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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

Marie Curie





Abstract

Discontinuous fiber reinforced polymers such as long fiber reinforced thermo-
plastics are valued for their good density-specific mechanical properties, rela-
tively low costs, fast cycle times and possible function integration in lightweight
design relevant sectors such as automotive engineering. However, their com-
plex microstructure exacerbates the modeling and design of components. To
characterize the micro- and mesostructure, the acquisition of three-dimensional
computed tomography scans and subsequent image analysis has established
itself as a non-destructive method. Especially carbon fiber reinforced polymers
pose challenges for this approach: Their small diameter combined with a low
image contrast to the surrounding matrix (due to similar attenuation coefficients)
complicates the application of previously developed methods for the evaluation
of mechanical parameters such as fiber volume contents. Therefore, two novel
methods for determining the fiber volume content from scans of this material are
presented in this thesis, one of which is an artificial intelligence-based convolu-
tional neural network approach. Furthermore, even in the case of quantities that
can be determined using already implemented methods, such as fiber orientation
tensors, computed tomography images pose the problem that a high resolution is
associated with a small specimen geometry. In turn, this reduces the cross-scale
significance of a quantity determined from that small specimen. Three different
methods (two algebraic and one artificial neural network) for the interpolation
of fiber orientation tensors were therefore tested in order to obtain orientation
information across an entire plate from a few support points of tensors that were
determined from small specimens. The orientation distribution of the plastificate
and thus of the initial state, on which the compression molding process is based,
was also investigated. In addition, the problem arose that the acquisition of CT
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Abstract

scans is energy-intensive and time-consuming. Artificial microstructures could
reduce this scanning effort. However, artificial microstructures of carbon long
fiber reinforced material generated with conventional packing algorithms do
not sufficiently resemble the real ones. As a result, the rather novel approach of
generative neural networks was successfully used to generate two-dimensional
images that are as similar as possible to the layers of the computer tomography
scans. The investigations in this dissertation show the potential of image evalu-
ation and especially the use of approaches based on artificial intelligence for the
investigation of computed tomography images of carbon long fiber reinforced
polymers despite the physically unfavorable initial situation.
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Kurzfassung

Diskontinuierlich faserverstärkte Kunststoffe wie langfaserverstärkte Thermo-
plaste werden in leichtbaurelevanten Branchen, wie dem Automobilbau, auf-
grund ihrer guten dichtespezifischen mechanischen Eigenschaften, verhältnis-
mäßig geringen Kosten, schnellen Zykluszeiten und möglicher Funktionsin-
tegration geschätzt. Deren komplexe Mikrostruktur ist allerdings der Model-
lierung und Auslegung von Bauteilen hinderlich. Zur Charakterisierung der
Mikro- und Mesostruktur hat sich das Anfertigen von dreidimensionalen Com-
putertomographiescans und anschließende Bildauswertung als zerstörungsfreies
Prüfverfahren etabliert. Die Verwendung von Kohlenstofffasern sorgt allerdings
für Herausforderungen bei dieser Herangehensweise: Ihr geringer Durchmesser
verbunden mit niedrigem Kontrast im Bild zur umgebenden Matrix erschweren
durch hohes Bildrauschen die Anwendung bereits entwickelter Verfahren zur
Auswertung mechanischer Kenngrößen, wie Faservolumenanteilen. Aus diesem
Grund werden in dieser Thesis zwei neuartige Methoden zur Bestimmung des
Faservolumengehalts aus Scans dieses Materials aufgezeigt, wovon eines ein
auf künstlicher Intelligenz basierter Ansatz eines convolutional neural networks
ist. Weiterhin ergibt sich selbst bei mit bereits implementierten Verfahren
bestimmbaren Größen, wie Faserorientierungstensoren, bei Computertomogra-
phieaufnahmen die Problematik, dass eine hohe Auflösung mit einer kleinen
Probengeometrie einhergeht. Kleine Probengrößen reduzieren wiederum die
skalenübergreifende Aussagekraft einer daraus bestimmten Größe. Um aus
wenigen Stützpunkten an Tensoren, die aus kleinen Proben bestimmt wur-
den, Orientierungsinformationen über eine ganze Platte hinweg zu erhalten,
werden daher drei verschiedene Verfahren (zwei algebraische und erneut ein
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künstliches neuronales Netzwerk) zur Interpolation von Faserorientierung-
stensoren implementiert und evaluiert. Auch die Orientierungsverteilung des
Plastifikats und damit des dem Pressprozesses zugrundliegenden Ausgangszu-
stands wurde untersucht. Darüberhinaus ergab sich die Problematik, dass
die Anfertigung von CT-Scans energieintensiv und zeitaufwändig ist. Kün-
stliche Mikrostrukturen könnten diesen Scanaufwand verringern. Allerdings
ähneln die mit konventionellen Packungsalgorithmen erzeugten künstlichen
Mikrostrukuren von kohlenstofflangfaserverstärktem Material den realen nicht
ausreichend. Infolgedessen wurde der recht neuartige Ansatz von generativen
neuronalen Netzen erfolgreich verwendet, um - trainiert auf den Schichten
der Computertomographiescans - möglichst ähnliche zweidimensionale Bilder
zu erzeugen. Durch die Untersuchungen in dieser Dissertation zeigt sich das
Potential der Bildauswertung und speziell auch der Nutzung von Ansätzen
basierend auf künstlicher Intelligenz zur Untersuchung von Computertomogra-
phieaufnahmen kohlenstofflangfaserverstärkter Polymere trotz der physikalisch
ungünstigen Ausgangssituation.
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Symbols and acronyms

Acronyms

(μ)CT (Micro-) Computed Tomography

.ipynb Jupyter notebook

.py Native Python file

2D Two-Dimensional

3D Three-Dimensional

ABS Acrylonitrile Butadiene Styrene

ADAM Adaptive Moment Estimation

AI Artificial Intelligence

ANN Artificial Neural Network

AOA Average Or Above (thresholding)

BCE Binary Cross Entropy

bwHPC Baden-Württemberg High Performance Computing

Ci Label of specific specimen in charge area of plate

CA Component Averaging

CcGAN Continuous conditional GAN

CF Carbon Fiber

CFi Label of specific specimen in transition area between
charge and flow of plate
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Symbols and acronyms

CFRP Carbon Fiber Reinforced Polymer

cGAN Conditional GAN

CNN Convolutional Neural Network

Co Continuous (reinforced polymers)

CoDicoFRP Continuous-Discontinuous Fiber Reinforced Polymer

CoFRP Continuous Fiber Reinforced Polymer

CT Computed Tomography

DCGAN Deep Convolutional Generative Adversarial Network

DFG Deutsche Forschungsgemeinschaft

Dico Discontinuous (reinforced polymers)

DicoFRP Discontinuous Fiber Reinforced Polymer

DL Deep Learning

ED Euclidean Distance

Fi Label of specific specimen in flow area of plate

FASEP Brand name - System for determining the fiber length distribu-
tion

FE Finite Element (model)

FID Fréchet Inception Distance

FIJI Image processing package (a distribution of ImageJ2, bundling
a lot of plugins which facilitate scientific image analysis)

FLD Fiber Length Distribution

FOD Fiber Orientation Distribution

FODF Fiber Orientation Distribution Function

FOT Fiber Orientation Tensor

FRP Fiber Reinforced Polymer

fSAM Fused Sequential Addition and Migration

FVC Fiber Volume Content
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Symbols and acronyms

FVF Fiber Volume Fraction

GAN Generative Adversarial Network

GF Glass Fiber

GPa Gigapascal

GPU Graphics Processing Unit

HSV Hue, Saturation and Value

HT High-tenacity

IBOF Invariant Based Optimal Fitting

IDW (Shepard’s) Inverse Distance Weighting

InfoGAN Information maximizing GAN

IRTG International Research Training Group (in this work:
IRTG2078 funded by the German Research Foundation)

LFT Long Fiber reinforced Thermoplastic

LFT-D Long Fiber reinforced Thermoplastic Direct process

LFT-G Long Fiber reinforced Thermoplastic Granulate process

MAE Mean Absolute Error

MEP Maximum Entropy Method

ML Machine Learning

MLP Multi-Layer Perceptron

MPa Megapascal

MSE Mean Squared Error

MSSIM Mean Structural Similarity Index Measure (SSIM)

ODF Orientation Distribution Function

PA(6) Polyamide (6)

PAN Polyacrylonitrile

PC Polycarbonate

PET Polyethylene Terephthalate
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Symbols and acronyms

Pixel (px) Picture x Element

PP Polypropylene

RAM Random-Access Memory

ReLU Rectified Linear Unit

ROI Region(s) Of Interest

ROM Rule Of Mixture

RSA Random Sequential Adsorption

RVE Representative Volume Element

SAM Sequential Addition and Migration

SEM Scanning Electron Microscopy

SFT Short Fiber reinforced Thermoplastic

SGD Stochastic Gradient Descent

SLP Single Layer Perceptron

SMC Sheet Molding Compound

SNR Signal-to-Noise Ratio

SPD Symmetric Positive Definite

SR Super Resolution

SSE Sum of Squares Error

SSH Secure Shell protocol

SSIM Structural Similarity Index Measure

SVE Statistical/Stochastic Volume Element

TEM Transmission Electron Microscopy

TGA Thermogravimetric analysis

Voxel (vx) Volume x Element

WGAN Wasserstein GAN

WGAN-GP Wasserstein GAN with Gradient Penalty
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Symbols and acronyms

Scalars

α Absorption coefficient

μ̄m Effective mass attenuation coefficient

φ̄ Interpolation scheme

Ē Effective Young’s modulus of composite

η Distance variable

γ (Shear) Strain

λi Eigenvalues

E Expectation operator

μ Attenuation coefficient

μ0, μ1, μT Class mean levels

μm Mass attenuation coefficient

μr, μg Means of real and generated images

μs Scatter coefficient

ν Poisson ratio

ω0, ω1 Probabilities of class occurrence

φi Discrete values

ψ Probability distribution function

ρ Density

ρi Standard deviation (in context of structure tensor)

σ Width of filter window/standard deviation of Gaussian kernel

σ(u) Activation function

σ0, σ1 Class variances

σ2
B Between-class variance

σ2
W Within-class variance

σi Normal stress in i-direction
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Symbols and acronyms

τ Shear stress

θG Parameters of the generator

ε (Normal) Strain

ξ Empirical geometry factor

A Area

ar Aspect ratio

b Bias

C Stiffness

c cos of angle

Cfiber Circumference of fiber

cov(x, y) Covariance of variables x and y

covr, covg Covariance of real and generated images

D Discriminator

d Diameter

d(x,xi) Distance from known point xi to unknown point x

dE Euclidean distance

Dx Definition domain of structuring element

E Young’s modulus

e Charge of an electron

Ep Distance function or error/cost function

F × F Filter dimension

F Force

f Mapping

f(x, y) Filter mask

fl Fiber length probability density function

G Generator

G(x, y) Gaussian function
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Symbols and acronyms

Gf , Gm, Gij Shear modulus (of the fibers, the matrix or considering the two
coordinate axes i and j)

GA Glyph to tensor A

h(l) Hidden layer

I Radiation intensity

i Input

I(x) Image intensity function

I0 Initial condition of radiation intensity

Ki Orthogonal K-invariants

l (Fiber) Length

l(y, ŷ) Log loss/BCE loss

lc Critical fiber length

ld Detector pixel size

LFD Distance between focus and detector

LFO Distance between focus and object

lt Length of fiber in order to transfer load

lv Voxel size

Li Specific fiber length of the i-th fiber

m Mass

me Mass of an electron

mg Geometric magnification

mi Moments of i

N ×N Image dimension

n/N Number (amount of instances of certain parameter/variable)

O Output size

o Soft sign activation function

o(x) Output image
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Symbols and acronyms

P Padding

pg Distribution of the generator

pz Distribution of noise variables

pi Probabilities

pj Fractions of below-threshold and above-threshold pixels

R Mean separation of the fibers normal to their length

r/rf Radius / Fiber radius

rl Learning rate

Ri Orthogonal R-invariants

S Stride

s sin of angle

s Isotropic voxel size

t Threshold

TOtsu Otsu threshold

u Activation potential

Ua Acceleration voltage

V Volume

v Velocity

V (D,G) Value function

vf Fiber volume content

wf Fiber weight content

wi Weights (fraction)

xn Input values

yj Output values

zi Class label

zj Gray value
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Symbols and acronyms

Vectors

h Hidden layer vector (output)

p Unit vector describing fiber orientation

vi Eigenvector

x Location

Tensors (2nd order)

σ̄ Effective stress

ε̄ Effective strain

Λ Diagonal eigenvalue matrix

σ Stress

τ Shear stress

ε Strain

A (Fiber) orientation tensor of second order

C Second order stiffness tensor

H Hessian matrix

J Final structure tensor

Kσ Gaussian Blur of width σ

R Rotation matrix (composed of the eigenvectors vi)

S Structure tensor

W Weight matrix

UL, ..., LR Measured tensors of second order (respectively denoting “Up-
per Left", ..., "Lower Right", etc.). All together form the set of
measured tensors Tm
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Symbols and acronyms

Tensors (4th order)

A (Fiber) orientation tensor of fourth order

C Fourth order stiffness tensor

E Eshelby tensor

H
0 Reference tensor

I Identity tensor

I
S Identity on symmetric tensors

L Localization tensor

M Localization tensor

S Compliance tensor (inverse stiffness tensor)

Sets

R
3 Real coordinate space of dimension 3

C Closure approximation

P Probability of finding fiber in direction p

S Two-dimensional unit sphere

Tm Set of measured tensors of second order

Ti = Tx,y Set of interpolated tensors of second order at specific (x,y) grid
position

SO(3) Special orthogonal group in 3 dimensions

Operators

(·)′ Deviatoric part

(·)T Transpose

(·)−1 Inverse

: Double contraction of tensors

∗ Convolution
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Symbols and acronyms

(̄·) Averaged/Effective quantity

· Scalar product or single contraction of tensors

det Determinant
˙(·) Material time derivative

∇(·) Gradient

〈·〉 Volume average

‖(·)‖ Euclidean tensor norm

∇ Depending on the context, one of the three differential opera-
tors gradient, divergence or rotation

� Erosion

⊕ Dilation

⊗ Dyadic product

∂ Partial derivative

� Rayleigh product

tr(·) Trace of a matrix

d Derivative

Quaternions

q Unit quaternion
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1 Introduction

At the beginning of this thesis, the motivation for the topic under discussion
will be addressed, followed by the objectives of this work and a brief outline of
the thesis structure. Subsequently, the indication of the usage of texts/graphics
from the author’s own publications is clarified.

1.1 Motivation

The European Green Deal obliges all EU member states to become climate-
neutral by 2050 [1]. To this end, Germany has set an interim target of a 55 %
reduction in greenhouse gas emissions by 2030 compared to 1990 levels in
a federal climate protection law [2]. The transport sector makes a significant
contribution to emissions through automobile traffic and aviation, which makes
reducing emissions in these areas correspondingly important. In recent years,
research has therefore been carried out in a wide variety of scientific fields, with
lightweight design in particular contributing to this end in the field of materials
science. This is due to the fact that the vehicle mass enters linearly into four
of the five types of driving resistance and therefore plays a decisive role in fuel
consumption [3]. This makes material classes that are relatively light, but at
the same time offer convincing structural rigidity and strength for the safety
of vehicle occupants and functional maintenance, particularly relevant. Fiber
reinforced polymers are arguably the best known, relatively new material system
in this context of weight-specific excellent mechanical properties [4], which is
why a lot of research funding has been invested in their characterization and
modelling.
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So-called continuous (Co) fiber reinforced components have higher stiffness
and strength due to their microstructure (high anisotropy and high fiber volume
content), whereas discontinuous (Dico) fiber reinforced components are faster
and easier to manufacture and offer a high degree of design freedom. The com-
bination of both Co and Dico to synergistically exploit the advantages of both
material classes is the central topic of the International Research Training Group
(IRTG) 2078, within the framework of which this doctoral thesis was written. It
was funded by the German Research Foundation (DFG). Dico material shows
a heterogeneous microstructure, the characterization of which is essential for
understanding and simulating the material behavior. Therefore, the project
C2 of the IRTG 2078, in the context of which this work was created, aimed
to analyze the microstructure of the Dico material used in each generation in
more detail; in this third generation of carbon fiber reinforced polyamide 6.
In addition to conventional macroscopic and microscopic destructive testing
methods, computed tomography (CT) has emerged as probably the most impor-
tant non-destructive, imaging characterization option. The 3D images, which
allow the spatial differentiation of the constituents of the composites through
different gray values, can provide important microstructure characterization
parameters through image processing algorithms, such as fiber volume contents,
fiber length distributions or fiber orientation distributions.

While the development of evaluation methods for CT images of glass fiber
reinforced polymers has progressed quite far, new challenges arise when using
the stiffer, stronger but also more expensive carbon fibers as reinforcement
material. Since polymers and carbon fibers are chemically quite similar and
hence their attenuation coefficients differ little, the contrast in the images is
comparatively low. In addition, carbon fibers usually have a diameter of 5 µm -
7 µm, which is below the image resolution when scanning reasonable sizes of
specimens and also often below the possible image resolution of conventional
CT devices in general. This makes it impossible to identify individual fibers
and results in significantly higher noise in the images. Several problems arise
from these conditions for this work leading to the research objectives described
in the next section.
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1.2 Objectives of the thesis

First of all, the choice of an appropriate specimen size for the CT investiga-
tions is not trivial. A sample that is too large limits the maximum possible
image resolution accordingly, while a sample that is too small represents mi-
crostructural phenomena that are too localized and difficult to transfer to an
entire macroscopic plate of this material. In addition, the image quality is
reduced in the latter case. Assuming that a suitable specimen size was chosen,
there are procedures such as gradient-based fiber orientation determination that
are usable despite the fact that individual fiber segmentation is not feasible.
Fiber orientation information is then obtained, for example in the form of fiber
orientation tensors at discrete, small areas across such a plate. This provides
one of the first major questions of this work: How to obtain a continuous fiber
orientation tensor field from these fiber orientation tensors at specific points,
which is suitable for comparison with orientation courses resulting from process
simulations or for use in stiffness modeling for comparison with experimental
results? This tensorial interpolation problem entails different properties and
requires alternative methods compared to scalar interpolation. Regarding this
issue, three different methods are tested that differ both in their basic concept
(linear algebra vs. artifical intelligence (AI)) as well as in their implementation
and computational/human effort.

The evaluation of some variables, on the other hand, requires thresholding
methods that do not work effectively for the scans of carbon fiber reinforced
polymers, such as the determination of the fiber volume content. It is an open
question whether thresholding methods can be adapted appropriately in order
to work for low-contrast and non single fiber resolving images or whether
switching to AI is a sensible option.

Furthermore, the creation of artificial microstructures, intended to mimic these
materials and often used in material modeling in the form of representative
volume elements (RVE), is challenging with conventional packing algorithms.
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Again, the suitability of AI in the form of so-called generative adversarial
networks is to be assessed.

In addition, the influence of the microstructure of the initial charge/plastificate as
the basis of the pressing process is also to be evaluated. Specifically, the porosity
and material orientation will be investigated. Summing up, the following open
research questions were assessed in this work:

1. How does information on small specimens relate to large dimensions
(cf. scale-bridging, up- and down-scaling), especially in relation to the
interpolation of fiber orientation tensors?

2. How can characteristic quantities like the fiber volume content (that
require thresholding) be extracted reliably from µCT images of carbon
fiber reinforced polymers?

3. Can realistic µCT images be generated with generative adversarial net-
works in order to save scan resources and do they have potential in the
creation of representative volume elements?

4. Underlying all of those points is the question as to whether conventional
methods (linear algebra or classical image processing) are superior or
inferior to artificial intelligence based solutions.

1.3 Outline of the thesis

In Chapter 2 fundamental basics of fiber reinforced polymer (FRP) material,
their modeling, characteristic microstructure quantities, their image-based eval-
uation, computed tomography and artificial intelligence are covered to allow
perspicuity of the following methods. In particular, related research contribu-
tions of these fields are studied, classified and partially reproduced. Chapter 3
focuses on the distinct description and derivation of the self-developed methods.
Chapter 4 is dedicated to the detailed and objective presentation of the results
of the applied methods. The assessment and quality analysis of these results
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is subject of the Discussion in Chapter 5. Possible further developments and
prospects for future research in these areas are also included. Finally, the work
is summarized and concluded in Chapter 6.

1.4 Remark on the use of own publications in
this thesis

Parts of this work were previously published in journal papers/conference
proceedings by the author. If text of own publications has been reproduced in an
identical manner apart from minor linguistic changes that were necessary due to
different notation, numbering, etc., the section is marked with a footnote. In it,
the word "extracted" is used along with the respective publication. Analogously,
if graphics/tables have been published identically before, the same wording is
used in their caption. In the case that graphics/tables have been newly created but
are based on either own publications or other people’s publications, the phrase
"based on" along with the respective publication is part of the caption. However,
if text has been newly written and was published by the author substantially,
this work will be cited and if it affects an entire paragraph a footnote with the
expression "based on" is used again. The author’s publications are listed at the
end of this work.
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The State of the Art first describes fiber reinforced polymers in general and their
mechanical description. Then, the possibilities for the quantitative description of
the microstructure of discontinuous fiber reinforced polymers are shown. After
a section on computed tomography (CT) and known possibilities for processing
CT images, the final section introduces artificial intelligence, and in particular
artificial neural networks (ANNs), convolutional neural networks (CNNs) and
generative adversarial networks (GANs).

2.1 Fiber reinforced polymers

Composites are a class of materials characterized by the combination of two
components that typically differ decisively in their properties. The desired
optimum result is a synergy effect resulting in the composite material to perform
better than the sum of the individual constituents.[5] For quite some time now,
there have been various examples of composite materials that are used on a daily
basis, such as ferroconcrete in construction or laminated composites such as
plywood. In this context, FRP represent a special group whose further scientific
development was mainly sparked by their enormous potential in lightweight
design. Owing to their high density-specific strength and stiffness, FRP are
used in the transport industry (automotive, aeronautical), sports industry as
well as in the energy sector, e.g., in wind turbine blades. They consist of fibers
with high strength and stiffness embedded in a typically low-density polymer
matrix which gives the fibers a position structurally, transfers the load to them
[5] and protects them from environmental influences [6]. Typical fiber materials
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include glass with relatively low cost and high strength, carbon, which is even
stronger and stiffer, but also significantly more expensive, or Aramid, and now
increasingly natural fibers such as flax or hemp [5]. The thin fiber shape is
not chosen arbitrarily. According to the weakest link theory, the so-called size
effect describes the statistical decrease of strength-reducing defects in a smaller
material volume [7, 8], as well as the reduction of the size of these defects,
which is also the basis of the statistical theory of brittle fracture dating back to
Weibull [9]. The matrix material can either be a thermoset or a thermoplastic
material (in rare cases also elastomers). While the former was used more often
in engineering, load-bearing applications in the past due to their high strength
and stiffness and their minor sensitivity towards environmental aspects, the use
of the latter is increasing in recent years [10]. Without covalent bonds between
the chains, thermoplastics exhibit lower effective mechanical properties [5].
Furthermore, they are susceptible to temperature and - dependent on the exact
substance - also to moisture, albeit to a more varying degree [11]. However,
they are meltable, which enables them to have superior recycling potential, and
they can be manufactured rapidly, which reduces production costs [10].

2.1.1 Fiber reinforcement architectures

Fibers can be incorporated into the matrix in a variety of ways. The dimension
and shape of the reinforcing phase is decisive for the mechanical properties, and
each type of reinforcement is also directly related to the process developed for
it. [5]

2.1.1.1 Continuous (Co) fiber reinforcement

Continuous fiber reinforcement signifies the deliberate insertion of fiber rovings
in a specific direction, where the length of the fibers usually exceeds or equals
that of the part. For the latter reason, it is often also referred to as endless fiber
reinforcement. Continuous fiber reinforced polymers (CoFRP) are normally
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made up of different single layers, each with a defined orientation. There are
pre-impregnated semi-finished products, which are usually available in sheet,
tape or strand form. These include prepregs such as unidirectional (UD) tapes,
which, apart from layers with a 0° orientation, also always have layers with
a 45° or 90° orientation. There are also pure fiber semi-finished products,
so-called textiles (sometimes also referred to as fabrics), which are not pre-
impregnated. In the latter case, a distinction is made between the widespread
non-crimp fabrics and woven, braided and knitted fabrics. Both types of semi-
finished products can ultimately be stacked in so-called laminates. By selecting
the arrangement of plies, the material behavior can be tailored to the main
load directions. As a result, it can range from almost unidirectional to quasi
planarisotropic properties. [5] All continuously reinforced polymers have in
common that they exhibit outstandingly good specific mechanical properties
in comparison to DicoFRP and a less complex and thus easy-to-characterize
microstructure, but in return they offer little design freedom [12].

2.1.1.2 Discontinuous (Dico) fiber reinforcement

In the case of discontinuous fibers, either a cut to a defined length below the
component length takes place in the process, or the fibers are cut by shearing
in extruders to a length distribution that tends to be dominated by relatively
short fibers compared to CoFRP. They therefore typically have a more complex,
heterogeneous microstructure, while both single fibers [13] and fiber bundles
[14] may be encountered. In general, DicoFRP exist with thermoplastics and
thermosets. The best known type of the latter are so-called sheet molding
compounds (SMC). SMC is a typical representative of a bundle structure [14].
Discontinuous fiber reinforcement can be further subdivided into short fiber and
long fiber reinforced polymers, abbreviated as SFT and LFT for thermoplastics
[5]. The distinction is made on the basis of the aspect ratio ar = l

d (length to
diameter), with a value below 100 still considered a short fiber material and a
value above 100 a long fiber material [15].
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Long fiber reinforced thermoplastics (LFT)

LFTs are characterized by their good processability and the possibility of eco-
nomical production of larger batches compared to CoFRP, as well as typically
better mechanical properties than SFT due to their longer fibers [5]. Together
with the possibility of recyclability by melting down the thermoplastic, this
group presents a particularly interesting combination of challenges and op-
portunities, which is why they are subject of this work. They are typically
produced in extrusion compression molding processes. These start with the
plastification of the polymer-fiber mixture in an extruder and the subsequent
placement of the produced plastificate/initial charge in a mold cavity in a press.
It is then followed by the closure of the mold resulting in the final product,
e.g., in the shape of a plate, which was mostly used in this work. There is
another distinction between the so-called LFT-G (granulate) and LFT-D (direct)
process. The two processes differ in that semi-finished products, i.e. pellets
containing thermoplastic matrix and long fibers, are processed in the LFT-G
process. The LFT-D process, on the contrary, which is the production method of
the material used in this dissertation, is characterized by the in-line processing of
thermoplastic granulate and the direct introduction of continuous fiber rovings
into the polymer melt (cf. Figure 2.1).

The advantages of the LFT-D process are the independence of prefabricated
semi-finished products and the associated cost benefits, high output capaci-
ties and flexibility in fiber and polymer adaptations [18]. Thermoplastics like
polyethylenterephthalat (PET), polycarbonate (PC), polypropylene (PP) or acry-
lonitrile butadiene styrene (ABS) can be used in this process. In this work,
polyamide 6 (PA6) was the thermoplastic matrix material used.

2.1.1.3 Continuous discontinuous (CoDico) fiber reinforcement

In order to profitably exploit the contrasting advantages of continuous and
discontinuous fiber reinforced polymers (cf. Table 2.1), the idea of continuous
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Thermoplastic pellets Modifiers + additives

Compounding
extruder

Carbon/Glass fiber rovings

Mixing extruder (twin screw)

Initial charge/
plastificate

Compression molding
in press

Figure 2.1: Schematic representation of the long fiber reinforced thermoplastic direct (LFT-D)
process. Based on [16] and Blarr et al. [17].

discontinuous fiber reinforced polymers, or CoDicoFRP for short, evolved
[12]. It makes use of the design freedom and cost-effective production of
DicoFRP while locally reinforcing the component with CoFRP at points subject
to particularly intensive stress.
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Table 2.1: Advantages and disadvantages of CoFRP and DicoFRP to illustrate the effect of joint
use. Data based on [12].

Aspect Co Dico

Mass-specific mechanical properties + -

High fiber volume content + -

Degree of fiber alignment + -

Low microstructure complexity + -

Easy formability - +

Low manufacturing cost - +

High production rate - +

Low waste rate - +

2.1.2 Basic elastic mechanics of FRP

In this section, elastic mechanics of FRP are presented, starting with the basic
homogenization equations and followed by macroscale modeling approaches
like the rule of mixture and corresponding Reuss and Voigt bounds as well
as the Halpin-Tsai model. The concept of critical fiber length for DicoFRP
is also explained in this context. After outlining the idea of microscale and
RVE models as well as mean field models, the Mori-Tanaka model is given as a
typical representative of the latter.

2.1.2.1 Homogenization

In continuum mechanics, homogenization is understood as the attempt to de-
scribe a heterogeneous material by means of a model that represents this com-
plex structure in a highly simplified way and yet leads to a plausible deformation
behavior, i.e., macroscopically equivalent as the heterogeneous material, for the
load cases investigated. Hence, there are a local stress σ(x) and a local strain
ε(x) that are heterogeneously distributed in the material. They are related to
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the overall global behavior, so that the effective stress σ̄ and effective strain ε̄

are given by so-called localization tensors L and M in the following way:

ε(x) = L(x)[ε̄],

σ(x) = M(x)[σ̄].
(2.1)

The following applies to the localization tensors

⟨L(x)⟩ = IS and ⟨M(x)⟩ = IS . (2.2)

Applying the Hill-Mandel condition [19, 20], which states that the work of an
entire system does not change viewing it from the microscale or the macroscale,
the effective stress σ̄ and effective strain ε̄ can be given by a volume averaging
⟨·⟩ over the representative volume V :

σ̄ = ⟨σ(x)⟩ =
1

V

∫
V

σ(x) dV,

ε̄ = ⟨ε(x)⟩ =
1

V

∫
V

ε(x) dV.

(2.3)

Assuming linear elastic behavior, the relation between effective stress σ̄ and
effective strain ε̄ is given by the generalized Hooke’s law

σ̄ = C̄[ε̄] = ⟨C(x)[ε(x)]⟩, (2.4)

with the local stiffness tensor C(x) and the effective stiffness tensor σ̄. The
effective stiffness tensor C̄ analogously is defined by

C̄ = ⟨C(x)L(x)⟩. (2.5)
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2.1.2.2 Macroscale modeling

When modeling composites, fundamentally different approaches have to be
considered. The previous homogenization equations are the basis for the follow-
ing rule of mixture (ROM) and the Voigt and Reuss bounds as first-order energy
principles, which can be classified as a macroscopic homogenization approach,
as well as the semi-empirical approach of Halpin-Tsai. When modeling on the
macroscale, the material is considered as a homogeneous, anisotropic material.
Stresses and strains in different directions can be determined by experiments,
and reverse-engineering can be used to determine the unknown constants in the
phenomenological models ultimately. Although these methods are an obvious
simplification of the true situation, since they ignore locally varying mate-
rial properties that a composite always exhibits, they are popular due to their
computational simplicity, especially in industry or for large systems. [5]

Rule of mixture (Reuss and Voigt bounds)

The simplest micromechanical, energy-based model is the so-called rule of
mixture (ROM). Assuming a perfectly aligned unidirectional fiber reinforced
composite under uniaxial tension σ11 (cf. Figure 2.2) and a still intact material,
the strains of matrix and fibers have to be equal as they are bonded to each other.

This follows the so-called Voigt assumption [21]. Furthermore assuming linear
elastic behavior of both constituents according to Hooke, this can be written as

εc = εm = εf =
σc
Ec

=
σm
Em

=
σf
Ef
. (2.6)

In this and in the following equations, the subscripts c, m and f describe the
respective composite, matrix and fiber property.
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Matrix

Fiber

e2

e1

σ11

σ11

Figure 2.2: Schematic graphic of a perfectly unidirectional continuous fiber reinforced polymer
under uniaxial tension σ11. Based on [5].

Based on the premise that stress is defined by

σ =
F

A
, (2.7)

the force equilibrium

Fc = Fm + Ff (2.8)

can be rewritten with the help of Equation (2.6) as

EcεcAc = EmεmAm + EfεfAf (2.9)

and further as

Ec = Em
Am

Ac
+ Ef

Af

Ac
. (2.10)
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Introducing the fiber volume content/fraction vf this results in

E11 = Ec = Em(1− vf) + Efvf . (2.11)

It shall be mentioned that while under the given conditions, the shear and bulk
modulus follow the ROM, the Young’s modulus does only obey the ROM in the
case that the Poisson ratio of both fiber and matrix are equal [22]. Otherwise,
which is the normal scenario, the real Young’s modulus in longitudinal direction
E11 would actually be larger than given by Equation (2.11), which is the first-
order upper bound of Voigt.

Considering the transverse direction, thus a load perpendicular to the fibers σ22,
following the Reuss assumption [23] of equal stresses σ22 = σc = σm = σf ,
one obtains the inverse ROM,

E22 = Ec =
(1− vf
Em

+
vf
Ef

)−1

, (2.12)

as the first-order lower bound modulus. It was first shown by Hill in 1952
that those are upper and lower bounds [24]. They are visually displayed in
Figure 2.3. The Voigt bound is close to the actual value, as a parallel connection
in the fiber direction is a fairly good approximation. The Reuss bound, on
the other hand, is much further away, as a series connection in the transverse
direction is not a realistic analogy. Accordingly, all material properties of
a composite (like the Young’s modulus) are located between the two limits.
This applies both to the case where the loading is not entirely longitudinal
or transverse, but a mixed loading is present, and to the case where there is
no optimally uniaxially reinforced FRP, but, for example, a discontinuously
reinforced composite. The Voigt and Reuss bounds also directly result from
Equation (2.5) in Section 2.1.2.1. After introducing two phases (matrix, fiber)
and a corresponding volume fraction of fibers vf , the equation describing Voigt’s
upper limit (cf. Equation (2.11)) is reattained easily. By defining the compliance
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Figure 2.3: Graphic showing the effect of the fiber volume content vf on the effective Young’s
modulus Ē of a composite (gray area) with first-order upper Voigt (orange) and lower
Reuss bound (blue). The solid orange line signifies the upper bound in the case that
both constituents have the same Poisson ratio, the dashed orange line is an elevated
adaption for unequal Poisson ratios. Based on [22, 25].

tensor S = C−1 as the inverse stiffness tensor, the homogenized stiffness tensor
of Reuss (cf. Equation (2.12)) is also obtained again.

Hashin–Shtrikman [26] actually showed in 1962 using variational principles
that the upper and lower bounds for the elastic moduli can be more narrow than
the Voigt and Reuss bounds, which will not be discussed further here. Even
with this simplified model, the relevance of local fiber volume contents for
homogenization of composites gets conveyed.

Concept of critical fiber length

In the case of DicoFRP, the fibers do not extend over the entire length of the
component. Naturally, this raises the question of whether the concept of load
transfer between matrix and fiber therefore still works without restriction. In
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τ
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0.5 · lt 0.5 · lt

Figure 2.4: Schematic of a single discontinuous fiber embedded in a matrix. The composite
experiences tensile stress in fiber direction. The respective load transfer from matrix to
fiber is depicted as qualitative plots of the tensile stress distribution in the fiber and the
shear stress distribution in the matrix. The blue line of the shear stress corresponds to
the material response of a fully elastic matrix (roughly that of a thermoset), whereas
the dashed blue line relates to a viscoelastic matrix, hence a thermoplastic material.
Based on [5, 27].

order to approach this issue, the model of a single, discontinuous fiber embedded
in a cylindrical matrix is used (cf. Figure 2.4).

When this composition is subjected to tensile stress along the fiber direction, the
matrix deforms and thereby transmits load to the fiber through shear, especially
at both ends of the fibers. The shear stress decreases the further one gets away
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from the edge of the fibers. The maximum normal stress is therefore induced in
the fiber when the fiber is long enough for the shear stress to become zero before
the middle of the fiber length. This allows maximum force transfer to occur,
loading the favorable tensile properties of the fibers instead of the more critical
interface properties. The course of the shear stress at the interface depends
on the matrix type. In the case of mostly elastically deforming thermosets, a
sharp peak appears at the end of the fiber (blue curve in Figure 2.4), whereas
the viscoelastic material behavior of thermoplastics tends to provide a softer
transition (blue dashed curve in Figure 2.4). [5]

Assuming - as a modeling simplification - that in the case of the thermoplastic
matrix the shear stress at the edge increases abruptly to τ and then remains
constant at this value up to the edge of the fiber, the shear force at the interface
is given by

FShear = Cfτ
1

2
lt =

πdltτ

2
, (2.13)

with the circumference of the fiberCf = πd and the length of the fiber necessary
for load transfer lt. The maximum fiber force can be calculated by

Ff = Afσf =
πd2σf

4
, (2.14)

with the area of the fiber Af = πr2 = π
d2

4
.

Using Equation (2.6), as the load is parallel to the fiber direction, leads to

σf
Ef

=
σ

E11
. (2.15)

In order to obtain the length necessary to transmit the entire load from the matrix
to the fiber, the shear force and the force in the fiber have to be equated, leading
to
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lt =
σfd

2τ
=

Ef

E11

σd

2τ
. (2.16)

In the case of failure, either the fiber breaks or the interface fails. Optimally,
both occurs simultaneously, reaching the bonding shear strength τb and the
ultimate fiber strength σfu. This leads to the reformulation of Equation (2.16) as

lc =
σfud

2τb
, (2.17)

with lc being called the critical fiber length. [5]

The importance of a minimum fiber length and in general the influence of fiber
length becomes clear in this simplified model. In the following, homogeniza-
tion approaches will be discussed which explicitly take more account of such
microstructural properties.

Halpin-Tsai

As a scalar and one of the most simple methods, the Halpin-Tsai model [28]
approaches short-fiber reinforced composite materials by including the length
to diameter ratio l

d . In the Halpin Tsai equations, a load-direction dependent
empirical factor ξ is introduced, defined as follows:

ξ11 = 2
( l
d

)
(longitudinal direction),

ξ22 = 2 (transverse direction).
(2.18)

It is therefore a semi-empirical homogenization method and an adaptation of
Voigt (ξ = ∞) and Reuss (ξ = 0). While this geometry factor ξ could be
expressed correctly as a combination of elastic constants and differences in
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Poisson ratios, the reasonable assumption that the engineering stiffness equa-
tions are insensitive towards differences of the Poisson ratios was made [29].
The validity of the expressions/values for ξ developed from this assumption
was verified both experimentally and by computer calculations of the exact
equations [29]. Additionally defining η and λ as

η11,22 =

Ef

Em
− 1

Ef

Em
+ ξ11,22

,

λ =

Gf

Gm
− 1

Gf

Gm
+ 1

,

(2.19)

leads to the following equations for the longitudinal and transverse Young’s
modulus E11 and E22 and for the shear modulus G12

E11 = Em

(1 + ξ11η11vf
1− η11vf

)
,

E22 = Em

(1 + ξ22η22vf
1− η22vf

)
,

G12 = Gm

(1 + λvf
1− λvf

)
.

(2.20)

For l
d →∞, hence in the case of a CoFRP, these equations can be converted,

e.g., with the help of L’Hôpital’s rule, into the ROM (cf. Equation (2.11)).

The Poisson ratios are defined as

ν21 = νm(1− vf) + νf21vf ,

ν12 = ν21
E22

E11
,

(2.21)
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with the first index describing the contraction direction and the second index
the load direction. [5]

The previous equations include the fiber volume content and also a (at least
average) fiber length. The stress-strain relation is given as


σ1

σ2

τ12

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66


︸ ︷︷ ︸

=Cij


ε1

ε2

γ12

 , (2.22)

with the components of the stiffness tensor defined by

C11 =
E11

1− ν12ν21
, (2.23a)

C12 = ν21C11, (2.23b)

C16 = 0, (2.23c)

C22 =
E22

1− ν12ν21
, (2.23d)

C26 = 0, (2.23e)

C66 = G12, (2.23f)

if the loading directions coincide with the main fiber orientation. In the case
that the load and fiber direction of the composite are now offset by an angle θ,
the components of the off-axis stiffness matrix C ′

ij can be calculated as follows:
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

C ′
11

C ′
22

C ′
12

C ′
66

C ′
16

C ′
26


=



c4 s4 2c2s2 4c2s2

s4 c4 2c2s2 4c2s2

c2s2 c2s2 c4 + s4 −4c2s2

c2s2 c2s2 −2c2s2 (c2 − s2)2

c3s −cs3 cs3 − c3s 2(cs3 − c3s)

cs3 −c3s c3s− cs3 2(c3s− cs3)





C11

C22

C12

C66


, (2.24)

where c = cos θ and s = sin θ. [30] The equations are given in Voigt notation.
This way, the fiber orientation can be considered in the Halpin-Tsai homog-
enization through the inclusion of the amount of fibers aligned in a specific
angle. In practice, the occurrence of fibers in a specific angle range of, e.g., 20°,
is incorporated instead.

Shear-lag modified Halpin Tsai

Another well-known model for unidirectional discontinuous short fiber rein-
forced polymers is the so-called shear-lag model according to Cox [31]. The
name is based on the fact that the fiber and matrix experience different displace-
ments when a load is applied. This leads to a "delay" in the displacement near
the fiber-matrix interface compared to the matrix. A precise derivation can be
found in the work by Fu et al. [32]. The final result is the following equation
for the stiffness in fiber direction:

EL = Efvf

(
1− tanh(χl/2)

χl/2

)
+ Em(1− vf), (2.25)

with l as the average fiber length and χ given by
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χ =

√
2Gm

r2f Ef ln (R/rf)
. (2.26)

Therein, the average fiber radius is given by rf and R denotes the mean sepa-
ration of the fibers normal to their length. Equation (2.25) can then be used as
E11 in the Halpin-Tsai model (cf. Equation (2.20)) resulting in the shear-lag
modified Halpin-Tsai equations. To the author’s knowledge the use of shear-lag
in the Halpin-Tsai model was first considered by Fu et al. in 2002 [30].

2.1.2.3 Microscale/Multiscale modeling

When modeling on the microscale, on the other hand, every fiber, the matrix,
each void and the geometric arrangement has to be considered. For this purpose,
RVEs are used at the micro level (µm). While this is possible on a small scale,
with glass fibers being between 14 µm and 20 µm in diameter and carbon fibers
between 5 µm and 7 µm, there can be so many fibers in just one square millimeter
that this is hardly a realistic approach computationally when considered at the
component level. If an RVE is used for homogenization and coupled with
macroscale modeling (mm), this is considered multiscale modeling. These unit
cells in microscale modeling should be chosen to be as small as possible but as
large as necessary. This means that they should optimally represent the global,
effective material behavior and not only local features, while at the same time
being small enough for efficient computations. The choice of the size of this
RVE is therefore challenging, especially for DicoFRP. The material properties
can then be homogenized within the RVE. The macroscopic material behavior
can be obtained by assembling a component in a finite element (FE) model
recurrently from copies of this RVE. [5]

Depending on the microstructure, multiscale modeling can also mean using a
material unit discretely on the mesoscale. Using the example of SMC, which
has a typical bundle structure, the fiber bundles can be segmented as a unit
from CT images [14]. This bundle-matrix structure can then be the basis for
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structural material simulation [33] as well as for a mesoscale simulation of the
mold filling process [34].

