
Open Access

© The Author(s) 2024, corrected publication 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. 
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in 
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Lazar and Po ﻿
Journal of Materials Science: Materials Theory  (2024) 8:5 
https://doi.org/10.1186/s41313-024-00057-7

Journal of Materials Science:
Materials Theory

Non‑singular straight dislocations 
in anisotropic crystals
Markus Lazar1* and Giacomo Po2 

Abstract 

A non-singular dislocation theory of straight dislocations in anisotropic crystals 
is derived using simplified anisotropic incompatible first strain gradient elasticity 
theory. Based on the non-singular theory of dislocations for anisotropic crystals, all 
dislocation key-formulas of straight dislocations are derived in generalized plane strain, 
for the first time. In this model, the singularity of the dislocation fields at the disloca-
tion core is regularized owing to the nonlocal nature of strain gradient elasticity. The 
non-singular dislocation fields of straight dislocations are obtained in terms of two-
dimensional anisotropic Green functions of simplified anisotropic strain gradient  
elasticity. All necessary Green functions, including the two-dimensional Green tensor 
of the twofold anisotropic Helmholtz-Navier operator and the two-dimensional F-tensor  
of generalized plane strain, are derived as sum of the classical part and a gradient 
part in terms of Meijer G-functions. Among others, we calculate the regularization of 
the Barnett solution for the elastic distortion of straight dislocations in an anisotropic  
crystal. In the framework of simplified anisotropic first strain gradient elasticity, the  
necessary material parameters are computed for cubic materials including aluminum 
(Al), copper (Cu), iron (Fe) and tungsten (W) using a second nearest-neighbour modified  
embedded-atom-method interatomic potential. The elastic distortion and stress fields 
of screw and edge dislocations of 1

2
〈111〉 Burgers vector in bcc iron and bcc tungsten 

and screw and edge dislocations of 1
2
〈110〉 Burgers vector in fcc copper and fcc aluminum 

have been computed and presented in contour plots.

Keywords:  Anisotropic elasticity, Gradient elasticity, Nonlocality, Dislocations, Green 
tensor, Generalized plane strain

Introduction
This paper is dedicated to Professor Nasr Ghoniem, and it celebrates his illustrious and 
exemplary career in the field of the mechanics and physics of defects in crystals. His 
holistic research style, often involving experiments, theory, and numerical modeling, 
has created many valuable opportunities to connect researchers in the field. Our col-
laboration started about ten years ago, and it stemmed from an attempt to include 
characteristic length scales in the elastic theory of dislocations. Strengthened by sev-
eral mutual visits between UCLA and TU Darmstadt, such collaboration led to several 
manuscripts (Po et al. 2014; Lazar and Po 2014, 2015a, b; Seif et al. 2015; Po et al. 2018; 
Lazar and Po 2018a, b; Po et al. 2019; Cui et al. 2019; Lazar et al. 2020). The present work 
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builds on our simplified strain gradient elasticity theory of dislocations in anisotropic 
crystals, and it derives specialized results for straight dislocations.

Classical continuum theories like the theory of linear elasticity are intrinsically size 
independent. For the study of dislocations in anisotropic crystals, classical anisotropic 
elasticity theory is often used (e.g.,  Bacon et  al. (1980); Ting (1996); Hirth and Lothe 
(1982); Steeds (1973)). In two-dimensional (2D) anisotropic elasticity, the displacement 
fields of straight dislocations were derived by Stroh (1958, 1962) using the so-called 
Stroh formalism (see also Ting (1996)) and by Asaro et  al. (1973) using the so-called 
integral formalism (see also Bacon et al. (1980); Balluffi (2012)). The integral formalism 
was originally derived from the Stroh formalism by Barnett and Lothe (1973). In two 
dimensions (2D), the elastic distortion and the strain energy of infinitely long straight 
dislocation lines with Burgers vector b in an anisotropic medium were given by Barnett 
and Swanger (1971). Using the two-dimensional anisotropic Green tensor of general-
ized plane strain, a Burgers-like formula for straight dislocations has been given by Lazar 
(2021) leading to a new derivation of the integral formalism (see also Lazar and Kirchner 
(2021)). It is well-known that classical anisotropic elasticity is not valid at small scales 
leading to singularities in the dislocation fields at the dislocation core. However, the 
near-field behaviour of the dislocation fields is of high importance for applications and 
for the understanding of physics within the dislocation core.

Dislocations are lattice defects of great significance, since they cause plasticity and 
hardening in crystals. A dislocation is a line defect in a crystal breaking locally the trans-
lational symmetry of the perfect crystal and leading in this way to a lower symmetry at 
the defect region of the imperfect crystal, namely at the dislocation core. In fact, the 
dislocation core is just an arrangement of atoms without any crystal symmetry. From 
the crystallographic point of view, the translational symmetry of crystals is disturbed by 
the lattice defect (dislocation) so that the symmetry of the point group of the disloca-
tion core region is lower than the symmetry of the original point group of the perfect 
crystal. The broken symmetry in the dislocation core is important for many physical 
phenomena like plastic deformation, superalloys at high temperature, and birefringence 
(see, e.g., Kosevich (1979)). However, in some cases, it can be useful to look at the imper-
fect crystal from the point of view of approximate symmetry. Moreover, crystals have a 
discrete structure. The range of interaction can never be less than the discrete length, 
which is a finite length proportional to the lattice constant. Discreteness itself gives rise 
to nonlocality.

Therefore, a generalized continuum field theory, which possesses nonlocality and 
avoids singularities at small scales, is needed for an improved modelling of dislocations 
in crystals. Generalized continuum theories such as strain gradient elasticity and nonlo-
cal elasticity are theories valid down to the Ångström-scale (see, e.g., Eringen (2002); 
Lazar (2017); Lazar et al. (2020, 2022)). Mindlin (1964) (see also Mindlin (1968)) derived 
the theory of compatible first strain gradient elasticity. Compatible first strain gradient 
elasticity incorporates the first gradient of the elastic strain tensor in the elastic energy 
in addition to the elastic strain tensor. For the isotropic case, this framework is charac-
terized by the two Lamé constants and five strain gradient parameters leading to two 
characteristic lengths. In the early days of strain gradient elasticity, several trials (e.g., 
Lardner (1971); Rogula (1973)) to find non-singular fields produced by dislocations 
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were not successful, leading only to additional singularities in the dislocation fields. 
More than three decades later, Altan and Aifantis (1997) derived a simplified version 
of Mindlin’s first strain gradient elasticity. Using such a simplified first strain gradient 
elasticity theory with only one characteristic length scale parameter, Gutkin and Aifantis 
(1996, 1997) found, for the first time, non-singular elastic strain fields of screw and edge 
dislocations in the framework of gradient elasticity. Lazar and Maugin (2005) (see also 
Lazar et al. (2005); Lazar (2017)) have shown how non-singular stress and strain fields 
of screw and edge dislocations can be computed in simplified first strain gradient elas-
ticity including eigenstrain fields called simplified incompatible strain gradient elastic-
ity. Such simplified first strain gradient elasticity is a particular version of Mindlin’s first 
strain gradient elasticity where the double stress tensor can be expressed in terms of the 
gradient of the Cauchy stress tensor (see, e.g., Lazar and Maugin (2005); Lazar (2016)). 
Simplified incompatible strain gradient elasticity (gradient elasticity of Helmholtz type) 
provides robust non-singular solutions including one length scale parameter for the 
elastic distortion, plastic distortion, stress and displacement fields of screw and edge dis-
locations. An important mathematical property of simplified strain gradient elasticity is 
that it provides a straightforward regularization based on partial differential equations 
(PDEs) of higher order where the characteristic length scale parameter plays the role of 
a regularization parameter. The non-singular expressions of all dislocation key equations 
were given by Lazar (2012, 2013, 2014) for dislocation loops using simplified strain gra-
dient elasticity. For dislocations, the incompatible version of simplified strain gradient 
elasticity including plastic distortion and dislocation density tensors is used leading to 
an incompatible strain gradient elasticity of defects. These non-singular dislocation key 
equations (Burgers formula, Mura-Willis equation and Peach-Koehler stress formula) 
have been implemented in the UCLA Discrete Dislocation Dynamics (DD) code called 
“model” (Model 2014) and used for applications (Po et al. 2014).

