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Abstract—The Message-Passing Interface (MPI) and C++ form
the backbone of high-performance computing, but MPI only
provides C and Fortran bindings. While this offers great language
interoperability, high-level programming languages like C++ make
software development quicker and less error-prone.

We propose novel C++ language bindings that cover all ab-
straction levels from low-level MPI calls to convenient STL-style
bindings, where most parameters are inferred from a small subset
of parameters, by bringing named parameters to C++. This
enables rapid prototyping and fine-tuning runtime behavior and
memory management. A flexible type system and additional safety
guarantees help to prevent programming errors.

By exploiting C++’s template metaprogramming capabilities,
this has (near) zero overhead, as only required code paths are
generated at compile time.

We demonstrate that our library is a strong foundation for a
future distributed standard library using multiple application
benchmarks, ranging from text-book sorting algorithms to
phylogenetic interference.

Index Terms—Message passing, Parallel programming, Software
libraries, Distributed computing, C++

I. INTRODUCTION

The first version of the Message-Passing Interface (MPI) was
proposed by the Message-Passing Interface Forum in 1994 [2]
with the goal of standardizing a portable, flexible, and efficient
standard for message-passing. Today, it is the backbone of most
HPC applications. While the majority of them are written in
C++ [3], MPI’s syntax and semantics are designed around C and
Fortran. While this allows for calling MPI from C++ code, the
semantics do not fit well with modern C++ language features.
This makes developing MPI applications in C++ unintuitive and
error-prone [4].
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MPI 2.0 (1997) introduced C++ bindings, which were
deprecated with MPI 2.2 (2009). With version 3.0 (2012),
the bindings have been removed entirely, because they only
added minimal functionality over the C bindings while adding
significant maintenance complexity to the MPI specification [5].

Since then, there have been various efforts in designing new
C++ interfaces. Notable libraries include Boost.MPI [6], the
MPI bindings by Demiralp et al. [7], and MPL [8], which
has recently been considered as a starting point for new C++

language bindings by the newly formed MPI working group
on language bindings [9].

Previous bindings focussed on making MPI’s C interface
compatible with C++ features such as templates, STL containers
and object orientation, and providing some sensible defaults,
but this resulted in each library choosing its own level of
abstraction: They either provide a high-level interface, while
often sacrificing performance [9], or stay close to MPI’s C
interface, still requiring large amounts of boilerplate code.
Additionally, these previous libraries do not work well with
move semantics and common practices proposed by the C++ core
guidelines, e.g., returning results by value instead of using C-
style in/out parameters [10, F.20]. Despite the previous efforts,
designing a better C++ MPI interface is an open problem actively
discussed in the MPI forum [11].

Therefore, we propose the C++ MPI binding library
KaMPIng (Karlsruhe MPI next generation)1, which we recently
announced briefly at SPAA [12]. Its main goal is to cover the
complete range of abstraction levels over MPI calls as shown
in Fig. 1: KaMPIng enables rapid prototyping, relying on its
sensible defaults, as well as engineering highly-tuned distributed
code by making use of the library’s flexible interface. By using
C++ template metaprogramming techniques this comes without
introducing significant overhead compared to MPI’s plain C
bindings.

Parameters of MPI calls can either be provided directly by the
user or are computed by KaMPIng. It further offers complete

1https://github.com/kamping-site/kamping
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std::vector<double> v = {...};
// KaMPIng allows concise code
// with sensible defaults ... (1)
auto v_global = comm.allgatherv(send_buf(v));

// ... or detailed tuning of each parameter (2)
std::vector<int> rc;
auto [v_global, rcounts, rdispls] = comm.allgatherv(
send_buf(v), //(3)
recv_counts_out<resize_to_fit/*(6)*/>(std::move(rc)), //(4)
recv_displs_out() //(5)
);

Fig. 1. KaMPIng offers a high-level easy-to-use interface (1) and full control
over each parameter (2). Data types and buffer sizes can be automatically
inferred (3). Arguments allow passing by reference or by value and transferring
data ownership via move semantics (4). Out-parameters allow controlling which
default-computed parameters are returned to the user (5). Resize policies allow
controlling memory allocation (6).

control over memory allocations.
It helps to reduce common sources of programming errors

by employing compile-time error checking and prevents invalid
memory access for non-blocking communication by introducing
an ownership model. A flexible type system supports type safety
by generating type definitions at compile time and enables
serialization when needed. Because all this is achieved using
template metaprogramming, only the code paths programmers
would have to write themselves are instantiated, while the rest
can be eliminated at compile-time, which makes these new
bindings near zero-overhead.

