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Abstract
Ge two-dimensional hole gases (2DHG) in strained modulation-doped quantum-wells represent
a promising material platform for future spintronic applications due to their excellent spin
transport properties and the theoretical possibility of efficient spin manipulation. Due to the
continuous development of epitaxial growth recipes extreme high hole mobilities and low
effective masses can be achieved, promising an efficient spin transport. Furthermore,
the Ge 2DHG can be integrated in the well-established industrial complementary
metal-oxide-semiconductor (CMOS) devices technology. However, efficient electrical spin
injection into a Ge 2DHG—an essential prerequisite for the realization of spintronic
devices—has not yet been demonstrated. In this work, we report the fabrication and
low-temperature magnetoresistance (MR) measurements of a laterally structured Mn5Ge3/Ge
2DHG/ Mn5Ge3 device. The ferromagnetic Mn5Ge3 contacts are grown directly into the Ge
quantum well by means of an interdiffusion process with a spacing of approximately 130 nm,
forming a direct electrical contact between the ferromagnetic metal and the Ge 2DHG. Here, we
report for the first time a clear MR signal for temperatures below 13 K possibly arising from
successful spin injection into the high mobility Ge 2DHG. The results represent a step forward
toward the realization of CMOS compatible spintronic devices based on a 2DHG.

Supplementary material for this article is available online
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1. Introduction

New concepts summarized under the term ‘Beyond comple-
mentary metal-oxide-semiconductor (CMOS)’ are required in
order to further increase the performance of semiconductor
integrated circuits [1, 2]. One prominent example is the field
of semiconductor spintronics where the electron spin is used
in devices in addition to its charge [3–5]. For a viable spin-
tronic device several requirements must be fulfilled. First,
spins must be successfully injected into a high-conductivity
channel. Second, the spin orientation must be maintained over
a long distance, requiring in turn high charge carrier mobil-
ities and long spin relaxation times. Third, there must be a
means to efficiently manipulate the spin orientation. The spin-
field-effect transistor (spin FET) proposed in 1990 by Datta
and Das, is a prototypical semiconductor spintronics device
[6] in which spin polarized charge carriers are injected from
ferromagnetic source electrodes into a semiconductor channel.
Depending on the relative orientation of the spin of the charge
carriers and the magnetization of the drain electrode, the tran-
sistor is in its on- or off-state. The spin of the charge carrier is
switched between the parallel and anti-parallel configuration
relative to the magnetization of the ferromagnetic drain con-
tact through the gate-controlled Rashba spin-orbit interaction
resulting in an oscillating output characteristic that is unique
for the spin FET and is largely determined by the giant mag-
netoresistance (GMR) effect [7, 8]. Thus, the Rashba effect
enables spin-manipulation with the aid of an electrical field,
which is an necessary requisite for the scalability and thus the
integration of future spin-based devices into existing CMOS
technology [9].

For efficient spin manipulation, materials lacking inversion
symmetry and strong spin-orbit interaction generating a size-
able Rashba effect are required [10–13]. For potential indus-
trial applications, the spin FET is discussed as a low-power
transistor, since the energy for switching the spin orienta-
tion is orders of magnitude smaller than that of the Coulomb
charging energy in a classic metal-oxide-semiconductor FET,
thereby strongly reducing the heat dissipation in conventional
semiconductor devices [14–16]. From a research point of
view, the spin FET is of great interest because it does not only
require electrical spin injection and spin detection as well
as spin transport, but also spin manipulation by means of an
electrical field. The unification of all components within one
device makes it an ideal demonstrator and thus at the same
time the foundation for future spintronic devices. However,
the implementation of this device concept has proven to be
extremely difficult. In their seminal paper, Datta and Das
proposed that spin transport takes place in a buried high-
mobility two-dimensional electron gas (2DEG) [6]. Even
though Lee et al were able to demonstrate a working Si-
based spin FET [17], there is only one example [18] where
a non-local Rashba oscillation within an InAs 2DEG with
ferromagnetic Ni81Fe19 contacts has been demonstrated. The
main challenge is the fabrication of ferromagnetic contacts to

the buried channel without depleting the 2DEG. While vari-
ous groups have reported successful electrical spin injection
into buried 2DEGs in group III–V compound semiconductors
[19–24], spin injection into a Si 2DEG was success-
fully demonstrated in only one study [25]. Unfortunately,
the spin-orbit interaction in Si is comparably weak and
materials with larger spin-orbit interactions are highly
desired [26–28].

