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non-singular dislocation fields of straight dislocations are obtained in terms of two-
dimensional anisotropic Green functions of simplified anisotropic strain gradient
elasticity. All necessary Green functions, including the two-dimensional Green tensor
of the twofold anisotropic Helmholtz-Navier operator and the two-dimensional F-tensor
of generalized plane strain, are derived as sum of the classical part and a gradient
part in terms of Meijer G-functions. Among others, we calculate the regularization of
the Barnett solution for the elastic distortion of straight dislocations in an anisotropic
crystal. In the framework of simplified anisotropic first strain gradient elasticity, the
necessary material parameters are computed for cubic materials including aluminum
(Al), copper (Cu), iron (Fe) and tungsten (W) using a second nearest-neighbour modified
embedded-atom-method interatomic potential. The elastic distortion and stress fields
of screw and edge dislocations of 4 (111) Burgers vector in bcc iron and bec tungsten
and screw and edge dislocations of% (110) Burgers vector in fcc copper and fcc aluminum
have been computed and presented in contour plots.
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Introduction

This paper is dedicated to Professor Nasr Ghoniem, and it celebrates his illustrious and
exemplary career in the field of the mechanics and physics of defects in crystals. His
holistic research style, often involving experiments, theory, and numerical modeling,
has created many valuable opportunities to connect researchers in the field. Our col-
laboration started about ten years ago, and it stemmed from an attempt to include
characteristic length scales in the elastic theory of dislocations. Strengthened by sev-
eral mutual visits between UCLA and TU Darmstadt, such collaboration led to several
manuscripts (Po et al. 2014; Lazar and Po 2014, 2015a, b; Seif et al. 2015; Po et al. 2018;
Lazar and Po 2018a, b; Po et al. 2019; Cui et al. 2019; Lazar et al. 2020). The present work
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builds on our simplified strain gradient elasticity theory of dislocations in anisotropic
crystals, and it derives specialized results for straight dislocations.

Classical continuum theories like the theory of linear elasticity are intrinsically size
independent. For the study of dislocations in anisotropic crystals, classical anisotropic
elasticity theory is often used (e.g., Bacon et al. (1980); Ting (1996); Hirth and Lothe
(1982); Steeds (1973)). In two-dimensional (2D) anisotropic elasticity, the displacement
fields of straight dislocations were derived by Stroh (1958, 1962) using the so-called
Stroh formalism (see also Ting (1996)) and by Asaro et al. (1973) using the so-called
integral formalism (see also Bacon et al. (1980); Balluffi (2012)). The integral formalism
was originally derived from the Stroh formalism by Barnett and Lothe (1973). In two
dimensions (2D), the elastic distortion and the strain energy of infinitely long straight
dislocation lines with Burgers vector b in an anisotropic medium were given by Barnett
and Swanger (1971). Using the two-dimensional anisotropic Green tensor of general-
ized plane strain, a Burgers-like formula for straight dislocations has been given by Lazar
(2021) leading to a new derivation of the integral formalism (see also Lazar and Kirchner
(2021)). It is well-known that classical anisotropic elasticity is not valid at small scales
leading to singularities in the dislocation fields at the dislocation core. However, the
near-field behaviour of the dislocation fields is of high importance for applications and
for the understanding of physics within the dislocation core.

Dislocations are lattice defects of great significance, since they cause plasticity and
hardening in crystals. A dislocation is a line defect in a crystal breaking locally the trans-
lational symmetry of the perfect crystal and leading in this way to a lower symmetry at
the defect region of the imperfect crystal, namely at the dislocation core. In fact, the
dislocation core is just an arrangement of atoms without any crystal symmetry. From
the crystallographic point of view, the translational symmetry of crystals is disturbed by
the lattice defect (dislocation) so that the symmetry of the point group of the disloca-
tion core region is lower than the symmetry of the original point group of the perfect
crystal. The broken symmetry in the dislocation core is important for many physical
phenomena like plastic deformation, superalloys at high temperature, and birefringence
(see, e.g., Kosevich (1979)). However, in some cases, it can be useful to look at the imper-
fect crystal from the point of view of approximate symmetry. Moreover, crystals have a
discrete structure. The range of interaction can never be less than the discrete length,
which is a finite length proportional to the lattice constant. Discreteness itself gives rise
to nonlocality.

Therefore, a generalized continuum field theory, which possesses nonlocality and
avoids singularities at small scales, is needed for an improved modelling of dislocations
in crystals. Generalized continuum theories such as strain gradient elasticity and nonlo-
cal elasticity are theories valid down to the Angstrom-scale (see, e.g., Eringen (2002);
Lazar (2017); Lazar et al. (2020, 2022)). Mindlin (1964) (see also Mindlin (1968)) derived
the theory of compatible first strain gradient elasticity. Compatible first strain gradient
elasticity incorporates the first gradient of the elastic strain tensor in the elastic energy
in addition to the elastic strain tensor. For the isotropic case, this framework is charac-
terized by the two Lamé constants and five strain gradient parameters leading to two
characteristic lengths. In the early days of strain gradient elasticity, several trials (e.g.,
Lardner (1971); Rogula (1973)) to find non-singular fields produced by dislocations



Lazar and Po Journal of Materials Science: Materials Theory (2024) 8:5 Page 3 of 40

were not successful, leading only to additional singularities in the dislocation fields.
More than three decades later, Altan and Aifantis (1997) derived a simplified version
of Mindlin’s first strain gradient elasticity. Using such a simplified first strain gradient
elasticity theory with only one characteristic length scale parameter, Gutkin and Aifantis
(1996, 1997) found, for the first time, non-singular elastic strain fields of screw and edge
dislocations in the framework of gradient elasticity. Lazar and Maugin (2005) (see also
Lazar et al. (2005); Lazar (2017)) have shown how non-singular stress and strain fields
of screw and edge dislocations can be computed in simplified first strain gradient elas-
ticity including eigenstrain fields called simplified incompatible strain gradient elastic-
ity. Such simplified first strain gradient elasticity is a particular version of Mindlin’s first
strain gradient elasticity where the double stress tensor can be expressed in terms of the
gradient of the Cauchy stress tensor (see, e.g., Lazar and Maugin (2005); Lazar (2016)).
Simplified incompatible strain gradient elasticity (gradient elasticity of Helmholtz type)
provides robust non-singular solutions including one length scale parameter for the
elastic distortion, plastic distortion, stress and displacement fields of screw and edge dis-
locations. An important mathematical property of simplified strain gradient elasticity is
that it provides a straightforward regularization based on partial differential equations
(PDEs) of higher order where the characteristic length scale parameter plays the role of
a regularization parameter. The non-singular expressions of all dislocation key equations
were given by Lazar (2012, 2013, 2014) for dislocation loops using simplified strain gra-
dient elasticity. For dislocations, the incompatible version of simplified strain gradient
elasticity including plastic distortion and dislocation density tensors is used leading to
an incompatible strain gradient elasticity of defects. These non-singular dislocation key
equations (Burgers formula, Mura-Willis equation and Peach-Koehler stress formula)
have been implemented in the UCLA Discrete Dislocation Dynamics (DD) code called
“model” (Model 2014) and used for applications (Po et al. 2014).

