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ABSTRACT

Polaritons, arising from the strong coupling between excitons and photons within microcavities, hold promise for optoelectronic and all-
optical devices. They have found applications in various domains, including low-threshold lasers and quantum information processing. To
realize complex functionalities, non-intuitive designs for polaritonic devices are required. In this contribution, we use finite-difference time-
domain simulations of the dissipative Gross–Pitaevskii equation, written in a differentiable manner, and combine it with an adjoint formula-
tion. Such a method allows us to use topology optimization to engineer the potential landscape experienced by polariton condensates to tailor
its characteristics on demand. The potential directly translates to a blueprint for a functional device, and various fabrication and optical con-
trol techniques can experimentally realize it. We inverse-design a selection of polaritonic devices, i.e., a structure that spatially shapes the
polaritons into a flat-top distribution, a metalens that focuses a polariton, and a nonlinearly activated isolator. The functionalities are pre-
served when employing realistic fabrication constraints such as minimum feature size and discretization of the potential. Our results demon-
strate the utility of inverse design techniques for polaritonic devices, providing a stepping stone toward future research in optimizing systems
with complex light–matter interactions.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0229810

Topology optimization,1,2 a powerful tool for inverse design, has
revolutionized the creation of structures and devices across various
domains of physics and engineering. By leveraging gradient-based algo-
rithms, topology optimization iteratively optimizes a predefined design
region toward a structure with tailored functionality. Remarkably, with
this method, one can calculate all gradients exactly, with just two solu-
tions of the system equations, namely a forward simulation and a “back-
ward” adjoint simulation, regardless of the number of design
parameters.3 That efficiency enables practically unlimited free-form
optimization of a design region. Topology optimization has been used
in mechanical engineering for decades and is integrated into commer-
cial design tools.4 Since then, topology optimization found its way into
many branches of engineering and science. In the last decade, the pho-
tonics community has begun to widely use such inverse design techni-
ques.3–5 This approach, facilitated by fully differentiable photonic
solvers featuring built-in adjoint solvers,6,7 has led to the design of
diverse devices such as multiplexers,8 metalenses,9 mode converters,10

and many others.11–13 Importantly, topology optimization readily incor-
porates fabrication constraints through direct inclusion or soft con-
straints in the optimization process. This work extends the applicability
range and explores topology optimization to design polariton devices.

Polaritons are quasiparticles that arise from the strong light–
matter coupling between excitons in quantum wells or wires and
confined photonic modes in optical microcavities.14,15 Their
bosonic nature allows a coherent state in which a single mode is
macroscopically occupied.16 Polaritons exhibit beneficial proper-
ties for diverse applications such as low-threshold lasers and light
emitters,17 polariton optoelectronic circuitry and logic gates,18 and
quantum information processing.19,20 Examples of polariton devi-
ces include waveguide couplers,21 transistors,22 and directional
antennae.23 Central to the design of polariton devices is the engi-
neering of the effective potential landscape experienced by polari-
tons.24 Various approaches, such as etched mesa structures,25 local
variations of the cavity height,26,27 electrostatic straps,28 and exci-
tonic reservoir confinement mechanisms,29,30 enable control over
the polariton potential landscape. Often, a description based on a
generalized open-dissipative Gross–Pitaevskii equation is enough
to model the dynamics of the system. This is a widely used
approach in both inorganic15 and organic32 microcavities. In this
model, the potential landscape felt by the polaritons is included in
the equations as a spatially dependent scalar field that multiplies
the polariton condensate wavefunction. One can consider the
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effective potential as a quantity designed to implement specific
functionalities within the constraints imposed by the particular
physical system.

In this article, we use topology optimization to engineer the
potential landscape of polaritons, optimizing for specific polariton
devices. In this case, the discretized values of the scalar field are the
design variables. As discussed, the adjoint method allows us to opti-
mize each point of the potential landscape independently in a free-
form manner with just two simulations of the system equations. Due
to the nonlinearity in the equations, we use here finite-difference time-
domain simulations to solve for the dynamics (or the steady state) of
the polaritons. We also consider a specific set of fabrication constraints
and analyze how they affect the device functionality. Specifically, we
optimize for effective potentials, which enable three devices: a device
that generates a flat-top polariton distribution, a metalens that focuses
a propagating polariton, and a nonlinearly activated isolator for a
propagating polariton.

