
JOURNAL OF TIME SERIES ANALYSIS
J. Time Ser. Anal. (2024)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1111/jtsa.12787
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MIXED ORTHOGONALITY GRAPHS FOR CONTINUOUS-TIME STATE
SPACE MODELS AND ORTHOGONAL PROJECTIONS

VICKY FASEN-HARTMANN AND LEA SCHENK
Institute of Stochastics, Karlsruhe Institute of Technology, Karlsruhe, Germany

In this article, we derive (local) orthogonality graphs for the popular continuous-time state space models, including in partic-
ular multivariate continuous-time ARMA (MCARMA) processes. In these (local) orthogonality graphs, vertices represent the
components of the process, directed edges between the vertices indicate causal influences and undirected edges indicate con-
temporaneous correlations between the component processes. We present sufficient criteria for state space models to satisfy
the assumptions of Fasen-Hartmann and Schenk (2024a) so that the (local) orthogonality graphs are well-defined and various
Markov properties hold. Both directed and undirected edges in these graphs are characterised by orthogonal projections on
well-defined linear spaces. To compute these orthogonal projections, we use the unique controller canonical form of a state
space model, which exists under mild assumptions, to recover the input process from the output process. We are then able to
derive some alternative representations of the output process and its highest derivative. Finally, we apply these representations
to calculate the necessary orthogonal projections, which culminate in the characterisations of the edges in the (local) orthog-
onality graph. These characterisations are given by the parameters of the controller canonical form and the covariance matrix
of the driving Lévy process.
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1. INTRODUCTION

State space models are important tools in many scientific and engineering disciplines, including control theory,
statistics and computational neuroscience. In this article, we study the time-invariant Rk-valued state space model
(,,,L) of dimension kp, that is characterised by a driving Rk-valued Lévy process L = (L(t))t∈R, a state
transition matrix  ∈ Rkp×kp with p ∈ N, an input matrix  ∈ Rkp×k, and an observation matrix  ∈ Rkp×k.
Note that an Rk-valued Lévy process L is a stochastic process with stationary and independent increments, it is
continuous in probability, and satisfies L(0) = 0k ∈ Rk almost surely (Sato, 2007). A continuous-time state space
model then consists of a state equation

dX(t) = X(t)dt +dL(t), (1.1)

and an observation equation

Y(t) = X(t).
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2 V. FASEN-HARTMANN and L. SCHENK

The Rkp-valued process X = (X(t))t∈R is the input process and the Rk-valued process Y = (Y(t))t∈R is the output
process. It is well known that the solution of the state equation (1.1) is

X(t) = e(t−s)X(s) + ∫
t

s

e(t−u)
dL(u), s < t. (1.2)

A special subclass of such state space models is the popular multivariate continuous-time ARMA (MCARMA)
models (Marquardt and Stelzer, 2007; Schlemm and Stelzer, 2012a, 2012b). In contrast to Schlemm and
Stelzer (2012a), we speak here of a subclass instead of the equivalence of these classes because in our opinion
there is an argument in the proof that is not clearly verifiable; the details are given in Section 3.2.

This article aims to construct a graphical model for such state space models. The interest in graphical models
for stochastic processes has increased significantly in recent years, see, for example, Mogensen and Hansen (2020,
2022); Basu et al. (2015); Eichler (2007, 2012); Didelez (2007, 2008); Fasen-Hartmann and Schenk (2024a,
2024b), although the use of graphical models to visualise and analyse dependence structures in stochastic models
is quite old (Wright, 1921, 1934). A major reason for this surge in interest is the simplicity and clarity of graphical
models in representing the dependence structure in stochastic models such that examples of practical applications
are ubiquitous. Another big advantage is their ease of implementation on computers, making them a powerful tool
for the analysis of high-dimensional time series, as demonstrated, for example, in Eichler (2007). The state of the
art of graphical models is presented in Maathuis et al. (2019).

In this article, we use the approach of Fasen-Hartmann and Schenk (2024a) to construct orthogonality graphs
and local orthogonality graphs for state space models, and to derive analytic representations of the edges in these
graphs by the model parameters. (Local) orthogonality graphs are mixed graphs where the vertices V = {1, … , k}
represent the different component series Yv = (Yv(t))t∈R, v ∈ V , of an Rk-valued process YV = Y . Directed
edges reflect (local) Granger causality and undirected edges reflect (local) contemporaneous correlation between
the component series of the stochastic process. An attractive property of the (local) orthogonality graph is that it
satisfies several types of Markov properties under fairly general assumptions.

The mathematical notion of causality can be traced back to Granger (1969) and Sims (1972) and has since then
been extended and applied in various fields, see Shojaie and Fox (2022) for an excellent survey. In our context of
continuous-time stochastic processes, the notion of Granger causality and contemporaneous correlation, as defined
in Fasen-Hartmann and Schenk (2024a), are based on conditional orthogonality relations of linear subspaces gen-
erated by subprocesses, similarly to Eichler (2007) in discrete time. This setup is perfectly suitable for stationary
stochastic processes. At the same time, the approaches of Eichler (2012) using conditional independence relations
for stochastic processes in discrete time and that of Mogensen and Hansen (2020, 2022); Didelez (2007, 2008);
Eichler et al. (2017) using conditional local independence are suitable for semimartingales and point processes. We
refer to Fasen-Hartmann and Schenk (2024a) for a detailed overview of graphical models for stochastic processes
and the advantages of the different approaches.

The conditional orthogonality relations in the definition of (local) Granger causality and (local) contempora-
neous correlation can be expressed equivalently by orthogonal projections of the component processes Yv(t + h)
(t ∈ R, h ≥ 0, v ∈ V) and their highest derivative respectively, on well-defined linear subspaces. To the best of our
knowledge, the orthogonal projections for multivariate state space models and their derivatives required in this arti-
cle have not yet been addressed in the existing literature. Although Rozanov (1967), III, 5, is devoted to the topic
of predictions for general stationary processes, the representations in that book are based on a specific maximal
decomposition of the spectral density matrix of that process. This decomposition is generally not expressible as a
simple formula, and so he only considers univariate examples. The orthogonal projections of univariate CARMA
processes were discussed in the previous paper by Brockwell and Lindner (2015). They provide representations
for the linear projection of a CARMA process Y(h) onto the entire linear space generated by the CARMA process
up to time t = 0, and for the conditional expectation of Y(h) on the 𝜎-algebra generated by the CARMA process
up to time t = 0. A multivariate generalisation of the conditional expectation result using the 𝜎-algebra gener-
ated by the whole multivariate CARMA (MCARMA) process up to time t = 0 can be found in Basse-O’Connor
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 3

Figure 1. In the left figure is the orthogonality graph and in the right figure the local orthogonality graph of the
three-dimensional ICCSS(2, 1) process defined in Example 3.8, (a) Orthogonality graph, (b) Local orthogonality graph

et al. (2019), Corollary 4.11, but the statement is not consistent with the comprehensible result of Brockwell and
Lindner (2015). In any case, in this article, we require not only projections of Yv(t + h) on the linear space of the
past of the process Y up to time t, but also on linear subspaces generated by subprocesses, and additionally the
projections of the highest derivatives of Yv(t + h).

In the context of multivariate continuous-time AR (MCAR) processes, which are a subclass of MCARMA
processes, the topic of orthogonal projections and the corresponding (local) orthogonality graphs are discussed in
Fasen-Hartmann and Schenk (2024a). Although MCAR processes are state space models, the techniques used there
are not applicable to MCARMA(p, q) processes with q > 0, because MCAR models have a much simpler structure.
This structure allows, e.g., the direct recovery of the input process X from the output process Y . In particular,
Fasen-Hartmann and Schenk (2024a) use the orthogonal projections to develop (local) orthogonality graphs for
MCAR processes and give interpretations for the edges which correspond to other results in the literature; see, e.g.,
Comte and Renault (1996) for causality relations of MCAR processes and Eichler (2007) for discrete-time AR
processes. This article can therefore be seen as an extension of Fasen-Hartmann and Schenk (2024a) to a broader
class of models and of course, we compare our results with those of that article. We would like to point out here
that, according to our knowledge, even for stochastic processes in discrete time, the literature on mixed graphical
models is restricted to AR processes (Eichler, 2007, 2012), there is not much known on mixed graphical models
for the more complex ARMA processes satisfying some types of Markov properties.

In this article, the controller canonical form of a state space model plays an important role in calculating the
orthogonal projections of Yv(t + h) and its highest derivative, as highlighted in Basse-O’Connor et al. (2019). The
controller canonical form of an MCARMA process has been studied in Brockwell and Schlemm (2013) and is the
multivariate generalisation of the definition of a univariate CARMA process (Brockwell, 2014). In the case of the
existence of a controller canonical form, we show that this representation is unique, which is essential for the unique
characterisations of the edges in the (local) orthogonality graph later in this article; we will prove that the edges
depend only on the model parameters of the controller canonical form and the covariance matrix of the driving Lévy
process. A special feature of the controller canonical form is that under very general assumptions it can be used to
recover the input process X from the output process Y , i.e., X(t) lies in the closed linear space generated by (Y(s))s≤t

and which has only been known for univariate CARMA processes (Brockwell and Lindner, 2015, Theorem 2.2). In
this case, we call Y an invertible controller canonical state space (ICCSS) process and we are able to calculate the
necessary orthogonal projections to describe the (local) Granger causality and (local) contemporaneous correlation
relations of the underlying process, resulting in the characterisations of the edges in the (local) orthogonality graph.
An example of both graphs for a three-dimensional ICCSS(2, 1) process is given in Figure 1. This example is used
for illustration throughout the article.

In conclusion, we show in this article that not only for ICCSS processes but also for most state space models,
the (local) orthogonality graph exists and satisfies several of the preferred Markov properties. In our opinion,
this is the first (mixed) graphical model for this popular and broad class of stochastic processes. However, for
the explicit representation of the edges via (local) Granger causality and (local) contemporaneous correlation,
we need the invertibility of the state space model and hence, the restriction to ICCSS processes. In addition, we
derive new and important results for state space models, such as sufficient criteria for being an ICCSS model,
alternative representations for Yv(t + h) and its highest derivative depending on the linear past of Y up to time t

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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4 V. FASEN-HARTMANN and L. SCHENK

and an independent noise term, and, in particular, their orthogonal projections onto linear subspaces, which are
the basis for linear predictions.

The article is structured as follows. In Section 3, we introduce (local) orthogonality graphs, the controller canon-
ical form of a state space model, and ICCSS processes. We also present their basic properties that are important for
this article. In Section 4, we consider orthogonal projections of ICCSS processes and their highest derivatives onto
linear subspaces generated by subprocesses, since the characterisations of the edges of the (local) orthogonality
graph are based on these orthogonal projections. These results then lead to the existence of the (local) orthogo-
nality graph and the characterisation of the directed and the undirected edges of an ICCSS process by its model
parameters in Section 5. The proofs of the article are given in their own Section 6.

2. NOTATION

From now on we call the space of all real and complex (k × k)-dimensional matrices Mk(R) and Mk(C) respectively.
Similarly, Mk,d(R) and Mk,d(C) denote real and complex (k × d)-dimensional matrices. For A ∈ Mk,d(C) we write
A⊤ for the transpose of A and for A ∈ Mk(C) we write A ≥ 0 if A is positive semi-definite, and A > 0 if A is
positive definite. Furthermore, 𝜎(A) are the eigenvalues of A. Ik is the (k × k)-dimensional identity matrix, 0k×d is
the (k × d)-dimensional zero matrix and 0k is either the k-dimensional zero vector or the (k × k)-dimensional zero
matrix which should be clear from the context. The vector ea ∈ Rk is the a-th unit vector, as well as

Ej =
⎛⎜⎜⎜⎝
0k(j−1)×k

Ik

0k(p−j)×k

⎞⎟⎟⎟⎠ ∈ Mkp×k(R), j = 1, … , p. (2.1)

Furthermore, we write for p > q,

E⊤ = (Ikq, 0k(p−q)×kq) ∈ Mkq×kp(R) and E⊤ = (0k×k(q−1), Ik) ∈ Mk×kq(R). (2.2)

For a matrix polynomial P(z) we define the set of zeros of the polynomial det(P(z)) as  (P) = {z ∈ C ∶
det(P(z)) = 0} and deg(det(P(z))) denotes the degree of the polynomial det(P(z)). Y = (Y(t))t∈R is a k-dimensional
stationary and mean-square continuous stochastic process with index set V = {1, … , k} and expectation zero. The
corresponding components are denoted by Yv = (Yv(t))t∈R for v ∈ V and multivariate subprocesses are denoted by
YS = (Ys)s∈S = (YS(t))t∈R for S ⊆ V . A special case is S = V where YV = Y . Finally, l.i.m. is the mean square limit.

3. PRELIMINARIES

The topic of this article is mixed (local) orthogonality graphs for state space models. Therefore, in Section 3.1, we
introduce (local) orthogonality graphs and present the main results of Fasen-Hartmann and Schenk (2024a) that
are relevant to this article. Then, in Sections 3.2 and 3.3, the controller canonical form of a state space model is
introduced, and the invertibility of these processes is discussed.