Currently, KaMPIng supports the most commonly used MPI
features [3], namely (non-blocking) point-to-point commu-
nication and collective communication. Moreover, its core
architecture is designed with the rest of the MPI standard in
mind, facilitating a straightforward implementation of it in the
future.

We highlight the flexibility of our library by discussing a
variety of different application benchmarks, including both
simple examples and more complex application scenarios. This
includes applications in sorting, text processing, graph search
and partitioning, and phylogenetic interference. For example,
KaMPIng allows us to implement the Prefix Doubling algorithm
for suffix array construction [13] using less than 200 lines of
code and to entirely remove the custom MPI abstraction layer
of RaxML-NG [14].

Our Contributions

In the following, we briefly list our contributions:

• A new approach to parameter handling, allowing for a
flexible computation of default parameters and fine-grained
control over memory management for highly engineered
distributed applications.

• Safety for non-blocking MPI communication calls by
design.

• Reduction of verbosity and error-proneness of MPI code.
• (Near) zero overhead compared to using plain MPI.
• Compile-time error checking with human-readable error

messages.

• Demonstration of real-world applicability using a large
variety of application benchmarks.

• First steps towards integrated and extensible general algo-
rithmic building blocks for distributed computing such as
specialized collectives for sparse and low-latency irregular
personalized communication.

The remainder of the paper is organized as follows. We
begin by providing an overview of existing MPI (C++) language
bindings in Section II. In Section III, we present KaMPIng’s
core features like parameter handling, type deduction and
serialization, handling of non-blocking communication, and
our approach to ensure easy expandability. We then evaluate
the applicability of KaMPIng in multiple different real-world
application benchmarks in Section IV. Finally, we present first
examples for general distributed computing algorithmic building
blocks in Section V and conclude by discussing possibilities
for future work in Section VI.

II. RELATED WORK

Since the removal of C++ bindings from the MPI standard,
there has been continuous third-party effort on designing C++

language bindings for MPI. The topic is also actively discussed
in the MPI forum [11], where the following desired features
were prominently mentioned:

• mapping of variables to types, type safety
• safety guarantees for non-blocking communication
• returning data by value
• support for unstructured send data, i.e. a mapping of

communication partners to data buffers
• a strong debug mode
• reduction via lambda
• good interaction with C++, especially move semantics and

ranges
In the following, we discuss notable libraries and summarize

their design and feature set.
Boost.MPI [6]: This was the first library to enable

automatic data type inference and facilitate integration with the
STL by also supporting std::vector for input and output,
and not only raw pointers. Vectors are automatically resized to
fit the received data, which prevents invalid memory accesses,
but leads to hidden allocation. It supports custom data types by
constructing appropriate data types if possible or resorting to
serialization. To enable this, users must provide a serialization
function compatible with Boost.Serialization, specifying all
members explicitly. This requires the user to ensure that data
type definitions and their serializations remain synchronized.
The data types are managed by a global type pool which is
queried for each communication call, which ensures proper
resource cleanup. The adoption of Boost.MPI has been hindered
by its tight coupling with other Boost libraries and the fact that
it performs implicit serialization if data types are not directly
supported by MPI [9]. Additionally, it is the only MPI library
considered here that is not header-only. While this is usually not
a problem with modern build tools, it becomes especially tedious
when switching between MPI implementation, as it requires a



separate build of Boost.MPI for each, because the MPI standard
does not enforce ABI compatibility. Besides KaMPIng, it is
the only library that supports mapping STL functors such as
std::plus to the corresponding built-in MPI constant for
reduction operations (which may enable optimization by the
MPI implementation) and writing custom reduction operations
using a simple lambda. If an MPI error occurs, an exception
is thrown. Boost.MPI does not provide any bindings for
MPI_Alltoallv. It has not been actively maintained since
2008 and therefore only supports MPI-1.1 features. There
also exists boost-mpi3 [15], a rewrite of Boost.MPI developed
independently of the Boost project but following its design
principles. It aims to extend Boost.MPI to the feature set of
MPI-3 and C++-17. While incorporating support for iterators,
MPI one-sided communication and MPI shared memory, it does
not substantially improve upon Boost.MPI’s design, but closely
mirrors MPI’s C interface.

MPL [8]: Since 2015 Bauke maintains MPL, a library
providing MPI bindings targeting C++-17.

MPL introduces a powerful type system based on so-called
layouts to programmatically construct views over chunks of
contiguous memory, which can be converted to MPI data
types. While this allows for flexible communication in scientific
computations, such as halo exchanges, it requires a lot of code
for irregular communication patterns often found in discrete
algorithms. MPL does not expose the underlying native MPI
representation of constructs such as communicators, and types
directly, which complicates the iterative adaption of existing
MPI code to MPL. MPL offers support for custom data
types, which requires defining a matching layout but has
no serialization support. It currently does not support error
handling.