In order to model dislocations in cubic crystals, the extension of isotropic simpli-
fied incompatible strain gradient elasticity towards anisotropic simplified incompatible 
strain gradient elasticity has been given by Lazar and Po (2015a, b). Anisotropic incom-
patible strain gradient elasticity represents an anisotropic gradient elasticity with separa-
ble weak non-locality which is a special version of Mindlin’s anisotropic strain gradient 
elasticity theory with up to six independent length scale parameters. The framework 
models materials where anisotropy is twofold, namely the bulk material anisotropy (far-
field anisotropy) and a weak non-local anisotropy (near-field anisotropy) relevant at the 
Ångström-scale. Using Fourier transform, Lazar and Po (2015a, b) have computed the 
three-dimensional elastic Green tensor of anisotropic incompatible strain gradient elas-
ticity as fundamental solution of the twofold anisotropic Helmholtz-Navier operator as 
integral over the unit sphere in Fourier space. Using anisotropic incompatible strain gra-
dient elasticity, Po et al. (2018) have developed a non-singular theory of three-dimen-
sional dislocation loops in anisotropic crystals. The theory is systematically developed 
as a generalization of the classical anisotropic elasticity theory of dislocation. The non-
singular version of all key equations of anisotropic dislocation theory have been derived 
as line integrals in terms of the three-dimensional elastic Green tensor, including the 
Burgers displacement equation with isolated solid angle, the Peach-Koehler stress equa-
tion, the Mura-Willis equation for the elastic distortion, and the Peach-Koehler force. 
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The anisotropic non-singular dislocation theory is shown to be in good agreement with 
molecular statics calculations without fitting parameters, and unlike its singular coun-
terpart, the sign of stress components does not show reversal as the core is approached. 
In particular, the virial stress of an edge dislocation in α-iron obtained from atomis-
tic calculations is in perfect agreement with the non-singular stress using anisotropic 
incompatible strain gradient elasticity. Furthermore, the theory of anisotropic incompat-
ible strain gradient elasticity has been used by Seif et al. (2015) to model the atomistically 
enabled non-singular anisotropic elastic representation of near-core dislocation stress 
fields in α-iron. Using a magnetic bond-order potential to model atomic interactions in 
iron, molecular statics calculations have been performed, and an optimization proce-
dure has been developed to extract the required length scale parameter. Results showed 
that the method can accurately replicate the magnitude and decay of the near-core dis-
location stresses even for atoms belonging to the dislocation core itself. Comparisons 
with the singular isotropic elasticity and anisotropic elasticity theories have shown that 
the non-singular anisotropic gradient elasticity theory of dislocations leads to a substan-
tially more accurate representation of the stresses of both screw and edge dislocations 
near the dislocation core, in some cases showing improvements in accuracy of up to an 
order of magnitude. Therefore, as shown by Po et al. (2018) and Seif et al. (2015) results 
for dislocations in anisotropic crystals obtained by using anisotropic incompatible strain 
gradient elasticity theory are in agreement with atomistic results. The main advantage of 
those dislocation key-formulas is the absence of any singularity and that they are valid 
even in the dislocation core region. Until now, for non-singular fields of straight dislo-
cations in anisotropic crystals the three-dimensional dislocation-key equations and the 
three-dimensional elastic Green tensor have been applied using the projection from 3D 
to 2D. However, the two-dimensional elastic Green tensor and the analytical expressions 
of straight dislocations are still lacking in the literature of anisotropic strain gradient 
elasticity.

What about dislocations in Mindlin’s first strain gradient elasticity? For the incompat-
ible version of Mindlin’s first strain gradient elasticity, the two Lamé constants and the 
five strain gradient parameters lead to four characteristic lengths due to the presence of 
the eigenstrain fields of dislocations. Using the incompatible version of Mindlin’s first 
strain gradient elasticity, non-singular and smooth displacement fields of screw and edge 
dislocations have been given by Delfani and Tavakol (2019) and Delfani et  al. (2020), 
respectively. All non-singular dislocation fields including elastic strain, stress, and dis-
placement fields of screw and edge dislocations have been computed by Lazar (2021) in 
the framework of incompatible first strain gradient elasticity of Mindlin type. The elastic 
fields of screw and edge dislocations have a similar form in simplified incompatible first 
strain gradient elasticity and in incompatible first strain gradient elasticity of Mindlin 
type (see, e.g., Lazar (2021, 2022)). Only the shape of the dislocation core of an edge 
dislocation with asymmetric form due to its inherent asymmetry can be modelled more 
realistic in incompatible first strain gradient elasticity of Mindlin type  (Lazar 2021). 
Somehow, incompatible first strain gradient elasticity of Mindlin type is more sophisti-
cated than simplified incompatible first strain gradient elasticity. For the isotropic case 
and the anisotropic case, the stress fields of straight dislocations and dislocation loops 
computed in the framework of simplified incompatible first strain gradient elasticity 



Page 5 of 40Lazar and Po ﻿Journal of Materials Science: Materials Theory  (2024) 8:5	

are in full agreement with the corresponding stress fields obtained in Eringen’s nonlocal 
elasticity of Helmholtz type (see, e.g., Eringen (2002); Lazar et al. (2005, 2020)). Thus, 
simplified incompatible first strain gradient elasticity is a very robust and powerful the-
ory for an efficient modelling of dislocation fields without singularities at small scales. 
Moreover, the importance of simplified first strain gradient elasticity as non-singular 
dislocation continuum theory in comparison with other existing non-singular disloca-
tion continuum theories has been given in Lazar (2017) and Po et al. (2014). Moreover, 
the use of nonlocality to describe the elastic fields within defect cores has received a 
renewed attention (e.g., Lazar and Agiasofitou (2011); Taupin et al. (2014, 2017); Lazar 
et al. (2020)). Zhang et al. (2016) considered the effects of core-spreading dislocation in 
anisotropic bi-materials. Semicoherent heterophase interfaces with core-spreading dis-
location structures in magneto-electro-elastic multilayers under external surface loads 
were investigated in Vattré and Pan (2019).

The purpose of the present work is to derive the non-singular dislocation key-formulas 
of straight dislocations in an anisotropic medium using non-singular two-dimensional 
Green functions of simplified anisotropic first strain gradient elasticity. In A non-sin-
gular dislocation theory based on anisotropic incompatible strain gradient elasticity 
section, we review the framework of a non-singular dislocation theory based on aniso-
tropic incompatible strain gradient elasticity. All necessary Green functions, including 
the two-dimensional Green tensor of the twofold anisotropic Helmholtz-Navier and the 
two-dimensional F-tensor of generalized plane strain, are derived in Relevant Green 
functions in non-singular dislocation theory section. In Dislocation key-equations sec-
tion, the dislocation key-equations of straight dislocations are computed for generalized 
plane strain. In Straight dislocations in cubic materials section, the dislocation fields of 
straight dislocations in cubic materials are given using simplified anisotropic first strain 
gradient elasticity. The necessary material parameters are given for cubic materials such 
as aluminum (Al), copper (Cu), iron (Fe) and tungsten (W) computed from a second 
nearest-neighbour modified embedded-atom-method (2NN MEAM) interatomic poten-
tial in Material parameters for cubic crystals section. The characteristic length scale of 
simplified anisotropic first strain gradient elasticity is computed based on the material 
parameters computed from a 2NN MEAM interatomic potential. As an application, the 
non-singular elastic fields of screw and edge dislocations of 12 〈111〉 Burgers vector in bcc 
iron and bcc tungsten and screw and edge dislocations of 12 〈110〉 Burgers vector in fcc 
copper and fcc aluminum are computed and presented in equal-value contour plots in 
Elastic distortion and stress fields of screw and edge dislocations in cubic crystals sec-
tion. Some technical remarks are given in the Appendix.

A non‑singular dislocation theory based on anisotropic incompatible strain 
gradient elasticity
Here, we consider the eigendistortion problem of dislocations in an anisotropic crys-
tal. We consider an infinite elastic body in three-dimensional space and use the prop-
erty that the gradient of the displacement field u can be additively decomposed into an 
incompatible elastic distortion tensor β and an incompatible plastic distortion (eigendis-
tortion) tensor βP:
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The elastic strain tensor, e , is the symmetric part of β:

In dislocation theory, the dislocation density tensor, α , is defined in terms of the 
incompatible plastic distortion tensor (see, e.g., Kröner (1958); deWit (1973a); Lazar 
(2014))

and can be also expressed in terms of the incompatible elastic distortion tensor

where ǫjkl indicates the Levi-Civita tensor. Sometimes, the tensor α is called the Kröner-
Nye tensor. Moreover, the dislocation density tensor satisfies the Bianchi identity of 
dislocations

which means that dislocations cannot end inside the body.

Mindlin’s anisotropic first strain gradient elasticity

In Mindlin’s anisotropic first strain gradient elasticity theory (Mindlin 1964, 1968, 1972), 
the strain energy density for a homogeneous and centrosymmetric1 material is given by 
(see also Lazar and Kirchner (2007); Lazar et al. (2022))

where Cijkl is the fourth-rank constitutive tensor of elastic constants possessing the 
minor symmetries

and the major symmetry

while Dijmkln is the sixth-rank constitutive tensor of the gradient-elastic constants pos-
sesses the minor symmetries

and the major symmetry

(1)∂jui = βij + βP
ij , i, j = 1, 2, 3 .

(2)eij =
1

2
βij + βji .

(3)αij = −ǫjkl∂kβ
P
il

(4)αij = ǫjkl∂kβil ,

(5)∂jαij = 0 ,

(6)W =
1

2
Cijkleijekl +

1

2
Dijmkln∂meij∂nekl ,

(7)Cijkl = Cjikl = Cijlk

(8)Cijkl = Cklij

(9)Dijmkln = Djimkln = Dijmlkn

1  Due to the centrosymmetry, there is no coupling between eij and ∂mekl.
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For the general anisotropic case (triclinic), the constitutive tensor Cijkl has 21 
independent elastic constants and the constitutive tensor Dijmkln has 171 independ-
ent gradient-elastic constants (see, e.g.,  Auffray et  al. (2013)). For cubic crystals of 
point group m3m , the constitutive tensor Cijkl has 3 independent elastic constants 
and the constitutive tensor Dijmkln has 11 independent gradient-elastic constants (see, 
e.g., Mindlin (1968); Auffray et al. (2013); Lazar et al. (2022); Lazar and Agiasofitou 
(2023)).