3.1. Mixed Orthogonality Graphs

Orthogonality graphs are graphical models GOG = (V ,EOG) where the vertices V = {1, … , k} represent the
different component series Yv = (Yv(t))t∈R, v ∈ V , of a k-dimensional wide-sense stationary and mean-square
continuous stochastic process Y = (Y(t))t∈R with expectation zero. The vertices are connected with both directed
and undirected edges EOG. A directed edge represents a Granger causal relationship while an undirected edge
represents a contemporaneous correlation between the components. To make this clear, we first present some
notations that we require for the definitions of Granger causality and contemporaneous correlation. For any set S ⊆
V , t, t̃ ∈ R with t < t̃, we define the closed linear spaces generated by the subprocess YS = (Ys)s∈S = (YS(t))t∈R as

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 5

YS
(t, t̃) =

{
n∑

i=1

∑
s∈S

𝛾s,iYs(ti) ∶ 𝛾s,i ∈ C, t ≤ t1 ≤ · · · ≤ tn ≤ t̃, n ∈ N

}
,

YS
(t) =

{
n∑

i=1

∑
s∈S

𝛾s,iYs(ti) ∶ 𝛾s,i ∈ C,−∞ < t1 ≤ · · · ≤ tn ≤ t, n ∈ N

}
.

We further denote the orthogonal projection of Z ∈ L2 on the closed linear subspace ⊆ L2 by P(Z) = PZ. Now,
we establish definitions of Granger causality, which characterises the directed edges in the (local) orthogonality
graph.

Definition 3.1. Let a, b ∈ S ⊆ V and a ≠ b.

(a) Ya is Granger non-causal for Yb with respect to YS, if and only if, for all t ∈ R and 0 ≤ h ≤ 1,

PYS
(t)Yb(t + h) = PYS⧵{a}

(t)Yb(t + h)P-a.s.

We shortly write Ya � Yb |YS.
(b) Suppose Yv is jv-times mean-square differentiable but the (jv + 1)-derivative does not exist for v ∈ V . The

jv-derivative is denoted by D( jv)Yv, where for jv = 0 we define D(0)Yv = Yv. Then Ya is locally Granger
non-causal for Yb with respect to YS, if and only if, for all t ∈ R,

l.i.m.
h→0

PYS
(t)

(
D(jb)Yb(t + h) − D(jb)Yb(t)

h

)
= l.i.m.

h→0
PYS⧵{a}

(t)

(
D(jb)Yb(t + h) − D(jb)Yb(t)

h

)
P-a.s.

We shortly write Ya �0 Yb |YS.

In words, Ya is Granger non-causal for Yb with respect to YS if the prediction of Yb(t + h) based on the linear
information available at time t provided by the past and present of YS is not diminished by removing the linear
information provided by the past and present values of Ya. Local Granger non-causality considers the limiting case
h → 0, where the highest existing derivative of the process must be examined to obtain a non-trivial criterion; see
as well the discussion in Fasen-Hartmann and Schenk (2024a) for the motivation of these definitions.

Remark 3.2. Fasen-Hartmann and Schenk (2024a) originally defined Granger causality by conditional orthog-
onality of linear spaces generated by subprocess, and then showed that these definitions are equivalent to the
definitions based on the orthogonal projections given above (see Theorem 3.5 and Remark 3.12 therein).

Next, the undirected edges are characterised by (linear) contemporaneous correlation. The idea is simple: there
is no undirected influence between Ya and Yb with respect to YS if and only if, given the amount of information
provided by the past of YS up to time t, Ya and Yb are uncorrelated in the future. Fasen-Hartmann and Schenk (2024a)
introduce the following definitions.

Definition 3.3. Let a, b ∈ S ⊆ V and a ≠ b.

(a) Ya and Yb are contemporaneously uncorrelated with respect to YS, if and only if, for all t ∈ R and 0 ≤ h, h̃ ≤ 1,

E

[(
Ya(t + h) − PYS

(t)Ya(t + h)
)(

Yb(t + h̃) − PYS
(t)Yb(t + h̃)

)]
= 0.

We shortly write Ya ≁ Yb |YS.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 V. FASEN-HARTMANN and L. SCHENK

(b) Suppose Yv is jv-times mean-square differentiable but the (jv + 1)-derivative does not exist for v ∈
V . Then Ya and Yb are locally contemporaneously uncorrelated with respect to YS, if and only if, for
all t ∈ R,

lim
h→0

1
h

E

[(
D(ja)Ya(t + h) − PYS

(t)D
(ja)Ya(t + h)

)
−

(
D( jb)Yb(t + h) − PYS

(t)D( jb)Yb(t + h)
)]

= 0.

We shortly write Ya ≁0 Yb |YS.

Remark 3.4. The original definition of contemporaneous uncorrelatedness in Fasen-Hartmann and
Schenk (2024a) is again by conditional orthogonality of linear spaces generated by subprocesses, and equivalent
characterisations using orthogonal projections are given there (see Lemma 4.3, Theorem 4.5, and Remark 4.9
therein).

Before defining the orthogonality graphs with these terms and definitions, we introduce assumptions on the
stochastic process Y , which are fulfilled, in particular, by most state space models (see Section 5).

Assumption A.

(A.1) Y is a k-dimensional wide-sense stationary and mean-square continuous stochastic process with expectation
zero and index set V = {1, … , k}.

(A.2) Y has a spectral density matrix fYY (𝜆) > 0 and there exists an 0 < 𝜀 < 1, such that

(1 − 𝜀)I𝛼 − fYAYA
(𝜆)−1∕2fYAYB

(𝜆)fYBYB
(𝜆)−1fYBYA

(𝜆)fYAYA
(𝜆)−1∕2 ≥ 0,

for almost all 𝜆 ∈ R and for all disjoint subsets A,B ⊆ V , where 𝛼 is the cardinality of A.
(A.3) Y is purely non-deterministic, i.e., for all a ∈ V and t ∈ R,

l.i.m.
h→∞

PY (t)Ya(t + h) = 0 P-a.s.

Remark 3.5.

(a) Assumption (A.1) is a basic requirement, otherwise, e.g., the spectral density in Assumption (A.2) is not well
defined.

(b) Assumption (A.2) ensures the linear independence and closedness of sums of linear spaces generated by
subprocesses, i.e., for t ∈ R and disjoint subsets A,B ⊆ V ,

YA
(t) ∩ YB

(t) = {0} and YA
(t) + YB

(t) = YA
(t) + YB

(t) P-a.s. (3.1)

(c) Any process that is wide-sense stationary can be uniquely decomposed into a deterministic and a
purely non-deterministic process, which are orthogonal to each other (Gladyshev, 1958, Theorem 1).
From the point of view of applications, deterministic processes are not important, so (A.3) is a natural
assumption.

With this assumption, we are able to define orthogonality graphs.

Definition 3.6. Suppose Ysatisfies Assumption A.

(a) If we define V = {1, … , k} as the vertices and the edges EOG via

(i) a −→ b ∉ EOG ⇔ Ya � Yb |YV ,
(ii) a --- b ∉ EOG ⇔ Ya ≁ Yb |YV ,

for a, b ∈ V with a ≠ b, then GOG = (V ,EOG) is called orthogonality graph for Y = YV .

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 7

(b) If we define V = {1, … , k} as the vertices and the edges E0
OG via

(i) a −→ b ∉ E0
OG ⇔ Ya �0 Yb |YV ,

(ii) a --- b ∉ E0
OG ⇔ Ya ≁0 Yb |YV ,

for a, b ∈ V with a ≠ b, then G0
OG = (V ,E0

OG) is called local orthogonality graph for Y = YV .

Remark 3.7.

(a) As discussed in Fasen-Hartmann and Schenk (2024a), the assumptions are not necessary for the definition
of the graphs, but they ensure that the usual Markov properties for mixed graphs are satisfied. Specifically,
the orthogonality graph satisfies the pairwise, local, block-recursive, global AMP, and global Granger-causal
Markov properties. In particular, Assumption (A.3) ensures that the global AMP Markov property holds.
The local orthogonality graph satisfies the pairwise, local, and block-recursive Markov property; for global
Markov properties of the local orthogonality graph additional assumptions are required; see Fasen-Hartmann
and Schenk (2024a), Propositions 5.20 and 5.21 respectively.

(b) The local orthogonality graph has fewer edges than the orthogonality graph and, in general, the graphs are
not equal. An explicit example of a (local) orthogonality graph, illustrating this property, is given in Figure 1.
The advantage of the local orthogonality graph over the orthogonality graph is that it allows for modelling
more general graphs, whereas the orthogonality graph satisfies the global AMP and the global causal Markov
property, the local orthogonality graph does not satisfy them in general, additional assumptions are necessary.
For more details see Fasen-Hartmann and Schenk (2024a) again.

3.2. Controller Canonical State Space Models

The article aims to derive (local) orthogonality graphs for state space models. Therefore, we use the controller
canonical form of a state space model and its uniqueness, which results in the unique characterisation of the edges
in the (local) orthogonality graph in Section 5. To define the controller canonical form of a state space model, we
need some definitions and terminology. Therefore, note that each state space model (,,,L) is associated with
a rational matrix function

H(z) = 
(
zIkp −

)−1
, z ∈ C⧵𝜎(), (3.2)

called the transfer function of the state space model, and the triple (,,) is an algebraic realisation of the
transfer function of dimension kp (characterising the dimension (kp × kp) of ). The triple (,,) is said to be
minimal if there is no other algebraic realisation of H(z) with dimension less than kp. The transfer function is of
importance because, due to the spectral representation theorem (Lax, 2002, Theorem 17.5), we are able to recover
the kernel function et1{t≥0} of the output process Y of the state space model via

et
 = 1

2𝜋i ∫Γ
eztH(z) dz, t ≥ 0, (3.3)

where Γ is a closed contour in the complex numbers that winds around each eigenvalue of  exactly once. The
transfer function even uniquely determines the function et, t ∈ R (Schlemm and Stelzer, 2012b, Lemma 3.2).
Kailath (1980) provides in Lemma 6.3-8 that there exist (k × k)-dimensional matrix polynomials P(z) and Q(z)
such that

H(z) = Q(z)P(z)−1, z ∈ C⧵𝜎(), (3.4)

is a coprime right polynomial fraction description of the transfer function, which in turn means that the matrix
[P(z) Q(z)] has full rank for all z ∈ C. In Lemma 6.3-3 Kailath (1980) even gives a construction for such a

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 V. FASEN-HARTMANN and L. SCHENK

decomposition. However, without any additional assumption, the coprime polynomials P(z) and Q(z) that satisfy
(3.4) are not unique. Even if we assume additionally that (,,) is minimal, resulting in deg(det(P(z)) = kp
(Rugh, 1996, Theorem 17.5), then we can take any invertible matrix S ∈ Mk(R) such that the matrix polynomials
P(z)S and Q(z)S also satisfy H(z) = Q(z)SS−1P(z)−1.

Despite the many different coprime polynomials P(z) and Q(z) that satisfy (3.4), to the best of our knowledge,
it remains unclear whether there is a coprime right polynomial fraction description with

P(z) = Ikzp + A1zp−1 + · · · + Ap and Q(z) = C0 + C1z + · · · + Cqzq, (3.5)

A1,A2, … ,Ap,C0,C1, … ,Cq ∈ Mk(R), and p, q ∈ N0, p > q, i.e., zp is the highest power with prefactor Ik.
In representation (3.5), the assumption deg(det(P(z)) = kp obviously holds. Note, the construction method of
Kailath (1980) often gives a polynomial P(z) with higher order than p, but the prefactor of the highest power has a
zero determinant. Brockwell and Schlemm (2013), Theorem 3.2, and Schlemm and Stelzer (2012a), Corollary 3.4,
implicitly assume such a right polynomial fraction description (3.5) without discussing its existence. Since the
existence of such a coprime right polynomial fraction description is essential for the forthcoming results, we
always assume it additionally. In Examples 3.8 and 3.14, we present likewise examples where this assumption
is fulfilled.

Example 3.8. Consider a state space model (,,,L) with k = 3, p = 2, q = 1, and ΣL = I3, where we set

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0

1 −1 0 0 0 0

0 0 0 −1 0 0

0 0 1 −1 0 0

0 0 0 − 1

2
0 −1

0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0

1 −1 0

0 2 0

0 2 0

0 −1 1

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and  =
⎛⎜⎜⎜⎝
0 1 0 0 0 0

0 1 0 1 0 0

0 1 0 3

2
0 1

⎞⎟⎟⎟⎠.

Note that this is the state space model that generates the (local) orthogonality graph in Figure 1 in the introduction
to this article, and we will look at this example in more detail in the course of this article.

In this example, a straightforward calculation shows that there exists the right polynomial fraction description
of the transfer function

H(z) = 
(
zI6 −

)−1
 =

⎛⎜⎜⎜⎝
z + 1 −z − 1 0

z + 1 z + 1 0

z + 1 z + 1 z + 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z2 + z + 1 0 0

0 z2 + z + 1 0

0 1 z2 + z + 1

⎞⎟⎟⎟⎠
−1

=∶ Q(z)P(z)−1,

for z ∈ C ⧵ 𝜎(), where 𝜎() = {− 1

2
+

√
3

2
i,− 1

2
−

√
3

2
i}. Furthermore, this decomposition is coprime, since

[P(z) Q(z)] has full rank 3 for all z ∈ C. Thus, in this example, there exists a coprime right polynomial fraction
description (3.4) with polynomials as in (3.5).