Recently, MPL has been considered by the members of the
newly formed MPI working group on language bindings as
a starting point for new C++ bindings [9]. While the authors
highlight the simplified interface, which offers abstraction with
default parameters using overloads, they also show that MPL
incurs overheads for variable-size collectives. This is because it
does not use the corresponding collective operations directly by
passing appropriate counts/displacements, but constructs custom
derived data types with displacements. Therefore, operations
like gatherv call MPI_Alltoallw internally, which is costly
in some MPI implementations and limits scalability [9].

RWTH-MPI [7]: Demiralp et al. recently introduced
another modern C++ interface, which we call RWTH-MPI in
the following. They offer full STL support for send and receive
buffers. For each communication call, they provide various
overloads using different abstraction levels, which often allow
the omission of send or receive counts, and RWTH-MPI employs
additional communication to compute them. Automatic resizing
of the receive buffer is supported in some cases and can be
disabled. For custom types that support reflection based on
the PFR library [16], RWTH-MPI constructs appropriate MPI
data types automatically. A customization point for mapping
C++ types to type definitions for MPI is available but does not
provide automatic type management. Using types with dynamic

run time sizes is not supported.
While RWTH-MPI covers the complete MPI standard, large

parts directly mirror the C interface without providing additional
convenience or safety guarantees.

Beyond C++: There also exist MPI bindings for other high-
level programming languages. The Python bindings provided
by mpi4py [17], [18] may be considered the most mature
third-party bindings, as they have been actively developed for
over a decade. It enables the transparent sending of Python
objects using serialization. While this introduces additional
overheads, using mpi4py in conjunction with NumPy arrays
allows performance on par with a native C implementation [17].
They provide default values for certain parameters, but only
when no additional communication is necessary for that. Finally,
rsmpi [19] introduces idiomatic Rust bindings for MPI. While
they make using MPI from Rust more ergonomic than using the
C interface, the missing default parameters require the writing
of much boilerplate code.

III. KAMPING: OVERVIEW AND DESIGN

Realizing a C++ interface that is both easy to use and highly
flexible, requires building a library from scratch, improving
upon the design of its precursors. Similar to most previous
bindings, KaMPIng represents MPI objects such as commu-
nicators, requests and statuses as classes and operations on
them as member functions. Automatic creation/destruction of
MPI objects is achieved using RAII [10, E.6] [20] (Resource
Acquisition Is Initialization) which is a commonly used C++

idiom. Also, C++ data types are mapped to MPI types at
compile time, which prevents type-matching errors. STL
containers that allow access to the underlying contiguous
memory are directly supported, i.e., every container that
models the std::contiguous_range concept. Raw pointers
are supported via std::span as proposed in the C++ core
guidelines [10, I.13]. One of KaMPIng’s distinct features
is parameter handling. A common source of programming
errors in MPI stems from the complexity of the interface of
many communication calls. In particular, variable collective
operations (suffixed with v) where the amount of data transferred
between each processor pair varies, require a large number of
parameters. The data to be sent or received is described in
terms of a pointer to a memory region, the data type, the
number of elements and its displacements. This makes MPI
calls verbose and requires programmers to often consult the
documentation for required parameters and ordering. While all
parameters are necessary for full flexibility, there exist many
use cases where only a small subset of explicitly provided
parameters suffices and the remaining ones can be inferred
from them. How we achieve this with near zero overhead is
discussed in Section III-A. In Section III-B, KaMPIng’s overall
parameter handling concept is explained in more detail. If the
number of elements to receive is already known, it may be
desirable to resize containers appropriately, but for highly-tuned
applications such hidden allocation may be unfavorable. We
therefore propose a flexible allocation control in Section III-C,
which is configurable at compile time.



std::vector<T> v = ...; // fill with data

int size, rank;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
std::vector<int> rc(size), rd(size);
rc[rank] = v.size();
// exchange counts
MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL,
rc.data(), 1, MPI_INT, comm);
// compute displacements
std::exclusive_scan(rc.begin(), rc.end(), rd.begin(), 0);
int n_glob = rc.back() + rd.back();
// allocate receive buffer
std::vector<T> v_glob(n_glob);
// exchange
MPI_Allgatherv(v.data(), v.size(), MPI_TYPE, v_glob.data(),
rc.data(), rd.data(), MPI_TYPE, comm);

Fig. 2. Allgathering of a vector using MPI.

The missing type introspection features of C require MPI
users to explicitly specify the layout of data types. If the type
declaration goes out of sync with the actual data layout, this
may lead to hard-to-find errors.