Simplified anisotropic first strain gradient elasticity

In simplified anisotropic first strain gradient elasticity, it is assumed (see also Lazar and 
Kirchner (2007); Gitman et al. (2010); Lazar and Po (2015b); Po et al. (2018); Polizzotto 
(2018)) that the sixth-rank constitutive tensor Dijmkln can be decomposed into the prod-
uct of the fourth-rank constitutive tensor Cijkl and a second-rank tensor �mn of gradient 
length scale parameters with units of squared length, that is

Note that Eq. (11) represents the constitutive assumption of simplified anisotropic first 
strain gradient elasticity. As consequence of the major symmetry  (10) and of positive 
definiteness of W , the tensor �mn must be symmetric and positive definite. The classi-
fication of the gradient length scale tensor �mn for triclinic, monoclinic, orthorhombic, 
tetragonal, hexagonal, trigonal, cubic, and isotropic materials has been given in Lazar 
and Po (2015b); Lazar et al. (2020). For the general anisotropic case (triclinic), the gra-
dient length scale tensor �mn has 6 independent gradient length scale parameters. The 
decomposition (11) represents the separation of two anisotropies present in anisotropic 
strain gradient elasticity, namely the elastic bulk anisotropy (elastic moduli anisotropy) 
via Cijkl and the anisotropy of the gradient length scale parameters (internal length ani-
sotropy or weak nonlocal anisotropy at small scales) via �mn . The latter, which is not pre-
sent in classical anisotropic elasticity, reflects the discrete nature of matter and becomes 
relevant in the presence of defects at the Ångström-scale as dislocation core anisotropy. 
The decomposition  (11) is not ad hoc because it considers that the gradients ∂m and 
∂n in Eq. (6) give rise to length scale effects via �mn . In general, the symmetries of the 
tensors Cijkl and �mn can be different due to the twofold anisotropy. Also note that the 
decomposition  (11) in strain gradient elasticity corresponds to the twofold anisotropy 
present in Eringen’s nonlocal elasticity theory, namely the elastic moduli anisotropy of 
the bulk described by Cijkl and the anisotropy of the nonlocality at small scales described 
by a nonlocal kernel function α (see Eringen (1978, 2002); Lazar and Agiasofitou (2011); 
Lazar et al. (2020)). Such a twofold anisotropy can be used to model the anisotropy of 
the dislocation core in an anisotropic crystal (as mentioned in the Introduction), namely 
the symmetry of the perfect crystal via Cijkl and the lower symmetry of the dislocation 
core of the imperfect crystal via �mn.

Using Eq. (11), the strain energy density (6) reduces to

(10)Dijmkln = Dklnijm .

(11)Dijmkln = Cijkl �mn .
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The Cauchy stress tensor σ and the double stress tensor τ are given by

An important property of simplified strain gradient elasticity theory is the remark-
able fact that the double stress tensor (14) is nothing but the first gradient of the Cauchy 
stress tensor (13) multiplied by the length scale tensor �mn (see also Lazar and Maugin 
(2005)). This is the result of the decomposition (11). Using the constitutive relations (13) 
and (14), the strain energy density (12) can be written in the “compact” form

in terms of the stress tensor σij and the elastic strain tensor eij and their first gradient. 
The strain energy density (15) has a remarkable symmetry in the stress and elastic strain 
tensors.

The condition of the static equilibrium is given by the Euler-Lagrange equation and 
reads as

In terms of the Cauchy stress and double stress tensors, Eq. (16) reduces to

Using Eq. (14), Eq. (17) simplifies to

where

is a scalar anisotropic Helmholtz operator. Using Eqs. (1) and (13), Eq. (18) can be cast 
in the following twofold anisotropic inhomogeneous Helmholtz-Navier equation for the 
displacement vector

with the anisotropic Navier operator

(12)W =
1

2
Cijkleijekl +

1

2
�mnCijkl ∂meij∂nekl .

(13)σij =
∂W

∂eij
= Cijklekl ,

(14)τijm =
∂W

∂(∂meij)
= �mnCijkl∂nekl = �mn∂nσij .

(15)W =
1

2
σijeij +

1

2
�mn(∂mσij)(∂neij)

(16)
δW

δui
:=

∂W

∂ui
− ∂j

∂W

∂(∂jui)
+ ∂m∂j

∂W

∂(∂m∂jui)
= 0 .

(17)∂j
(

σij − ∂mτijm
)

= 0 .

(18)L∂jσij = 0 ,

(19)L = 1−�mn∂m∂n

(20)LLikuk = Cijkl∂jLβ
P
kl

(21)Lik = Cijkl∂j∂l .
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The “source-term” in Eq. (20) is given by the plastic distortion tensor βP . Equation (20) 
is an inhomogeneous partial differential equation of fourth order and can be written as 
system of two partial differential equations (Lazar 2014), namely an anisotropic inhomo-
geneous Helmholtz-Navier equation for the displacement vector u:

where the “source-term” in Eq. (22) is given by the classical plastic distortion tensor βP,0 
and an inhomogeneous Helmholtz equation for the plastic distortion tensor βP:

Moreover, the dislocation density tensor  (3) also satisfies an inhomogeneous Helm-
holtz equation

where α0 denotes the classical dislocation density tensor.

Relevant Green functions in non‑singular dislocation theory
In this section, all two-dimensional Green functions necessary in non-singular disloca-
tion theory of straight dislocation are given.

Two‑dimensional Green tensor of the twofold anisotropic Helmholtz‑Navier operator

First, we derive the two-dimensional Green tensor of the twofold anisotropic Helm-
holtz-Navier Eq.  (22) which is a partial differential equation of fourth order. The two-
dimensional Green tensor of the twofold anisotropic Helmholtz-Navier operator LLik is 
defined by

where x ∈ R
2 . In Eq.  (25), δij is the Kronecker symbol and δ(.) is the two-dimensional 

Dirac delta-function.
Since the Helmholtz-Navier operator LLik is the product of the Helmholtz operator L 

and the Navier operator Lik , the corresponding Green tensor of the Helmholtz-Navier 
Eq. (25) can be written as the convolution of the Green function GL of the anisotropic 
Helmholtz equation and the “classical” Green tensor G0

ij of the anisotropic Navier opera-
tor, that is

with GL and G0
ij satisfying, respectively:

(22)LLikuk = Cijkl∂jβ
P,0
kl ,

(23)LβP
kl = β

P,0
kl .

(24)Lαkl = α0
kl ,

(25)LLikGkj(x) = −δijδ(x) , i, j, k = 1, 2, 3 ,

(26)Gij = GL ∗ G0
ij = G0

ij ∗ G
L

(27)LGL(x) = δ(x) ,

(28)LikG
0
kj(x) = −δijδ(x) ,
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where the anisotropic Helmholtz operator L and the anisotropic Navier operator Lik are 
given by

Here ∗ denotes the spatial convolution and � is a symmetric 2× 2 matrix:

The corresponding inverse matrix �−1 = adj�/det� is given by

Equation  (26) reveals that the Green function GL plays the role of an anisotropic 
regularization function for the singular Green tensor of classical elasticity, G0

ij . The 
two-dimensional anisotropic Green function GL of Eq.  (27) reads (see  Lazar and 
Agiasofitou (2011); Lazar et al. (2020))

where K0 denotes the modified Bessel function of order 0. Notice that Eq. (33) possesses 
an independent anisotropy due to the tensor �mn with 3 independent components �11 , 
�12 , �22 describing anisotropic length scale effects in the x1x2 plane. In order that �mn 
with m, n = 1, 2 is positive definite, it is necessary and sufficient that the following ine-
qualities are satisfied  (see  Lazar and Agiasofitou (2011); Lazar and Po (2015b); Lazar 
et al. (2020))

The two-dimensional Green tensor of the Navier operator in classical anisotropic 
elasticity is given by Lazar (2021)

where γ is the Euler constant ( γ ≈ 0.57721 . . .).

Solution using the method of Fourier transform

The two-dimensional Fourier transform of Eq. (25) gives for the Green tensor in Fou-
rier space Ĝkj(k):

where

(29)L = 1−�mn∂m∂n , m, n = 1, 2

(30)Lik = Cijkl∂j∂l , i, k = 1, 2, 3 j, l = 1, 2 .

(31)�mn =

(

�11 �12
�12 �22

)

.

(32)�−1
mn =

1

�11�22 −�2
12

(

�22 −�12
−�12 �11

)

.

(33)GL(x) =
1

2π

1
√
det�

K0

(

√

xT (�−1)x

)

,

(34)�11 > 0 , det� > 0 .

(35)G0
ij(x) = −

1

4π2

∫ 2π

0
L̂−1
ij (κ)

[

γ + ln |κ · x|
]

dφ ,

(36)(1+�mnkmkn)L̂ik Ĝkj(k) = δij , k ∈ R
2 ,
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is the Navier operator in Fourier space. Now, if we define the two-dimensional unit 
vector

then the solution of Eq. (36) in Fourier space is given by

In Eq. (39), we have introduced the function �(κ)

The two-dimensional Green tensor in real space is obtained by the two-dimensional 
inverse Fourier transform of Eq. (39)

In Eq.  (41), dV̂ = k dk dφ indicates the two-dimensional volume element in Fourier 
space in polar coordinates, and φ ( 0 < φ ≤ 2π ) is an appropriate polar angle scanning 
a unit circle κ2 = 1 . The two-dimensional unit vector κ(φ) varies with φ and can be 
expressed as

where the unit vectors ê1 and ê2 represent a Cartesian basis in the two dimensional 
plane.2

Integration in k is performed using the relations

and

(37)L̂ik(k) = Cijklkjkl , i, k = 1, 2, 3 j, l = 1, 2

(38)κ =
k

k
, k =

√

k21 + k22 , κ2 = 1 ,

(39)
Ĝij(k) =

1

k2
1

1+ k2�mnκmκn
L̂−1
ij (κ)

=
1

k2
1

1+ �2(κ) k2
L̂−1
ij (κ) .

