reactivity and bio persistence, but also the administration/exposure route, dose concentration, as well as
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biodistribution and elimination kinetics (Gubala et al., 2018). The generation of reactive oxygen species (ROS) such
as singlet oxygen, superoxide anion radicals, peroxide ions, etc. is consider the main toxicity mechanism of metal
nanoparticles, in addition to the interaction of nanoparticles with cell membranes or cellular components. These mech-
anisms were thoroughly discussed in several review articles (Attarilar et al., 2020; Sengul & Asmatulu, 2020; W. Yang,
Wang, et al., 2021). Furthermore, it should be highlighted that the toxicity may be the result of crosstalk between differ-
ent mechanisms rather than a single one, which make the metal nanotoxicity more complicated (N. Zhang et al., 2022).
Many of the proposed therapeutic applications of metal oxide nanozymes listed above (e.g., in tissue engineering,
wound healing, and cancer therapy) would have internal targets in the body, requiring either intravenous or
intraoperative administration (Bottagisio et al., 2019; Pan et al., 2021). Therapeutic agents administered via such routes
require very high product quality standards and have very special biodistribution profiles, meaning that they are likely
to distribute throughout the body following administration and have the potential for accumulation in other organs,
where they may have off-target adverse effects (Gubala et al., 2018). Currently, the only regulatory approved metal
oxide-based medicine/diagnostic agent is ferumoxytol (Feraheme® or Rienso®), which is comprised of an aqueous col-
loidal suspension (30 mg/mL) of ferric superparamagnetic iron oxide particles coated with a polyglucose sorbitol car-
boxymethylether shell for isolation (5–15 nm) pH of 6–8 (CHMP, 2012). It is used clinically as an intravenous infusion

TABLE 2 Selected examples of ex vivo and proposed in vivo applications of multi-metallic nanozymes.

Ex vivo applications as biosensors or diagnostics Nanozyme composition
Reference
(s)

Lateral flow immunoassay strip to detect SAR-CoV-2 nucleocapsid protein (detection
limit = 0.207 ng/mL)

Au@Pd@Pt nanozymes with
peroxidase-like activity

(Sun
et al., 2022)

Point-of-care detection of human dopamine (detection limit = 0.77 μM) FeCuAgCeGd high entropy
nanozymes with peroxidase-like
activity

(Sheng
et al., 2024)

ELISA-based detection of prostate specific antigen (detection limit = 38 fg/mL which
is �1500-fold lower than conventional ELISA)

Pd-Ir NPs@GVs nanozymes
with peroxidase-like activity

(Ye
et al., 2017)

Colorimetric and amperometric detection of p53 autoantibody (detection limit = 0.08
which is �1500-fold lower than p53-ELISA kit)

Au-NPFe2O3NC nanozymes
with peroxidase-like activity

(Masud
et al., 2017)

Detection of alcohol (detection limit = 0.11 mM which is comparable to commercial
alcohol meters)

Au@PtRu nanozyme with
peroxidase-like activity

(F. Lv
et al., 2020)

Colorimetric detection of glucose in urine (detection limit = 3 � 10�7 M/L) ZnFe2O4 nanozymes with
peroxidase-like activity

(Su
et al., 2012)

Colorimetric detection of glucose, H2O2 and ascorbic acid (detection limit = 4 μM,
15.29 μM and 28.59 μM, respectively).

MnFeCoNiCu high entropy
nanozymes with peroxidase-like
activity

(J. Feng
et al., 2023)

Proposed in vivo applications as therapeutics (examples from the
literature with in vivo proof-of-concept data) Nanozyme composition

Reference
(s)

Brain injury repair PtPdMo nanozymes with multi-
enzyme-mimetic activity

(X. Mu
et al., 2019)

Combination of chemodynamic therapy, magnetic hyperthermia therapy and
magnetic resonance imaging against tumor

Ir@MnFe2O4 nanozyme with
peroxidase-like activity

(Shen
et al., 2020)

Chemodynamic anti-tumor therapy CoO@AuPt nanozymes with multiple
catalytic activities

(Fu
et al., 2020)

Chemodynamic anti-tumor therapy AuPt3Cu nanozymes with triple
catalytic activity

(L. Li
et al., 2023)