For the purpose of this article, not only the existence of a coprime right polynomial fraction description of
the transfer function with polynomials P(z) and Q(z) as in (3.5) is important but also its uniqueness. In the
next proposition, we derive that this requirement is immediately satisfied under the existence assumption of P(z)
and Q(z).

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 9

Proposition 3.9. Let (,,,L) be a state space model with transfer function H(z). Suppose there exists a
coprime right polynomial fraction description of H(z) with polynomials P(z) and Q(z) as in (3.5) such that

H(z) = 
(
zIkp −

)−1
 = Q(z)P(z)−1, z ∈ C ⧵ 𝜎().

Then P(z) and Q(z) are unique. Moreover, defining

A =

⎛⎜⎜⎜⎜⎜⎜⎝

0k Ik 0k · · · 0k

0k 0k Ik ⋱ ⋮

⋮ ⋱ ⋱ 0k

0k · · · · · · 0k Ik

− Ap −Ap−1 · · · · · · −A1

⎞⎟⎟⎟⎟⎟⎟⎠
∈ Mkp(R), B =

⎛⎜⎜⎜⎜⎝
0k

⋮

0k

Ik

⎞⎟⎟⎟⎟⎠
∈ Mkp×k(R),

C =
(

C0, C1, · · · , Cq, 0k, · · · , 0k

)
∈ Mk×kp(R), (3.6)

then 𝜎() = 𝜎(A) and

H(z) = C
(
zIkp − A

)−1
B, z ∈ C ⧵ 𝜎(A).

Finally, Y is a solution of the state space model (,,,L), if and only if, it is a solution of the state space model
(A,B,C,L). The state space model (A,B,C,L) is called controller canonical form.

In particular, of course, this implies that there exists no other minimal state space representation with matrices
of the structure as in (3.6); this representation is unique. Since the solution of these two state space models is equal,
we will henceforth assume, without loss of generality, that the state space model is given in the unique controller
canonical form (A,B,C,L) as in (3.6).

Example 3.10. In Example 3.8, the state space model (,,,L) has the unique controller canonical form
(A,B,C,L), where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− 1 0 0 −1 0 0

0 −1 0 0 −1 0

0 −1 −1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C =

⎛⎜⎜⎜⎝
1 −1 0 1 −1 0

1 1 0 1 1 0

1 1 1 1 1 1

⎞⎟⎟⎟⎠.

A particular example of a state space model is the MCARMA model whose output process Y is an MCARMA
process. The definition of an MCARMA process Y is motivated by the idea that Y solves the stochastic differential
equation

(D)Y(t) = (D)DL(t),

where D is the differential operator with respect to t and

(z) = Ikz𝔭 + 1z𝔭−1 + · · · + 𝔭 and (z) = 0z𝔮 +1z𝔮−1 + · · · +𝔮, (3.7)

are the AR (autoregressive) and the MA (moving average) polynomial with 1,2, … ,𝔭, 0,1, … ,𝔮 ∈
Mk(R). However, a Lévy process is not differentiable, so this is not a formal definition. The formal definition is
given by a state space model (Marquardt and Stelzer, 2007) as follows.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 V. FASEN-HARTMANN and L. SCHENK

Definition 3.11. Define

 =

⎛⎜⎜⎜⎜⎜⎜⎝

0k Ik 0k · · · 0k

0k 0k Ik ⋱ ⋮

⋮ ⋱ ⋱ 0k

0k · · · · · · 0k Ik

− 𝔭 −𝔭−1 · · · · · · −1

⎞⎟⎟⎟⎟⎟⎟⎠
∈ Mk𝔭(R),  =

⎛⎜⎜⎜⎜⎝
𝛽1

𝛽2

⋮

𝛽𝔭

⎞⎟⎟⎟⎟⎠
∈ Mk𝔭×k(R),

 = (Ik, 0k, · · · , 0k) ∈ Mk×k𝔭(R),

where 𝛽1 = · · · = 𝛽𝔭−𝔮−1 = 0k and 𝛽𝔭−j = −
∑𝔭−j−1

i=1 i𝛽𝔭−j−i + 𝔮−j for j = 𝔮, … , 0. Then (,,,L) is called a
multivariate continuous-time moving average model of order (𝔭, 𝔮), shortly an MCARMA(𝔭, 𝔮) model.

Remark 3.12. A comparison of the triplets (A,B,C) and (,,) shows that the MCAR(p) = MCARMA(p, 0)
model is already in controller canonical form. For MCARMA(p, q) models, Schlemm and Stelzer (2012a)
show the equivalence between state space models and MCARMA models in Corollary 3.4, and Brockwell and
Schlemm (2013), Theorem 3.2, show the equivalence between MCARMA models and controller canonical state
space models. However, as mentioned above, both implicitly assume the existence of a coprime left (right) poly-
nomial fractional description (3.4) with polynomials P(z) and Q(z) as in (3.5), which is in our opinion not obvious.
However, for univariate state space processes with k = 1, the existence of a coprime right polynomial fractional
description is apparent (see proof of Proposition 4.1), so that any univariate state space model is a CARMA model
and vice versa; additionally, any univariate state space model has a representation in controller canonical form.

A peculiarity of MCARMA models is that the AR polynomial (z) and the MA polynomial (z) provide a left
polynomial fraction description of the transfer function, i.e., H(z) = (z)−1(z) (Marquardt and Stelzer, 2007 or
Brockwell and Schlemm, 2013, Lemma 3.1). If the MCARMA model is minimal, this left polynomial fractional
description is even coprime (Kailath, 1980, Theorem 6.5-1). The connection to the coprime right polynomial
fraction description (3.4) with P(z) and Q(z) as in (3.5) is given in the next lemma.

Lemma 3.13. Let an MCARMA(𝔭, 𝔮) model be given with state space representation (,,,L) as in Defini-
tion 3.11 and polynomials (z) and (z) as in (3.7). Suppose (,,) is minimal and there exists a coprime right
polynomial fraction description (3.4) of the transfer function with polynomials P(z) and Q(z) as in (3.5). Then P(z)
and Q(z) are unique, 𝔭 = p, 𝔮 = q, 0 = Cq,  () =  (P) and  () =  (Q).

Example 3.14.

(a) For MCAR(p) models, (z) = Ik holds. Thus, P(z) = (z) and Q(z) = Ik always provide a coprime right
polynomial fractional description of H(z).

(b) Consider an MCARMA(2, 1) model with coprime AR polynomial and MA polynomial given by

(z) =

(
(z + 2)2 0

0 (z + 2)2

)
and (z) =

(
z + 1 0

0 z + 1

)
.

Since (z) and (z) are diagonal matrix polynomials and are right coprime, the unique coprime right
polynomial fraction description of the transfer function H(z) is given through P(z) = (z) and Q(z) = (z).

(c) Consider an MCARMA(3, 1) model with coprime AR polynomial and MA polynomial given by

(z) =

(
1

4
(2z + 3)(2z2 + 7z + 7) − 1

4
(z + 2)(3z + 5)

− (z + 1)2 (z + 1)2(z + 2)

)
and (z) = −

(
z + 1 1

4

0 z + 3

)
.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 11

Then the coprime right polynomial fractional description of H(z) is given by

P(z) =

(
(z + 2)3 0

0 (z + 1)3

)
and Q(z) = −

(
z + 2 1

1 z + 2

)
.

(d) The controller canonical state space model (A,B,C,L) in Example 3.8 with coprime right polynomial fraction
description P(z) and Q(z) is as well an MCARMA(2, 1) model with coprime AR and MA polynomial given by

(z) =
⎛⎜⎜⎜⎝
z2 + z + 1 0 0

0 z2 + z + 1 0

− 1

2

1

2
z2 + z + 1

⎞⎟⎟⎟⎠ and (z) =
⎛⎜⎜⎜⎝
z + 1 −z − 1 0

z + 1 z + 1 0

z + 1 z + 1 z + 1

⎞⎟⎟⎟⎠.
In particular, these examples further emphasise the existence of coprime right polynomial fraction descriptions

(3.4) with polynomials as in (3.5). Since the aim of this article is not the investigation of polynomial fraction
descriptions, but the application of (local) orthogonality graphs to state space models, we do not investigate this
further and move on to the topic of the invertibility of a state model.

3.3. Invertible Controller Canonical State Space Models

Suppose Y is a solution to a state space model that has a controller canonical representation (A,B,C,L), and we
assume that the driving Lévy process satisfies the following common assumption.

Assumption B. The k-dimensional Lévy process L = (L(t))t∈R satisfies EL(1) = 0k ∈ Rk and E||L(1)||2 < ∞
with ΣL = E[L(1)L(1)⊤].

Then the second moments of X(t) and thus of Y(t) also exist (Brockwell and Schlemm, 2013, Lemma A.4),
which is a basic requirement for the forthcoming considerations on the existence of (local) orthogonality graphs.

Due to the state equation Y(t) = CX(t), we obtain the output process Y(t) directly from the input process X(t).
However, the recovery of X(t) from the output process (Y(s))s≤t, is not as obvious, because C is not invertible (cf.
Example 3.10). Only for q = 0, corresponding to an MCAR(p) model, the simple structure of C allows to use the
relation

D(j−1)Y(t) = X(j)(t), j = 1, … , p, where

X(j)(t) =
(

X(j−1)k+1(t), · · · , Xjk(t)
)⊤

, (3.8)

is the jth k-block of X(t) and D(1)Y(t), … ,D(p−1)Y(t) denote the mean-square derivatives of Y(t). Therefore, in
this case it is possible to recover X(t) from Y(t) and its derivatives D(1)Y(t), … , D(p−1)Y(t) via (3.8). However, for
controller canonical state space models with q > 0, we cannot apply this approach. Indeed, the structure of A still
yields

D(1)X(j)(t) = X(j+1)(t), j = 1, … , p − 1,

and together with Y(t) = CX(t) = C0X(1)(t) + · · · + CqX(q+1)(t), we obtain that

D(j−1)Y(t) =
q∑

i=0

CiX
(j+i)(t), j = 1, … , p − q. (3.9)

Consequently, the p k-blocks of X cannot generally be recovered from these (p − q) equations.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 V. FASEN-HARTMANN and L. SCHENK

Remark 3.15.

(a) For the reader’s convenience, we define

C ∶= (0k, … , 0k,C0, … ,Cq) ∈ Mk×kp(R). (3.10)

From (3.9) we then receive the shorthands

Y(t) = CX(t) and D(p−q−1)Y(t) = CX(t). (3.11)

In particular, this implies that Y and its components Yv, v ∈ V , are (p−q−1) times mean-square differentiable.
(b) A conclusion from (a) and Fasen-Hartmann and Schenk (2024a), Remark 2.6, is then that for v ∈ V and t ≥ 0,

D(1)Yv(t), … ,D(p−q−1)Yv(t) ∈ Yv
(t).

For controller canonical state space models as in (3.6) with q > 0, we overcome the challenge of recovering the
state process from the output process under some mild assumptions. Of course, due to q > 0, the class of MCAR(p)
models are excluded in the following considerations. However, this is not an essential limitation, because the (local)
orthogonality graphs and the orthogonal projections respectively for this case are already known (Fasen-Hartmann
and Schenk, 2024a). We first define causal invertible controller canonical state space models, which are a special
subclass of controller canonical state space models.

Definition 3.16. Let (,,,L) be a state space model with controller canonical form (A,B,C,L) as in (3.6) and
right coprime polynomials P(z) and Q(z) as in (3.5) with p > q > 0. Suppose that

rank(Cq) = k, (Q) ⊆ (−∞, 0) + iR and  (P) ⊆ (−∞, 0) + iR. (3.12)

Then (A,B,C,L) is called a causal invertible controller canonical state space (ICCSS) model of order (p, q) and
the stationary solution Y = (Y(t))t∈R of the ICCSS(p, q) model is called ICCSS(p, q) process.

Remark 3.17.

(a) Since  (P) = 𝜎(A) ⊆ (−∞, 0) + iR (Marquardt and Stelzer, 2007, Corollary 3.8), there exists a unique
stationary solution X(t) of the observation equation (Sato and Yamazato, 1984, Theorem 4.1) which has the
representation

X(t) = ∫
t

−∞
eA(t−u)BdL(u), t ∈ R.

Hence, there exists as well a stationary version of the output process Y , which has the moving average
representation

Y(t) = ∫
∞

−∞
g(t − u)dL(u) with g(t) = CeAtB1{t≥0}, t ∈ R.

Throughout this article, we are working with these stationary versions of X and Y .
(b) The assumptions on Q(z) are necessary to recover X from Y and to motivate the name ICCSS model, as we

see in the remainder of this section.
(c) In the running Example 3.8, we have p = 2 > q = 1 > 0, rank(C1) = 3, as well as  (Q) = {−1} ⊆

(−∞, 0) + iR, and  (P) = 𝜎(A) = {− 1

2
+

√
3

2
i,− 1

2
−

√
3

2
i} ⊆ (−∞, 0) + iR. Thus, all of the assumptions in

(3.12) are satisfied. (A,B,C,L) is a causal invertible controller canonical state space model of order (2, 1), and
the stationary solution Y is an ICCSS(2, 1) process. Furthermore, the assumptions in (3.12) are also satisfied
in Example 3.14(b,c).

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 13

Under Assumption (3.12), Brockwell and Schlemm (2013), Lemma 4.1, derive a stochastic differential equation
for the first (kq) components of X. This follows simply from combining the first q k-blocks of the state transition
equation dX(t) = AX(t)dt + BdL(t) with the observation equation Y(t) = CX(t) having the special structure of A,
B and C in mind.