A promising and CMOS compatible material to meet all
the requirements are Ge-based heterostructures forming a two-
dimensional hole gas (2DHG) [29, 30]. In contrast to the
2DEG, the 2DHG provides an increased Rashba energy due
to the larger spin-orbit interaction of holes compared to that of
electrons giving rise to amore efficient spinmanipulation [31].
On the one hand, large Rashba energies comparable to the
group III–V compound semiconductors have been obtained by
various methods such as weak anti-localization, magnetores-
istance (MR), and cyclotron resonance measurements [32–
38]. On the other hand, electronic transport is degraded by the
fundamentally shorter spin relaxation time of holes compared
to electrons. However, even if the exact relationship of spin-
flip length on the momentum scattering is unclear, it is reas-
onable to assume that the spin orientation of holes is strongly
linked to theirmomentum, so that the spin information is typic-
ally randomized with each scattering event. Consequently, the
spin relaxation time of holes is of the same time scale as the
transport scattering time [39, 40].While the latter is commonly
affected by large-angle scattering, the quantum scattering time
considers each scattering event regardless of the scattering
angle and can be used as a worst-case estimate for the spin
relaxation time. Due to the ongoing development of growth
recipes for the Ge 2DHGs, extremely high hole-mobilities
and low effective masses have already been achieved result-
ing in enhanced transport and quantum scattering times for
holes [41–44]. Therefore, the Ge 2DHG promises a high spin
relaxation time and thus very good spin transport properties.
In this respect it is remarkable that despite the good suitabil-
ity of the Ge 2DHG for CMOS-compatible spintronic applic-
ations, electric spin injection into a Ge 2DHG has not been yet
reported. So far, all spin injection experiments based on p-type
material have been carried out on doped Ge bulk samples with
three-terminal or four-terminal (4T) structures [45–52], which
fundamentally differ in transport mechanism compared to a
buried Ge 2DHG channel. Hence, exploring the spin manipu-
lation and transport in a 2DHG, with a higher Rashba energy
compared to a 2DEG, bears promising potential for spintronic
applications.

Here, we report for the first time MR measurements per-
formed on a lateral spin-valve device with a high-mobility
Ge 2DHG as spin transport channel. The advantage of using
Mn5Ge3 as a ferromagnetic material for potential spin injec-
tion is the low conductivity mismatch between the ‘bad metal’
Mn5Ge3 and the Ge 2DHG. The Ge/Si1−Gex heterostruc-
ture was epitaxially grown on a (111) oriented Si substrate
by molecular beam epitaxy. We used thin Mn5Ge3 layers as
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Figure 1. Transport properties of the Ge 2DHG: (a) longitudinal resistance Rxx and transverse Hall resistance Rxy vs. magnetic field µ0H at
T = 2 K. (b) Temperature dependence of Rxx.

ferromagnetic contacts, which were grown directly into the
buried Ge quantum-well (QW) by means of interdiffusion.
To this end, the entire Si1−xGex capping layer above the Ge
QWwas removed prior to contact formation [53]. Temperature
dependentMRmeasurements were first carried out on Hall bar
structures to extract the quantum scattering time and effective
mass as characteristic parameters for the spin transport prop-
erties. The magnetic properties were then analyzed using a
superconducting quantum interference device (SQUID) mag-
netometer. Finally, the MR measurements on the structured
devices exhibit signals hinting at spin injection into the Ge
2DHG. The GMR signal depends on the selected operating-
point and could be observed up to a temperature of T = 13 K.
The results reported in this work are important for the realiza-
tion of CMOS compatible spintronic devices.