Microstructure generation for RVEs

In this context, the creation of an RVE that can be used discretely in simulations
is an entirely new issue. There are programs that can basically automatically
create a discrete RVE model from a CT image. However, this only works for
very high-resolution and high-contrast CT images and comes with certain limi-
tations in accuracy. Classically, image analysis of CT images and experimental
procedures are used to determine quantities such as fiber orientation, fiber length
distribution, fiber volume content and pores for the size of the intended RVE
and then an attempt is made to recreate the microstructure from this informa-
tion. Therefore, microstructure generators are programmed. These are typically
based on so-called sphere-packing algorithms. Therein, one attempts to pack
particles or fibers into a cell in a non-overlapping manner and to match the
specified properties such as fiber volume content, fiber orientation and fiber
lengths as precisely as possible. In order to achieve the packing, scientist have
relied on a wide variety of approaches, such as mechanical compression or more
chemically influenced ideas of molecular dynamics, right up to a shrinking
RVE cell. Typical examples are random sequential adsorption (RSA) [35],
the approaches by Lubachevsky and Stillinger [36] or Torquato and Jiao [37]
and mechanical contraction [38]. These packing algorithms have limitations.
Particularly high fiber volume contents are a problem for them, but curvature of
the fibers is also difficult to incorporate. However, both effects were observed in
the material used in this work. In particular, the visible mixture of fiber bundles
and individual fibers cannot be covered, even with newer, improved or extended
approaches. Therefore, this topic will be addressed again in Section 2.2.4 in the
State of the Art. With the use of AI to generate CT images of microstructures, a
completely new direction of microstructure generation and possibly eventually
RVE generation will be opened up.
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2.1.2.4 Mean field homogenization

Mean field homogenization can be regarded as a middle ground between the
homogenization approaches mentioned so far. The aim is to determine mean
material parameters for a certain volume, which is supposed to represent the
microstructure of the composite. The important assumption here is that each
fiber is an ellipsoid in the matrix and the aspect ratio of the ellipse represents the
aspect ratio

(
l
d

)
of the fiber. It is further assumed that the fibers are straight and

well distributed and that there is no fiber-fiber interaction. The homogenized
material properties are then to be determined for this RVE with the simplified
structure. [5, 39, 40]

In the context of mean field homogenization, the analytical solution for stress
and strain in an infinite linear-elastic body with an ellipsoidal inclusion by
Eshelby in 1957 was decisive [41]. He found that there is a uniform strain
εinclusion in the inclusion when it is exposed to eigen-strain εm, related by

εinclusion = Nεm. (2.27)

The strain in the infinite elastic body and the ellipsoidal inclusion are therefore
not equal. N is a fourth-order tensor that is a function of the fourth-order
stiffness tensors of matrix Cm and inclusion Cf defined by

N =
[
I− EC−1

m (Cf − Cm)
]−1

, (2.28)

with I as the fourth-order identity tensor and E being the fourth-order Eshelby
tensor, whose components are defined as a function of the aspect ratio of
the inclusion (with which the average fiber length is taken into account) and
the Poisson ratio of the elastic body around it. The exact definitions of the
components can be retrieved from the original paper [41]. [5] An overview of
the different options of homogenizing a composite can be seen in Figure 2.5.

26



2.1 Fiber reinforced polymers

Macro scale Mean field Micro scale

RVE

CT scanCoupon testing

Experimental
stress-strain

Curve-fitting

FVC, FLD, FOT
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Discrete microstructure
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homogenization

Ellipsoidal
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Complexity, computational cost, accuracy

Figure 2.5: Overview of the various homogenization options for a fiber reinforced composite with
increasing complexity from left to right. For further explanation, the corresponding
text sections should be consulted. Images of the CF-PA6 plates used in this work are
shown at the top, with possible specimen geometries for different evaluation methods.
The 3D view of the scan is an image of a 25 mm × 25 mm × 3 mm GF-PA6 sample.
The generated microstructure on the far right is a specially created microstructure with
1000 fibers and a fiber volume content of 0.2, which was implemented using an RSA
algorithm in which spherocylinders were packed.
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Mori-Tanaka

As Eshelby deduced the above expressions only for a single ellipsoidal inclusion,
no interactions between those inclusions are allowed for and hence the stress
in the inclusion can be caused by the matrix only. As this is not the case
in a composite, Mori and Tanaka [42] extended this model to a two-phase
system with interactions between the inclusions, resulting in one of the most
well-known mean field homogenizations. [5]

A new tensor of fourth-order T is introduced as an adaption of N, leading to

εinclusion = Tεm. (2.29)

T is given depending on N and the volume fraction vf as

N =
[
(1− vf)I+ vfT

]−1

T. (2.30)

If the volume content of the fibers is zero, T and N are equal. The stiffness
tensor of the composite can then be calculated as

Cc = C̄ = Cm + vf⟨(Cf − Cm)T⟩. (2.31)

The fiber volume content and the aspect ratio are already taken into account in
this expression. There are subsequently two options for also taking the fiber
orientation into account if it is not a unidirectional material. The reference tensor
H0 (see Section 2.2.3.1 and [43]) can either be multiplied subsequently after the
stiffness determination. This corresponds to a linear dependency. Alternatively,
the orientation determination can already be coupled directly to the tensor T,
which no longer complies with linearity in the dependency and, to the author’s
knowledge, was introduced for the first time by Benveniste [44]. More details
can be found in the works of Bauer and Böhlke [45] and Benveniste [44]. The
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former paper also shows that this makes no major difference in the effective
values for one type of fiber in the composite. However, the linear adjustment of
the orientation no longer makes sense if, for example, there are two fiber types
with different orientations in a hybrid composite.

2.2 Quantitative metrics of DicoFRP
microstructures and their determination

Over time, various parameters have been developed for the quantitative de-
scription of the complex, heterogeneous microstructure of discontinuous fiber
reinforced polymers. These are outlined below and established methods -
whether destructive or non-destructive, experimental or by image evaluation -
that lead to the determination of these quantities are described.

2.2.1 Fiber volume content

The fiber volume content (FVC), often also referred to as fiber volume fraction
(FVF) and in this work denoted as vf , determines the proportion of fibers in the
total volume of the material. In general, a higher fiber concentration implies a
higher elastic modulus, as well as higher strength and better impact behavior,
although the effect on the latter two typically inverses at some point (at least for
DicoFRP) due to the formation of non-impregnated bundles [5].

2.2.1.1 Experimental destructive methods for FVC determination

A first starting point to get an approximate FVC of a plate/part is, of course,
the value nominally set in the process during fiber feeding. However, since this
information is quite inaccurate and the fiber content varies across a plate due to
the process, a measurement of the FVC of the finished material is of interest.
Typically, a smaller sample is cut out of a part and the fiber volume content is
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measured destructively by removing the matrix and then measuring the fiber
weight compared to the total weight of the sample. This method is also known
as thermogravimetric analysis (TGA). The polymer is most commonly removed
by incineration, also known as pyrolysis, as it is the most straightforward ap-
proach [5]. The temperature and time profile of the incineration process must
be adjusted individually for each polymer, exemplified by Rohde et al. [46] for
polypropylene. The decisions also depend on the time available and whether
the fibers are measured further afterwards and therefore may not become more
brittle or sintered. For glass fibers, this works well in principle, but for carbon
fibers, which are the most frequently treated in this work, problems arose be-
cause the carbon fibers can be attacked by the burning process. If the specimens
were incinerated too short or at too low a temperature, the matrix was not yet
completely dissolved and the fibers were therefore still attached to each other.
However, if the specimens were processed longer or at higher temperatures,
the fibers were already visibly attacked. Due to the experienced difficulties
of pyrolysis for CFRP, this method was not applied further after initial tests.
Alternatively, the matrix can be dissolved using acid. Here too, experience for
certain polymers plays a role in the exact test procedure (choice of different
acids, their concentration, time periods and temperatures). The exact method
and the parameter values will follow in the Methods section. Subsequently,
when the fibers are separated, they are weighed with a high-precision scale and
divided by the total mass mtot of the sample to obtain the fiber mass content:

wf =
mf

mtot
. (2.32)

To determine the fiber volume content on this basis, the densities of the con-
stituents and the trivial relationship mm = mtot −mf must be used, leading
to
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vf =

mf

ρf
mf

ρf
+
mm

ρm

. (2.33)

2.2.1.2 Determination of FVC through consideration of composite
density

With the density of the composite ρc defined as

ρc = wfρf + (1− wf)ρm, (2.34)

the fiber weight content wf can be determined as

wf =
ρc − ρm
ρf − ρm

. (2.35)

The density of the two constituents (fiber and matrix) is usually known from data
sheets. The density of the composite can be determined by using Archimedes’
principle - provided the material is non-porous. Otherwise, the volume of the
composite sample can also be determined very accurately by CT measurement
and the mass can be weighed.

2.2.1.3 Computational non-destructive methods for FVC
determination

There are multiple reasons why a non-destructive determination of the fiber
volume content is desirable. Firstly, CT scans are used for every holistic
characterization of FRP, as the fiber orientation, for example, cannot really be
determined well locally in another way (apart from using the method of ellipses
on micro sections [5]). The non-destructive determination of any additional
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parameter from a 3D CT image makes the investigation more efficient instead of
going to the further expense of pyrolysis/acid dissolution. Furthermore, in case
of an experimental FVC determination, a round or rectangular sample between
10 mm and 30 mm is usually processed as a whole. This does not provide any
information about the course of the fiber volume content along different axes.
However, there is good reason to suspect that this is of particular interest with
regard to the thickness of flat samples, e.g., to investigate the shell-core effect
appearing in injection molding [5]. A low FVC on the outer surfaces of the
specimen and thus a lower stiffness and strength could be decisive, especially
for bending loads with maximum bending stress as tension or compression at
the outermost edge of the cross-section. Theoretically, it is also possible to
obtain 3D information on the FVC destructively by milling off thin layers and
subsequent pyrolysis, which has already been done [5]. However, this procedure
requires a lot of effort and measurement inaccuracies are particularly serious
given the small amount of material and the potential fiber shortening due to
the milling process. In addition, neither pyrolysis nor chemical dissolution are
possible if natural fibers are involved, which are attacked by both.

The method of choice from classical image evaluation would be global thresh-
olding. One makes use of the different attenuation coefficients of the fibers and
the matrix, which cause them to appear with different gray values in the CT
image. Hence, a gray value as threshold is sought which divides the histogram
of all gray values in the image exactly at the point, where the material, that the
voxels represent, changes. The location of these voxels is not taken into account
in the case of thresholding procedures. One can simply search for a threshold
manually in commercial software such as ImageJ by creating a threshold and
visually estimating how many fibers are detected. However, there is also a
large number of so-called automatic thresholds that are calculated based on
analytical considerations, like the Otsu threshold [47], the moment-preserving
method by Tsai [48] or the mean threshold [49–51]. They are pre-implemented
both in ImageJ as well as in image processing packages available for Python or
C++. The computation of the most known ones are explained in Section 2.3.4.2.
You can then divide the number of pixels/voxels detected as fibers by the total
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number and obtain a fiber volume content. The difficulty with this method is
that the determined FVC depends directly on the threshold value. However, the
true threshold cannot be determined even with high-resolution CT images with
good contrast. Pinter [52] has applied a large number of different threshold tech-
niques to GF-LFT and GF-SMC and compared them with TGA measurements,
but cannot find one that fits perfectly and advises that these values should be
treated with caution and that high contrast between fiber and matrix is required.
Gandhi et al. [5] introduce a new µCT procedure that attempts to get rid of the
ambiguity of selecting the true threshold. They chose the midpoint between
the mean value that represents the glass fibers in the histogram and the mean
value that represents the matrix as the threshold value. Although this does not
represent the true threshold, small adjustments to higher or lower values only
results in the FVC distribution being slightly shifted up or down, but its course
remains the same. They then normalize the values of the distribution by dividing
them by the average fiber concentration of the entire data set. This shifts the
curves back to approximately the same values, regardless of which threshold
was originally used. However, this approach only works if two clear peaks are
recognizable in the histogram of the CT images. This is not the case for carbon
fibers with a diameter of 5 µm - 7 µm, which show a low contrast to polymers
in CT due to their similar densities. This challenge will be elaborated on in
Section 2.3 about computed tomography.

After reviewing further literature, it becomes apparent that a simple threshold
between fiber and matrix is clearly too imprecise [53–55]. They are still widely
used in the case of pores and voids as air inclusions are usually easy to detect
[56]. Even in that case though, deep learning (DL) solutions have outperformed
thresholding in specific cases like small voids or low porosity [57]. Combina-
tions of DL and thresholding have been explored for low contrast and noisy
X-ray images as well [58]. For the specific problem of reliable determination of
the FVC of carbon fiber reinforced polymers (CFRP) through image segmenta-
tion of CT images, DL presents a promising opportunity. Convolutional neural
networks (CNN) in particular have proven to be able to handle low contrast im-
ages and improve statements resulting from them [59–64]. It seems especially
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tempting in cases like these as necessary filtering and image processing steps
do not have to be found by the engineer, notwithstanding that they are often
needed for the training of the CNN in advance. Thus, in the Methods (Chapter
3) a CNN will be presented for this use case as well as an adapted thresholding
method as comparison.

2.2.2 Fiber length distribution

The fiber length distribution (FLD) describes the amount of fibers as a function
of their length in a sample volume. It plays an important role for the mechani-
cal properties as described in Section 2.1, especially when including damage
mechanisms [52]. Young’s modulus, strength, and impact behavior all improve
with rising fiber length with the effect saturating at very high lengths or even
decreasing in the case of high fiber volume contents [5]. It can be given as a
probability density function fl(l). Analogous to classical probability density
functions, fl is non-negative, integrable and normalized in such a way that the
total integral takes the value one:

∫ ∞

0

fl(l)dl = 1. (2.36)

A two-parameter Weibull distribution is mostly used for modeling the fiber
length distribution [65–68], which is defined as

fl(L) =
m

n

(
l

n

)m−1

exp
[
−
(
l

n

)m]
; l > 0, (2.37)

with n and m as scale and shape parameters and l as the fiber length.

Alternatively, length histograms are used in practice, in which fibers inside of
defined intervals of length are summed up.
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2.2.2.1 Experimental destructive methods for FLD determination

There are several ways to determine the fiber length destructively, all of which
are connected to the matrix removal, which is also used to determine the fiber
volume content. Secondly, in most cases, a certain representative proportion of
the fibers is selected first, as there are usually too many in a sample to be able
to measure them meaningfully. Gandhi et al. [5] recommend a sample size of
1000 to 2000 fibers. After some kind of method for the dispersion of fibers is
applied, the fibers are separated. The fibers can be dispersed either manually
or by air on a scanner. As this causes difficulties, most current methods are
based on dispersion in liquid and subsequent mixing either manually or using
ultra-sound [46, 69], including the two commercial methods described briefly
below. The fiber lengths could be determined subsequently, for example, by
progressive filtering, a fast, mechanical but rather imprecise process. Direct
optical methods are more common. Therefore, a digital image is created either
through microscopy or an optical document scanner and the image is afterwards
analyzed. The individual length of each fiber can be detected either manually
by selecting respective endpoints or with the support of image processing
algorithms. Hybrid approaches are also used. [5]

FASEP

With the commercially available system FASEP (IDM Systems, Darmstadt,
Germany) [70] fiber lengths up to a theoretical length of 25 mm and also bent
or crossed fibers of fiber reinforced thermoplastic materials can be detected. In
a first step, as already mentioned, a sample is either pyrolysed or dissolved in
acid in order to remove the matrix. After the fibers are separated, they must
be dispersed. This is done by adding the remaining fibers to distilled water to
which glycerine has been added. The mixture is gently stirred and multiple of
these diluting steps are carried out by adding more water and glycerine [5]. A
small amount of this mixture is then pipetted into a 90 mm diameter Petri dish.
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A digital image of the fiber mixture is obtained using a customized dark-field
imaging approach. The optical resolution of 1700 dpi corresponds to a pixel
size of 14.9 µm. The tracking in the image itself is carried out using an ALF
algorithm developed in-house by the FASEP company. [52, 69] Typically,
several of these subsets of the sample are examined in succession to obtain a
set of at least 3000 fibers and the results are combined into a histogram of the
frequencies.

FibreShape FiVer

The sample preparation can be performed analogously to the FASEP approach.
Distilled water and a little detergent are then added together with the fibers
to a sample container measuring 6 cm × 12 cm. The fibers are distributed as
evenly as possible with a spatula without breaking them. The sample vessel
holder is then placed in the so-called FiVer scanner. An image is scanned using
the Silverfast software. The real optical resolution corresponds to 8 µm, which
is why fiber lengths between 30 µm and 5 cm can be detected. Depending on
the inhomogeneity of the sample, five to seven of such images are taken per
sample, which can correspond to over 10,000 elements after the measurement.
In particular, the high resolution also makes it possible to measure fibers with
a thinner diameter, such as carbon fibers. The FibreShape (IST AG, Vilters,
Switzerland) program is then used to measure the corresponding lengths from
the images. The exact length detection algorithm of the company is not known
to the author. The output is the geodetic length, as the fibers that are measured
are often curved. The geodetic length indicates the corresponding length that
would be measured if the fiber was straight. The program calculates the value
on the basis of the equality of the area or circumference of the bent and the
curved fiber image. The procedure complies with the specifications of ISO
9276-1 and ISO 13322. [52]
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This method is the one used for the determination of the fiber length distribution
in this work, mainly because it was the technique available at FIBRE (Bremen),
where the chemical matrix dissolution was performed before.

2.2.2.2 Computational non-destructive methods for FLD
determination

Multiple algorithms have been developed for the non-destructive measurement
of fiber lengths from µCT images. To the author’s knowledge all of them have
been developed for the example of glass fiber reinforced polymers.

A method for the measurement of the length of short fiber reinforced polymers
has been introduced by Salaberger et al. [71] in 2011, where they present two
concepts. The first procedure works by accurately detecting a starting point and
an end point of every fiber. Therefore, an anisotropic diffusion filter was applied
first to reduce noise without blurring any edges. The image is then binarized
by applying the Otsu threshold in order to isolate the fibers from the matrix. In
order reduce the information per fiber to their medial axis and therefore only
a single line of voxels, a binary thinning is conducted. This process is also
called skeletonization [72]. In the following, a cluster analysis is performed,
which has the purpose of dividing touching fibers, i.e. regions with clustered
fiber-associated voxels, into individual objects. This method was introduced by
Pfeifer [73]. Clusters are defined as a voxel that has more than two neighbors.
They are recognized morphologically. The cluster information is then used
for the fiber tracing, where the fibers are followed to their endpoint or until a
cluster is reached. If detected segments fall below a user-defined length, they
are assigned to image noise and are not evaluated as fibers. Subsequently, all
detected segments are analyzed and identified as fibers or merged into fibers in
the event of a cluster encounter. The joining decision is made by analyzing the
angles of all segments in a cluster. Salaberger et al. chose a kink angle of 160°
and a cluster distance of 14 µm, which corresponds to the approximate fiber
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diameter as parameters of this algorithm. Subsequently, when all fiber paths are
found, the length determination itself can be performed.

Since straight fibers can be assumed in the case of short fibers, the length of
the ith fiber is simply determined by the Euclidean distance of the start point
xi1, yi1, zi1 and end point xi2, yi2, zi2 of the fiber as

li =
√

(xi2 − xi1)2 + (yi2 − yi1)2 + (zi2 − zi1)2. [13] (2.38)

As the second concept presented by Salaberger et al. [71] is similar to the
approach by Teßmann et al. [74] presented in the next paragraph, it will not
be described in detail in this work. It works directly on the gray value image
without binarization and requires the detour via the determination of the fiber
orientation by calculating the Hessian matrix and analyzing their eigenvalues.
The Hessian matrix is a measure of the local curvature of a 2D/3D image.
While originally being used in order to detect valleys and ridges in topology
problems [52], Daniels et al. [75] first implemented a 3D Hessian matrix for the
evaluation of local orientations in volumetric images in 2006. Mathematically
it is defined as the square matrix of the second order partial derivative of the
image I(x):

H(x) = ∇2I(x) =



∂2I

∂x2
∂2I
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∂2I

∂z∂y

∂2I

∂z2

 . (2.39)

In addition to the local orientation, the gray value distribution across the cross
section of a fiber is taken into account. It should roughly match a Gaussian
distribution perpendicular to the axial direction and hence show the highest
gray value in the center of the fiber. Thereby, one can reduce the fibers to
their center voxels. This dataset can then be examined analogously to the

38



2.2 Quantitative metrics of DicoFRP microstructures and their determination

approach before to detect the start and end point of the fibers and find the
length. They attain up to 97 % accuracy in another paper investigating the
reproducability and accuracy of the described approach for short glass fiber
reinforced polypropylene [76]. However, mean fiber lengths decreased for
lower resolutions. Since the curvature of the fibers, which generally occurs in
long-fiber reinforced polymers, is not taken into account by these approaches,
two further methods are described below.

Teßmann et al. [74] introduced an alternative approach for the fiber length de-
termination from µCT images of long fiber reinforced thermoplastic specimens
in 2010. This approach is based on the reasonable assumptions that (a) the fibers
have a cylindrical shape, (b) the gray value profile of the fibers is the highest at
their centers as mentioned in the paragraph before and (c) that all fibers have
a constant and previously known diameter. Subsequently, the segmentation is
divided into several sub-steps. The image is filtered and reduced by a closing
operation first. This step is necessary as standard segmentations such as seeded
region growing [77] fail in case of tightly packed fibers. A morphological
erosion filter is therefore applied to the image, in order to enhance the fiber
borders. Subsequently, the center voxels of the fibers have to be determined
through a discrimination function based on an eigenvalue analysis, which was
introduced by Frangi et al. [78]. The already mentioned Hessian matrix is com-
puted for every voxel for this step. The thereby detected center points are used
as starting seeds for the tracing algorithm. Therefore, a model-based cylinder
approximation scheme is used which is based on the fiber shape assumption
mentioned before. A starting point candidate is followed along the minimum
eigenvector in both directions resulting in a center point list, from which the
circular shape can be built. Once a fiber is completely segmented, it is removed
from the original image and the procedure is repeated until there are no more
prospective fibers in the image. Finally, the fiber lengths can then be determined
easily as

Li = ns, (2.40)
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with n denoting the number of center point voxels of one fiber and s the isotropic
voxel size. In the paper by Teßmann et al. [74], certain special cases of crossing
fibers or partial fiber segmentation are explained in more detail. Finally, the
algorithm was tested on artificially generated test images and images of selected
real components.

Finally, the FLD determination approach by Pinter et al. [13] from 2016 is
presented here. They introduced a reliable procedure to determine FLDs of LFT
material which - contrary to Teßmann’s method - shall even work for moderate
image qualities. It starts with a pre-processing of the image with the help of a
CircularVoting filter developed by Bertram and Pinter [79] and available as open
source software on SourceForge as part of the so-called Composight package.
Through this pre-filter, connections of almost touching fibers are avoided by
thinning them and thus increasing their distances. For the exact details of the
CircularVoting method, the reader is referred to the cited paper. However, the
idea is based on the combination of a coherence measure with a surface normal
overlap measure. The latter uses only the fixed fiber radius of the glass fibers.
The former makes use of the eigenvalues of the structure tensor of the image.
The structure tensor is also used for determining the fiber orientation tensors in
this work and will therefore be introduced here. Krause et al. [80] were to the
author’s knowledge one of the first who used the structure tensor approach to
acquire orientation information from CT images of FRP in 2010. It is defined
as follows:

S =∇Iσ(x)⊗∇Iσ(x) = ∇Iσ(x)∇Iσ(x)⊺ =
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(2.41)
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Working on the first numerical derivative of an image combined with a fixed
"window function", in this case a Gaussian blur of width σ used for smoothing,
it is a robust approach [80–82].

After the CircularVoting pre-filter is applied, a user-defined threshold is applied
on the image in order to binarize it [52]. Then, the fibers are reduced to
their medial axis through skeletonization [72]. The fibers are tracked with
the help of a modified version of the ImageJ plugin Skeletonize (2D/3D) and
AnalyzeSkeleton by Ignacio Arganda-Carrera [83, 84]. The original code was
not intended for fibers that do not show any junctions. It was therefore modified
by Pinter et al. [13, 52] taking the local orientations into account in order to
remove cross-over links in the resulting graphs and connect branches that belong
to the same fiber. For more details on the method, the readers are referred to the
sources [13, 52].

While the first method by Salaberger et al. [71] only works for short-fiber
reinforced polymers, the latter two by Teßmann et al. [74] and Pinter et al.
[13] can also handle scans of long-fiber reinforced polymers. However, both
emphasize the need for high resolution, even in Pinter’s work, and both only
work with glass fibers. However, a high resolution of e.g. 5 µm for glass
fibers may correspond to three or even four voxels across the diameter. This
would be equivalent to less than 2 µm resolution for carbon fibers. The frequent
dichotomy in this work between the extremely high resolution required and the
poor image quality, high noise and low contrast meant that this goal could not
be achieved. Accordingly, these algorithms were not used for the material in
this work and only destructive methods were used to determine the FLD.

2.2.3 Fiber orientation distribution

Most fibers in short and long fiber reinforced polymers do not have a uniform
orientation. A necessary description of the orientation distribution can be given
by a probability distribution function of the orientation, ψ, [43], sometimes
called orientation distribution function (ODF) [85] or fiber orientation density
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distribution function [86], which all describe the same property. First of all,
it is assumed that the orientation of a fiber in any coordinate system can be
described by a unit vector p ∈ S, where S = {p ∈ R3 | ∥p∥ = 1}. S denotes
the two-dimensional unit sphere as the set of all possible directions of p. The
components of p can be determined using the angles that the fiber makes with
the axes of the coordinate system (cf. Figure 2.6) using trigonometric functions
as follows:

p1 = sin θ cos ϕ

p2 = sin θ sin ϕ

p3 = cos θ.

(2.42)

1

2

3

p

ϕ

θ

Figure 2.6: Coordinate system and fiber with angles to the coordinate axes. Based on a TikZ library
[87] but changed for the case at hand.

The length of the vector is fixed, fulfilling

pipi = 1. (2.43)
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The fiber orientation distribution function (FODF) ψ : S → P describes the
probability of finding a fiber in direction p with P = {ψ ∈ R | 0 ≤ ψ ≤ 1}
[43]. ψ is defined in a way that the probability of finding a fiber between angles
θ1 and (θ1 + dθ) as well as between ϕ1 and (ϕ1 + dϕ) is given by

P(θ1 ≤ θ ≤ θ1 + dθ, ϕ1 ≤ ϕ ≤ ϕ1 + dϕ) = ψ(θ1, ϕ1) sin θ1 dθ dϕ [43].
(2.44)

In practice, the distribution of orientations can be given in the form of a his-
togram as a discrete approximation to the underlying probability density function
for orientation [88] (as can be seen in Figure 4.33 on the right side).

The function ψ(p) has to fulfill multiple mathematical conditions. First of all,
fibers have an orientation but do not have a direction [85] meaning a fiber with
angles θ, ϕ is identical to one with angles π − θ, ϕ + π to the function [43].
In other words, the beginning and end of a fiber cannot be distinguished [86].
Hence, ψ(p) is periodic and therefore a symmetric function

ψ(p) = ψ(−p). (2.45)

The function ψ(p) is also non-negative [85]:

ψ(p) ≥ 0. (2.46)

Secondly, ψ(p) has to be normalized as every fiber has an orientation [43], i.e.,

∫ π

θ=0

∫ 2π

ϕ=0

ψ(θ, ϕ) sin θ dθdϕ =

∮
ψ(p)dp =

∫
S
ψ(p)dp = 1, (2.47)
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using the integral over the surface of the unit sphere and consequently over all
possible directions of p [43].

Lastly, ψ(p) fulfills the continuity condition [86]

ψ̇ = −gradS(ψ(p)ṗ). (2.48)

This equation describes the change of the fiber orientation distribution function
with time when the fibers move with the bulk motion of the fluid. ψ(p) can
therefore be determined when an appropriate expression describing the average
fiber angular velocities θ̇, ϕ̇ or the average fiber direction velocity ṗ is provided
[43]. This last condition is particularly crucial in the context of modeling and
simulating a flow process, which will not be discussed in detail in this paper.

While the fiber orientation distribution function is a closed, explicit [25], com-
plete and unambiguous [43] description of the fiber orientation state, it can
become arbitrarily complex [86]. Hence, Kanatani [89] as well as Advani and
Tucker [43] suggested the use of moments of the function, which are called
fiber orientation tensors. Inspired by the Fourier series expansion, they offer im-
proved storage possibilities, reduced complexity and the application of algebraic
operations [85].

2.2.3.1 Fiber orientation tensors (FOT)

While Kanatani [89] distinguishes between orientation tensors of first and third
kind, only the tensors of first kind that are also discussed in the work of Advani
and Tucker [43] will be discussed here.

Orientation tensors as statistical moments of the distribution function are defined
as the integral of the dyadic product(s) of the vector p. As the odd-order integrals
amount to zero due to the symmetry of ψ(p), there are only even-order tensors,
with the second- and fourth-order tensors being the most commonly used ones
[43, 85, 86]:
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A =

∫
S
ψ(p)p⊗ p dp,

Aij =

∮
ψ(p) pipj dp,

A =

∫
S
ψ(p)p⊗ p⊗ p⊗ p dp,

Aijkl =

∮
ψ(p) pipjpkpl dp.

(2.49)

In the index notation, the base ei has been omitted respectively. In practice,
after the orientation of N fibers is measured in a region of interest, e.g., through
image-processing of µCT images, the orientation tensors of second- and fourth-
order can be calculated via

A =
1

N

N∑
i=1

(p⊗ p)k ,

Aij =
1

N

N∑
i=1

(pipj)k ,

A =
1

N

N∑
i=1

(p⊗ p⊗ p⊗ p)k ,

Aijkl =
1

N

N∑
i=1

(pipjpkpl)k [88, 89].

(2.50)

A set of measured FOT of second order will later be referred to in caligraphic
letters, such as Tm.

Orientation tensors are fully symmetric [43], hence
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aij = aji or A = AT ,

aijkl = ajikl = akijl = alijk = aklij , etc.
(2.51)

holds. The symmetry reduces the amount of necessary tensor components to
uniquely describe an orientation tensor of second order to only six (a11, a22,
a33, a12, a13, a23) instead of nine. As a consequence of the normalization
condition in Equation (2.47), the trace of an FOT of second order has to be one:

A · I = tr(A) = 1, (2.52)

with the identity tensor I . This relationship further reduces the necessary tensor
components to only five [90, 91].

All higher order tensors contain the respective tensors of lower order [85],
leading to the following contraction [86]

A : I = A. (2.53)

In contrast, determining a higher order tensor from a lower order tensor is not
trivial and requires some kind of closure approximation, which will be shortly
taken up again in the next paragraph of this section.

The distribution function ψ(p) could be reconstructed exactly by means of
Fourier analysis if all FOT up to order n =∞ were available [92]. In all other
cases, it can be approximately recovered from an FOT, as shown exemplary in
the following equation for a second order tensor:

ψ(p) ≈ 1

4π
+

15

8π
BF (p), (2.54)

with B = A− 1
3I and F (p) = p⊗ p− 1

3I [43].
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This expression of the distribution function through FOT as 3D tensorial Fourier
series, is also called spherical harmonic expansion [89, 93]. It is cut in Equation
(2.54) after the first two terms. For the respective relationship for higher order
tensors, the reader is referred to the article by Advani and Tucker [43] and to
the one by Jack et al. [94]. It shall also be noted that orientation tensors are a
truncation of the full series partly shown in Equation (2.54) and higher order
tensors represent the distribution function more accurately. However, second-
and fourth-order tensors are sufficient in practice and state of the art. [43]

Closure approximations

A closure approximation C is a mapping A = C(A) [92]. The need for closure
approximations descends from process simulations of fiber suspensions. The
orientation evolution can be described by approaches like Jeffery’s model [95]
or the model by Folgar and Tucker [96] who included the FODF and added
a diffusion term to the former equation [86]. When expressing the afore-
mentioned models in terms of FOT, the fourth-order tensor A is required in
order to solve the transport problem.

Many different closure approximations have developed over time with varying
complexity and accuracy. The quadratic closure can be considered the simplest
analytical closure and is given by

AQ = A⊗A (2.55)

and is only exact for a unidirectional FRP [43, 86, 97]. Contrarily, the lin-
ear closure [43, 98] gives correct results for isotropic fiber orientations [86].
Then, there are hybrid closures combining these ideas [99, 100] and more ad-
vanced orthotropic fitted closures [101, 102] working with fitting of eigenvalues.
The widely used invariant-based optimal fitting (IBOF) closure [103, 104] is
also a physically more consistent approach [92] and was used, e.g., by Meyer
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et al. [34] in their simulation of the compression molding process of Sheet
Molding Compounds or by Brylka [90] for linear elastic homogenization of
polypropylene LFT with Mori-Tanaka as a good compromise between accuracy
and computational cost [86]. For a more comprehensive analysis and discussion
of the various closure algorithms, the reader is referred to the work of Breuer et
al. [105].

It should be mentioned at this point that the use of closures inevitably introduces
errors. For example, Brylka calculates maximum errors in the resulting stiffness
of 7 % on the sample scale and 15 % in the individual layers across the thickness
by using second-order FOT and an IBOF closure in his Mori-Tanaka approach
compared to the direct use of fourth-order FOT [90]. Furthermore, it should
be noted that there is also the possibility of using indirect closure methods
[93, 106], which take the detour of reconstructing the FODF ψ from the second-
order tensor, which can then be used to determine the fourth-order tensor [92].
However, these are based on assumptions too that can vary depending on the
approach. Shannon’s maximum entropy method (MEP) [107] is a well-known
example.

Examples of FOT and correlation with concrete fiber distributions
in FRP

In order to be able to refer an orientation tensor to an actual fiber distribution,
visible, e.g., in a CT scan, three simple FOT of a unidirectional, approximately
planar and isotropic state are presented in Figure 2.7 alongside a respective FRP
microstructure portraying the orientation state of the FOT.

The microstructures were generated with the "fSAM" algorithm by Lauff et al.
[108]. An almost planar isotropic fiber orientation state is considered as gen-
erating microstructures with eigenvalues closer to a33 = 0 is computationally
extremely expensive. Further fiber packing algorithms will be mentioned in this
work in Section 2.2.4.
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Figure 2.7: Examples of different orientation states in generated microstructures of specific fiber
distributions and respective orientation tensors.

Parametrization of FOT

Any FOT of second order A is symmetric (see Equation (2.51)), and positive
semi-definite as all of its eigenvalues are non-negative, λi ≥ 0 (cf. Equation
(2.46)). Consequently, it can be rotated in a way that only the diagonal of the
matrix is populated, hence it can be diagonalized. This so-called eigendecom-
position of a matrix is defined as such

A = RΛRT = R ⋆Λ, (2.56)

with R ∈ SO(3) being an orthogonal matrix (RRT = RTR = I holds),
whose i-th column is the eigenvector vi of A (the three eigenvectors are or-
thonormal to each other) and is sometimes called rotation matrix for afore-
mentioned reasons. Λ is the diagonal matrix with the corresponding eigenvalues
Λ = Iλ with λ = [λ1, λ2, λ3]

⊺. It exists a common ordering convention of the
eigenvalues [85, 91, 109–111] following
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λ3 = 1− λ1 − λ2 = 0

Figure 2.8: Material symmetries and constraints defining the orientation triangle. Based on [85].

λ1 ≥ λ2 ≥ λ3. (2.57)

Equation (2.52) translates to

λ1 + λ2 + λ3 = 1. (2.58)

This parametrization of orientation tensors allows the depiction of the variety
of FOT via pairs of λ1 and λ2 (alongside a mapping R defining the orientation
coordinate system) in a two-dimensional space [85]. This representation is also
known as orientation triangle, which can be seen in Figure 2.8 and also, e.g., in
the works of Bauer and Böhlke [85], Gajek et al. [91], Goldberg et al. [109],
Cintra et al. [101], Chung et al. [103] or Köbler et al. [110].

It simplifies the assignment of different material symmetries to the specific FOT.
The weakest material symmetry of orthotropy as the gray area in Figure 2.8 is
thereby defined by three points of extremal orientation states of isotropy (A),
unidirectionality (B) and planar isotropy (C). The connection lines between
these three points describe special material symmetries themselves, with the
connection between A and B depicting states of transverse isotropy regarding
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the principle axis of v1, the connection between A and C portraying trans-
verse isotropy regarding v3 and the connection between C and B represents a
planar state of fiber orientation. The reader is referred to Bauer and Böhlke’s
comprehensive work on the variety of fiber orientation tensors [85] for more
details.

Visualization of fiber orientation tensors through tensor glyphs

Especially for the FOT interpolation described in Section 2.2.3.3, a simple and
descriptive but comprehensive way to visualize fiber orientation tensors and
their anisotropy was necessary. Therefore, the possibility to portray symmetric
positive definite (SPD) tensors by glyphs (often ellipsoids) was used, which
is a well-known concept in scientific visualization and could be found mostly
for diffusion tensors [112–114] in the beginning. It is especially helpful for
tensor field visualization, where a tensor is available at different points in a
grid. The glyphs (sometimes also called icons) portrayed at each grid point are
a symbolic parametric object to visually represent the features of the tensor it
portrays [115]. Hence, the attributes of the tensors somehow have to be mapped
to the parameters (or degrees of freedom) of the glyph [115]. So as described
by Kindlmann in [116], one takes an initial glyph geometry G (in our case the
ellipsoid geometry) and translates it into a tensor glyph GA as following

GA = RΛG, (2.59)

and then plots GA at the specific grid location of the given orientation tensor
A. It goes back to the spectral decomposition of an SPD tensor described in
Equation (2.56), but by specifically not rotating back, the orientation of the
tensor can be depicted. The shape of the ellipsoid is representative of the eigen-
values and concomitant with the tensor’s anisotropy and the orientation of the
ellipsoid is representative of the eigenvectors, respectively. More specifically,
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the three eigenvalues determine the radii of the ellipsoid in the three main spa-
tial directions. The center of the ellipsoid is set to the tensor’s position. Then,
the coordinates in the variables x, y and z are rotated with the rotation matrix
(eigenvectors) to represent the orientation of the tensor.

Kindlmann further developed superquadric tensor glyphs in 2004 [116] to battle
problems of asymmetry and ambiguity, which were further generalized in 2010
[117] and even used for fiber orientation tensors as well [92]. However, the
standard glyph visualization was sufficient in this work.

The glyphs offered a way to interpret the success of different interpolation
methods by visualizing the evolution of orientation tensors across FOT fields.
The rendering in this work was done with MATLAB R2020b with the help of
the “plotDTI” function of the fanDTasia ToolBox by Barmpoutis et al. [118].

In Figure 2.9, some examples for special tensor glyphs rendered with the
function above can be seen. Multiple fields of realistic tensor glyphs follow in
the course of this work.

2.2.3.2 Computational methods for determination of fiber
orientation tensors from µCT scans

In order to determine the fiber orientation from µCT scans, two generally
different approaches are conceivable. As already described in Section 2.2.2.2
on computational determination of fiber lengths, one can track the center line of
each fiber to get a vector for every fiber orientation, as done in [76]. However,
this method requires high resolution and sufficient contrast of the images and
both aspects are lacking in our case and carbon fiber reinforced polymers in
general. Luckily, the orientation of the fibers can - in contrast to their length -
also be determined on a voxel basis not including their connectivity [81]. Pinter
presented an evaluation of the accuracy of three methods of this kind in [81]
(also in [52, 119]). The first method was introduced by Lampert and Wirjadi
and is based on an anisotropic Gaussian filter [120]. This filter returns higher
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Figure 2.9: Examples of tensor glyphs rendered with the "plotDTI" function of Barmpoutis et al.
[118] in Matlab R2020b. At the left, a nearly unidirectional state can be seen, as a
completely unidirectional case is impossible to visualize as an ellipsoid (see section
above). The high anisotropy can be identified by the slim ellipsoid body and the strong
orientation in the x-direction (horizontally to the right) is visible. This is followed by a
completely planar state, which is visualized as a flat plate. The isotropy in the visible
plane can be seen due to its complete roundness and the missing shading implies the
missing expansion in the z-direction (normal to the visible plane). Lastly, the isotropic
case leads to a perfect sphere with equal dimensions in all coordinate directions. As for
the planar case, no preferred orientation can be perceived.

values if the fiber in the currently examined voxel aligns better to an orientation
from a table of given orientations and vice versa. The second concept is based
on the already introduced Hessian matrix (compare Equation (2.39)) proposed
by Daniels et al. [75]. Lastly, the also already introduced structure tensor
(cf. Equation (2.41)) was tested. All of the three implemented methods were
published in the open source project Composight by Bertram and Pinter [79].
As the last method performed the best for artificial images and real images of
glass fiber reinforced polymers and Pinter et al. [81] showed that it was even
the only one working for low contrast pictures with carbon fiber reinforced
polymers, the structure tensor approach as implemented by Bertram and Pinter
[79] was used in this work and it is therefore the only one described in further
detail. A small adjustment made later is explained in the Methods (cf. Section
3.6).
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Described by van Ginkel [121] as a way to analyze orientation in 3D images,
Krause et al. [80] used a structure tensor based approach first for orientation
analysis of FRP in 2010. The structure tensor S is composed of the dyadic
product of the so-called Gaussian derivative∇Iσ(x) [80] defined as

∇Iσ(x) = ∇(Kσ ⋆ I)(x), (2.60)

which can already be seen in Equation (2.41). It consists of the partial derivatives
of the function I combined with a Gaussian blur Kσ in a fixed window with
width of σ. The Gaussian derivative is a regularization, as the computation
of gradients without it is ill-posed [80]. The application of a Gaussian blur
is the same as convolving the image with a Gaussian function and will be
revisited in Section 2.3.4.1 on filters. Subsequently, both Krause and Pinter
use an additional, not mandatory Gaussian smoothing Kρ1

with the standard
deviation ρ1 as additional regularization leading to the final structure tensor
Jρ1 :

Jρ1
(x) = Kρ1

⋆ (∇Iσ∇Iσ(x)T )(x). (2.61)

Pinter et al. [81] point out that the second blurring parameter ρ1 has to be larger
than the first one, σ, that is used for the derivative. The resulting structure
tensors are flat ellipsoids in the case of fiber-like structures that are aligned
perpendicular to the local fiber orientation, see Figure 2.10. The fiber orientation
vector is finally calculated by evaluating the smallest eigenvalue of the structure
tensor and its corresponding eigenvector.

The resulting fiber orientation vectors are further processed in MATLAB to
orientation tensors, pseudocolor images, etc., which will be explained in the
Methods (cf. Section 3.6).
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λ1, e1

λ2, e2

λ3, e3

Figure 2.10: The flat structure tensor (gray) of a fiber-like neighborhood (orange) that is parallel
to vector e3. The gradient directions are hence spread out but perpendicular to e3
resulting in a pancake-like shape of the structure tensor with λ1 ≈ λ2 ≫ λ3.

2.2.3.3 Necessity of fiber orientation tensor interpolation

The fiber orientation in a sample of FRP material can accordingly be determined
by a CT scan and the subsequent application of the method presented above.
The question of the size of the sample volume is not insignificant here. This
question is discussed in more detail in Section 3.1.6. However, it is trivial that
a fiber orientation tensor of a rather small sample may represent very locally
occurring fiber orientation behavior (e.g. a strong anisotropic orientation of a
single fiber bundle). In contrast, a very large sample would on the one hand
make it impossible for the algorithm to detect small fiber bundles because
the resolution would then be too poor. On the other hand, a fiber orientation
tensor obtained in this way would mean a massive averaging of a large range of
different fiber orientations, which would probably result in very isotropic FOT
that are not representative.

In this work, specimen sizes with an edge length between 10 mm and 30 mm
were used depending on the application (see Section 3.1.6) at a plate size of
400 mm × 400 mm × 3 mm. It is immediately clear that a specific orientation
tensor of such a sample represents only a fraction of the entire fiber orientation
behavior of the pressed plate (cf. Figure 2.11).