We now provide details on the iterative workflow used to opti-
mize polariton devices. We first introduce the physical model, after
which we outline the particulars of the forward simulation.
Subsequently, we provide an overview of the adjoint method, topology
optimization, and the tools we employed. Finally, we summarize the
entire inverse design pipeline used in this work. The subsequent sec-
tion showcases examples of designed structures.

We strive to optimize the effective potential landscape experi-
enced by polariton condensates toward useful polaritonic devices. We
model the dynamics of the polariton macroscopic wavefunction
wðx; y; tÞ with the open-dissipative Gross–Pitaevskii (GPE) model,15

i�h@tw ¼ � �h2

2m
r2 þ Vðx; yÞ þ U jwj2 � ij

� �
w

þ iPðx; yÞ; (1)

where the dependence of w ¼ wðx; y; tÞ is implicit. The first part of
the GPE is a Schr€odinger equation, with �h as the Planck’s constant, m
as the polariton mass, and Vðx; yÞ as the potential the exciton–polari-
ton experiences. U is the nonlinearity of the exciton–polariton conden-
sate. Since the exciton–polariton condensate is typically not a closed
system, a pump Pðx; yÞ and a linear decay rate j model the addition
and loss of exciton–polaritons inside the system. Note that Eq. (1) has
been transformed to the rotating frame of the pump to avoid numeri-
cal instabilities due to high frequency oscillatory terms (see the supple-
mentary material). For the optimization, w also functionally depends
on Vðx; yÞ, which is always implicitly assumed.

Topology optimization requires two simulations of our system. A
forward simulation simulates the physical system and a backward sim-
ulation calculates the gradients. The forward simulation evaluates the
figure of merit, while the backward simulation calculates the gradients
of the figure of merit with respect to the free parameters.

We then simulate the time evolution of any given polariton con-
densate inside our simulation domain. As the simulation domain is
finite, we have to choose our boundary conditions to avoid scattering
at the edges, which would lead to nonsensical designs. To avoid this
issue, we implement perfectly matched layers (PML) for nonlinear
Schr€odinger equations.31,33

To ensure the differentiability of our code, the entire simulation
is done using the Google JAX framework,34 a software package that
can automatically differentiate native Python and Numpy code. The

ordinary differential solver is provided by diffrax,35 a library of tools
that can be used for automatic differentiation.

As we are interested in free-form optimization of our entire
design space, every pixel of the design region is an optimization
parameter. This results in tens of thousands of optimization parame-
ters, making global optimization impossible. When looking at optimi-
zation problems of this size, gradient-based methods are typically used.
While gradient-based optimization cannot guarantee a global mini-
mum, it is very efficient for finding local optima inside huge parameter
spaces. This is because the gradients are typically obtained using
adjoint sensitivity analysis.36 The main advantage of adjoint sensitivity
analysis is that the cost of calculating the gradients is independent of
the number of input parameters.

The topology optimization problem for our polariton condensate
can be formulated as

min
V

LðwðVÞ;VÞ L : C�D ! R; (2)

s:t: i�h@tw ¼ � �h2

2m
r2wþ Vðx; yÞwþ U jwj2w

� ijwþ iPðx; yÞ: (3)

We want to minimize the figure of merit L by finding the optimal
effective potential Vðx; yÞ inside the design region D under the con-
straint that the GPE holds. Given a discretized form of our macro-
scopic wavefunction and potential, we assume every pixel inside the
design region is a free parameter for our optimization.

During each optimization step, the GPE is solved until the final
time step T > 0 or until a steady state is reached, depending on the
problem at hand. The solution wðx; y;TÞ is then used to evaluate L.
Using the adjoint sensitivity method, we calculate the gradients @L

@V .
We then use this gradient information to find a local minimum of L
by using gradient-based optimization algorithms, such as the method
of moving asymptotes37 and L-BFGS38

All two-dimensional potentials are simulated using an NVIDIA
A100 Tensor-Core GPU. The one-dimensional simulations are done
using an Intel(R) Core(TM) i7-10700T CPU. In addition to that, we
use a resolution of 40 px per lm, resulting in parameter spaces of up
to a few hundred thousand free parameters. In total, a full optimization
for our examples takes a few hours. More details can be found in the
supplementary material. In all of our optimizations, we start with an
initial potential V ¼ 0. In our rotating frame, this corresponds to a
pump that is exactly resonant with the polaritons. The final optimized
potentials have regions that are locally not in resonance, which could
lead to additional dynamics. For example, an optical bistability could
occur in regions that are close to resonance, potentially resulting in
dynamical instabilities.39 Nonetheless, these dynamics are not the focus
of our work and not observed in our examples.