2. Device fabrication and characterization

2.1. Electronic transport properties of the Ge 2DHG

The Ge 2DHG was epitaxially grown on a Si (111) substrate
following a standard growth protocol for the (100) substrate
orientation reported earlier [54, 55]. The comprehensive crys-
tal analysis by high resolution x-ray diffraction, transmission
electron microscopy (TEM), atomic force microscopy of the
grown Ge 2DHG sample, as well as the fabrication of the
Hall bar and GMR device are provided in the supplemental
material.

Figure 1(a) shows the longitudinal MR Rxx and the trans-
verse Hall resistance Rxy in an applied magnetic field of
up to µ0H = 15 T at a temperature of T = 2 K, from
which a Hall mobility and Hall sheet carrier density of the
Ge 2DHG of µ = (3.02 ± 0.01) × 104 cm2 V−1 s−1 and
ps,Hall = (4.62 ± 0.16) × 1011 cm−2, respectively, were
obtained. There are indications for the presence of a frac-
tional quantum Hall effect at high fields [56]. The corres-
ponding temperature dependent Hall measurement is shown
in the Supplemental Material. Figure 1(b) depicts the temper-
ature dependence of the MR for a magnetic field range from
µ0H = −6 T to µ0H = 6 T. Clear Shubnikov–de Haas (SdH)

oscillations and integer quantum Hall plateaus were observed,
highlighting the quality of the epitaxially grown layers and
therefore the good transport properties of the Ge 2DHG. The
SdH oscillations start at approximately µ0H = 0.65 T, with
spin splitting occurring at µ0H = 3.13 T. This is an indication
for strong spin-orbit interaction and thus the possibility for
efficient spin manipulation. Furthermore, the clear separation
of the Landau levels for high magnetic fields gives further
proof of the excellent transport properties of our samples.
The symmetry of the MR curve excludes the presence of any
inhomogeneities caused by, e.g. fluctuations in modulation
doping [57].

A sheet carrier density ps,SdH = (4.00± 0.30)× 1011 cm−2

was obtained from the period of the SdH oscillation and
thus slightly deviates from the Hall measurement results.
This difference indicates the presence of parasitic channels,
which could either originate from the modulation-doped layer
or from the Si substrate, which is relatively highly doped.
However, since the relative amount of charge carriers outside
the Ge 2DHG is quite small, the following GMR measure-
ments are not affected. Furthermore, we observe a negative
parabolic course of the longitudinal MR Rxx for small fields,
which categorically excludes any strong parallel conductivity
within our sample [58]. In existing literature, an upwards trend
of the MR with increasing magnetic field is attributed to a
parallel conductance and thus a parasitic sheet carrier density
[59, 60].

From the temperature dependent damping of the
amplitude of the SdH oscillations an effective mass of
m

∗
= (0.084 ± 0.001) × m0 (m0: electron mass) and a

quantum-scattering time of τ q = (0.45 ± 0.01) ps was extrac-
ted. At this point, we can estimate the spin-flip length lsf using
our experimentally determined transport data. In a worst-case
scenario, we assume that the spin-information in the Ge 2DHG
is randomized within each scattering event, i.e. the expected
spin relaxation time τ sf corresponds to the quantum scatter-
ing time τ q. For the associated lower limit of the spin-flip
length we then get lsf =

√
Dτq ≈ (133.84± 0.01) nm, where

D = (395.2 ± 4.7) cm2 s−1 is the diffusion constant of the
holes in the Ge 2DHG.
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Figure 2. Structural properties of the Mn5Ge3-contacts: (a) schematic cross-section of a single Mn5Ge3 contact. Further details are
given in the supplemental material. (b) Top-view SEM-image section of the Mn5Ge3 contact array with a single Mn5Ge3 contact size
of A1 = 10 × 20 µm. (c) Cross-sectional TEM and EDX images of a single Mn5Ge3 contact.

2.2. Ferromagnetic Mn5Ge3 contacts

The ferromagnetic Mn5Ge3 contacts were formed directly in
the GeQWusing an interdiffusion process in order to establish
a direct electrical contact between the ferromagnetic Mn5Ge3
and the Ge QW. Prior to the Mn5Ge3 contact formation, the
entire Si1−xGex capping layer on top of the Ge QW was
removed using an Ar+ ion milling process. The fabrication
process and the magnetic properties of the ferromagnetic con-
tacts have been already reported [53, 61, 62]. In particular, we
have previously studied the formation of Mn5Ge3 by interdif-
fusion of evaporated Mn on Ge [61] and the contact formation
from the Mn5Ge3 to the buried QW without formation of a
tunneling barrier [53].