For stiffness modeling, however, a representative averaged FOT of such a plate
is often required, which cannot be obtained in this way. Specimens for tensile
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Figure 2.11: Visualization of the interpolation problem: Nine measured tensors of 10 mm × 10 mm
× 3 mm specimens are shown as blue tensor glyphs at the corresponding extraction
points. A transparent photo of an original plate with the dimensions 400 mm ×
400 mm × 3 mm is shown in the background. The behavior of the fiber orientation
between the small measured areas is unknown. Based on Blarr et al. [17].

tests, where one would like to compare the discovered stiffnesses and strengths
in different directions with measured fiber orientations, are by standard also
larger than the CT specimens. In addition, simulations of the pressing process
usually provide an FOT at each mesh point, which is difficult to compare with
only a few FOTs determined at specific points. However, cutting and scanning
the entire plate and then carrying out a fiber orientation analysis would be
immensely time-consuming. With an average scan length of two hours and
approximately another hour of work in post-processing, this seems impossible to
implement in practice. Therefore, the scientific question of determining tensors
at various grid points from a few given tensors at specific grid points arose.
This corresponds to the mathematical problem of tensor interpolation. While
the interpolation of scalar values has been widely studied, the interpolation of
tensors is less well-known.
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Current state of research on tensor interpolation 1

The problem of tensor interpolation can be theoretically avoided for fiber orien-
tation tensors, compared to, for example, stress and strain tensors, by switching
to the scalar distribution function. It must be mentioned, that this switching
is not unique, as the second order FOT contains too little information. Nev-
ertheless, the function can be recovered under assumptions and a subdivision
into discrete directions and subsequent interpolation would equal a Euclidean
interpolation of the scalar-valued function Ψ̄. In fact, this corresponds exactly
to averaging the tensor components (with weights depending on distance). This
can be explained by the fact that an integral is a linear mapping. However,
this standard method led to a kind of "artificial" isotropy, which is shown by
a change of shape in the manner of a rounding in the representation form of
tensor glyphs. This does not necessarily seem to represent a useful averaging,
as this issue of so-called tensor swelling arose both in the field of medical
technology when interpolating diffusion tensors from MRI images [122–124]
and in the case of FOT mapping in process simulation applications [125]. This
swelling effect is due to non-monotonic interpolation of the tensor determinant
and the Euclidean method does not preserve the positive definiteness. It was
part of scientific discussions whether a more isotropic tensor as an interpolation
between two anisotropic tensors that point in different directions still constitutes
a reasonable behavior of fibers. It would imply that in a region of changing
flow direction first some fibers turn and others stay in the original direction
until most are turned in the end. The opposite idea that most turn first a bit and
later completely into the new direction would rather be indicative of tensors
in the center to be not significantly less anisotropic than the two next to it.
As a reference solution, the first method for tensor interpolation implemented
and used in this thesis is this Euclidean interpolation, which will be called
component averaging (CA) from now on.

1 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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The complex Riemannian interpolation is another "global" interpolation method
[126]. However, if more than two input arguments are used, the underlying
computations can only be solved implicitly, which requires an iterative and
therefore computationally expensive calculation. Since this thesis explicitly
seeks an application-oriented method that is as fast and simple as possible
while maintaining the highest possible quality, Riemannian interpolation will
not be discussed further. Another logarithmic, but explicitly solvable approach
was introduced by Arsigny et al. [122]: the Log-Euclidean tensor interpo-
lation method. This method was already considered for FOT by Krauß and
Kärger [125]. As it showed similar behavior in [125] as the basic Euclidean
interpolation (component averaging), it will not be used in this work.

A completely different approach are so-called decomposition methods. These
methods make use of the fact that SPD tensors can be decomposed into eigen-
values and eigenvectors in spectral decomposition (cf. Equation (2.56)). In
terms of tensor glyphs, the eigenvalues are responsible for the shape, while the
eigenvectors are responsible for the orientation of the tensor in space. Thus,
shape and orientation can be weighted (according to various possible distance
measures) and interpolated separately and then recomposed into a tensor. This
can be done directly via the eigenvalues and eigenvectors, or via detours with
the help of other invariants and, for example, quaternions. This method al-
lows in particular the resolution of the swelling effect [123, 125]. It should
be mentioned here that there is not only one decomposition method, but this
must be understood as a kind of umbrella term, which can be executed very
differently in the individual steps. The only previous use of this concept for
FOT by Krauß and Kärger [125] differs from the one implemented in this work,
for example. The exact concepts used for the decomposition method will be
explained in detail in the Methods chapter (cf. Section 3.7.3) and have been
previously summarized by the authors in [17, 127], but basic considerations
about the decomposition method will be elaborated in the following paragraph.

As far as the shape is concerned, a direct interpolation of the eigenvalues would
be conceivable. There are also approaches which handle it this way [128]. But
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Ennis et al. [124] developed the concept of orthogonal invariants, which seem to
perform very well for physical problems. Each set of invariants decomposes the
tensor shape with an orthogonal basis so that the derivatives of these invariants
Ii with respect to the (fiber orientation) tensor A behave as follows:

∂Ii
∂A
· ∂Ij
∂A

= 0, i ̸= j. (2.62)

Ennis et al. established the so-called K- and R-invariants, which are also used in
this paper. They argue that while eigenvalues form a set of orthogonal invariants
as well, they have the disadvantage of not isolating essential attributes of tensor
shape like size and anisotropy which the sets of K- and R-invariants provide
instead. A direct interpolation of the eigenvalues has still been performed as a
test but indeed seemed to distort the results and will not be considered in more
detail in this work.

When it comes to the interpolation of the orientation of the tensors, there are
multiple works which focus on the interpolation of rotations in 3D, i.e., elements
in the 3D rotation group, which is also called SO(3), as a separate mathematical
problem independent of tensors or the shape of the same [129–132]. However,
many of these papers focus on the smooth rotation between two or few different
orientation states. These methods do not necessarily perform just as well for
multiple and spreaded orientation tensors. Typically, the orientation of a general
basis in 3D linear algebra is described by Euler angles with respect to a fixed
coordinate system. Generally, it must be considered that an orientation can be
described by 24 different coordinate systems. This ambiguity is counteracted
with the help of conventions, this includes the determination to use a right-
handed system as well as the sorting of the eigenvalues according to magnitude.
However, after the conventions still four possible coordinate systems remain to
describe an orientation. Depending on the choice it can be influenced whether
between two orientations, which, e.g., lie only 20° apart, the interpolated tensor
rotates by 10°, which corresponds to the - at least at first - obviously correct
option, or by 170°, which would correspond to the mirrored coordinate system.
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For two tensors between which one wants to interpolate, it therefore makes
sense to implement a query and restrict the size of the angle. However, for a set
of measured tensors Tm at multiple supporting points, where the ones further
away from the one that is currently to be calculated have less weight but are
still included in the calculation of this interpolated tensor, this becomes less
obvious. For this reason, no angle restriction is implemented in this work (cf.
Section 3.7.3). This aspect will be taken up again in the Discussion (cf. Section
5.4.4.4).

A much-investigated method is the orientation interpolation via quaternion.
Quaternions as described by Hamilton extend the complex number system and
are usually represented in the following form:

q = a+ bi+ cj + dk with (2.63)

i2 = j2 = k2 = ijk = −1 (compare complex numbers).

The result is a four-dimensional number system (mathematically: a vector
space) with a real part consisting of one real component and an imaginary part
consisting of three components, which is also called the vector part. Multipli-
cation of quaternions is noncommutative. Quaternions allow in many cases a
computationally elegant description of three-dimensional Euclidean space, es-
pecially in the context of rotations. By using quaternions instead of Euler angles
the problem of Gimbal lock can be avoided and they are simpler to compose.
Compared to the rotation matrices, quaternions are more compact, efficient,
and numerically stable. Regardless, not all ambiguities can be circumvented.
The unit quaternions q and −q represent the same rotation. This means that
there is a 2:1 homomorphism from quaternions of unit norm to the 3D rotation
group SO(3). In other words, SO(3) is double-covered by quaternions. This
sign ambiguity has to be paid attention to when computing a quaternion from
the rotation matrix.
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Alternative fiber orientation interpolation methods were developed, e.g., by
Köbler et al. [110]. They developed a mechanical interpolation method in a
surrogate model, i.e., they first calculated the material response for discrete fiber
orientations and then used linear interpolation on the fiber orientation triangle
(a material model as a function of the orientation triangle). While this yields
good results, it requires a prior mechanical model and is therefore of no interest
in the application thought of in this work.

The use of AI for fiber orientation tensor interpolation has been explored by
Sabiston et al. [133]. The authors used a large number of FOT obtained - as
in this work - from µCT images of multiple plates of the same process. This
represented their ground truth, which they used to train the artificial neural
network (ANN), which was subsequently able to predict the tensor components
for plates of this process with less deviation than the variability was between
neighboring microstructure units. Since this represents an entirely new, non-
physical, nor classically linear-algebraic way, a neural network is used as the
third interpolation method in this work. However, in contrast to Sabiston’s
work, the ANN is trained using only the nine measured tensors considered for
all methods for comparison. Then, the remaining 160 are predicted using the
trained network. Even though the nine tensors give five values of information
each, the use of AI with such a small amount of input data is rare, but it is
intended to assess whether this can still produce reasonably useful results, or
whether a useful result can be expected with a small additional number of
given tensors.2 The usefulness of this approach will be taken up again in the
Discussion (cf. Section 5.4.4.3).

Therefore, in this thesis, three different methods are presented in the Meth-
ods chapter (see Section 3.7) and their results in the Results chapter (Section
4.6) to obtain a full-field distribution of fiber orientation tensors over a plate.
The classical Euclidean interpolation (averaging of the tensor components),
a decomposition method based on the separate interpolation of the shape via

2 Up until here, this section is extracted from the author’s publication [17] with only slight
linguistic changes.
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orthogonal invariants and the orientation of the tensors via quaternions and
the adaptation of the ANN developed by Sabiston et al. [133] to the given
application are tested. All ideas were not developed in the context of fiber
orientation tensors but in theoretical papers focused on mathematics. However,
the application of the first two methods to fiber orientation tensors was done
by Krauß and Kärger [125] for a slightly different background, namely the
mapping of fiber orientation tensors between different meshes. Sabiston’s [133]
ANN worked with a large number of input tensors from different plates and was
intended for the general prediction of average fiber orientations of a process.
The application of these methods to small numbers of fiber orientation tensors
measured from CT images and the generation of larger numbers between the
given ones is, to the author’s knowledge, a novelty that first appeared in the
self-published paper [17] and proceeding [127].

2.2.4 Representative volume elements and
microstructure generation

In order to avoid having to reproduce the complex structure of an entire compo-
nent when modeling FRP, it is common practice in homogenization approaches
to develop a small sub-unit that is representative of the entire microstructure.
Such unit cells, whose material response should correspond to the average of
an entire part, are - as already mentioned - also called representative volume
elements (RVE) [134–136]. Some authors have introduced the idea of statistical
(or stochastic) volume elements (SVE) [137–139] incorporating microstructural
variability. The edge lengths of such volume elements are often difficult to
determine and can be estimated using measured fiber lengths, for example, so as
not to shorten them too much or change of microstructural quantities like fiber
volume content between sizes. This will be discussed again in this thesis when
it comes to specimen extraction (cf. Section 3.1.6). The fiber structure within
an RVE can be created either by direct discretization of voxel data from a CT
image. This requires, first, that the resolution is high enough for single fiber
detection and second, that the contrast to the matrix is high enough for correct
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thresholding. However, such an artificial microstructure can also be generated
algorithmically and independently of image data. A CT image may serve as a
model and fiber volume contents, fiber length distributions and fiber orientation
distributions/tensors already measured from the CT images or experimentally
can be used as parameters for packing the fibers into the cell. The class of
algorithms that can be used for this purpose are called packing algorithms,
which developed from the original sphere-packing algorithms. A number of
different approaches exist, starting with rather simple ideas such as random
sequential adsorption (RSA) introduced by Feder in 1980 [35], where objects
are successively packed into the cell at random locations without overlap. A
more dynamic approach with velocity vectors is that of Lubachevsky-Stillinger
[36]. The mechanical contraction method of Williams-Philipse [38], on the
other hand, works by shrinking the cell and only then removing overlaps. Fi-
nally, a completely optimization-based approach is that of Torquato-Jiao [37].
These algorithms have been used succesfully for sphere packings and also for
simply-structured fiber packings. Schneider [140] introduced the so-called
sequential addition and migration (SAM) algorithm in 2017 reliably producing
microstructures of short fiber reinforced polymers even with larger aspect ratios
and volume fractions. Schneider [141] improved and extended this approach
to be able to generate long fiber reinforced structures by allowing curvature of
the fibers. There are also other works dealing with microstructure generation of
LFT material [142]. Even though curvature of the fibers and higher aspect ratios
seem manageable by now, most of these approaches still struggle to reliably
generate a microstructure seen in the carbon fiber reinforced polyamide 6 that
was subject of this work (cf. Section 4.1). In particular the fineness of the
carbon fibers (5 µm - 7 µm) and the mixed bundle and single fiber structure
are challenging, especially as single fibers are not even detectable in the CT
images. The approach to determining fiber orientation from CT images in the
case of this problem is a voxel-based one in this work. So is it possible to
generate voxel-based microstructures instead of discrete fibers? In fact, the idea
of Generative Adversarial Networks, short GANs, developed by Ian Goodfellow
et al. [143], has been around in the field of AI since 2014, generating images
from training images. Hence, in this work the generation of two-dimensional
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artificial microstructure CT images via GANs is explored with the possible
future extension towards directly creating RVEs with these networks.

2.3 Computed tomography

After Wilhelm Conrad Röntgen famously discovered a radiation with the ability
to penetrate optically opaque objects at the end of the 19th century, called X-rays
[144], the first computerized computed tomography (CT) system was realized
by Hounsfield [145] in 1972. Together with Cormack, he won a Nobel Prize
in 1979 for this development, as did Röntgen previously for the discovery of
X-rays. With time, micro-computed tomography (µCT) systems developed that
increased the range of CT applications from medical use towards non-destructive
material testing.

2.3.1 Theoretical principles

2.3.1.1 X-ray generation

X-ray radiation is on the electromagnetic spectrum and is generated through the
deceleration of fast electrons that are emitted from a heated filament and then
enter a solid metal anode [144]. The thereby emitted wavelengths range between
approximately 10−8 m and 10−13 m. The electron velocity v determines the
radiation energy. The velocity depends on the acceleration voltage Ua between
cathode and anode. Energy conservation leads to the following equation,

eUa =
1

2
mev

2, (2.64)

with the charge of an electron e and the mass of an electron me, with which the
electron velocity can be determined. Typical ranges of acceleration voltages
can lie between 25 kV and 500 kV, whereas the smaller values are typically
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chosen for medical diagnostics and higher values are rather relevant for material
testing, where radiation exposure hazards can be neglected. [144]

2.3.1.2 Photon-matter interaction

When X-rays enter a material, the amount of photons, i.e., the radiation density,
decreases exponentially due to absorption and scattering. This attenuation of
the radiation intensity is material-dependent. The correlation is expressed in the
Beer–Lambert law [146–148]

I(η) = I0e−µη, (2.65)

with the radiation intensity I , a distance variable η, the attenuation coefficient
µ and the initial condition I(0) = I0. The linear attenuation coefficient µ is
thereby the sum of a scatter coefficient µs and an absorption coefficient α [144]:

µ = µs + α. (2.66)

The unit of µ is m−1. Apart from being influenced by the photon energy, the
attenuation coefficient is also dependent on the type of irradiated material and
more specific on its effective atomic number and its mass density ρ [25, 149]. As
a result, the mass attenuation coefficient µm gives a density invariant attenuation
coefficient and is hence defined as

µm =
µ

ρ
. (2.67)

Mass attenuation coefficients are often given in cm2

g and tabular collocations
of values for different elements and compound materials can be found, e.g., in
[150] or in [151] [25].
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For composites, the effective mass attenuation coefficient µ̄m is calculated from
the respective weight fraction wi and mass attenuation coefficient µm,i of each
constituent i:

µ̄m =
∑
i

wiµm,i [25, 152]. (2.68)

2.3.1.3 Functionality of a computed tomography system

CT devices consist of the X-ray tube with its anode and cathode that create
the effective target area, which is also called the optical X-ray focus. In a CT
system, X-rays are created from a nearly point-like source, as bigger diameters
result in a so-called penumbra (shadow area, that is reached by only a part
of the light) fringe (for details, the reader is referred to Buzug [144]). After
passing the object to be scanned, it impinges on a detector, which in modern
CT devices typically consists of a scintillator medium and a photon detector
(for details cf. [144]) as shown in Figure 2.12. An image of the geometry and
material composition of the object can be generated by the detector based on
the difference between the initially transmitted beam intensity and the intensity
received due to attenuation by the object material. This difference is converted
to a spectrum of different gray values. Before the scan, the initial transmitted
beam intensity is typically measured in a so-called correction step, where the
tube is raised to nearly the uppermost position in order to irradiate onto the
detector with no object interference.

The platform on which the object is placed and the detector can be moved
in horizontal direction. Thereby, the image region and the resolution can be
adjusted [52]. The object platform rotates 360° in the beam path. The CT user
can set a number of projections, nprojections. Projections are the singular 2D
scans taken during a stop of the rotation. Hence, the object rotates in steps of
φ = 360◦/nprojections. All of the 2D projections then have to be reconstructed
by an algorithm to create the required 3D image of the object. Many different
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Figure 2.12: Simplified setup of a cone beam computed tomography device. Two alternative
positions for differently sized objects in the beam path are shown to illustrate the
dilemma between sample size and resolution. Based on Schöttl [25].

algebraic and statistical reconstruction methods have developed over time, many
are summed up in [153]. In the present work the cone-beam algorithm that
works with convolution-backprojection of Feldkamp et al. [154] is used. It is
fairly common and implemented in VG Studio Max 3.4.2; a software that was
used in this work for all immediate post-processing, including reconstruction,
registration and cutting of regions of interest (ROI). For further processing, the
volumetric image obtained this way, is often cut again in 2D slices for easier
processing (Matlab, Python) or easier visualization (ImageJ). However, these
slices are linearly aligned with a coordinate axis (often perpendicular to the
thickness of the specimen) and not a rotation angle.

The volumetric images consist of discrete, in this case cubic, volume elements,
that are called voxels (from "volume x element"); analogously to pixels in 2D.
The voxel size or the in this case isotropic voxel edge length are a measure
of the image resolution [25]. The geometric magnification mg is defined as
the division of the distance between focus and detector LFD by the distance
between focus and object LFO:

mg =
LFD

LFO
, (2.69)
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as visible in Figure 2.12. The voxel size lv can subsequently be determined
based on the detector pixel size ld and the magnification as

lv =
ld
mg

. [25, 155] (2.70)

2.3.2 Specific challenges of CT scans of CFRP

2.3.2.1 Low contrast between constituents

Both carbon fibers and polyamide 6 are mainly composed of C elements. There-
fore, they have similar densities and even the density independent attenuation
coefficient values are very close. For a photon energy of 400 keV, carbon
has a mass attenuation coefficient µm of 9.546e−2 [150] and polyamide 6 has
an experimentally measured mass attenuation coefficient of 10.86e−2 at 356
keV [156]. This chemical similarity leads to poor contrast between the two
materials in the CT scans, which impedes the determination of fiber-dependent
microstructure quantities.

2.3.2.2 Impossibility of single carbon fiber detection

The used µCT device in this work (cf. Section 3.6) could theoretically produce
images up to a resolution of 1 µm/voxel. However, there are two main reasons
why the resolutions of all scans used in this work were significantly higher:
The image noise rises with higher resolutions (cf. next Section 2.3.2.3) and the
required specimen sizes to realistically depict the microstructure were too large
for higher resolutions. Hence, the resolutions of the scans used in this work
range between 8.57 µm/voxel and 25.98 µm/voxel. The diameter of carbon
fibers is between 5 µm and 7 µm. In order to reliably segment an individual fiber,
one requires voxel sizes that are three to six times smaller than the fiber diameter
[13, 25, 76, 157, 158]. This is of course not the case with the resolutions of the
scans used in this work. Therefore, it must always be assumed that all methods
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only detect agglomerations of fibers or fiber bundles, but not individual fibers.
However, since a large proportion of the fibers appear to be in fiber bundles
(smaller and larger), the results later still match well with those determined
experimentally. In general, only methods without direct fiber detection and
instead voxel-based approaches are developed and used in this work.

2.3.2.3 Blur and noise

As Sprawls describes in [159], the main characteristics of CT imaging exac-
erbating the detection of structures are blur and noise. The former reduces
the visibility of small objects and hence decreases image detail. The latter
reduces the visibility of low-contrast objects. Fibers fit both of these descrip-
tions. While small voxels and edge-enhancing filters can reduced blurring, small
voxels absorb fewer photons and therefore increase noise, which is caused by
the variation in attenuation coefficients between voxels. Noisy images can be
improved by large voxels, increasing the radiation dose or using smoothing
filters. The latter, however, increases blurring again. [159] Since the measures
for reduced blur and noise are partially mutually exclusive, the focus of the
work was on the reduction of noise, since single-fiber detection was excluded
anyway. Hence, larger voxels, increased radiation dose and smoothing filters
were used for image improvement.

2.3.2.4 Conflict between image resolution and object size

The size of the specimens was determined individually for different examina-
tions by considerations including fiber length, measured fiber volume contents
in different specimen sizes and reasonable RVE microstructures (cf. Section
3.1.6). Therefore, they were at edge lengths between 10 mm and 30 mm. In
order to get them completely into the beam path, they had to be moved away
from the source accordingly (see Figure 2.12) and this decreased the resolution
in turn. This problem generally occurs for CT images and is sometimes called
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the conflict between sample size and image resolution [25] and is therefore not
limited to the material combination used.

2.3.3 Artifacts

CT images are subject to a variety of artifacts originating from different reasons
[144]. There are, e.g., partial volume artifacts, appearing when an object
boundary is not located exactly at the edge of a detector element leading to an
averaged intensity in these elements and a blurred object boundary. Another
well-known artifact is that of beam-hardening. This effect refers to the non-
monochromatic energy spectrum of the radiation changing along the path.
Low-energy, i.e., soft X-rays are absorbed more than high-energy, hard X-rays,
so that the beam hardens while going through the object. This can result in
streaking artifacts or cupping artifacts that will cause the middle of the image,
which is normally the area around the rotation axis, to decrease in gray value and
hence appear darker. Often objects are set in the beam in slight angular offset
to the rotation axis due to this artifact. There are various other artifacts like
ring artifacts, motion artifacts, etc. which shall not be explained in detail here
as this work is not centered around the making of CT scans but rather around
their FRP-specific analysis and evaluation but can be explored in appropriate
literature, like [144].

2.3.4 Image processing

The processing of digital images through algorithms with the help of digital
computers is commonly termed digital image processing [160]. The goals
of this processing can range from classification, through feature extraction to
pattern recognition. Some of the many conventional techniques that can be
used in image processing and are specifically helpful for the application at hand
are explained in the following subsections. AI-based methods are explained in
Section 2.4. Henceforth, an image has to be understood as a function i(x, y)
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mapping locations in images to specific - in this case - gray values. For example,
in the case of an 8bit gray value image, there exists a gray value between 0
(black) and 255 (white) for every pixel (x, y).

Image processing aims in general at the enhancement or modification of image
properties and/or at the extraction of valuable information like edges. The
changes can be made directly on the image plane itself, which is called the spa-
tial domain. In contrast, the manipulations can also be performed in a transform
domain, which implies a transfer to the transform domain, processing there and
a back transfer to the spatial domain. The latter concept is fundamentally based
on Fourier transform and will not be explained in more detail in this work;
however, important basics for it like convolution (which is also the base for
many other concepts in image processing) will be covered in other sections of
this work (cf. Section 2.4.1.6). The following sections instead concentrate on
spatial processing, of which again two basic categories exist, which are intensity
transformations and spatial filtering. While intensity transformations manipulate
individual pixels of an image and are fundamental for contrast manipulation,
histogram processing and image thresholding (which will be discussed in Sec-
tion 2.3.4.2), spatial filtering performs operations in a neighborhood of every
pixel in an image. The latter concept will be elaborated on in the next Section
2.3.4.1.

2.3.4.1 A selection of spatial filters

A central role in filtering play so-called kernels or masks, an array characteristic
for the specific filter. It is a small rectangle with values slid across every pixel of
an image, which changes the value of the central pixel according to the result of
the filtering operation including the surrounding pixels. This process of moving
a filter mask over the image and computing the sum of products at each location
is also called correlation [160] and defined as
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f(x, y) ∗ I(x, y) =
m∑
i=0

n∑
j=0

f(i, j)I(x+ i, y + j), (2.71)

with a filter f(x, y) of size m × n (both odd integers) and the image I(x, y).
Correlation is similar but not identical to convolution; a small subtlety that is
not adequately represented in most literature. In the case of convolution, there
would be minus signs instead of the addition on the right, which flip f (i.e.,
rotate it by 180°). Correlation therefore corresponds to convolution if the filter
f is simply rotated by 180°. However, since most filter masks are known by
their representation for correlation, this is also the used convention in this work.
It is anyways only relevant in the case of an asymmetric kernel.

Depending on the kernel, a filter can have a smoothing effect on an image or
a sharpening effect, e.g., for enhancing edges. Smoothing filters are used for
blurring and noise reduction and will be elaborated on in the next paragraphs.
Linear spatial filter output the average of the pixels in the neighborhood of the
filter mask, which is why they are also called averaging filters or lowpass filters.
They reduce sharp transitions in intensity, leading to reduced noise but increased
blurring of edges. [160] Different kinds of smoothing filters will be shortly
addressed in the following. It shall be mentioned that different, odd kernel sizes
are possible, depending on the desired effect (the larger the kernel, the stronger
the blur) and the image resolution. For simplicity reasons, a kernel size of three
is depicted for all displayed filters. Furthermore, the question of how to handle
the edges of an image naturally arises. When the central pixel in the kernel is an
edge pixel, some of the kernel positions are not occupied. One can use only the
pixels next to the edge pixels as central pixels but that results in a reduction of
dimensions of the resulting image. Another possibility is the so-called padding,
which refers to the addition of extra rows and columns of values to solve that
problem. For example, the well-known so-called zero padding signifies the
addition of zeros around the borders, leading to a black frame around the image.
There are also other padding possibilities like mirroring the value next to the
border, etc. and the reader is referred to [160–163].
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A standard 3 × 3 blur filter, which is a linear smoothing filter, gives the average
of the nine surrounding pixels:

1

9


1 1 1

1 1 1

1 1 1

 . (2.72)

For reasons of computational simplicity, the coefficients are all one and the
normalization factor is multiplied afterwards. An important characteristic of the
standard blur filter is the uniformed weighting of all pixels in the kernel. It is
sometimes also called a box filter.

The Gaussian blur filter is similar to the box filter but uses a weighted mean,
with neighborhood pixels that are closer to the central pixel having a higher
weight. The weights drop in the intensity of a Gaussian normal function. Thus,
the kernel can be determined by the two-dimensional Gaussian function defined
by

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2.73)

with x and y being the respective distances to the horizontal and vertical center
of the kernel and σ being the standard deviation of the Gaussian kernel. An
often used approximation of the correctly calculated Gaussian blur kernel looks
as follows:

1

16


1 2 1

2 4 2

1 2 1

 . (2.74)

73



2 State of the Art

The Gaussian smoothing is supposed to deliver a more natural blur and better
preserve edges in the image compared to the average blur.

A median filter, as a representative of order-statistic, nonlinear filters, does
not compute a new value from the values present in the kernel but instead
replaces the central pixel value with the median value existent in the mask, as
demonstrated in the following Figure 2.13.

15 1 25

3 3 30

12 7 22

Sorting
1, 3, 3, 7, 12, 15, 22, 25, 30

Median Blur
12

Figure 2.13: Graphical demonstration of the principle of the median blur filter.

It is highly effective against so-called salt and pepper noise and robust against
outliers. Unlike in the case of the average blur filter, a rectangular kernel
dimension is impossible; it must be square.

Another noise reducing, smoothing filter is the bilateral filter [164]. It is a
non-linear filter used to blur images while preserving object edges. The filter
owes the preservation of edges to the fact that, unlike the Gaussian blur, the
weights depend not only on the Euclidean distance of the pixels so not only on
their geometric closeness but also on their photometric similarity (e.g., range
differences, such as color intensity, depth distance, etc.). It prefers near values to
distant values in both domain and range. Different filter kernels can be used for
both the closeness function c(ξ,x) and the similarity function s(ϕ, i). Gaussian
functions of the Euclidean distance between their arguments are widely used
for both. So bilateral filtering denotes the combined domain and range filtering
and delivers an output image o(x) for an input image I(x) as

o(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
I(ξ)c(ξ,x)s(I(ξ), I(x))dξ, (2.75)
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with the normalization

k(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ,x)s(I(ξ), I(x))dξ. [164] (2.76)

2.3.4.2 Thresholding approaches

Thresholding refers to the selection of one or more intensity values/limits
that divide the histogram into two or more areas in each of which only the
pixels/voxels of a specific object/material appear. These groups are often called
classes. This subdivision of the image can be highlighted by binarization:

o(x, y) =

 1, if i(x, y) > T

0, if i(x, y) ≤ T
. (2.77)

If more than two threshold values would be necessary for the segmentation prob-
lem at hand, one oftentimes has to switch to alternative methods. Furthermore,
the successful application of certain thresholding methods requires in particular
clear separation of the intensity peaks and low noise content, which makes it
clear why this method can also cause difficulties when used for the CT scans
in this work. However, due its (computational) simplicity, thresholding is still
highly relevant to this day. There are different subcategories of thresholding.
The basic case of a constant threshold across an entire image is called global
thresholding. Conversely, there is variable thresholding. If the threshold at a
point is dependent on its neighborhood, this variable thresholding is also called
local or regional thresholding. The term dynamic or adaptive thresholding, on
the other hand, is used when the threshold T depends directly on the spatial
coordinates x and y. However, Gonzalez and Woods point out the inconsistent
use of these terms in the image processing literature. [160]
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The determination of a global threshold, if applicable, often requires a more
sophisticated algorithm and cannot be easily deduced. In the following, the
calculation of three well-known, global and automatic thresholding methods are
described as examples, which are usually already pre-implemented in scientific
image processing software such as ImageJ (FIJI) or in MATLAB libraries or
Python image processing packages and were used in different cases throughout
this work.

The method by Nobuyuki Otsu, called Otsu’s method or Otsu threshold, finds a
threshold separating foreground and background by minimizing the intra-class,
also called the within-class intensity variance, or equivalently, by maximizing
the inter-class, also called between-class, variance [47]. Granted a picture is
represented in L gray levels and a threshold t exists at one of those levels. The
within-class variance σ2

W is defined as follows

σ2
W = ω0σ

2
0 + ω1σ

2
1 , (2.78)

with ω0 and ω1 being the probabilities of the respective class occurrence and σ0
and σ1 being the respective class variances. The probabilites are calculated by

ω0(t) =
t−1∑
i=0

pi and ω1(t) =
L−1∑
i=t

pi. (2.79)

Of course, ω0 + ω1 = 1 holds.

The class variances are given by

σ2
0 =

t−1∑
i=0

(i− µ0)
2 pi
ω0

and σ2
1 =

L−1∑
i=t

(i− µ1)
2 pi
ω1
. (2.80)

The between-class variance σ2
B is given by

76



2.3 Computed tomography

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2

= ω0ω1(µ1 − µ0)
2,

(2.81)

with the class mean levels

µ0(t) =
t−1∑
i=0

ipi
ω0(t)

and µ1(t) =

L−1∑
i=t

ipi
ω1(t)

and µT = µ(L) =

L−1∑
i=0

ipi.

(2.82)

Finally, the optimal threshold t is found by either maximizing the between-class
variance or minimizing the within-class variance:

t = arg

{
max

0≤t≤L−1

{
σ2
B(t)

}}
= arg

{
min

0≤t≤L−1

{
σ2
W(t)

}}
[47, 165].

(2.83)

Another automatic thresholding procedure is the moment-preserving threshold
by Tsai [48]. Thereby, a threshold value is selected so that the first three
moments of image i in the resulting binarized image o are preserved. The
moments of i are defined by

mi =
1

n

∑
j

nj(zj)
i =

∑
j

pj(zj)
i, (2.84)

with n being the entire amount of pixels of image i, nj being the total number
of pixels in i with the gray value zj and pj =

nj

n . After having applied the
threshold and binarized the image, the first three moments of o can be computed
in the following way:
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m′
i =

1∑
j=0

pj(zj)
i, i = 1, 2, 3; (2.85)

where p0 and p1 signify the fractions of below-threshold and above-threshold
pixels, respectively. Preserving the first three moments of i in o means,

m′
i = mi, i = 1, 2, 3 (2.86)

has to hold. Furthermore,

p0 + p1 = 1. (2.87)

The last two equations can be translated into the following equation system

p0z
0
0 + p1z

0
1 = m0,

p0z
1
0 + p1z

1
1 = m1,

p0z
2
0 + p1z

2
1 = m2,

p0z
3
0 + p1z

3
1 = m3.

(2.88)

mi is calculated with the help of Equation (2.84) and m0 is defined to be 1.
Then, the equations are solved to obtain p0 and p1, which inevitably leads to
choosing t such that

p0 =
1

n

∑
zj≤t

nj . (2.89)

There might not exist an exact value for t fulfilling this condition, so the closest
gray value should be chosen. [48]
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Moreover, the mean threshold [49–51] is defined by choosing t as the mean
value of the distribution of pixel values. Analogously, the median threshold, as
a special method of Doyle’s p-tile method [166], is set so that 50 % of pixels lie
in each of the two binary classes [49].

The use of those different thresholding techniques concerning carbon fiber
reinforced polymers will be taken up again in the Methods (Chapter 3, Section
3.4.2.2 and Section 3.6).

2.4 Artificial intelligence

The term artificial intelligence describes the intelligence of machines or soft-
ware. It is a field of study in computer science and its technologies have spread
across various applications throughout industry, governments, science and en-
tertainment. Initiated by Alan Turing in the 1950s [167], AI rose to its initial
promise only in the last decade as large computational power and big data
storage and handling possibilities emerged [168]. This led to the AI boom,
sometimes called AI Spring [169], in the later 2010s and early 2020s.

The large field of AI is further differentiated. Machine learning (ML) is probably
the largest sub-category [168]. It refers to algorithms that can automatically
improve the execution of a specific task [170]. Hong et al. [168] emphasize that
the major difference between conventional programming and machine learning
programming is ML working through induction. In the former, a programmer
has to formulate general rules and the algorithm is able to deduce the result for
specific observations, while in ML the algorithm itself finds general rules from
the given observations [168]. The programmer’s work lies in the development
of the structure and environment of the algorithm for it to reliably induce those
rules. Either another subcategory of ML or a mixture of AI and ML concepts
(depending on the definition), is the so-called deep learning (DL) [168]. Deep
learning refers to processing the observations through ANNs that are inspired
by biological neural networks. The adjective "deep" stresses the use of multiple
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layers in the network. There is the further differentiation into supervised and
unsupervised ML. The former denotes networks that work on input data that
was labelled by a human, while the latter type signifies networks that have to
find common patterns and make predictions without any other human guidance
[170].

In the following, the general theoretical principles of ANN will be elaborated
on, before specific types of those networks will be outlined.

2.4.1 Theoretical principles of ANNs

2.4.1.1 Single layer perceptrons

The smallest sub-unit of an ANN is a so-called single layer perceptron (SLP).
Based on the original neuron model by McCulloch and Pitts in 1943, it was first
introduced as perceptron by Rosenblatt in 1957 and is a linear classifier whose
structure resembles that of a biological neuron (cf. Figure 2.14). [171, 172]

∑
σ(u)

b

y

w1x1

w2x2

wn

xn

...

Figure 2.14: Schematic depiction of a single layer perceptron as described by Rosenblatt [171].
Based on [173].

Different inputs {x1, x2, ..., xn} (similar to the impulses collected by dendrites
of a biological neuron) are weighted based on their relative importance by the
weights {w1, w2, ..., wn} and subsequently summed up by a linear aggregator.
A lower threshold value b, also known as the bias, determines whether an
output signal is afterwards triggered. The activation function σ(u) depends on
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the difference between b and the result of the linear aggregator, the activation
potential u. This results in the output signal y of the SLP

y = σ(u) = σ

(
n∑

i=1

wixi − b
)
. (2.90)

The activation function thereby restricts the possible output values to a set range.
[174] Equation (2.90) can be simplified by adding a dummy input x0 = 1 and
the corresponding weight w0 = b to

y = σ

(
n∑

i=0

wixi

)
= σ(x ·w) = σ(w⊺x), (2.91)

which increases the vector dimensions of x and w by 1 [175].

There are many different possible activation functions including the step func-
tion, linear function, sigmoid function, tanh function or a rectified linear unit
(ReLu) [174]. Assuming a simple bipolar step function for demonstration
purposes, which is given by

y = σ(x · y) =

1 if w · x > 0,

−1 if w · x ≤ 0,

(2.92)

one gets a binary output y independent of the (possibly non-binary) input
[174, 175]. If only two input values and weights were given, this would result
in the following inequalities

w1x1 + w2x2 − b ≥ 0,

w1x1 + w2x2 − b < 0,
(2.93)
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which creates a linear boundary between two classes [174]. In case of more
than two input and weight parameters, this approach has to be extended to a
hyperplane defined by w · x = 0 [176]. This function of SLP as classifier is
shown in Figure 2.15.

Class 1

Hyperplane

Class 2

Figure 2.15: Schematic two-dimensional illustration of a hyperplane (dashed blue line) separating
two classes originating from the system of inequalities given by a SLP. Based on
[176].

The perceptron learns by adjusting the weights when it has made wrong deci-
sions. This updating or learning rule is a recursive algorithm. Suppose that the
respective class label zi of a given input value xi is given by

zi =

1 if xi ∈ of the first class,

−1 if xi ∈ of the second class.
(2.94)

For a set of p training samples (xi, zi) ∀ i = 0, 1, ..., p, then y = y(w) gives
the (binary) prediction of zi for a given xi based on the current weights and
bias. The change of the weights wi is then defined as

wi → wi +∆wi, (2.95)

with
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∆wi = rl(zi − yi)xi. (2.96)

This learning rule is also called delta rule and is a gradient descent algorithm
for optimization. The parameter rl ∈ [0, 1] denotes the learning factor or more
commonly known the learning rate. The convergence of this learning rule
after a finite number of iterations was proven by Rosenblatt in the perceptron
convergence theorem. [171, 175, 176]

2.4.1.2 Multi-layer perceptron (MLP)

A standard neural network normally consists of multiple layers of perceptrons,
more precisely an input layer, some number of hidden layers and an output layer;
so at least three layers. The input layer is often not counted in the amount of
layers as it performs no processing and only has a distribution function towards
the next layer [177]. These kinds of neural networks are often referred to as
"vanilla" neural networks emphasizing their simplicity and them being the first
of their kind [178]. A simple fully connected MLP with one hidden layer can
be seen schematically in Figure 2.16.

The input values x = {x1, x2, ..., xn} are often referred to as "features" in the
context of neural networks making x the feature vector [174]. Following, one
or multiple layers of hidden notes hi process the input until it reaches the final
output layer, where the results are given out in the output vector y. An activation
function maps the weights to the following layer [179]. The name multi-layer
perceptron is misleading or incorrect in that contrary to the step function used as
activation function by the original perceptron, modern neural networks rely on
nonlinear kinds of activation functions providing them the ability to distinguish
data that is not linearly separable [180]. Different kinds of activation functions
will be shortly outlined in Section 2.4.1.5. In this simple case, connections are
only permitted between nodes in consecutive layers and in a forward direction,
which is why they are also called feedforward networks [175].
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Figure 2.16: Schematic visualization of a simple MLP structure with every node incorporating a
linear aggregator, activation function and bias. Based on [176].

Analogously to Equation (2.90), assuming that all layers use the same activation
function σ, the output of a single node j in a specific hidden layer h(l), 1 ≤ l ≤
N, is given by

h
(l)
j = σ

 kl−1∑
i=1

w
(l)
ij h

(l−1)
i − b(l)j

 , (2.97)

where kl denotes the total number of nodes in the hidden layer h(l) and w(l)
ij

the weights between a unit j in the lth hidden layer and another unit i in the
preceding layer [181]. It shall be noted that different layers may have different
activation functions, which would require a distinction to be made between
the different σ. Equivalent expressions can be found for the output of the first
hidden layer h(1) as
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h
(1)
j = σ

(
n∑

i=1

w
(1)
ij xi − b

(1)
j

)
, (2.98)

with the number of input features n, and the output values yj as

yj = σ

 kl−1∑
i=1

w
(l)
ij h

(l−1)
i − b(l)j

 . [181] (2.99)

Considering an example of two consecutive hidden layers h(1) and h(2) with
the number of nodes k1 and k2, exemplarily shown in Figure 2.17 with k1 = 4

and k2 = 3, the output of the first unit h(2)1 in the second layer can be calculated
based on Equation (2.97) as

h
(2)
1 = σ(w

(2)
11 h

(1)
1 + w

(2)
12 h

(1)
2 + ...+ w

(2)
1k1
h
(1)
k1
− b(2)1 ). (2.100)

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4

h
(2)
1 h

(2)
2 h

(2)
3

Figure 2.17: Schematic description of two consecutive hidden layers h(1) and h(2) of an MLP.
For the sake of simplicity, previous or subsequent layers are not shown. In order to
illustrate the calculation of the output of node h(2)

1 , all other units that are not directly
connected are grayed out.

Repeating this calculation for all other units in the second layer results in k2
different equations. Combining all outputs of the preceding layer as a single
vector h(1) and the biases as vector b yields the linear algebraic description of
the output vector h(2) = h

(2)
1 , h

(2)
2 , ..., h

(2)
k2

of the second layer as
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h(2) = σ





w11 w12 · · · w1k1

w21 w22 · · · w2k1

...
...

. . .
...

wk21 wk22 · · · wk2k1





h
(1)
1

h
(1)
2

...

h
(1)
k1


+



b1

b2
...

bk1




, (2.101)

with the weight matrix W = [w
(2)
ij ] for 1 ≤ j ≤ k1 and 1 ≤ i ≤ k2. This

symbolic tensor notation compresses the process between two layers into one
equation and simplifies the use in code:

h(2) = σ
(
W (2)h(1) + b(2)

)
. (2.102)

Generalized for any hidden layer h(l), this yields

h(l) = σ
(
W (l)h(l−1) + b(l)

)
. [182, 183] (2.103)

Their more complex structure allows MLPs to be applied to a variety of problems
from pattern recognition [181] over clustering to optimization [176]. However,
some disadvantages of fully connected layers include

• the large number of parameters

• slow convergence of training and

• bad generalization effect when applied to new training data. [179]

While the complexity of an MLP or an ANN can be increased arbitrarily both
in the amount of layers as well as in the amount of nodes per layer, this leads
to the requirement of high computational power or time and to increased risk
of so-called overfitting [184]. Overfitting denotes the network being perfectly
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trained on the input/training data and hence also fitted to the noise and irregular
peculiarities thereof, instead of finding a general predictive rule that allows
good predictions on new data points [185]. Increased model complexity and
overfitting is tantamount to decreasing bias (error due to the used model’s
incapability of capturing the underlying model) and increasing variance (error
due to sensitivity to noise in the data). The opposite called underfitting hence
typically shows high bias and low variance. This dilemma of finding the optimal
model complexity is depicted in Figure 2.18. [186]

Model complexity

Error

Bias

Variance
Total

Figure 2.18: Qualitative depiction of the relationship between variance and bias and their effect
on the error of the network. Models too simple to capture the underlying real model
typically show high bias and low variance; they are underfitting. In contrast, an overly
complex model is likely to have low bias and high variance and is therefore overfitting.
Based on [186].

2.4.1.3 Training and backpropagation

The basic training process of a neural network is based on iterative optimization,
illustrated in Figure 2.19.