We present three selected designs to highlight the versatility of
topology optimization of polaritonic devices. We design a potential
that leads to a flat-top distribution for the polariton, a metalens that
focuses an incident polariton, and a nonlinearly activated isolator.

We use a system of units, where �h ¼ 0:6582 ps �meV, and the
electron mass is me ¼ 6585meV � ps2 � lm�2. The polariton mass is
set to be mp ¼ 10�4 �me ¼ 0:6585meV � ps2 � lm�2. Since most fab-
rication methods cannot fabricate arbitrarily large structures, we
restrict the effective potential to a maximum difference of
DV ¼ 50meV. Unless stated otherwise, we assume a polariton–
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polariton nonlinearity of U ¼ 5 neV � lm2, which corresponds to typ-
ical values observed in organic microcavities.32 We choose the linear
loss j according to the problem discussed.

At first, we present the optimized potential, which gives rise to a
flat-top distribution. Having a square flat top is of big interest in optics.
A constant irradiation profile is a desired feature when it comes to
semiconductor fabrication, material heating, and meteorology. This
idea can be extended to exciton–polariton condensates. Upon illumi-
nation by a typical laser, the exciton–polariton condensate is spatially
distributed according to a Gaussian distribution if no further measures
are implemented. A pump,

Pðx; yÞ ¼ e�
x2þy2

2 lm2 ; (4)

is used to simulate a constant resonant illumination at normal inci-
dence. To model the combined radiative and non-radiative losses in
the condensate, a decay rate of j ¼ 4meV is used. This allows the
exciton–polariton condensate to reach a steady state after around 3 ps.

To achieve a flat top, we choose a figure of merit that ensures
vanishing spatial gradients of the condensate wavefunction within the
design region. Specifically, we minimize the figure of merit,

LðwðVÞ;VÞ ¼
X

ðx;yÞ2D
jrwðx; yÞj: (5)

Here, D � R represents the flat-top region. As the gradients outside
D are mostly zero, the design region naturally confines itself toD. The
entire simulation domain has a size of 20� 20lm2. The resulting
potential and the associated structure can be seen in Figs. 1(a) and
1(b). Note that we do not show the entire simulation domain, as wave-
function and potential are zero everywhere else. These potentials have
been optimized for a flat top of size 2� 2 lm2.

Different minimum feature sizes are imposed during the optimi-
zation to accommodate different experimental conditions,24 e.g., the
resolution of fabrication techniques such as focused ion beam mill-
ing.40 We note that optically created potentials41 often have an even
larger minimum feature size than considered here (a few micro-
meters), which is related to the healing length of the polariton fluid.
We consider two restrictions: the minimum feature size of the spatial

features of the potential Dx and a minimal step size of the values of the
potential itself DVðx; yÞ. A Gaussian blur is applied to the potential at
every optimization step for the minimum feature size. This forces the
optimization algorithm to find solutions above a specific feature size.
This feature size corresponds roughly to

ffiffiffi
3

p � rG, where rG is the stan-
dard deviation of the Gaussian blur. We do not enforce a minimal step
size of the potential during the optimization loop. This is because it is
difficult to implement the discretization in a continuously differentiable
manner, which is necessary for calculating the gradients. Instead, we
optimize the potential without any constraints (starting from V ¼ 0)
and then apply discretization to the final optimized potential for various
different feature sizes. This is done by taking multiples of DV and
assigning the values of the potential to the closest discretized level. This
results in a discretized potential, which we then use to solve the GPE in
a single forward simulation. The different potentials are shown in
Fig. 1(c) with their respective exciton–polariton distribution in the inset.

The main standout features for small discretizations are the circu-
lar center of positive potential and the surrounding square made out of
negative potential. The thickness of the square mentioned earlier deter-
mines the sharpness of the edges of the exciton–polariton flat top.
Increasing the minimum feature size results in less sharp edges of the
flat top. Still, the potential can produce a flat-top distribution even at a
minimum feature size of around 0:5 lm. Increasing the discretization
has a different effect. The square in the potential becomes increasingly
disconnected until only the most prominent features remain.
Increasing the discretization level leads to a loss in the flatness of the
flat-top distribution, and the exciton–polariton condensate becomes
more Gaussian-shaped.