The ferromagnetic Mn5Ge3 contacts in this work were
encapsulated with an additionally evaporated Mn protection
layer. For the detection of electrical spin injection, we used two
different lateral sizes of the Mn5Ge3 contact: A = 5 × 20 µm
and B = 10 × 20 µm. The Mn5Ge3 contacts were analysed
by high-resolution TEM and energy-dispersive x-ray spectro-
scopy (EDX) using a Tecnai Osiris electron microscope from
FEI operated at an acceleration voltage of 200 kV. EDX was
performed in scanning mode using the software ‘Esprit’ from
Bruker.

Figure 2(a) depicts the schematic cross-section of a single
Mn5Ge3 contact and figure 2(c) the corresponding scanning
TEM (STEM) and EDX images confirming that the Mn5Ge3

contact formed upon annealing is located directly within the
Ge QW. The fabrication process leads to the formation of an
additional Mn5(Si1−xGex)3 layer within the Si1−xGex capping
layer along the etched sidewall which creeps up to approxim-
ately l = 20 nm underneath the SiO2 hard mask. However,
these Mn5(Si1−xGex)3 layers do not create a short circuit
below the SiO2 layer between the center contacts and they also
do not affect the contact separation distance since only the Ge
2DHG is conductive at low temperatures.

Figure 2(b) depicts the top-view scanning electron micro-
scope (SEM) image of a Mn5Ge3 contact array with a single
Mn5Ge3 contact size of A1 = 10× 20 µm. For the magnetiza-
tion measurements, the Mn5Ge3 contacts with the two differ-
ent geometries (A1 = 10 × 20 µm, A2 = 5 × 20 µm,) were
arranged as an array extended over an area of 3 × 3 mm and
their data were compared with data obtained from an unstruc-
tured reference sample.

The magnetization measurements were performed with
a SQUID magnetometer (MPMS, Quantum Design) with
the y axis of the contacts, see figure 2(b) orientated along
the in-plane external magnetic field. Figure 3(a) shows the
temperature dependent in-plane magnetization for the differ-
ent geometries in a magnetic field µ0H = 50 mT. For com-
parison, the magnetization curves are normalized with respect
to their magnetic moment at a temperature of T = 5 K.
For all geometries, the temperature-dependent magnetiza-
tion confirms the formation of ferromagnetic Mn5Ge3 layers.

4



Semicond. Sci. Technol. 39 (2024) 125004 D Weißhaupt et al

Figure 3. Magnetic properties of the Mn5Ge3 contacts with different geometries: (a) temperature dependent in-plane magnetization
measured in an external magnetic field of B = 50 mT. (b) Corresponding in-plane magnetization curves at T = 5 K. For both measurements
the external in-plane magnetic field was orientated along the y axis, see figure 3(b). Black curves represent data from the unstructured
reference sample`̀ Ref.´´.

Independent of the geometry, we obtain a Curie temperature
of about 300 K. Among the possible compounds of Mn and
Ge that can form, only Mn5Ge3 is ferromagnetic with a curie
temperature around T = 300 K and exhibits no other mag-
netic phase transition [63, 64]. However, we observe a strong
change of the slope of the magnetization at a temperature of
about T = 40 K, which arises from the Mn5(Si1−xGex)3 layer
that was additionally generated within the Si1−xGex capping
layer along the etched sidewall [62]. The respective magnetiz-
ation curves measured at a temperature of T = 5 K are shown
in figure 3(b). The inset depicts the same data up to max-
imum external field to µ0H = 3 T. The curves were corrected
for a diamagnetic background signal arising from the semi-
conductor substrate and the sample holder. Again, for com-
parison all magnetization curves are normalized with respect
to their saturation magnetic moments. We observe a double
hysteresis at T = 5 K, which again can be explained by the
overlay of the Mn5Ge3 layer with the Mn5(Si1−xGex)3 layer.
The obtained coercive fields are µ0HC = (116 ± 10) mT,
µ0HC = (46± 10) mT, and µ0HC = (73± 10) mT for the geo-
metries of A2 = 5× 20 µm, A1 = 10× 20 µm, and the unstruc-
tured reference sample, respectively. The direct comparison
of the two geometries A1 and A2 indicates magnetic harden-
ing, i.e. an increase in coercivity for the A2 sample which
is in line with the general increase of the intrinsic coercivity
with decreasing particle size for multidomain particles. From
a magnetic point of view, the ferromagnetic Mn5Ge3 contacts
meet the magnetic requirements for the detection of electrical
spin injection and thus can be used for further experiments.