The training of a multilayer ANN is in general similar to the training of an
SLP, which was introduced in Equations (2.95) and (2.96) as delta rule. The
production of output through the forward propagation of activation was intro-
duced in the last section. However, in most modern feedforward networks a
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Data set

Test data Validation data

ANN Prediction Loss function

Loss score

Weights Weight update Optimizer

Figure 2.19: Illustration describing the training of weights in neural networks according to [25,
187]. Extracted from Blarr et al. [188].

second training phase is involved, where the error is propagated backwards in
the so-called backpropagation. [177] This efficient application of a chain-rule
based supervised learning [189] was introduced by Linnainmaa [190] with
significant improvements and analyses by Werbos [191] and Rumelhart [192].
According to Rojas, the backpropagation algorithm can be decomposed into
four main steps that are the feedforward computation, the backpropagation to
the output layer, the backpropagation to the hidden layer and finally the weight
updates [193]. When the results of the feedforward computation are available,
there exists a network output, hence prediction, y = y(w), for every of the q
training vector pairs of input and output (x,y). Then, an error or cost function
E comparing output y and desired target z is to be minimized

min
w
E =

q∑
p=1

Ep, (2.104)

where Ep is some kind of distance function. The sum of squares error (SSE)
based on Euclidean distance and given by

Ep = ||zp − yp||2, (2.105)
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is a popularly applied error function. [194]

E is computed solely through the composition of the node functions and hence
forms a continuous and differentiable function of the l network weights
{w1, w2, ..., wl}. In order to minimize this error, an iterative process of gradient
descent is used, for which the gradient of the error function has to be determined
given by

∇E =

(
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wl

)
. (2.106)

The weights can subsequently be adjusted incrementally by descending the
gradient as follows

∆wi = −rl
∂E

∂wi
, i = 1, 2, ..., l, (2.107)

with learning rate rl defining the step length of each iteration. This procedure
is repeated for a finite number of steps, steadily choosing the correction path
with the steepest descent, until a minimum of the error function is found with
∇E = 0 or a satisfatory reduction of the error function is achieved. [193]

This so-called generalized delta rule [194] is illustrated in Figure 2.20.

Disadvantages of classical backpropagation include slow convergence speed and
the strong dependence on chosen parameters, like initial weights and especially
the learning rate. In addition, real error surfaces do not look like the simplified
shape in Figure 2.20 but instead often show ravine-like features and many dent-
like local minima [173]. This may result in the backpropagation training the
network into a local minimum that it might not be able to escape. However,
reaching the global minimum is in practice not always necessary, provided a set
of weights is found that works accurately enough for the application at hand.
[173, 195]
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Weight a

Weight b

Sum-squared error

C

B

A

Change of weights

Figure 2.20: Idealized bowl-shaped error surface for 2D weights, where the weights are changed
following the steepest path towards the bottom C, which is the desired minimum
(with current weights at point A and corrected weights at B). Based on [173].

2.4.1.4 Optimizing algorithms

Even though a variety of optimizing algorithms to minimize the loss function
have been developed, only two will be shortly addressed in this section, which
are the stochastic gradient descent (SGD) and the ADAM optimizer. The choice
is based on the fact that these two perform well for common problems and
are among the most widely used. Furthermore, of the three different networks
implemented in this work, one works with SGD and the other two with ADAM.

Stochastic gradient descent (SGD) The basic gradient descent, first
published by Cauchy [196], has been introduced in the previous Section 2.4.1.3
in Equation (2.106) and Equation (2.107) and is assembled here for the sake of
completeness again:

wi+1 → wi − rl∇E(wi). (2.108)
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It shall be noted that rl = rl,i in the case of non-constant learning rates [197].
It is sometimes also referred to as batch gradient descent as it is an optimization
method performed on the entire training set, which requires high computational
effort [197, 198]. In contrast there are stochastic optimization methods, of
which SGD, first described by Robbins and Monro [199] and in a form closer
to today’s SGD in DL by Kiefer and Wolfowitz [200], is the most prominent
representative [197]. SGD performs a weight update on every training example
xi, yi:

wi+1 → wi − rl∇E(wi, xi, yi) [198], (2.109)

which can be regarded as a stochastic estimate of the actual entire gradient.
SGD typically achieves fast iterations due to its reduced computational demand
in exchange for a lower convergence rate [197]. However, in practice nowadays,
often neither purely stochastic nor purely batch optimization methods are used,
as the SGD can be used on randomly chosen subsets of the data, or so-called
mini-batches without constraints [197]. It is mostly still referred to as SGD
[198] or sometimes as mini-batch gradient descent.

The ADAM optimizer One of the most used optimizing methods in DL is
the Adaptive Moment Estimation (ADAM) presented by Kingma et al. in 2014
[201, 202]. It is an algorithm for first-order gradient-based optimization based
on adaptive estimates of lower-order moments [201]. While there are many
different definitions of the ADAM optimizer [202], the original algorithm as in
[201] is introduced in the pseudocode (Algorithm 1) below.

Empirical results show that the ADAM optimizer outperforms many other
known optimizers like "AdaGrad" or SGD both in logistic regression as well as
in multilayer fully connected neural networks and deep convolutional neural
networks [201] concerning its training cost. Its local convergence has been
proven [202]. For further information, the reader is referred to the original paper
[201].
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Algorithm 1 Pseudo code for ADAM optimizer computation. The proposed
parameter settings are rl = 0.001, (β1, β2) = (0.9, 0.999) and ϵ = 10−8.
Slightly modified from: [201].

Require: rl: Step size (i.e. learning rate)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for estimating the moments
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 ▷ Initialisation of first moment vector
v0 ← 0 ▷ Initialisation of second moment vector
t← 0 ▷ Initialisation of time step
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) ▷ Obtain gradients w.r.t. the stochastic objective at

time step t
mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2t ▷ Update biased second moment estimate
m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second moment estimate
θt ← θt−1 − rl · m̂t/(

√
v̂t + ϵ) ▷ Update parameters

end while
return θt ▷ Resulting parameters

2.4.1.5 Common activation functions

It has already been mentioned that the activation functions have to be non-linear
in order for the model to be able to learn complex correlations. Many different
activation functions are possible and have been used, of which some major
ones shall be presented in the following. In general, an activation function is
defined as a function h : R→ R, which is continuously differentiable almost
everywhere (requirement for backpropagation) [203].

The activation of a single hidden unit h(l) is given by

h(l) = σ(u) = σ(w(l)⊺x), (2.110)
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with σ as the associated activation function, w(l) as the corresponding weight
vector and x as the input vector (compare Equation (2.91)) [204].

Binary step function The activation function that is closest to the reaction
of a biological neuron is a simple binary step function, which is either zero or
positive, defined by

h(l) =

1 if w(l)⊺x ≥ 0,

0 if w(l)⊺x < 0,

(2.111)

and depicted in Figure 2.21.
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Figure 2.21: Binary step function.

Sigmoid functions Sigmoid functions are bounded and differentiable func-
tions, which are non-decreasing and have exactly one inflection point [205].
Two sigmoid functions are shortly outlined, the logistic sigmoid function, which
is sometimes only referred to as sigmoid function, and the hyperbolic tangent
function.

The logistic sigmoid function is defined as follows
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h(l) =
1

1 + exp
(
−w(l)⊺x

) , (2.112)

which translates any input between (−∞;∞) to the range [0; +1] and can
therefore be thought of as a smooth version of the binary step function [205].
While the binary step function is not differentiable at x = 0, the logistic function
is differentiable infinitely many times on its entire domain [205, 206]. Owing
to their effect of "squashing" the real values into a bounded interval, they are
occasionally called squashing functions (cf. Figure 2.22) [205]. Hence, they
can suffer from vanishing gradients, especially in deep networks [206, 207].
The logistic sigmoid function is therefore often used in rather shallow networks
or often in output layers of networks due to its value distribution [206].
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Figure 2.22: Sigmoid (a) and tanh (b) activation functions.

As a further development, the similiar hyperbolic tangent function is given by

tanh(u) = 2sigmoid(2u)− 1, (2.113)

which gives the following activation function:
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h(l) =
2

1 + exp
(
−2w(l)⊺x

) − 1 [206, 207]. (2.114)

Bounding the input values in the range of [−1;+1] (cf. Figure 2.22(b)), it
has a steeper derivative than the logistic function but suffers from vanishing
gradients nonetheless [207]. The gradients of sigmoid funtions in general
converge towards zero at the outer limits and are therefore soft-saturating:

lim
x→+∞

σ′(u) = 0, lim
x→−∞

σ′(u) = 0 [206]. (2.115)

Similarly, the hyperbolic tagent is used mostly in output layers as well, espe-
cially in the case of input values that were mapped between minus one and one
[206].

Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit In-
spired by neuroscience, Nair et al. [208] presented the ReLU as a piecewise
linear activation function in 2010 initially for the use in restricted Boltzmann
machines, which has since become one of the most used activation functions
[207]. In contrast to the previously shown functions, ReLU is a non-saturated
function resulting in high convergence speed and the avoidance of vanishing
gradients [209]. The function can be expressed by

h(l) = max(w(l)⊺x, 0) =

w(l)⊺x if w(l)⊺x ≥ 0,

0 if w(l)⊺x < 0,

(2.116)

and can be seen on the left in Figure 2.23. Disadvantages include the death of
neuron units that were not initially activated as their weights will not be updated
and a slow training process for gradients constantly being zero [204, 206].
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(a) ReLU (b) Leaky ReLU with λ = 0.1

Figure 2.23: Original ReLU and Leaky ReLU activation function.

On that account, Maas et al. introduced the Leaky ReLU as improvement of the
standard ReLU function, which is defined by

h(l) = max(w(l)⊺x, 0) =

w(l)⊺x if w(l)⊺x ≥ 0,

λw(l)⊺x if w(l)⊺x < 0 [204].
(2.117)

The slope in the Leaky ReLU function depicted on the right in Figure 2.23 is
chosen to λ = 0.01 as suggested in the original paper [204]. When the unit is
saturated and not active, the leaky rectifier allows for a small, non-zero gradient
unlike the standard ReLU activation [204]. Sacrificing the so-called hard-zero
sparsity of ReLU allows for a gradient which is potentially more robust during
optimization [204].

2.4.1.6 Types of layers

The effect of increasing the number of layers to improve a network is limited,
which is why alternatives to the previously introduced fully connected layers
(also known as linear layers) have been developed. Some of the most important
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ones used in the networks in this work are briefly explained below. In some
cases, the use of a certain type of layer also determines the name of the network,
for example, an ANN that has one or more convolutional layers becomes a
CNN.

Dropout layers Introduced by Hinton et al. in 2012, dropout layers can be
used in ANNs to prevent overfitting and achieve improved robustness against
choices of network architecture [210]. Dropout layers refer to a defined per-
centage of randomly selected neurons being ignored in an epoch, removing all
connections from and to other units temporarily. The approach was partly moti-
vated or at least linked to the fact that more advanced organisms have evolved
due to the breaking up of sets of co-adapted genes during sexual reproduction
compared to asexual reproduction increasing the robustness of the remaining
units over time [211]. An example is given in Figure 2.24.

Figure 2.24: Model of a thinned dropout neural network, where crossed out single units are dropped.
Based on [212].

One drawback of dropout is the two to three times increased training time due
to its stochasticity. It mainly stems from training a different random architec-
ture each time as the dropped out units change every iteration. As for every
network, ANNs with dropout layers require extensive hyperparameter tuning
with increased demands for network size, hence layers, higher learning rate,
etc. [212]
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Batch normalization Batch normalization, as proposed by Ioffe and
Szegedy in 2015 [213], refers to the normalization of the input of every layer
(and repeating so for every mini-batch) in a network as opposed to only the
input layer. It can be included in backpropagation [213]. Batch normalization
allows the use of higher learning rates, accelerating the training process up to 14
times [213], as one gets rid of the changing distribution of each layer’s inputs.
It also decreases the importance of careful choice of initial hyperparameters.
While being comparable to the impact of dropout layers, for which they can
serve as substitute, its additional regularization effect may eliminate the need of
dropout layers alltogether in some cases. [213, 214]

Convolutional layers Convolution is continuously defined as follows:

(f ∗ g)(t) :=
∫ ∞

−∞
f(x)g(t− x)dx [215]. (2.118)

The convolution of two functions f and g can be understood as mirroring of
function g along the y-axis, subsequently adding a time offset x and lastly
sliding function g from −∞ to∞. It passes function f on the way. Wherever
the two functions intersect, the integral of their product, so the area under
function f weighted by function g, is evaluated. Convolution is commutative.

In the context of neural networks, convolutional layers, as fundamental com-
ponent of any CNN, introduced by Le Cun et al. [216], are used to perform
so-called feature extractions. They often consist of a combination of linear con-
volution and nonlinear activation functions. In this regard, a discrete definition
of convolution is applied (changing the integral to a sum and working on finite
sequences). It can be understood as a small array of numbers, called kernel or
filter, sliding across the input tensor. By multiplying every entry of the kernel
and the input element-wise and subsequently summing up these products, one
obtains the so-called feature map (cf. Figure 2.25).
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Figure 2.25: Schematic description of a convolutional layer in a neural network. A filter of a
specific kernel size, in this case 3 × 3 is applied on the original image to obtain a
so-called feature map. The feature map carries its name due to the fact that the most
important features of an image are kept or even enhanced with this method, while the
dimensions decrease compared to the original image.

Especially if this is repeated for different filter kernels, the characteristics or
features of the input image are enhanced and captured. The output of the con-
volutional layer typically has decreased dimensions. In the case that this is
unwanted, so-called padding, typically zero padding, which signifies the addi-
tion of rows and columns of zeros on each side of the input tensor, is applied in
order to keep the same in-plane dimension throughout the convolution opera-
tion. If in contrast, the size reduction is desired, another parameter influencing
the final output size, the stride parameter, comes in play, which defines the
distance between two consecutive kernel positions. [217] While setting a stride
larger than one can reduce overlap, it can also lead to checkerboard artifacts,
especially if the size of the output window and kernel are not a multiple of the
stride [218]. The alternative of applying pooling layers for the further reduction
of output size will be discussed in the next paragraph.

The final output size can be calculated by

O = 1 +
N + 2P − F

S
, (2.119)

with the image dimension N × N , the filter dimension F × F , stride S and
thickness of padding P [219]. As an example, in the case in Figure 2.25, with
N = 6, P = 0, F = 3 and S = 1, the output size of 4 results.
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The output vector h(l) of a hidden convolutional layer can be calculated analo-
gously to the equations for MLPs and using the discrete definition of convolution
(cf. Equation (2.103)) by

h
(l)
i = σ

 ∑
i∈Mj

h
(l−1)
i ∗W (l)

ij + b
(l)
j

 , (2.120)

with a selection of input maps Mj [220, 221]. The weights Wij are updated
through backpropagation and stochastic gradient descent just like the previ-
ously introduced fully connected layers [221] and the kernel values are the only
parameters to be learned (while their size, padding, stride, etc. are hyperparam-
eters that are set in advance) [217]. The inverse operation is used in some CNNs
and also in deep convolutional generative adversarial networks (DCGANs); the
layers are then called deconvolutional layer.

Pooling layers Pooling layers are used to decrease the in-plane dimen-
sionality. They further introduce a higher translation invariance concerning
small shifts and distortions in images, and decrease the number of subsequent
learnable parameters. It shall be stressed that in contrast to a convolutional
layer there are no learnable parameters in any of the pooling layers. [217] Some
common, self-explanatory pooling operations that were used in the CNN in this
work are depicted in Figure 2.26, Figure 2.27 and Figure 2.28.

15 1 25 27

3 3 30 11

19 4 9 15

12 7 22 28

2 × 2 MaxPool 15 30

19 28

Figure 2.26: Depiction of a MaxPooling layer.
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Figure 2.27: Depiction of an AveragePooling layer.
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Figure 2.28: Depiction of a GlobalAveragePooling layer.

2.4.2 Generative adversarial networks

Generative adversarial networks, or GANs for short, were introduced by Good-
fellow et al. [143] in 2014, and have since been considered one of the biggest
findings in AI science [222], which is underlined by the over 78,000 citations
of the original paper to date [223]. In 2020 alone, about 28,500 papers related
to GANs were published, corresponding to approximately 78 papers every day,
which are more than three per hour [222]. The main function of GANs is the
generation of realistically looking images after being trained on a given training
image data set [143]. Possible areas of application range from 3D object gener-
ation via medicine, pandemics (mostly during COVID19), image processing,
face detection and text transferring to traffic control and many more [224]. In
these application fields, the function of a GAN is not limited to the generation
of images per se, but includes noise reduction, classification, detection of hu-
man motion, the generation of 3D images from 2D images, face recognition
or super-resolution of images [224]. After a slow start, GANs have also es-
tablished themselves in materials science. They have been used among others
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for the inverse chemical design of materials [225, 226], data augmentation
in microscopic images for material data mining [227], virtual microstructure
design for steels [228], predicting the compressive strength of concrete (using
tabular GANs) [229] or the generation of synthetic images of porous aluminum
foam [230]. There is relatively little research on GANs in connection with
FRP. Corresponding papers can be found on 3D inpainting of µCT images of
glass fiber reinforced composites [231], fiber break analysis of unidirectional
carbon fiber reinforced polymers by using super-resolution of synchrotron CT
images [232], generation of 3D structures from two-dimensional slices of a
variety of microstructures [233] and on the generation of realistic 2D trans-
verse microstructures of unidirectional fiber reinforced composites [234]. The
sources mentioned raise the hope that GANs also represent a serious option for
microstructure generation in relation to discontinuous carbon fiber reinforced
CT scans.

2.4.2.1 Basic theory

The Nash equilibrium The original idea of GANs derives from a central
concept of game theory [235]. It is based on a two-player zero-sum game with
two independently acting, non-communicating players trying to improve, while
the gain of one player is exactly the loss of the other player resulting in a total
sum of zero for the interests of both sides [235, 236]. In this optimization
process, which is also called a minimax game [143, 235], the goal is to reach
the so-called Nash equilibrium, which was shown to exist in any infinite game
following these criteria by John Nash in 1950 [236]. At this equilibrium point,
a one-sided change of strategy would be of no benefit to neither of the players.

Inspired by this concept, the traditional GAN as described by Goodfellow et
al. [143] consists of two competing neural networks, one so-called generator
and one discriminator. The generator makes an effort to capture the distribution
of real, given training data and tries to create new samples that mimic the real
ones. Meanwhile, the discriminator, which is often a binary classifier, aims at
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differentiating the real samples from the generated samples as accurately as
possible. Driven by their competition, constant improvement is required by
both generator and discriminator in order to win the game [143, 237]. In the
original paper, the process is compared to counterfeiters (generator) producing
fake currency and police (discriminator) trying to detect the counterfeit currency
[143]. Once the saddle point of the Nash equilibrium is reached, this adversarial
training ends and the generator is considered to have correctly estimated the
real data distribution [222]. In reality, reaching the Nash equilibrium is very
challenging considering the objective functions being non-convex, the parame-
ters being continuous and the parameter space being high-dimensional [238].
Nevertheless, outstanding results have been achieved with GANs, and they are
particularly impressive due to the possibility of generating theoretically infinite
data once properly trained.

The traditional GAN structure Figure 2.29 shows the structure of the
basic GAN (also called vanilla GAN) as a flowchart. Therein, a generator G is
fed with noise samples z from a prior defined noise function such as a Gaussian
distribution and outputs generated samples G(z). Those are provided alongside
samples from the real data distribution to the discriminator D, which tries to
classify the data by assigning a label of zero for data that it detects as generated
and one for data that it detects as real. With this discriminator feedback and the
actual true labels, a loss function can be calculated, based on which the weights
of the generator and discriminator network are updated using backpropagation.

Noise z Generator G

Real samples
x

G(z)

Discriminator D True/False

Backpropagation

Figure 2.29: Flowchart diagram of the basic structure of the vanilla GAN as proposed by Goodfel-
low et al. Based on [235].
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In the vanilla GAN, both generator and discriminator are normal MLPs with
trainable parameters θ [143]. A value function V (G,D) is used to evaluate the
cost of the training. During the training process, only the parameters of one
model are updated, while the parameters of the other are fixed [239].

The MLP representing the generator G is a differentiable function with param-
eters θG. In order to learn the distribution pg over real data x, a mapping of
the input noise variables pz(z) to the data space, G(z, θG), is required. The
second MLP representing the discriminator, D(x, θD) outputs a single scalar.
D(x) ∈ [0, 1] describes the probability that x came from the training data and
not the distribution of the generator pg . [143] Hence, the generator is trained to
maximize the probabilityD(G(z)) or to minimize log (1−D(G(z)) leading to
the following equation for the training of the generator, while the discriminator
is fixed:

min
G

V (D,G) = Ez∼pz(z) [log (1−D(G(z)))] [143]. (2.121)

The expectation operator E denotes the expected value of the specific dis-
tribution function [179]. The parameters θG are updated by calculating and
subsequently descending the stochastic gradients based on this equation. [143]

The discriminator is provided with samples from the unknown input distribution
pdata(x) and the (at the training time of the discriminator) fixed generator
samples. Hence, the value function is given by

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] [143].
(2.122)

The discriminator parameters get updated analogously by ascending the stochas-
tic gradient based on this equation.
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Goodfellow et al. further proved that global optimality is only reached for
pdata = pG, so if the input data distribution matches the distribution learned by
the generator. In this case, D(x) = 1

2 holds, which results in regression in the
training process. [143]

Combining Equation (2.121) and Equation (2.122) results in the following
minimax game for GAN optimization:

min
G

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] .
(2.123)

log (1−D(G(z))) gives the cross-entropy between [0 1]T and
[D(G(z)) 1−D(G(z))]T . Proposed by Rubinstein [240] in 1997, the cross-
entropy is a measure of the quality of a model for a probability distribution. As
the name already implies, it uses the cross entropy or Kullback–Leibler diver-
gence as a measure for the closeness of two sampling distributions [241]. Anal-
ogously, logD(x) gives the cross-entropy between [1 0]T and [D(x) 1−
D(x)]T . Hence, the value function V (G,D) is a Binary Cross Entropy (BCE)
function, which is commonly used in binary classification problems [238]. In
fact, any monotonically increasing function could be used instead of a logarith-
mic function [242].

After introducing the equations, the training procedure ought to have become
evident: The discriminator receives a mini-batch of the generator samples and a
mini-batch of the true samples. Then, the stochastic gradient of the discriminator
equation is ascended to update the discriminator. The generator receives noise
samples and the stochastic gradient of the generator equation is descended, and
so on. A corresponding pseudocode can be taken from [143]. Theoretically,
the discriminator could be updated k times and the generator only once per
iteration, but in the original paper they use the least expensive and meanwhile
most used option with k = 1.
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If the discriminator is too good in early stages of learning, log (1−D(G(z)))

saturates. This issue can be solved by training the generator to maximize
logD(G(z)) instead, which provides much stronger gradients in early learning.
[143]

The already mentioned familiar difficulty in training GANs stems from the fact
that due to the minimax game in Equation (2.123), the optimal weights for an
adversarial network correspond to saddle points of the loss functions and not
minima thereof, which is the case for conventional ANNs [242]. This issue is
visualized in Figure 2.30.

(a) Standard ANN

Saddle point

(b) Adversarial networks

Figure 2.30: Schematic illustration of gradient methods for a standard neural network (a) and
adversarial networks (b). Classical loss functions are bounded from below, which
means that following the gradients normally leads to a minimum, where the method is
stopped. As opposed to this, loss functions of adversarial networks may be unbounded
from below and the training alternates between minimization and maximization steps.
If those two are unbalanced, the solution path might "slide off" the loss surface and
never reaches the desired saddle point, making the algorithm unstable and resulting in
a sudden "collapse" of the network. Based on [242].

The solution for the saddle point problem is determined using the alternating
stochastic gradient method, changing between the descent and ascent step.
Typically, the gradients are updated by an automated solver like the already
introduced ADAM optimizer. [242]
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2.4.2.2 Common challenges when training GANs

Apart from the general problem of non-convergence, there are specific typical
challenges when training GANs, two of which will be elaborated on in the
following paragraphs. Those issues mainly occur due to each model trying to
negate the effect of the other one [243]. Solving one of the issues does not
necessarily lead to success as these different challenges may occur parallel or at
different stages of the training process [244].

Mode collapse The first common challenge is the so-called mode collapse,
also called catastrophic collapse, which signifies the creation of very similar
looking output data lacking variety by the generator [244]. Mode collapse
occurs when the discriminator is stuck in a local optimum [244]. Typically, the
generator can then produce one realistic data sample, which the discriminator
recognizes as real, and will stick with it; sacrificing the goal of generating a data
distribution similar to the training data distribution. Alternatively, only a partic-
ular, limited subset of modes is learned by the generator, which is sometimes
called partial mode collapse [238, 245]. The discriminator function often shows
sharp gradients around real data points in local equilibria [246] and hence the
discriminator gradients point to similar directions for many similar points (dis-
criminator overfitting) (cf. Figure 2.31). As the discriminator processes every
generated image independently, there is no interaction between the gradients
(also called catastrophic forgetting [247]). The generator is therefore not told to
diversify its outputs. [248]

One possible solution to avoid mode collapse is the use of previously mentioned
minibatch discrimination, where the discriminator is fed with multiple images
at the same time rather than single images [248]. In addition, multiple further
developments of GANs, like deep convolutional GANs [250], were proposed to
tackle this issue by using different network structures, new objective functions
or different training algorithms. Some important specific types are mentioned
in Section 2.4.2.3.
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Figure 2.31: Simplified depiction of mode collapse with the generator gradients pushing to M1

for most of the input noise z. Only if G(z) is very close to M2, the second mode is
reached by the gradients. Provided that a corresponding z has a low probability in the
noise distribution, the mode is visited rarely and the generator has little possibility to
improve in this area. Based on [249].

Vanishing gradients If the discriminator becomes too good at its job of
assigning zero to fake images and one to real ones, the generator gradients
approach zero. This behavior is called vanishing gradients and prevents training
progress. It typically appears when the discriminator is already close to the
optimal solution. [238, 244] It can be addressed, e.g., by using the Wasserstein
distance as an alternative method to calculate the loss of a GAN (see Section
2.4.2.3) [251].

2.4.2.3 Other types of GANs

In this section, a short, by no means comprehensive list of popular adaptions of
the original GAN idea is presented.

First described by Arjovsky et al. [251], the Wasserstein GAN (WGAN) has the
same structure as the vanilla GAN [143] but uses the Wasserstein distance, also
known as Earth Mover distance, to calculate the generator and discriminator
loss [235, 252]. It was intended to solve the problem of vanishing gradients
[235], but can also itself show problems of bad image quality of the generated
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samples or convergence failure. This was improved by Gulrajani et al. [253] by
adding a gradient penalty, introducing the WGAN-GP.

DCGANs as introduced by Radford et al. [250] in 2016, do not only consist
of fully connected layers, but obtain deconvolutional (more precisely known
as transposed or fractionally strided convolutions) layers in the generator and
convolutional layers in the discriminator. This is the kind of GAN that was used
in this work as well. While the basic structure is the same, DCGANs typically
include batch normalization in the hidden layers allowing for a deeper gradient
propagation as the risk of generator collapse is decreased. In order to avoid
sparse selection of gradients, ReLU activation is used in the generator (except
for the output layer, which uses tanh) and Leaky ReLU activations are selected
for the discriminator with the sigmoid activation in the output layer. [179]

Conditional GANs (cGANs) described by Mirza et al. in 2014 [254] condition
the generator and discriminator on discrete auxiliary information by adding
this information, normally a corresponding label, as another input layer. This
enables the trained generator to output a result based on a requested label instead
of generating random outputs. [254] In the case of continuous variables, the
given additional input information can be divided into separate classes. The
further development of a Continuous conditional GAN (CcGAN) by Ding et al.
might be another option in that case [255].

Another extension of the cGAN would be the information maximizing GAN
(InfoGAN) as introduced by Chen et al. in 2016 [256].

2.4.3 Neural networks in materials science

AI is making its way into all scientific fields; materials science is no exception.
Apart from classical ML algorithms, which have been used for a while, neural
networks are increasingly used and classified as DL at more complex scales
(multiple layers). They can be used to predict mechanical properties [257], weld
characteristics [258], crack propagation [259], and crystal structures [260] as
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well as to classify surface defects [261], fracture surfaces [261, 262] and mi-
crostructures [263, 264], or to segment phase fractions [265], grain boundaries
[266], or precipitates [267]. Deep learning can also play a role in materials
science for object recognition [263], crack detection [25], feature extraction
from transmission electron microscopy (TEM) or scanning electron microscopy
(SEM) images [268], or the creation of digital twins [269]. Another technique
is increasing image resolution through super resolution (SR) networks, which
has been used sporadically in materials science [270], but is also emerging in
commercially available software. The use of GANs in materials science was
already elaborated on in the prior Section 2.4.2.

In this work, three neural networks are implemented and evaluated. One rather
classical ANN for tensor interpolation, one CNN for the determination of FVC
from 3D scans and one DCGAN for the generation of realistic 2D CT images.
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The Methods chapter first discusses the material and the CT scans, which serve
as the basis for all investigations in this thesis. The methods used to examine
the plastificates are then explained. This is followed by descriptions of the
methods for determining fiber volume content, fiber length distribution and
fiber orientation distribution. After the interpolation of the fiber orientation
tensors has also been explained, the chapter concludes with an elaboration of
the generative adversarial network used for artificial image generation.

3.1 Materials and processes

In the following, the material constituents are presented, as well as the process
used to produce the final composites, the sizes and extraction points of the
specimens and the considerations behind these.

3.1.1 Polyamide 6

PA6, sometimes also referred to as polycaprolactam, Perlon or Nylon 6, is a
thermoplastic, semicrystalline polymer from the group of polyamides. The
number 6 was assigned because of the six carbon atoms between the nitrogen
atoms in the molecule chain. The chemical formula is (C6H11NO)n. In
contrast to other polyamides, which are mostly formed by condensation, PA6 is
synthesized by ring-opening polymerization of ε-caprolactam (compare Figure
3.1).
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Figure 3.1: Schematic depiction of the synthesis of polyamide 6 by ring-opening polymerization
of ε-caprolactam. The ε-caprolactam is heated at about 533 K - 553 K in an inert
atmosphere of nitrogen for multiple hours until the ring breaks and polymerization
takes place. Small amounts of water are initially required, which is why this synthesis
process is also known as hydrolytic polymerization. However, alternative synthesis
processes are also possible. Based on [271].

PA6 has a melting temperature of approximately 222 °C, a glass transition
temperature between 50 °C and 60 °C and a density of 1.14 g/cm3. With 3 %
moisture absorption at 50 % relative humidity and even 9.5 % moisture ab-
sorption in water, PA6 can uptake particularly high amounts of water. [271]
Water acts as a plasticizer in PA, decreasing the glass transition temperature
by about 50 °C between completely dry and maximum water absorption [272].
In addition, the shear modulus and modulus of elasticity depend on the tem-
perature, as typical for thermoplastics. [272] These dependencies on climatic
and environmental conditions exacerbate the work of engineers when designing
with PA6 and characterizing the material behavior of it.

In this specific work, the PA6 matrix material used was the TECHNYLSTAR
XS 1352 BL NATURAL with a master batch. It was generously provided by
the company DOMO Chemicals GmbH, Leuna, Germany.

3.1.2 Polycarbonate

In order to take into account the differences that the choice of matrix system has,
in particular on the structure of the plastificate, polycarbonate is sometimes used
as a reference system in this thesis. The polycarbonate material is a Makrolon
2405 PC provided by Covestro AG, Leverkusen, Germany.
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3.1 Materials and processes

3.1.3 Carbon fibers

Carbon fibers are a long and thin (usually about 5 µm - 7 µm in diameter)
material composed mostly of carbon atoms. They owe their high strength and
Young’s modulus to their graphite-like arranged carbon structure in planes
that get aligned parallel to the fiber direction during manufacturing. When
producing carbon fibers, the raw material, also called precursor, is in most
cases polyacrylonitrile (PAN), or more rarely rayon or pitch, which all exhibit
long strings of carbon bound molecules. After thermally stabilizing the long
strands of precursor by heating the fibers in air at 200 °C - 300 °C, the so-
called carbonizing step follows. While heating the fibers for several minutes
at a temperature between 1,000 °C and 3,000 °C in an atmosphere without
oxygen, the non-carbon atoms leave the fibers. After treating the surface to
slight oxidization, the fibers are finally coated in a material compatible with
matrix material. This process is also called sizing. [273]

For this work, high-tenacity (HT) carbon fibers PX 35 with sizing for PA6
were acquired from ZOLTEK Corporation, St. Louis, United States. In the
respective data sheet, the manufacturer states a carbon content of 95 %, a density
of 1.81 g/cm3, a diameter of 7.2 µm, a Young’s modulus of 242 GPa, a tensile
strength of 4,137 MPa and an elongation at break of 1.7 %. The tex number is
3750.

3.1.4 Glass fibers

The glass fibers were provided by Johns Manville Corp, Denver, United States.
The type is StarRov ® 895 2400 with a tex number of 2400. However, they will
only play a subordinate role in this work, which is why no further mechanical
parameters will be given.
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Clarification of material use per method

It shall be made clear at this point that the main investigation material in this
work is carbon fiber reinforced polyamide 6. Only in individual cases, which
are broken down in more detail below, is another fiber or matrix material used
for comparison. In the case of the plastificate examinations, in order to bet-
ter understand the peculiarities of the CF-PA6 material, such as the increased
porosity, GF-PA6 and GF-polycarbonate are also included. In the fiber volume
content investigations, only CF-PA6 is used, as there is hardly any potential
for developing methods for material combinations with glass fibers, since the
FVC determination there works reasonably reliably even in a non-destructive
manner. Specimens from Plate 2 and Plate 3 are used, which are shown in
Figure 3.4. The investigations are published in [188]. As far as fiber orien-
tation determination is concerned, CF-PA6, GF-PA6 and hybrid CF-GF-PA6
are investigated. Specimens from Plate 3 (CF-PA6), Plate 4 (GF-PA6) and a
hybrid CF-GF-PA6 plate with an identical cutting pattern, which is not shown
explicitly in this dissertation, were used. The method for GF-PA6 has already
been implemented by Bertram and Pinter [79], the slight adaptations that are
necessary for the other two material types are explained in the respective Sec-
tion 3.6 in the Methods. With regard to tensor interpolation, only CF-PA6 is
initially considered, as the various methods were assessed on this basis. Only
specimens from Plate 1 (Figure 3.4) were used. These results are published
in [17]. The determined orientation tensors of CF-PA6, GF-PA6 and hybrid
CF-GF-PA6 and their interpolation were considered for the use in Mori-Tanaka
and Halpin-Tsai and the respective comparison with the experimental values.
The samples and plates correspond to those mentioned in the context of fiber
orientation determination. These results are published in [274]. For the GAN,
only CF-PA6 samples were used again, namely from Plate 3 and another pure
CF-PA6 plate, which is not printed, with an identical cutting pattern, but with
the plastificate inlay rotated by 180°. This decision was due to the fact that in
the course of the preparation of this work, the discovered skewed flow front
was identified as a process error and not as a desirable process property to be
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depicted. By using a plate with an inverted plastificate insert, the training data
set could be somewhat neutralized in this respect. These investigations were
published in [275].

3.1.5 The LFT-D manufacturing process

The long fiber thermoplastic direct (LFT-D) process is depicted schematically in
Figure 2.1. The polyamide 6 granulate is compounded in an extruder along with
the master batch at temperatures between 260 °C - 280 °C. In a second, mixing
extruder with a twin screw, the fiber rovings are introduced to the polymer melt
uncut and are chopped up irregularly by the shearing motion of the extruder.
The resulting initial charge, also called plastificate in this work, of which two
kinds can be seen on top in Figure 3.2(a) and Figure 3.2(b), is ejected through a
specific nozzle. Subsequently, it is directly inserted in a press (Dieffenbacher),
preventing a reheating of semi-finished products, which is necessary in other
known LFT production processes.

In the press, the plastificate is transformed into a plate or part (depending on the
inserted mold) and simultaneously cooled down (cf. Figure 3.3) in a so-called
compression molding process. The press has a temperature of about 80 °C -
90 °C. The mold for the plates commonly used in this work has dimensions of
400 mm× 400 mm and the height of the plates was fixed at 3 mm using spacers.
An image of both front and back of these plates can be seen on the left in Figure
3.3. The insertion area of the plastificate at the left is clearly visible.

It shall be noted that both the amount and geometry of the plastificates as
well as the insertion position in the mold severely influence the mold filling
behavior. This in turn influences the macroscopic quality of the component, but
in particular also the microstructure and therefore anistropies and weak points
in the mechanical properties. These investigations are not part of this work
and are carried out by process developers and process simulants. However, the
aim of this work is to be able to draw conclusions about the behavior in the
process and in subsequent mechanical tests through targeted characterization
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(a) (b)

(c) (d)

Figure 3.2: Images of (a) an initial charge/plastificate (340 mm × 75 mm × 35 mm) for the plate
production with its (c) insertion position in the 400 mm × 400 mm mold, as well as (b)
an initial charge/plastificate (275 mm × 175 mm × 29 mm) for the "MaiQFast" part
(automotive underbody segment with stiffening ribs) and its (d) insertion position in
the "MaiQFast" part mold (two overlapping inserted plastificates in the middle, and
three tapes, e.g., on the upper side, for additional continuous reinforcement). The scale
from image (b) does not apply to all images, so the corresponding dimensions are given
in this caption.

and quantitative reproduction of the microstructure in the plates. For the plates
used in this work, one single, longer plastificate of about 340 mm length, 75 mm
width and 35 mm height was inserted at the left of the 400 mm × 400 mm
mold (see left side of Figure 3.2). It shall be added that the dimensions of the
plastificates given in the caption of Figure 3.2 are theoretical values, from which
the actual plastificate geometries sometimes deviated significantly, especially
the wider ones used in the MaiQFast production.
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(a) (b)

(c) (d)

Figure 3.3: Images of the front (a) and back side (c) of a 400 mm × 400 mm × 3 mm CF plate used
in this work after the press process and the front (b) and back side (d) of an additionally
continuously reinforced "MaiQFast" part with dimensions of 600 mm × 400 mm after
the press process.

3.1.6 Preparation of specimens

In order to examine the material in the CT device, smaller specimens were
cut from the material through waterjet cutting. The size and position of the
specimens was of particular interest. Regarding the position of the specimens,
the differences between the area where the initial charge is inserted (often
labeled C), the transition area (CF) and the area dominated by the material flow
(F) were of particular interest. Therefore, in most cases, three specimens were
taken from each of these areas as can be seen in Figure 3.4 (a), (c) and (d).
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(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 3.4: Different cutting plans to extract specimens of different sizes and at different locations
by waterjet cutting superimposed on an image of a CF plate ((a), (b) and (c)) and GF
plate (d).

Considering the dimensions it was evident that the samples should be small, so
that a high resolution in the CT images could be reached, but large enough, so
that not only very local effects are depicted. Several considerations influenced
the choice of specimen size for a particular application/evaluation, so that partly
different specimen sizes were used for different methods (cf. Figure 3.4).
As far as the first question regarding the necessary resolution is concerned:
3 voxels - 4 voxels across the fiber diameter, i.e. a resolution of 1 µm - 2 µm,
would be necessary for single fiber detection. This is not compatible with a
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reasonably justifiable specimen size and is also not inevitable, as algorithms
that do not rely on single fiber segmentation are possible. The next aspect of a
representation of the microstructure that is not too localized is more difficult
to grasp. Therefore, it seemed sensible that after cutting a specimen to size,
the stochastic fiber length distribution in the plate resulting from the process
should still be mapped as representatively as possible. To investigate the effect
of specimen size on the FLD, three specimens measuring 10 mm × 10 mm,
20 mm × 20 mm and 30 mm × 30 mm were taken from Plate 2, both in the
charge area and in the flow area (see Figure 3.4). The fiber lengths of these
samples were determined experimentally and can be seen in Section 4.4. While
there were occasional fiber lengths of significantly more than 10 mm, a peak
at about 0.5 mm, a median length of about 0.48 mm and an average (arithmetic
mean) length based on number of about 1.07 mm clearly indicate the occurrence
of the clear majority of fibers in the range below 2 mm (see Figure 4.15).
Based on this consideration, an initial specimen size with a side length of
10 mm could be justified for the development phase of the tensor interpolation
problem, because only very few fibers would be decisively cut off (see Plate
1 in Figure 3.4). For all subsequent investigations, however, larger samples
with side lengths of 25 mm (see Plate 3 and Plate 4 in Figure 3.4) were chosen
for several reasons, which are briefly summarized hereinafter. Firstly, quite
extreme cases of anisotropic tensors with very different local orientations were
deliberately desired for the development of the interpolation methods, as this
would ensure that the method would work in the worst case scenario. This was
not the case for all further evaluations, where a realistic representation of the
microstructures to be expected in such a plate was required. Furthermore, the
average fiber lengths of the differently sized test samples increased from the
smallest to the middle sample in both cases, but did not show a definitive trend
from the middle to the largest sample (see Figure 4.16). Thus, a saturation of the
effect of the sample size on the fiber length distribution between a side length
of 20 mm to 30 mm was assumed. In addition, the fiber volume contents of
the test samples were also determined via acid based dissolution (cf. Section
3.4.1) and they increased with increasing sample size as well (cf. Section
4.3.1). The available crucibles for the thermogravimetric analysis with the
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commercial system LECO TGA801, as an alternative determination of FVC
through pyrolysis, had a diameter of 25 mm. For all these reasons, a side length
of 25 mm was subsequently considered appropriate.

In this work, apart from the purely CF reinforced plates (cf. Figure 3.4 (a), (b)
and (c)) and the GF reinforced plate (cf. Figure 3.4 (d)), a hybrid reinforced plate
with both carbon and glass fibers was also considered sporadically; especially
in the context of reliably extracting the two separate fiber orientations in CT
data of a plate like this.

3.2 CT scans

The CT device, the process of creating CT scans and the parameters used for
them are explained briefly below.

3.2.1 Device

Most CT scans in this work were done with the institute’s (Institute for Applied
Materials at Karlsruhe Institute of Technology) own CT device. It is a YXLON-
CT (Yxlon International CT GmbH, Hattingen, Germany) precision µCT system
with a µ-focus X-ray transmission tube with tungsten target and a PerkinElmer
(Waltham, MA, USA) Y.XRD1620 flat-panel, quadratic 2048 pixel (px) × 2048
pixel (px) detector.

During a repair of the in-house CT, another device was used at the wbk Institute
of Production Science at KIT. This device was a Zeiss Metrotom 800 cone beam
µCT system with the flat panel detector PaxScan2520V with 1536 px × 1920
px, so a rectangular detector contrarily to the other one used.
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3.2 CT scans

3.2.2 Procedure

After mounting the specimen(s) and installing them in the beam path, appro-
priate parameters were selected for the scan (see Section 3.2.3). After the
scan procedure is done, the respective 2D projections generated by rotating the
sample in the beam path were reconstructed to a volumetric image applying the
Feldkamp cone-beam algorithm [154]. Subsequently, the reconstructed scans
were processed in VG Studio Max 3.4.2.

3.2.3 Parameter settings

Different parameters were chosen for different scans used in this work. The
parameters of some of the most important scans (the four main plates and
specimens referenced in Figure 3.4) are summarized in the following Table 3.1.

Table 3.1: Scan parameters of the different plates. The rectangular specimens of Plate 2 were
scanned on the Zeiss device, all others on the Yxlon device.

Parameter Unit Plate 1 Plate 2 Plate 3 Plate 4

Voltage kV 150 100 110 125

Current mA 0.25 0.16 0.13 0.12

Voxel size µm/voxel 8.57 25.98 17.39 19.17

Linebinning parameter - 2 - 2 2

Number of projections - 1950 1450 2220 2100

Exposure/Integration time ms 500 1000 800 1000
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3.3 Investigations of the initial
charge/plastificate

It appears obvious that the microstructure of the final plates is particularly
dependent on the initial structure of the inserted plastificate. For this reason,
a CT image-based investigation of the microstructure of the plastificate was
initially of interest in order to understand the overall flow and material behavior
in the pressing process.

3.3.1 Initial orientation state

First of all, the initial fiber orientation in the plastificate appears to be particularly
decisive for the fiber orientation and microstructure of the plate. It could
basically be determined using the same procedure for determining the fiber
orientation tensors as for the samples from the plates, which is presented in
Section 3.6 and which is based on the principles explained in Section 2.2.3.2.
Therefore, CT images were acquired from plastificates, which can be seen for
CF-PA6 in Figure 3.5 and for GF-PA6 in Figure 3.6.