In order to model dislocations in cubic crystals, the extension of isotropic simpli-
fied incompatible strain gradient elasticity towards anisotropic simplified incompatible
strain gradient elasticity has been given by Lazar and Po (2015a, b). Anisotropic incom-
patible strain gradient elasticity represents an anisotropic gradient elasticity with separa-
ble weak non-locality which is a special version of Mindlin’s anisotropic strain gradient
elasticity theory with up to six independent length scale parameters. The framework
models materials where anisotropy is twofold, namely the bulk material anisotropy (far-
field anisotropy) and a weak non-local anisotropy (near-field anisotropy) relevant at the
Angstrom-scale. Using Fourier transform, Lazar and Po (2015a, b) have computed the
three-dimensional elastic Green tensor of anisotropic incompatible strain gradient elas-
ticity as fundamental solution of the twofold anisotropic Helmholtz-Navier operator as
integral over the unit sphere in Fourier space. Using anisotropic incompatible strain gra-
dient elasticity, Po et al. (2018) have developed a non-singular theory of three-dimen-
sional dislocation loops in anisotropic crystals. The theory is systematically developed
as a generalization of the classical anisotropic elasticity theory of dislocation. The non-
singular version of all key equations of anisotropic dislocation theory have been derived
as line integrals in terms of the three-dimensional elastic Green tensor, including the
Burgers displacement equation with isolated solid angle, the Peach-Koehler stress equa-
tion, the Mura-Willis equation for the elastic distortion, and the Peach-Koehler force.
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The anisotropic non-singular dislocation theory is shown to be in good agreement with
molecular statics calculations without fitting parameters, and unlike its singular coun-
terpart, the sign of stress components does not show reversal as the core is approached.
In particular, the virial stress of an edge dislocation in a-iron obtained from atomis-
tic calculations is in perfect agreement with the non-singular stress using anisotropic
incompatible strain gradient elasticity. Furthermore, the theory of anisotropic incompat-
ible strain gradient elasticity has been used by Seif et al. (2015) to model the atomistically
enabled non-singular anisotropic elastic representation of near-core dislocation stress
fields in o-iron. Using a magnetic bond-order potential to model atomic interactions in
iron, molecular statics calculations have been performed, and an optimization proce-
dure has been developed to extract the required length scale parameter. Results showed
that the method can accurately replicate the magnitude and decay of the near-core dis-
location stresses even for atoms belonging to the dislocation core itself. Comparisons
with the singular isotropic elasticity and anisotropic elasticity theories have shown that
the non-singular anisotropic gradient elasticity theory of dislocations leads to a substan-
tially more accurate representation of the stresses of both screw and edge dislocations
near the dislocation core, in some cases showing improvements in accuracy of up to an
order of magnitude. Therefore, as shown by Po et al. (2018) and Seif et al. (2015) results
for dislocations in anisotropic crystals obtained by using anisotropic incompatible strain
gradient elasticity theory are in agreement with atomistic results. The main advantage of
those dislocation key-formulas is the absence of any singularity and that they are valid
even in the dislocation core region. Until now, for non-singular fields of straight dislo-
cations in anisotropic crystals the three-dimensional dislocation-key equations and the
three-dimensional elastic Green tensor have been applied using the projection from 3D
to 2D. However, the two-dimensional elastic Green tensor and the analytical expressions
of straight dislocations are still lacking in the literature of anisotropic strain gradient
elasticity.

What about dislocations in Mindlin’s first strain gradient elasticity? For the incompat-
ible version of Mindlin’s first strain gradient elasticity, the two Lamé constants and the
five strain gradient parameters lead to four characteristic lengths due to the presence of
the eigenstrain fields of dislocations. Using the incompatible version of Mindlin’s first
strain gradient elasticity, non-singular and smooth displacement fields of screw and edge
dislocations have been given by Delfani and Tavakol (2019) and Delfani et al. (2020),
respectively. All non-singular dislocation fields including elastic strain, stress, and dis-
placement fields of screw and edge dislocations have been computed by Lazar (2021) in
the framework of incompatible first strain gradient elasticity of Mindlin type. The elastic
fields of screw and edge dislocations have a similar form in simplified incompatible first
strain gradient elasticity and in incompatible first strain gradient elasticity of Mindlin
type (see, e.g., Lazar (2021, 2022)). Only the shape of the dislocation core of an edge
dislocation with asymmetric form due to its inherent asymmetry can be modelled more
realistic in incompatible first strain gradient elasticity of Mindlin type (Lazar 2021).
Somehow, incompatible first strain gradient elasticity of Mindlin type is more sophisti-
cated than simplified incompatible first strain gradient elasticity. For the isotropic case
and the anisotropic case, the stress fields of straight dislocations and dislocation loops
computed in the framework of simplified incompatible first strain gradient elasticity
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are in full agreement with the corresponding stress fields obtained in Eringen’s nonlocal
elasticity of Helmholtz type (see, e.g., Eringen (2002); Lazar et al. (2005, 2020)). Thus,
simplified incompatible first strain gradient elasticity is a very robust and powerful the-
ory for an efficient modelling of dislocation fields without singularities at small scales.
Moreover, the importance of simplified first strain gradient elasticity as non-singular
dislocation continuum theory in comparison with other existing non-singular disloca-
tion continuum theories has been given in Lazar (2017) and Po et al. (2014). Moreover,
the use of nonlocality to describe the elastic fields within defect cores has received a
renewed attention (e.g., Lazar and Agiasofitou (2011); Taupin et al. (2014, 2017); Lazar
et al. (2020)). Zhang et al. (2016) considered the effects of core-spreading dislocation in
anisotropic bi-materials. Semicoherent heterophase interfaces with core-spreading dis-
location structures in magneto-electro-elastic multilayers under external surface loads
were investigated in Vattré and Pan (2019).

The purpose of the present work is to derive the non-singular dislocation key-formulas
of straight dislocations in an anisotropic medium using non-singular two-dimensional
Green functions of simplified anisotropic first strain gradient elasticity. In A non-sin-
gular dislocation theory based on anisotropic incompatible strain gradient elasticity
section, we review the framework of a non-singular dislocation theory based on aniso-
tropic incompatible strain gradient elasticity. All necessary Green functions, including
the two-dimensional Green tensor of the twofold anisotropic Helmholtz-Navier and the
two-dimensional F-tensor of generalized plane strain, are derived in Relevant Green
functions in non-singular dislocation theory section. In Dislocation key-equations sec-
tion, the dislocation key-equations of straight dislocations are computed for generalized
plane strain. In Straight dislocations in cubic materials section, the dislocation fields of
straight dislocations in cubic materials are given using simplified anisotropic first strain
gradient elasticity. The necessary material parameters are given for cubic materials such
as aluminum (Al), copper (Cu), iron (Fe) and tungsten (W) computed from a second
nearest-neighbour modified embedded-atom-method (2NN MEAM) interatomic poten-
tial in Material parameters for cubic crystals section. The characteristic length scale of
simplified anisotropic first strain gradient elasticity is computed based on the material
parameters computed from a 2NN MEAM interatomic potential. As an application, the
non-singular elastic fields of screw and edge dislocations of % (111) Burgers vector in bec
iron and bcc tungsten and screw and edge dislocations of % (110) Burgers vector in fcc
copper and fcc aluminum are computed and presented in equal-value contour plots in
Elastic distortion and stress fields of screw and edge dislocations in cubic crystals sec-
tion. Some technical remarks are given in the Appendix.

A non-singular dislocation theory based on anisotropic incompatible strain
gradient elasticity

Here, we consider the eigendistortion problem of dislocations in an anisotropic crys-
tal. We consider an infinite elastic body in three-dimensional space and use the prop-
erty that the gradient of the displacement field # can be additively decomposed into an
incompatible elastic distortion tensor § and an incompatible plastic distortion (eigendis-
tortion) tensor B':
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ui=Bj+pBy,  Lj=123, )

The elastic strain tensor, e, is the symmetric part of g:
1
ej =5 (Bij + Byi) - 2)

In dislocation theory, the dislocation density tensor, «, is defined in terms of the
incompatible plastic distortion tensor (see, e.g., Kroner (1958); deWit (1973a); Lazar
(2014))

P
@ = —€diBip (3)
and can be also expressed in terms of the incompatible elastic distortion tensor
oij = €kt Ok Bit » (4)

where €y, indicates the Levi-Civita tensor. Sometimes, the tensor « is called the Kroner-
Nye tensor. Moreover, the dislocation density tensor satisfies the Bianchi identity of
dislocations

aj()lij =0, (5)

which means that dislocations cannot end inside the body.