Photodynamic anti-tumor therapy MnCo-Pt nanozymes with catalase-
like activity

(D. Wang
et al., 2023)

Photothermal anti-tumor therapy PtPdRuRhIr high entropy nanozymes
with peroxidase-like activity

(Ai
et al., 2023)

Synergistic therapy of chemodynamic-, photodynamic- and photothermal
therapy on osteosarcoma

RhRu/Ti3C2Tx with double enzyme-
like activity

(Y. Liang
et al., 2023)
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for the treatment of severe iron deficiency. In many countries, the product has been withdrawn from the market or
restricted in use following toxicity concerns due to severe allergic reactions and unpredictable pharmacokinetics (Suciu
et al., 2020). Topical applications of metal oxides include hafnium oxide nanoparticles (Hensify®) for advanced squa-
mous cell carcinoma, as well as ZnO and TiO2 in skin care products including sunscreens (Pan et al., 2021). The risk of
off-target toxicity with topical administration is very different to intravenous administration. Therefore, it is important
to think about and understand how different administration routes will be associated with different toxicity risks during
the development of nanozymes for therapeutic use. Over the past three decades, a great wealth of knowledge has accu-
mulated on the key toxicity paradigms of nanomaterials in the human body. This body of literature is too broad to dis-
cuss here, therefore we refer the reader to selected review articles (highlight in bold in the bibliopgraphy) which are
recommended as essential literature for understanding the approach to toxicity testing of multi-metallic
nanozymes (Box 2).

7 | PROTECTING ANIMALS AND DATA INTEGRITY: TIPS FOR
PREPARING MATERIALS FOR IN VIVO STUDIES

Generating in vivo proof-of-concept data on nanozyme activity is often a pre-requisite for publication in many journals
these days. Before starting in vivo studies, whether they are designed to test safety or efficacy, it is important to think
about lessons learned from the nanotoxicology field. In an Angewandte Chemie review article from 2014, H. Krug exam-
ined >10,000 papers studying environmental and health effects of nanomaterials and concluded that “we are left with a
plethora of low-value results due to the lack of harmonized experimental protocols, poor or nonexistent characteriza-
tion of the nanomaterials, a lack of reference materials, …, and so on” (Krug, 2014). Similar conclusions were drawn in
the biomedical sector, where a majority of novel nanomaterials for development as cancer therapeutics faced serious
translational issues due to the complexity of nanomaterial characterization and the difficult interpretation of preclinical
studies. This latter observation led to the foundation of the Nanotechnology Characterization Lab (NCL) by the
National Cancer Institute in the United States (with a satellite institute in Europe).

One of the key issues faced in nanotoxicology and nanomedicine development is a lack of awareness of how sample
quality should be designed into the system from the very first stages of basic research. To address this, the NCL have
compiled clear, easy-to-use guidelines for the preparation and characterization of high-quality nanomaterials for bio-
medical uses, and specifically for colloidal metal-based nanoparticle systems (Nanotechnology Characterization Lab, n.
d.). Despite availability of this information, many basic research publications do not routinely incorporate the full spec-
trum of characterization techniques prior to commencement of in vivo studies (Figure 3). While some quality parame-
ters may not significantly alter the outcomes of in vivo studies, issues with poor material quality could cause significant
and avoidable harm to test animals as well as confound study results. For example, excipients or impurities in excess
may cause toxicity which is incorrectly attributed to the nanozyme materials. Similarly, unexpectedly high dissolution
of multi-metallic nanomaterials within cellular compartments, such as phagosomes, could be responsible for unex-
pected toxicity events. Aggregation of nanomaterials in plasma could lead to blockage of capillaries and embolism in
test animals. High batch-to-batch variations in critical material properties may require higher numbers of animals

BOX 2 Common myths about metal toxicity (…at least for oral exposure)