The two swirls in the center of the plastificate can be clearly seen in image (a) of
both figures. However, no real distinction between fiber and matrix is possible,
especially with the CF plastificate, but also with the GF plastificate. This is
due to the poor resolution, which is required by the size of the plastificate, and
the fact that there is a lot of air in the material mixture, which has such a clear
difference in gray value that the small difference between fiber and matrix is
hardly recognizable. A classic fiber orientation analysis is therefore hardly
possible. However, the gradient-based method can still be used and simply
determine the gradients between air and material. This would then determine
the overall material orientation. One can make the reasonable assumption that
the fibers move along the matrix flow and should therefore be oriented in a
similar or the same way as the overall material.
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(a) (b)

(c) (d)

Figure 3.5: Upper (a), right (b), front (c) 2D section view and 3D view (d) of a CF-PA6 plastificate.
It was done with the Zeiss Metrotom 800 cone beam µCT system at wbk Institute of
Production Science at KIT. The scan had a resolution of 73 µm/voxel and was also used
in the author’s publication [276].

Accordingly, grids were placed over the plastificates (see Figure 3.7) and the
material orientation tensors of the cubes were evaluated applying the method
used to determine the fiber orientation tensors (see Section 3.6).

3.3.2 Porosity and volume determination

Fiber orientation measurements in the plate revealed that the flow front in the
process appears to be slightly skewed. After ruling out various causes, the
somewhat irregular geometry of the plastificates and their porosity distribution
were taken into consideration.

Therefore, the images were first loaded into Python (read in as .raw image file)
and then converted to numpy arrays with the correct dimensions. Subsequently,
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(a) (b)

(c) (d)

Figure 3.6: Upper (a), right (b), front (c) 2D section view and 3D view (d) of a GF-PA6 plastificate.
It was done with the institute’s own YXLON CT device. The scan had a resolution of
77.5 µm/voxel.

(a) (b)

Figure 3.7: (a) Image of a CF plastificate scan section with a superimposed grid of 36 3.33 mm ×
3.33 mm × 3.33 mm cubes around the left swirl. (b) Image of a GF plastificate scan
section (different plane than in (a)) with a superimposed grid of 12 20 mm × 20 mm ×
20 mm cubes along the extrusion direction.
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3.3 Investigations of the initial charge/plastificate

the image was made binary with the Otsu threshold applied to each slice.
Afterwards, the segmentation of the plastificate area and the pores inside this
area had to be implemented. This is difficult insofar as the area of the plastificate
that is penetrated by pores cannot be delimited by thresholding methods, as air
is on the outside and inside, and also cannot be delimited by region growing
approaches or similar due to its branched shape. The solution is morphological
approaches. These apply a structuring element, which can have any shape
or size, usually a square or circle, to an input image and generate an output
image. These have the advantage that they cannot only remove noise but isolate
individual elements and especially join disparate elements in an image, which
is needed to capture the plastificate as a whole. The most basic and well-known
morphological operations are dilation and erosion, which were both used in
this application and are explained in the following. Numpy [277], the OpenCV
cv2 [278] library and Matplotlib [279] were used for these operations and the
creation of plots.

Dilation

The image I is convolved with a kernel X . The kernel is set with the command
cv.getStructuringElement and is chosen to be of elliptic shape in this case. The
ellipsis is defined with the function cv.MORPH_ELLIPSE as a circle with radius
of the kernel size 15 - again in this particular work. The center of the kernel
is typically the anchor point of the kernel, which is slid across the image. For
the dilation operation (cv.dilate), the anchor point pixel value is replaced by the
maximal pixel value captured by the kernel:

(I ⊕X)(x, y) = max{I(x+ s, y + t) +X(s, t) | (s, t) ∈ Dx}, (3.1)

with Dx as the definition domain of the structuring element. It is in that sense
similar to a maximum filter with the difference of the important choice of
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special structuring elements, changing the outcome decisively. Dilation causes
the bright regions within an image to grow (cf. Figure 3.8), hence the name.

(a) (b) (c) (d)

Figure 3.8: (a) Binarized slice of the original scan. (b) Same slice after applying dilation. The entire
plastificate has become white and the borders are dilated. (c) Same slice as (a) but after
applying erosion. The entire image has nearly become black. (d) Slice with successive
application of dilation and subsequent erosion. The innards of the plastificate are still
completely white, but the extended borders are reduced by the subsequent erosion.
Segmentation of the plastificate is possible.

Erosion

Erosion (cv.erode) is like the antagonist of dilation computing a local minimum
across the area of the given kernel:

(I⊖X)(x, y) = min{I(x+s, y+t)−X(s, t) | (s, t) ∈ Dx}. [280, 281] (3.2)

It can be seen in Figure 3.8 that by applying dilation to the scan image, the
pores can be filled in. However, the edge also expands beyond the edge of the
actual plastificate. A subsequent erosion operation can reverse this expansion of
the edge. The result is an image which (apart from small errors at the edge) has
segmented the plastificate quite well.
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Consequently, the difference between the image with the completely white
plastificate (d) and the original image (a) can be used to generate an image in
which only the pores are white. By counting all pore pixels and all pixels that
are assigned to the plastificate and dividing them by each other, the proportion
of porosity per slice is obtained. In addition, by dividing the pixels assigned to
the material by the proportion of the total pixels of the scan, the proportion of
area of the plastificate can be determined. Both of these aspects are shared in
the results and then discussed.

3.4 Determination of fiber volume content

In the following, the procedure of the experimental and then the two computa-
tional methods for determining the fiber volume content is presented. Parts of
this have already been published in a paper [188], which is marked accordingly.

3.4.1 Chemical dissolution 1

In order to chemically remove the matrix, approximately 50 ml of concentrated
sulfuric acid is added to the samples in an Erlenmeier flask which is then placed
on a hotplate (cf. Figure 3.9).

This is followed by heating until smoke is produced. Subsequently, the samples
have to react for one hour at this temperature. After the samples have cooled
down ("lukewarm"), they are mixed with approximately 25 ml of a 35 % hydro-
gen peroxide solution and heated until the solution becomes clear and no more
gas bubbles rise.

1 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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(a) (b)

Figure 3.9: (a) Drop of a specimen in sulfuric acid in Erlenmeier flask and (b) dispersion of the
detached fibers. Courtesy of FIBRE Bremen. Extracted from Blarr et al. [188].

The remaining fibers are put in a new specimen cup and can be used for the fiber
volume content determination via weighting and for the fiber length distribution
determination.

The investigations were done at FIBRE (Bremen). For Plate 2, directly calcu-
lated FVC values by FIBRE were taken as result, for the specimens of Plate 3,
the calculation of the FVC via the fiber mass content and the respective densities
was performed afterwards.

3.4.2 Computational methods

This section explains the two methods for determining the FVC using im-
age evaluation methods after the problems with existing methods have been
addressed again.

3.4.2.1 Application and shortcomings of common techniques 2

The through-thickness fiber concentration analysis by Gandhi et al. was men-
tioned in the State of the Art [5]. However, it was impossible to apply this
procedure to the µCT scans in this work as the first step of choosing the mid-
point threshold is not feasible for the histograms of the CFRP scans as will be

2 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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elucidated in the next section (Section 3.4.2.2) and can be seen in Figure 3.12
(only one peak is visible). Conventional automatic thresholding methods were
tested as comparison to the methods introduced in this work, which can be seen
in Table A.1 and Table A.2 in the Appendix (Section 9). Therefore, the two
common automatic thresholding methods Otsu (opencv [278]) and mean (scikit
image [282]) were applied, once without filtering the image before and once
with the best-performing filter option of our self-implemented method (median-
Blur with a kernel size of 15 for Plate 2 and 23 for Plate 3, respectively) applied
beforehand. The minimum threshold by scikit image did not even compile with
a "RuntimeError: Unable to find two maxima in histogram", which confirms
the previous findings. While the two thresholding procedures that worked were
applied in Python supporting the subsequent further processing of the values,
the exact same threshold and filtering methods can be applied in ImageJ as
well. The results were far away from the experimental values. It is noticeable
that the results of the pure threshold methods deviate on average by almost
100 % relatively compared to the experimental results. It is particularly striking
that the calculated FVC values are almost the same for each sample. A purely
constant shift of the threshold value therefore does not appear to make sense, as
this would also not cover the differences between the samples. The use of the
median blur at least significantly improved the results with the Otsu threshold.
It seems that in the case of low contrast CT images of composites with high
fiber volume content, simple thresholding is insufficient for fiber segmentation,
which is supported by literature [283].

3.4.2.2 "Average or above" (AOA) thresholding 3

The novel thresholding method is realized in Python 3.8.7 with the help of
the SimpleITK [284–286], the OpenCV [278] and the NumPy [277] libraries
among others. The scans of the samples are generated as 16 bit 3D images in
the .raw and .mhd file format. For all further steps those scans were converted

3 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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into 8 bit. Dark slices at the borders resulting from the specimens not being
exactly even-surfaced and further image errors were cut. Each loaded scan was
converted into a 3D array. In the following, every slice is handled separately;
so it was iterated through the thickness of the samples and worked on 2D
images. At first, a filter was applied to reduce the noise. The filters tested
include the "normal" blur filter, the median blur filter, the Gaussian blur filter
and the bilateral filter each with various kernel sizes. The kernel size defines
the dimension of the window that is slid across the image and in which the
filter-specific calculation is performed. The performance of the filters was
judged afterwards by comparing the resulting calculated fiber volume contents
with the experimental values. The results of the specimens of the Plate 2 can
be seen in Table A.3, Table A.4 and Table A.5 and the results of the specimens
of the Plate 3 in Table A.6 and Table A.7 in the Appendix (Section 9). The
median filter with resolution-adapted kernel size performed the best. It works by
creating a kernel of pixels around a central pixel. The values are sorted and the
central pixel gets replaced by the median value. From the then noise-reduced
image, a threshold value was determined by using the Otsu algorithm. The Otsu
algorithm separates an image in two sections by maximizing the inter-class
variance of the gray-level intensities between those sections:

σ2
B(t) = ω1(t) · ω2(t) (µ1(t)− µ2(t))

2
. (3.3)

t is the gray value of the threshold being searched for and i is the run variable
with i ∈ [0, L]. ω1 and ω2 are the probabilities of the two sections with

ω1(t) =
t−1∑
i=0

p(i) and ω2(t) =
L−1∑
i=t

p(i), (3.4)

while p(i) represents the probability for each gray level intensity.

130



3.4 Determination of fiber volume content

µ1(t) · ω1(t) represents the mean intensity value of the first section (and ac-
cordingly for the second section) with

µ1(t) =

t−1∑
i=0

i · p(i)
ω1(t)

and µ2(t) =

L−1∑
i=t

i · p(i)
ω2(t)

. (3.5)

After calculating the Otsu threshold T for each slice, it is plotted over the
thickness. In Figure 3.10, the plot for specimen F1,carbon can be seen as an
example.

Figure 3.10: Example of the threshold values from sample F1,carbon. Based on Blarr et al. [188].

Considering the course of the threshold values over the height of the sample, it
is noticeable that the threshold values are the highest in the center and drop to
a much lower level at the borders of the specimen. Inspecting the scans slice
per slice, it is noticeable that there are less fibers visible in those border areas
compared to the central layers of the sample as can be seen in Figure 3.11.

This phenomenon is due to the material flow in the compression molding
process. The process-induced difference between outer layers and the center
of the part is called shell-core effect in injection molding vocabulary and can
be detected considering both fiber volume content as well as fiber orientation
[5, 17]. However, this would mean that there are more lighter gray values
representing the fibers and less darker ones representing the matrix in the center
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(a) (b)

Figure 3.11: First slice (a) and center slice (b) of the scan of the specimen F1,carbon. The low
amount of fibers and fiber bundles at the border (a) and the contrary high amount in
the center (b) is clearly visible. Extracted from Blarr et al. [188].

layers, but the threshold value distinguishing between the two peaks should not
shift. This therefore cannot be the main reason for the course of the threshold
values over the thickness.

A second possible explanation would be that of the beam hardening effect, a
common phenomenon in computed tomography. The further the beam pen-
etrates the material, the higher the average energy of the photons, as the low
energy photons get scattered easily. However, uncorrected images typically
show increasing gray values towards the center, hence the rotation axis of the
CT. Consequently, this effect would be contrary to the one observed. Addition-
ally, multiple specimens were scanned occasionally, which would superimpose
this effect on multiple samples.

Considering the histograms, one understands the issue more. In Figure 3.12,
exemplary histograms of specimen F1,carbon are given.

In Figure 3.12(a), the histogram of the entire specimen is shown, in Figure
3.12(b), one can see the histogram of one single slice rather towards the border
of the specimen and in Figure 3.12(c), the histogram of a single slice in the
center of the specimen is given. In the entire histogram in Figure 3.12(a), it is
apparent that there are not two peaks as expected. To the contrary, all voxels
seem to show gray values roughly fitting to one single normal distribution. This
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(a)

(b) (c)

Figure 3.12: Comparison between the histograms of the entire specimen F1,carbon (a), a border (b)
and a middle slice (c) (after having applied the median filter). (b) ⊂ (a)∧ (c) ⊂ (a).
Based on Blarr et al. [188].

is due to the bad contrast between carbon fiber and polymer in the CT, which has
already been mentioned before and can be seen, e.g., in Figure 3.16(b), induced
by the closeness of the densities. Additionally, much higher resolutions would
be necessary to at least come close to resolving single carbon fibers, which is not
given with the resolutions of these scans. Both of these facts lead to very noisy
images. The Otsu thresholding, respectively any thresholding method for that
matter, therefore can not work the way it is supposed to, but calculates some kind
of median value of the entire gray value distribution. Looking at the histogram of
the border slice (Figure 3.12(b)), the peak intensity is slightly shifted to the left
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and there is a small shoulder visible at the left of the distribution. Comparing it
with the histogram of the center slice (Figure 3.12(c)), the distribution is shifted
to the right in this case and there is a pronounced shoulder at the right of the
distribution. This leads to the rise of the threshold values towards the center
of the scans. As these values are more correct than the low threshold values
calculated at the borders, there is the need of a non-constant adaption of the
threshold values up until the center of the specimens.

Therefore, a two-stage procedure is implemented.

1. The first stage consists of the previously described approach. A median
blur filter is applied to each slice. Afterwards, the threshold value is
determined and saved as TOtsu[i], with i being the corresponding slice.

2. At the beginning of the second stage, the average threshold value

Taverage = T =

n+1∑
i=0

TOtsu[i]

n
(3.6)

is calculated. Following, a new array Tnew is declared. If TOtsu[i] is
smaller than Taverage, Tnew[i] will be set equal to Taverage. Otherwise
Tnew[i] will be set equal to TOtsu[i].

This procedure can be seen in the flowchart in Figure 3.13.

After that, a binary image is created from each slice i by using the threshold
value Tnew[i]. From these binary images, the FVC for each slice can be calcu-
lated by determining the percentage of the pixels with a non zero value. The
comparison of TOtsu and Tnew can be seen in Figure 3.14.

The effects of this two-stage approach can be viewed in Figure 3.15. This
empirical procedure was only one among multiple ones tested, but the one that
made the most sense considering the non-constant adaption of threshold values
reflecting the changes in the gray value distributions over the thickness.
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START

Calculate TOtsu[i] ∀ i ∈ [1, n]

Calculate Taverage =
∑n

i=1 TOtsu[i]

n
for the entire stack

Declare array for new threshold values Tnew(n)

TOtsu[i] < Taverage

Tnew[i] = Taverage Tnew[i] = TOtsu[i]

RETURN Tnew(n)

Yes No

Figure 3.13: The process of the novel thresholding procedure. At first, the threshold value for
each of the n images is calculated with the Otsu algorithm and stored in TOtsu.
Afterwards, the average threshold value Taverage across all slices is determined.
Then, the threshold value TOtsu[i] for each image i is compared to Taverage. The
larger of the two values is then stored in Tnew as Tnew[i]. Extracted from Blarr et al.
[188].
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Figure 3.14: Example of the threshold values from the sample F1,carbon. The blue line represents
TOtsu, the orange line Taverage and the green line represents Tnew . Based on Blarr
et al. [188].

(a) (b) (c)

Figure 3.15: Comparison between the original image (a) and the binary image after the first (b) and
second stage (c). Extracted from Blarr et al. [188].

3.4.2.3 Convolutional neural network

Input data and data processing 4 The convolutional neural network is
implemented in Python 3.6.8 with the help of inter alia the NumPy, Scikit-
image [282] and SimpleITK packages. Tensorflow [287] and Keras [288] were
used as AI framework. The calculations were performed on CPUs provided
by the bwHPC cluster 2. For the CNN, the 16 bit scans are loaded directly

4 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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into the Python script for further processing. In contrast to the thresholding
method, the scans are handled as 3D arrays without a loop iterating through the
slices. A comprehensive set of uniformization methods is applied so that the
neural network’s training algorithms solely train the network on the intended
differences between the scan data. For the data loading, uniformization and
augmentation, the Python libraries of SimpleITK, Keras and Numpy provide a
large variety of useful methods. However, since the data is processed in 3D, a
range of processing methods had to be custom-made. Those helper functions
can be found in the respective Github repository as well (cf. link in [188] or at
the end of this work in Chapter 9). The steps used to process the scans are as
follows:

1. Cutting

First, the scans were cropped individually to the actual core material vol-
ume to avoid noise at the edges of the scan volume (cf. Figure 3.16).The
individual amount of cut back slices per specimen can be taken from
Table 3.2.

(a) (b)

Figure 3.16: Exemplary slice near the top of the FLD2 scan (a) showing marking and uneven
surface conditions in contrast to (b) a slice of the same scan 30 layers deeper into the
material. Partly extracted from Blarr et al. [188].
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Table 3.2: Overview of the original scan data. The resolution is given in terms of the absolute
amount of voxels in each dimension. The numbers below "Front/Back cut" refer to the
amount of slices removed during data pre-processing. Based on Blarr et al. [188].

Scan
Destructively

measured FVC

Original scan

resolution

Front

cut

Back

cut

FLD1 22.3 % 122 × 386 × 386 5 10

FLD2 25.5 % 128 × 780 × 780 12 12

FLD3 28.6 % 148 × 1168 × 1162 35 35

FLD10 17.9 % 130 × 391 × 395 9 14

FLD11 24.0 % 135 × 777 × 772 16 16

FLD12 26.6 % 132 × 1164 × 1167 13 15

F1,carbon 23,1 % 168 × 1424 × 1425 0 0

F2,carbon 22,1 % 165 × 1421 × 1425 4 0

F3,carbon 23,1 % 165 × 1416 × 1428 0 0

CF1,carbon 25,6 % 171 × 1403 × 1415 1 5

CF2,carbon 22,3 % 161 × 1422 × 1421 4 0

CF3,carbon 22,8 % 165 × 1406 × 1415 0 0

C1,carbon 26,4 % 165 × 1409 × 1421 2 4

C2,carbon 23,1 % 155 × 1414 × 1421 0 4

C3,carbon 23,8 % 161 × 1406 × 1425 0 4

2. Resizing

All data used to train the CNN should be of the same shape so that one
input size of the network can be established. Furthermore, reshaping all
arrays into cubes adds an additional possible axis to rotate the data by
without changing its shape. That allows for an additional augmentation
step and thus doubles the amount of input data after augmentation.
To reshape the cuboid scans into cubes, the transform()-method from the
scikit-image library was used. The target size of the cubes was constrained
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by the computing power available at the bwHPC cluster. Iterative trials
showed that it was capable of executing the script stably up to a cube size
of 100 × 100 × 100 voxels, which was thus selected as array dimension.

3. Augmentation

Neural networks require extensive amounts of data to improve their
training process. Since only a small amount of scans are available (14),
multiple stages of 3D-image augmentations were used to enlarge the input
data set.

In the first step, every scan was rotated by 90◦ and added to the data
set with the same FVC as its original. Since the cuboid shape of the
transformed data allows for rotation about three independent axes, the
process was repeated for the remaining two orthogonal axes. Solely
rotating by multiples of 90◦ ensures that no data is lost at the edges by
leaving the scope of the arrays. Furthermore, it is computationally much
more efficient than a rotation by a random angle since only the array
indexes need to be interchanged.

After multiplying the data set by a factor of 4 by adding rotations of the
original scans, all scans are then flipped in a second step. Similarly to the
first step, copies of the original scans are mirrored at one plane and then
added to the data set with the same FVC as their originals. The process
is repeated for the two remaining normal planes, further multiplying the
data set by a factor of 8.

Overall, by combining three rotations and three mirroring steps, the
amount of input data can be multiplied by a factor of (1 + nrotations) ·
2nreflections = (1 + 3) · 23 = 32. Therefore, the 14 original scans mul-
tiply to a data set of 448 samples. More combinations are possible but
they lead to exact duplicates of arrays which can be obtained using the
method above, i.e. two consecutive 90◦ rotations about one axis equal
two reflections about two different planes.
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4. Split

Before being fed into the neural network, the data, consisting of CT
scan arrays coupled with their respective, experimentally (destructively)
observed FVC values, are split into a training and a validation set. The
larger training set is used for the initial tuning of the network’s parameters
similar to [289].

In between each training epoch, the validation set is used to verify the
model’s performance on unseen data, which prevents overfitting and
allows for an estimation of the model’s ability to generalize beyond the
training set. More details on the training process are discussed in the
Network training process paragraph below.

Network architecture 5 A special characteristic of the network imple-
mented in this work is the direct input of a 3D scan along with a singular scalar
value representing its corresponding FVC making it a mixed network. However,
the output of the network is only the predicted FVC as a singular value between
0 and 1 for a given scan.

For image processing tasks, the conventional type of neural network is a CNN.

The model architecture in this work consists of several layers of convolutions,
pooling, dense, and dropout layers. Overall, the neural network can be divided
into two stages: The feature extraction stage, where the convolution is happening
and the subsequent feature processing stage, where the extracted features are
mapped to a corresponding output.

The input layer takes in a 3D tensor of depth, width, and height, representing
the CT-scan data, as a single channel since the CT-scans are in gray scale.
Furthermore, the single scalar value for the FVC is passed along.

5 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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The subsequent convolutional layer that extracts features from the input data
is followed by a max-pooling layer that downsamples the output of the convo-
lutional layers to reduce the dimensionality of the data and capture the most
important features. In this case, a 2 × 2 × 2 max-pooling layer follows the
convolution, where out of the 23 = 8 voxels only the largest value is passed
on to the next layer. This way, an 87.5% reduction of data is achieved without
a major loss of relevant information since for feature extraction, the precise
location of certain features is less relevant. Furthermore, the strongest features
are enhanced more as only the highest value inside the kernel area is passed on.

After the convolutional and max-pooling layers, the output is passed through
several dense layers with ReLU activation function. In the case of this study,
where FVC percentages are evaluated, any negative values are implausible and
get filtered out automatically this way. These layers enable the model to learn
complex relationships between the input and output. Dropout layers are added
after each dense layer to prevent overfitting.

The further one advances into the network during the analysis, the less relevant
spacial information becomes, since the ultimate objective is to compute a single
scalar, that describes the entirety of a scan. A Global Average Pooling Layer
transforms the 3D output of the dense layers into a single-row vector. Its
dimensionality corresponds to the amount of feature maps which the feature
extraction stage feeds forward. This technique and the choice of Global Average
vs. Global Max Pooling was inspired by Zunair et al. [290] and improved the
performance of the CNN.

Finally, the output layer is a dense layer with a sigmoid activation function. Its
output represents the predicted FVC of the CT scan.

The final network architecture can be seen in Figure 3.17. The parameters that
define the shape of all layers used were determined using parameter sweeps,
which are discussed in the Network optimization paragraph below. The graphic
was made with the help of the latex code published in [291].
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Figure 3.17: Final architecture of the CNN. Extracted from Blarr et al. [188] and based on [291].

Network training process 6 The CNN described so far is initialized with
random weights in all of its layers. Therefore, the initial predictions for the
scans of the training set will also be random and are unlikely to show any causal
relation to their actual FVC values. In order to tune the weights in a way that
enables the network to make reasonable predictions, a training algorithm is
used. The training can be divided into two main steps: model compilation and
model fitting. During the model compilation step, the configuration parameters
are set up. The chosen loss function for this task is Binary Cross Entropy (BCE).
The BCE loss, also referred to as log loss or negative log probability, is defined
as follows

l (y, ŷ) = −
(
y log (ŷ) + (1− y) log (1− ŷ)

)
, (3.7)

with y being the true term (0 or 1) and ŷ being the predicted probability (between
0 and 1) [292, 293]. In the perfect case of the model exactly predicting 0 or 1
correctly, the loss amounts to zero. However, in this work the true term y is not
only zero or one, but a continuous value in between. While this is not what the
BCE loss was originally intended for, it worked better than other popular loss

6 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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functions that are not intended for binary input (and output) such as the mean
square error (MSE) or mean absolute error (MAE) or regular cross entropy.
Literature also suggests that it works in practice [294, 295], so the BCE loss
was used in this work. It shall be noted that BCE is asymmetric in the case
of the ground truth not being a binary value and the minimum loss is not zero
anymore. As an example for y = 0.24, which is roughly the average FVC in
this case, the minimum loss for ŷ = y = 0.24 amounts to 0.5511 (cf. Figure
3.18). This will be relevant when judging the loss plot in the Results (cf. Section
4.3.3).

Figure 3.18: Course of the BCE loss over prediction values ŷ between 0 and 1 for a true value of
y = 0.24. Extracted from Blarr et al. [188].

The optimizer selected for this task is ADAM. It is an adaptive learning rate op-
timization algorithm that adjusts the learning rate dynamically during training,
which helps to converge to an optimal solution faster. Because of its computa-
tional efficiency and little memory requirement [201], it is a popular choice for
training deep neural networks due to its efficiency and effectiveness in updating
the parameters of the model. Additionally, the mean squared error (MSE) is
used as a metric to evaluate the performance of the model during training. It
measures the average squared difference between the predicted and true values.
Therefore, it provides insight into the overall accuracy of the predictions of the
model along the training process.
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After model compilation, the model is fitted to the training data using the
model.fit() function from Tensorflow. This method implements the general
process of machine learning using the parameters set in the compilation process:
Using the weights provided at that stage in the network, all training scans are
passed through the network. The resulting scalars (the predictions) are compared
to the actual FVC values of the respective specimens. The loss function, which
was specified earlier, takes both the prediction and the real value as its arguments
and computes a loss score. Subsequently, the selected optimizer adjusts the
weight in the layers according to the performance of the score, before the entire
process is repeated by the set amount of epochs specified in the beginning.
Figure 2.19 describes this process visually.

Alongside the training set, the validation set is being evaluated with the same
model and loss function simultaneously. Finally, a loss plot, which can be
seen in Figure 4.13, is generated using the training and validation loss values.
The plot shows both as a function of the number of epochs. This visualization
helps to monitor the convergence and performance of the model during training,
where a decreasing loss indicates that the model is learning and improving over
time.

Furthermore, this method also takes over the task of shuffling the input data
and splitting it into training and validation sets, for which a ratio of 2/3 to 1/3
was set. The number of training epochs is set to 40, indicating the number of
times the entire training data set is passed through the model during training.
Once the model is trained, it is used to predict the fiber volume content for the
test data. The deviation between the predicted values and the true labels is then
plotted, as visible in Figure 4.14.

Network optimization 7 The CNN requires a lot of parameters to be de-
fined. It was started with values provided in similar literature [187, 289], which
were adapted to the problem at hand. Most parameters were defined by so-called

7 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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parameter sweeps. Instead of single values, the parameters were provided with a
list of values, which were looped through. By changing two parameter values at
once, one can find the combination with the best performance. As an example,
the amount of filters in a 3D convolutional layer is selectable in Keras. The
best amount of connected dense-dropout layers was also unclear. Hence, lists
for the amount of filters in the convolutional layer nfilters = {2, 4, 8, 16, 32}
as exponential values to the basis 2 in order to cover a greater field and a list
for the amount of dense-dropout layers ndd−layers = {1, 2, 3, 4, 5} was given
to the network instead of singular values of these parameters. These lists are
then iterated through and training is carried out for each combination, i.e. each
new network. The standard average deviation for the results of each network is
finally compared and the combination of parameters that leads to the best FVC
prediction is used.

A similar procedure was followed for the parameters of the dropout rate in the
dropout layer, the pool size in the max-pooling layer and the kernel size in the
convolutional layer. Analogously, multiple initial learning rates, loss functions
and optimizers were tested until the author arrived at the presented architecture
in Figure 3.17.

3.5 Determination of fiber length distributions

In the following, it is explained how the fiber length distribution of individual
samples was determined experimentally.

Experimental method

Owing to the process-related stochastic scattering of the fiber lengths, a de-
termination of the fiber length distribution is of particular interest in the case
of LFT materials. As it was impossible to separate individual fibers in the CT
images of the CF-PA6 scans, only an experimental determination was carried
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out at the FIBRE. This fiber length analysis is conducted after the resolution of
the surrounding matrix.

As the dispersion of the resulting fibers was not ensured adequately for the
pyrolysis results, only the FLD of the specimens investigated through chemical
dissolution of Plate 2 are taken into account here.

Therefore, distilled water and detergent are added to the carbon fibers obtained
by acid-based dissolution in a sample vessel. They are then evenly distributed
throughout the sample vessel without breaking them. After placing a cover
slip on it, it was placed in the so-called "FiVer" scanner (cf. Section 2.2.2.1).
Several scans of the fibers in the liquid are then performed. These images are
loaded into the "FibreShape" software, which performs the analysis of the fiber
lengths. The .csv-files obtained after completion were visualized by the authors
in the Results in Section 4.4. These investigations were also done at FIBRE
(Bremen).

3.6 Determination of fiber orientation tensors

In order to determine fiber orientation tensors, the specimens cut out of
plates/parts through waterjet cutting, were installed on the rotary table of
the CT device. After adjusting the specific scan parameters, the CT scan takes
place. The resulting 2D projections were reconstructed with the Feldkamp
cone-beam algorithm [154] in VG Studio Max in the Versions 3.3.2, 3.4.2 and
2023.2.1. After loading the reconstructed version in the same software, the reg-
istration of the object, hence the alignment of the (often straight) object borders
with the coordinate system of the viewpoint is performed. In the case of multiple
specimens in one scan, this was repeated for each separate object. These were
then cut out as a ROI and exported separately as .raw-files. Along with respec-
tive sizes of dimensions, these can be loaded in the software FIJI/ImageJ, where
an adjustment of brightness takes place and subsequently an approximate gray
value threshold differentiating between fiber and matrix is determined. While
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there are pre-implemented automatic thresholds available in ImageJ (Otsu,
Mean, Moments, Median, etc.), sometimes the manual determination of the
threshold made more sense in the sensitive case of CFRP. The resulting stacks
of 2D images are saved as .mhd-files which allow for further processing without
additional information. This is followed by the actual orientation determination.
The C++ code by Bertram and Pinter, which was published in Composight
[79], is used for this evaluation. Its basic functionality based on the structure
tensor was explained in the State of the Art in Section 2.2.3.2. In practice, the
executable (.exe-) version of the code was used, which was accessed via console.
Apart from the .mhd image file and the threshold value determined before, the
width σ of the Gaussian blur applied in combination with the derivative and
the second blurring parameter ρ, also referred to as the mask size, have to be
specified. σ was usually chosen to 0.2, whereas ρ was typically eight or smaller,
but always larger than σ. After running, a vector-valued image as another .mhd
file with three channels is output storing the information of orientation in each
coordinate direction. This .mhd-file is finally read into MATLAB R2020b as
a fourdimensional matrix with the mha_read_volume function available on
Mathworks File Exchange in the Read Medical Data 3D toolkit by Dirk-Jan
Kroon from 2010 [296]. In MATLAB, the orientation tensors of second- and
fourth-order are determined along with many other evaluations, which will be
explained in the following and of which the results will be shown in Section
4.5. The entire procedure is summarized in the flowchart in Figure 3.19.

FOT calculation

After importing the vector-valued image (.mhd file resulting from the C++ code
by Bertram and Pinter [79] in Figure 3.19), the following procedure to calculate
the FOT implemented by Schöttl [25] was used. The components of the voxels
can be accessed as follows:

image(c, x, y, z),
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Specimens Extracted through
waterjet cutting

CT scan

Projections

Reconstruction

Registration and ROI

Processing in VG Studio Max

.raw file

Adjustment of brightness

Fiber threshold determination

Processing in FIJI/ImageJ

.mhd file, σ, mask size ρ, fiber threshold

.exe of C++ orientation code Composight by Bertram and Pinter [79]

Vector-valued .mhd file (FO vectors)

MATLAB for FOT determination
+ other kinds of evaluations

Figure 3.19: Flowchart of the typical procedure for determining the fiber orientation tensors.

with c being the component of the orientation vector at the position x, y,
z. Hence, the orientation tensor of second-order can be determined using the
sum function and element-by-element multiplication (using the .* Operator in
MATLAB) of two channels of the image over all voxels. As an example, to
calculate the A11 component, the multiplication of the voxel values of the first
channel with itself is needed, for A12 the first and second channel are used,
etc.):
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OT2(n)=sum(sum(sum(image(i,:,:,:).*image(j,:,:,:)))).

Of the nine components, only six are calculated due to the tensor symmetries
and saved in the following order:

[A_11 A_12 A_13 A_22 A_23 A_33].

In order to guarantee the trace condition (cf. Equation (3.15)), the FOT is
normalized as such:

OT2=OT2/(sum([OT2(1) OT2(4) OT2(6)])).

The FOT of fourth-order is calculated analogously and saved in the following
order:

A_3333 A_3332 A_3322 A_3222 A_2222 A_3331 A_3321 A_3221
A_2221 A_3311 A_3211 A_2211 A_3111 A_2111 A_1111. [52]

Visualization via pseudo color image

In order to visualize the planar orientation of the fibers in the slices, the fibers
are colored according to their angle resulting in a pseudo color image. This
procedure was implemented by Schöttl as well [25]. Therefore, the angle
between the x-axis and the voxel vector is calculated through the arctangent as

phi(:,:,:) = atan(img(2,:,:,:)./img(1,:,:,:)) + pi/2.

This angle becomes the H value in the HSV (hue, saturation, and value) color
space, which is illustrated below (Figure 3.20).

The further S and V values are both set to one, implying full saturation and
brightness. The colored slices are finally saved as .tiff-stack. [25] This kind of
visualization is especially helpful to detect flaws in the angle determination.
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Figure 3.20: Visualization of the HSV color space with respect to the fiber orientation symmetry
(p=̂− p). Extracted from [274].

Further depictions of orientation information

In order to judge the behavior of the orientation across the thickness of the
specimens (respectively the plates) and not only obtain one single tensor per
specimen, the determined main components, A11, A22 and A33, were plotted
for each slice progressively. This allows for process-related conclusions.

Furthermore, while the FOT were used in the Mori-Tanaka homogenization, a
distribution of angle occurrences was required for Halpin-Tsai. The occuring
angles are partitioned into ncenters = 20 centers with an interval arc length of
ni ∈ [i · π/20, (i+ 1) · π/20) with i = {x ∈ N0 : x < 20}. It is subsequently
counted how often angles fitting in each specific angle group appear in the
specimen in order to obtain a discrete fiber orientation histogram.

Challenges for CFRP and hybrid reinforced material

While the orientation determination worked without problems for GFRP, the
CF-PA6 CT scans showed much more salt and pepper noise, which led to
some orientation recognition inconsistencies that were conspicuous in the HSV
images. Hence, compared to the description of Pinter et al. [52] an additional
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median filter with a kernel size of 10 was applied to the images of the carbon
fiber reinforced specimens only.

A further challenge was the orientation determination for hybrid GF-CF rein-
forced material as the thresholding is more difficult for four different constituents
in the CT scan (air, polymer, GF, CF). Therefore, a multiple thresholding proce-
dure was used in order to separate the different fiber types. The glass fibers were
thresholded first as they have better contrast towards the matrix. After the re-
sulting image stack was subtracted from the original one, the air is thresholded.
Subsequently, the resulting image stack is again subtracted from the original
stack. Air then appears completely black and the glass fibers completely white.
Afterwards, a twofold limited threshold was applied, cutting off air (black),
glass (white) and matrix, which has the closest gray value to the carbon fiber
one. Finally, the original image stack was fed to the C++ code with the glass
fiber threshold evaluating the glass fiber FOT. The final stack following the
procedure just described was subsequently given to the C++ code along with
the carbon fiber threshold to acquire the carbon fiber FOT.

3.7 Interpolation of fiber orientation tensors

The motivation to find a tensor interpolation method suitable for the interpolation
of fiber orientation tensors was already given in Section 2.2.3.3. In the following
sections, three methods, that were implemented and evaluated in this thesis,
to obtain full-field FOT information, are explained. The sections are extracted
from the author’s publication [17].
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3.7.1 General notes on the interpolation methods 8

In general, all interpolation methods were mainly implemented in Python 3.8.

SPD tensors can be visualized as tensor glyphs [116, 117]. This method will
be used in this work as it constitutes a descriptive and interpretable way of
assessing the success of the different implemented interpolation methods. The
visualization was implemented in Matlab R2020b with the help of the “plotDTI”
function of the fanDTasia ToolBox by Barmpoutis et al. [118].

The overall idea of all three implemented interpolation methods is to get
FOT values for the 160 positions in the plate that are missing, from cal-
culations with the measured nine FOT at the given grid positions. De-
termining values between a set of measured values, here the set Tm =

{UL, UM, UR, ML, MM, MR, LL, LM, LR} (respectively denoting “Up-
per Left", "Upper Middle", "Upper Right", "Middle Left", . . . , "Lower Left",
etc.) of measured FOT computationally, based on the set of measured values,
describes a classical interpolation problem. An interpolation scheme ϕ̄ is de-
fined as a mapping f , which connects its arguments, on the one hand a set
of N ≥ 1 discrete values ϕi and on the other hand their associated weights
wi ∈ [0; 1]:

ϕ̄ = f(ϕi, wi). (3.8)

As a weight function, multiple options are conceivable with the possibly simplest
being Shepard’s inverse distance weighting (IDW) [297]

wi(x) =
1

d(x,xi)p
, (3.9)

8 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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as an explicit approach with x denoting an arbitrary point that shall be inter-
polated, xi being a known interpolating point and d being the given distance
from the known point xi to the unknown point x. p is a positive real number,
called the "power parameter". Weight decreases as distance increases from the
interpolated points. Greater values of p assign greater influence to values closest
to the interpolated point, which results in nearly constant interpolated values for
large values of p.

3.7.2 Component averaging 9

Recalling the definition of second-order orientation tensors as described by
Kanatani [89] as well as Advani and Tucker [43],

A =

∫
S
Ψ(p)p⊗ p dp, (3.10)

with S being the unit sphere and dp the surface element on it, as well as p

being the unit vector for the direction of the fibers, it appears that A is linear
in Ψ(p). Assuming the surface can be divided into two equally sized areas
S1 and S2 with two distribution functions Ψ1(p) and Ψ2(p) and Ψi(n) =
1
2 (Ψ1(n) + Ψ2(n)) holds, this means that Ai = 1

2 (A1 + A2) is exact, as
integration is a linear functional and as an integral domain can always be
divided into sub-intervals. This further implies that a direct averaging of the
orientation function is equivalent to an averaging of the components of the
orientation tensors. Thus, the algorithm multiplies the components of each
measured FOT by a weight that depends on its distance from the tensor being
calculated. As mentioned before, Shepard’s inverse distance weighting method
[297] is used as weight function in all three methods with p = 2:

9 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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wi =
1

∥xi − x∥p
1∑

j ∥xj − x∥−p
. (3.11)

Compared to Equation (3.9), Equation (3.11) features a necessary normalization
factor.

3.7.3 Decomposition method 10

The method, which uses spectral decomposition of tensors, is shown schemati-
cally in Figure 3.21 and is described in the following.

FOTTm = {UL,UM ,UR,ML,MM ,MR,LL,LM ,LR}

Spectral decomposition
(eigenvalue problem)A = RΛRT = R ⋆Λ

Orientation interpolation
Quaternion

q = a+ bi+ cj + dk
q = cos θ

2
+ (uxi+ uyj + uzk) sin

θ
2

Shape interpolation

Orthogonal invariants
K1 = tr(A),

R2 =
√

3
2

|A′|
|A| and

R3 = 3
√
6

det(A′)
|A′|

Individual weighting
Shepard’s inverse distance

wi =
1

∥xi−x∥p
1∑

j ∥xj−x∥−p

with p = 2 and
∑

i wi = 1

Back to eigenvectors,
respectively R

Back to eigenvalues,
respectively Λ

Figure 3.21: Overview of the concept of the implemented decomposition method. Based on the
graphic in the author’s publication [17].

For the chosen decomposition approach, the shape and orientation of the tensors
are to be interpolated separately. Therefore, the well-known spectral decompo-
sition resulting from the eigenvalue problem is used:

A = RΛRT = R ⋆Λ. (3.12)

10 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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3.7 Interpolation of fiber orientation tensors

Λ denotes the tensor containing the eigenvalues on the principal diagonal and
R is defined as the orthogonal rotation matrix consisting of the normalized
eigenvectors.

Orientation The rotation matrix R can be interpreted as a rotation around a
rotation axis and can therefore be transformed into a quaternion as described in
the State of the Art:

q = a+ bi+ cj + dk,

q = cos
θ

2
+ (uxi+ uyj + uzk) sin

θ

2
,

with rotation axis: u = (ux, uy, uz)
T and rotation angle θ.

The quaternion is calculated from the given rotation matrix R via:

t = tr(R), r =
√
1 + t and a =

r

2
with

b = sgn(Rzy −Ryz)

∣∣∣∣12√1 +Rxx−Ryy −Rzz

∣∣∣∣,
c = sgn(Rxz −Rzx)

∣∣∣∣12√1−Rxx+Ryy −Rzz

∣∣∣∣,
d = sgn(Ryx−Rxy)

∣∣∣∣12√1−Rxx−Ryy +Rzz

∣∣∣∣.
This is followed by the actual interpolation: qges =

∑
i wiqi with weights:∑

i wi = 1 and the retransformation of qges in R:
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R =


a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)

2(bc+ ad) a2 − b2 + c2 − d2 2(cd− ab)

2(bd− ac) 2(cd+ ab) a2 − b2 − c2 + d2

 . (3.13)

Shape For the interpolation of the shape, three linear independent invariants
are formed of each tensor and interpolated separately. Of the already mentioned
K- and R-invariants [124] K1, R2, and R3 will be used (comparable to [123]):

K1 = tr(A), R2 =

√
3

2

∣∣A′
∣∣∣∣A∣∣ and R3 = 3

√
6
det(A′)∣∣A′

∣∣ . (3.14)

A’ is the deviatoric part of A.

Even though K1 and R2 are not orthogonal [124], the use of K1 can be justified
by ensuring that the trace of the orientation tensor is one. It is not necessarily
essential to have orthogonal invariants for this specific case of application.

The invariants are then interpolated individually: K1,ges =
∑

i wiK1i,R2,ges =∑
i wiR2i and R3,ges =

∑
i wiR3i. The weights stay the same:

∑
i wi = 1.

From the interpolated invariants, the following formula was used to calculate
the associated eigenvalues (cf. [123]):

For i = 1, 2, 3 holds: λi =
1

3
K1 +

2K1R2

3
√
3− 2R2

2

cos

(
cos−1(R3) + Pi

3

)
,

with Pi = 0, 2π,−2π

With these eigenvalues, Λ can then be created again.
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3.7 Interpolation of fiber orientation tensors

3.7.4 Artificial neural network11

The artificial neural network used in this study is based on the idea and imple-
mentation of Sabiston et al. [133]. Just like for the other two methods, the goal
of the neural network is to determine a FOT for each specified point of the 160
missing positions within the plate. For the ANN, the nine x, y (and z) coordi-
nates of the given FOT were normalized (divided by 14 since there are 13 rows
and columns of FOT). These x̃, ỹ, and z̃ represent the input data. The output
data for the ANN are the respective components of the nine given orientation
tensors of second-order. Since these components are already between -1 and 1,
this data does not need to be normalized. The coordinates were read in as one
.csv file as input and the components separated by A11, A33, A12, A13 and A23

as five separate .csv files as output.