2.3. Measurements on the GMR device

Figure 4 gives a schematic overview of the GMR device with
spin transport in the Ge 2DHG taking place between two fer-
romagnetic Mn5Ge3 contacts.

TheMRmeasurements on theGMRdevicewere performed
in a physical property measurement system (QuantumDesign)
for various temperatures and magnetic fields oriented in the
plane of the sample and parallel to the long side of theMn5Ge3

electrodes, i.e. along the y axis (figure 4). A DC voltage VDC

was modulated by an alternating currents (AC) voltage VAC

of frequency f ref = 321.7 Hz and amplitude of a few per-
cent of VDC applied to the device under test, generating cur-
rents IDC and IAC, in series with a resistor Rref = 1 kΩ and
an I–V converter (FEMTO DLCPA200) with a gain of 103.
The current IDC through the device was determined from the
voltage drop V ref across Rref measured with a Keithley 2182
voltmeter. The differential resistance dR= dV/dI was determ-
ined by two lock-in amplifiers (Standford Research Systems
SRS 830) synchronously coupled to f ref and measuring the
voltage dV across the device and a signal proportional to dI
at the output of the I–V converter. In addition, the DC res-
istance was determined by the voltage drop across the device
measured with a Keithley 2182 voltmeter divided by IDC.

3. Results and discussion

The device comprises four ferromagnetic Mn5Ge3 electrodes
in contact with the semiconducting Ge 2DHG transport chan-
nel, with spin transport taking place between the two center
contacts separated by a distance lower than the spin-diffusion-
length. A detailed description of the fabrication process of
the device is available in the supplemental material. Figure 4
shows the schematic cross section of the final device together
with top-view SEM images of the inner contacts (contacts
2, 3, and 4) with different magnification. The Mn5Ge3 con-
tacts formed by the interdiffusion process act as barriers in the
Ge channel for the 2DHG. Therefore, the standard non-local
measurement approach where the current is applied between
contacts 2 and 3 and the voltage is measured between contacts
4 and 5 (see figure 4) to verify spin injection, cannot be per-
formed with the present device. Hence, we follow the same
approach as adopted in [25, 63], where superimposed direct
DC and AC are applied between the outer contacts (contact 2
and 5) and the AC voltage between the inner contacts (con-
tact 3 and 4) is measured. The DC current serves to bring the
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Figure 4. (a) Schematic illustration of the device structure used for the GMR measurements in this study. The spins are electrically injected
and detected using ferromagnetic Mn5Ge3 contacts. The spin transport takes place in the Ge QW which accommodates a high mobility
2DHG. (b) and (c) show the top-view SEM images of the surface with different magnifications. In (c), the Mn5Ge3 contacts are well
separated by distances of 350 nm and only 130 nm between contacts 2 and 3, and between contacts 3 and 4, respectively.

device to a suitable operation point (see below) and the AC
current serves for the actual measurement.

Furthermore, the final design of the device differs from
the well-established 4T-Hanle structure in that five contacts
are used instead of four allowing spin-transport measurements
over two different distances within one device. The two dis-
tances between the center electrode and the outer right or left
electrode are approximately l = 130 nm and l = 350 nm,
respectively, see figure 4. The size of the Mn5Ge3 center con-
tact is A2 = 5 µm× 20 µm, all other contacts are twice as wide
with a size of A1 = 10 µm × 20 µm.