In Section III-D we introduce KaMPIng’s flexible type
system which provides type-safety through compile data type
construction, and offers additional versatility through support
for runtime-sized types and serialization.

Non-blocking communication in MPI introduces additional
sources of errors, as the user has to manually wait for the
completion of operations and has to take care of not performing
invalid memory accesses before an operation has finished. To
address this, we propose memory-safe abstractions that prevent
illegal memory accesses through the use of C++’s ownership
model and move semantics in Section III-E.

As the MPI standard continuously grows, C++ bindings also
need to evolve while maintaining compatibility with existing
code and MPI features not covered yet by such bindings. A
key aspect here is to keep KaMPIng’s core small, but allow
easy integration of additional features via plugins. We discuss
this in Section III-F.

In Section III-G we describe how KaMPIng prevents com-
mon programming errors by providing many compile- and
runtime assertions and configurable error handling, and by
introducing a simplified syntax for in-place operations. Finally,
Section III-H details how KaMPIng is implemented internally.

A. Computation of Default Parameters

As discussed previously, MPI calls often allow for computing
useful default values for an operation based on only a small
subset of parameters. As an example, consider the case, where
we want to perform an MPI_Allgatherv, where each rank
initially holds an std::vector of varying size and we want
to concatenate them to a global vector on each rank. The send
count and data type can be directly inferred from the vector’s
size and value_type (see Section III-D for more details on
automatic type deduction). Receive counts and displacements
can be computed by an MPI_Allgather of all send counts
followed by an exclusive prefix sum over them (see Fig. 2).
While this is a common pattern, none of the other C++ bindings

allows avoiding all this boilerplate code. Boost.MPI offers
various overloaded functions that allow the user to omit explicit
displacements, but the counts have to be communicated. RWTH-
MPI does provide an overload that gathers the counts internally,
but it only works with MPI_IN_PLACE, which requires the
send data to be already provided at the correct position on each
rank. To achieve this the user has to manually exchange count
information upfront2. This leaves us with a situation where the
usability of C++ bindings depends on whether the implementers
had this particular use case in mind and provided a default
option for it.

To address this problem, we choose an alternative approach
inspired by named parameters, where parameters passed to a
function can be named at the caller site and passed in arbitrary
order (as known from languages like Python). Internally, named
parameters are realized as factory functions [21] which construct
lightweight parameter objects encapsulating the parameter type
(i.e., send buffer, send counts, . . . ) and the corresponding data.
This allows us to check for the presence of each parameter
at compile time and to compute default values only if the
respective parameter is omitted, without resorting to many
overloads exploring the complete combinatorial explosion of
parameters. To avoid runtime overhead, we rely on template
metaprogramming to only generate the code paths required
for computing missing parameters at compile time. Gathering
a vector in KaMPIng then becomes a one-liner as shown in
Fig. 1. The implementations using other bindings are more
verbose (see Table I).

The flexibility of the named parameter interface allows users
to iteratively adapt their existing code to KaMPIng, as shown
in Fig. 3.

B. Input and Output Parameters

KaMPIng extends MPI’s definition of in(put)- and out(put)-
parameters. With an in-parameter, the caller provides data to the

2Full example code can be found at https://github.com/kamping-site/
kamping-examples/tree/main/include/vector allgather/

// Version 1: using KaMPIng’s interface
std::vector<int> rc(comm.size()), rd(comm.size());
rc[comm.rank()] = v.size();
comm.allgather(send_recv_buf(rc));
std::exclusive_scan(rc.begin(), rc.end(), rd.begin(), 0);
std::vector<T> v_glob(rc.back() + rd.back());
comm.allgatherv(send_buf(v), recv_buf(v_glob),
recv_counts(rc), recv_displs(rd));

// Version 2: displacements are computed implicitly
std::vector<int> rc(comm.size());
rc[comm.rank()] = v.size();
comm.allgather(send_recv_buf(rc));
std::vector<T> v_glob;
comm.allgatherv(send_buf(v),
recv_buf<resize_to_fit>(v_glob), recv_counts(rc));

// Version 3: counts are automatically exchanged
// and result is returned by value
std::vector<T> v_glob = comm.allgatherv(send_buf(v));

Fig. 3. The vector allgather MPI example from Fig. 2 can be gradually migrated
to use more of KaMPIng’s features.

https://github.com/kamping-site/kamping-examples/tree/main/include/vector_allgather/
https://github.com/kamping-site/kamping-examples/tree/main/include/vector_allgather/


wrapped MPI call, such as with send_buf(data). By passing
an out-parameter, e.g., recv_counts_out(), the caller asks
the library to compute the requested parameter and return its
result. Most MPI parameters like send displacements, receive
counts, etc. can either be passed as in- or out-parameters since
they can be internally deduced in many cases using additional
computation or communication as outlined in Section III-A.