Lenses are some of the most fundamental and useful optical devi-
ces. Metalenses, in particular, find applications in optoelectronics and
3D imaging. For exciton–polariton condensates, lenses could be useful
components in optoelectronic circuits.

Instead of considering a steady state solution like the flat top, we
optimize a metalens for a propagating polariton packet. No pump is
used, and the system is simplified with j ¼ 0. We assume that an ini-
tial state is populated by an external pump with a Gaussian profile and
an in-plane momentum. This initial state (at t ¼ 0) is given by

w0ðx; yÞ ¼ e�
x2þy2

2lm2 ei10lm
�1x: (6)

The wave packet is propagated for 1:5 ps according to the GPE. The
figure of merit

LðwÞ ¼ jwðx0; y0Þj ðx0; y0Þ 2 R (7)

tries to maximize the value at the focal point ðx0; y0Þ at T ¼ 1:5 ps. An
explicit design region of size 5� 8 lm2 is specified. The wave packet
propagates for 5 lm until it enters the design region. The focal point is at
ðx0; y0Þ ¼ ð15; 0lmÞ, 5 lm behind the design region. The evolution of
the wave packet can be seen in Fig. 2(a). The initial wave packet is
Gaussian-shaped and evolved according to the GPE. As the wave packet
propagates in a positive x-direction, it passes the design region, where it
experiences the effective potential seen in Fig. 2(b). The effective potential
acts as a metalens, with its focal point behind the effective potential. The
lens can focus the exciton–polariton condensate at a tight spot and reach
an enhancement of up to 1.5 compared to a condensate without potential.

Again, a minimum feature size is imposed during optimization to
accommodate realistic fabrication restrictions, and the optimized

FIG. 1. Optimization results for the polaritonic flat-top potential. (a) The effective
potential the exciton–polariton condensate experiences in the rotating frame. (b)
The distribution of the exciton–polariton condensate in the steady state. (c) The
effect of imposing a minimum feature size on the potential (row) and the effect of
discretization of the potential (column). The respective insets show the associated
exciton–polariton condensate distribution of the potentials.
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potential is discretized. The resulting structures for different minimum
feature sizes and discretizations can be seen in Fig. 2(c). The metalens
uses channels of negative potential to guide the polariton condensate
through the design region. The enhancement is achieved by having the
entire wave packet redirected toward the focal point, similar to an opti-
cal metalens. Imposing fabrication restrictions has little effect on the
functionality of the polaritonic metalens, at least for realistic fabrica-
tion restrictions.

So far, we have neglected the nonlinearity of the GPE as a design
parameter. Especially in the context of nanophotonics, nonlinear
optics shows many promising results. For this reason, nonlinear exci-
ton–polariton condensates are being studied for their possible applica-
tions in optoelectronics and optical and quantum computing. A
nonlinearly activated isolator is designed to exploit the nonlinearity of
the polariton condensate. A one-dimensional wave packet is propa-
gated for 4 ps in the positive x-direction. The initial wave packet is set
to

wh=l
0 ðx; yÞ ¼ Ah=le�

ðx�20lmÞ2
2�5lm2 ei10lm

�1 �x; (8)

where h (resp. l) denotes a “high” (resp. “low”) amplitude wave packet.
The nonlinearity is set to U ¼ 0:5meVlm2. Such high nonlinearities
can be achieved with perovskite materials.42 The nonlinear mirror is
optimized to be reflective for the low amplitude exciton–polariton

condensate and transmissive for the high amplitude exciton–polariton
condensate. The figure of merit is

LðwÞ ¼

X
x<D

jwlðxÞj2
X
x

jwlðxÞj2 þ

X
x�D

jwhðxÞj2
X
x

jwhðxÞj2 : (9)