According to Egorova and Ananikov, so-called heavy metals (e.g., palladium, platinum, rhodium, chromium
etc.) are commonly thought to be significantly more harmful than lighter metals (nickel, copper, cobalt, etc.)
(Egorova & Ananikov, 2017). However, the comparison of oral toxicity of different chromium compounds in
rats paints a more nuanced picture. Depending on the oxidation state of the metal and compound composition,
the oral toxicity (expressed by the half maximal lethal dose; LD50) can differ greatly. For example, chromium
compounds can range from low to moderately toxic in the following order: Cr2O3 (LD50: 15000 mg/kg) <<
Cr(NO3)3�9H2O (3250 mg/kg) < CrCl2 (1870 mg/kg) < CrCl3 (440 mg/kg) < CrO3 (52 mg/kg). However,
remember that toxicity is dependent on the administration or exposure route, therefore compounds that are
“safe” for oral exposure may not necessarily be well-tolerated after intravenous administration.
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in test groups to achieve sufficient power in the in vivo study. Microorganism or endotoxin contamination, due to
improper preparation and storage, may trigger immune responses in vivo that are also falsely attributed to the nano-
material. These are just examples of common errors observed in nanotoxicology studies (Krug, 2014). However, aware-
ness of important material characteristics, well-designed nanomaterials and good laboratory practices (including good
documentation) can protect the welfare of study animals and improve the quality of data of in vivo studies.

8 | CONCLUDING REMARKS AND OUTLOOK

The development of multi-metallic nanozymes for use as promising alternatives to native enzymes in various biomedi-
cal applications is an exciting and rapidly moving field. The incorporation of two or more metals in a nanozyme struc-
ture can lead to favorable alterations in electronic structure, oxygen vacancies or phase properties, thus an enhancing
catalytic activity in an unprecedented manner. The emergence of HEMs in the nanozyme field has provided a broad-
ened scope. The unique core effects offer these materials remarkable mechanical, thermal strengths, phase stability as
well as uniform dispersion of catalytically active species on the surface, thereby achieving an outstanding catalytic per-
formance. In addition, the high entropy approach offers the potential of a larger chemical space for the individually tai-
lored design of potential catalysts by fine-tuning their chemical compositions.

However, despite a rapidly increasing number of publications where multi-metallic nanozymes are investigated for
biomedical applications (e.g., chemotherapeutic agents and biosensors), toxicity concerns remain one of the main hur-
dles hampering their clinical translation. The evaluation of nanozyme toxicity is challenging due to the complicated
nature of nanomaterials and their interactions with the human body. This complexity becomes even more apparent in
the context of HEMs where multiple elements with different intrinsic properties for example atomic radius, electroneg-
ativity, redox potential, etc. coexist. Unexpected interactions between these components may have a significant impact
on physicochemical properties, thus altering the toxicity profile. Therefore, the rational design of multi-metallic

FIGURE 3 List of important material characteristics which should ideally be assessed prior to in vivo investigations of nanozymes (cited

from https://www.cancer.gov/nano/research/ncl/protocols-capabilities/physicochemical-characterizations-colloidal-metal-nanoparticle.pdf;

accessed on 27 March 2024).
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nanozymes is of the highest importance, not only to obtain nanozymes with superior catalytic activity but also with suf-
ficient quality for subsequent proof-of-concept studies.

Outlook: Owing to the advanced manufacturing methods and characterization techniques of nanomaterials, more
complicated metal-based nanoparticles, especially multi-metallic platforms with superior enzyme-mimetic catalytic
activity will appear. These nanozymes hold promising prospects in a wide range of biomedical applications, such as bio-
sensors, imaging agents, anti-bacterial and anti-tumor therapeutics. However, toxicity evaluation of these materials
must be assessed thoroughly for clinical translation. Recently, computational approaches for material design and in sil-
ico toxicology predications have been attracting a great deal of attention. The purpose of these models is to correlate
structural or physicochemical features (presented as descriptors which can be achieved from experimental or computa-
tional methods) with toxic effects. Furthermore, integrating machine learning algorithms into computational models
allows analysis and interpretation of large amounts of data, providing a better understanding of toxicity mechanisms.
However, to create robust and highly predictive models, high-quality data is pivotal (A. V. Singh et al., 2023). Standardi-
zation and high-quality documentation would help to improve quality of input data, reducing duplicated experiments
and inter-laboratory variations, contributing to create uniform, sufficient and diverse database which is extremely bene-
ficial to toxicity evaluation of metal nanozymes.
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