The parameter type is determined by the named parameter
factory functions: To give an example, send_displs(data)
creates an in-parameter containing the send displacements as
specified in data whereas send_displs_out() creates an
out-parameter signaling to return the send displacements by
value.

Since one is primarily interested in the receive buffer in MPI
calls, this parameter is always implicitly returned by KaMPIng.
To retrieve other parameters from the wrapped MPI call one
has to explicitly pass the corresponding out-parameter. This
is a major improvement over previous MPI libraries, which
simply mimic MPI’s C-Interface and return output data next to
the receive buffer by pointer or reference. This is not in line
with the C++ core guidelines which strongly suggest returning
output data by value [10, F.20]. Furthermore, it is often unclear
which additional parameters are computed by the library, as
the overloaded wrapped MPI function calls differ only in the
number of function arguments. Combined with the large number
of parameters of MPI calls, it is hard to see which argument
refers to which parameter when looking at the code.

KaMPIng on the other hand improves this situation in two
regards:

1) The caller can decide which non-required parameters they
want KaMPIng to compute internally. By the named
parameter approach this decision is clearly documented
in the source code and correctness does not depend on a
common understanding of the parameter order.

2) For each requested out-parameter, the caller can individ-
ually decide how the data is returned.

In the following, this is illustrated with a call to the wrapped
MPI_Allgatherv function.
auto result = comm.allgatherv(send_buf(v),

recv_counts_out());
auto recv_buf = result.extract_recv_buf();
auto counts = result.extract_recv_counts();

The above call to allgatherv returns a result object
containing the (implicitly) requested receive buffer and the
receive counts. These can then be extracted from the result
object using move semantics. It is furthermore possible to
directly decompose the result object using C++’s structured
bindings which simplifies the call to
auto [recv_buf, counts] = comm.allgatherv(send_buf(v),

recv_counts_out());

A shortcoming of returning by value is the redundant memory
allocation in case a previously allocated container could be
reused instead. In KaMPIng, we offer two solutions for this
scenario. For containers supporting C++ move semantics, a
previously user-allocated container can be simply moved to the

underlying call and is then subsequently returned with the result
object by value.
std::vector<T> tmp = ...;
// tmp is moved to the underlying call where the
// storage is reused for the recv buffer
auto recv_buffer = comm.allgatherv(

send_buf(v),
recv_buf(std::move(tmp)));

If there is no efficient way to support move semantics for
a container type, it is also possible to pass the container
via reference to the underlying call. The data computed by
KaMPIng for the requested parameter will then be written
directly to the specified memory location.
std::vector<T> recv_buffer = ...;
// data is written into recv_buffer directly
comm.allgatherv(send_buf(v),

recv_buf(recv_buffer));

C. Controlling Memory Allocation

Previous MPI wrappers have no unified way of controlling
memory allocation. They either accept containers that are always
resized to fit, or, if resizing is not desired, the user has to pass
raw pointers directly. They also offer no control over allocation
happening for default parameter computation.

KaMPIng allows for fine-grained control over memory man-
agement. Each (out-)parameter accepting a container takes an
optional template parameter indicating its resize policy, which
controls whether it is always resized to fit, resized if it does not
have enough space to store the result, or performs no checking
and assumes that the capacity of the container is large enough,
which is the default.
std::vector<T> recv_buffer; // has to be resized
std::vector<int> counts(comm.size()); // size large

// enough
comm.allgatherv(send_buf(v),

recv_buf<resize_to_fit>(recv_buffer),
recv_counts_out(counts));

If KaMPIng has to create auxiliary data structures to compute
missing parameters, the user may either pass preallocated
containers to use or provide the container’s type via template
parameters. Recall that additional allocation is omitted entirely
when parameters are provided by the user.

As all of this relies on template metaprogramming, there is
no additional overhead compared to a hand-rolled implementa-
tion. This flexibility allows to quickly implement distributed
algorithms and then iteratively fine-tune memory allocations and
library inferred values. This facilitates an algorithm engineering
workflow that involves iterative refinement of implementations
and analysis through experimentation.

D. Using Custom Types

HPC applications use a variety of data types that
need to be communicated. Beyond basic data types
corresponding directly to C++’s built-in types, MPI
allows for complex derived data types using type
constructors, such as MPI_Type_create_struct and
MPI_Type_create_contiguous.