Mindlin’s anisotropic first strain gradient elasticity

In Mindlin’s anisotropic first strain gradient elasticity theory (Mindlin 1964, 1968, 1972),
the strain energy density for a homogeneous and centrosymmetric' material is given by
(see also Lazar and Kirchner (2007); Lazar et al. (2022))

1 1
W= 3 Cijueijen + 3 Dijmkin Omeijonex » (6)

where C;j is the fourth-rank constitutive tensor of elastic constants possessing the
minor symmetries

Cijn = Cijrw = Cyjx (7)
and the major symmetry
Cijr = Craij (8)

while D, is the sixth-rank constitutive tensor of the gradient-elastic constants pos-
sesses the minor symmetries

Dijmkln = Djimkln = Dijml/m (9)

and the major symmetry

! Due to the centrosymmetry, there is no coupling between e; and 9, ey;.
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Dijmkln = Dklnz’jm . (10)

For the general anisotropic case (triclinic), the constitutive tensor C;y; has 21
independent elastic constants and the constitutive tensor Dy, has 171 independ-
ent gradient-elastic constants (see, e.g., Auffray et al. (2013)). For cubic crystals of
point group m3m, the constitutive tensor Cij has 3 independent elastic constants
and the constitutive tensor D;j,, has 11 independent gradient-elastic constants (see,
e.g., Mindlin (1968); Auffray et al. (2013); Lazar et al. (2022); Lazar and Agiasofitou
(2023)).

Simplified anisotropic first strain gradient elasticity

In simplified anisotropic first strain gradient elasticity, it is assumed (see also Lazar and
Kirchner (2007); Gitman et al. (2010); Lazar and Po (2015b); Po et al. (2018); Polizzotto
(2018)) that the sixth-rank constitutive tensor D;;,,;, can be decomposed into the prod-
uct of the fourth-rank constitutive tensor C;j; and a second-rank tensor A, of gradient
length scale parameters with units of squared length, that is

Dijmuin = Cijrr Amn - (11)

Note that Eq. (11) represents the constitutive assumption of simplified anisotropic first
strain gradient elasticity. As consequence of the major symmetry (10) and of positive
definiteness of W, the tensor A,,, must be symmetric and positive definite. The classi-
fication of the gradient length scale tensor A, for triclinic, monoclinic, orthorhombic,
tetragonal, hexagonal, trigonal, cubic, and isotropic materials has been given in Lazar
and Po (2015b); Lazar et al. (2020). For the general anisotropic case (triclinic), the gra-
dient length scale tensor A, has 6 independent gradient length scale parameters. The
decomposition (11) represents the separation of two anisotropies present in anisotropic
strain gradient elasticity, namely the elastic bulk anisotropy (elastic moduli anisotropy)
via Cjj; and the anisotropy of the gradient length scale parameters (internal length ani-
sotropy or weak nonlocal anisotropy at small scales) via A,,,. The latter, which is not pre-
sent in classical anisotropic elasticity, reflects the discrete nature of matter and becomes
relevant in the presence of defects at the Angstrom-scale as dislocation core anisotropy.
The decomposition (11) is not ad hoc because it considers that the gradients 9,, and
9, in Eq. (6) give rise to length scale effects via A,,;,. In general, the symmetries of the
tensors C;j; and A, can be different due to the twofold anisotropy. Also note that the
decomposition (11) in strain gradient elasticity corresponds to the twofold anisotropy
present in Eringen’s nonlocal elasticity theory, namely the elastic moduli anisotropy of
the bulk described by C;j; and the anisotropy of the nonlocality at small scales described
by a nonlocal kernel function « (see Eringen (1978, 2002); Lazar and Agiasofitou (2011);
Lazar et al. (2020)). Such a twofold anisotropy can be used to model the anisotropy of
the dislocation core in an anisotropic crystal (as mentioned in the Introduction), namely
the symmetry of the perfect crystal via C;j; and the lower symmetry of the dislocation
core of the imperfect crystal via A .

Using Eq. (11), the strain energy density (6) reduces to
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1 1
W = 5 Cinieizen + 5 AmnCijxi Omeijdnex - (12)

The Cauchy stress tensor o and the double stress tensor t are given by

ow
ojj = 20y = Cyjuen » (13)
ow
Tijm = ({)(Tez]) = Amn(cijklanekl = Amnanaij . (14)

An important property of simplified strain gradient elasticity theory is the remark-
able fact that the double stress tensor (14) is nothing but the first gradient of the Cauchy
stress tensor (13) multiplied by the length scale tensor A, (see also Lazar and Maugin
(2005)). This is the result of the decomposition (11). Using the constitutive relations (13)
and (14), the strain energy density (12) can be written in the “compact” form

1 1
W= E ojjeij + i Amn(amoij)(anelj) (15)

in terms of the stress tensor o;; and the elastic strain tensor e;; and their first gradient.
The strain energy density (15) has a remarkable symmetry in the stress and elastic strain
tensors.

The condition of the static equilibrium is given by the Euler-Lagrange equation and

reads as
SW ow ow ow
Sui ::Tw_jeramajW:O (16)
In terms of the Cauchy stress and double stress tensors, Eq. (16) reduces to
9 (03 — dmTym) = 0. (17)
Using Eq. (14), Eq. (17) simplifies to
Ldjoy; =0, (18)
where
L=1— Aundmoy (19)

is a scalar anisotropic Helmholtz operator. Using Eqs. (1) and (13), Eq. (18) can be cast
in the following twofold anisotropic inhomogeneous Helmholtz-Navier equation for the
displacement vector

LLyuy = Cyd LBy (20)
with the anisotropic Navier operator

Ly = Cyjgg9;9; - (21)

Page 8 of 40
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The “source-term” in Eq. (20) is given by the plastic distortion tensor 7. Equation (20)
is an inhomogeneous partial differential equation of fourth order and can be written as
system of two partial differential equations (Lazar 2014), namely an anisotropic inhomo-
geneous Helmholtz-Navier equation for the displacement vector u:

LLygu = Cygdi3°, (22)

where the “source-term” in Eq. (22) is given by the classical plastic distortion tensor 8
and an inhomogeneous Helmholtz equation for the plastic distortion tensor B*:

LBy =B (23)

Moreover, the dislocation density tensor (3) also satisfies an inhomogeneous Helm-

holtz equation
_ 0
Loy = ayy, (24)

where a” denotes the classical dislocation density tensor.

Relevant Green functions in non-singular dislocation theory
In this section, all two-dimensional Green functions necessary in non-singular disloca-
tion theory of straight dislocation are given.

Two-dimensional Green tensor of the twofold anisotropic Helmholtz-Navier operator

First, we derive the two-dimensional Green tensor of the twofold anisotropic Helm-
holtz-Navier Eq. (22) which is a partial differential equation of fourth order. The two-
dimensional Green tensor of the twofold anisotropic Helmholtz-Navier operator LLj; is
defined by

LLjGyj(x) = —8;8(x), iLj,k=1,2,3, (25)

where x € R2. In Eq. (25), 8;j is the Kronecker symbol and §(.) is the two-dimensional
Dirac delta-function.

Since the Helmholtz-Navier operator LL; is the product of the Helmholtz operator L
and the Navier operator Ly, the corresponding Green tensor of the Helmholtz-Navier
Eq. (25) can be written as the convolution of the Green function G of the anisotropic

Helmholtz equation and the “classical” Green tensor G?j of the anisotropic Navier opera-
tor, that is
Gj=G"%G)=Gj*G (26)

with Gl and G?j satisfying, respectively:

LG (x) = 8(x), (27)

Ly Gli(x) = —58;8(x), (28)
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where the anisotropic Helmholtz operator L and the anisotropic Navier operator L;; are

given by
L=1—Appdpud,, mn=1,2 (29)
Ly = Cijklajal ’ iLk=1,2,3 jl=12. (30)

Here * denotes the spatial convolution and A is a symmetric 2 x 2 matrix:
(A1 Axp
Amn = <A12 Azz) ' 1
The corresponding inverse matrix A1 = adj A/det A is given by

- 1 Ay — Au)
A= = )
m A11A9p — A%Z (_AIZ A1 (32)

Equation (26) reveals that the Green function G’ plays the role of an anisotropic
regularization function for the singular Green tensor of classical elasticity, G?j. The
two-dimensional anisotropic Green function G* of Eq. (27) reads (see Lazar and
Agiasofitou (2011); Lazar et al. (2020))

Lo L 1 -1
GH) = 5 detAz@(m), (33)

where Kj denotes the modified Bessel function of order 0. Notice that Eq. (33) possesses

an independent anisotropy due to the tensor A,,, with 3 independent components A1,
A13, Ay describing anisotropic length scale effects in the x;x, plane. In order that A,
with m,n = 1,2 is positive definite, it is necessary and sufficient that the following ine-
qualities are satisfied (see Lazar and Agiasofitou (2011); Lazar and Po (2015b); Lazar
et al. (2020))

A1 >0, detA > 0. (34)
The two-dimensional Green tensor of the Navier operator in classical anisotropic
elasticity is given by Lazar (2021)

2

Gy(x) = LY [y +In k-] do, (35)

4-7'[2 0

where y is the Euler constant (y ~ 0.57721...).