(40)�(κ) =
√

�mnκmκn , m, n = 1, 2 .

(41)

Gij(x) =
1

4π2

∫

R2

L̂−1
ij (κ) cos(k · x)

k2(1+ �2(κ) k2)
dV̂

=
1

4π2

∫ 2π

0
L̂−1
ij (κ)

∫ ∞

0

cos(kκ · x)

k(1+ �2(κ) k2)
dk dφ

=
1

4π2

∫ 2π

0
L̂−1
ij (κ)

∫ ∞

0

(

1

k
−

k

k2 + 1/�2(κ)

)

cos(kκ · x) dk dφ .

(42)κ(φ) = cosφ ê1 + sin φ ê2 ,

(43)
∫ ∞

0

1

k
cos(k κ · x) dk = −γ − ln |κ · x|

(44)
∫ ∞

0

k

k2 + 1/�2
cos(k κ · x) dk =

√
π

2
G 2,1

1,3

(

(κ · x)2

4�2

∣

∣

∣

∣

0
0, 0, 1

2

)

,

2  In the numerical evaluation of integrals over the unit circle it is convenient to consider a local reference system such 
that ê1 = x/�x�.
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where Ga,b
c,d () is the Meijer G-function (see Erdélyi et al. (1981); Gradshteyn and Ryzhik 

(2000)). Hence, Eq. (41) can be expressed as:

It can be seen that the Green tensor (45) of the Helmholtz-Navier operator is a sum 
of the Green tensor (35) of the Navier operator and a gradient part given in terms of 
the Meijer G-function. The two-dimensional Green tensor (45) is an integral over the 
unit circle in Fourier space, whereas the three-dimensional Green tensor is an inte-
gral over the unit sphere in Fourier space (see also Lazar and Po (2015b)).

The asymptotics of the Meijer G-function with the above values is

where z = (κ ·x)2

4�2(κ)
 and ψ(0) is the digamma function. The logarithmic singularity of the 

Green tensor  (35) of the Navier operator is removed (regularized) in the Green ten-
sor (45) of the Helmholtz-Navier operator by the near field of the Meijer G-function (see 
Eq. (46)). The integrand (bracket) of Eq. (45) is plotted in Fig. 1. Therefore, the integrand 
of the Green tensor  (45) of the Helmholtz-Navier operator is finite and non-singular, 
namely

The Meijer G-function in Eq.  (45) can be expressed in terms of elementary func-
tions, suitable for numerical manipulation and implementation, as

(45)

Gij(x) = −
1

4π2

∫ 2π

0
L̂−1
ij (κ)

[

γ + ln |κ · x| +

√
π

2
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

0
0, 0, 1

2

)]

dφ .

(46)G 2,1
1,3

(

z

∣

∣

∣

∣

0
0, 0, 1

2

)

≈ −
1

√
π

(

γ − ψ(0)(1/2)+ ln z
)

+O(z) for z ≪ 1 ,

(47)Gij(0) =
1

4π2

∫ 2π

0
L̂−1
ij (κ) ln

(

1/�(κ)
)

dφ .

Fig. 1  Plot of the integrand of the Green tensor (45) (blue line) and classical logarithmic singularity (dashed 
line) with r = (κ · x) and � = 1



Page 13 of 40Lazar and Po ﻿Journal of Materials Science: Materials Theory  (2024) 8:5	

where the hyperbolic sine integral function is given by

and the hyperbolic cosine integral function is given by

Note that Chi(z) has a branch cut discontinuity in the complex z plane running from −∞ 
to 0, whereas Shi(z) has no branch cut discontinuity.

Given Gij as an integral over the unit circle in Fourier space, its gradient is obtained as:

The asymptotics of the Meijer G-function with the above values are

and

(48)G 2,1
1,3

(

z

∣

∣

∣

∣

0
0, 0, 1

2

)

= −
2
√
z

[

Chi
(

2
√
z
)

cosh
(

2
√
z
)

− Shi
(

2
√
z
)

sinh
(

2
√
z
)]

,

(49)Shi(z) =
∫ z

0
sinh(t)/t dt

(50)Chi(z) = γ + ln(z)+
∫ z

0
(cosh(t)− 1)/t dt .

(51)
∂mGij(x) = −

1

4π2

∫ 2π

0
L̂−1
ij (κ)

κm

κ · x

×

[

1−

√
π (κ · x)2

4�2(κ)
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

−1
−1, 0, − 1

2

)]

dφ .

(52)
G 2,1

1,3

(

z

∣

∣

∣

∣

−1
−1, 0, − 1

2

)

≈
1

√
πz

+
2

√
π

(

γ − ψ(0)(3/2)+ ln z
)

+O(z)

for z ≪ 1

(53)
√
πz G 2,1

1,3

(

z

∣

∣

∣

∣

−1
−1, 0, − 1

2

)

≈ 1+ 2
(

γ − ψ(0)(3/2)+ ln z
)

z +O(z2) .

Fig. 2  Plot of the integrand of the gradient of the Green tensor, Eq. (51), (blue line) and classical 
1/r-singularity (dashed line) with r = (κ · x) and � = 1
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The “classical” 1/r-singularity is removed (regularized) in the integrand of Eq.  (51) 
due to the near field of the Meijer G-function (see Eq. (53)). Therefore, the integrand of 
Eq. (51) is non-singular, namely zero at the origin (see Fig. 2).

The Meijer G-function in Eq. (51) can be expressed in terms of elementary functions, 
suitable for numerical manipulation and implementation, as

Two‑dimensional F‑tensor in strain gradient anisotropic elasticity

The so-called F-tensor has been introduced by Kirchner (1984) (see also  Lazar and 
Kirchner (2013); Po et al. (2018); Lazar et al. (2020)). The two-dimensional F-tensor is 
defined by (see also Lazar (2021))

where the two-dimensional Green function of the Laplace operator reads (see, e.g., 
Vladimirov (1971))

with

where r =
√

x21 + x22 .
Using the two-dimensional Fourier transform, Eq. (55) becomes

The two-dimensional inverse Fourier transform gives the two-dimensional F-tensor

Therefore, the integrand of the F-tensor (59) is finite and non-singular, namely

From a numerical viewpoint, it is noteworthy that the Green tensor (45), its gradient 
(51), and the F-tensor (59) are even functions of k . Hence the integral over the unit circle 
appearing in their expressions can be expressed by twice the integral over a semicircle.

(54)
G 2,1

1,3

(

z

∣

∣

∣

∣

−1
−1, 0, − 1

2

)

=
1

√
πz

−
2

√
πz

[

Shi
(

2
√
z
)

cosh
(

2
√
z
)

− Chi
(

2
√
z
)

sinh
(

2
√
z
)]

.

(55)Fmnij = −∂m∂nGij ∗ G
� , i, j = 1, 2, 3 m, n = 1, 2 ,

(56)�G�(x) = δ(x)

(57)G� =
1

2π
ln r ,

(58)F̂mnij(k) =
1

k2
κmκn

1+ �2(κ) k2
L̂−1
ij (κ) , i, j = 1, 2, 3 m, n = 1, 2 .

(59)
Fmnij(x) = −

1

4π2

∫ 2π

0
L̂−1
ij (κ) κmκn

×

[

γ + ln |κ · x| +

√
π

2
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

0
0, 0, 1

2

)]

dφ .

(60)Fmnij(0) =
1

4π2

∫ 2π

0
L̂−1
ij (κ) κmκn ln

(

1/�(κ)
)

dφ .
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Two‑dimensional Green function of the anisotropic Laplace‑Helmholtz equation

The Green function of the anisotropic Laplace-Helmholtz equation is defined by

and in Fourier space it becomes

Using the two-dimensional inverse Fourier transform, the Green function of the aniso-
tropic Laplace-Helmholtz equation is obtained for general anisotropy

and for the isotropic or cubic case with only one length scale parameter ℓ , it reduces to

Dislocation key‑equations
In this section, we derive expressions for dislocation key-equations of straight disloca-
tion from the general 3D dislocation key-equations.

General case

In the non-singular theory of dislocations, which is based on simplified anisotropic 
strain gradient elasticity, the 3D dislocation key-equations read (Po et al. 2018; Lazar and 
Po 2018a)

•	 anisotropic Mura-Willis-like equation for the non-singular elastic distortion tensor 

•	 anisotropic Burgers-like equation for the non-singular displacement vector 

•	 anisotropic Blin’s-like formula for the elastic interaction energy 

•	 anisotropic Peach-Koehler-like stress equation for the Cauchy stress tensor 

(61)�LG�L(x) = δ(x)

(62)
Ĝ�L(k) = −

1

k2
1

1+ �2(κ) k2

= −
1

k2
+

1

k2 + 1/�2(κ)
.