There are only five independent components instead of the usual six independent
ones for symmetric tensors, since orientation tensors are subject to an additional
condition that the trace of the tensor must add up to 1:

3∑
i=1

Aii = 1. (3.15)

Therefore, only A11 and A33 were fed into the network as output parameters
and A22 was determined via A22 = 1 − A11 − A33. The choice was made
explicitly, according to the findings of Sabiston et al. [133], to use only one
in-plane coordinate and the through-thickness coordinate (A22 and A33 would
have worked analogously as well) in order to reduce the error and to satisfy
equation (3.15). This is due to the two in-plane coordinates being significantly
larger than the through-thickness coordinate, which in turn meant that A11 and
A22 alone could get above 1 if they were both predicted.

11 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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The ANN consists of an input layer, where the normalized input coordinates of
the i = 9 different points are given and two hidden layers with n = 48 neurons.
The output of the first hidden layer is the input for the second hidden layer.
In the output layer the five independent tensor components A11, A33, A12, A13

and A23 are predicted for the given i = 9 points. The structure of the ANN can
be seen in Figure 3.22.

...
...

x̃i, ỹi, z̃i

n1

n2

nn

n1

n2

nn

A11,i

A33,i

A12,i

A13,i

A23,i

Input
layer

First hidden
layer

Second hidden
layer

Output
layer

Figure 3.22: Schematic concept of the ANN used for FOT interpolation. Extracted from Blarr et
al. [17]).

The optimizer used is SGD which is an iterative method for optimizing an
objective function Q(w) with suitable smoothness properties. Thereby, after
choosing an initial vector of parameters w and a learning rate rl, two steps are
repeated until an approximate minimum is obtained: The samples in the training
set are randomly shuffled andw := w−rl∇Qi(w) is set for i = 1, 2, ..., n (with
Qi being the summand function typically associated with the i-th observation
in the data set (used for training)).
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3.7 Interpolation of fiber orientation tensors

The loss function chosen is the MAE, which is defined as follows:

MAE =
1

n

n∑
i=1

=

∣∣∣∣Ajk(i) − Âjk(i)

∣∣∣∣, (3.16)

with n being the number of samples, Ajk(i) being the value of the orientation
tensor component at the sample location and Âjk(i) being the predicted value of
the orientation tensor component at that sample location. MAE was preferred as
error metric over percentage error since many values (especially the off-axis and
A33 components) are close to zero. Therefore percentage errors tend to become
quite large. Additionally, outliers seem to be filtered out better by using MAE
than by a quadratic error metric like root mean squared error which is more
likely to result in overfitting and being biased towards outliers respectively.
Additionally, a soft sign activation function is used in the model as it is able
to calculate negative numbers and behaves differently in terms of saturation
(compared to, e.g., the hyperbolic tangent) because of its smoother asymptotes
(polynomial instead of exponential) [298]. However, this of course impacts the
amount of epochs required for training as it does not saturate as quickly. The
soft sign activation function is given as

o =
i

1 + |i| , (3.17)

where i is the input to the function and o is the output of the function. Further-
more, a bias was placed on the loss weights (w) of the outputs of the ANN in
order to give more weight to the in-plane orientations. The biases are 0.4 for
A11, and 0.15 for all four other components, adding up to 1. The classical data
validation split of 25% is used in the study. The high amount of 100,000 epochs,
i.e., times the neural network iteratively trains the weights for each neuron to
optimize the outputs from the given input steps, was chosen. While increasing
the epochs normally reduces the error, it can also evoke overtraining and leads
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to longer calculation times. All chosen parameters of the ANN are summarized
in Table 3.3.

Table 3.3: Parameters of the neural network for the FOT interpolation. Extracted from Blarr et al.
[17]).

Parameter Value

Software Keras 2.4.3 in Python 3.8.5

Optimizer SGD

Loss function MAE

Layers 2 hidden (plus 1 input

and 1 output layer)

Neurons per layer 48

Training data 75 %

Validation set 25 %

Epochs 100,000

Once the model is trained, a .csv-file with all 160 normalized coordinates - apart
from the nine the network was trained with - is given to the trained ANN, to
predict the components of the missing FOT.

3.7.5 Simplified decomposition method for tensors of
fourth-order

In order to subsequently test the quality of the fiber orientation tensor interpo-
lation, the use of an averaged (from all measured and interpolated ones) fiber
orientation tensor in Mori-Tanaka and of an averaged (again from all mea-
sured and interpolated ones) angular distribution in Halpin Tsai was planned.
This provides stiffnesses for given angles, which can then be compared with
experimental results. However, Mori-Tanaka requires a fourth-order fiber ori-
entation tensor. The interpolation method for tensors of second-order could
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have been used notwithstanding, and the final averaged tensor could have been
converted into a fourth-order tensor by a closure approximation. Nevertheless,
closures introduce a non-negligible inaccuracy into the method. Consequently,
a direct interpolation of fourth-order tensors was developed instead. As the
decomposition method proved to be particularly useful, this idea was also used
for the interpolation of fourth-order tensors. However, a simplification was
chosen in this case. The transformation to quaternions and orthogonal invari-
ants was not considered as the transformation is not straightforward. Hence,
the rotation matrix and the eigenvalues of the tensors of fourth-order are used
directly. Therefore, the tensors were read into Python in Mandel notation and
subsequently decomposed into eigenvalues (6 × 1) and the rotation matrix (6
× 6) using NumPy’s linalg library [277]. Subsequently, the eigenvalues were
sorted by magnitude. The fact that portraying a 3D tensor in 2D using Mandel
notation and thus receiving a 6 × 6 matrix, allowed the author to apply the
spectral decomposition. Afterwards, the distance-dependent weights applied
to each measured tensor for each tensor position to be determined were also
calculated with Shepard’s inverse distance weighting [297] as explained before.
Reassembling the newly weighted rotation matrix and eigenvalues leads to a
then interpolated tensor for a specific point.

3.8 Microstructure generation through
generative adversarial network

The methodology of image generation by the DCGAN is explained below.
The computational resources and software are discussed first, followed by the
preparation of the input data and the network architecture, and then various
quantitative evaluation methods of the network and the generated images. Parts
of this have already been published in a paper [275] and are marked accordingly.
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3.8.1 Computational resources and software

As the generator and discriminator can consist of several million trainable
parameters each, a high amount of computational power was inevitable. The
training of the GAN was therefore performed on the Baden-Württemberg High
Performance Computing (bwHPC) resources and in particular on the GPU x4
partition of bwUniCluster 2.0. Its hardware and architecture is shown in Table
3.4 below.

Table 3.4: Specification of the GPU x4 partition compute nodes on bwUniCluster 2.0. Based on
[299].

GPU x4 partition resources

Processors Intel Xeon Gold 6230

Number of sockets 2

Processor frequency 2.1 GHz

Total number of cores 40

Main memory 384 GB

Accelerators 4x NVIDIA Tesla V100

Accelerator memory 32 GB

Interconnect IB HDR

While the CNN in Section 3.4.2.3 was solely trained via the Jupyter web access
(JupyterLab 3.6.2), this approach was only used for the GAN for less computa-
tionally expensive jobs as only a limited amount of resources is available in this
case. For all jobs requiring either high random-access memory (RAM), multi
graphics processing unit (GPU) usage (NVIDIA CUDA) or a longer computing
time, direct remote access through the command prompt with the standard
Secure Shell protocol (SSH) was used to access the bwUniCluster 2.0.

The entire code is written in Python using both native Python files (.py) and
Jupyter notebooks (.ipynb). The FIJI application of ImageJ2 was helpful for
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image visualization [300]. The following Python libraries and modules have
been made use of in a virtual environment:

• PyTorch 1.10.1 and the Torchvision 0.11.2 library [301, 302]

• Numpy 1.19.5 [277]

• The OpenCV cv2 4.7.0.72 library for image editing [278]

• Matplotlib 3.3.4 for creating plots [279]

• TorchMetrics 0.8.2 for evaluating the image quality [303]

• Torchinfo 1.5.4 for structure information about the models [304]

• IPython 7.16.3 for live progress in Jupyter notebooks [305]

• tqdm 4.64.1 to show progress bars [306]

• Mahotas 1.4.13 to calculate Haralick features [307]

• SimpleITK 2.2.1 for image editing [284]

The Jupyter web access ran with Python 3.9.7, whereas the older Python 3.6.8
was installed on the cluster itself requiring some modifications when switching.

3.8.2 Image pre-processing

The scans of the nine specimens of Plate 3 were used along with the scans of nine
specimens at identical positions of another CF-PA6 plate. The only difference
of the latter, which is not pictured or numbered in Section 3.1.6 and Figure
3.4, was the insertion of the plastificate rotated through 180° to find possible
changes in the fiber orientation drift. However, the overall fiber orientation and
material behavior is identical. In addition, very similar scan parameters were
used. The further processing of these 18 raw images is summarized in Figure
3.23 and will be described shortly in the following paragraphs.
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Raw 3D images
(scan)

Drop first and
last layers

Image
smoothing

Cutout
square images

Downsizing to
desired resolution

Image augmentation
(rotation/mirroring)

Training
images

Figure 3.23: Schematic depiction of the image pre-processing procedure from CT scans to training
images.

3.8.2.1 Dropping border layers

The 18 3D scans have slightly varying width, height and layers (thickness) with
minimum values of width× height× layers = 1366× 1346× 155 voxel. They
are sliced in thickness direction to obtain 2D images with the largest dimensions
and most information per slice. For every of those raw images, the first and last
30 layers were dropped. They were especially prone to portraying artifacts or
air-rich areas (cf. Figure 3.24(a)). While these outer layers close to the specimen
surface also show below average fiber volume contents due to the manufacturing
process (cf. Figure 3.24(b)), varying FVC in the images was actually desired.
Variety in realistic (not artifact based) microstructure depictions allows for the
network to actually reproduce diverse output. Fortunately, even with the cut of
the first and last 30 layers, still enough variety of FVC was given both within
one scan and between the different scans.

3.8.2.2 Cutout images

In order to avoid dark border regions in the 2D images, specific cutout sections
were considered. To further increase the amount of training images from the
available scans, it was decided to use multiple cutout sections. Therefore, four
1,024 px × 1,024 px regions of interest were cut out of every of the remaining
layers, each with a given arbitrarily chosen offset of 128 px from the center in
x- and y-direction (cf. Figure 3.25). While it can be chosen arbitrarily as well,
the size of the cutout section had the advantage of being a multiple of the later
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(a) An examplary first layer with
surface roughness and air inclusions

(b) An exemplary ninth layer with
low FVC

Figure 3.24: Two exemplary outer layers of different scans showing air-rich areas and a patchy
surface (a) and a low FVC (b).

input size of 256 px × 256 px. Possibly less information is lost that way during
the downsizing operation.

3.8.2.3 Downsizing and image smoothing

Considering downsizing, a balance between computation time and sufficient
level of detail in both input and generated images was sought. After initially
setting a size of 128 px × 128 px, finally, a size of 256 px × 256 px was chosen.
The downsizing operation was performed with the recommended INTER_AREA
interpolation from cv2. While this higher resolution allowed for the recognition
of smaller fiber bundles and other details, it also conveyed a fair amount of
salt-and-pepper noise. In order to avoid the generator learning this noise as
desirable feature and applying it to the output images, the cutout images were
blurred using a median filter before resizing them to the desired input resolution.
A kernel size of 5 px× 5 px was chosen. Figure 3.26 exemplary shows an image
of a CT scan slice with (a) and without (b) median filter.

The blurring effect is visible but still most details are recognizable. In fact the
average signal-to-noise ratio (SNR) of all input images without median filter is
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Figure 3.25: Exemplary layer with center (green) and offset (yellow) by ± 128 px in x- and y-
direction cutout sections of 1.024 px × 1.024 px superimposed.

(a) (b)

Figure 3.26: An example image of a CT scan slice with (a) and without (b) median filter.
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with a value of 5.27 lower than the average SNR of all input images with median
filter of 5.90. The latter were hence used as input images for the training.

3.8.2.4 Image augmentation

As most neural networks, GANs require a large training data set to be able to
detect reoccurring image features. Figures of 105−106 images are suggested for
modern, high-resolution GANs [308]. The high number of images is particularly
relevant to reduce overfitting [309], which leads to the discriminator feedback
becoming meaningless for the generator and finally the training diverging
[308]. As reaching such a high amount of original training data is cumbersome
and at times impossible, image augmentation has developed as the default
solution to multiply the dataset [308, 309]. Augmentation refers to a deliberate,
slight change to existing training images in order to create new training images
that expand the original images within a meaningful scope to increase input
dataset variety and improve training. Augmentation strategies for gray value
images include but are not limited to rotation, flipping, translation, scaling and
modifications of brightness and contrast [308]. In the case of the GAN presented
in this thesis, every cutout image was rotated by 180° (corresponding to a point
reflection) and additionally mirrored both horizontally and vertically, which can
be seen in Figure 3.27.

A simultaneous mirroring at the horizontal and vertical axis was omitted due
to being a duplicate to the 180° rotation. Furthermore, rotations by ± 90°
were also left out to preserve the preferred fiber orientation resulting from the
compression molding material flow. After all cutting and augmentation steps,
this results in a total of 29,280 2D training images that are fed into the network
as input.
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Original

⟳

Original

Duplicate

(a) (b)

Figure 3.27: Visualization of the image augmentation through (a) rotation and (b) mirroring. The
arrows indicate the orientation of the images.

3.8.3 Network architecture 12

The code provided in the official PyTorch tutorial [310] served as a starting point
for the DCGAN structure and was gradually adjusted to work with the given
training data set. For larger image resolutions, the DCGAN structure by Milad
Hasani [311] was found to work well. Inspired by this, a network structure for
even larger resolutions was developed (cf. Figure 3.28). The generator takes
a Gaussian sampled noise vector with 100 entries and uses a combination of
transposed convolutional layers, batch normalization and ReLU activation to
output images with a resolution of 256 px × 256 px. Tanh was used as final
activation. In the discriminator, convolutional layers, batch normalization and
Leaky ReLU activations were used. The latter was replaced by a Sigmoid
activation in the final layer. The entire code can be found in the according
GitHub repository linked in Chapter 9.

12 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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Figure 3.28: Graphic of the final DCGAN network architecture. Designed with the help of the latex
code in the GitHub repository of Haris Iqbal [291]. Extracted from Blarr et al. [275].

In a first step, all images from the input data set are loaded as PyTorch tensors
(one 3D array per image of x value, y value and gray value) and normalized
to values in the range [−1, 1] to avoid coefficients equal to 0. The image
tensors are then shuffled and divided into individual batches. The last non-
full batch is dropped, i. e. the images are not used for training. Unlike in
the original DCGAN paper [250], no initial weights were defined as this was
found to increase the likelihood of a stable training process for this particular
configuration. The training loss is calculated with the ADAM optimizer based on
the commonly used BCE. Setting the ADAM optimizer parameters to (β1, β2) =
(0.5, 0.999) was found to improve the stability of training just as described by
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Radford et al. [250]. For multi-GPU parallelization and therefore a faster
training, NVIDIA CUDA with the "DataParallel" method of PyTorch is used
[310].

The actual training process follows this scheme: First, one batch of generated
images is created based on random noise vectors and associated with the corre-
sponding labels (0 for generated). These images are then fed to the discriminator
together with one batch containing only real images from the training data set
(labeled 1 for real). Based on the average of the calculated losses (following
Equation (2.123)) on both batches, the discriminator biases are updated. As a
next step, again Gaussian sampled random noise vectors are passed to the gen-
erator which outputs one batch of generated images. Based on the discriminator
feedback on these images, the generator is then updated. Every epoch consists
of multiple iterations and ends if the whole input data set was processed this
way. It shall be mentioned that the losses were saved after every single iteration,
whereas the Fréchet inception distance (FID) was only calculated after every
epoch in order to avoid slowing down the training too much. Additionally, after
every epoch a number of generated images based on fixed noise vectors was
saved in order to visually analyze the training progress later on. Due to the
computational effort needed, the image quality assessment was performed in a
subsequent step.

3.8.4 Quantitative quality metrics 13

Apart from the visual and hence qualitative evaluation of the generated images,
multiple quantitative measures have been developed in recent years in order to
assess the performance of a generative network [312]. Of those, the FID and
nearest neighbor evaluations based on two different metrics were conducted that
are outlined in the following.

13 This section is extracted from the author’s publication [275] with only slight linguistic changes.

170



3.8.4.1 Fréchet inception distance (FID) 14

The Fréchet inception distance [313], as an advancement of the inception
score [314], is a metric to determine the difference between feature vectors of
generated samples and real training images. It is based on the Inception v3
Network [315] that is pre-trained on the ImageNet [316]. The FID compares the
activations from the penultimate layer of the inception network of real pr(x)
and generated pg(x) images [317]. The distributions of these real and generated
images are thereby modeled as multi-dimensional Gaussians that are defined by
their mean µ and covariance cov(x, y). The distance is hence defined by

d2
(
(µr, covr)(µg, covg)

)
=

|µr − µg|2 + tr
(
covr + covg − 2(covrcovg)

1/2
)
.

(3.18)

Thus, a lower FID value corresponds to a smaller distance between the two
distributions of real and generated data. The FID values are dependent on
the corresponding resize or compression operations and can even improve for
higher compressed images (i.e. poorer resolution) [318]. The FID values must
therefore be regarded as a benchmark for the quality of images created using the
same network in different epochs and are of limited suitability for comparing
different networks. The FID was calculated of 128 generated images per epoch.

3.8.4.2 Nearest neighbor procedures 15

A question that arises quite naturally is whether a network reproduces only the
training data, which involves overfitting. To address this, a k-nearest neighbor
search is performed, which calculates the k nearest neighbors from the entire
training data set to a given generated image. This is equivalent to finding the

14 This section is extracted from the author’s publication [275] with only slight linguistic changes.
15 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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images in the training data set that have the smallest distance to the generated
image based on a suitable distance measure. In the following, we briefly intro-
duce the Euclidean distance and the computationally more expensive structural
similarity index measure (SSIM), as these serve as the basis of the k-nearest
neighbor search in the results of this paper.

• Euclidean distance (ED)
The Euclidean distance being one of the simplest ways to determine the
similarity between two arrays and the most common distance measure for
nearest neighbor search [319] can be calculated for two gray scale images
x = (x1, x2, ..., xMN ) and y = (y1, y2, ..., yMN ) of size M px×N px
as:

d2E(x,y) =
MN∑
k=1

(xk − yk)2 (3.19)

with the gray levels at the location (k, l) given as xkN+l and ykN+l.
The smaller the calculated value, the higher the similarity. As there are
major limitations like the non-consideration of spatial relationships, the
nearest neighbors found through the calculation of the ED sometimes
do not match human perception. Therefore, a second distance metric is
considered. The ED is still calculated due to its computational simplicity.

• Structural similarity index measure (SSIM)
Another option for the evaluation of nearest neighbors of GANs is the
SSIM [312] introduced by Wang et al. in 2005 [319]. It focuses especially
on factors that are also relevant to human perception through evaluating
luminance L, contrast C and structure S. Those three aspects are separately
mathematically defined through means µx and µy, standard deviations
σx and σy and cross-correlation coefficient σxy of the two images x and
y. The detailed formulas can be found in the paper by Wang et al. [319].
In order to avoid instabilities for small values, constants Ci are added.
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The product of these three quantities relatively weighted through three
power parameters α > 0, β > 0 and γ > 0 results in the SSIM(x,y).
Choosing α = β = γ = 1 and C3 = C2/2 leads to the following SSIM
formula:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (3.20)

The values range between (-1, 1] with a value of one corresponding to
optimal similarity, hence equality of the images. It shall be mentioned
that the SSIM is usually not calculated globally but instead inside of a
Gaussian window covering a local square patch which slides pixel by
pixel across the entire image. In the so-called mean-SSIM or MSSIM all
local values are summed up and divided by the total number of windows
m in order to obtain one single quality measure. Conventionally, the
MSSIM is often referred to as just the SSIM, which will be handled
similarly in this work.

3.8.5 Overview of all chosen parameters 16

All values of important parameters are summarized in the following list.

• Image resolution 256 px × 256 px

• Learning rate rl 0.0001

• ADAM optimizer (β1, β2) = (0.5, 0.999)

16 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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• Duration of training 75 epochs

• Number of input images
nscans × fcut × faugmentation = nfinal
1, 830× 4× 4 = 29, 280

• Images per batch 128

• Number of iterations per epoch (the last non-full batch is dropped)
29, 280/128 = 228.75.

Some of the parameters such as the learning rate were chosen by incrementally
increasing the learning rate in parameter sweeps and analyzing the respective
result.

174



4 Results

This chapter first addresses microstructure characteristics that were noticeable
in the CT scans. Then, in the same order as in the Methods chapter, the results of
the plastificate examinations, the fiber volume contents and the newly developed
methods for their evaluation and the fiber length distributions are presented.
This is followed by the results of the fiber orientation distributions, the fiber
orientation tensor interpolation and the image generation by the GAN.

4.1 Characteristics of microstructure

Looking at example images of scans in Figure 4.1, the significantly better image
quality for the glass fiber reinforced specimens is visible. Owing to their larger
diameter, even single fibers are recognizable in the matrix in Figure 4.1(b).
However, this visual perception is challenging to convert into a quantitative
metric. As an example: The signal-to-noise ratio of the example image in
Figure 4.1(b) is with 2.95 lower than for the carbon fiber reinforced specimen
in Figure 4.1(a) with 5.74. For this reason, different kinds of metrics were used
for the evaluation of the images in the image generation section of this thesis
(cf. Section 4.7).

Furthermore, there is a strong tendency towards fiber bundle formation, both in
the CF and GF reinforced material. A particular effect on the material properties
due to these quite large bundles is to be expected, as well as difficulties in
using known material modeling approaches for their prediction. It is especially
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(a) (b)

Figure 4.1: An image of a slice of the scan of specimen CF1,carbon of Plate 3 (CF-PA6) (a) and
of specimen CF1,glass of Plate 4 (GF-PA6) (b).

interesting that these fiber bundles often include unimpregnated areas, as can be
seen in Figure 4.2.

Figure 4.2: Example of an unimpregnated fiber bundle (blackish area in whitish fiber bundle area
in the upper left corner) of specimen F3,carbon of Plate 3 (CF-PA6).

These matrix-free areas or at least areas with poor fiber-matrix bonding are
often the starting point for failure of the sample in tests, e.g., tensile tests, with
matrix-fiber bonding strength being one of the two major critical failure modes
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of DicoFRP (together with fiber breakage) [5]. It can also be assumed that they
have an influence on the modulus of elasticity even in the linear-elastic range.

Further microstructure characteristics associated with specific microstructure
quantities like FVC of FOD will be discussed in the respective sections on those
quantities (cf. Section 4.3 and Section 4.5).

4.2 Plastificate investigations

In order to enhance the understanding of the process and the modeling thereof,
scans of the plastificates, as the basis of the later plates, were conducted. The
material orientation in two planes was investigated as well as the porosity of the
initial charges.

As can be seen in Figure 4.3, the material constituents influence the shape,
porosity and behavior of the plastificate.

(a) (b) (c)

Figure 4.3: Sections of a scan of a CF-PA6 (a), a GF-PA6 (b) and a GF-PC (c) plastificate for
comparison.
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While the combination of PA6 and CF (a) shows many air inclusions in the
interior, the GF-PA6 (b) appears to have a somewhat protruding, loose surface
layer. If, on the other hand, a different matrix material, polycarbonate, is
selected, the plastificate (c) appears much more compact overall. A less compact
plastificate shape, as occurs with the material used in this work, could also
complicate the assessment of the influence on the finished plate.

As expected, it is not possible to differentiate between fiber and matrix in the
first case, but this also appeared to be difficult with the glass fibers, which is why
the orientation must be regarded as material orientation and not fiber orientation
in the following. This is based on the reasonable consideration that the fibers
align themselves along the matrix material, which has already been described in
the Methods (cf. Section 3.3).

4.2.1 Initial orientation

With y being the extrusion direction, the orientation in the x-z plane was first
of interest. In the 3D CT image, a quarter of the plastificate was therefore seg-
mented into 15 cubes with dimensions of 10 mm × 10 mm × 10 mm (repeated
at different y-positions). Evaluating the orientation with the structure tensor
approach and plotting the resulting orientation tensors as glyphs, led to the result
in Figure 4.4. The results of the quarter was mirrored vertically, horizontally
and both vertically and horizontally at the same time to cover the remaining
three quarters with the tensor glyphs as well assuming symmetric behavior. This
assumption was made based on own observations and literature [320–322].

It is visible that the tensors in the corner are rather oriented in extrusion direction.
In general, the tensors tend to get more isotropic towards the middle of the
plastificate. Other than that, the two swirls of the twin screw extruder that are
visible in the CT scan are reproduced by the glyphs quite well. Zooming in on
this swirl area in Figure 4.5 shows that in more detail.

178



4.2 Plastificate investigations

Figure 4.4: Glyphs of fiber orientation tensors evaluated in a quarter of a CF-PA6 plastificate and
mirrored. The chosen grid consists of 3 × 5 cubes with dimensions of 10 mm × 10 mm
× 10 mm. Glyph plots by Louis Schreyer in collaboration for joint proceeding [276].

Figure 4.5: Glyphs of fiber orientation tensors evaluated around the twin screw extruder swirl of
a CF-PA6 plastificate. The chosen grid consists of 2 × 2 cubes with dimensions of
10 mm × 10 mm × 10 mm. Glyph plots by Louis Schreyer in collaboration for joint
proceeding [276].
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In order to analyze that in more detail, a finer 6 × 6 grid with cubes of a side
length of 3.33 mm was evaluated, which can be seen in Figure 4.6.

Figure 4.6: Glyphs of fiber orientation tensors evaluated around the twin screw extruder swirl of
a CF-PA6 plastificate. The chosen grid consists of 6 × 6 cubes with dimensions of
3.33 mm × 3.33 mm × 3.33 mm. Glyph plots by Louis Schreyer in collaboration for
joint proceeding [276].

The tolerably consistent circular orientation enabled a simpler reconstruction
of the initial orientation state based on geometric considerations, which will be
elucidated in the Discussion (Section 5).

To evaluate the orientation behavior across the extrusion direction y, slicing in
the x-y plane was necessary. At mid-level z-position a grid of 3 × 4 cubes of
20 mm × 20 mm × 20 mm. The result can be seen in Figure 4.7.

Both outer layers (considering the x direction) have higher values concerning
the 33 component of the tensor, hence are oriented more towards the z-direction,
which coincides with the findings of the evaluation in the other plane be-
fore. While they also show a slightly higher 22-component, thus are more
oriented in y-direction (extrusion direction), the overall tensor behavior is very
11-component (x-direction) dominant. This again simplifies a geometric recon-
struction, compared to similar studies where authors found a more significant
orientation in y-direction, which will also be discussed in Section 5.
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(a) (b)

Figure 4.7: Sections of a scan of two different parts of the same GF-PA6 plastificate with their
orientation tensors plotted as tensor glyphs superimposed. Glyphs of fiber orientation
tensors evaluated in the x-y plane of a GF-PA6 plastificate. The chosen grid consists of
3 × 4 cubes with dimensions of 20 mm × 20 mm × 20 mm.

4.2.2 Porosity and volume

Considering the porosity of the plastificates it was of particular interest to
understand the influence of process parameters on it, as well as the course of
the porosity across the extrusion direction of the plastificate.

In Figure 4.8, the binarized image (a), the detection of the plastificate area
(b) and the thereof determined pores in the plastificate (c) by the algorithm
described in the Methods (Section 3.3) are depicted.

While in the example image, the detection of the outer bounds of the plastificate
worked well, it was more difficult for the polyamide 6 based plastificates that
exhibited more fringed surfaces (compare Figure 4.3).

Evaluating the porosity across the extrusion direction and the average porosity
in percent for different configurations of plastificates enables conclusions that
coincided with process observations. In Figure 4.9, four porosity plots can be
seen.
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Figure 4.8: Example image of a slice of a binarized GF-PC scan at the left and the area that the
algorithm identifies as the plastificate in white in the middle. At the right, all the
detected pores are marked white.

Plots (a) and (b) show the porosity curves of two halves of the same GF-PA6
plastificate. In (a) you can see the end that came out of the twin-screw extruder
nozzle first, i.e. the "front end", and in (b) the "back end", which was extruded
last. It is noticeable that the average porosity (red dotted line) of the front
end is significantly higher at 0.4310 than that of the back end at 0.3746. This
is consistent with observations from process trials in which the plastificate
appeared to expand (also known as lofting) when lying on the roller conveyor
for a long time. This is clearly visible in plot (a), where towards the oldest end
(high layer numbers) both the area occupied by the plastificate in the slice (on
average 0.8001) and thus three-dimensionally the volume in the overall scan, as
well as the porosity increases. The average area covered in plot (b) is slightly
smaller at 0.7886. Incidentally, when calculating the porosity or the volume
taken up, 20 slices were cut away at the edge of the 3D scans, as these had
artifacts or already showed areas rich in air due to unevenness, etc. The area
and volume comparisons are only valid because both plastificate halves were
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(a) (b)

(c) (d)

Figure 4.9: Course of the porosity of the "front end" (a) and "back end" (b) of a GF-PA6 plastificate.
In addition, course of the porosity of two GF-PC plastificates, one manufactured with a
screw speed of 45 rpm (c) and one with 100 rpm (d).

scanned in one scan and therefore have the same scan section and the same
resolution.

Looking at the plots (c) and (d), the porosity curves of two separate GF-PC
plastificates produced under different conditions can be seen. The plastificate
shown in plot (c) was produced at a screw speed of 45 rpm, while the plastificate
shown in plot (d) was produced at 100 rpm. The plastificate produced at slower
speed shows a significantly lower mean porosity of 0.2196 compared to 0.3248
for the faster extruded plastificate. The low speed and porosity in (c) also
ensures a relatively consistent porosity and volume profile across the slices,
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while the higher speed in the production process in (d) results in an increase in
porosity and volume towards the end.

4.3 Fiber volume content

In this section, the results of the experimental determination of FVCs of speci-
mens are shown, as well as results of their computational determination from
the scans of specimens with self-implemented, novel methods.

4.3.1 Chemical dissolution 1

The nominal fiber volume content set during production was 25 %. Since the
samples that were dissolved in acid of Plate 2 (cf. Figure 3.4) were of different
sizes, the dependence of the fiber volume contents on the sample size can be
shown. In fact, this effect seems to be clearly pronounced, as can be seen in
Table 4.1: the fiber volume contents increase monotonically from Sample 1 to
3, as well as from 10 to 12. With Specimen 1 being the smallest (10 mm × 10
mm × 3 mm), Specimen 2 being the second largest (20 mm × 20 mm × 3 mm)
and Specimen 3 being the largest (30 mm × 30 mm × 3 mm), it is noticeable
that the larger the specimen, the larger the FVC. Moreover, the fiber volume
content seems to be higher in the charge region (Specimen 1, 2, 3) than in the
transition region (Specimen 10, 11, 12) - a finding that contradicts the results of
the samples of Plate 3 (cf. Table 4.2). The results of the FVC in Table 4.2 of
Plate 3 have been first published by Scheuring et al. [274]. While the average
FVC of the three charge specimens (C1, C2, C3) is equal to the global average
with 23.57 %, it is indeed slightly higher than the average FVC of the three
specimens of the flow region (F1, F2, F3) with 22.74 %. The transition region

1 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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(specimens CF1, CF2, CF3) shows the biggest average FVC with 24.42 % in
this plate.

Table 4.1: FVC in % for specimens of Plate 2 (cf. Figure 3.4) determined through acid-based
dissolution of the matrix. Extracted from Blarr et al. [188].

Specimen FVC

FLD1 22.3 %

FLD2 25.5 %

FLD3 28.6 %

Average 25.5 %

Standard deviation 2.6 %

FLD10 17.9 %

FLD11 24.0 %

FLD12 26.6 %

Average 22.8 %

Standard deviation 3.6 %

Overall average 24.2 %

Overall standard deviation 3.4 %

4.3.2 "Average or above" (AOA) thresholding 2

The scans, that the FVC had to be determined of, all showed salt and pepper
noise. So the first step of the implemented thresholding method was the ap-
plication of a filter. The choice of the filter type and kernel size was decided
on after all other steps of the procedure were defined. A study was conducted,
as to which filter and kernel size produces an FVC closest to the measured
ones. Finally, the median blur led to the least average deviation between the

2 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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Table 4.2: FVC in % for specimens of Plate 3 (cf. Figure 3.4) determined through acid-based
dissolution of the matrix. Data from Scheuring et al. [274]. Extracted from Blarr et al.
[188].

Specimen FVC

F1 23.07 %

F2 22.08 %

F3 23.06 %

Average 22.74 %

Standard deviation 0.46 %

C1 25.57 %

C2 22.31 %

C3 22.81 %

Average 23.56 %

Standard deviation 1.43 %

CF1 26.36 %

CF2 23.10 %

CF3 23.81 %

Average 24.42 %

Standard deviation 24.42 %

Overall average 23.57 %

Overall standard deviation 1.37 %

calculated and the measured results. It is noticeable, that there are differences
of the best kernel size between the two different plates. For the specimens of
Plate 2, consisting of FLD1 to FLD12, a median blur filter and a kernel size
of 15 × 15 px showed the least average deviation, as well as the least maximum
deviation. The results can be seen in Table A.3, Table A.4 and Table A.5 in the
Appendix. For the specimens of Plate 3, consisting of C1 to F3, a median blur
and a kernel size of 23 pixel × 23 pixel had the least average deviation, as well
as the least maximum deviation, which is shown in Table A.6 and Table A.7. In
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(a) (b) (c) (d) (e)

Figure 4.10: Illustration showing the whole process of FVC determination by AOA thresholding
using the example scan of sample FLD3. (a) Shown is a middle slice of the original
3D CT image read into Python. (b) The same slice is shown after applying the median
filter (kernel size in this case 15). (c) The Otsu threshold of each slice was determined
and plotted over the slices. The calculated thresholds are shown in blue, the average
in orange and the value that is ultimately applied in green. The average value is used
if the actual threshold of the slice is below the average value, otherwise the calculated
value above it is used (cf. Figure 3.14). (d) The slice is shown with the threshold
applied. (e) Finally, the fiber volume content determined by the method is plotted over
the slices. The decreasing volume content at the edges is clearly visible. The mean
value over all slices in orange is the final determined value, which is again compared
with the experimentally determined value. Based on Blarr et al. [188].

the tables with the results of Plate 3, only the tested kernel sizes that seemed
the most relevant of some filters are listed. Comparing the dimensions of the
images of the different plates, to be seen in Table 3.2, it shows that the average
image size of Plate 3 is larger than that of Plate 2, hence the image resolution
is higher for Plate 3 (cf. Table 3.1). Apparently the needed kernel size of the
median blur is dependent on the dimensions and the resolution of the scan used.
The effect of the median blur is visible comparing the images (a) and (b) in
Figure 4.10. The determined binary image after applying the AOA thresholding
method of this particular slice is shown in (d).

However, not all final results of the FVC are convincing (compare Table A.4,
column "medianBlur(...,15), and Table A.6, column "medianBlur(...,23)). While
most samples show decent results, when not including outliers, with a relative
average deviation of 1.81 % in the first measurement series and 3.42 % in the
second measurement series, there are samples with a much larger deviation.
Individual samples show relative deviations of up to 116.09 % (FLD10). The
reason for those differences of the performances of the algorithm are not entirely
clear. FLD10 was a small specimen and a scan with low resolution, which is
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not the best combination in general. This condition arose because it was desired
to have the same resolution for all samples of one plate and the low resolution
was necessary in order to fit the biggest specimens inside of the beam path.
Hence, the image quality was insufficient but that was also the case for FLD1,
which did not deviate that massively. Additionally, FLD10 showed a much
lower experimentally measured FVC and minor measurement uncertainties were
assumed to lead to that value. For these reasons FLD10 was left out of the error
calculations of the AOA thresholding and was not used as training data in the
CNN either. However, the other two outliers C2 and F2 were included. Neither
any visual deviation nor deviations in the histograms, brightness levels or other
measures used for image comparison in these two scans could be detected,
which is why they are included in the absolute average deviations and were also
used as training data for the CNN. That way, the absolute average deviation of
the final AOA thresholding with medianBlur filter of 15 and 23, respectively,
amounts to about 2.7 %. The final results are depicted in Table 4.3.

Table 4.3: Predictions of final AOA thresholding method (compare green columns in Table A.4
and in Table A.6) and of final CNN structure. The values for the CNN are averaged
predictions for the original and all augmented 3D image versions with the same FVC.
Extracted from Blarr et al. [188].

Specimen Exp. values AOA thresholding CNN
FVC FVC Absolute deviation FVC Absolute deviation

FLD1 22.30 % 22.97 % 0.67 % 26.04 % 3.74 %
FLD2 25.50 % 24.18 % 1.32 % 28.62 % 3.12 %
FLD3 28.60 % 28.5 % 0.1 % 28.41 % 0.19 %
FLD11 24 % 23.91 % 0.09 % 25.24 % 1.24 %
FLD12 26.60 % 26.64 % 0.04 % 25.6 % 1 %
C1 23.07 % 24.07 % 1 % 23.24 % 0.17 %
C2 22.08 % 42.2 % 20.12 % 22.85 % 0.76 %
C3 23.06 % 23.04 % 0.02 % 22.49 % 0.57 %
CF1 25.57 % 26.6 % 1.03 % 23.12 % 2.46 %
CF2 22.31 % 23.53 % 1.22 % 22.35 % 0.04 %
CF3 22.81 % 22.53 % 0.28 % 22.80 % 0.01 %
F1 26.36 % 25.48 % 0.88 % 21.98 % 4.37 %
F2 23.10 % 32.76 % 9.66 % 24.78 % 1.68 %
F3 23.81 % 25.11 % 1.3 % 22.68 % 1.12 %
Mean 24.23 % 26.54 % 24.3 %
Abs. aver. dev. 2.7 % 1.46 %
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The final results of the FVC determined by AOA thresholding after applying
the median filter as described above are also plotted in Figure 4.11. The two
deviating values of C2,carbon and F2,carbon can be clearly detected.

Figure 4.11: Original (orange) and calculated with the novel thresholding technique (blue) values of
FVC for the fourteen specimens, as well as measured averaged FVC (orange dashed)
and calculated averaged FVC (blue dashed). Based on Blarr et al. [188].

Considering the progress of the fiber content across a specimen by the example
of specimen F2, a clear non-monotonous course can be seen in Figure 4.12. The
lower values at the borders of the sample and the increase of the FVC towards
the center have been expected. This behavior appears due to the compression
molding process, which will be further elaborated on in the Discussion.

4.3.3 Convolutional neural network 3

As shown in Figure 4.13, using 40 epochs as training of the CNN is sufficient
since the model’s validation and training losses converge after around 15 epochs
and there are no significant improvements beyond that point. The training loss

3 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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Figure 4.12: Exemplary progression of FVC over thickness of the specimen considering the ex-
ample of specimen F2. Typical increase of FVC towards the center of the specimen
visible. Extracted from Blarr et al. [188].

value after 40 epochs amounts to 0.5539 and the validation loss to 0.5535.
The initially unusual fact that the loss in the training data is greater than in the
validation data is discussed in more detail in Section 5.2.3. Considering the shift
of the minimum attainable loss value briefly discussed in the Methods (Section
3), this can be considered a successful training process.

Figure 4.13: Final graph showing the losses for the testing and validation data sets during the
training process as a function of the epoch. Extracted from Blarr et al. [188].

The performance of the CNN is further assessed in Figure 4.14. Of the 448 3D
input scans, 299 were used for training and 149 for validation in accordance with
the two thirds split. Figure 4.14 shows the mean values of the predicted FVC of
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all validation scans with the same experimentally measured FVC (14 different
ones) (including original and augmented scans). Thus, for five of the points, the
mean value was determined from ten predicted values and for the remaining
nine from eleven, resulting in 149 validation scans. The standard deviation was
so small, with a maximum value at one point of 0.0009 and a mean value over
the 14 points of 0.0005, that no boxplot was used, but the same format as in
Figure 4.11 with the thresholding results. The network thus calculates stable
consistent values for a given scan with the same FVC, regardless of whether it
was augmented or not. This indicates a good geometric independence of the
network. In addition, several runs of the CNN training were made with the
same settings and the results also hardly differed, which indicates a low intrinsic
uncertainty of the CNN. The biggest variation between runs was rather at which
epoch the loss plot reached its minimum, which could vary by 5-10 epochs.

Figure 4.14: Original (orange) and calculated with the CNN (blue) values of FVC for the fourteen
specimens, as well as measured averaged FVC (orange dashed) and calculated aver-
aged FVC (blue dashed). Extracted from Blarr et al. [188].

In the best universal case, hence the final network depicted and described in
Section 3.4.2.3, an absolute average deviation of 1.46 % was achieved (cf. Table
4.3).
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Beside the amount of epochs used to train the network, a number of variables
were tuned to improve the prediction’s accuracy. The augmentation process,
e.g., has multiple steps of flipping and rotating images. Experiments with using
less or more augmentation steps showed that using the most amount of steps
showed the best results. Changing which scans were fed into the program from
the start had a large impact and by down-selecting systematically, an absolute
average deviation below 0.9 %, so a performance increase by about 40 % was
achieved. However, since the goal of this network is to provide a universal
method for CF-PA6 sample scans, all data was used instead, in favor of general
applicability to different scans at a later time. FLD10, which has already shown
to be an outlier for the thresholding method, poses an exception in this case. Its
implementation caused a remarkable decrease in performance in all cases, for
which an identifiable rationale is lacking and thus this scan had to be removed
from the entire data set, as mentioned before.

4.4 Fiber length distributions

In Figure 4.15, the length distributions of the samples FLD1 to FLD3 and
FLD10 to FLD12 of Plate 2 (cf. Figure 3.4(b)) can be seen.

The graph was truncated at a fiber length of 6.5 mm, in the knowledge that
occasional fibers up to a length of 32 mm do occur. In general, fibers appear
in an extremely wide range of lengths, but the majority of the fibers are in
the region between 0 mm and 1 mm. Especially the three samples from the
charge area, i.e. FLD1 to FLD3 show strong peaks in the range between
0.3 mm and 0.5 mm approximately. Of all the fibers measured from the six
samples, more than 58,000 individual fibers were measured, which together
have an average value (in relation to the total number) of 1.07 mm. However,
the median is 0.48 mm. Here, it is already noticeable that the choice of the
mean value determination can have a significant influence on the result of a
possible modeling of the material. The aspect ratio is included in, for example,
the Mori-Tanaka and Halpin-Tsai homogenization approaches, and the resulting
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Figure 4.15: Histogram of amount of fibers of a specific length in mm per specimen, including
FLD1 to FLD3 and FLD10 to FLD12.

mechanical properties are therefore dependent on the mean fiber length. In
relation to the individual sample, the average and median values can be seen
again in Figure 4.16.
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Figure 4.16: Average (blue) and median (orange) fiber lengths per specimen (FLD1 to FLD3

and FLD10 to FLD12) and averaged across all specimens (dashed blue and orange).
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It is noticeable that the mean values of the samples in the charge area (FLD1

to FLD3) are on average lower than those of the samples in the flow area
(FLD10 to FLD12). In addition, the fiber lengths increase significantly from
the smallest (FLD1 and FLD10) to the next larger sample (FLD2 and FLD11)
when looking at the average. It is assumed that for a sample area of 10 mm× 10
mm, very long fibers are already cut off, which is hardly likely to be the case for
20 mm× 20 mm. From the medium (FLD2 and FLD11) to the largest samples
(FLD3 and FLD12), the average fiber length increases only slightly, or even
decreases in the case of the flow samples. Therefore, specimen dimensions of
25 mm × 25 mm were chosen for the specimens of Plate 3, since it may be
assumed that the influence of sample size on the fiber length distribution should
be saturated approximately in the range between the middle and largest samples.
However, median and average again behave differently. Thus, the sample size
effect cannot be clearly shown, but the difference between flow and charge area
can be seen for both mean values.