Solution using the method of Fourier transform
The two-dimensional Fourier transform of Eq. (25) gives for the Green tensor in Fou-
rier space ij(k):

A+ Apnkmki) Lix Gy (k) = 8, k e R?, (36)

where

Page 10 of 40
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Li(k) = Cyukik;, ik =1,2,3  jl=1,2 (37)

is the Navier operator in Fourier space. Now, if we define the two-dimensional unit
vector

_k _ 12 g2 2 _
lc—%, k=\/ki+ky, k=1, (38)

then the solution of Eq. (36) in Fourier space is given by

~ 1 1 ~
Gik)=— — [
() k2 14+ K2A ik, Y )
) T (39)
== ——~L'(k).
K21+ 2200 K2

In Eq. (39), we have introduced the function A(x)

M) = N/ A ypnkbn mn=12. (40)

The two-dimensional Green tensor in real space is obtained by the two-dimensional
inverse Fourier transform of Eq. (39)

1 / il.;l(lc) cos(k - x)

G = g2 s RO 70
_ 1 1 cos(klc x)
1 k
i)y e )/ ( k2+1</22( )) costhuc- ) dkcdg.

In Eq. (41), dV = kdk d¢ indicates the two-dimensional volume element in Fourier
space in polar coordinates, and ¢ (0 < ¢ < 27) is an appropriate polar angle scanning
a unit circle k2 = 1. The two-dimensional unit vector «(¢) varies with ¢ and can be
expressed as

k(p) =cosp e +sing ey, (42)

where the unit vectors e; and e, represent a Cartesian basis in the two dimensional
plane.?
Integration in k is performed using the relations

*1
/ X costkk -x)dk = —y —In |k - x| (43)
0
and

cos(kk - x)dk = GL’3<

/ k 0 m
o kZ4+1/72 0,0 1) (44)

2 In the numerical evaluation of integrals over the unit circle it is convenient to consider a local reference system such
that &; = x/||x||

Page 11 of 40
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0 2 4 6 8 10

Fig. 1 Plot of the integrand of the Green tensor (45) (blue line) and classical logarithmic singularity (dashed
line) withr = (k - x)and A =1

where GZ"?() is the Meijer G-function (see Erdélyi et al. (1981); Gradshteyn and Ryzhik
(2000)). Hence, Eq. (41) can be expressed as:
0
00

(45)

1 (7. VT on( (k- x)?

It can be seen that the Green tensor (45) of the Helmholtz-Navier operator is a sum
of the Green tensor (35) of the Navier operator and a gradient part given in terms of
the Meijer G-function. The two-dimensional Green tensor (45) is an integral over the
unit circle in Fourier space, whereas the three-dimensional Green tensor is an inte-
gral over the unit sphere in Fourier space (see also Lazar and Po (2015b)).

The asymptotics of the Meijer G-function with the above values is

21 0 . 0
G1’3<z 0, 0, % N_ﬁ (y—w()(l/Z)—i—lnz)—}—O(z) for z«1, (46)
where z = i’;z’gl); and ¥ is the digamma function. The logarithmic singularity of the

Green tensor (35) of the Navier operator is removed (regularized) in the Green ten-
sor (45) of the Helmholtz-Navier operator by the near field of the Meijer G-function (see
Eq. (46)). The integrand (bracket) of Eq. (45) is plotted in Fig. 1. Therefore, the integrand
of the Green tensor (45) of the Helmholtz-Navier operator is finite and non-singular,

namely

1 27 R
G;(0) = @/0 L;l(lc)ln (1/2(1)) d¢p . (47)

The Meijer G-function in Eq. (45) can be expressed in terms of elementary func-
tions, suitable for numerical manipulation and implementation, as
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0.6

0.4

0.2

0.0

0 2 4 6 8 10
Fig. 2 Plot of the integrand of the gradient of the Green tensor, Eq. (51), (blue line) and classical
1/r-singularity (dashed line) withr = (k - x)and A =1

2,1
G 13 (z

00 ! ) _ _% [Chi(24/2) cosh (2v/2) — Shi(2Z) sinh (2v2)],  (48)

where the hyperbolic sine integral function is given by
¥4
Shi(z) = / sinh(¢)/t dt (49)
0
and the hyperbolic cosine integral function is given by
Z
Chi(z) = y + In(2) —l—/ (cosh(¢) — 1)/t dt. (50)
0

Note that Chi(z) has a branch cut discontinuity in the complex z plane running from —co

to 0, whereas Shi(z) has no branch cut discontinuity.
Given G;; as an integral over the unit circle in Fourier space, its gradient is obtained as:

1 27 A 1 KWI
ImGij(x) = T an? L,’j (1) rx
0 .

51
« 1_«/5(1*5'96)2 a1 [ (- %)? -1 do (51)

42() B\ 42k | -1 0, -3 '

The asymptotics of the Meijer G-function with the above values are
-1 1 2

GZ'I< >z+ — v 93/2) +1nz) + O

F o0, -1 )~ g T E Ve g 0@ 52)
for z«K1
and
1
Jrz Gfé (z 1o _1 ) ~1+2(y —¥©3/2) +Inz)z+ 0E?). (53)
) ) 2
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The “classical” 1/r-singularity is removed (regularized) in the integrand of Eq. (51)
due to the near field of the Meijer G-function (see Eq. (53)). Therefore, the integrand of
Eq. (51) is non-singular, namely zero at the origin (see Fig. 2).

The Meijer G-function in Eq. (51) can be expressed in terms of elementary functions,
suitable for numerical manipulation and implementation, as

-1 1
-1,0, =3 )  Jrz

HE
2

- I [Shi(2+/Z) cosh (24/z) — Chi(2+/z) sinh (2/Z)].

Two-dimensional F-tensor in strain gradient anisotropic elasticity

The so-called F-tensor has been introduced by Kirchner (1984) (see also Lazar and
Kirchner (2013); Po et al. (2018); Lazar et al. (2020)). The two-dimensional F-tensor is
defined by (see also Lazar (2021))

Epmij = —0mdnGy xG®,  i,j=1,23 mn=12, (55)

where the two-dimensional Green function of the Laplace operator reads (see, e.g.,

Vladimirov (1971))
AG2(x) = 8(x) (56)
with
A 1
G =—Inr, (57)
21

where r = \/xf +x§.

Using the two-dimensional Fourier transform, Eq. (55) becomes

1 KmKn

Frni0 = 10 T 002

£_1 .
Ly (), ,j=1,2,3 mn=12. (58)
The two-dimensional inverse Fourier transform gives the two-dimensional F-tensor

1 2 s 1
mej(x) = _m/ Lij (K) Kemkcn
0

(59)
VT a1 k-2 0
x{y+ln|lc~x|—|—2GL3 mo’o,% d¢
Therefore, the integrand of the F-tensor (59) is finite and non-singular, namely
1 2T 1
Finnij(0) = m/o Ly (1) kmicn In (1/2(c)) do . (60)

From a numerical viewpoint, it is noteworthy that the Green tensor (45), its gradient
(51), and the F-tensor (59) are even functions of k. Hence the integral over the unit circle
appearing in their expressions can be expressed by twice the integral over a semicircle.

Page 14 of 40
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Two-dimensional Green function of the anisotropic Laplace-Helmholtz equation
The Green function of the anisotropic Laplace-Helmholtz equation is defined by

ALG (%) = §(x) (61)

and in Fourier space it becomes

~ 1 1
AL _ =
G0 = k2 1+ 22(k) k2
1 1 (62)

k2 + kK24+1/22()°

Using the two-dimensional inverse Fourier transform, the Green function of the aniso-
tropic Laplace-Helmholtz equation is obtained for general anisotropy

1 JTo [ (k ~x)2

AL 2,1
( x) = — ln N~ ( 4 - 7
@) 21 " 82 /0 1'3( 472(k)

0
0, 0, % ) d¢ (63)
and for the isotropic or cubic case with only one length scale parameter ¢, it reduces to

G @) = —(Inr + Ko(r/t)). (64)

1
7 (

Dislocation key-equations
In this section, we derive expressions for dislocation key-equations of straight disloca-
tion from the general 3D dislocation key-equations.