Here, D represents the left border of the design region. The one-
dimensional structure is optimized for the two amplitudes Al ¼ 0:5
and Ah ¼ 5 and restricted to a design region of size 30 lm. The evolu-
tion of the exciton–polariton condensate distribution and the respec-
tive nonlinear mirror can be seen in Figs. 3(a)–3(c). The potential itself
varies strongly on a short-length scale. The potential acts like a Bragg
mirror for the low amplitude exciton–polariton condensate. For the
high amplitude exciton–polariton condensate, the nonlinearity, and by
extension, the interaction of the exciton–polaritons, causes the exci-
ton–polariton condensate to scatter in a way that allows for the
exciton–polariton condensate to be transmitted through the nonlinear
mirror partially. The nonlinear mirror can achieve a reflectivity of

FIG. 2. Optimization results for the polaritonic lens. (a) The exciton–polariton con-
densate distribution for three different time steps. (b) The effective potential of the
exciton–polariton experiences in the rotating frame. (c) The effects of imposing a
minimum feature size on the potential (row) and the effect of discretization of the
potential (column). The respective insets show the associated exciton–polariton
condensate distribution.

FIG. 3. Optimization results for the polaritonic mirror. (a) The evolution of the low
amplitude exciton–polariton condensate in time. The red dashed lines indicate the
boundaries of the potential. (b) The evolution of the high amplitude exciton–polariton
condensate in time. The red dashed lines indicate the boundaries of the potential.
(c) The effective potential the exciton–polariton condensate experiences in the rotat-
ing frame. (d) Transmissivity of the high amplitude exciton–polariton condensate
(red, dash-dotted), transmissivity of the low amplitude exciton–polariton condensate
(blue, dash-dotted), reflectivity of the high amplitude exciton–polariton condensate
(red, solid), and reflectivity of the low amplitude exciton–polariton condensate (blue,
solid) depending on the minimum feature size imposed.
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around 0.9 for the low amplitude exciton–polariton condensate and a
transmission of around 0.4 for the high amplitude exciton–polariton
condensate.

As with the previous two designs, a minimum feature size Dx is
implemented during optimization. The resulting reflectivity and trans-
missivity for the high and low amplitude exciton–polariton condensate
can be seen in Fig. 3(d). The performance of the nonlinear mirror stays
practically the same until around Dx � 0:28lm. After that, a rapid
drop in functionality occurs, as the nonlinear mirror does not function
at all after this point. This can be attributed to the exciton–polariton
condensate having an inherited wavelength, which the nonlinear mir-
ror is optimized for. Once the spacing between the peaks of the poten-
tial becomes too large, the functionality breaks down as the exciton–
polariton condensate cannot be adequately scattered anymore.

In conclusion, we described an inverse design approach to
optimize the potential that governs the propagation characteristics
of a polariton condensate to implement a set of functional devices
with increasing complexity. Our approach is particularly appeal-
ing, as the optimized potential can frequently be explicitly con-
trolled in an experiment. The topology optimization allows us to
accommodate experimental constraints such as a minimal feature
size or a discretization of the values it can attain. Of course, being
more restrictive causes a degradation of the objection function.
Still, ultimately, it is an engineering question of how much effort
can be spent to fabricate a given device to keep the possible restric-
tion in the fabrication to a minimum.

We demonstrate the optimization pipelines on three devices with
increasing complexity. First, we consider a steady-state situation. We
designed a polariton condensate with a flat-top distribution for a given
Gaussian pump. Second, we consider a propagating polariton conden-
sate that we localize at a predefined spatial and temporal location.
Third, we consider an explicitly nonlinear device that reflects the
polariton at a low amplitude but transmits it at a high amplitude. We
consistently elaborated on the impact of the minimal feature size and
the discretization of the potential on the achievable functionality.
While generally a degradation is encountered, the designed devices are
robust against such limitations and uphold the desired functionality. A
sudden functionality degradation was observed only for the last device
when the typical feature size reached a threshold. The finding was
explained by observing that the necessary Bragg-like feature could no
longer be provided above the observed threshold.

To build on our findings, future developments in the inverse
design of polariton condensates could explore the integration of
machine learning algorithms to enhance the optimization process.
Leveraging advanced computational techniques makes it conceivable
to predict and design potentials with unprecedented precision. The
potential applications of this inverse design approach are vast and
promising. The ability to control polariton condensates could signifi-
cantly impact the development of various applications, from highly
efficient, tunable photonic devices and quantum information process-
ing components to innovative approaches in sensing and imaging
technologies, significantly impacting fields such as telecommunications
and medical diagnostics.

See the supplementary material for a derivation of the rotating
frame we use and additional details on the numerical implementation,
including a benchmark.
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