(63)G�L(x) =
1

2π
ln r +

√
π

8π2

∫ 2π

0
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

0
0, 0, 1

2

)

dφ

(64)G�L(x) =
1

2π

(

ln r + K0
(

r/ℓ
))

.

(65)βik = ǫknrCjmln∂mGij ∗ α
0
lr

(66)ui = ∂kG
�L ∗ β

P,0
ik − ǫknrCjklmFmnij ∗ α

0
lr

(67)W(AB) =

∫

R3
ǫqnsCpsitǫtkrCjmlk

(

Fmnij ∗ α
0(A)
lr

)

α0(B)
pq dV

(68)σpq = CpqikǫknrCjmln∂mGij ∗ α
0
lr
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•	 Peach-Koehler force for a dislocation density in the stress field of another dislocation 

Moreover, the dislocation density tensor and the plastic dislocation tensor are given by

and

where it can be seen that the Green function GL plays the role as a dislocation spreading 
function (Lazar 2014).

Generalized plane strain of straight dislocations

Now, we consider straight dislocations with line direction parallel to the x3-axis belong-
ing to the framework of generalized plane strain which is 2D elasticity consisting of 
plane strain and anti-plane strain. In general, the plane strain and antiplane strain fields 
do not decouple due to the anisotropy. Only for an orthotropic system, the plane strain 
and antiplane strain fields are separable. In generalized plane strain, all dislocation fields 
are independent of the variable x3 , all derivatives with respect to the x3-axis vanish, 
∂3 = 0 and x ∈ R

2 . Therefore, all dislocation fields depend only on x1 and x2 and are two-
dimensional fields.

For generalized plane strain of dislocations, Eqs. (70) and (71) become

and

For generalized plane strain of dislocations, the 2D dislocation-key Eqs. (65)–(69) 
reduce to

•	 anisotropic Mura-Willis-like equation for the non-singular elastic distortion tensor 

•	 anisotropic Burgers-like equation for the non-singular displacement vector 

 with i, j, l = 1, 2, 3 and k ,m, n = 1, 2

•	 anisotropic Blin’s-like formula for the elastic strain energy 

(69)F
PK
k =

∫

R3
ǫkjiσljα

0
li dV .

(70)αij = GL ∗ α0
ij

(71)βP
ij = GL ∗ β

P,0
ij ,

(72)αi3 = GL ∗ α0
i3 , i = 1, 2, 3

(73)βP
i2 = GL ∗ β

P,0
i2 , i = 1, 2, 3 .

(74)βik = ǫkn3Cjmln∂mGij ∗ α
0
l3 , i, j, l = 1, 2, 3 k ,m, n = 1, 2

(75)ui = ∂2G
�L ∗ β

P,0
i2 − ǫkn3CjklmFmnij ∗ α

0
l3

(76)W(AB) =

∫

R3
ǫ3nsCpsitǫtk3Cjmlk

(

Fmnij ∗ α
0(A)
l3

)

α
0(B)
p3 dV
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 with i, j, l, p = 1, 2, 3 and k ,m, n, s, t = 1, 2

•	 anisotropic Peach-Koehler-like stress equation equation for the Cauchy stress tensor 

•	 Peach-Koehler force

Dislocation key‑equations of straight dislocations

Now, we consider straight dislocations with line direction parallel to the x3-axis and 
defect surface in the x1x3 half plane for negative x1 ( x2 = 0 , x1 < 0 ). For a straight dislo-
cation with Burgers vector bi located at (x1, x2) = (0, 0) , the classical dislocation density 
and the classical plastic distortion are given by (see also deWit (1973b); Mura (1987))

and

which possesses a discontinuity at x2 = 0 for x1 < 0 . Here H(.) denotes the Heaviside 
step function.

If we substitute Eqs. (79) and (80) into Eqs. (72) and (73), respectively, we obtain for 
the dislocation density of a straight dislocation

and for the plastic distortion of a straight dislocation

where x′ = (X , x2) . In general, the dislocation density tensor defines the dislocation 
core region and determines the shape and size of the dislocation core (see also Hartley 
and Mishin (2005); Lazar (2013, 2017)). For that reason, one can call αij the dislocation 
core tensor. The dislocation density (81) is only non-zero in the dislocation core. Equa-
tion (81) models the dislocation core in the x1x2-plane with anisotropic shape (core ani-
sotropy) depending on the 3 length scale parameters �11 , �22 and �12 . The dislocation 
density  (81) gives with 3 length scale parameters �11 , �22 and �12 a rotated elliptical 
dislocation core shape (see Fig. 3) and with 2 length scale parameters �11 and �22 an 
elliptical dislocation core shape (see Fig. 4). For �11 = �22 and �12 = 0 , the dislocation 
core has a circular shape (see below).

Substituting Eq.  (79) into Eq.  (74), the non-singular elastic distortion tensor of a 
straight dislocation in an infinite anisotropic medium reads as

(77)σpq = Cpqikǫkn3Cjmln∂mGij ∗ α
0
l3

(78)F
PK
k =

∫

R3
ǫkj3σljα

0
l3 dV .

(79)α0
i3 = bi δ(x1)δ(x2)

(80)β
P,0
i2 = bi δ(x2)H(−x1) = bi δ(x2)

∫ ∞

x1

δ(X) dX ,

(81)αi3 =
bi

2π

1
√
det�

K0

(

√

xT (�−1)x

)

(82)βP
i2 =

bi

2π

1
√
det�

∫ ∞

x1

K0

(

√

x′T (�−1)x′
)

dX ,
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and explicitly it becomes using Eq. (51)

Equation  (84) represents the gradient-extension of the Barnett-Swanger  (Barnett and 
Swanger 1971) formula for the elastic distortion of a straight dislocation in classical aniso-
tropic elasticity. In Eq. (84), L̂−1

ij (κ) describes the bulk anisotropy and �2(κ) describes the 
core anisotropy.

Using Eq. (79), the Cauchy stress tensor of a straight dislocation (77) becomes

(83)βik(x) = blǫkn3Clnjm∂mGij(x)

(84)
βik(x) = −

bl

4π2 ǫkn3Clnjm

∫ 2π

0
L̂−1
ij (κ)

κm

κ · x

×

[

1−

√
π (κ · x)2

4�2(κ)
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

−1
−1, 0, − 1

2

)]

dφ .

(85)σpq(x) = blCpqikǫkn3Clnjm∂mGij(x) .

Fig. 3  Contour plot of the dislocation density αi3 of a straight dislocation (normalized by the Burgers vector 
bi ) for �11 = 2 Å2 , �22 = 1 Å2 and �12 = 1/2 Å2

Fig. 4  Contour plot of the dislocation density αi3 of a straight dislocation (normalized by the Burgers vector 
bi ) for �11 = 2 Å2 , �22 = 1 Å2 and �12 = 0
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Using Eq. (51), it reads as

Using Eqs. (79) and (80), the displacement vector of a straight dislocation (75) reduces 
to

where the F-tensor is given in Eq. (59). Eq. (87) is the gradient-extension of the displace-
ment field of a straight dislocation in classical anisotropic elasticity (see Lazar (2021)).

Using Eq.  (79), the elastic interaction energy per unit length of two straight disloca-
tions with Burgers vectors b(A)l  and b(B)p  reads

If we use Eq.  (79), the Peach-Koehler force per unit length of a straight dislocation 
with Burgers vector bl in a stress field σjl reads as

Straight dislocations in cubic materials

Let us consider straight dislocations in cubic materials. For cubic symmetry, 
�11 = �22 = ℓ2 and �12 = 0 , the dislocation density (81) and the plastic distortion (82) 
simplify to

The dislocation density  (90) is plotted in Fig.  5 and gives the shape and size of the 
dislocation core of a straight dislocation in cubic crystals. Due to only one length scale 
parameter ℓ the dislocation core possesses a circular shape. Such a shape of the dislo-
cation core of straight dislocations in cubic crystals is in good agreement with experi-
mental results (see, e.g., Kret et  al. (2000); Hartley and Mishin (2005)). The plastic 
distortion (91) is non-singular, smooth and finite as it can be seen in Fig. 6.

The elastic distortion tensor (84) and the Cauchy stress tensor (86) reduce to

(86)
σpq(x) = −

bl

4π2 Cpqikǫkn3Clnjm

∫ 2π

0
L̂−1
ij (κ)

κm

κ · x

×

[

1−

√
π (κ · x)2

4�2(κ)
G 2,1

1,3

(

(κ · x)2

4�2(κ)

∣

∣

∣

∣

−1
−1, 0, − 1

2

)]

dφ .

(87)

ui(x) =
bi

2π

(

arctan
x2

x1
+ πH(−x1) sgn(x2)

+

√
π

4π
∂2

∫ ∞

x1

∫ 2π

0
G 2,1

1,3

(

(κ · x′)2

4�2(κ)

∣

∣

∣

∣

0
0, 0, 1

2

)

dφ dX

)

− blǫkn3CjklmFmnij(x) ,

(88)W(AB) = b
(A)
l b(B)p ǫ3nsCpsitǫtk3CjmlkFmnij(x

(A) − x
(B)) .

(89)F
PK
k = ǫkj3σjlbl .

