KIT | KIT-Bibliothek | Impressum | Datenschutz

A Hybrid Vision-Map Method for Urban Road Detection

Fernandez Lopez, Carlos ORCID iD icon 1; Fernández-Llorca, David; Sotelo, Miguel A.
1 Institut für Mess- und Regelungstechnik (MRT), Karlsruher Institut für Technologie (KIT)

Abstract:

A hybrid vision-map system is presented to solve the road detection problem in urban scenarios. The standardized use of machine learning techniques in classification problems has been merged with digital navigation map information to increase system robustness. The objective of this paper is to create a new environment perception method to detect the road in urban environments, fusing stereo vision with digital maps by detecting road appearance and road limits such as lane markings or curbs. Deep learning approaches make the system hard-coupled to the training set. Even though our approach is based on machine learning techniques, the features are calculated from different sources (GPS, map, curbs, etc.), making our system less dependent on the training set.


Verlagsausgabe §
DOI: 10.5445/IR/1000176164
Veröffentlicht am 03.12.2024
Originalveröffentlichung
DOI: 10.1155/2017/7090549
Scopus
Zitationen: 18
Dimensions
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.10.2017
Sprache Englisch
Identifikator ISSN: 0197-6729, 2042-3195
KITopen-ID: 1000176164
Erschienen in Journal of Advanced Transportation
Verlag Hindawi
Band 2017
Heft 1
Seiten Art.-Nr. 7090549
Externe Relationen Siehe auch
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page