Lemma 3.18. Let Y be an ICCSS(p, q) process with p > q > 0. Denote the (kq)-dimensional upper truncated
state vector Xq = (Xq(t))t∈R of X by

Xq(t) =
⎛⎜⎜⎜⎝
X(1)(t)
⋮

X(q)(t)

⎞⎟⎟⎟⎠, t ∈ R,

where X(1)(t), … ,X(q)(t) are the k-dimensional random vectors as defined in (3.8). Then Xq satisfies

dXq(t) = 𝚲Xq(t)dt +𝚯Y(t)dt, (3.13)

where 𝜎(𝚲) ⊆ (−∞, 0) + iR,

𝚲 =

⎛⎜⎜⎜⎜⎜⎜⎝

0k Ik 0k · · · 0k

0k 0k Ik ⋱ ⋮

⋮ ⋱ ⋱ 0k

0k · · · · · · 0k Ik

− C−1
q C0 −C−1

q C1 · · · · · · −C−1
q Cq−1

⎞⎟⎟⎟⎟⎟⎟⎠
∈ Mkq(R) and 𝚯 =

⎛⎜⎜⎜⎜⎜⎝
0k

⋮

0k

C−1
q

⎞⎟⎟⎟⎟⎟⎠
∈ Mkq×k(R).

Remark 3.19.

(a) Assumption (3.12) corresponds to the minimum-phase assumption in classical time series analysis (Hannan
and Deistler, 2012) and implies Assumption A2 in Brockwell and Schlemm (2013), who even allow for
rectangular matrices C0, … , Cq. To see this, note that Assumption (3.12) yields

 (C−1
q Q) = {z ∈ C ∶ det(C−1

q Q(z)) = 0} = {z ∈ C ∶ det(Q(z)) = 0} =  (Q) ⊆ (−∞, 0) + iR,

which is one of their assumptions. Furthermore, 𝜎(𝚲) =  (C−1
q Q) (Marquardt and Stelzer, 2007,

Lemma 3.8). Thus, 𝚲 has full rank and, due to the structure of 𝚲, we obtain that C−1
q C0 has full rank.

It follows that C0 and (Cq)⊤C0 have full rank as well, which is the second assumption in Brockwell and
Schlemm (2013).

(b) If the AR polynomial (z) and the MA polynomial (z)of an MCARMA model are left coprime, Assumption
(3.12) can equally be made for (z) and (z), respectively. Indeed,  () =  (Q) and  () =  (P) by
Lemma 3.13. Further, straightforward calculations of (z)P(z) = (z)Q(z) give qAp = pCq. For  () =
 (P) ⊆ (−∞, 0) + iR we have 0 ∉  () and thus, det(p) = det((0)) ≠ 0. Similarly det(Ap) ≠ 0 follows,
so p and Ap are invertible. Hence, if  () =  (P) ⊆ (−∞, 0) + iR, then q has full rank, if and only if,
Cq has full rank.

The differential equation (3.13) has the solution

Xq(t) = e𝚲(t−s)Xq(s) + ∫
t

s

e𝚲(t−u)𝚯Y(u)du, s < t, (3.14)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 V. FASEN-HARTMANN and L. SCHENK

(Brockwell and Schlemm, 2013, (4.3)). Therefore, we can compute Xq(t) based on the knowledge of the initial
value Xq(s) and (Y(u))s≤u≤t. In Propositions 4.1 and 4.5 we even show the integral representation

Xq(t) = ∫
t

−∞
e𝚲(t−u)𝚯Y(u)du.

P-a.s. and in the mean square, respectively. Hence, Xq(t) is even uniquely determined by the entire past (Y(s))s≤t,
implying that the truncated state vector Xq can be recovered from Y . The remaining k-blocks X(q+j), j = 1, … , p−q,
are obtained from Xq and Y by differentiation as in Brockwell and Schlemm (2013), Lemma 4.2:

Lemma 3.20. Let Y be an ICCSS(p, q) process with p > q > 0. Then

X(q+j)(t) = E⊤

[
𝚲jXq(t) +

j−1∑
m=0

𝚲j−1−m𝚯D(m)Y(t)

]
, j = 1, … , p − q, t ∈ R.

Note that there is a duplication of notation in Brockwell and Schlemm (2013), which can be seen by recalculating
the induction start. We therefore give the corrected result in Lemma 3.20.

Example 3.21. Coming back to Example 3.8, the output process Y has the representation as the linear combina-
tions of X via

Y(t) = CX(t) =
⎛⎜⎜⎜⎝

X1(t) − X2(t) + X4(t) − X5(t)
X1(t) + X2(t) + X4(t) + X5(t)

X1(t) + X2(t) + X3(t) + X4(t) + X5(t) + X6(t)

⎞⎟⎟⎟⎠.
From this representation, it is not immediately obvious how X can be recovered from Y . However, we can define

𝚲 = −C−1
1 C0 =

⎛⎜⎜⎜⎝
− 1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎟⎠ and 𝚯 = C−1
1 = 1

2

⎛⎜⎜⎜⎝
1 1 0

− 1 1 0

0 −2 2

⎞⎟⎟⎟⎠,
with 𝜎(𝚲) =  (Q) = {−1} ⊆ (−∞, 0) + iR. Due to E⊤ = I3 and the simple form of 𝚲 and its matrix exponential
respectively, we can recover the input process X from the output process Y by

X(1)(t) = Xq(t) = ∫
t

−∞
e−(t−u) 1

2

⎛⎜⎜⎜⎝
Y1(u) + Y2(u)
− Y1(u) + Y2(u)

− 2Y2(u) + 2Y3(u)

⎞⎟⎟⎟⎠du,

X(2)(t) = −X(1)(t) + 1
2

⎛⎜⎜⎜⎝
Y1(t) + Y2(t)
− Y1(t) + Y2(t)

− 2Y2(t) + 2Y3(t)

⎞⎟⎟⎟⎠.
In summary, in the example as well as in the general setting, we are able to compute not only the truncated state

vector Xq(t) but also the full state vector X(t) based on the knowledge of (Y(s))s≤t. This justifies calling the ICCSS
process Y invertible if Assumption (3.12) holds.

4. ORTHOGONAL PROJECTIONS OF ICCSS PROCESSES

Here, we derive the orthogonal projections of ICCSS processes and their derivatives which we require to
characterise (local) Granger causality and (local) contemporaneous correlation for ICCSS processes. First, we

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 15

give alternative representations of Ya(t + h) as well as D(p−q−1)Ya(t + h), a ∈ V = {1, … , k}, suitable for the cal-
culation of orthogonal projections in Section 4.1. Note that we consider the process D(p−q−1)Ya(t + h) since, by
Remark 4.7 below, it is the highest existing derivative of the ICCSS process which we require for the definition of
local Granger causality and local contemporaneous correlation, respectively. In Section 4.2, we then present the
corresponding orthogonal projections of both random variables on YS

(t) for S ⊆ V . Furthermore, we discuss the
limit of the projections of difference quotients.

4.1. Representations of ICCSS Processes and Their Derivatives

The aim of this subsection is to develop a P-a.s. representation of Ya(t+h) and D(p−q−1)Ya(t+h), a ∈ V . Therefore,
we first introduce the P-a.s. integral representation of the upper q-block truncation Xq, which is a multivariate
generalisation of Brockwell and Lindner (2015), Theorem 2.2.

Proposition 4.1. Let Y be an ICCSS(p, q) process with p > q > 0. Then, for all t ∈ R, we have

Xq(t) = ∫
t

−∞
e𝚲(t−u)𝚯Y(u)du P-a.s.

Due to the well-definedness of this integral, it is obvious that the following representations of Y and its
derivatives are well-defined as well.

Theorem 4.2. Let Y be an ICCSS(p, q) process with p > q > 0. Then, for h ≥ 0, t ∈ R, and a ∈ V , it holds that

Ya(t + h) = ∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t) + e⊤a 𝜀(t, h)P-a.s.and

D(p−q−1)Ya(t + h) = ∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t) + e⊤a 𝜖(t, h)P-a.s.

Here, we abbreviate

M(h) = CeAh

(
E +

p−q∑
j=1

Eq+jE
⊤𝚲j

)
, M(h) = CeAh

(
E +

p−q∑
j=1

Eq+jE
⊤𝚲j

)
,

Mm(h) = CeAh
p−q∑

j=m+1

Eq+jE
⊤𝚲j−1−m, Mm(h) = CeAh

p−q∑
j=m+1

Eq+jE
⊤𝚲j−1−m,

𝜀(t, h) = C∫
t+h

t

eA(t+h−u)BdL(u), 𝜖(t, h) = C∫
t+h

t

eA(t+h−u)BdL(u).

where C is defined in (3.10), E and E are defined in (2.2), and Ej is defined in (2.1), j = 1, … , p. Finally, 𝜀(t, 0) =
𝜖(t, 0) = 0k ∈ Rk.

Remark 4.3. For an MCAR(p) process, Fasen-Hartmann and Schenk (2024a) state in Lemma 6.8 that

Ya(t + h) = e⊤a CeAh
p−1∑
m=0

Em+1D(m)Y(t) + e⊤a C∫
t+h

t

eA(t+h−u)BdL(u) P-a.s. (4.1)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 V. FASEN-HARTMANN and L. SCHENK

Thus, if we want to compare our Theorem 4.2 to the results for MCAR(p) processes, we have to interpret

Mm(h)𝚯 =̂ CeAhEm+1, m = 0, … , p − 1, and M(h)e𝚲(t−u)𝚯 =̂ 0k for u < t.

Then (4.1) can be seen as a special case of Theorem 4.2. Let us briefly heuristically justify that this interpretation
is reasonable. First of all, in Mm(h)𝚯 the summand j = m + 1 is mainly relevant. For this summand we have with
𝚲0 = Ikq that

CeAhEq+m+1E⊤𝚯 = CeAhEq+m+1C−1
q . (4.2)

If q = 0 is inserted into Mm(h)𝚯, all summands disappear due to the zero dimensionality of 𝚲j−1−m, j = m +
2, … , p − q, except for (4.2). With Cq = Ik it remains as claimed Mm(h)𝚯 =̂ CeAhEm+1 for m = 0, … , p − 1. For
the second matrix function M(h)e𝚲(t−u)𝚯, u < t, we use similar arguments to show that it can be interpreted as a
zero matrix. Although we get a non-zero matrix for t = u, this event is a Lebesgue null-set.

Example 4.4. In Example 3.8, we have m = p − q − 1 = 0, so

Y(t + h) = D(0)Y(t + h) = ∫
t

−∞
M(h)e𝚲(t−u)𝚯Y(u)du + M0(h)𝚯Y(t) + 𝜀(t, h) P-a.s.

If we abbreviate c(h) ∶= 3 cos(
√

3h∕2) and s(h) ∶=
√

3 sin(
√

3h∕2), the three addends can be specified as follows.

∫
t

−∞
M(h)e𝚲(t−u)𝚯Y(u)du

= e−
h
2

3 ∫
t

−∞
e−(t−u)

⎛⎜⎜⎜⎝
− 2s(h)Y1(u)
− 2s(h)Y2(u)

− 2s(h)Y3(u) +
1

3
[hc(h) + s(h)]

(
Y1(u) − Y2(u)

)
⎞⎟⎟⎟⎠du,

M0(h)𝚯Y(t)

= e−
h
2

3

⎛⎜⎜⎜⎝
[c(h) + s(h)]Y1(t)
[c(h) + s(h)]Y2(t)

[c(h) + s(h)]Y3(t) +
1

6
[−hc(h) + (3h + 2)s(h)]

(
Y1(t) − Y2(t)

)
⎞⎟⎟⎟⎠,

𝜀(t, h)

= e−
h
2

3 ∫
t+h

t

e−
(t−u)

2

⎛⎜⎜⎜⎝
[c(t + h − u) + s(t + h − u)]

(
dL1(u) − dL2(u)

)
[c(t + h − u) + s(t + h − u)]

(
dL1(u) + dL2(u)

)
[c(t + h − u) + s(t + h − u)]

(
dL1(u) + dL3(u)

)
⎞⎟⎟⎟⎠

+
⎛⎜⎜⎜⎝

0

0
e−

h
2

3
∫ t+h

t e−
(t−u)

2

[(
1 + t+h−u

3

)
c(t + h − u) +

(
1

3
− (t + h − u)

)
s(t + h − u)

]
dL2(u)

⎞⎟⎟⎟⎠.

4.2. Orthogonal Projections of ICCSS Processes and Their Derivatives

The representations of Ya(t + h) and D(p−q−1)Ya(t + h) in Theorem 4.2 suggest that for the orthogonal projection of
the ath component one time step into the future, on the one hand, the past (YV (s))s≤t of all components and on the

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 17

other hand, the future of the Lévy process (L(s) − L(t))t≤s≤t+h is relevant. However, for a formal proof, we require
that all integrals are defined in L2. Therefore, we show that the integral representation of Xq in Proposition 4.1
holds in L2. The proof is based on the ideas of the proof of Theorem 2.8 in Brockwell and Lindner (2015) in the
univariate setting.

Proposition 4.5. Let Y be an ICCSS(p, q) process with p > q > 0. Then, for a, v ∈ Vand t ∈ R, the integral

∫
t

−∞
e⊤a e𝚲(t−u)𝚯evYv(u)du ∈ Yv

(t),

exists as L2-limit. In particular, Xq(t) = ∫ t

−∞e𝚲(t−u)𝚯Y(u)duexists as L2-limit.