C’s lack of type introspection forces users to always pass the
type explicitly to a communication call, which is both tedious



struct MyType {
int a;
double b;
char c;
std::array<int, 3> d;

};
namespace kamping {
// using KaMPIng’s built-in struct serializer
template <>
struct mpi_type_traits<MyType> : struct_type<MyType> {};

// or using an explicitly constructed type
template <>
struct mpi_type_traits<MyType> {

static constexpr bool has_to_be_committed = true;
static MPI_Datatype data_type() {

MPI_Datatype type;
MPI_Type_create_*(..., &type);
return type;

}
};
} // namespace kamping

Fig. 4. Defining custom static types using automatic type reflection or a custom
type definition.

and error-prone, as type definitions need to be kept in sync
with the actual data layout.

Template-metaprogramming enables mapping arbitrary C++

types one-to-one to MPI data types (we call this a static type).
MPI’s derived data types, however, form a superset of C++

data types. This is because MPI allows constructing arbitrary
type signatures with sizes known only at runtime (we call
this a dynamic type). KaMPIng provides support for static
and dynamic types and offers implicit static type construction
without performance pitfalls. Sometimes, applications need
to communicate unstructured and complex data types off the
critical code path. To support this with minimal code overhead,
KaMPIng provides transparent serialization support. In the
following, we discuss these aspects in more detail.

1) Static derived data types at compile time: KaMPIng
maps basic C++ data types to their MPI counterparts and
supports complex data types on homogeneous systems if they
are trivially copyable, i.e., the C++ standard guarantees that
they can be copied into a char array. In this case, we
create a contiguous type using MPI_Type_contiguous with
the appropriate number of bytes, as this provides a sensible
default which usually achieves better performance than using
MPI_Type_struct (see Section III-D4). For all other types,
the user can directly provide static type definitions by providing
an explicit instantiation of the mpi_type_traits template for
the desired type, which describes how to construct a matching
MPI_Datatype, as show in Fig. 4. While this allows for
building data types using MPI’s type constructors, constructing
a correct type for a given C++ struct is error-prone as the
programmer has to keep the type-construction calls in sync
with the data type. We leverage the PFR library [16] to
automatically generate MPI type definitions for user-provided
structs at compile time. This can be enabled by inheriting from
the type constructor when defining the type trait (see Fig. 4).

MPI requires the user to initialize and deallocate non-built-in
types. KaMPIng archives both transparently to the user by

using dict = std::unordered_map<std::string, std::string>;
dict data = ...;
comm.send(send_buf(as_serialized(data)), ...);

dict recv_dict = comm.recv(
recv_buf(as_deserializable<dict>())

);

Fig. 5. Usage of KaMPIng’s serialization.

exploiting the Construct-On-First-Use-Idiom 3.
Existing MPI bindings also support non-built-in static types to

some extent. For Boost.MPI that is dependent on the definition
of a serialization function. Similar to KaMPIng, types are
managed using a global type pool, but each operation incurs a
runtime type lookup. MPL and RWTH-MPI use the Construct-
On-First-Use-Idiom to commit types before first use, and MPL
also uses PFR to provide automatic type definitions by using
reflection. Opposed to KaMPIng, types are not properly freed,
which may result in resource leakage. RWTH-MPI allows
custom static type definitions, but the user is responsible for
committing and freeing types.

2) Support for dynamic types: For data types constructed at
runtime, KaMPIng supports passing explicit types to operations
directly, by providing optional type parameters.

In KaMPIng, dynamic types can currently only be constructed
using MPI’s type constructors. MPL on the other hand provides
a runtime type interface mirroring MPI’s type constructors using
the builder pattern, which encapsulates the constructed types in
so-called layouts. While MPL’s collective operations are tightly
interleaved with the layout system, which results in verbose
code, its type construction is a powerful feature that we plan to
integrate as the default way for constructing dynamic types in
KaMPIng. RWTH-MPI offers no support for dynamic types.

3) Communicating arbitrary data using serialization:
Some applications require communicating non-contiguous data
which is (partially) located on the heap, e.g., std::string
or std::unordered_map and cannot be represented using
MPI datatypes. These have to be packed into a contiguous
buffer before communication. KaMPIng facilitates this by
providing serialization support, which is both highly tuneable
and transparent to the user. We rely on the popular C++

serialization library Cereal [22], which supports STL data
types and allows providing serialization routines for custom
types. While serialization is transparent to the user, i.e., the
user never sees the serialized data, it still has to be explicitly
enabled as it usually incurs hidden costs for allocating memory
for serialized data and performing (de-)serialization. Through
Cereal’s flexible design, serialization in KaMPIng is also highly
configurable; allowing users to specify custom serialization
functions and archives, e.g., binary formats, JSON, or XML. See
Fig. 5 for an example of how to use serialization in KaMPIng.