(90)αi3 =
bi

2π

1

ℓ2
K0

(

√

x21 + x22

ℓ

)

,

(91)βP
i2 =

bi

2π

1

ℓ2

∫ ∞

x1

K0

(

√

X2 + x22

ℓ

)

dX .
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and

respectively.

(92)
βik(x) = −

bl

4π2 ǫkn3Clnjm

∫ 2π

0
L̂−1
ij (κ)

κm

κ · x

×

[

1−

√
π (κ · x)2

4ℓ2
G 2,1

1,3

(

(κ · x)2

4ℓ2

∣

∣

∣

∣

−1
−1, 0, − 1

2

)]

dφ

(93)
σpq(x) = −

bl

4π2 Cpqikǫkn3Clnjm

∫ 2π

0
L̂−1
ij (κ)

κm

κ · x

×

[

1−

√
π (κ · x)2

4ℓ2
G 2,1

1,3

(

(κ · x)2

4ℓ2

∣

∣

∣

∣

−1
−1, 0, − 1

2

)]

dφ ,

Fig. 5  Contour plot of the dislocation density αi3 of a straight dislocation (normalized by the Burgers vector 
bi ) for fcc Al: ℓ = 1.1774 Å

Fig. 6  Plastic distortion βP
i2 of a straight dislocation near the dislocation line for fcc Al: ℓ = 1.1774 Å
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The displacement vector (87) becomes

Simplified anisotropic strain gradient elasticity provides a regularization of the clas-
sical singular dislocation fields for cubic crystals with one regularization parameter ℓ 
in terms of Meijer G-functions and modified Bessel functions leading to a non-singular 
near-field in the dislocation core.

Material parameters for cubic crystals
In Mindlin’s first strain gradient elasticity theory, the elastic constants and the gradi-
ent-elastic constants are characteristic material parameters which can be computed 
from interatomic potentials (see, e.g., Admal et  al. (2017); Po et  al. (2019)) or via 
ab initio DFT calculations (see, e.g., Shodja et al. (2018)). For some important cubic 
materials such as Al, Cu, Fe and W, the 3 elastic constants and 11 gradient-elastic 
constants have been computed using a second nearest-neighbour modified embed-
ded-atom-method (2NN MEAM) interatomic potential  (Admal et al. 2017; Po et al. 
2019; Lazar et al. 2022).

We consider a cubic crystal with centrosymmetry. Let the Cartesian coordinate axes 
x1 , x2 and x3 coincide with the cubic crystal directions [100], [010] and [001], respec-
tively. For cubic crystals, the fourth-rank constitutive tensor Cijkl , which is the tensor 
of elastic constants, is given by (see, e.g., Dederichs and Leibfried (1969); Bacon et al. 
(1980); Lazar et al. (2022))

with

where e(1) , e(2) , e(3) are the (orthogonal) unit vectors of the cubic system. Because the 
coordinate system coincide with the cubic system, it yields δijkl = 1 if i = j = k = l and 
δijkl = 0 otherwise (Dederichs and Leibfried 1969). In Eq. (95), C11 , C12 and C44 are the 3 
independent elastic constants of a cubic crystal.

The inverse elastic tensor C−1
ijkl , which is the tensor of elastic compliances Sijkl ≡ C

−1
ijkl , 

reads as

(94)

ui(x) =
bi

2π

(

arctan
x2

x1
+ πH(−x1) sgn(x2)

− x2

∫ ∞

x1

1

ℓ

√

X2 + x22

K1

(

√

X2 + x22

ℓ

)

dX

)

+
bl

4π2 ǫkn3Cjklm

∫ 2π

0
L̂−1
ij (κ) κmκn

[

γ + ln |κ · x|

+

√
π

2
G 2,1

1,3

(

(κ · x)2

4ℓ2

∣

∣

∣

∣

0
0, 0, 1

2

)]

dφ .

(95)Cijkl = C12 δijδkl + C44
(

δikδjl + δilδjk
)

+ (C11 − C12 − 2C44) δijkl

(96)δijkl =

3
∑

s=1

e
(s)
i e

(s)
j e

(s)
k e

(s)
l ,
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with (see Hirth and Lothe (1982); Wooster (1978))

This tensor is defined by the property (Teodosiu 1982)

and therefore

For cubic crystals of point group m3m (cubic hexoctahedral), the sixth-rank constitutive 
tensor Dijmkln in Mindlin’s first strain gradient elasticity is given by (see, e.g., Lazar et al. 
(2022); Lazar and Agiasofitou (2023))

with

Here, a1, . . . , a11 are the 11 gradient-elastic constants of a cubic crystal with centrosym-
metry and δijklmn = 1 if i = j = k = l = m = n and δijklmn = 0 otherwise.

(97)Sijkl = S12 δijδkl + S44
(

δikδjl + δilδjk
)

+ (S11 − S12 − 2S44) δijkl

(98)S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)

(99)S12 = −
C12

(C11 − C12)(C11 + 2C12)

(100)S44 =
1

4C44
.

(101)CijmnSmnkl =
1

2

(

δikδjl + δilδjk
)

(102)CijklSijkl = SijklCijkl = 6 .

(103)

Dijmkln =
a1

2

(

δijδkmδln + δijδknδlm + δklδimδjn + δklδinδjm
)

+ 2a2 δijδklδmn

+
a3

2

(

δjkδimδln + δikδjmδln + δilδjmδkn + δjlδimδkn
)

+ a4
(

δilδjkδmn + δikδjlδmn

)

+
a5

2

(

δjkδinδlm + δikδjnδlm + δjlδkmδin + δilδkmδjn
)

+ a6
(

δikδjlmn + δilδjkmn + δjkδilmn + δjlδikmn

)

+ a7
(

δkmδijln + δlmδijkn + δinδjklm + δjnδiklm
)

+ a8 δmnδijkl + a9
(

δijδklmn + δklδijmn

)

+ a10
(

δimδjkln + δjmδikln + δknδijlm + δlnδijkm
)

+ a11 δijklmn

(104)δijklmn =

3
∑

s=1

e
(s)
i e

(s)
j e

(s)
k e

(s)
l e(s)m e(s)n .
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The tensor �mn can also be estimated using the tensor Sijkl = C
−1
ijkl . Multiplying both 

sides of Eq. (11) by Sijkl , we obtain SijklDijmkln = 6�mn , and therefore, the tensor �mn can 
be given in terms of the two constitutive tensor Dijmkln and Sijkl as (Po et al. 2018)

For cubic materials, the gradient length scale tensor �mn reads (Po et al. 2018)

where ℓ is the characteristic length scale of simplified anisotropic strain gradient elastic-
ity for cubic materials. The gradient length scale of cubic materials can be computed 
directly from the fourth-rank constitutive tensor Cijkl and the sixth-rank constitutive 
tensor Dijmkln using Eqs. (105) and (106) leading to the formula:

If we substitute Eqs. (97) and (103) into Eq. (107), we obtain the following formula for the 
characteristic length in terms of the 3 elastic constants and the 11 gradient-elastic constants

Equation  (108) gives an atomistic determination of the characteristic length ℓ from 
numeric values of the elastic and gradient-elastic constants computed from interatomic 
potentials or via ab initio DFT. Using the elastic and gradient-elastic constants of Al, Cu, Fe 

(105)�mn =
1

6
SijklDijmkln .

(106)�mn = ℓ2δmn ,

(107)ℓ2 =
1

18
SijklDijmklm .

(108)

ℓ2 =
3

C44

(a3 + 3a4 + a5 + 2a6)+
6

C11 + 2C12

(a1 + 3a2 + a9)

+
3(C11 + C12)

(C11 + 2C12)(C11 − C12)
(2a3 + 6a4 + 2a5 + 4a6 + 4a7 + 3a8 + 4a10 + a11).

Table 1  Elastic and gradient-elastic constants computed from a second nearest-neighbor modified 
embedded-atom-method (2NN MEAM) interatomic potential for different cubic crystals (see Lazar 
et al. (2022))

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

C11 [eV/Å3] 0.71366 1.09941 1.51659 3.32405

C12 [eV/Å3] 0.38649 0.77973 0.86160 1.28028

C44 [eV/Å3] 0.19704 0.51043 0.76096 1.01812

a1 [eV/Å] -0.02287 -0.08509 0.72859 1.43755

a2 [eV/Å] 0.35854 0.23748 0.45980 0.87793

a3 [eV/Å] -0.24815 -0.03655 0.59810 0.19097

a4 [eV/Å] 0.16786 0.03742 0.41599 0.85853

a5 [eV/Å] 0.30012 0.07479 0.76600 1.23279

a6 [eV/Å] 0.08229 0.23401 -0.58892 -0.67605

a7 [eV/Å] -0.13198 0.17426 -1.09107 -1.89998

a8 [eV/Å] -0.21058 0.18906 -1.08476 -2.30919

a9 [eV/Å] -0.54849 -0.02327 -1.32474 -3.33133

a10 [eV/Å] 0.41893 0.32059 -0.73389 -0.41688

a11 [eV/Å] -0.19492 -2.86388 8.52704 14.79794
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and W given in Table 1, the characteristic length ℓ of simplified anisotropic strain gradient 
elasticity is computed using Eq. (108) and reported in Table 2.