Before finally moving on to the orthogonal projections, we introduce one last alternative representation, this
time for the difference quotient (D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t))∕h. With this representation we can argue that
D(p−q−1)Ya(t) is indeed the maximum derivative of Ya(t) which we need for local Granger causality and local
contemporaneous correlation.

Lemma 4.6. Let Y be an ICCSS(p, q) process with p > q > 0. Then for h ≥ 0, t ∈ R, and a ∈ V the representation

D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)
h

=∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a M′
m(0)𝚯D(m)Y(t)

+ e⊤a O(h)R1 + e⊤a O(h)R2 + e⊤a
𝜖(t, h)

h
,

holds, where R1,R2 are random vectors in Y (t) ⊆ L2. M′(0) and M′
m(0) denote the first derivatives of M(⋅) and

Mm(⋅) in zero. The random variable e⊤a 𝜖(t, h)∕his independent of the former summands and

lim
h↓0

1
h

E
[
(e⊤a 𝜖(t, h))

2
]
= e⊤a CBΣLB⊤C⊤ea ≠ 0 but lim

h↓0

1
h2

E
[
(e⊤a 𝜖(t, h))

2
]
= ∞.

Remark 4.7. An important consequence of Lemma 4.6 is that the mean-square limit of the difference quotient
does not exist, and hence, for all components of the ICCSS process no mean-square derivatives higher than (p −
q−1) exist. Thus, for local Granger causality and local contemporaneous correlation, we must always analyse the
(p−q−1)th derivative. It also becomes clear that in the definition of local contemporaneous correlation, one must
divide by h and not by h2.

Now, we specify the orthogonal projections.

Theorem 4.8. Let Y be an ICCSS(p, q) process with p > q > 0. Suppose S ⊆ V and a ∈ V . Then, for h ≥ 0 and
t ∈ R, we have

PYS
(t)Ya(t + h) =

∑
v∈S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du

+
∑
v∈S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t)

+ PYS
(t)

( ∑
v∈V⧵S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du

)

+ PYS
(t)

( ∑
v∈V⧵S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t)

)
P-a.s.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 V. FASEN-HARTMANN and L. SCHENK

and

PYS
(t)D

(p−q−1)Ya(t + h) =
∑
v∈S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du

+
∑
v∈S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t)

+ PYS
(t)

( ∑
v∈V⧵S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du

)

+ PYS
(t)

( ∑
v∈V⧵S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t)

)
P-a.s.,

where M(⋅), M(⋅), Mm(⋅), and Mm(⋅) are defined in Theorem 4.2.

The basic idea of the proof is simple: In the representation in Theorem 4.2, the terms Ya(t), its derivatives and
integrals over the past are already in the linear space YS

(t) if a ∈ S (Remark 3.15 and Proposition 4.5) and
are therefore projected onto themselves. Furthermore, (YS(s))s≤t and (L(s) − L(t))t≤s≤t+h are independent such that
e⊤a 𝜀(t, h) and e⊤a 𝜖(t, h) respectively, are independent of YS

(t) and are projected onto zero. Of course, this argument
can also be used in Example 3.8 (Example 4.4) to display the desired projections directly and we refrain from
specifying them.

Remark 4.9. When calculating the orthogonal projections, it becomes clear why we require Assumption (3.12),
a sufficient assumption to recover X(t) from (Y(s))s≤t. Only then are we able to project the input process X(t) onto
the linear space of the output process YS

(t).

To apply local Granger causality and local contemporaneous correlation to ICCSS processes, we also need the
following orthogonal projections.

Theorem 4.10. Let Y be an ICCSS(p, q) process with p > q > 0. Suppose S ⊆ V and a ∈ V . Then, for t ∈ R,
we have

l.i.m.
h→0

PYS
(t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)
=

∑
v∈S

∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯evYv(u)du +

∑
v∈S

p−q−1∑
m=0

e⊤a M′
m(0)𝚯evD

(m)Yv(t)

+ PYS
(t)

( ∑
v∈V⧵S

∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯evYv(u)du

)

+ PYS
(t)

( ∑
v∈V⧵S

p−q−1∑
m=0

e⊤a M′
m(0)𝚯evD

(m)Yv(t)

)
P-a.s.

and for h ≥ 0,

D(p−q−1)Ya(t + h) − PY (t)D
(p−q−1)Ya(t + h) = e⊤a 𝜖(t, h) P-a.s.,

where M(⋅), Mm(⋅), and 𝜖(⋅, ⋅) are defined in Theorem 4.2.

In this article, for the derivation of the (local) orthogonality graph for ICCSS processes, the special case S = V
is most relevant, where a few terms are simplified.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 19

Corollary 4.11. Let Y be an ICCSS(p, q) process with p > q > 0. Then, for t ∈ R, h ≥ 0, and a ∈ V the following
projections hold.

(a) PY (t)Ya(t + h) = e⊤a CeAhX(t) P-a.s.,
(b) PY (t)D

(p−q−1)Ya(t + h) = e⊤a CeAhX(t) P-a.s.,

(c) l.i.m.
h→0

PY (t)

(
D(p−q−1)Ya(t+h)−D(p−q−1)Ya(t)

h

)
= e⊤a CAX(t) P-a.s.

From Corollary 4.11(c), not only the existence of the limit becomes clear, but also that of the limit

l.i.m.
h→0

PYS
(t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)
= PYS

(t)
(
e⊤a CAX(t)

)
.

The existence of these limits is essential for the well-definedness of local Granger causality and local contempo-
raneous correlation for ICCSS processes.

Remark 4.12.

(a) Although the derivation of the orthogonal projections for MCAR(p) processes differs from that for
ICCSS(p, q) processes with q > 0, the results are consistent with Fasen-Hartmann and Schenk (2024a),
Proposition 6.9 and Lemma 6.11 for MCAR processes, if we interpret M(h)e𝚲(t−u)𝚯 =̂ 0k for u < t and
Mm(h)𝚯 =̂ CeAhEm as in Remark 4.3.

(b) The linear projections in Corollary 4.11(a) match the linear projections for univariate CARMA processes in
Brockwell and Lindner (2015), Theorem 2.8. Basse-O’Connor et al. (2019) derives as well linear projections
for MCARMA processes, but the results there differ from Brockwell and Lindner (2015).

5. ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES

Here, we derive (local) orthogonality graphs for state space models and obtain as the main result the charac-
terisation of the directed and the undirected edges of the (local) orthogonality graph by the model parameters
of the unique controller canonical form if this is an ICCSS(p, q) model with p > q > 0. To define the
(local) orthogonality graph for ICCSS processes according to Definition 3.6, certain requirements for the
well-definedness must be met. We have already assumed that we use the stationary version of the ICCSS pro-
cess throughout the article and it has expectation zero. Furthermore, the continuity in the mean square of an
ICCSS process is well known, it follows directly from Cramér (1940), Lemma 1, since the covariance func-
tion is continuous in 0. Therefore, we only need to make sure that the Assumptions (A.2) and (A.3) are
satisfied.

Theorem 5.1. Let Y be an k-dimensional ICCSS(p, q) process with ΣL > 0. Then Y satisfies Assumptions (A.2)
and (A.3) and thus, the orthogonality graph and the local orthogonality graph are well defined and the Markov
properties in Remark 3.7 hold.

Remark 5.2.

(a) In principle, more general state space models (,,,L) also satisfy Assumption A. The proof of
Theorem 5.1 shows that sufficient assumptions for the stationary state space process are that the driving Lévy
process satisfies Assumption B, 𝜎() ⊆ (−∞, 0) + iR, fYY (𝜆) > 0 ∀𝜆 ∈ R, and ΣL

⊤


⊤ > 0. Then the
(local) orthogonality graphs are well defined as well, and the Markov properties in Remark 3.7 hold. How-
ever, in this general context, we are not able to calculate the orthogonal projections needed to characterise the
edges, which is our main goal.

(b) In our running Example 3.8, we already know that Y is an ICCSS(2,1) process and, since ΣL = I3 > 0, the
orthogonality graph and the local orthogonality graph are well defined and the Markov properties hold.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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20 V. FASEN-HARTMANN and L. SCHENK

Let us now focus on the main results, i.e., the characterisations for the directed and the undirected edges in
the (local) orthogonality graph for ICCSS processes. First, we present the characterisations of the (local) Granger
non-causality.

Theorem 5.3. Let Y = YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V and a ≠ b. Then
the following characterisations hold:

(a) Ya � Yb |YV ⇔ e⊤b CA𝛼
(

E +
∑p−q

j=1 Eq+jE
⊤𝚲j

)
𝚲𝛽𝚯ea = 0 and

e⊤b CA𝛼
(∑p−q

j=m+1Eq+jE
⊤𝚲j−1−m

)
𝚯ea = 0,

for 𝛼 = 0, … , kp − 1, 𝛽 = 0, … , kq − 1, m = 0, … , p − q − 1.

(b) Ya �0 Yb |YV ⇔ e⊤b CA
(

E +
∑p−q

j=1 Eq+jE
⊤𝚲j

)
𝚲𝛽𝚯ea = 0 and

e⊤b CA
(∑p−q

j=m+1Eq+jE
⊤𝚲j−1−m

)
𝚯ea = 0,

for 𝛽 = 0, … , kq − 1, m = 0, … , p − q − 1.

The basis for the proof of Theorem 5.3 are the following characterisations of the directed edges in Proposi-
tion 5.4. The characterisations in Proposition 5.4 are in turn developed from the definition of the directed edges in
Section 3.1 and the orthogonal projections of the ICCSS process and its derivatives in Section 4.

Proposition 5.4. Let Y = YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V and a ≠ b. Then
the following characterisations hold:

(a) Ya � Yb |YV ⇔ e⊤b M(h)e𝚲t𝚯ea = 0 and e⊤b Mm(h)𝚯ea = 0,
for m = 0, … , p − q − 1, 0 ≤ h ≤ 1, t ≥ 0.

(b) Ya �0 Yb |YV ⇔ e⊤b M′(0)e𝚲t𝚯ea = 0 and e⊤b M′
m(0)𝚯ea = 0,

for m = 0, … , p − q − 1, t ≥ 0.

Remark 5.5.

(a) Except for the assumption ΣL > 0, the characterisations of the directed edges in the (local) orthogonality graph
are independent of the chosen Lévy process, which is quite surprising. Thus, for example, the characterisations
of (local) Granger causality are the same for a Brownian motion driven ICCSS process and a Poisson driven
ICCSS process with the same controller canonical triple (A,B,C), even if they have different covariance matri-
ces and even though the path properties of these processes are significantly different. Note that in Example 3.8
we did not specify which Lévy process we are using.

(b) The characterisation in Proposition 5.4(a) seems to depend on h. However, this is not the case as can be seen
from Theorem 5.3(a). So it does not matter whether we define directed edges by looking at the period 0 ≤ h ≤ 1
or by looking at the entire future h ≥ 0. In terms of Fasen-Hartmann and Schenk (2024a), there is no difference
between Granger causality and global Granger causality for ICCSS processes.

Next, we present the characterisations of the undirected edges, i.e., contemporaneous uncorrelatedness.

Proposition 5.6. Let Y = YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V and a ≠ b. Then
the following characterisations hold:

(a) Ya ≁ Yb | YV ⇔ e⊤a ∫ min(h,h̃)
0 CeA(h−s)BΣLB⊤eA⊤(h̃−s)C⊤ds eb = 0, for 0 ≤ h, h̃ ≤ 1.

⇔ e⊤a CA𝛼BΣLB⊤
(
A⊤

)𝛽
C⊤eb = 0, for 𝛼, 𝛽 = 0, … , kp − 1.

(b) Ya ≁0 Yb |YV ⇔ e⊤a CBΣLB⊤C⊤eb = e⊤a CqΣLC⊤
q eb = 0.

The proof of this result again uses the orthogonal projections of ICCSS processes and its derivatives of Section 4
and the definition of undirected edges of Section 3.1. The assumption ΣL > 0 is only used for the second
characterisation in Proposition 5.6(a). However, it was also important for the proof of Assumption A.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 21

Remark 5.7.

(a) The characterisations and thus the undirected edges in the (local) orthogonality graph depend on the chosen
Lévy process only by ΣL. For example, the characterisations of the (local) contemporaneous correlation and
thus the (local) orthogonality graph are the same for a Brownian motion driven ICCSS process and a Poisson
driven ICCSS process with the same controller canonical triple (A,B,C) if both Lévy processes have the same
covariance matrix ΣL. However, in contrast to (local) Granger causality, it is necessary that the Brownian
motion and the Poisson process have the same covariance matrix. Again, in our running Example 3.8, we did
not specify which Lévy process we were using, but we did specify that ΣL = I3.

(b) The second characterisation in Proposition 5.6(a) shows that there is indeed no dependence on the lag h again.
As for the directed edges, it does not matter whether we define undirected edges by looking at the period
0 ≤ h, h̃ ≤ 1 or by looking at the entire future h, h̃ ≥ 0. In terms of Fasen-Hartmann and Schenk (2024a), there
is no difference between contemporaneous correlation and global contemporaneous correlation for ICCSS
processes.

We make some further comments on the characterisations in Propositions 5.4 and 5.6. In particular, we compare
the characterisations with each other and with the results in the literature, additionally we give some interpretations.