Besides KaMPIng, Boost.MPI is the only library offering
serialization support, but is tightly coupled with other Boost
libraries and serialization is performed implicitly; if a type is

3https://isocpp.org/wiki/faq/ctors#static-init-order-on-first-use

https://isocpp.org/wiki/faq/ctors#static-init-order-on-first-use


not marked as an MPI data type, serialization is used. This
makes it hard to see whether costly serialization is involved by
just looking at the code.

We are convinced, that using serialization implicitly should be
avoided by zero-overhead MPI bindings, as hidden serialization
incurs hidden runtime and memory overheads.

4) Towards sensible defaults for type construction: By
default, KaMPIng maps trivially copyable types to a type
interpreted as a contiguous sequence of bytes. When defining a
struct type where the members have alignment gaps, MPI does
not include the gap in the communicated data. This requires
non-contiguous memory accesses, which may be slower than
copying whole memory blocks to the communication hardware
(MPI standard [2, §5.1.6]). The standard suggests introducing
dummy struct members to fill these gaps, but this requires the
user to modify their non-MPI code. By using a type consisting
of contiguous bytes when valid with respect to the C++ standard,
we enable this more efficient default transparent to the user.
Preliminary experiments also confirm this in practice and further
highlight that serialization incurs a non-negligible overhead,
which is the reason why KaMPIng uses serialization only if
explicitly enabled.

E. Enabling Safety for Non-blocking Communication

Non-blocking communication in MPI is important for both
correct and performant applications. MPI allows to initiate an
operation, which returns a request handle to the user. A user
then has to complete the request, by either testing for completion
of the request using MPI_Test or using MPI_Wait to block
until the request is completed. The semantics of MPI only allow
updating send buffers or reading from receive buffers taking
part in a previously initiated operation when the corresponding
request has been completed. This introduces an additional
source for programming errors, as MPI does not hinder users
from accessing the memory locations regardless of completion
status.

For asynchronous (I/O) operations the C++ standard library
provides std::future, which allows querying or waiting for
the result of an asynchronous operation, only returning a value
once the operation has completed. Using std::future to
provide a safe interface for non-blocking communicating is not
possible, as they are tied to asynchronous progress happening
in the background, which the MPI standard does not guarantee.

To solve this, we introduce a similar concept called a non-
blocking MPI result, which encapsulates an MPI_Request and
the data returned by value from the operation, as described
in Section III-B. The data is only returned to the user by
calling result.wait() which internally completes the request.
Calling result.test() returns an std::optional, which
only contains the returned data if the request is completed, and
otherwise returns std::nullopt. This ensures that a user can
only access valid received data.

To also prevent unwanted access to send buffers during non-
blocking operations, the user can move the data into the call.
The non-blocking result then assures that the data lives long
enough, and it is re-returned to the user upon completion of

std::vector<int> v = ...;
auto r1 = comm.isend(

send_buf_out(std::move(v)), destination(1)
);

v = r1.wait(); // v is moved back to caller after
// request is complete

auto r2 = comm.irecv<int>(recv_count(42));
std::vector<int> data = r2.wait(); // data only returned

// after request
// is complete

Fig. 6. Example of non-blocking safety in KaMPIng.

the call. This happens without any copying of data by relying
on C++’s move semantics. See Fig. 6 for an example.

This is enabled by KaMPIng’s distinct parameter handling,
making it the first C++ MPI library that provides safety
guarantees for non-blocking communication. Opposed to that,
other MPI bindings offer no enhanced safety features for the
data involved in a non-blocking call, but only return request
handles. Here the user is still responsible for ensuring that no
invalid data access happens while an operation is in progress.
Only rsmpi provides similar guarantees, powered by Rust’s
ownership model.

Another feature KaMPIng provides to facilitate working with
non-blocking MPI are request pools, which allow for easy
completion of multiple requests. The user only needs to submit
the request associated with the call to such a pool. While
the current implementation just collects them in an unbounded
array, requests pool are designed with extensibility in mind,
to enable more sophisticated variants. For example, we are
currently working on a request pool with a fixed number of
slots, internally maintaining free slots, which allows limiting
the number of concurrent non-blocking requests.

F. Extensibility

While the main goal of KaMPIng is to design C++ bindings
for MPI which can be used in any MPI application, designing
a one-size-fits-all library is hard. To enable further flexibility
we therefore designed it with extensibility and compatibility
with existing MPI code in mind, to allow easy extension
and alteration of its core features. On the one hand, an
existing code base can be gradually migrated to use only some
parts of KaMPIng, because it is fully compatible with native
MPI objects, such as request or type handles. On the other
hand, KaMPIng’s plugin interface allows overriding member
functions of a communicator object (e.g., collectives) and adding
additional functionality without changing existing application
code. The library allows plugin implementers to define new
named parameters to enable the full named parameter flexibility
also for these library extensions. This architecture allows
us to keep KaMPIng’s core library small while providing a
base for third-party general-purpose MPI libraries and keeping
maintenance low, in order not to follow the fate of the official
MPI C++ interface.