Elastic distortion and stress fields of screw and edge dislocations in cubic 
crystals
In order to illustrate the applicability of simplified anisotropic first strain gradient elas-
ticity, we compute the elastic distortion and stress fields of both screw and edge disloca-
tions in cubic crystals. The elastic distortion is computed according to the formula (92). 
The elastic distortion is dimensionless. The stress field is computed according to the 
stress formula (93). Stresses are in units of eV/Å3 . We choose bcc iron (Fe) and fcc cop-
per (Cu) because they are crystals with high anisotropy of the elastic constants (see 
Table 3) and bcc tungsten (W) and fcc aluminum (Al) because they are crystals which 
are nearly isotropic with respect to the elastic constants (see Table  3). Therefore, the 
change of the dislocation fields from isotropic =⇒ anisotropic behaviour can be seen 
by comparing the dislocation fields for bcc: tungsten (W) =⇒ iron (Fe) and for fcc: alu-
minum (Al) =⇒ copper (Cu). We present the dislocation fields in contour plots in order 
to see the characteristic shape of the far- and near-fields of straight dislocations and the 
influence of the anisotropy of cubic crystals.

BCC Fe

In bcc Fe, we consider dislocations with Burgers vector b = a/2 �111� . The Burgers vec-
tor reads b =

√
3/2 a = 2.482Å . The elastic constants and the corresponding length of 

bcc Fe have been taken from Tables 1 and 2. Using these material constants, we com-
pute the elastic distortion and stress fields in the plane orthogonal to infinite straight 
edge and screw 1/2[111](110) dislocations, which have line directions along the [112] 
and [111] axes, respectively.

First, we give the plots of the non-singular elastic distortion components of a screw 
dislocation in bcc Fe using simplified anisotropic first strain gradient elasticity in Fig. 7. 
In Fig. 7, it can be seen that a screw dislocation in bcc Fe has pronounced elastic distor-
tion components βzx and βzy (only these components are non-zero in the isotropic case); 
the other four components βxx , βyy , βxy and βyx are weak.

Table 2  Characteristic length scale of simplified anisotropic strain gradient elasticity for different 
cubic crystals

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

ℓ [Å] 1.1774 0.7852 0.7420 0.8502

a [Å] 4.0495 3.6149 2.8665 3.1652

ℓ/a 0.2907 0.2172 0.2592 0.2688

Table 3  The anisotropy factor H given by Hirth and Lothe (1982) for the fourth-rank constitutive 
tensor Cijkl for different cubic materials

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

H = C11 − C12 − 2C44 [eV/Å3] 0.06691 0.70118 0.86693 −0.00753
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The plots of the non-singular stress components of a screw dislocation in bcc Fe using 
simplified anisotropic first strain gradient elasticity are given in Fig. 8. It can be seen in 
Fig.  8 that a screw dislocation in bcc Fe possesses pronounced stress components σxz 
and σyz (only these components are non-zero in the isotropic case); the others are weak. 
The anisotropic stress components σxz and σyz (see Fig.  8e, f ) do not differ greatly in 
form from the corresponding isotropic fields. In Fig.  8a–d, it is interesting to observe 
that in contrast to the isotropic case there are four additional but weaker stress compo-
nents σxx , σyy , σzz and σxy (in comparison with the other two anisotropic components) 
in the anisotropic case reflecting the effects of anisotropy. In particular, in Fig. 8c, it can 

Fig. 7  Non-singular elastic distortion components of a screw dislocation in bcc Fe: a βxx , b βyy , c βxy , d βyx , e 
βzx , f βzy
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be seen that the stress component σzz of a [111] screw dislocation in bcc Fe possesses a 
three-fold symmetry.

The plots of the six non-singular elastic distortion components of an edge dislocation 
in bcc Fe using simplified anisotropic first strain gradient elasticity are given in Fig. 9.

Next, we give the plots of the non-singular stress components of an edge dislocation 
in bcc Fe using simplified anisotropic first strain gradient elasticity in Fig. 10. It is seen 
from Fig. 10 that in the case of anisotropy the components of stress σxz and σyz of an 
edge dislocation are weak in comparison with the other four components σxx , σyy , σzz 
and σxy , but they are not zero as in the isotropic case. The anisotropic stress components 

Fig. 8  Non-singular stress components of a screw dislocation in bcc Fe in units of eV/Å3 : a σxx , b σyy , c σzz , d 
σxy , e σxz , f σyz
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σxx , σyy and σxy (see Fig. 10a, b and d) do not differ greatly in form from the correspond-
ing isotropic fields which is not the case for the stress component σzz (see Fig. 10c). Due 
to the anisotropy, we have the appearance of two additional but weaker stress compo-
nents (in comparison with the other anisotropic components), namely the σxz (Fig. 10e) 
and σyz (Fig. 10f ).

As it can be seen in Figs. 7, 8, 9, and 10, the elastic distortion and stress fields of 
both screw and edge dislocations are non-singular. The symmetry of the (non-singu-
lar) elastic strain fields (symmetric part of the elastic distortion, see Eq. (2)) of a screw 

Fig. 9  Non-singular elastic distortion components of an edge dislocation in bcc Fe: a βxx , b βyy , c βxy , d βyx , 
e βzx , f βzy
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dislocation (Fig. 7) and an edge dislocation (Fig. 9) using simplified anisotropic first 
strain gradient elasticity are in agreement with the symmetry of the (singular) elastic 
strain fields of a screw and an edge dislocation given in the framework of classical 
anisotropic elasticity by  Yoo and Loh (1971). Moreover, the symmetry of the (non-
singular) stress fields of a screw dislocation (Fig. 8) and an edge dislocation (Fig. 10) 
using simplified anisotropic first strain gradient elasticity agree with the symmetry 
of the (singular) stress fields of a screw and an edge dislocation given in the frame-
work of classical anisotropic elasticity by  Baštecká (1965) and Yoo and Loh (1971)
(see also Steeds (1973)) and with the symmetry of the (non-singular) stress fields of a 

Fig. 10  Non-singular stress components of an edge dislocation in bcc Fe in units of eV/Å3 : a σxx , b σyy , c σzz , 
d σxy , e σxz , f σyz
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screw and an edge dislocation given in the framework of nonlocal anisotropic elastic-
ity by Lazar et al. (2020).

BCC W

In bcc W, we consider dislocations with Burgers vector b = a/2 �111� . The Burgers vec-
tor reads b =

√
3/2 a = 2.741Å . The elastic constants and the corresponding length of 

bcc W have been taken from Tables 1 and 2. Using these material constants, we com-
pute the elastic distortion and stress fields in the plane orthogonal to infinite straight 
edge and screw 1/2[111](110) dislocations, which have line directions along the [112] 
and [111] axes, respectively.

The plots of the non-singular elastic distortion components of a screw dislocation in 
bcc W using simplified anisotropic first strain gradient elasticity are given in Fig. 11. It 
can be seen that only the components βzx and βzy give a non-zero contribution since 
W is isotropic with respect to the elastic constants (see Table 3). The plots of the non-
singular stress components of a screw dislocation in bcc W using simplified anisotropic 
first strain gradient elasticity are given in Fig. 12. It can be seen that only the compo-
nents σxz and σyz give a non-zero contribution since W is isotropic with respect to the 
elastic constants (see Table 3).

Fig. 11  Non-singular elastic distortion components of a screw dislocation in bcc W: a βzx , b βzy

Fig. 12  Non-singular stress components of a screw dislocation in bcc W in units of eV/Å3 : a σxz , b σyz
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The plots of the four non-singular elastic distortion components of an edge disloca-
tion in bcc W using simplified anisotropic first strain gradient elasticity are given in 
Fig. 13. It can be seen from Fig. 13 that only the four components βxx , βyy , βxy and βyx 
give a non-zero contribution because W is isotropic. The plots of the non-singular 
stress components of an edge dislocation in bcc W using simplified anisotropic first 
strain gradient elasticity are given in Fig. 14. It can be seen from Fig. 14 that only the 
four components σxx , σyy , σzz and σxy give a non-zero contribution since W is iso-
tropic. The shape of the plots of the stresses of an edge dislocation in W given in 
Fig. 14 agree with the plots given in Yoo and Loh (1970) (see also Steeds (1973)).

If we compare the dislocation fields of screw and edge dislocations in bcc iron in 
BCC Fe section and in bcc tungsten in BCC W section we observe some characteristic 
differences. On the one hand, bcc iron is strongly anisotropic and gives 6 nonzero dis-
location fields for the elastic strain and the Cauchy stress tensors for both screw and 
edge dislocations. On the other hand, bcc tungsten is isotropic and gives 4 nonzero 
dislocation fields for the elastic strain and the Cauchy stress tensors of an edge dis-
location and 2 nonzero dislocation fields for the elastic strain and the Cauchy stress 
tensors of a screw dislocation. The near-fields of the elastic strain and the Cauchy 
stress fields are non-singular due to the regularization and show a characteristic 
shape, namely they are zero at the dislocation line.

Fig. 13  Non-singular elastic distortion components of an edge dislocation in bcc W: a βxx , b βyy , c βxy , d βyx
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FCC Cu

In fcc Cu, we consider dislocations with Burgers vector b = a/2 �110� . The Burgers 
vector reads b = a/

√
2 = 2.556Å . The elastic constants and the corresponding length 

of fcc Cu have been taken from Tables  1 and 2. Using these material constants, we 
compute the elastic distortion and stress fields in the plane orthogonal to infinite 

Fig. 14  Non-singular stress components of an edge dislocation in bcc W in units of eV/Å3 : a σxx , b σyy , c σzz , 
d σxy

Fig. 15  Non-singular elastic distortion components of a screw dislocation in fcc Cu: a βzx , b βzy
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straight edge and screw 1/2[110](111) dislocations, which have line directions along 
the [112] and [110] axes, respectively.