4.5 Fiber orientation

In the following section, all results relating to fiber orientations are presented.
First, validation results of the application of the structure tensor based method
for fiber orientation evaluation for the material of this thesis are shown. Sub-
sequently, special features of the evaluated fiber orientation tensors over the
thickness (z-axis) are addressed. The behavior of the fiber orientation tensors
considering the x-y-plane will be taken up in the following Section 4.6 dealing
with the interpolation of FOT.
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4.5 Fiber orientation

4.5.1 Validation of the application of the structure
tensor method

The validation of methods for fiber orientation determination is limited, as it
cannot be measured directly by experiment. Pinter et al. [81] created artificial
microstructures with given properties and used them to validate their structure
tensor approach (also applied in this work). In this respect, the method has
already been validated for similar microstructures. However, an exact validation
is not possible for the material in this work for the reason that the generation of a
microstructure that truly corresponds to the CF-PA6 with its mixture of bundles
and single fibers is currently not possible or implementable. There are two
further possibilities for validation, one qualitative and one indirect, quantitative.
The qualitative approach will be discussed here first. After applying the structure
tensor algorithm, a vector-valued image (3 channels) is created that maps
the proportion of the orientation in the three spatial directions in each pixel,
respectively a large number of orientation vectors that can be derived from
this. The detected orientations of the algorithm can in turn be made visible by
false colors in the HSV space and placed on the original slices. If the visual
impression of the orientation corresponds well with the detected colors/angles,
the detection appears to have been successful as shown in Figure 4.17.

Figure 4.17-1(a) shows an exemplary slice from the center of a CF-PA6 scan
(in this case sample CF2 from Plate 3, cf. Figure 3.4), Figure 4.17-2(a) of a
GF-PA6 scan (CF2 from Plate 4) and Figure 4.17-3(a) of a hybrid reinforced
CF-GF scan (also CF2, i.e. the middle sample, analogous slice pattern to Plate
3 and Plate 4). Below are the same images with the false color representation
of the orientation detected by the algorithm, where Figure 4.17-3(b) shows the
orientation of the glass fibers and Figure 4.17-3(c) that of the carbon fibers of
the hybrid reinforced sample. If one compares the colors in 2(b) and 3(b) with
the resulting angles in the HSV color circle in subgraph 4, the recognition of the
algorithm corresponds very well to the optical impression of the angles in the
CT scan. Especially in the purely CF reinforced case, however, it becomes clear
that in areas of quite uniform fiber bundle orientation, slight speckle patterns
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Figure 4.17: One slice out of the middle of the CT scan of the CF2 stack of the CF reinforced
plate (1(a)), of the CF2 stack of the GF reinforced plate (2(a)) and of the hybrid
CF-GF reinforced plate (3(a)). 4: Color-angle correlation in the HSV ("Hue Value
Saturation") color space. 1(b): Detected fiber orientations in the slice presented in
1(a) through the code by Pinter et al. [81] visualized in the HSV color space. 2(b):
Detected fiber orientations in the slice presented in 2(a) visualized in the HSV color
space. 3(b): Detected fiber orientations of the glass fibers in the slice presented in
3(a) visualized in the HSV color space. 3(c): Detected fiber orientations of the carbon
fibers in the slice presented in 3(a) visualized in the HSV color space. Extracted from
publication [274], co-authored by the author.

of other colors and thus orientations occur that are not comprehensible. These
are due to the greater image noise. An attempt was made to counteract these
incorrect detections by applying a median filter of kernel size 10 to the CT scans
(before orientation determination) of the purely CF-enhanced samples only. The
effect of the filter known for salt and pepper noise reduction is visible in Figure
4.18.

It can be clearly seen that there are almost no more randomly distributed
deviating color spots in otherwise homogeneously oriented bundles. However,
the detection of very fine structures is also no longer possible. Small bundles
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4.5 Fiber orientation

(a) (b)

Figure 4.18: Effect of the median blur applied to a CT scan slice of a CF-PA6 specimen. HSV
color image without median filter visible in (a) and with median filter in (b).

and individual fibers are no longer included in the orientation detection at all.
Since the detected fiber orientation in the CF-reinforced plates is dominated
by the bundles anyway and, as will be shown later, this corresponds well with
the mechanical tests, it can be assumed that this provides the more accurate
solution.

The other quantitative, indirect type of validation mentioned above is the use of
the extracted orientation information in mechanical homogenization models.
The resulting stiffnesses or strengths can then be compared with those measured
experimentally. As these experimentally measured stiffnesses were carried
out with samples taken from the plates at different angles, the accuracy of the
stiffness values for different orientations can be used to draw conclusions about
the quality of the orientation information used in the modeling. However, since
tensor interpolation was used for the orientation information of the modeling,
which will not be described until the next section, the procedure and the result
will be explained in more detail in Section 4.6.4 and debated in the Discussion
in Section 5.4.4.5.
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4 Results

4.5.2 Characteristics of the FOD across the z-axis

The mere display of fiber orientation tensors does not appear to be useful for
obtaining a comprehensive understanding of the behavior of the fiber orientation.
The results over the plate (x-y plane) are therefore taken up in the visualization
form of the tensor glyphs in the context of the fiber orientation interpolation in
the next section. However, the behavior over the z-axis is thereby difficult to
recognize, which is why characteristic curves of the three main components of
the fiber orientation tensors of individual specimens were plotted in Figure 4.19
instead.
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Figure 4.19: Main components over thickness (in slices) of specimens C2 (a) and F2 (b) of Plate 3
(CF-PA6) and of specimens C2 (c) and F3 (d) of Plate 4 (GF-PA6).
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4.6 Interpolation of fiber orientation tensors

The two upper graphs show the results of CF-reinforced specimens, while
the lower graphs show the results of GF-reinforced specimens. In addition,
the two left-hand plots are each from a specimen in the batch area and the
two right-hand plots are each from a specimen in the flow area of the plate.
Clearly, an edge effect is visible in both samples in the charge region. The
A22 component appears to increase at the edge of the specimen and the A11

component, which is dominant in the center of the specimen, decreases. In
contrast, the curves of the main components in the flow area tend to be constant
and are clearly A11-dominant. The question of whether this effect can be
called the "shell-core effect", because it is reminiscent of the phenomenon of
orientation components changing across the thickness in injection molding,
is addressed in the Discussion in Section 5.4. It is also discussed where this
changed surface orientation could stem from and, particularly, why it only
occurs in the charge area but not in the flow area.

4.6 Interpolation of fiber orientation tensors

The results of the three methods for the interpolation of fiber orientation tensors
of second-order are presented below, in the form of the tensors generated in each
case, as well as a quantitative evaluation by determining individual tensors that
have been measured previously. The specimens of Plate 1 were used (cf. Figure
3.4). These results have already been published in the paper [17]. The results
of the slightly modified decomposition method for tensors of fourth-order are
presented in the following. However, the use of these results in homogenization
methods and the comparison with the experimental stiffness values is included
in the Discussion (Section 5.4.4.5).
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4.6.1 Component averaging 4

The set of measured orientation tensors Tm via CT scan and subsequent cal-
culation via structure tensor is represented by the blue tensor glyphs in Figure
4.20, the set of interpolated tensors Ti = {Txy ∀ x ∈ 1, ..., 13∩ y ∈ 1, ..., 13}
by the orange tensor glyphs.

The origin of the global coordinate system is located in the lower left corner
of the plate. The original LFT charge covered almost the entire left side of the
400 mm× 400 mm mold with a width of about x = 90 mm (to the right), a length
of about y = 350 mm (up) and a height of about z = 60 mm. Thus, when the
press closes, one would expect a quasi 1D flow to the right. However, in Figure
4.20 a clear progression can be seen in the measured (blue) fiber orientation.

Figure 4.20: Visualization of interpolated (orange) and measured (blue) tensors when using the
component averaging interpolation method described in this thesis. Extracted from
Blarr et al. [17].

4 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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4.6 Interpolation of fiber orientation tensors

After a clear preferred direction in the left region resulting from the plastificate,
i.e., from the last extrusion step in the LFT-D process, a turn to a rather dominant
orientation in the x-axis seems to happen towards the middle of the plate (apart
from the top region). At the right side another turn to an again more y-direction-
dominant orientation happens (apart from the lowest tensor glyph, which in
general seems to be more isotropic than the other tensors). Considering these
measured tensors, the interpolated tensors should follow some kind of curve. In
fact, the interpolation does not seem to cover this behavior smoothly but instead
rather accomplished the orientation changes through rounding the tensors.
Following the literature, this behavior was expected (cf. swelling effect in the
State of Art (Section 2.2.3.3)) and can be confirmed.

In order to be able to approach quantitative error analyses and to better assess
the interpolation behavior, one measured tensor of Tm was omitted in each case
and instead also determined with the interpolation method. The visualization
results are shown in the nine pictures in Figure 4.21.

To obtain a quantitative error value, the Frobenius norm of the measured tensors
and their respective interpolated substitutes was formed. The result of the
difference between the Frobenius norm of the interpolated and the original
tensor can be seen as an error map in Figure 4.22. The method seems to predict
the MM , LM and LL tensors the worst. It is difficult to judge whether the
Frobenius norm is suitable as a quantitative assessment, but it will be discussed
further in the Discussion.

Therefore, a third possibility of error analysis is considered, namely the direct
component comparison between interpolated and measured tensors. Figure 4.23
shows this for the component averaging method.

The nine graphs in Figure 4.23 correlate to the nine different tensor components
of a 3 × 3 tensor. Each graph shows the component value of the measured
tensors in blue and of the interpolated tensors in orange on the y-axis for each of
the nine measured tensors (depicted on the x-axis, starting with UL). While the
differences are largest for the components with the largest values and fluctuations
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Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.21: The graphic shows the measured (blue) and interpolated (orange) fiber orientation ten-
sor glyphs when leaving one measured tensor out of the calculation and interpolating
it instead with the component averaging method respectively. Extracted from Blarr et
al. [17].

(mainly A11 and A22), the character of the component averaging method is
also clearly evident in this type of error analysis. Thus, the components of the
interpolated tensors almost resemble a moving average of the components of
the measured tensors.
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4.6 Interpolation of fiber orientation tensors

Figure 4.22: Visualization of the discontinuous (left image) and continuous (right image) error of
the component averaging method across the plate of the interpolated tensor in com-
parison to the measured one when leaving this specific tensor out of the computation.
Value determined via Frobenius norm. Extracted from Blarr et al. [17].

Figure 4.23: Comparison of each of the nine components of each of the nine measured tensors with
the corresponding resulting component of the interpolated tensors for the component
averaging method. Extracted from Blarr et al. [17].
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4.6.2 Decomposition 5

In Figure 4.24, the results of the interpolation with the quaternion-based de-
composition approach can be seen.

Figure 4.24: Visualization of interpolated (orange) and measured (blue) tensors when using the
decomposition-based interpolation method described in this thesis. Extracted from
Blarr et al. [17].

The before-mentioned progress of orientations can be visually traced as a clear
curve. As for the interpolation method as such, the visual results are for the
most part very appealing. Interpolation between the individual measured FOT
is good and the transition between two adjacent tensors also appears reasonable.
The anisotropy is not basically lost between two differently oriented tensors by
"rounding the tensor". The rotation of two adjacent tensors occurs with small
angles and therefore smoothly. The only exception to this can be seen at the
upper right edge: The interpolated tensor T10,13 in the middle of UM and UR

behaves somewhat strangely as far as the behavior of the row is concerned.

5 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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4.6 Interpolation of fiber orientation tensors

Instead of closing the estimated angle of 20° between UM and UR by a
piece wise change of 10°, the tensor T10,13 is oriented in an angle deviating
by around 80° compared to the measured ones. However, the tensor MM is
for example also taken into account for the calculation of this tensor (just like
all the other measured ones of the set Tm), even if weighted less strongly than
UM and UR, which favors the big rotation of the tensors in the uppermost
row considering the global orientation behavior. Furthermore, the behavior in
this column looks much better than could be expected if the tensor had rotated
in mathematically negative (clockwise) direction around the z-axis than the
chosen positive (anti-clockwise) direction. When leaving measured tensors out
of the "ground truth" and interpolating them instead, there are definite changes
in the orientation course, which can be seen in Figure 4.25.

For example, the behavior of the afore-mentioned T10,13 changes significantly
when UM or UR are omitted. In general, however, it must be stated that
the orientation courses react very agilely and sensibly to the changes when
individual tensors are omitted when using the decomposition method.

The quantitative evaluation based on the Frobenius norm is visualized in Figure
4.26. The rather poorer interpolation at the left and upper edges and the relatively
good performance in the middle of the plate (and lower right) are noticeable.

Considering the component-wise deviations displayed in Figure 4.27, it is
striking that they are considerably high in this specific case for this coordinate
system. However, it is noticeable that major trends between the different tensors
are mostly preserved by this method (cf., e.g., A11).
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Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.25: The graphic shows the measured (blue) and interpolated (orange) fiber orientation
tensor glyphs when leaving one measured tensor out of the calculation and interpolat-
ing it instead with the decomposition method respectively. Extracted from Blarr et al.
[17].
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4.6 Interpolation of fiber orientation tensors

Figure 4.26: Visualization of the discontinuous (left image) and continuous (right image) error of
the decomposition method across the plate of the interpolated tensor in comparison
to the measured one when leaving this specific tensor out of the computation. Value
determined via Frobenius norm. Extracted from Blarr et al. [17].

Figure 4.27: Comparison of each of the nine components of each of the nine measured tensors with
the corresponding resulting component of the interpolated tensors for the decomposi-
tion method. Extracted from Blarr et al. [17].
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4.6.3 Artificial neural network 6

The results of the tensor field when interpolating with the neural network can
be seen in Figure 4.28.

Figure 4.28: Visualization of interpolated (orange) and measured (blue) tensors when using the
ANN-based interpolation method described in this paper. Extracted from Blarr et al.
[17].

It strikes that when training this network with the measured tensors, it is able
to produce both very anisotropic and very isotropic tensors at the points with
missing tensors, compared to the other two main methods that rather dispensed
one or the other. While some areas look smooth like, e.g., the upper and
right area, there is non-monotonous interpolation behavior concerning, e.g.,
MM and LL where the surrounding tensors are much more isotropic than
the measured one and also quite differently oriented (looking specifically at the
tensor LL). When training the network multiple times with the same input data,
the results look very much alike, speaking for the robustness of the method.

6 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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4.6 Interpolation of fiber orientation tensors

However, looking at the plots of the tensor fields when leaving measured tensors
out of the input data (Figure 4.29), some of the non-monotonous behavior shows
again (cf., e.g., the fields without MM and without MR).

Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.29: The graphic shows the measured (blue) and interpolated (orange) fiber orientation ten-
sor glyphs when leaving one measured tensor out of the calculation and interpolating
it instead with the neural network respectively. Extracted from Blarr et al. [17].

Consequently, the difference of the Frobenius norm for these two cases is
significantly large and so is the error for the interpolation of the UM tensor,
which is all depicted in Figure 4.30.
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Figure 4.30: Visualization of the discontinuous (left image) and continuous (right image) error
of the ANN method across the plate of the interpolated tensor in comparison to
the measured one when leaving this specific tensor out of the computation. Value
determined via Frobenius norm. Extracted from Blarr et al. [17].

Considering the component-wise errors in Figure 4.31, the results are still
comparatively good. The largest deviations occur especially for the three
mentioned tensors before. Just as was the case for the other two methods,
the biggest deviations appear mostly for the A11 and A22 components. The
comparison between the three methods regarding the differences between the
measured and interpolated tensor components will be taken up again in the
Discussion (cf. Section 5.4.4).

The quality of the neural network must also be considered with respect to
the progression of an error measure over the number of epochs. As an error
measure, the already mentioned MAE was used and the course over the epochs
can be seen in Figure 4.32. As expected with the small number of training
data, the network does not behave optimally. However, the graphs show both
overfitting (A23, A33, A31) and underfitting (A11) trends. Thus, it is difficult
to draw a general conclusion. Overfitting rather argues for using more training
data or stopping at a lower number of epochs, apart from solutions that require
more specific methods which are very dependent on the model. Underfitting can
be combated by different measures depending on the cause of the underfitting;
either more epochs (unlikely here) or more parameters of the model can help,
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4.6 Interpolation of fiber orientation tensors

Figure 4.31: Comparison of each of the nine components of each of the nine measured tensors
with the corresponding resulting component of the interpolated tensors for the ANN
method. Extracted from Blarr et al. [17].

or a change to a completely different model. However, more training data can
also help with underfitting, which is most likely in the case considered.

4.6.4 Interpolation of tensors of fourth-order through
adapted decomposition method

With the simplified decomposition method for tensors of fourth-order explained
in Section 3.7.5, analogous fields of fiber orientation tensors could be created.
They are plotted in Figure 4.33 on the left side for the CF-PA6 Plate 3 (cf. Figure
3.4) (a), the GF-PA6 Plate 4 (cf. Figure 3.4) (b), the CF evaluation of the hybrid
plate (c) and the GF evaluation of the hybrid plate (d). The different shape of the
tensors of fourth-order compared to the ellipsoids of second-order can be clearly
seen. Furthermore, it strikes that the measured tensors are deviating a lot less in
their shape and orientation among themselves compared to the heterogeneous
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Figure 4.32: MAE over training epochs of the ANN per tensor component. Extracted from Blarr et
al. [17].

initial state of the example in the sections before. This is due to the fact that the
samples in the previous case were significantly smaller (10 mm compared to
25 mm side length) and thus the orientation was evaluated very locally. This
made interpolation significantly more difficult and led to the critical points
mentioned above. In these cases, however, the interpolation appears uniform
and monotonic, as the output tensors are significantly more similar. The slight
upward drift can also be seen in the four cases, although it varies slightly in
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4.6 Interpolation of fiber orientation tensors

strength. In addition, there is partly also a slight, less pronounced downward
drift at the right end of the plate in the lower part.

Averaging all 169 tensors into one averaged tensor gives a representation of
the overall fiber behavior. These averaged tensors can be seen in Figure 4.33
in column 2. In general, they are similar in shape, with the averaged tensors
representing carbon fibers being slightly more isotropic (rounder), which corre-
sponds to observations in the CT scans. The light and thin carbon fibers behave
more randomly, deviate in their angles a lot and are less strict aligned with the
overall flow. Orientation-wise, all show the slight upwards drift - again varying
in intensity.

For the third column in Figure 4.33, the orientation vectors detected in the
nine scans were binned into 20 angle categories, each containing an interval
of length π/20. The results were averaged and plotted as fiber orientation
histogram. A shift towards slightly positive angle values can also be seen here.
The distributions of the carbon fibers are also somewhat flatter (especially in the
hybrid case), or show higher occurrences at larger angle values, which matches
the somewhat more isotropic tensor glyphs.

The averaged tensor glyphs of fourth-order were subsequently used (without
prior closing approximation) as input in the Mori-Tanaka homogenization, and
the orientation histograms in the shear-lag modified Halpin-Tsai homogeniza-
tion. When comparing the resulting stiffnesses with experimentally measured
stiffnesses, the use of the 169 tensors as basis for the average resulted in a
stiffness body closer to the experimental one than just using the nine measured
ones. This will be discussed in detail in Chapter 5.
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1(a) 2(a) 3(a)

1(b) 2(b) 3(b)

1(c) 2(c) 3(c)

1(d) 2(d) 3(d)

Figure 4.33: Field of tensors of fourth-order (1), averaged tensor glyph of all 169 tensors of fourth-
order (2) and histogram of orientation distribution of the mean of all specimen in
degrees for 20 groups (width of one column: 180◦/20), for the CF plate (a), the GF
plate (b), the carbon fibers in the hybrid plate (c) and the glass fibers in the hybrid
plate (d). Extracted from the publication [274], co-authored by the author.
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4.7 Microstructure image generation through generative adversarial network

4.7 Microstructure image generation through
generative adversarial network

In the following, the results of the final DCGAN network are presented - from
the actually generated images to quality evaluations of the network in the form
of the loss plot to quality evaluations of the generated images in the form of FID
calculations and nearest neighbor considerations with the two different metrics
of ED and SSIM. The results of the following sections have all already been
published in a paper [275].

4.7.1 Generated images 7

The DCGAN was trained for 75 epochs on 29,280 input images (cf. Section
3.8.2) with 128 images per batch corresponding to 228 iterations per epoch
when dropping the last non-full batch (cf. Section 3.8.5). A comparison of
randomly chosen real and generated images is shown in Figure 4.34.

It can be observed that every generated microstructure is different. Generated
images look mostly realistic (cf. orange-rimmed images in Figure 4.34) in-
cluding fibers and fiber bundles. The overall fiber orientation resulting from
the flow in the compression molding process (cf. Section 4.5) is visible and
the contrast and brightness varies between the images just as in the training
images. There are, however, few images which show characteristics that are not
represented in the input data set such as two dark border regions on opposite
sides of the image (cf. violet-rimmed image in Figure 4.34). This phenomenon
has to be a result of the combination of features from different images as in the
original ones, at most one side displays this artifact related to the scan process.
In general, the observed occurrence of dark border regions in the generated
images can, for the most part, not be traced back to the DCGAN structure but is
subject to the quality of the training data set. On the other hand, it should be

7 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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(a) Randomly picked generated images

(b) Random images from training data set

Figure 4.34: Comparison of (a) randomly picked generated images (after 75 training epochs) side
by side with (b) a random selection of real images of the training data set. Selected
images are highlighted in color as they are especially realistic looking (orange), show
little to no fibers (blue) or an excessive amount of fibers and fiber bundles (yellow).
Furthermore, some real and generated images contain artifacts such as dark image
borders (violet) or striped patterns (green). Extracted from Blarr et al. [275].
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4.7 Microstructure image generation through generative adversarial network

positively emphasized that striped patterns (cf. green-rimmed image in Figure
4.34), which occur in the training data and represent image artifacts as well,
were no longer found in the generated images. As they were not as common
as the dark regions on the edge, these artifacts disappeared in the course of
the training process. Furthermore, some images might show little to no fibers
(cf. blue-rimmed images in Figure 4.34) or an excessive amount of fibers and
fiber bundles in unrealistic orientations, hence strongly deviating from the gen-
eral flow direction or showing extreme curvature (cf. yellow-rimmed image in
Figure 4.34).

4.7.2 Loss plot and FID 8

The loss value of the generator and discriminator network can be analyzed to
get information on the stability of the training process. This plot is shown in
Figure 4.35. It can be seen that both losses approach each other after only
a few epochs. However, while the loss of the discriminator stays on a very
small value for the rest of the training process, the generator loss increases
slightly and oscillations grow bigger. The smallest possible loss values for
both generator and discriminator would be zero, but they cannot simultaneously
reach this value. Hence, ideally, both losses should converge to approximately
the same value resulting in a balance of generator and discriminator or decrease
monotonously on average towards different values indicating a stable training
process. This is based on game theory and the aim to reach the Nash equilibrium.
Even though the generator loss in Figure 4.35 does not decrease monotonously
(not taking oscillations into account), the DCGAN in this paper still resulted in a
stable training process and the generation of meaningful images. In fact, similar
shapes of loss plots have been observed for other GANs as well [323–326].
The behavior of the loss plot and its influence on the quality of the generated
images and the need for a different metric to assess them is elaborated on in the
Discussion (Section 5.5).

8 This section is extracted from the author’s publication with only slight linguistic changes [275].
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Figure 4.35: Plot of the generator and discriminator loss of the final network. The smoothed curves
of the loss values are calculated as floating average over 228 iterations (corresponds
to one epoch). While the discriminator loss increases merely visible at the very start,
it decreases to then stay constantly at very low values indicating correct assessment
of the images. The generator loss values increase contrarily after a small valley at
the beginning but stay roughly at a constant loss range although oscillating heavily.
Extracted from Blarr et al. [275].

In order to quantitatively judge the generated images even further, the associated
FID value was calculated after every epoch and is depicted in Figure 4.36. It
drops sharply during the first few epochs and then remains at this level without
major fluctuations. The average of the last 45 epochs is approximately 150.6
with a standard deviation of about 5.7.

This coincides with the visual perception much better than the loss plot: Dis-
playing one randomly chosen generated image based on a fixed noise vector
after each epoch (cf. Figure 4.37 and Figure 4.38) shows that the images be-
come slightly better over time and not worse, which will be discussed further in
Section 5.5.
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4.7 Microstructure image generation through generative adversarial network

Figure 4.36: Plot of the FID of images generated by the final network. The values decrease up until
about 30 epochs where the distance between the distributions of real and generated
images stays more or less constant. The FID hence corresponds more to visual
perception than the loss plot, at least in its initial course. Extracted from Blarr et al.
[275].

4.7.3 Nearest neighbors 9

The distance to the nearest neighbor for every image within the last batch of
generated images (after 75 epochs) is depicted in Figure 4.39(a). The values
are sorted in ascending order (from left to right). Both for ED and structural
similarity index measure (SSIM), there is a wide distribution of images with a
relatively similar distance to their nearest neighbor and no noticeable sharp steps
in the plot. The range of possible SSIM values is (-1, 1], meaning that only about
2 % is covered in the plot. On the contrary, the ED can output values between
0 and 512 for normalized image tensors of size 256 × 256 px and entries in
the range [-1,1] as used in this work (cf. Section 3.8.4.2, Equation (3.19)).
Therefore, the calculated ED values cover a significantly larger proportion of
the possible range (more than 16 %). However, these values cannot be compared
directly since the distribution of distance values is not linear and differs for
ED and SSIM. It can be noticed that for the ED the curve rises sharply on the
right edge which leads to the assumption that some generated images show
a less strong resemblance to even the closest image from the input data set.

9 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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(a) Epoch 9 (b) Epoch 15 (c) Epoch 21

(d) Epoch 27 (e) Epoch 33 (f) Epoch 39

(g) Epoch 45 (h) Epoch 51 (i) Epoch 57

(j) Epoch 63 (k) Epoch 69 (l) Epoch 75

Figure 4.37: Evolution of a selected representative image. From epoch to epoch, new microstructure
characteristics emerge and existing features are refined. Extracted from Blarr et al.
[275].
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(a) Epoch 9 (b) Epoch 15 (c) Epoch 21

(d) Epoch 27 (e) Epoch 33 (f) Epoch 39

(g) Epoch 45 (h) Epoch 51 (i) Epoch 57

(j) Epoch 63 (k) Epoch 69 (l) Epoch 75

Figure 4.38: Evolution of a selected representative image. From epoch to epoch, new microstructure
characteristics emerge and existing features are refined. Extracted from Blarr et al.
[275].
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On the other hand, the SSIM curve drops downwards (i. e. to higher values)
at the left indicating that there are also few images that are very close to their
nearest neighbor from the input data set based on the SSIM. For both ED and
SSIM it is unclear, what kind of shape of the curve is desired. Both images
of high quality (that means realistic looking images that are no copies of the
input data set) and images with a close nearest neighbor as a consequence
of copied image sections could score an equally low value. Furthermore, a
consistently high quality throughout the entire test batch does not necessarily
go hand in hand with an even distribution (i. e. a horizontal line). This is due to
the differences in images from the input data set. A side by side comparison of
two exemplary generated images Figure 4.39(b) and Figure 4.39(e) and their
corresponding nearest neighbors for both ED and SSIM distance measure is
shown in Figure 4.39. For example image (b), both methods find decent nearest
neighbors. The nearest neighbor determined by ED even seems somewhat
closer. However, in the case of image (e), the nearest neighbor that is found
through the SSIM measurement fits much better. It appears that for images
with clearly recognizable and circumscribed fiber bundles that also appear at
the same place as in a training image, ED is a suitable measure. As soon as
fibers are rearranged in an angle or shifted in respect to the input images or the
amount of fibers in the entire image changes leading to large non-aligning areas,
the SSIM was found to be the more robust measure.

In order to not only judge the closeness of a final generated image to the training
data set, but also the evolution of their proximity throughout training, the small-
est ED and highest SSIM value of every epoch for one fixed generated image
was plotted. These results can be seen in Figure 4.40 and Figure 4.41 for the
first image and Figure 4.42 and Figure 4.43 for the second one, corresponding
to the respective image series in Figure 4.37 and Figure 4.38. In both cases the
ED and SSIM curves decline at the beginning and either increase slightly in the
end (ED and SSIM for the first image series, Figure 4.40 and Figure 4.41) or
stay approximately constant (ED and SSIM for the second image series, Figure
4.42 and Figure 4.43). It is striking that low values, hence high proximity to
the nearest neighbor in the training data set, appear for images that show small
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(a) Distance between generated images from the last batch (after 75 epochs) and their
nearest neighbor in the training data set based on ED or SSIM. The values are sorted
in ascending order (left to right). Note that for the ED, a small value corresponds
to high similarity whereas for the SSIM, with values ranging between -1 and 1, a
value of 1 would mean perfect similarity (i. e. identical images).

(b) Generated image (c) Nearest neighbor
(ED)

(d) Nearest neighbor
(SSIM)

(e) Generated image (f) Nearest neighbor
(ED)

(g) Nearest neighbor
(SSIM)

Figure 4.39: Top: Plot of the ED and SSIM of the generated images from the last batch after 75
epochs and their respective nearest neighbor in the training data set. Bottom: Examples
of two generated images ((b) and (e)) and their respective nearest neighbor image of
the training data set, based on ED ((c) respectively (f)) or SSIM ((d) respectively (g)).
Extracted from Blarr et al. [275].
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Figure 4.40: Plot of the smallest ED value between one chosen generated image (cf. Figure 4.37)
and the training data set over the duration of training. Extracted from Blarr et al.
[275].

Figure 4.41: Plot of the highest SSIM value between one chosen generated image (cf. Figure 4.37)
and the training data set over the duration of training (higher value corresponds to
higher similarity). Extracted from Blarr et al. [275].

amounts of fibers and therefore small gray value fluctuations and a somewhat
smooth and evenly distributed structure. Images of this kind appear in the
training data set but more often images with widely distributed fibers and fiber
bundles occur. Hence, generated images with characteristics close to the latter
description should lead to at least equally close nearest neighbors.
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Figure 4.42: Plot of the smallest ED value between one chosen generated image (cf. Figure 4.38)
and the training data set over the duration of training. Extracted from Blarr et al.
[275].

Figure 4.43: Plot of the highest SSIM value between one chosen generated image (cf. Figure 4.38)
and the training data set over the duration of training (higher value corresponds to
higher similarity). Extracted from Blarr et al. [275].
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In the following, the results of the plastificate investigations are discussed as
well as the fiber volume contents, the methods for their evaluation, and the fiber
lengths. The other sections deal with the results of the fiber orientation and the
fiber orientation tensor interpolation as well as the microstructure generation by
the GAN.

5.1 Investigations of plastificate

As a preliminary point, it should be noted that the plastificate investigations
were more of a phenomenological investigation than a statistically verified one.
In many cases, visual observations (material orientation around screw vortices,
expansion of the plastificate) or results from another type of examination by
colleagues in the International Research Training Group (IRTG) (volume de-
tection via GOM Atos 3D scanner, weighting, density calculation) should be
confirmed or new procedures were to be motivated. However, the plastificate
investigations were included in this dissertation because the majority of research
is still concerned with the characterization of the finished part after compression
molding and not the plastificate.

The fairly evenly rounded structure around the screw vortices was expected and
was already visually detectable from the scans. This double helix structure in
the cross section was, e.g., described by McLeod et al. [322]. Furthermore,
Radtke claims that there is a pre-orientation of the fibers in the plastificate strand
as a result of the discharge from the twin-screw device as well in his dissertation
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[321]. He confirms the observation in this work that in the outer layers, the
fibers are arranged parallel to the extrusion direction, as they are aligned by the
polymer adhering to the extruder walls and the discharge nozzle wall. Inside
of the strand, the alignment of the fibers are predominantly influenced by the
rotation of the screw and the feed of the material according to Radtke, which
also coincides with the author’s findings.

In contrast, the relatively constant alignment of the fibers perpendicular to the
extrusion direction in the plastificate was more surprising. Radtke also deter-
mined pre-orientations in 2009 using computed tomography of a plastificate
strand [321]. He examined five layers separately across the thickness. Even
though the work unfortunately does not show a planar evaluation on the ex-
trusion plane (x-y plane), which makes a direct comparison with the findings
in this work more complicated, a plot with the frequency of occurrence of
certain angles also shows a clear tendency towards 0°, but then drops quite
linearly towards 90° in both positive and negative direction, so that angles not
perpendicular to the extrusion direction also occur frequently. This behavior
appears quite regularly regardless of the layer examined across the thickness.
[321] This confirms findings of Tröster’s earlier dissertation [320]. He also
discovered the symmetry of the fiber orientation across the thickness of the
plastificate and the surface layer oriented in extrusion direction observed in this
work and by Radtke. In addition, he confirms the finding of the orientation
being similar along the length of the plastificate, which was also shown in this
work. In particular, he found the same course of angles as Radtke though, with
its mirror-symmetric orientation regarding the length axis of the plastificate.
Specifically, he shows a similar broad and flat frequency distribution with a low
maximum value indicating a small degree of preferred orientation in extrusion
direction. In fact, he schematically depicts the fibers being oriented in -60° (left
of the middle length axis of the plastificate) and +60° (right of the middle length
axis of the plastificate) to the extrusion direction. [320] This result of Tröster
and Radtke is the only one that is clearly not congruent to the findings in this
work. However, both Radtke and Tröster examined polypropylene with glass
fibers. The one polycarbonate scan in Figure 4.3 alone shows how strongly
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the matrix system influences the plastificate. Furthermore, the fiber volume
content and the speed of extrusion certainly influence the orientation as well
and multiple of these parameter combinations would need to be investigated in
order to make a definite statement on this. Anyway, the evaluated orientation
behavior of the polyamide plastificates in this work is consistent with the visual
impression of the scans and physical plastificate sections.

Pre-orientation in the plastificate is crucial for correctly predicting the fiber
orientation of the final part in process simulations. This non-uniform, local
fiber orientation state, which is influenced by the extruder geometry, has so far
typically either been neglected by assuming an isotropic or planar-isotropic ori-
entation state or has been measured through image-processing of scans similar
as in this work, which is then mapped to the finite element model of the charge
used in the simulation [5]. The regularity of both the vortex orientation and the
orientation in the extrusion direction in turn allowed considerations to generate
these initial fiber orientation states in a different way instead of determining
them each time in a time-consuming manner by CT scans. Schreyer therefore
developed a novel approach to determine the initial fiber orientation state with
the help of the tensors determined by the author and based on geometric as-
sumptions [276]. Depending on the extruder type and the dimensions of the
plastificate, the tool can generate a three-dimensional data set that outputs the
mesh information together with the tensorial representation of the initial fiber
orientation state. With the help of this simplified generation, the influence of dif-
ferent geometric variations of the plastificate, different extruder variations and
different insertion positions of the plastificate in the press on the final product
of the compression molding process can be estimated without any experimental
effort. An example of such a generation (right) and the corresponding original
state (left) of a CF-PA6 plastificate is shown in Figure 5.1. [276]

As far as the porosity and the expansion of the plastificates are concerned,
observations and results of alternative methods were able to confirm the results
of this work. When systematically measuring the volume via GOM Atos 3D
scanner, the weight and calculating the consequential density of the old and
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Figure 5.1: Section of a scan of a CF-PA6 plastificate with their measured orientation tensors plotted
at the left swirl and the geometrically generated ones at the right swirl - superimposed
as tensor glyphs. Extracted from the publication [276], co-authored by the author.

new ends of various plastificates, colleague Christoph Schelleis was able to
determine a higher porosity (and thus a lower density) of the front end in each
case. Using the identical method, the same correlation between higher porosity
and higher screw speed was also demonstrated by Sven Löwe in his Bachelor’s
thesis [327]. He consistently showed that higher rotation speed led to smaller
densities and therefore higher porosities both for high and low fiber volume
content. He furthermore showed that higher fiber volume contents lead to lower
densities and higher porosities compared to plastificates with lower fiber volume
content. [327]

5.2 Determination of fiber volume content

The precise determination of fiber volume content is of particular interest for
discontinuous fiber reinforced polymers. This allows both checking the set
process parameters to achieve the desired fiber volume content and providing
exact values for modeling.
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Motivation for the development of recognition from CT images instead of the
exclusive use of experimental methods was already given in the State of the Art
(Section 2.2.1.3). In the following, the results of all methods used are evaluated
and possible improvements are suggested.

5.2.1 Chemical method

As for the method itself, chemical acid-based dissolution of the matrix is the
standard for determining the fiber volume content of CFRP, but it is more
complex and labor-intensive than TGA [328, 329]. There are no comparative
values and no better or similarly good methods - therefore the quality of the
results cannot be checked. Nevertheless, the measurements are used as ground
truth because, according to current knowledge, there is no superior method.

As far as the FVC results are concerned, initially the low values at the borders
of the specimens and the higher values towards the middle of the thickness
are striking. The so-called "shell-core effect" known from injection molding
signifies changing fiber volume content and fiber orientation between shell and
core layer of the plate [5, 17]. While the fiber orientation effect is only visible
in the area of the initial charge (and will still be discussed in Section 5.4) and
non-existent in the flow area, the effect of the compression molding process on
the through-thickness FVC is clearly visible.

In general, the measured mean values (24.2 % for Plate 2 and 23.6 % for Plate
3) deviate from the target value of 25 %. It is difficult to answer why the true
values are slightly below the values actually set via the process parameters. This
is likely to be a measurement error, although the cause may be of various kinds.
The calculation made for the process may not have been accurate enough or the
feeding speed of the fibers may have deviated slightly from the calculated one.
Fiber losses in the extruder are also conceivable.

Furthermore, the clear increase in values when using larger samples is surprising.
Although the six samples of course do not provide sufficient statistical certainty,
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the effect seems clearly pronounced. While an increase in mean fiber length
with increasing specimen sizes due to the cutting off of longer fibers in small
specimens makes sense, there is no obvious reason why the pure fiber content
should be lower in small specimens. A literature search on this did not yield
any results; while mechanical tests are often performed with different sample
sizes, most authors determine FVC with only one sample size. Two possible
explanations are discussed in the following. Firstly, the significance of the FVC
value of a smaller sample is generally lower, as it is statistically more likely to
catch a spot in the panel that happens to be particularly rich in fibers or matrix.
In the cases measured, however, it would then have to be a very matrix-rich
area in each case. Another possible explanation is the fact that fibers can be
pulled out of the material at the cut surfaces when the sample is cut and removed
from the plate. As the small samples have a higher surface-to-volume ratio,
this effect is more significant for them. Now, the fibers could also get stuck in
the specimen and be detached from the plate, potentially increasing the FVC.
However, the probability that the larger part of the fibers is stuck in the plate is
particularly high for small specimens, which in turn could lead to the shorter
piece in the specimen being torn out. The probability that the longer part is not
in the specimen is lower for larger specimens. The idea is illustrated graphically
in Figure 5.2. Furthermore, a similar effect to the problem with incineration is
conceivable as a possible cause: Larger specimens have to be exposed to the
acid for longer to dissolve the matrix due to the poorer surface-to-volume ratio.
However, since the same treatment time was selected for the smaller specimens,
the matrix could be removed more quickly and the fibers subsequently attacked,
as sulphuric acid is in fact oxidizing and reacts with graphite. This could also
lead to the lower measured fiber volume content.

There is also a recognizable difference between the charge and flow areas. The
three samples in the charge area of Plate 2, FLD1 - FLD3, have on average a
higher FVC than the samples in the flow area, FLD10 - FLD12, and C1 - C3

of Plate 3 also have on average more fibers than F1 - F3. However, the central
samples of Plate 3, which have an even higher FVC than the charge samples, do
not quite fit the picture. Since the differences in the mean values are on average
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Figure 5.2: Schematic representation of the theory for the reduction of the fiber volume content in
small specimens. Left: The fiber is less embedded in the small specimen than in the
plate and is therefore torn out of the specimen. Right: The fiber is more embedded in
the large specimen than in the plate and is therefore torn out of the plate.

less than 1 % between the different areas of Plate 3, the possibility that these
differences are due to measurement errors or general plate fluctuations must
also be taken into account. Overall, the number of samples is too small to be
able to make valid statements. What is also noticeable is that the values in the
center of all three columns, i.e. the values of samples C2, CF2 and F2, are the
smallest. Considering the flow of the plastificate depicted in Figure 5.5, it makes
sense that most fibers are pushed towards primarily the upper and partly also the
lower area of the plate. The results of Plate 3 are summarized comprehensibly
as boxplots in Figure 5.3.

In his dissertation, Radtke carried out similar measurements of the fiber volume
content in the different plate areas [321]. He found that greater fluctuations were
observed in the results across the width of the plate than along the flow path.
This observation is consistent with our results: The standard deviation within
areas C and CF is large (see Figure 5.3). However, the fluctuations in the flow
area over the height of the plate are small. In contrast, the FVC values along
the flow path in the area of the 3-sample (bottom) and the 2-sample (center) are
quite constant. Only along the 1-samples (top) is the deviation similar to that
within the charge and transition region of the plate. The upper samples (top,
1-samples) generally show a high FVC. However, this corresponds very well
with the skewed flow front discovered, which will be explained in the context of
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Figure 5.3: Boxplots for the fiber volume content results of Plate 3 categorized into charge, transi-
tion area and flow area (a) and top (1), center (2) and bottom (3) specimens (b). Data
first published by Scheuring et al. [274].

the determined fiber orientations, according to which a slightly upward-pointing
fiber orientation and thus flow front could also lead to an increased fiber volume
content at the upper end of the plate. The flow area shows the smallest average
FVC along the flow front; presumably not too many fibers arrive there.

5.2.2 "Average or above" (AOA) thresholding 1

With regard to the two computational methods for determining fiber volume
contents, the novel thresholding method AOA will be discussed first. It shall
be noted here directly that this method was born out of necessity, so to speak,
as conventional thresholding methods did not work, as can be seen from the
Appendix, and alternative methods such as Gandhi’s [5] were not possible.

The average of the FVC values determined by chemical dissolution was 24.2 %
and the AOA method determined an average value of 26.5 %. The absolute mean
deviation of 2.7 % is therefore greater than that of the CNN with about 1.5 %
(cf. Table 4.3). The deviation was mainly increased by the two outliers, which

1 This section is based on the author’s publication [188].
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were included in the result because there was no explanation as to why those
scans should differ (similar histograms to other scans, similar visual perception,
etc.). Without these two outliers, however, the average deviation of the AOA
thresholding would only be 0.6 %, which is more than twice as good as the
CNN. In addition, the results in Figure 4.11 of the AOA appear more reliable
and plausible than the results in Figure 4.14 of the CNN. The fact that the
average value of the CNN fits well is due to the average of the training data or
is a coincidence. Sample by sample, the agreement is much worse than with
AOA thresholding. So if the FVC of a new sample had to be determined, AOA
thresholding could probably be used with more confidence than the CNN.

If the method is to be evaluated as such, the general validity of the approach
must be critically examined. There is no guarantee that it will also work for
alternative material systems or scans of a different quality. It is fundamentally
based on the fact that the samples have fewer fiber bundles at the border of
the sample (in relation to the thickness) and many fiber bundles in the middle
of the sample. This changed the histograms per slice, which generally did
not show two clear peaks. The meaningful determination of a threshold was
therefore difficult with these changing histograms across the thickness. For
all materials/scans that do not exhibit this peculiarity, the approach will not
be of interest, at least not in exactly the same way. Regarding the adjustment
of the threshold determination across the thickness, alternative/more complex
methods could be used than the binary decision between the Otsu threshold
of a single slice and the average Otsu threshold of the whole stack chosen in
this work. Instead, another non-constant adjustment of the threshold could be
developed. A mathematical determination of the variation of the histograms
over the thickness and a corresponding continuous adjustment of the threshold
values would be possible. Theoretically, it would still be possible to locally
enhance the CT scans with the low resolution (i.e. single fibers and matrix
mixed as mean gray value) with small CT scans of higher resolution in order
to be able to better interpret the gray values. However, the aforementioned
difficulty that an increase in stochastic noise occurs at higher resolutions makes
segmentation even more difficult. In addition, the sample would then have to
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be cut into smaller pieces so that the sample fills the entire field of view, as
otherwise even more noise would occur. This in turn creates different boundary
conditions if the FVC is still to be determined destructively and was no longer
possible in the case of this work anyway.

The previous application of the filters had a non-negligible influence on the
quality of the results. Nevertheless, it should be emphasized that the main factor
is thresholding. When looking at Figure 3.15, for example, it becomes clear
that although the median filter was applied to both images, the amount of fibers
is still greatly overestimated by the normal Otsu threshold. The correct choice
of filter is an additional finetuning factor. Considering that neural networks are
essentially just a series of filters, the importance of filter selection should not be
underestimated, especially in the case of noisy images with low contrast.