Remark 5.8.

(a) The uniqueness of the polynomials P(z) and Q(z) in (3.4) (see Proposition 3.9) leads to the uniqueness of
the controller canonical state space representation, which in turn leads to the uniqueness of the edges in the
(local) orthogonality graph.

(b) It can be shown by a simple calculation that CAp−q = CA. Comparing Theorem 5.3(a) and (b), we receive
that Granger non-causality implies local Granger non-causality, which we know as well from the the-
ory in Fasen-Hartmann and Schenk (2024a). Similarly, CAp−q−1 = C, so comparing Proposition 5.6(a)
and (b), we get that contemporaneous uncorrelatedness implies local contemporaneous uncorrelatedness,
which is again in agreement with the theory. The relationships between Granger non-causality and local
Granger non-causality, as well as contemporaneous uncorrelatedness and local contemporaneous uncor-
relatedness in a general setting, are discussed in Fasen-Hartmann and Schenk (2024a), Lemma 3.13 and
Lemma 4.10.

(c) In Example 3.8, straightforward computations yield the (local) Granger causality relations and (local) con-
temporaneous correlations, visualised in the corresponding (local) causality graphs in Figure 1. Again, the
relationships between Granger non-causality and local Granger non-causality, and between contemporaneous
uncorrelation and local contemporaneous uncorrelation are evident.

Interpretation 5.9. (Orthogonality graph). To interpret the directed and the undirected edges in the orthogonality
graph GOG, we recall the representation of the bth component

Yb(t + h) =∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯YV (u)du +

p−q−1∑
m=0

e⊤b Mm(h)𝚯D(m)YV (t) + e⊤b 𝜀(t, h)

from Theorem 4.2.

(a) Directed edges: A direct application of Proposition 5.4 gives that a → b ∉ EOG, if and only if neither Ya(t),
D(1)Ya(t), … , D(p−q−1)Ya(t)nor the integral over the past have any influence on Yb(t+ h). In the representation
of the bth component Yb(t+ h), the ath component always vanishes because its coefficient functions are zero.
This observation is also evident in Example 3.8 as derived in Example 4.4.

(b) Undirected edges: Proposition 5.6 yields

a --- b ∉ EOG ⇔ E[e⊤a 𝜀(t, h)e
⊤
b 𝜀(t, h̃)] = E[e⊤a 𝜀(0, h)e

⊤
b 𝜀(0, h̃)] = 0, 0 ≤ h, h̃ ≤ 1.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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22 V. FASEN-HARTMANN and L. SCHENK

This means that the noise terms e⊤a 𝜀(t, h) and e⊤b 𝜀(t, h̃) of Ya(t+ h) and Yb(t+ h̃) respectively, are uncorrelated
for any t ≥ 0 and 0 ≤ h, h̃ ≤ 1. Again, this observation is also evident in Example 3.8 (Example 4.4).

However, due to the complexity of the expression E[𝜀(t, h)𝜀(t, h̃)⊤] = ∫ min(h,h̃)
0 CeA(h−s)BΣLB⊤eA⊤(h̃−s)C⊤ds, we

do not specify the latter.

Interpretation 5.10. (Local orthogonality graph). The interpretation of the directed and the undirected edges in
the local orthogonality graph G0

OG is a lot more intricate since the mean square limit of the difference quotient
does not exist by definition and Remark 4.7 respectively, but the limit of the projections does. Therefore we again
use the representation for b ∈ V of Lemma 4.6,

D(p−q−1)
h Yb(t, h) ∶=

D(p−q−1)Yb(t + h) − D(p−q−1)Yb(t)
h

= ∫
t

−∞
e⊤b M′(0)e𝚲(t−u)𝚯YV (u)du +

p−q−1∑
m=0

e⊤b M′
m(0)𝚯D(m)YV (t)

+ e⊤b O(h)R1 + e⊤b O(h)R2 +
e⊤b 𝜖(t, h)

h
,

and hence,

PYV
(t)D

(p−q−1)
h Yb(t, h) = ∫

t

−∞
e⊤b M′(0)e𝚲(t−u)𝚯YV (u)du +

p−q−1∑
m=0

e⊤b M′
m(0)𝚯D(m)YV (t)

+ e⊤b O(h)R1 + e⊤b O(h)R2.

Despite the fact that the L2-limit of D(p−q−1)
h Yb(t, h) does not exist, the L2-limits of

√
hD(p−q−1)

h Yb(t, h) and

PYV
(t)D

(p−q−1)
h Yb(t, h) exist.

(a) Directed edges: By Proposition 5.4 we receive that a −→ b ∉ E0
OG, if and only if, neither Ya(t), D(1)Ya(t), … ,

D(p−q−1)Ya(t) nor the integral over the past have any influence on D(p−q−1)
h Yb(t, h) if h is small. The same holds

for PYV
(t)D

(p−q−1)
h Yb(t, h). Given YV

(t), the ath component does not influence the bth component in the limit,
because the corresponding coefficients are zero. Note that in Example 3.8, we have

∫
t

−∞
M′(0)e𝚲(t−u)𝚯YV (u)du + M′

0(0)𝚯YV (t) = ∫
t

−∞
− e−(t−u)

⎛⎜⎜⎜⎜⎝
Y1(u)

Y2(u)

Y3(u) −
1

2
(Y1(u) − Y2(u))

⎞⎟⎟⎟⎟⎠
du +

⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠,
which explains the directed edges in the local orthogonality graph in Figure 1.

(b) Undirected edges: By Proposition 5.6 we receive that a --- b ∉ E0
OG, if and only if,

hE

[(
D(p−q−1)

h Ya(t, h) − PV (t)D
(p−q−1)
h Ya(t, h)

)(
D(p−q−1)

h Yb(t, h) − PV (t)D
(p−q−1)
h Yb(t, h)

)]
= 1

h
E
[
e⊤a 𝜖(t, h)e

⊤
b 𝜖(t, h)

]h↓0
−→e⊤a CBΣLB⊤C⊤eb,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 23

is zero. Hence, given Y (t),
√

hD(p−q−1)
h Ya(t, h) and

√
hD(p−q−1)

h Yb(t, h) are uncorrelated in the limit. Equiva-

lently, the noise terms e⊤a 𝜖(t, h)∕
√

h and e⊤b 𝜖(t, h)∕
√

h are uncorrelated in the limit. Note that in Example 3.8,
we have

CBΣLB⊤C⊤ =
⎛⎜⎜⎜⎝
2 0 0

0 2 2

0 2 3

⎞⎟⎟⎟⎠,
which explains the undirected edges in the local orthogonality graph in Figure 1.

Remark 5.11. We establish the relationship between our results for ICCSS processes and the results for MCAR
processes in Fasen-Hartmann and Schenk (2024a).

(a) Since the undirected edges are characterised only by the noise terms 𝜀(t, h) and 𝜖(t, h) and thus, have nothing
to do with the inversion of the process, it is not surprising that the characterisations for the undirected edges
of the ICCSS(p, q) processes and for the undirected edges of the MCAR(p) processes coincide.

(b) In the characterisations of the directed edges of the ICCSS(p, q) process, the case q = 0 cannot simply be
inserted because several matrices become zero-dimensional. However, if we interpret M(h)e𝚲(t−u)𝚯 =̂ 0k×k if
u < t, and Mm(h)𝚯 =̂ CeAhEm+1 for m = 0, … , p − 1, as in Remark 4.3, the characterisations of the directed
edges for MCAR(p) processes can be seen as special case of Theorem 5.3 and Proposition 5.4.

6. PROOFS

6.1. Proofs of Section 3.2

Proof of Proposition 3.9. Assume that there exist two coprime right polynomial fraction descriptions of H(z) as
in (3.5), so that

Q1(z)P1(z)−1 = H(z) = Q2(z)P2(z)−1.

Then, due to the coprimeness, there exists a matrix polynomial U(z), where det(U(z)) is a non-zero real number
(Rugh, 1996, Theorem 16.10), such that

P1(z) = P2(z)U(z). (6.1)

Both P1(z) and P2(z) have the highest power Ikzp, so U(z) = Ik. Hence P1(z) = P2(z) and finally, Q1(z) = Q2(z),
which results in the uniqueness of the decomposition.

The fact that H(z) is equal to C
(
zIkp − A

)−1
B follows from the proof of Theorem 3.2 in Brockwell and

Schlemm (2013).
Furthermore, the realisations (A,B,C) and (,,) are minimal because P(z) and Q(z) are right coprime and

deg(det(P(z)) = kp, see Theorem 6.5-1 of Kailath (1980). Then a consequence of Theorem 2.3.4 in Hannan and
Deistler (2012) is that there exists a non-singular matrix T such that

A = TT−1, B = T, and C = T−1,

and for s < t,

Y(t) = e(t−s)X(s) + ∫
t

s

e(t−u)
dL(u)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12787 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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24 V. FASEN-HARTMANN and L. SCHENK

= CeA(t−s)(TX(s)) + ∫
t

s

CeA(t−u)BdL(u).

Thus, Y is a solution of the state space model (,,,L), if and only if it is a solution of (A,B,C,L). Finally,
𝜎(A) = 𝜎(TT−1) = 𝜎(). ◾

Proof of Lemma 3.13. The uniqueness follows directly from Proposition 3.9. Furthermore, 𝔭 = p holds by Lemma
6.5-6 of Kailath (1980). Since (z)−1(z) = Q(z)P(z)−1 we have 𝔭 − 𝔮 = p − q and therefore 𝔮 = q. Comparing
the highest-order coefficient in (z)P(z) = (z)Q(z) gives 0 = Cq. Finally, Lemma 6.3-8 in Kailath (1980) states
that  () =  (P) and  () =  (Q). ◾

6.2. Proofs of Section 4

Proof of Proposition 4.1. The proof is divided into four steps. In the first three steps, we derive some auxiliary
results which lead in Step 4 to the proof of the statement.

Step 1: First, we prove for all 𝜀 > 0 and v ∈ V the asymptotic behaviour

lim|u|→∞
e−𝜀|u||Yv(u)| = 0 P-a.s. (6.2)

Thus, we relate (6.2) back to Brockwell and Lindner (2015), Proposition 2.6, who prove this convergence for
stationary univariate CARMA processes that are driven by univariate Lévy processes and whose AR polynomial
has no zeros on the imaginary axis. Therefore, let 𝜀 > 0 and v ∈ V . Note that for t ∈ R,

Yv(t) = ∫
t

−∞
e⊤v CeA(t−u)BdL(u) =

k∑
𝓁=1

∫
t

−∞
e⊤v CeA(t−u)Be𝓁dL𝓁(u) =

k∑
𝓁=1

Y𝓁
v (t).

The process Y𝓁
v = (Y𝓁

v (t))t∈R is the stationary solution of the state space model

dX(t) = AX(t)dt + Be𝓁dL𝓁(t), Y𝓁
v (t) = e⊤v CX(t),

and has the transfer function

H𝓁
v (z) = e⊤v C(zIkp − A)−1Be𝓁 .

Then Kailath (1980) provides in Lemma 6.3-8 the existence of (right) coprime polynomials P𝓁
v (z) and Q𝓁

v (z) (poly-
nomials with no common zeros) as in (3.5) so that H𝓁

v (z) = Q𝓁
v (z)∕P𝓁

v (z). Note that in the univariate setting the
problem of the existence of a coprime right polynomial fraction description of the form (3.5) does not arise. Indeed,
here 1 ⋅ p = deg(det(P𝓁

v (z)) = deg(P𝓁
v (z)) follows immediately, and the constant before the p-th power can be

included in Q𝓁
v (z) without loss of generality so that P𝓁

v (z) is a polynomial of degree p that has a 1 as the leading
coefficient. Thus, the classes of univariate CARMA processes and univariate causal continuous-time state space
models are equivalent (Schlemm and Stelzer, 2012a, Corollary 3.4) implying that Y𝓁

v is a univariate CARMA pro-
cess driven by a univariate Lévy process. Now, Bernstein (2009), Definition 4.7.1, provides that the poles of H𝓁

v (z)
are the roots of P𝓁

v (z) including multiplicity. In addition, Bernstein (2009), Theorem 12.9.16, yields that the poles
of H𝓁

v (z) are a subset of 𝜎(A) resulting in

 (P𝓁
v ) = {z ∈ C ∶ P𝓁

v (z) = 0} ⊆ 𝜎(A) ⊆ (−∞, 0) + iR,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 25

which means that the AR polynomial P𝓁
v (z) has no zeros on the imaginary axis. Thus, Y𝓁

v satisfies the assumptions
in Brockwell and Lindner (2015), Proposition 2.6, and we obtain for 𝓁 = 1, … , k that

lim|u|→∞
e−𝜀|u|Y𝓁

v (u) = 0 P-a.s.

Therefore,

lim|u|→∞
e−𝜀|u|Yv(u) =

k∑
𝓁=1

lim|u|→∞
e−𝜀|u|Y𝓁

v (u) = 0 P-a.s.,

and finally, the claim (6.2) follows.
Step 2: Next, we show that

lim
s→−∞ ∫

t

s

e−𝜆(t−u)|Yv(u)|du, (6.3)

exists P-a.s. for t ∈ R and 𝜆 > 0.
From (6.2) we obtain that there exists some set Ω0 ∈  with P(Ω0) = 1 such that for all 𝜔 ∈ Ω0 and 𝛾 > 0

there exists a u0(𝜔) < 0 with

e
𝜆

2
u|Yv(𝜔, u)| = e−

𝜆

2
|u||Yv(𝜔, u)| ≤ 𝛾 ∀u ≤ u0(𝜔).