General case

In the non-singular theory of dislocations, which is based on simplified anisotropic
strain gradient elasticity, the 3D dislocation key-equations read (Po et al. 2018; Lazar and
Po 2018a)

« anisotropic Mura-Willis-like equation for the non-singular elastic distortion tensor
0
lgik = EknrcjmlnamGij * o, (65)
« anisotropic Burgers-like equation for the non-singular displacement vector

AL P,0 0
Ui = G % ﬁik - Ekanjklmanij * O (66)

.

anisotropic Blin's-like formula for the elastic interaction energy

0(A
W(AB) = \/]R?' Eqns(Cpsitetkr(cjmlk <mej * alr( )) 052,(]3) dv (67)

.

anisotropic Peach-Koehler-like stress equation for the Cauchy stress tensor

0
Opg = CpqikelmrcjmlnamGij * o, (68)
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« Peach-Koehler force for a dislocation density in the stress field of another dislocation
f/EK = ‘/Rg ekﬁoljag dv. (69)

Moreover, the dislocation density tensor and the plastic dislocation tensor are given by

wj = G" x o) (70)

and
P,0
B =G B;°, (71)

where it can be seen that the Green function G’ plays the role as a dislocation spreading
function (Lazar 2014).

Generalized plane strain of straight dislocations

Now, we consider straight dislocations with line direction parallel to the x3-axis belong-
ing to the framework of generalized plane strain which is 2D elasticity consisting of
plane strain and anti-plane strain. In general, the plane strain and antiplane strain fields
do not decouple due to the anisotropy. Only for an orthotropic system, the plane strain
and antiplane strain fields are separable. In generalized plane strain, all dislocation fields
are independent of the variable x3, all derivatives with respect to the x3-axis vanish,
93 = 0 and & € R2. Therefore, all dislocation fields depend only on x; and x; and are two-
dimensional fields.

For generalized plane strain of dislocations, Egs. (70) and (71) become
a3 = G xady, i=1,2,3 (72)
and
Bh=Gt«pg’, i=1,23. (73)

For generalized plane strain of dislocations, the 2D dislocation-key Egs. (65)—(69)
reduce to

« anisotropic Mura-Willis-like equation for the non-singular elastic distortion tensor
Bik = €kn3CimindmGij * orfy , Lj,l=1,2,3 kymn=1,2 (74)
+ anisotropic Burgers-like equation for the non-singular displacement vector
;i = 3G % B15° — €3 CtimEmmij * oy (75)

withi,j,l =1,2,3and k,m,n=1,2
« anisotropic Blin's-like formula for the elastic strain energy

0(A 0B
W) = /1%3 ESnstsiteth(ijlk (anij * 0‘13( )) C(pé % (76)
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with i, j,l,p =1,2,3and k,m, n,s,t = 1,2

« anisotropic Peach-Koehler-like stress equation equation for the Cauchy stress tensor
0
Opq = (Cpqikean(cjmlnamGij * O3 (77)

o Peach-Koehler force

]:]fK = /R3 ij3o'l/'0l?3 dV (78)

Dislocation key-equations of straight dislocations

Now, we consider straight dislocations with line direction parallel to the xs3-axis and
defect surface in the x1x3 half plane for negative x; (xo = 0, x; < 0). For a straight dislo-
cation with Burgers vector b; located at (x1,x2) = (0,0), the classical dislocation density
and the classical plastic distortion are given by (see also deWit (1973b); Mura (1987))

ady = b; 8(x1)8(x2) (79)

and
B0 = b 8(x2)H (—x1) = b; 8(x2) / 8(X) dX, (80)

which possesses a discontinuity at xy = 0 for x; < 0. Here H(.) denotes the Heaviside
step function.

If we substitute Egs. (79) and (80) into Egs. (72) and (73), respectively, we obtain for
the dislocation density of a straight dislocation

a0 = 5~z KoY/ (A D) 1)

and for the plastic distortion of a straight dislocation

b 1 [ -
ﬁgzgm/ 1<0<\/m)dx, (82)

where &’ = (X,x7). In general, the dislocation density tensor defines the dislocation
core region and determines the shape and size of the dislocation core (see also Hartley
and Mishin (2005); Lazar (2013, 2017)). For that reason, one can call «;; the dislocation
core tensor. The dislocation density (81) is only non-zero in the dislocation core. Equa-
tion (81) models the dislocation core in the xx2-plane with anisotropic shape (core ani-
sotropy) depending on the 3 length scale parameters A1, Ay and A1s. The dislocation
density (81) gives with 3 length scale parameters A1, Ao and A1g a rotated elliptical
dislocation core shape (see Fig. 3) and with 2 length scale parameters A1 and Ay an
elliptical dislocation core shape (see Fig. 4). For A11 = Ay and A2 = 0, the dislocation
core has a circular shape (see below).

Substituting Eq. (79) into Eq. (74), the non-singular elastic distortion tensor of a

straight dislocation in an infinite anisotropic medium reads as
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Fig. 3 Contour plot of the dislocation density «;3 of a straight dislocation (normalized by the Burgers vector
b)forAyy =2A% Ay = 1A%2and Ayp = 1/2 A2
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Fig. 4 Contour plot of the dislocation density a3 of a straight dislocation (normalized by the Burgers vector
b,) fOI’AH = ZAZ,AZQ = 1/&2 and A =0

Bik (x) = bleanClnjmamth(x) (83)
and explicitly it becomes using Eq. (51)

_ bl c 2 < Km
Bik(x) = _m €kn3“lnjm o L,’,‘ (x) n

« {1_ VT (K - x)? 2,1<(K - x)?
42 (k) L3\ 422(k)

(84)

-1
oy )

Equation (84) represents the gradient-extension of the Barnett-Swanger (Barnett and
Swanger 1971) formula for the elastic distortion of a straight dislocation in classical aniso-
tropic elasticity. In Eq. (84), zi;l(K) describes the bulk anisotropy and 42(«) describes the
core anisotropy.

Using Eq. (79), the Cauchy stress tensor of a straight dislocation (77) becomes

Opg(x) = bl(cpqikeknBClnjmamGij(x) . (85)
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Using Eq. (51), it reads as

bl 2 ~ K
qu(x) = _rﬂ (CpqikeknB(Clnjm/O Lij (r) n
L VEG R (e Sl ] (%)
42(k) B\ 42w | -1 0, —3 '

Using Eqgs. (79) and (80), the displacement vector of a straight dislocation (75) reduces
to

b; X2
ui(x) = o arctan — + wH (—x1) sgn(xy)

T X1
Nad /oo /2:1 a1 (k-2)*| 0 (87)
— 0 G 3| —— d¢ dX
+ 4 2 o Jo 13\ 4,2 ) |0, 0, % ¢
- bléknb‘cjklmanij(x) )

where the F-tensor is given in Eq. (59). Eq. (87) is the gradient-extension of the displace-
ment field of a straight dislocation in classical anisotropic elasticity (see Lazar (2021)).

Using Eq. (79), the elastic interaction energy per unit length of two straight disloca-
tions with Burgers vectors b;A) and bI(,B) reads

A
Wap) = b; ) b;B)€3nstsit€tk3ijszmnij(x(A) —x®)y. (88)

If we use Eq. (79), the Peach-Koehler force per unit length of a straight dislocation
with Burgers vector b in a stress field oj; reads as

JTIEK = ijgo'ﬂb[ . (89)

Straight dislocations in cubic materials

Let us consider straight dislocations in cubic materials. For cubic symmetry,
A11 = Ay = £2and A1y = 0, the dislocation density (81) and the plastic distortion (82)
simplify to

bi 1 xl + x2 ) (90)
b4 12

) 00 \/ X2 2
pr— il Ko<+xz>d)(. (91)

L

The dislocation density (90) is plotted in Fig. 5 and gives the shape and size of the
dislocation core of a straight dislocation in cubic crystals. Due to only one length scale
parameter ¢ the dislocation core possesses a circular shape. Such a shape of the dislo-
cation core of straight dislocations in cubic crystals is in good agreement with experi-
mental results (see, e.g., Kret et al. (2000); Hartley and Mishin (2005)). The plastic
distortion (91) is non-singular, smooth and finite as it can be seen in Fig. 6.

