KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteries

Zhou, Bei 1; An, Siyu 1; Kitsche, David 1; Dreyer, Sören L. 1; Wang, Kai 1; Huang, Xiaohui 1; Thanner, Jannik; Bianchini, Matteo; Brezesinski, Torsten ORCID iD icon 1; Breitung, Ben ORCID iD icon 1; Hahn, Horst 1; Wang, Qingsong
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Lithium-excess cation-disordered rocksalt materials are a promising class of transition metal-based cathodes that exhibit high specific capacity and energy density. The exceptional performance is achieved through participation of anionic redox in addition to cationic redox reactions in the electrochemistry. However, anionic redox reactions accompanied by oxygen evolution, accelerated electrolyte breakdown, and structural evolution lead to voltage hysteresis and low initial Coulombic efficiency. Herein, an Al2O3 layer with varying thickness has been coated onto a high-entropy disordered rocksalt oxyfluoride cathode through atomic layer deposition to enhance battery performance. The results indicate that the utilization of a uniform Al2O3 coating improves the capacity retention and rate capability of the cathode, with the performance being strongly dependent on the layer thickness. Further investigation into cathode–electrolyte interfacial reactions reveals that the thin protecting Al2O3 coating can reduce the decomposition of electrolyte on the cathode surface but cannot prevent bulk phase degradation during prolonged cycling. These findings highlight the need for optimized coating design on the disordered rocksalt cathode to improve battery performance.


Verlagsausgabe §
DOI: 10.5445/IR/1000176155
Veröffentlicht am 11.11.2024
Originalveröffentlichung
DOI: 10.1002/sstr.202400005
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2024
Sprache Englisch
Identifikator ISSN: 2688-4062
KITopen-ID: 1000176155
Erschienen in Small Structures
Verlag Wiley-VCH Verlag
Band 5
Heft 7
Seiten Art.-Nr.: 2400005
Vorab online veröffentlicht am 07.04.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page