Then we obtain for s < u0(𝜔) that

∫
t

s

e−𝜆(t−u)|Yv(𝜔, u)|du = ∫
t

u0(𝜔)
e−𝜆(t−u)|Yv(𝜔, u)|du + ∫

u0(𝜔)

s

e−𝜆(t−u)|Yv(𝜔, u)|du

≤ ∫
t

u0(𝜔)
e−𝜆(t−u)|Yv(𝜔, u)|du + 𝛾e−𝜆t 2

𝜆
.

Thus, by dominated convergence the limit in (6.3) exists P-a.s. for t ∈ R and 𝜆 > 0.
Step 3: Eventually, we derive that not only the univariate integral (6.3) exists, but also

lim
s→−∞ ∫

t

s

e𝚲(t−u)𝚯Y(u)du, (6.4)

exists P-a.s. for t ∈ R. First, Assumption (3.12) provides that 𝜎(𝚲) ⊆ (−∞, 0) + iR and thus, spabs(𝚲) ∶=
max{ℜ(𝜆) ∶ 𝜆 ∈ 𝜎(𝚲)} < 0, where ℜ(𝜆) denotes the real part of 𝜆. Therefore, there exists a −𝜆 ∈ (spabs(𝚲), 0).
Then Bernstein (2009), Proposition 11.18.8, provides a constant c1 > 0 such that

||e𝚲t|| ≤ c1e−𝜆t ∀t ≥ 0. (6.5)

Now, we obtain

‖‖‖‖‖∫
t

s

e𝚲(t−u)𝚯Y(u)du
‖‖‖‖‖ ≤ c1||𝚯||∑

v∈V
∫

t

s

e−𝜆(t−u)|Yv(u)|du.

Due to (6.3) the limit of each of those addends exists, so (6.4) exists P-a.s. for t ∈ R.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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26 V. FASEN-HARTMANN and L. SCHENK

Step 4: Finally, we are able to prove the statement of the proposition. Recall that due to (3.14) for s, t ∈ R, s < t,

Xq(t) = e𝚲(t−s)Xq(s) + ∫
t

s

e𝚲(t−u)𝚯Y(u)du.

Since we assume that X is the unique stationary solution of the stochastic differential equation (1.1), Xq is also
strictly stationary and Xq(s) and Xq(0) have the same distribution for all s ∈ R. Moreover, it follows from
Assumption (3.12) that 𝜎(𝚲) ⊆ (−∞, 0) + iR. These properties lead to

e𝚲(t−s)Xq(s) → 0kq as s → −∞,

in distribution and in probability by Slutsky’s lemma, since the limit is a degenerate random vector. In combination
with (6.4) we receive for t ∈ R the statement

lim
s→−∞

(
e𝚲(t−s)Xq(s) + ∫

t

s

e𝚲(t−u)𝚯Y(u)du

)
= ∫

t

−∞
e𝚲(t−u)𝚯Y(u)du P-a.s.

◾

Proof of Theorem 4.2. Let t ∈ R, h ≥ 0, and a ∈ V . First, due to (3.11), we receive

Ya(t + h) = e⊤a CX(t + h) and D(p−q−1)Ya(t + h) = e⊤a CX(t + h).

From now on, the proofs for the two representations differ only in the choice of C and C, respectively. Therefore,
we will only continue with the representation of Ya(t + h). Due to (1.2) we have

Ya(t + h) = e⊤a C
(

eAhX(t) + ∫
t+h

t

eA(t+h−u)BdL(u)
)

= e⊤a CeAhX(t) + e⊤a 𝜀(t, h).

Here,

e⊤a CeAhX(t) = e⊤a CeAh
(

Xq(t), X(q+1)(t), · · · , X(p)(t)
)⊤

= e⊤a CeAhEXq(t) +
p−q∑
j=1

e⊤a CeAhEq+jX
(q+j)(t).

Lemma 3.20 and interchanging the summation order imply

e⊤a CeAhX(t) = e⊤a CeAhEXq(t) +
p−q∑
j=1

e⊤a CeAhEq+jE
⊤

(
𝚲jXq(t) +

j−1∑
m=0

𝚲j−1−m𝚯D(m)Y(t)

)

= e⊤a M(h)Xq(t) +
p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t). (6.6)

Finally, we obtain due to Proposition 4.1,

e⊤a CeAhX(t) = ∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t) P-a.s.
◾

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12787
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 27

Proof of Proposition 4.5. Let a, v ∈ V and define F(t) = e⊤a e𝚲t𝚯ev for t ≥ 0. First, for s, t ∈ R, s < t,

lim
n→∞

t − s
n

n∑
𝓁=1

F
(

t − s − 𝓁
t − s

n

)
Yv

(
s + 𝓁

t − s
n

)
= ∫

t

s

F(t − u)Yv(u)du P-a.s.

due to the definition of the integral. Using the theorem of dominated convergence, we show that this convergence
also holds in the L2 sense. Indeed, from the triangle inequality

|||||∫
t

s

F(t − u)Yv(u)du − t − s
n

n∑
𝓁=1

F
(

t − s − 𝓁
t − s

n

)
Yv

(
s + 𝓁

t − s
n

)|||||
≤ ∫

t

s

|F(t − u)||Yv(u)|du + t − s
n

n∑
𝓁=1

||||F(
t − s − 𝓁

t − s
n

)||||||||Yv

(
s + 𝓁

t − s
n

)||||
≤ 2(t − s)( sup

u∈[0,t−s]
|F(u)|)( sup

u∈[s,t]
|Yv(u)|)

follows. This majorant is integrable, because

sup
u∈[0,t−s]

|Yv(u)| = sup
u∈[0,t−s]

|e⊤v CX(u)| ≤ sup
u∈[0,t−s]

||e⊤v C||||X(u)|| ≤ c sup
u∈[0,t−s]

||X(u)||,
for some constant c ≥ 0 and thus,

E

[(
sup

u∈[0,t−s]
|Yv(u)|)2

]
≤ c2

E

[
( sup
u∈[0,t−s]

||X(u)||)2] < ∞, (6.7)

due to Assumption B and Brockwell and Schlemm (2013), Lemma A.4. Furthermore, supu∈[0,t−s] |F(u)| < ∞ since
F is a continuous function. In summary,

∫
t

s

F(t − u)Yv(u)du = l.i.m.
n→∞

t − s
n

n∑
𝓁=1

F
(

t − s − 𝓁
t − s

n

)
Yv

(
s + 𝓁

t − s
n

)
.

For the second step of this proof, we recall that for t ∈ R,

∫
t

−∞
F(t − u)Yv(u)du = lim

s→−∞ ∫
t

s

F(t − u)Yv(u)du P-a.s.,

due to Proposition 4.1. Again, using the theorem of dominated convergence, we show that this convergence holds
in the L2-sense. For s < t it follows that

|||||∫
t

−∞
F(t − u)Yv(u)du − ∫

t

s

F(t − u)Yv(u)du
||||| ≤ ∫

∞

t−s

|F(u)||Yv(t − u)|du

≤
∞∑

n=0

sup
u∈[n,n+1]

|F(u)| sup
u∈[n,n+1]

|Yv(t − u)|.
J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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28 V. FASEN-HARTMANN and L. SCHENK

To see that this majorant is in L2, we use Fubini, Cauchy–Schwarz inequality and the stationarity of Y . This yields to

E

⎡⎢⎢⎣
( ∞∑

n=0

sup
u∈[n,n+1]

|F(u)| sup
u∈[n,n+1]

|Yv(t − u)|)2⎤⎥⎥⎦
≤

∞∑
n=0

∞∑
m=0

sup
u∈[n,n+1]

|F(u)| sup
u∈[m,m+1]

|F(u)|
×

(
E

[(
sup

u∈[n,n+1]
|Yv(t − u)|)2

]
E

[(
sup

u∈[m,m+1]
|Yv(t − u)|)2

])1∕2

=

( ∞∑
n=0

sup
u∈[n,n+1]

|F(u)|)2

E

[(
sup

u∈[0,1]
|Yv(u)|)2

]
< ∞,

where we used (6.7) and
∑∞

n=0 supu∈[n,n+1] |F(u)| < ∞ by the definition of F and (6.5). In summary, we obtain

e⊤a ∫
t

−∞
e𝚲(t−u)𝚯evYv(u)du = ∫

t

−∞
F(t − u)Yv(u)du = l.i.m.

s→−∞ ∫
t

s

F(t − u)Yv(u)du,

and the integral is in Yv
(t). The existence of Xq(t) as an L2-limit follows immediately from this. ◾

Proof of Lemma 4.6. Recall that due to Theorem 4.2 and 𝜖(t, 0) = 0k ∈ Rk

D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)
h

= ∫
t

−∞
e⊤a

M(h) − M(0)
h

e𝚲(t−u)𝚯Y(u)du

+
p−q−1∑
m=0

e⊤a
Mm(h) − Mm(0)

h
𝚯D(m)Y(t) + e⊤a

𝜖(t, h)
h

P-a.s. (6.8)

Replacing the matrix exponential with its power series, it holds that

M(h) − M(0)
h

= C
eAh − Ikp

h

(
E +

p−q∑
j=1

Eq+jE
⊤𝚲j

)
= M′(0) + O(h)

(
E +

p−q∑
j=1

Eq+jE
⊤𝚲j

)
,

Mm(h) − Mm(0)
h

= C
eAh − Ikp

h

p−q∑
j=m+1

Eq+jE
⊤𝚲j−1−m = M′

m(0) + O(h)
p−q∑

j=m+1

Eq+jE
⊤𝚲j−1−m. (6.9)

Furthermore, we define

R1 = ∫
t

−∞

(
E +

p−q∑
j=1

Eq+jE
⊤𝚲j

)
e𝚲(t−u)𝚯Y(u)du,

R2 =
p−q−1∑
m=0

p−q∑
j=m+1

Eq+jE
⊤𝚲j−1−m𝚯D(m)Y(t). (6.10)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 29

If we plug (6.9) and (6.10) in (6.8) we obtain the stated representation. Moreover, from Proposition 4.5 we know
that R1 is in Y (t) and from Remark 3.15 we receive that R2 is in Y (t). Since Y(t) and (L(s) − L(t))t≤s≤t+h are
independent we receive that R1,R2 ∈ Y (t) are independent of 𝜖(t, h). Finally,

1
h

E
[
(e⊤a 𝜖(t, h))

2
]
= 1

h
e⊤a C∫

h

0
eAuBΣLB⊤eA⊤uduC⊤ea

h↓0
−→e⊤a CBΣLB⊤C⊤ea.

CBΣLB⊤C⊤ is positive definite due to ΣL > 0 and C, B being of full rank by Assumption (3.12). Therefore, the
limit e⊤a CBΣLB⊤C⊤ea > 0 and, of course, E[(e⊤a 𝜖(t, h))

2]∕h2 converges then to infinity. ◾

Proof of Theorem 4.8. Based on Theorem 4.2, the proofs of the two orthogonal projections differ only in the choice
of M(⋅) or M(⋅), Mm(⋅) or Mm(⋅), and 𝜀(⋅, ⋅) or 𝜖(⋅, ⋅). Thus, we only prove the representation of PYS

(t)Ya(t + h). Let
h ≥ 0, t ∈ R, S ⊆ V , and a ∈ V . From Theorem 4.2recall that P-a.s.

Ya(t + h) =∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t) + e⊤a 𝜀(t, h).

We calculate the projections of the summands separately. For the first summand we get

PYS
(t)

(
∫

t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du

)
=

∑
v∈S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du + PYS

(t)

( ∑
v∈V⧵S

∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯evYv(u)du

)
,

since, because of Proposition 4.5, the integrals are in YS
(t) for v ∈ S. For the second summand, we obtain

PYS
(t)

(
p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t)

)

=
∑
v∈S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t) + PYS

(t)

( ∑
v∈V⧵S

p−q−1∑
m=0

e⊤a Mm(h)𝚯evD
(m)Yv(t)

)
,

since, due to Remark 3.15, the derivatives of Yv(t) for v ∈ S are in YS
(t).

For the third summand e⊤a 𝜀(t, h) we note that (YS(s))s≤t and (L(s) − L(t))t≤s≤t+h are independent. We obtain
immediately that PYS

(t)e
⊤
a 𝜀(t, h) = 0. If we put all three summands together, we get the assertion. ◾

Proof of Theorem 4.10. Let S ⊆ V , a ∈ V , h ≥ 0, and t ∈ R. First of all, due to Theorem 4.8 and similar ideas as
in (6.6),

PY (t)D
(p−q−1)Ya(t + h) = ∫

t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t) = e⊤a CeAhX(t).

Then, due to

lim
h→0

E

[(
PY (t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)
− e⊤a CAX(t)

)2
]

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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30 V. FASEN-HARTMANN and L. SCHENK

= lim
h→0

E

⎡⎢⎢⎣
(

e⊤a C
eAh − Ikp

h
X(t) − e⊤a CAX(t)

)2⎤⎥⎥⎦
= lim

h→0
e⊤a C

(
eAh − Ikp

h
− A

)
cXX(0)

(
eAh − Ikp

h
− A

)⊤

C⊤ea = 0,

we obtain

l.i.m.
h→0

PY (t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)
= e⊤a CAX(t) P-a.s.