The AOA thresholding method is by no means optimal, but simple global
thresholding turned out not to be an option. The literature was also surprisingly
sparse, especially for discontinuous fiber reinforced polymers. Apart from a
few sources already mentioned in the State of the Art, Yu et al. [55] investigated
fiber volume contents, for example, using a method that combines scanning
electron microscopy and micro-computed tomography; however, for yarns in
textile composites, which in turn has a completely different structure. Wintiba
et al.’s work [330] also deals with woven composites. For these reasons, various
approaches were tested, including a normalization of the threshold values in
relation to the mean grey value/brightness of a scan, but none of them worked
as convincingly as the AOA method. It is a quick and simple method with
sample-wise even better results compared to the high development and training
effort of the CNN. However, it was particularly convincing that the FVC values
calculated by the method increased or decreased with the experimental values,
apart from the two outliers, so that the trend was mostly correct.

The possibility of easily investigating the course of the FVC over the thickness
of the sample, which was already mentioned in the motivation, should of course
be emphasized. As can be seen in Figure 4.12, the material examined in this
work shows a strong decrease in fiber concentration towards the edges, with a
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maximum in the middle of the sample. Gandhi et al. [5] showed similar results
for LFT processed by injection molding (see also [331]). They also showed that
the core layer width and maximum concentration increases with higher nominal
fiber concentrations. This fiber distribution across the thickness is of course
particularly important in bending tests, where most of the load falls on the outer
areas.

5.2.3 CNN 2

At first glance, the CNN was convincing with the prediction of a mean FVC of
24.3 % (compared to the experimental value of 24.2 %) and a mean absolute
deviation of only 1.5 % (see Table 4.3). However, as already mentioned in the
previous section, this is probably due to the average of the training data or is
a coincidence. The good agreement of the mean values should not be given
great importance if the individual values are usually not correct. It is noticeable
that, as with the thresholding approach, some samples are predicted very well,
while others deviate by well over one percent. Apart from the two outliers of
the AOA thresholdings, however, the CNN predictions are worse than those of
the AOA method. So while the maximum error is lower with CNN, the logical
relationship (increasing experimental FVC leads to increasing predicted FVC)
is found less frequently than with the thresholding approach (as seen in Figure
4.14). Since the CNN uses the experimental data as a training basis, while the
AOA does not, and the CNN nevertheless makes relatively weak predictions,
this clearly speaks in favor of AOA thresholding.

There are various possible reasons for the loss behavior mentioned in the Results,
according to which the validation loss is smaller than the training loss. The
first possibility is the influence of so-called regularization methods (such as
dropout). This deliberate, random omission of neuronal connections is used
in the training process in order to better generalize the training, as explained

2 This section is based on the author’s publication [188].
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in the State of the Art. This often sacrifices some of the training accuracy.
However, dropout is not used in the validation process, which is also the default
setting in Keras. As a result, the validation loss may be better than the training
loss. It would be possible to determine this regularization loss by manually
applying dropout in the validation phase, for example, in which case the curves
would probably look different. Another reason could be the timing of the loss
calculation. The training loss is normally reported continuously as an average
of the losses of a batch within an epoch. The validation loss, on the other hand,
is determined once at the end of an epoch, after the model has already been
updated throughout the epoch, allowing it to benefit from the full extent of the
epoch’s learning. If the validation loss were shifted to the left by half an epoch,
which would correspond to the mean report time difference, the graphs would
also already look different. The last and probably worst reason would be that
the validation set is too simple. This would be conceivable because the training
data (original and augmented scans) of a sample did not strictly belong to the
training or validation set in this work. Adjusting this would be a necessary
improvement.

There are several further ways to improve the CNN. Perhaps the most obvious
would be more diverse input training data. Although 448 scans were used for
training, these came from only 14 original scans that were augmented. Not
using more original scans was due to the fact that experimental FVCs were
only available from the 14 samples, as these examinations had to be carried
out externally at FIBRE. In addition, the fiber volume contents of these 14
samples were all between 22.08 % and 28.6 %. As a result, the network was
highly trained to predict in this range. The only attempt to augment this dataset
was to use scans of pure PA6, as it had the guaranteed FVC of 0 %, but this
was not successful. It would certainly increase the accuracy of the CNN in
the long term if a wider variety of FVCs were included. However, it should
be mentioned here that the CNN naturally made better predictions in terms of
mean error than simply taking the mean of the FVC values for each sample. The
reason for using these samples of very similar fiber volume content was again
due to the available data: the plates were manufactured at Fraunhofer ICT and
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CF-PA6 plates were only produced with the same mean FVC. The fluctuation
of the FVCs is therefore purely due to the fluctuations of the FVC across the
plates. These were not small, which in turn demonstrates the necessity of such
a local investigation. Another way to increase performance would be to use
a higher resolution for the scans. The reduction to 100 px × 100 px × 100 px
was necessary due to the limitation of computational resources. Any higher
resolution led to memory issues in the bwHPC cluster, which was used for the
calculation. A higher resolution would allow a better inclusion of single fibers or
smaller fiber bundles and improve the distinction between fibers and irrelevant
gray value deviations of the matrix. However, it should also be mentioned
that this resolution is quite competitive when compared to other CNNs [332–
334]. Of course, an originally higher resolution of the CT scans could also
improve this further, but this brings us back to one of the basic dilemmas
of this thesis, namely that this would result in very small specimens whose
informative value with regard to mechanical characterization parameters such
as the FVC is low (not to mention the fact that a corresponding device quality is
also required for this). The aforementioned increase in noise at low resolutions
further complicates the evaluation, so that even small, high resolution samples
in combination with corresponding larger but lower resolution scans is not an
optimal solution.

The direct use of 3D scans should be emphasized as a unique selling point
compared to other CNNs in the field of materials science that work with CT
scans as training data [334, 335]. No prior slicing is required. The complete
evaluation of the 3D scan, of course, slows down the calculation enormously.
With regard to the above-mentioned point of computational resource scarcity,
the use of 2D slices instead is of course very helpful. It also simplifies the use of
pre-implemented methods from tensorflow (but also pytorch), as most of them
are designed for 2D images. In general, the development effort and also the
training effort compared to the AOA thresholding must of course be emphasized
negatively. However, once trained, the effort required to determine the FVC is
considerably less than the experimental effort.
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5.3 Fiber length distributions

The results of the fiber length evaluation in Figure 4.15 and Figure 4.16 show
an average fiber length of just over one millimeter. While this does not sound
like much for a long fiber reinforced material, it corresponds to an aspect ratio
of a good 150 for carbon fibers of 7 µm, which can certainly be counted as long
fibers. However, the fact that the median is less than half as large at around half
a millimeter raised the question of the correct means of a distribution function.
In fact, depending on the choice of the mean value in a model, significant
differences can be achieved. This would be a separate mathematical topic that
shall not be addressed here.

It was also noticeable that the average fiber lengths in the charge area appeared
to be smaller than in the flow area. This is consistent with the results of Radtke
[321]. He also found that the fiber length distribution at the end of the flow
path showed a shift towards longer fibers. Such an effect is also observed
directly behind the insertion area, which corresponds more to the position of the
specimens FLD10 - FLD12 in this study. According to Radtke, the proportion
of fine fibers at the end of the flow path is lower than in the charge area, which
means that greater average fiber lengths are observed towards the end of the
flow path. Longer fibers offer more interaction with the melt and are therefore
entrained for longer. This is consistent with the fiber length distributions in
Figure 4.15.

It is also noticeable that the average lengths increase with the size of the speci-
mens. This is not surprising, as longer fibers are cut off at the edge of smaller
specimens and it is therefore statistically more likely to have fewer long fibers
in the specimen. These long fibers have a strong influence on the average fiber
length and therefore raise the average. As this was no longer quite so clearly
visible between the medium-sized and large specimens, it was assumed that this
effect is saturated at around 25 mm side length (due to the fact that hardly any
fibers are longer than this side length). For this reason (and also because, for
example, the diameter of the round samples for commercial FVC determination
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by ashing was also 25 mm), this size was used for the FVC investigation and
retained for the microstructure GAN.

In principle, the average fiber lengths are rather short compared to the results
of Radtke [321] and Tröster [320]. However, both used glass fibers and it is
assumed that the thin and fragile carbon fibers are cut/destroyed much more
easily by the screw extruder and the shearing. Tröster also explains that a maxi-
mum stiffness of 95 % is already achieved with a fiber length of approximately
1 mm [320], see also [5, 336]. In systematic studies of the influence of fiber
length, Thomason and Vlug even found no dependence of stiffness on fiber
length above 0.5 mm as long as FVC and FOT are the same [337]. However,
the influence on the strength is still existent, otherwise there would be no need
for long fibers.

5.4 Fiber orientation distributions

The measured fiber orientation distributions and fiber orientation tensors, of
which selected ones were shown in the Results, showed partly expected and
partly surprising characteristics, which are discussed in the following.

5.4.1 A11 dominant and planar orientation

Looking first at the measured orientations of Plate 3 and Plate 4 in Figure 4.33,
for example, it becomes clear that the tensors are - as expected - very much
aligned with the direction of flow of the material in the press. The tensors of
Plate 3 are printed below for clarification. In addition, the main components of
the nine tensors are shown again in Figure 5.4, where the dominance of the A11

component becomes even more visible.
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C1 =


0.798318 0.153878 0.004610

0.153878 0.195227 0.006829

0.004610 0.006829 0.006455

 CF3 =


0.876894 0.080256 −0.008694

0.080256 0.121239 −0.000411

−0.008694 −0.000411 0.001867



C2 =


0.902426 0.055382 0.009222

0.055382 0.090359 0.006853

0.009222 0.006853 0.007215

 F1 =


0.871685 0.204490 −0.002035

0.204490 0.124755 0.003296

−0.002035 0.003296 0.003560



C3 =


0.810983 0.098676 0.003675

0.098676 0.185093 −0.002959

0.003675 −0.002959 0.003924

 F2 =


0.851010 0.086686 0.005897

0.086686 0.140799 0.009363

0.005897 0.009363 0.008191



CF1 =


0.821371 −0.026740 −0.011685

−0.026740 0.176429 0.001062

−0.011685 0.001062 0.002200

 F3 =


0.749631 −0.234513 −0.000550

−0.234513 0.247066 −0.001583

−0.000550 −0.001583 0.003303



CF2 =


0.923717 0.032840 −0.005360

0.032840 0.074781 −0.000746

−0.005360 −0.000746 0.001502


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Figure 5.4: Main components of the nine measured tensors of Plate 3 (CF-PA6).
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However, if you look at the tensors of Plate 1 (cf., e.g., blue tensors in Figure
4.24), you can see that the A22 component is also dominant in some cases and
not all tensors are strongly aligned in the direction of flow. This difference is
caused by the different specimen sizes. The 10 mm × 10 mm large specimens
of Plate 1 cover very small, local areas where a fiber bundle part can sometimes
be oriented against the flow direction and this is not compensated by enough
other fibers and fiber bundles that are oriented "normally". An A11-dominant
orientation can therefore certainly be assumed, as the results of Plate 3 (and 4
and the hybrid one) are to be regarded as more generally valid. However, as a
starting scenario for the tensor interpolation, this rather complex state of Plate 1
was not undesirable in order to test the methods for difficult cases.

It is also noticeable that all the orientation tensors/distributions measured over
an entire specimen are almost planar states. The A33 component is always
below 0.1 (in the case of Plate 3 even below 0.01, cf. Figure 5.4). This was also
to be expected due to the thicker plastificate, the thinness of the final plate and
the resulting flow path.

5.4.2 Orientation behavior across thickness

Figure 4.19 shows curves of the main components of the fiber orientation tensors
over the thickness of different specimens. For the carbon fiber reinforced
specimens, similar plots of the main components were found for the same
specimen positions as for the glass fiber reinforced specimens. Slight differences
at the edge of the thickness may also be due to slightly different cuts of the scans
of the samples. Cutting away the unevenness at the edges correctly without
taking away too much of the specimen is challenging. In contrast, what clearly
differs are the curves of different specimen positions; especially the curves of
charge specimens and flow specimens. The curves of flow specimens were
relatively predictable with constant values across the thickness and a strong
A11 component. In contrast, the A11 component of the specimens in the charge
region drops sharply at both edges and the A22 component increases there.
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While this effect is also a kind of shell-core effect, it is not the shell-core effect
known in injection molding, which occurs due to the fountain flow [5]. Because
the mass has to flow from the center to the edge, the fibers in the core layer are
mainly directed against the flow and in the shell layers rather in the direction
of the flow [5]. This is not the case here. Instead, the observed courses are due
to a different phenomenon: The plastificate is inserted in the charge area and
the fibers in its outer layer there are mainly oriented in the extrusion direction,
i.e. e22 direction. On contact with the "cold" tool surface, the orientation there
freezes directly as it appears in the plastificate. In the flow area, however, the
orientation of the material flow in the e11 direction naturally dominates. This is
consistent with the results of Radtke [321]. He also claims that the longitudinal
orientation prevailing in the outer layers of the plastificate remains unchanged
in the test plates in the insertion area, as it freezes immediately on contact with
the mold [321].

5.4.3 Skewed flow front

As already seen, the expected main flow direction also developed in the plates.
Due to the fact that the length of the plastificate does not extend completely over
one side of the plate, a slight widening of the flow in the direction of the upper
and lower edge of the plate at the end is to be expected, as shown in Figure 5.5.

In fact, this phenomenon can also be seen, e.g. in the tensors of the plates on
the left-hand side in Figure 4.33. In addition, however, the averaged tensors of
these plates (see middle column in Figure 4.33) are never completely oriented in
the e11 direction (or also 0° direction). Instead, they all point slightly upwards.
This was already evident in the tensors of second-order of Plate 1 with the
smaller specimens, which was used for the interpolation method evaluation
(see e.g. Figure 4.24). This deviation from the extrusion direction has already
been partially observed in literature [320, 321]. The reasons for this could be
manifold. An uneven tool in the press would immediately come to mind, but
this was checked and did not appear to be the case. This is also contradicted by
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Charge (C) Transition (CF) Flow (F)

Top (1)

Center (2)

Bottom (3)

Figure 5.5: Schematic representation of the expected, mostly one-dimensional flow pattern based
on the initial situation.

the fact that an attempt was made to insert the plastificate rotated by 180° and a
downward drift was detected. It therefore appears to have been caused by the
plastificate itself, which seems to be inhomogeneous in some way. Tröster comes
to the same conclusion: In addition to the insertion position of the plastificate,
the direction of the plastificate is also decisive for the resulting fiber orientation
and, in particular, deviations from the flow direction. However, he does not
investigate further why this is the case. Radtke [321] investigates the cause by
using thermographic images. He records a temperature difference of approx.
10 K - 30 K between the front and back ends of the plastificate strand. As a result
of the plastificate being discharged from the plastificate nozzle, the plastificate
cools slightly more at the end that is discharged first. The tunnel heater at the
outlet of the discharge nozzle partially, but not completely, compensates for
this heat loss. He claims that this temperature gradient in the plastificate strand
results in a difference in viscosity in the strand. This could lead to a slightly
rotated orientation of the flow front relative to the mold edges. [321] However, a
clear temperature difference could not be detected in measurements in this case.
In turn, it is assumed that the geometry and/or the porosity of the plastificate
could play a decisive role. Corresponding investigations have already been
shown in Section 5.1. Radtke also mentions the so-called lofting (expansion of
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the strand due to the recovery of the relatively rigid fibers, which are not fixed in
the molten matrix) at the front end of the plastificate [321]. However, since the
fibers are quite short, the lofting could also be caused by the matrix. The short
dwell time in the extrusion die subsequently leads to strand expansion. This
lofting leads to increased deviation of the cross-section across the extrusion
direction and the geometry itself (elongation of the front end in the extrusion
direction) and to increased porosity of the front end. These effects could enable
such a skewed flow front and thus lead to a deviation of the main orientation
and hence to material anisotropy.

5.4.4 Interpolation of fiber orientation tensors

In the following, the fiber orientation tensor interpolation methods are discussed
and evaluated.

5.4.4.1 Component averaging method 3

The weighted, arithmetic averaging of the components based on the Euclidean
distance is a linear approach and by far the simplest. It impresses with its
calculation speed and is superior in terms of simplicity of implementation and
general complexity. It is therefore still frequently used. The problem of tensor
swelling already discussed in the State of the Art [122–125] was also evident in
this work. Tensor characteristics were therefore not monotonically interpolated,
which is considered a disadvantage. In the course of this, the scientific question
of distinguishing between interpolation and averaging also arose (cf. [338]).
This type of component averaging can certainly be used with a clear conscience
when it comes to determining the mean value of a set of tensors. Interpolation,
however, searches for values between given ones, which this method cannot
provide in the author’s opinion.

3 This section is based on the author’s publication [17].
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5.4.4.2 Decomposition method 4

The decomposition method impresses with its monotonic behavior. This is also
visually appealing in the agile rotational behavior of the tensors and meaningful
changes in shape, which was also observed by other authors [123, 125]. Al-
though mathematically more complex, the calculation is still extremely fast,
at least for the smaller scopes tested. It was impressive to see how equally
good the interpolation was when the same nine given tensors were provided in
different coordinate systems (rotated by angles). An alternative to the method,
which already works very well as it is, would be to use projectors instead of
quaternions for rotation interpolation, as implemented by Krauß and Kärger
[125]. These projectors have the decisive advantage that they are unique for a
given tensor.

5.4.4.3 ANN 5

The ANN obviously requires the most time to output the interpolated tensors.
With training times of less than an hour on an office laptop (Intel(R) Core(TM)
i5-10210U CPU @ 1.60 GHz, 2.11 GHz and 16.0 GB RAM) with the subsequent
output of 160 tensors, this is nevertheless still fast compared to around two
hours for a single scan and tensor. However, the increased implementation effort
for such a network must be taken into account. In this case, it was actually
low, as a network already developed for a similar application was adapted. The
interpolation of the ANN is not very convincing with non-monotonic behavior
similar to component averaging. With further development, nonetheless, a better
result could be expected. A more general question is of course whether a neural
network, which relies on a lot of training data, is at all useful for an application
with a data set this small. Presumably, the network would have to be given
additional input for better performance. Working with scarce (or sparse) data

4 This section is based on the author’s publication [17].
5 This section is based on the author’s publication [17].
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and the challenges involved have accompanied artificial neural networks since
the beginning of their use phase [339] and are a field of research in their own
right. Solutions range from transfer learning [340] and novel approaches for data
augmentation [341] to the development of novel, "greedy" algorithms [342].
The additional use of the data employed by Sabiston et al. [133] alongside
the nine tensors in this network of course did not lead to any improvements
as different specimen positions were used and other initial basics differed.
Alternatively, this network’s application must be restricted to the prediction
of FOT of an entire process with thousands of values and not a single plate,
as by Sabiston et al. in [133], for which this network was also developed and
where it was convincing. It has another very decisive disadvantage: The other
two methods work instantaneously for each following set of tensors between
which they are supposed to interpolate. The ANN, however, must theoretically
be retrained for a new initial state.

5.4.4.4 Quantitative comparison of the three methods 6

The interpolation methods were also analyzed quantitatively in the Results
by omitting one measured tensor in each case and determining it using the
respective method. The Frobenius norm of the measured and calculated tensors
was subsequently calculated. The difference between these norms, representing
the difference between two tensors in one value, was plotted for each method in
the Results chapter (Section 4.6). However, the question arose as to whether
this reduction of the tensor information to a single value of this norm can do
justice to this question. Hence, the absolute differences of the individual tensor
components per method can be seen in Figure 5.6 and the averaged differences
for all nine tensors per component and method in Table 5.1.

It is immediately apparent that the component averaging method performs best
according to this type of error determination, ahead of the neural network and

6 This section is based on the author’s publication [17].
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Figure 5.6: Comparison of all methods concerning the absolute difference between the same
component of the measured and corresponding interpolated tensor. Extracted from
Blarr et al. [17].

Table 5.1: Deviation of calculated value to measured value of a specific component for a specific
method averaged over all nine measured tensors. Extracted from Blarr et al. [17].

Component Average absolute error of different methods

CA D AI

A11 0.233 0.401 0.248

A12 0.09 0.169 0.105

A13 0.009 0.112 0.02

A22 0.236 0.421 0.258

A23 0.043 0.071 0.04

A33 0.021 0.05 0.011

MAE 0.105 0.204 0.114
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with the decomposition method performing worst. This hardly coincides with
the observed interpolation behavior. The shortcomings of the considered error
measure will therefore be discussed here. First of all, this type of "substitute
calculation" implies a change in the initial state, as the data set from which
the calculation is made is reduced by 1/9. Furthermore, the determination of
the corner tensors is particularly problematic if they are omitted: it resembles
an extrapolation, as the position is outside the grid of given tensors. Thus, a
fundamentally different property of the methods, that of extrapolation and not
interpolation, is assessed. In fact, this statement is confirmed in so far as the
error values are significantly reduced if these corner tensors are omitted from
the calculation - especially considering the decomposition method (see Table
5.2).

Table 5.2: Deviation of calculated value to measured value of a specific component for a
specific method averaged over the five tensors of Tm without the corner nodes
(UL,UR,LL,LR). Extracted from Blarr et al. [17].

Component Average absolute error of different methods

CA D AI

A11 0.158 0.181 0.172

A12 0.061 0.073 0.065

A13 0.007 0.087 0.01

A22 0.161 0.206 0.179

A23 0.022 0.047 0.023

A33 0.01 0.039 0.008

MAE 0.07 0.106 0.076

Deviation to error
0.035 0.098 0.038

with all tensors

However, it remains unclear whether this direct difference between the tensor
components is suitable as a measure of error either. It has been shown that
the components alone do not seem to be sufficient for a description of their

250



5.4 Fiber orientation distributions

nature, but only the alternative description via invariants and eigenvectors made
it possible to grasp their structure at all.

In addition, there are of course further points for discussion. It is certainly
important to mention the unusually complex initial state with very different
rotations of the measured tensors, which does not represent the typical fiber
course that occurs in this process. It became clear in the course of the dissertation
that the chosen sample size of 10 mm× 10 mm was quite small and reflects very
local effects. For the comparison with experimental values, which will follow
in this discussion, significantly larger samples were therefore chosen to better
represent the process behavior. As already mentioned, however, this allowed
the methods to be tested in a kind of worst-case scenario, which in turn was not
undesirable. Many mathematically motivated methods for tensor interpolation
are often not even tested with more than two tensors, let alone more complex
initial states, which makes realistic or non-academic use rather difficult. This
was hence intended to be avoided in this work.

The general challenge is the use of methods to solve an algebraic problem for
an application that is actually subject to physical boundary conditions and flow
phenomena. This naturally raises the question of whether physical conditions
(e.g., insertion of the plastificate or orientation information of the plastificate)
should be added to such a method. Nevertheless, the decision was made not
to pursue this, as it was perceived to be an unnatural means of achieving the
desired outcome. For the same reason, a restriction of the possible angles was
not implemented, which, e.g., Krauß and Kärger have done [125]. Brannon
even argues that methods for mixing rotations must be selected according to the
physical application [343]. This speaks against the existence of a universally
valid procedure.

There are many possibilities for improvement. First of all, adjustments to the
methods implemented here are conceivable. The aforementioned restriction of
the possible angles could be achieved by comparing the scalar products of the
possible quaternions involved. By choosing the combination with the maximum
scalar product, the smallest angle is obtained. Normalization of the quaternions
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would also be important in order to obtain unit quaternions for additions. The
ANN could certainly be optimized by the number of layers, depth of the layers,
learning rate, batch size, choice of loss, etc. In particular, the increased isotropy
of the tensors in ANN (similar to the swelling effect in component averaging)
should be addressed.

As a completely different approach, the direct interpolation of fourth-level
tensors was tackled by some of the authors of the paper [17] with a complex
method in another paper [338]. In addition, the author’s simplified decom-
position method for fourth-order tensors was also successful, which will be
discussed below.

As far as further investigations are concerned, a sensitivity analysis with regard
to specimen geometry and location and different tensor fields (different plates)
should be worthwhile. In particular, more central specimens should lead to
better results (especially for the decomposition method). The methods are also
applicable for 3D geometries, so that they should be tested with parts of more
complex geometries (especially concerning the z axis) than the plates.

5.4.4.5 Validation of fourth-order tensor interpolation through
simplified decomposition method 7

Benedikt Scheuring carried out tensile tests on tensile specimens taken from the
plates at different angles [274]. This enabled stiffnesses to be determined for
the different load directions. The mean values of these stiffnesses for multiple
tensile tests on specimens from the flow area of the plates are shown in a polar
plot for the CF plate in Figure 5.7 and for the GF plate in Figure 5.8.

The flow area was chosen for comparison because of its fundamentally more
uniform structure. However, the differences to the charge area are not significant.
The values determined were mirrored accordingly due to the expected symmetry.

7 This section is based on the publication [274], co-authored by the author.
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Figure 5.7: Polar plot with the experimental stiffnesses, the modeled stiffness through Halpin-Tsai
and different Mori-Tanaka-modeled stiffnesses depending on the input fiber orientation
tensor for Plate 3 (CF-PA6). Based on experimental and modeled data published in
[274].

The higher reinforcement in 0°, i.e. flow direction, compared to 90° is just as
recognizable as a drift of the highest stiffness values to about 5° instead of 0°,
which was already seen in the CT evaluation. These observations apply more
or less to both the CF and the GF material. The most noticeable difference
between the two is that the ratio between the 0° and 90° directions differs. The
CF material is about three times stiffer in the flow direction than at 90°, whereas
the ratio for the GF material is only about two. This is due to the higher stiffness
of the carbon fibers themselves.

The fiber orientation information determined by the author has then been used
in turn for modeling approaches to compare the resulting stiffnesses with the
experimental ones. The Halpin-Tsai modeling with a shear-lag modification
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Figure 5.8: Polar plot with the experimental stiffnesses, the modeled stiffness through Halpin-Tsai
and different Mori-Tanaka-modeled stiffnesses depending on the input fiber orientation
tensor for Plate 4 (GF-PA6). Based on experimental and modeled data published in
[274].

that has been explained in the State of the Art (cf. Section 2.1.2.2) required the
determined orientation histograms (cf. Figure 4.33). Therefore, all occurrences
of angles of the nine specimens of a plate were averaged. The Halpin-Tsai stiff-
nesses were then calculated with the Python package HomoPy [344]. However,
for Mori-Tanaka (cf. Section 2.1.2.4) fiber orientation tensors of fourth-order
were required. Several approaches were under consideration for the input tensor.
First, the nine measured tensors of fourth-order were acquired with the same
approach for both the CF plate and the GF plate and averaged. Additionally,
the adapted tensor determination approach with the preceding median filter
was applied to the scans of the CF plate and the resulting nine tensors were
averaged. Finally, the presented simplified decomposition approach for tensors
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of fourth-order (cf. Section 3.7.5) was applied on both the CF and the GF plate
and the resulting 169 tensors were averaged, respectively. As an overview, the
resulting averaged tensors are plotted as tensor glyphs in Figure 5.9 and Figure
5.10.

(a) (b) (c)

Figure 5.9: Tensor glyphs of different averaged tensors of the CF plate. The basis for these averaged
tensors were (a) all measured and interpolated tensors with the preceding median filter,
(b) all measured and interpolated tensors without median filter in the evaluation and (c)
only the measured tensors with preceding median filter.

(a) (b)

Figure 5.10: Tensor glyphs of different averaged tensors of the GF plate. The basis for these
averaged tensors were (a) all measured and interpolated tensors and (b) only the
measured tensors.

These averaged tensors were then employed to calculate the stiffnesses with the
Mori-Tanaka approach, again with the help of the package HomoPy [344]. The
resulting stiffnesses are also plotted in Figure 5.7 and 5.8.

In the polar plots, it is initially noticeable that the stiffness curve, which is
based on the orientation evaluation without a previous median filter, appears
to be rotated by almost 45° and the shape also appears far too isotropic. The
pre-filtering therefore seems to have an enormous effect, which leads to a much
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more realistic result. It is also noticeable that all other stiffness curves, whether
experimental or modeled, have approximately the same angle with the greatest
stiffness, both for the CF and the GF plate. This indicates a good agreement
between the measured fiber orientation tensors and the actual/experimentally
determined fiber orientation distribution in the plate. What is also noticeable for
both plates, however, is that the modeled stiffnesses significantly overestimate
the actual values. This is somewhat more pronounced for the CF plate. Fur-
thermore, this overestimation is slightly greater with the Mori-Tanaka modeling
than with Halpin-Tsai. It can be assumed that this error is also due to the fact
that neither the one nor the other model was designed for such a complex mixed
single fiber and bundle structure. In particular, it was noticed that specimens
in the tensile test often failed on non-fully impregnated bundles. Although the
failure behavior is not directly related to the Young’s modulus or the stiffness,
it is possible that these non-impregnated or only partially impregnated fiber
bundles already contribute only partially to the force transmission in the linear-
elastic section. As a result, it is possible that the true mean fiber length and
also the true fiber volume content may be significantly lower than what was
measured experimentally and given to the models accordingly. Fiber waviness
could also play a role in the reduced effective stiffnesses. In the future, it would
be interesting to draw conclusions about possibly reduced material parameters
by measuring the frequency of larger bundles and their length/width/volume. A
further development of previous homogenization models would of course be
conceivable too. It is also noticeable that the stiffness curves of the Mori-Tanaka
model do not differ greatly, regardless of whether only the nine measured or
also the interpolated ones were averaged. In fact, this is a strong argument in
favor of the interpolation method in this case, because the corresponding initial
situations of the plates were quite uniformly anisotropic (oriented in the 11
direction) and no strongly deviating tensors would have been expected, which
seems to be confirmed. Overall, these results show how well the orientation
measurement agrees with the experimental values.

In general, the simplified decomposition method for tensors of fourth-order
by the author yields very good results (cf. tensor fields in Figure 4.33). In
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fact, it performed better than the much more complex and mathematically more
sound method by Bauer et al. [338], when used in this context of a rather big
two-dimensional tensor field.

5.5 Microstructure generation through
generative adversarial network 8

First of all, it should be mentioned that the use of the GAN for the generation of
artificial CT images of the material of this work should be considered as a kind
of feasibility study. Although there is no immediate application of the generated
images, it was important to be able to assess the enormous potential of these
networks in relation to the generation of rather irregular structures such as the
DicoFRP. With the help of some further developments, which will be discussed
below, they could be of great help.

5.5.1 Assessment of generated images

After much optimization of the network, generated images of the final network
architecture look surprisingly convincing. While some images show either an
unusually large number or barely any structures recognizable as fibers and some
images seem to combine attributes of different images in an unsuitable way,
there are also images that are difficult to distinguish from the original even
for the trained eye. This variance is also evident in the quantitative evaluation
methods. First, the signal-to-noise ratio of the output images was considered,
which, with a value of 3.70, was lower than that of the input images, but still
clearly above 1, indicating the presence of meaningful signals in comparison to
the background noise.

8 This section is based on the author’s publication [275].
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Upon examination of the grey value histograms, it becomes evident that the
output images exhibit a flatter profile and a darker maximum value compared to
the input images (cf. Figure 5.11).
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Figure 5.11: Global histogram of gray value intensities of all input images without median filter
and with median filter as well as of the batch of 128 output images. Extracted from
Blarr et al. [275].

The underlying cause of this deviation is challenging to ascertain, as are potential
corrective measures. One potential solution to achieve a more accurate match
between the histograms is to incorporate the mean value of the histograms or
even the entire distribution as additional input (cf. the following explanation of
conditional GANs (cGANs) and InfoGANs). In the context of neural networks,
evaluation is typically based on loss plots, which provide insights into the
convergence and accuracy of the network’s predictions. However, the loss plot of
this GAN exhibited significant oscillations and did not demonstrate a continuous
decrease (cf. Figure 4.35). Nevertheless, the training was sufficiently stable. It
is assumed that the oscillating behavior of the generator loss is due to the fact
that the discriminator becomes very good very quickly and thus later outputs
very similar probabilities. The generator therefore receives little meaningful
feedback. Both vanishing gradients and general convergence problems could
be responsible for this failure mode. This behavior of the loss is also not
unusual, which has already been mentioned in the Results (cf. Section 4.7). The
State of the Art (Section 2.4.2) also elucidated that it is nearly impossible to
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5.5 Microstructure generation through generative adversarial network

attain an optimal equilibrium between the generator and discriminator, as the
optimal point is a saddle point and not a minimum as for most other types of
neural networks [242]. Nevertheless, since the generator loss does not increase
exponentially, a kind of metastable state is assumed here. However, it is also
evident that further metrics must be employed to assess the quality of the
network. Subsequently, quantitative metrics were employed to directly evaluate
performance on the generated images, which will be discussed hereinafter.

The FID plot (cf. Figure 4.36) illustrates the mean FID of 128 generated images
per epoch. The improvement in the generated images can be observed as the
distance decreases. However, this decrease plateaus after a certain point, which
suggests that there is no further improvement in the images. To investigate this
in more detail, the development of a single generated image was assessed over
the epochs. In the initial example (cf. Figure 4.37), it is not possible to determine
whether the image "improves" in the final 30 epochs. This suggests that an
earlier termination of the training would also be possible. In contrast, in other
examples (cf. Figure 4.38), it appears that the final image is the best. It is evident
that the structures within the image continue to undergo significant alterations
in the final epochs, which can be attributed to the fluctuations observed in the
loss plot. However, the inability to make an absolute assessment of which
image represents the optimal outcome precludes the formulation of a clear
recommendation regarding the optimal training duration. Nevertheless, these
examples illustrate that the images do not suddenly deteriorate with further
training. Additionally, it is unlikely that any discernible improvement will be
observed beyond the 75th epoch in comparison to the computational effort.
Returning to the FID plot, it can be observed that the final value is relatively
high possibly indicating bad final image results. However, it is important to
note that the FID is highly dependent on the number of samples. In fact, the
fewer the samples, the higher the score [312]. Therefore, it is essential to
exercise caution when assessing absolute values and comparing them with those
of other networks. This is particularly relevant when considering CT images,
which present a completely different set of conditions than those encountered
with most images generated by such networks. A comparison of the ImageNet
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dataset, on which the FID is pre-trained, with the gray scale images reveals that
the former contains everyday, coloured photos with clearly definable objects,
people, etc., which cannot be compared with the stochastically distributed fibers
in the latter. Furthermore, similar FID values can also be found in other papers
with good results [345].

The capacity of the DCGAN to generate novel images was investigated by
searching for nearest neighbors in the training dataset for each generated im-
age. Two different metrics, ED and SSIM, were employed as a basis for this
investigation (cf. Figure 4.39). Both metrics demonstrated an ability to select
appropriate images as nearest neighbors and both were able to demonstrate that
the network generates images that differ significantly from training images.
The ED metric, despite being the more straightforward and faster method to
calculate, was unable to find suitable nearest neighbors in some instances for
highly novel images. This is because the ED is not capable of recognizing
similar structures that are offset slightly in spatial location as similar [319].
As a result, it is often the case that neighbors determined using SSIM are
perceived to be closer to those visually observed. The values of the ED to
the nearest neighbor and the SSIM were also plotted for the two single image
developments (cf. Figure 4.40 and Figure 4.41 for the first image in Figure
4.37 and Figure 4.42 and Figure 4.43 for the second one in Figure 4.38). All
plots exhibited a decrease at the beginning, followed by an increase in the first
example or a period of relatively constant performance apart from fluctuations.
This corroborates the difficulty previously identified in the context of the FID
in determining when an image has reached a point of no further improvement.
Apparently, after just a few epochs, images are generated to which similarly
close neighbors can be found as to the final generated image. It is noticeable
that low distance values, i.e. high correspondence with a training image, often
occur for images with few structures recognizable as fibers. Presumably, these
are then structurally so homogeneous that an image with equally few fibers in
the training data set simply shows a high degree of correspondence. However,
since there are even more images with many fibers in the training data set, but
their distance to similar generated images is typically greater, it is recommended
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that these nearest neighbor determinations are not primarily used to assess the
development of a single generated image. The FID is probably more suitable
for this purpose. In principle, however, both the nearest neighbor method itself
and the two metrics ED and SSIM proved to be quite helpful for assessing the
network. ED is particularly useful for quick comparisons and SSIM for more
precise ones.

5.5.2 Further development

Further developments of this network are conceivable and recommended. One
option would be to provide the network with additional information about the
training images. Various quantities are possible here. In addition to purely
image-based information such as the Haralick entropy from the Haralick fea-
tures [346], which provide information on the heterogeneity of the images,
the mechanical parameters mentioned in this paper, FVC, FLD and FOD/FOT,
would be of particular interest. This physical information would ensure that
the network is able to recognize and reproduce superordinate structural rela-
tionships between individual voxels. The network would have to be modified
accordingly. In literature, a so-called conditional GAN, or cGAN for short,
was first introduced, which enables the assignment of a specific label to each
training image [254]. This was tested for this problem by assigning a value of
its Haralick entropy to each image. However, the significance of such a single
value is low, and accordingly this did not improve the network. Instead, it would
be more beneficial to evaluate several values of entropy across the image in a
grid. Alternatively, the mechanical parameters previously mentioned should
definitely be employed. Subsequent developments, such as the continuous
conditional GAN (CcGAN) [255] or the so-called InfoGAN [256], are more
suitable for this purpose. A further development (to a continuous conditional
DCGAN, CcDCGAN) with mechanical parameters could be used to develop
a true microstructure generator that can generate images with a specific FVC,
FLD or FOD requested by the user. Furthermore, the development of a network
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that can process and generate 3D images must be pursued in the long term in
order to exploit the potential for the creation of RVEs.
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6 Final remarks

6.1 Summary

In this work, investigations into the plastificates were first presented. It was
shown that both the rotational speed during extrusion and the lofting of the
plastificates have an influence on their porosity. As expected, the orientation
results show double circular structures in the cross-section due to the twin-screw
extruder and almost perpendicular orientation to the extrusion direction.

To determine fiber volume contents from the scans, a slightly adapted threshold-
ing method and a convolutional neural network were developed and validated
using experimentally obtained data. While the network performed well, the
AOA thresholding was sample-wise better. Further development and inclusion
of samples with more variable fiber volume contents would be useful. The
second research question formulated in the introduction aimed at how quanti-
ties such as fiber volume content can be reliably extracted from CFRP scans,
which are more difficult to process. This work shows that adaptation of known
methods, but above all AI-based methods, can certainly provide a remedy for
low-contrast or noisy images. However, eliminating the cause and generating
better images in the first place would of course be an even better measure, but
this was not possible within the scope of this dissertation.

With regard to the interpolation of second-order fiber orientation tensors, three
different methods were tested, whereby the decomposition method based on
spectral decomposition was the most convincing. It was then applied in sim-
plified form to fourth-order fiber orientation tensors. The resulting averaged
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tensors could in turn be used without closure approximation in Mori-Tanaka
homogenization and the resulting modeled stiffnesses could be compared with
experimentally determined stiffnesses. Concerning the orientation, the results
were largely in agreement. This tensor interpolation provides initial answers to
the first research question formulated at the beginning, namely how information
from smaller specimens can be transferred to larger dimensions. First of all, it
should be noted that the consideration of information from smaller specimens
instead of purely macroscopic observations makes sense considering the fluctu-
ations of mechanical variables over, e.g., such a plate as in this work. In order
to obtain a reference to a macroscopic behavior, interpolation methods such
as the ones described above are suitable. Even for the more complex case of
tensors, there are methods that can generate realistic interpolations. However,
the resolution problem of CT scans for materials with such small constituents
as carbon fibers greatly complicates the processing of medium-sized samples.
Samples that are too small also exacerbate these methods though, as the infor-
mation obtained can be so local and deviate so strongly from the global material
behavior that a corresponding interpolation is again difficult. The problem
has therefore not been conclusively clarified and would have to be checked in
particular by interpolating fiber volume contents or fiber length distributions
too.

Finally, the development and successful use of a generative adversarial network
for the generation of artificial two-dimensional CT images was demonstrated.
From the author’s point of view, the third research question of this thesis can
therefore be clearly answered in the affirmative. Realistic images could be
generated by the GAN and there is also potential for future use to generate
three-dimensional RVEs. However, the second part must be answered positively
with reservations and caution, as this must be preceded by a great deal of further
development work.

To address the final research question of the thesis: The enormous poten-
tial of AI-based methods, especially neural networks, for the application to
such material science characterization questions could be clearly demonstrated.
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The networks showed particularly good results especially for image evalua-
tion/generation questions, where convolutional layers proved to be powerful. In
the case of tensor interpolation, more complex algebraic approaches proved to
be the better solution. However, the risks of AI-based methods should also be
pointed out here. While the GAN generated very realistic images, their objective
assessment was difficult. Still, the use of such generated images to co-train
networks (as an extension of a "real" data set) should not be problematic and
can certainly improve the performance of other networks. The overtraining that
presumably occurred in the case of the CNN, which only output fiber volume
contents in the area in which it was trained, should also be viewed critically.
However, the conclusion that a bias in the training dataset leads to a bias in
the results is straight-forward and therefore a lot of prior knowledge and work
should be put into the creation of the training dataset. The argument concerning
the unscientific nature of the "black box" of a neural network remains, as the
depth of layers, branches and weightings are usually not comprehensible.

6.2 Conclusion

This dissertation shows how image analysis methods and especially neural
networks can be used to determine micro- and mesomechanical parameters from
CT scans of long carbon fiber reinforced polymers. This enables comprehensive
characterization and scale-bridging of mechanical quantities in addition to
classical macroscopic characterization.

The following conclusions can be drawn from this work:

Neural networks with convolutional layers are a powerful tool for image pro-
cessing or image generation even of slightly noisy CT images. However, prior
knowledge of materials science must be taken into account when selecting
training data and network architecture. Interpolation methods can help to close
the gap between microstructural variables that can be evaluated from small
samples and macroscopic material behavior. However, it does not solve the

265



6 Final remarks

dilemma between resolution and sample size and the poor CT image quality due
to the small size of the fibers and their low contrast to the matrix. A fundamental
improvement of the images would of course still be desirable for all evaluation
and processing methods. Furthermore, it can be concluded that the process - as
expected - has an enormous influence on the final workpiece quality and that an
increased understanding of the process is essential in order to improve it. There
is still a great deal of research to be done on the LFT-D process in particular.
In principle, image processing, whether AI-based or not, opens up enormous
possibilities for fast, statistical microstructure analysis, even beyond the field of
fiber reinforced polymers, and will sooner or later find its way into all aspects
of materials science.
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9 Code and data availability

In the following section, links to retrieve the code and the corresponding data,
such as the scan files, are provided for all major topics in this paper that have
already been published by the author as first author. The respective link contains
more detailed information (e.g. on the exact contents of the data set).

• FVC:

– Code AOA:
https://github.com/jewelsbla/AOA_thresholding

– Code CNN: https://github.com/jewelsbla/FVC_CNN

– Data: https://doi.org/10.35097/1707 [348]

• FOT interpolation:

– Code: https://github.com/jewelsbla/oriopy

– Python package: Oriopy https://pypi.org/project/oriopy/

– Data: https://doi.org/10.5445/IR/1000153725 [347]

• GAN:

– Code: https://github.com/sklinder/microDCGAN

– Data: https://doi.org/10.35097/1822 [349]
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A FVC evaluations

A.2 Results of FVC of Plaque 2 determined by
AOA thresholding for different pre-filters
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A.3 Results of FVC of Plaque 3 determined by AOA thresholding for different pre-filters
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SCHRIFTENREIHE DES INSTITUTS FÜR ANGEWANDTE MATERIALIEN

Discontinuously fiber reinforced polymers exhibit complex microstructures. 
Quantities to characterize the latter have been developed over time, such as the 
fiber volume content or fiber orientation distributions, which can be acquired 
through computed tomography images and subsequent image processing. This 
work deals with the development of both deterministic and AI based methods 
in this context, especially considering challenges of contrast and resolution with 
carbon fibers and scale-bridging issues.
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