The elastic distortion tensor (84) and the Cauchy stress tensor (86) reduce to
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Fig. 5 Contour plot of the dislocation density a3 of a straight dislocation (normalized by the Burgers vector
bj) forfec Al:€ = 1.1774 A

Fig. 6 Plastic distortion gf of a straight dislocation near the dislocation line for fcc Al: € = 1.1774 A

bl 2 a1 Km
Bik (%) = T an? GknBClnjm A L,’j () %

2
1 VT (k- x)? 21 (k - x)? -1 d ©2)
x B 4(2 4(2 _1) 0) _% ¢
and
b 2 . Km
Opg(®) = _# Cpqikeknfi(clnjm/o L,‘jl(’c) Y ox
(93)

« 11— VT (k- x)? G2l (K - x)?
402 L3\ a2

-1
oy )

respectively.
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The displacement vector (87) becomes

bl' X2
ui(x) = o arctan — + wH (—x1) sgn(xa)
T

x1
o) 1 \/X2+x%
—xz/ 1(1< )dX)
oYX ‘ (94)
bl 2w ~
+ = €3 Cikim ) Lij (k) kmkcn |y +1n |k - x|

%4
0
do .
0.01)]

VI o (K- x)?
Simplified anisotropic strain gradient elasticity provides a regularization of the clas-

Ty s (w

sical singular dislocation fields for cubic crystals with one regularization parameter ¢
in terms of Meijer G-functions and modified Bessel functions leading to a non-singular
near-field in the dislocation core.

Material parameters for cubic crystals

In Mindlin’s first strain gradient elasticity theory, the elastic constants and the gradi-
ent-elastic constants are characteristic material parameters which can be computed
from interatomic potentials (see, e.g., Admal et al. (2017); Po et al. (2019)) or via
ab initio DFT calculations (see, e.g., Shodja et al. (2018)). For some important cubic
materials such as Al, Cu, Fe and W, the 3 elastic constants and 11 gradient-elastic
constants have been computed using a second nearest-neighbour modified embed-
ded-atom-method (2NN MEAM) interatomic potential (Admal et al. 2017; Po et al.
2019; Lazar et al. 2022).

We consider a cubic crystal with centrosymmetry. Let the Cartesian coordinate axes
x1, %2 and x3 coincide with the cubic crystal directions [100], [010] and [001], respec-
tively. For cubic crystals, the fourth-rank constitutive tensor C;jy, which is the tensor
of elastic constants, is given by (see, e.g., Dederichs and Leibfried (1969); Bacon et al.
(1980); Lazar et al. (2022))

Cijie = Cr2 8810 + Caa (881 + 848jx) + (C11 — Ci2 — 2Ca4) Sjjia (95)
with
3
‘Sijkl — Z elgs)el(s)el((s)el(s) , (96)
s=1

where eV, @, e® are the (orthogonal) unit vectors of the cubic system. Because the
coordinate system coincide with the cubic system, it yields §;; = 1ifi = j = k = [ and
3;jki = 0 otherwise (Dederichs and Leibfried 1969). In Eq. (95), C11, C12 and Cyq are the 3
independent elastic constants of a cubic crystal.

The inverse elastic tensor (Ci;kll, which is the tensor of elastic compliances S;j; = Cz’;kll’

reads as

Page 21 of 40



Lazar and Po Journal of Materials Science: Materials Theory (2024) 8:5

Sijki = S12 88k + Saa (8ixdj + 8udjx) + (S11 — S12 — 2544) Sk

with (see Hirth and Lothe (1982); Wooster (1978))

Sy = Ci1 + Ci2
(C11 — C12)(C11 + 2Cq2)
Cri2

Spp=-—
(C11 — C12)(C11 + 2Cq2)
1

Su = ——.

“= iCn

This tensor is defined by the property (Teodosiu 1982)
1
(CijmnSmnkl = 5(5 jl + 6118 )

and therefore

CiiriSijrt = SijaCijre = 6.

(101)

(102)

For cubic crystals of point group m3m (cubic hexoctahedral), the sixth-rank constitutive

tensor Dk, in Mindlin’s first strain gradient elasticity is given by (see, e.g., Lazar et al.

(2022); Lazar and Agiasofitou (2023))

Dijmkin = %1 (85i8kmbun + 8ij8knSm + Sk1SimSjn + Sx18indjm)
+ 23 888 mn
+ %3 (88imin + St Sjmin + SitSimBion + 518
+ aa (8u8jcSmn + 8ikSj18mn)
o+ 2 (8 BunBim + 8881 + 8k + BBty
+ a6 (8ikSjtmn + SitSjicmn + SjicSitmn + 8j18itmn)
+ a7 (81mSijin + SumSijin + Sindjkim + SjnSikim)
+ ag 8mndijia + @9 (8ij8kimn + SxiSijmn )
+ a10 (8imSjan + SjmSikin + Skndijim + Sinijtom)
+ a11 8ijktmn

with

Sijkimn = Z e(S) e(S) e(S) e(s) e(s) (s)

(103)

(104)

Here, a1, . . ., a11 are the 11 gradient-elastic constants of a cubic crystal with centrosym-

metry and 8;jxp, = 1ifi = j = k = | = m = nand 8, = 0 otherwise.
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Table 1 Elastic and gradient-elastic constants computed from a second nearest-neighbor modified
embedded-atom-method (2NN MEAM) interatomic potential for different cubic crystals (see Lazar
etal. (2022))

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)
CiileV/A3) 0.71366 1.09941 1.51659 3.32405
Cio [eV/A%] 038649 077973 086160 1.28028
Cag [eV/A7] 0.19704 051043 0.76096 101812
ailev/A] -0.02287 -0.08509 0.72859 143755
a [eV/A] 0.35854 0.23748 045980 0.87793
a3 [eV/A] -0.24815 -0.03655 0.59810 0.19097
as [eV/A] 0.16786 0.03742 041599 0.85853
as [eV/A] 0.30012 0.07479 0.76600 1.23279
ag [eV/A] 0.08229 0.23401 -0.58892 -0.67605
ay [eV/A] -0.13198 0.17426 -1.09107 -1.89998
ag [eV/A] -0.21058 0.18906 -1.08476 -2.30919
as [eV/A] -0.54849 -0.02327 -1.32474 -3.33133
aigleV/A] 041893 0.32059 -0.73389 -0.41688
arleV/A] -0.19492 -2.86388 852704 14.79794

The tensor A,y can also be estimated using the tensor S;; = (C;kll Multiplying both

sides of Eq. (11) by Sy, we obtain S;j/Djjyukin = 6Aun and therefore, the tensor A, can
be given in terms of the two constitutive tensor Dk, and Sy as (Po et al. 2018)

1
ANpn = 3 Sijxt Dijmkin - (105)

For cubic materials, the gradient length scale tensor A, reads (Po et al. 2018)
Ny = ezamn ’ (106)

where £ is the characteristic length scale of simplified anisotropic strain gradient elastic-
ity for cubic materials. The gradient length scale of cubic materials can be computed
directly from the fourth-rank constitutive tensor C;j; and the sixth-rank constitutive
tensor ;.41 using Eqgs. (105) and (106) leading to the formula:

1

=
18

Sy Dijmkim - (107)
If we substitute Egs. (97) and (103) into Eq. (107), we obtain the following formula for the
characteristic length in terms of the 3 elastic constants and the 11 gradient-elastic constants

3 6
0 = 7 (a3 +3as + as + 2ag) + ————— (a1 + 3a +
Cua (a3 + 3aq + as + 2as) Ch + 2C1y (a1 + 3az + ay)

3(C11 + C12)
(C11 +2C12)(C11 — Cr2)

(2as + 6ay + 2as5 + 4ag + 4a7; + 3ag + 4aig + ai).
(108)

Equation (108) gives an atomistic determination of the characteristic length ¢ from
numeric values of the elastic and gradient-elastic constants computed from interatomic

potentials or via ab initio DFT. Using the elastic and gradient-elastic constants of Al, Cu, Fe
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Table 2 Characteristic length scale of simplified anisotropic strain gradient elasticity for different
cubic crystals

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)
CIA] 1.1774 0.7852 0.7420 0.8502
alhl 4.0495 3.6149 2.8665 3.1652
t/a 0.2907 0.2172 0.2592 0.2688

Table 3 The anisotropy factor H given by Hirth and Lothe (1982) for the fourth-rank constitutive
tensor Cyy for different cubic materials

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

H=Ciy — Cia — 2Cas [eV/A%) 0.06691 070118 086693 —000753

and W given in Table 1, the characteristic length ¢ of simplified anisotropic strain gradient
elasticity is computed using Eq. (108) and reported in Table 2.