Together with Brockwell and Davis (1991), Proposition 2.3.2.(iv, vii), it follows that

l.i.m.
h→0

PYS
(t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)

= l.i.m.
h→0

PYS
(t)PY (t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)
= PYS

(t)
(
e⊤a CAX(t)

)
P-a.s.

Again, similar to the proof of (6.6),

e⊤a CAX(t) = ∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a M′
m(0)𝚯D(m)Y(t) P-a.s.

We obtain replacing M(h) by M′(0) and Mm(h) by M′
m(0) in the proof of Theorem 4.8,

l.i.m.
h→0

PYS
(t)

(
D(p−q−1)Ya(t + h) − D(p−q−1)Ya(t)

h

)

=
∑
v∈S

∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯evYv(u)du +

∑
v∈S

p−q−1∑
m=0

e⊤a M′
m(0)𝚯evD

(m)Yv(t)

+ PYS
(t)

( ∑
v∈V⧵S

∫
t

−∞
e⊤a M′(0)e𝚲(t−u)𝚯evYv(u)du

)

+ PYS
(t)

( ∑
v∈V⧵S

p−q−1∑
m=0

e⊤a M′
m(0)𝚯evD

(m)Yv(t)

)
P-a.s.

as claimed.
The second assertion follows directly from Theorem 4.2 and Theorem 4.8, which give

D(p−q−1)Ya(t + h) − PY (t)D
(p−q−1)Ya(t + h)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 31

= ∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du +

p−q−1∑
m=0

e⊤a Mm(h)⊤𝚯D(m)Y(t) + e⊤a 𝜖(t, h)

− ∫
t

−∞
e⊤a M(h)e𝚲(t−u)𝚯Y(u)du −

p−q−1∑
m=0

e⊤a Mm(h)𝚯D(m)Y(t)

= e⊤a 𝜖(t, h).
◾

6.3. Proofs of Section 5

Proof of Theorem 5.1.

(A.2) The proof of Assumption (A.2) is elaborate and has already been given in Fasen-Hartmann and
Schenk (2024a), Proposition 6.5, for MCAR(p) processes. It can be directly generalised to ICCSS(p, q)
processes, so we do not give the full proof. We simply note that we only require that Q(i𝜆)P(i𝜆)−1 has full
rank and ΣL > 0 to obtain that fYY (𝜆) > 0 for 𝜆 ∈ R. Indeed, Assumption (3.12) provides that Q(i𝜆) is of
full rank and  (P) ⊆ (−∞, 0) + iR, so we directly receive that Q(i𝜆)P(i𝜆)−1 has full rank as well. Further-
more, we require that 𝜎(A) ⊆ (−∞, 0) + iR, but this is also true due to Assumption (3.12). Finally, it is a
necessity that CBΣLB⊤C⊤ > 0. Again, ΣL > 0, C is of full rank by Assumption (3.12), and B is of full rank
by definition, so CBΣLB⊤C⊤ > 0.

(A.3) For Assumption (A.3) we apply that 𝜎(A) ⊆ (−∞, 0) + iR and hence

l.i.m.
h→0

PX (t)X(t + h) = l.i.m.
h→0

eAhX(t) = 0,

resulting in X being purely non-deterministic. By Rozanov (1967), III, (2.1) and Theorem 2.1 this is equiv-
alent to

⋂
t∈R X(t) = {0}. Since

⋂
t∈R Y (t) ⊆

⋂
t∈R X(t) the process Y is purely non-deterministic as

well.
Finally, the Markov properties follow from Fasen-Hartmann and Schenk (2024a), Section 5; see also

Fasen-Hartmann and Schenk (2024a), Propositions 6.6 and 6.7 for MCAR(p) processes. ◾

Next, we prove Proposition 5.4, since the proof of Theorem 5.3 is based on Proposition 5.4.

Proof of Proposition 5.4. (a) Recall that due to Definition 3.1 we have no directed edge a → b ∉ EOG, if and only
if, for 0 ≤ h ≤ 1 and t ∈ R,

PY (t)Yb(t + h) = PYV⧵{a}
(t)Yb(t + h) P-a.s.

From Theorem 4.8 we obtain for 0 ≤ h ≤ 1 and t ∈ R,

PY (t)Yb(t + h) =
∑
v∈V

∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯evYv(u)du +

∑
v∈V

p−q−1∑
m=0

e⊤b Mm(h)𝚯evD
(m)Yv(t),

PYV⧵{a}
(t)Yb(t + h) =

∑
v∈V⧵{a}

∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯evYv(u)du +

∑
v∈V⧵{a}

p−q−1∑
m=0

e⊤b Mm(h)𝚯evD
(m)Yv(t)

+ PYV⧵{a}
(t)

(
∫

t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du

)
+ PYV⧵{a}

(t)

(
p−q−1∑
m=0

e⊤b Mm(h)𝚯eaD(m)Ya(t)

)
P-a.s.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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32 V. FASEN-HARTMANN and L. SCHENK

We equate the two orthogonal projections and remove the coinciding terms. Then we receive that a → b ∉ EOG,
if and only if, for 0 ≤ h ≤ 1 and t ∈ R,

∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du +

p−q−1∑
m=0

e⊤b Mm(h)𝚯eaD(m)Ya(t)

= PYV⧵{a}
(t)

(
∫

t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du

)
+ PYV⧵{a}

(t)

(
p−q−1∑
m=0

e⊤b Mm(h)𝚯eaD(m)Ya(t)

)
P-a.s.

The expression on the left-hand side is in Ya
(t) and the expression on the right side is in YV⧵{a}

(t). Since YV⧵{a}
(t)∩

Ya
(t) = {0} due to (3.1), a → b ∉ EOG, if and only if, for 0 ≤ h ≤ 1 and t ∈ R,

∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du +

p−q−1∑
m=0

e⊤b Mm(h)𝚯eaD(m)Ya(t) = 0 P-a.s. (6.11)

In the following, we show that this characterisation is in turn equivalent to

e⊤b M(h)e𝚲t𝚯ea = 0 and e⊤b Mm(h)𝚯ea = 0, (6.12)

for m = 0, … , p − q − 1, 0 ≤ h ≤ 1, and t ≥ 0.
If (6.12) holds, we immediately obtain that (6.11) is valid. Now, suppose (6.11) holds. We convert the two

summands in (6.11) into their spectral representation. Hence, note that due Bernstein (2009), Proposition 11.2.2,
and 𝜎(𝚲) ⊆ (−∞, 0) + iR the equality

∫
∞

−∞
e−i𝜆s1{s≥0}e

⊤
b M(h)e𝚲s𝚯eads = e⊤b M(h)(i𝜆Ikq − 𝚲)−1𝚯ea, 𝜆 ∈ R,

holds. Now Rozanov (1967) I, Example 8.3, provides the spectral representation of the first summand

∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du = ∫

∞

−∞
ei𝜆te⊤b M(h)(i𝜆Ikq − 𝚲)−1𝚯eaΦa(d𝜆),

where Φa(⋅) is the random spectral measure from the spectral representation of Ya. For the second summand, we
substitute Ya(t) as well as its derivatives (cf. Fasen-Hartmann and Schenk, 2024a, Proposition 2.4) by their spectral
representation. We obtain

0 = ∫
t

−∞
e⊤b M(h)e𝚲(t−u)𝚯eaYa(u)du +

p−q−1∑
m=0

e⊤b Mm(h)𝚯eaD(m)Ya(t)

= ∫
∞

−∞
ei𝜆te⊤b M(h)(i𝜆Ikq − 𝚲)−1𝚯eaΦa(d𝜆) +

p−q−1∑
m=0

e⊤b Mm(h)𝚯ea∫
∞

−∞
(i𝜆)mei𝜆tΦa(d𝜆).

Denoting 𝜓(𝜆, h) = e⊤b M(h)(i𝜆Ikq − 𝚲)−1𝚯ea +
∑p−q−1

m=0 e⊤b Mm(h)𝚯ea(i𝜆)m,for 𝜆 ∈ R and 0 ≤ h ≤ 1, it follows
that

0 = E

[||||∫
∞

−∞
ei𝜆t𝜓(𝜆, h)Φa(d𝜆)

||||
2
]
= ∫

∞

−∞
|𝜓(𝜆, h)|2fYaYa

(𝜆)d𝜆,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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ORTHOGONALITY GRAPHS FOR ICCSS PROCESSES 33

and therefore |𝜓(𝜆, h)|2fYaYa
(𝜆) = 0 for (almost) all 𝜆 ∈ R. But by Theorem 5.1, fYaYa

(𝜆) > 0 for all 𝜆 ∈ R, which
yields 𝜓(𝜆, h) = 0 for 0 ≤ h ≤ 1 and (almost) all 𝜆 ∈ R. Bernstein (2009), (4.23), provides due to i𝜆 ∈ C ⧵ 𝜎(A)
that

(i𝜆Ikq − 𝚲)−1 = 1
𝜒𝚲(i𝜆)

kq−1∑
j=0

(i𝜆)jΔj,

where Δj ∈ Mkq(R), Δkq−1 = Ikq, and 𝜒𝚲(z) = zkq+𝛾kq−1zkq−1+· · ·+𝛾1z+𝛾0,z ∈ C, is the characteristic polynomial
of 𝚲 with 𝛾1, … , 𝛾kq−1 ∈ R, 𝛾kq = 1, cf. Bernstein (2009), (4.4.3). Thus,

0 = 𝜓(𝜆, h) = 1
𝜒𝚲(i𝜆)

kq−1∑
j=0

(i𝜆)je⊤b M(h)Δj𝚯ea +
p−q−1∑
m=0

e⊤b Mm(h)𝚯ea(i𝜆)m,

and multiplication by the characteristic polynomial yields

0 =
kq−1∑
j=0

(i𝜆)je⊤b M(h)Δj𝚯ea +
p−q−1∑
m=0

kq∑
𝓁=0

e⊤b Mm(h)𝚯ea𝛾𝓁(i𝜆)𝓁+m.

In the first sum there are powers up to kq − 1, while in the second sum there are powers up to kq − 1 + p − q. For
𝓁 = kq and m = 0, … , p − q − 1 we receive in the second summand powers higher than kq and their prefactors
have to be zero. Due to 𝛾kp = 1we receive then for m = 0, … , p − q − 1,

e⊤b Mm(h)𝚯ea = 0.

Inserting this result into 𝜓(𝜆, h) = 0 yields

0 = e⊤b M(h)(i𝜆Ikq − 𝚲)−1𝚯ea = ∫
∞

−∞
e−i𝜆s1{s≥0}e

⊤
b M(h)e𝚲s𝚯eads.

Together with the already known integrability, Pinsky (2009), Corollary 2.2.23, provides

e⊤b M(h)e𝚲t𝚯ea = 0, t ≥ 0,

which finally concludes the proof of (a).
(b) Due to the similarity of the results in Theorem 4.8 and Theorem 4.10, we just have to replace M(h) by M′(0)

and Mm(h) by M′
m(0) in the proof of (a). ◾

Proof of Theorem 5.3. (a) Based on the characterisations in Proposition 5.4(a), the same ideas as in the proof of
Theorem 6.19(a) in Fasen-Hartmann and Schenk (2024a) can be carried out and therefore, the proof is omitted.
First, we replace the matrix exponential eAh in Proposition 5.4(a) by powers of the matrix A and second, we replace
e𝚲h by powers of 𝚲.

(b) Follows in analogy to (a) using Proposition 5.4(b). ◾

Proof of Proposition 5.6. (a) Based on Corollary 4.11(a), the proof of the first characterisation in (a) can be
done in the same way as the proof of Fasen-Hartmann and Schenk (2024a), proposition 6.13(a). The second
characterisation in (a) follows along the lines of the proof of Fasen-Hartmann and Schenk (2024a), Theorem
6.19(b).

(b) Based on Theorem 4.2 and Corollary 4.11(b), statement (b) can be proven analogously to Fasen-Hartmann
and Schenk (2024a), Proposition 6.13(b). ◾

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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34 V. FASEN-HARTMANN and L. SCHENK

7. CONCLUSION

In this article, we have applied the concept of (local) orthogonality graphs to state space models. For the state space
models, we have assumed that they have a representation in controller canonical form satisfying the mild assump-
tions of (3.12) such that there exists a stationary invertible version of the state space model; the term invertible
reflects that we are able to recover the state process from the observation process. These assumptions have been
summarised under the acronym ICCSS(p, q) model with p > q > 0. The ICCSS processes satisfy the assumptions
of the (local) orthogonality graphs defined in Fasen-Hartmann and Schenk (2024a) so that the graphical models are
well-defined and several notions of causal Markov properties hold. However, the invertibility of the state process
and the representation of the state space model in controller canonical form are not necessary for the existence of
(local) orthogonality graphs. The orthogonality graphs exist for a much broader class of state space models, but for
the analytic representations of the edges, these additional assumptions are useful. The characterisations of the edges
of the ICCSS process require the knowledge of the orthogonal projections of the state process onto linear subspaces
generated by subprocesses, and for the derivation of these orthogonal projections the invertibility of the state pro-
cess is important. The orthogonal projections depend on the model parameters of the controller canonical form and
therefore, the edges of the (local) orthogonality graph are also uniquely characterised by these model parameters.
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