For a screw dislocation in fcc Cu, the plots of the two non-singular elastic distortion 
components are given in Fig. 15. The plots of the corresponding two non-singular stress 
components of a screw dislocation in fcc Cu using simplified anisotropic first strain 
gradient elasticity are given in Fig.  16. The shape and symmetry of the (non-singular) 
stress fields of a screw dislocation (Fig. 16) using simplified anisotropic first strain gradi-
ent elasticity agree with the symmetry of the (singular) stress fields of a screw disloca-
tion given in the framework of classical anisotropic elasticity by Yoo and Loh (1970) (see 
also Steeds (1973)).

Using simplified anisotropic first strain gradient elasticity, the plots of the six non-sin-
gular elastic distortion components of an edge dislocation in fcc Cu are given in Fig. 17. 
The plots of the six non-singular stress components of an edge dislocation in fcc Cu 
using simplified anisotropic first strain gradient elasticity are given in Fig. 18. It is seen 
from Fig. 18 that in the case of anisotropy the components of stress σxz and σyz of an 
edge dislocation are weak in comparison with the other four components σxx , σyy , σzz 
and σxy , but they are not zero as in the isotropic case (see also Steeds (1973)). In particu-
lar, the component σzz shows a characteristic shape due to the elastic anisotropy.

As it can be seen in Figs. 15, 16, 17, and 18, the elastic distortion and stress fields of 
both screw and edge dislocations are non-singular.

FCC Al

In fcc Al, we consider dislocations with Burgers vector b = a/2 �110� . The Burgers vector 
reads b = a/

√
2 = 2.863Å . The elastic constants and the corresponding length of fcc Cu 

have been taken from Tables 1 and 2. Using these material constants, we compute the 
elastic distortion and stress fields in the plane orthogonal to infinite straight edge and 
screw 1/2[110](111) dislocations, which have line directions along the [112] and [110] 
axes, respectively.

The plots of the non-singular elastic distortion components of a screw dislocation in 
fcc Al using simplified anisotropic first strain gradient elasticity are given in Fig. 19. It 
can be seen that only the components βzx and βzy give a non-zero contribution since 

Fig. 16  Non-singular stress components of a screw dislocation in fcc Cu in units of eV/Å3 : a σxz , b σyz
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Al is nearly isotropic with respect to the elastic constants (see Table 3). The plots of the 
non-singular stress components of a screw dislocation in fcc Al using simplified aniso-
tropic first strain gradient elasticity are given in Fig. 20. It can be seen that only the com-
ponents σxz and σyz give a non-zero contribution since Al is nearly isotropic with respect 
to the elastic constants (see Table 3). The shape of the plots of the stresses of a screw 
dislocation in Al given in Fig. 20 agree with the plots given in Yoo and Loh (1970) (see 
also Steeds (1973)).

The plots of the four non-singular elastic distortion components of an edge dislocation 
in fcc Al using simplified anisotropic first strain gradient elasticity are given in Fig. 21. 

Fig. 17  Non-singular elastic distortion components of an edge dislocation in fcc Cu: a βxx , b βyy , c βxy , d βyx , 
e βzx , f βzy
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It can be seen from Fig. 21 that only the four components βxx , βyy , βxy and βyx give a 
non-zero contribution because Al is nearly isotropic. The plots of the non-singular stress 
components of an edge dislocation in fcc Al using simplified anisotropic first strain gra-
dient elasticity are given in Fig. 22. It can be seen from Fig. 22 that only the four compo-
nents σxx , σyy , σzz and σxy give a non-zero contribution since Al is nearly isotropic.

If we compare the dislocation fields of screw and edge dislocations in fcc copper in 
FCC Cu section and in fcc aluminum in FCC Al section we observe some characteris-
tic differences. On the one hand, fcc copper is strongly anisotropic and gives 6 nonzero 

Fig. 18  Non-singular stress components of an edge dislocation in fcc Cu in units of eV/Å3 : a σxx , b σyy , c σzz , 
d σxy , e σxz , f σyz
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dislocation fields for the elastic strain and the Cauchy stress tensors for an edge disloca-
tion and 2 nonzero dislocation fields for the elastic strain and the Cauchy stress tensors 
for a screw dislocation with a characteristic “rotated and deformed” shape. On the other 
hand, fcc aluminum is nearly isotropic and gives 4 nonzero dislocation fields for the elas-
tic strain and the Cauchy stress tensors of an edge dislocation and 2 nonzero dislocation 
fields for the elastic strain and the Cauchy stress tensors of a screw dislocation. The near-
fields of the elastic strain and the Cauchy stress fields are non-singular due to the regu-
larization and show a characteristic shape, namely they are zero at the dislocation line.

Conclusions
In this work, we have presented a non-singular dislocation theory of straight dis-
locations in anisotropic materials using simplified anisotropic first strain gradi-
ent elasticity. This theory is a simplification of Mindlin’s anisotropic first strain 
gradient elasticity theory based on the key intuition that it is possible to approxi-
mate the anisotropy of the constitutive tensor of rank six, Dijmkln , as given in 
Eq.  (11) because the classical anisotropy of the constitutive tensor of rank four, 
Cijkl , is dominant even within the defects core region. In other words, the theory 

Fig. 19  Non-singular elastic distortion components of a screw dislocation in fcc Al: a βzx , b βzy

Fig. 20  Non-singular stress components of a screw dislocation in fcc Al in units of eV/Å3 : a σxz , b σyz
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approximates the gradient anisotropy and retains the full classical anisotropy. We 
showed in previous work that this is an excellent approximation, in good agree-
ment with atomistic calculations without any fitting constant (see, e.g., Po et  al. 
(2018)). In the framework of simplified anisotropic first strain gradient elastic-
ity, all necessary Green tensor functions, being non-singular, are derived. Inter-
esting to note that the two-dimensional Green tensor of the twofold anisotropic 
Helmholtz-Navier operator is given as sum of a classical part and a part given in 
terms of a Meijer G-function. For generalized plane strain of dislocations, the two-
dimensional dislocation key-equations (anisotropic Mura-Willis-like equation for 
the non-singular elastic distortion tensor, anisotropic Burgers-like equation for 
the non-singular displacement vector, anisotropic Blin’s-like formula for the elastic 
strain energy, anisotropic Peach-Koehler-like stress equation, Peach-Koehler force) 
have been derived in terms of two-dimensional Green tensor of the twofold aniso-
tropic Helmholtz-Navier operator. Furthermore, the two-dimensional dislocation 
key-equations are specified to straight dislocations in anisotropic media and, in 
particular, in cubic crystals. All relevant material parameters are computed for bcc 
and fcc cubic crystals such as iron (Fe), tungsten (W), copper (Cu) and aluminum 
(Al) from a second nearest-neighbour modified embedded-atom-method (2NN 
MEAM) interatomic potential. As representative application, the elastic distortion 

Fig. 21  Non-singular elastic distortion components of an edge dislocation in fcc Al: a βxx , b βyy , c βxy , d βyx
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and stress fields of screw and edge dislocations of 12 〈111〉 Burgers vector in bcc iron 
and bcc tungsten and screw and edge dislocations of 12 〈110〉 Burgers vector in fcc 
copper and fcc aluminum have been computed and presented in contour plots, 
showing that the obtained dislocation fields are non-singular.

Appendix A: Simplified anisotropic strain gradient elasticity for cubic crystals
For cubic crystals, the simplified anisotropic strain gradient elasticity can be obtained 
from Mindlin’s anisotropic strain gradient elasticity as special case if we assume the 
following values for the gradient-elastic constants

Using the relations (109), the constitutive tensor of rank six, Eq. (103), reduces to

and the double stress tensor (14) becomes

(109)
a1 = 0 , a2 =

C12 ℓ
2

2 , a3 = 0 , a4 = C44 ℓ
2 , a5 = 0 ,

a6 = 0 , a7 = 0 , a8 = (C11 − C12 − 2C44) ℓ
2 , a9 = 0 , a10 = 0 ,

a11 = 0 .

(110)Dijmkln = ℓ2 δmn

[

C12 δijδkl + C44
(

δilδjk + δikδjl
)

+ (C11 − C12 − 2C44)δijkl
]

(111)τijm = ℓ2
[

C12 δij∂mell + 2C12 ∂meij + (C11 − C12 − 2C44)δijkl∂mekl
]

.

Fig. 22  Non-singular stress components of an edge dislocation in fcc Al in units of eV/Å3 : a σxx , b σyy , c σzz , 
d σxy
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It is worth noting that the double stress tensor (111) is nothing but the gradient of 
the Cauchy stress tensor  (13) with one length scale parameter ℓ . The double stress 
tensor (111) is much simpler than the expression of the double stress tensor for cubic 
crystals in Mindlin’s anisotropic strain gradient elasticity theory (see Lazar et  al. 
(2022)). In this way, simplified anisotropic strain gradient elasticity has the meaning 
of an effective and robuste generalized continuum theory with approximate symme-
try for non-singular dislocations.
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