Figure 5(a) shows MR curves dR= dV/dI of the
Mn5Ge3/Ge 2DHG/Mn5Ge3 device with a channel length
of l = 130 nm at a temperature of T = 2 K for different DC
currents IDC. While no signal was measured for small DC
currents, a clear GMR signal develops as the DC current IDC
increases. For IDC = 24 µA and VDC = 6 V, corresponding
to a resistance R = 250 kΩ, a dR = 8.9 kΩ and a MR of
dR/R = 3.6% were obtained. A dependence of the electric
spin injection on the applied DC current has already been
reported for configurations involving Mn5Ge3/Ge [65] and
Mn5(Si1−xGex)3/Si [25] contacts and has been attributed to
the fact that the Mn5Ge3 contact on the Ge surface forms a
Schottky barrier with a barrier height of ϕB = 0.25 eV [66]
which blocks electric spin injection. When a sufficiently high
bias is applied to the Schottky contact, spin polarized holes can
tunnel through the Schottky barrier, which becomes narrower

at higher bias. This leads to the formation of spin polarized
currents in the Ge 2DHG. The spin polarized electrons then
migrate in the Ge 2DHG to the second ferromagnetic contact.
During this process the spin polarization decays exponentially
due to scattering. The relative orientation between the spins in
the Ge 2DHG and the magnetization of the second Mn5Ge3
contact then defines the total resistance and thus the signal
structure.

Sweeping the external magnetic field leads to switching of
the magnetization between the parallel and anti-parallel con-
figurations of the two ferromagnetic Mn5Ge3 contacts. For
large external magnetic fields, the magnetization of the two
Mn5Ge3 contacts follows the direction of the external field,
i.e. their mutual orientation is parallel. When the direction of
the magnetic field changes in the reversed direction, the dif-
ferent coercive fields of the two electrodes cause the mag-
netization in the contacts to switch at different absolute field
strengths. In our sample, the low spatial separation between
the middle ferromagnetic contacts can be expected to result
in a sizeable antiferromagnetic coupling between neighbour-
ing contacts due to dipole-dipole interactions. Our MR signal,
therefore, shows a different dependence on the external mag-
netic field than for 4T-Hanle structures with larger contact spa-
cing, which usually exhibits GMR behaviour with separated
MR hysteresis. When sweeping the amplitude of the in-plane
external magnetic field from large positive values to large neg-
ative values, we obtain a change in our MR signal already at

6



Semicond. Sci. Technol. 39 (2024) 125004 D Weißhaupt et al

Figure 5. MR measurements of the Mn5Ge3/ Ge 2DHG/Mn5Ge3 device with a channel length of l = 130 nm. (a) GMR signal for different
DC currents IDC at T = 2 K. (b) GMR signal at different temperatures with an adjusted operating point IDC. For the sake of clarity, a
constant MR has been removed from the raw data and the measurements are shifted with respect to each other.

small positive values of the external field instead of at small
negative values, indicating anti-parallel orientation of themag-
netization in the neighbouring contacts prior to the sign change
of the magnetic field.

The GMR signal is shifted towards negative external fields
by about ∆µ0H = (−20 ± 10) mT. Such shifting is typic-
ally caused by a coupling of the ferromagnet with an anti-
ferromagnetic thin film, known as the exchange-bias effect
[67]. In our samples, the generation of local changes in alloy
composition during the annealing step for the formation of
the Mn-based ferromagnetic contacts could lead to this effect
[62]. Indeed, the magnetic hysteresis curves for the geomet-
ries of A2 = 5 × 20 µm, A1 = 10 × 20 µm, and the unstruc-
tured reference sample, presented in figure 3(b), indicate the
presence of a small shift in magnetic field by approximately
∆µ0H = (−5 ± 10) mT, ∆µ0H = (−13 ± 10) mT, and
∆µ0H = (−19 ± 10) mT, respectively. However, it is more
likely that the strongly enhanced demagnetization fields in
microstructured samples may also lead to an antiferromag-
netic coupling and a strongly field-shifted GMR behaviour
[66]. A similar behaviour has been observed for lateral 2-
terminal structures on the Si0.1Ge0.9 platformwhen sweeping a
minorloop [68]. Hence, independent of the origin of the shifted
GMR characteristics the DC current dependent GMR signals
provide strong evidence for successful spin injection, trans-
port, and detection in the Ge 2DHG.