Elastic distortion and stress fields of screw and edge dislocations in cubic
crystals

In order to illustrate the applicability of simplified anisotropic first strain gradient elas-
ticity, we compute the elastic distortion and stress fields of both screw and edge disloca-
tions in cubic crystals. The elastic distortion is computed according to the formula (92).
The elastic distortion is dimensionless. The stress field is computed according to the
stress formula (93). Stresses are in units of €V/A3. We choose bcc iron (Fe) and fcc cop-
per (Cu) because they are crystals with high anisotropy of the elastic constants (see
Table 3) and bcc tungsten (W) and fcc aluminum (Al) because they are crystals which
are nearly isotropic with respect to the elastic constants (see Table 3). Therefore, the
change of the dislocation fields from isotropic = anisotropic behaviour can be seen
by comparing the dislocation fields for bcc: tungsten (W) = iron (Fe) and for fcc: alu-
minum (Al) = copper (Cu). We present the dislocation fields in contour plots in order
to see the characteristic shape of the far- and near-fields of straight dislocations and the
influence of the anisotropy of cubic crystals.

BCCFe

In bee Fe, we consider dislocations with Burgers vector b = a/2 (111). The Burgers vec-
tor reads b = v/3/2a = 2.482 A. The elastic constants and the corresponding length of
bce Fe have been taken from Tables 1 and 2. Using these material constants, we com-
pute the elastic distortion and stress fields in the plane orthogonal to infinite straight
edge and screw 1/2[111](110) dislocations, which have line directions along the [112]
and [111] axes, respectively.

First, we give the plots of the non-singular elastic distortion components of a screw
dislocation in bce Fe using simplified anisotropic first strain gradient elasticity in Fig. 7.
In Fig. 7, it can be seen that a screw dislocation in bcc Fe has pronounced elastic distor-
tion components B, and B,y (only these components are non-zero in the isotropic case);

the other four components By, Byy, Bxy and By, are weak.
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Fig. 7 Non-singular elastic distortion components of a screw dislocation in bcc Fe: a By, b By, € By, d Byx, @

B f ﬂzy

The plots of the non-singular stress components of a screw dislocation in bcc Fe using

simplified anisotropic first strain gradient elasticity are given in Fig. 8. It can be seen in

Fig. 8 that a screw dislocation in bcc Fe possesses pronounced stress components oy,

and oy, (only these components are non-zero in the isotropic case); the others are weak.

The anisotropic stress components oy, and oy, (see Fig. 8e, f) do not differ greatly in

form from the corresponding isotropic fields. In Fig. 8a—d, it is interesting to observe

that in contrast to the isotropic case there are four additional but weaker stress compo-

nents Oxy, Oyy, 0z, and oyy (in comparison with the other two anisotropic components)

in the anisotropic case reflecting the effects of anisotropy. In particular, in Fig. 8¢, it can
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be seen that the stress component o, of a [111] screw dislocation in bcc Fe possesses a
three-fold symmetry.

The plots of the six non-singular elastic distortion components of an edge dislocation
in bee Fe using simplified anisotropic first strain gradient elasticity are given in Fig. 9.

Next, we give the plots of the non-singular stress components of an edge dislocation
in bce Fe using simplified anisotropic first strain gradient elasticity in Fig. 10. It is seen
from Fig. 10 that in the case of anisotropy the components of stress oy, and oy, of an
edge dislocation are weak in comparison with the other four components oy, oyy, 02,
and oy, but they are not zero as in the isotropic case. The anisotropic stress components
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e B fBy

Oxx» Oyy and oyy (see Fig. 10a, b and d) do not differ greatly in form from the correspond-
ing isotropic fields which is not the case for the stress component o, (see Fig. 10c). Due
to the anisotropy, we have the appearance of two additional but weaker stress compo-
nents (in comparison with the other anisotropic components), namely the oy, (Fig. 10e)
and oy, (Fig. 10f).

As it can be seen in Figs. 7, 8, 9, and 10, the elastic distortion and stress fields of
both screw and edge dislocations are non-singular. The symmetry of the (non-singu-
lar) elastic strain fields (symmetric part of the elastic distortion, see Eq. (2)) of a screw
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dislocation (Fig. 7) and an edge dislocation (Fig. 9) using simplified anisotropic first

strain gradient elasticity are in agreement with the symmetry of the (singular) elastic

strain fields of a screw and an edge dislocation given in the framework of classical

anisotropic elasticity by Yoo and Loh (1971). Moreover, the symmetry of the (non-

singular) stress fields of a screw dislocation (Fig. 8) and an edge dislocation (Fig. 10)

using simplified anisotropic first strain gradient elasticity agree with the symmetry

of the (singular) stress fields of a screw and an edge dislocation given in the frame-

work of classical anisotropic elasticity by Basteckd (1965) and Yoo and Loh (1971)

(see also Steeds (1973)) and with the symmetry of the (non-singular) stress fields of a
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screw and an edge dislocation given in the framework of nonlocal anisotropic elastic-
ity by Lazar et al. (2020).

BCCW

In bee W, we consider dislocations with Burgers vector b = a/2 (111). The Burgers vec-
tor reads b = v/3/2a = 2.741 A. The elastic constants and the corresponding length of
bcc W have been taken from Tables 1 and 2. Using these material constants, we com-
pute the elastic distortion and stress fields in the plane orthogonal to infinite straight
edge and screw 1 /2[111](110) dislocations, which have line directions along the [112]
and [111] axes, respectively.

The plots of the non-singular elastic distortion components of a screw dislocation in
bce W using simplified anisotropic first strain gradient elasticity are given in Fig. 11. It
can be seen that only the components 8,, and f,, give a non-zero contribution since
W is isotropic with respect to the elastic constants (see Table 3). The plots of the non-
singular stress components of a screw dislocation in bcc W using simplified anisotropic
first strain gradient elasticity are given in Fig. 12. It can be seen that only the compo-
nents oy, and oy, give a non-zero contribution since W is isotropic with respect to the
elastic constants (see Table 3).
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The plots of the four non-singular elastic distortion components of an edge disloca-
tion in bcc W using simplified anisotropic first strain gradient elasticity are given in
Fig. 13. It can be seen from Fig. 13 that only the four components By, Byy, Bxy and By
give a non-zero contribution because W is isotropic. The plots of the non-singular
stress components of an edge dislocation in bcc W using simplified anisotropic first
strain gradient elasticity are given in Fig. 14. It can be seen from Fig. 14 that only the
four components oy, Oyy, Ozz and Oyxy give a non-zero contribution since W is iso-
tropic. The shape of the plots of the stresses of an edge dislocation in W given in
Fig. 14 agree with the plots given in Yoo and Loh (1970) (see also Steeds (1973)).

If we compare the dislocation fields of screw and edge dislocations in bcc iron in
BCC Fe section and in bec tungsten in BCC W section we observe some characteristic
differences. On the one hand, bcc iron is strongly anisotropic and gives 6 nonzero dis-
location fields for the elastic strain and the Cauchy stress tensors for both screw and
edge dislocations. On the other hand, bcc tungsten is isotropic and gives 4 nonzero
dislocation fields for the elastic strain and the Cauchy stress tensors of an edge dis-
location and 2 nonzero dislocation fields for the elastic strain and the Cauchy stress
tensors of a screw dislocation. The near-fields of the elastic strain and the Cauchy
stress fields are non-singular due to the regularization and show a characteristic
shape, namely they are zero at the dislocation line.
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FCCCu

In fcc Cu, we consider dislocations with Burgers vector b = a/2 (110). The Burgers
vector reads b = a/+/2 = 2.556 A. The elastic constants and the corresponding length
of fcc Cu have been taken from Tables 1 and 2. Using these material constants, we
compute the elastic distortion and stress fields in the plane orthogonal to infinite
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straight edge and screw 1/2[110](111) dislocations, which have line directions along
the [112] and [110] axes, respectively.