Figure 5(b) shows the GMR signal for different temperat-
ures. For this purpose, the operating point IDC was chosen so
that the relative signal for the respective temperature is at its
maximum. The signal is significantly attenuated with increas-
ing temperature, which is in good agreement with the results of
the magnetotransport measurements, i.e. the SdH oscillations
are strongly damped in the range from T = 2 K to T = 6 K,
indicating an increase in scattering with increasing temperat-
ure. Although the GMR signal is already strongly reduced at
13 K, the data obtained on a prototype system provide the first
evidence for spin injection into a high-mobility 2DHG.

Overall, the GMR signal could only be observed for a
short distance of l = 130 nm between the electrodes. The
sample with a larger electrode distance of l = 350 nm

Figure 6. MR measurements for different sweep rates R of the
external magnetic field at T = 2 K and for an applied DC current is
IDC = 25 µA. A constant MR has been removed from the raw data
and the various measurements are shifted for clarity.

shows no evidence of spin injection (not shown), which
means that the associated spin-flip length is expected to be
somewhere between these two distances. Thus, the lower
limit spin-flip length of about lsf = (133.84 ± 0.01) nm
calculated on the basis of the quantum-scattering time is
in good agreement with the experimental results presented
here.

The MR measurements presented in figure 5 were per-
formed at a fixed sweep rate of the external magnetic field
of R = 0.2 mT s−1. However, our experiments have shown
that the sweep rate has a decisive influence on the signal struc-
ture. Figure 6 compares the MR-curves for different sweep
rates of the external magnetic field. The measurements shown
were carried out at a temperature T = 2 K with an applied
DC current of IDC = 25 µA. The GMR signal only appears for
sweep rates belowR< 1.0mT s−1, whereas no signal structure
can be observed for high sweep rates of R = 5.0 mT s−1. MR
measurements with sweep rates in the range of 1.0 mT s−1 ≤
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R≤ 5.0 mT s−1 show signal structures resembling spin-valve
signals. This dependence on the sweep rate of the external
magnetic field results from the switching dynamics behavior
of the ferromagnetic Mn5Ge3 contacts. The alignment of the
magnetization or the individual domains in the external mag-
netic field does not take place instantaneously, but is also
retarded with a certain time constant. Sweep rates that are
too fast lead to a modification of the GMR signal, since
the individual domains cannot follow the rapidly changing
external magnetic field. This influence of the magnetic field
sweep rate on magnetic transitions has already been observed
for synthetic ferrimagnets with large lateral size and could
also explain our observation. Thus, modifying the sweep rate
leads to change of the magnetization reversal process from
domain wall propagation to nucleation, the latter dominating
at a high sweeping rate [69]. The spin-valve-like signal for
2.0 mT s−1 therefore corresponds to a GMR signal which
shifts on the magnetic field axis with decreasing sweep rate
until both measurements match. For sweep rates higher than
R = 5.0 mT s−1, there is no longer any defined magnetic
switching behavior, which is why no change in resistance can
be detected electrically.

4. Conclusion

Low-temperature MR measurements performed on a lateral
ferromagnet/Ge 2DHG/ferromagnet device structure show a
clear GMR signal for a contact distance of 130 nm between
the electrodes. For this purpose, we use ferromagneticMn5Ge3
contacts directly grown as a thin film into the Ge QW to estab-
lish a good electrical contact between the Mn5Ge3 contact and
the Ge 2DHG. Depending on the DC current IDC, we observe
GMR signals up to a temperature of T = 13 K. The atten-
uation of the GMR signal with increasing temperature is in
agreement with the quantum-mechanical transport properties
of the Ge 2DHG. The results provide first evidence of elec-
trical spin injection from a ferromagnet into a high-mobility
Ge 2DHG. This is an important step toward the realization of
future CMOS compatible spintronic devices, in particular for
devices based on the spin FET proposed by Datta and Das.
Future research is needed to improve the fabrication process
and materials properties by reducing the lateral contact separ-
ation or increasing the spin flip length in order to observe this
behavior at higher temperatures for potential applications.
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