For a screw dislocation in fcc Cu, the plots of the two non-singular elastic distortion
components are given in Fig. 15. The plots of the corresponding two non-singular stress
components of a screw dislocation in fcc Cu using simplified anisotropic first strain
gradient elasticity are given in Fig. 16. The shape and symmetry of the (non-singular)
stress fields of a screw dislocation (Fig. 16) using simplified anisotropic first strain gradi-
ent elasticity agree with the symmetry of the (singular) stress fields of a screw disloca-
tion given in the framework of classical anisotropic elasticity by Yoo and Loh (1970) (see
also Steeds (1973)).

Using simplified anisotropic first strain gradient elasticity, the plots of the six non-sin-
gular elastic distortion components of an edge dislocation in fcc Cu are given in Fig. 17.
The plots of the six non-singular stress components of an edge dislocation in fcc Cu
using simplified anisotropic first strain gradient elasticity are given in Fig. 18. It is seen
from Fig. 18 that in the case of anisotropy the components of stress oy, and oy, of an
edge dislocation are weak in comparison with the other four components oy, oyy, 0,
and oyy, but they are not zero as in the isotropic case (see also Steeds (1973)). In particu-
lar, the component o, shows a characteristic shape due to the elastic anisotropy.

As it can be seen in Figs. 15, 16, 17, and 18, the elastic distortion and stress fields of
both screw and edge dislocations are non-singular.

FCCAI
In fcc Al, we consider dislocations with Burgers vector b = a/2 (110). The Burgers vector
reads b = a/~/2 = 2.863 A. The elastic constants and the corresponding length of fcc Cu
have been taken from Tables 1 and 2. Using these material constants, we compute the
elastic distortion and stress fields in the plane orthogonal to infinite straight edge and
screw 1/2[110](111) dislocations, which have line directions along the [112] and [110]
axes, respectively.

The plots of the non-singular elastic distortion components of a screw dislocation in
fcc Al using simplified anisotropic first strain gradient elasticity are given in Fig. 19. It

can be seen that only the components 8, and g, give a non-zero contribution since
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Al is nearly isotropic with respect to the elastic constants (see Table 3). The plots of the
non-singular stress components of a screw dislocation in fcc Al using simplified aniso-
tropic first strain gradient elasticity are given in Fig. 20. It can be seen that only the com-
ponents oy, and oy, give a non-zero contribution since Al is nearly isotropic with respect
to the elastic constants (see Table 3). The shape of the plots of the stresses of a screw
dislocation in Al given in Fig. 20 agree with the plots given in Yoo and Loh (1970) (see
also Steeds (1973)).

The plots of the four non-singular elastic distortion components of an edge dislocation
in fcc Al using simplified anisotropic first strain gradient elasticity are given in Fig. 21.
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It can be seen from Fig. 21 that only the four components By, Byy, Bry and By, give a

non-zero contribution because Al is nearly isotropic. The plots of the non-singular stress

components of an edge dislocation in fcc Al using simplified anisotropic first strain gra-

dient elasticity are given in Fig. 22. It can be seen from Fig. 22 that only the four compo-

nents oy, Oyy, 0z, and oy give a non-zero contribution since Al is nearly isotropic.

If we compare the dislocation fields of screw and edge dislocations in fcc copper in

FCC Cu section and in fcc aluminum in FCC Al section we observe some characteris-

tic differences. On the one hand, fcc copper is strongly anisotropic and gives 6 nonzero
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dislocation fields for the elastic strain and the Cauchy stress tensors for an edge disloca-
tion and 2 nonzero dislocation fields for the elastic strain and the Cauchy stress tensors
for a screw dislocation with a characteristic “rotated and deformed” shape. On the other
hand, fcc aluminum is nearly isotropic and gives 4 nonzero dislocation fields for the elas-
tic strain and the Cauchy stress tensors of an edge dislocation and 2 nonzero dislocation
fields for the elastic strain and the Cauchy stress tensors of a screw dislocation. The near-
fields of the elastic strain and the Cauchy stress fields are non-singular due to the regu-
larization and show a characteristic shape, namely they are zero at the dislocation line.

Conclusions

In this work, we have presented a non-singular dislocation theory of straight dis-
locations in anisotropic materials using simplified anisotropic first strain gradi-
ent elasticity. This theory is a simplification of Mindlin’s anisotropic first strain
gradient elasticity theory based on the key intuition that it is possible to approxi-
mate the anisotropy of the constitutive tensor of rank six, Dy, as given in
Eq. (11) because the classical anisotropy of the constitutive tensor of rank four,
Ciji, is dominant even within the defects core region. In other words, the theory
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Fig. 21 Non-singular elastic distortion components of an edge dislocation in fcc Al: a By, b By, € By, d Byx

approximates the gradient anisotropy and retains the full classical anisotropy. We
showed in previous work that this is an excellent approximation, in good agree-
ment with atomistic calculations without any fitting constant (see, e.g., Po et al.
(2018)). In the framework of simplified anisotropic first strain gradient elastic-
ity, all necessary Green tensor functions, being non-singular, are derived. Inter-
esting to note that the two-dimensional Green tensor of the twofold anisotropic
Helmholtz-Navier operator is given as sum of a classical part and a part given in
terms of a Meijer G-function. For generalized plane strain of dislocations, the two-
dimensional dislocation key-equations (anisotropic Mura-Willis-like equation for
the non-singular elastic distortion tensor, anisotropic Burgers-like equation for
the non-singular displacement vector, anisotropic Blin’s-like formula for the elastic
strain energy, anisotropic Peach-Koehler-like stress equation, Peach-Koehler force)
have been derived in terms of two-dimensional Green tensor of the twofold aniso-
tropic Helmholtz-Navier operator. Furthermore, the two-dimensional dislocation
key-equations are specified to straight dislocations in anisotropic media and, in
particular, in cubic crystals. All relevant material parameters are computed for bcc
and fcc cubic crystals such as iron (Fe), tungsten (W), copper (Cu) and aluminum
(Al) from a second nearest-neighbour modified embedded-atom-method (2NN
MEAM) interatomic potential. As representative application, the elastic distortion
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and stress fields of screw and edge dislocations of%(lll) Burgers vector in becc iron
and bcc tungsten and screw and edge dislocations of%(llO) Burgers vector in fcc
copper and fcc aluminum have been computed and presented in contour plots,
showing that the obtained dislocation fields are non-singular.

Appendix A: Simplified anisotropic strain gradient elasticity for cubic crystals
For cubic crystals, the simplified anisotropic strain gradient elasticity can be obtained
from Mindlin’s anisotropic strain gradient elasticity as special case if we assume the
following values for the gradient-elastic constants

d1=0: aZZCl%KZ) d3=0: (l4=C44.€2, (15:0,
a6 =0, a;=0, ag=(Cy1—Cip—2Cu)l?, a9=0, ajp=0, (109)
a1 =0.

Using the relations (109), the constitutive tensor of rank six, Eq. (103), reduces to
Dijmian = €% 8mn [Cr2 8581 + Caa (8adjx + 8udjr) + (C11 — Cra — 2Caa)ja]  (110)
and the double stress tensor (14) becomes

Tjm = €*[C12 8dmey + 2C12 dmeij + (Cr1 — Cra — 2Caa)Sjjtsdmea | - (111)
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It is worth noting that the double stress tensor (111) is nothing but the gradient of
the Cauchy stress tensor (13) with one length scale parameter £. The double stress
tensor (111) is much simpler than the expression of the double stress tensor for cubic
crystals in Mindlin’s anisotropic strain gradient elasticity theory (see Lazar et al.
(2022)). In this way, simplified anisotropic strain gradient elasticity has the meaning
of an effective and robuste generalized continuum theory with approximate symme-
try for non-singular dislocations.
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