With KaMPIng, we already ship multiple plugins extending
the functionality of the current MPI standard (see Section V).



G. More Safety Features for MPI

In addition to the ease of use and safety features introduced
by KaMPIng’s parameter handling, it also provides other means
of preventing sources of errors in MPI code.

Error handling: MPI notifies users of errors by return
codes. Here, MPI makes no distinction between failures,
such as insufficient buffer space or node failures, which may
be recoverable, and usage errors, such as providing invalid
parameters.

KaMPIng tries to improve upon this by using three major
techniques, following the C++ core guidelines: using exceptions
for failures [10, E.2], catching usage errors at compile time
whenever possible [10, P.5], and making heavy use of assertions
at runtime. While C++’s template metaprogramming is notorious
for complex and hard-to-read compiler errors, we try to ensure
that compile-time assertions fail early and provide helpful
human-readable error messages, e.g., for missing parameters
or incompatible types. For example, when the user does not
provide a required parameter to a collective operation, the error
message indicates which parameter is missing during compile
time. KaMPIng also includes many runtime assertions verifying
MPI invariants, that are grouped in different levels, ranging
from lightweight checks to assertions involving additional
communication. The assertions can be completely disabled
level-by-level. The use of exceptions can also be completely
disabled, and KaMPIng allows overriding the error handling
strategy using the plugin system.

In contrast to that, other MPI bindings either always convert
MPI errors to exceptions or do not provide any error handling.

Simplified MPI_IN_PLACE: KaMPIng also tries to prevent
programming errors when working with in-place MPI operations.
Consider using the in-place variant of MPI_Allgather, as in
Fig. 2: Using MPI’s C interface, the user has to explicitly
pass MPI_IN_PLACE on all ranks as send buffer and the send
count and type parameters are ignored. KaMPIng’s concept of
in-out-parameters simplifies the call semantics of in-place calls.
If a user passes data as send_recv_buf instead of send_buf,
then KaMPIng automatically passes the correct arguments to
the underlying in-place call and issues a compilation error if
the user provides an argument which would be ignored by the
in-place call. This is also compatible with move semantics,
allowing for concise in-place calls as shown below:
std::vector<int> data(comm.size());
data[comm.rank()] = ...;
data = comm.allgather(send_recv_buf(std::move(data)));

H. Implementation Details

KaMPIng makes extensive use of C++’s template metapro-
gramming capabilities. For example, using constexpr if
and SFINAE [23, 8.4] (Substitution Failure is Not an Error),
often allows us to eliminate runtime control flow constructs
in the wrappers around MPI calls, preventing costly branch
mispredictions. Named parameters are implemented using
template parameter packs of parameter objects. Compile-
time checks for the absence of each parameter then allow to

TABLE I
LINES OF CODE FOR EXAMPLES USING KAMPING VS. OTHER BINDINGS6 .

MPI Boost.MPI RWTH-MPI MPL KaMPIng

vector allgather 14 5 5 12 1
sample sort 32 30 21 37 16
BFS 46 42 32 49 22

conditionally enable logic for computing default values via
constexpr if.

All containers passed as arguments are wrapped in a tem-
plated DataBuffer which handles ownership and modifiability
transparently at compile time4. These data buffers are moved
to a templated result object, which is returned to the user and
can be destructed using structured bindings as described in
Section III-B. As we do not copy but move the data, this
imposes nearly zero overhead.

All wrapped MPI functionality has been extensively tested
using a large number of parameter combinations as part of
our development cycle. All (unit-)tests are executed using the
C++ compilers clang and gcc (in debug and release mode)
and OpenMPI. We use MPI’s profiling interface to ensure
that only the expected MPI calls are issued if KaMPIng calls
MPI internally to compute default values. Additionally, we
evaluated our benchmarks using OpenMPI and IntelMPI on the
supercomputers SuperMUC-NG and HoreKa, as detailed in the
following section.

IV. INTEGRATING KAMPING INTO REAL-WORLD
APPLICATIONS

To highlight the usability of our library, we have integrated
KaMPIng into multiple (research) applications, ranging from
sorting (sample sort and suffix sorting) over graph algorithms
(BFS and label propagation) to a large phylogenetic interference
tool. Experiments backing our (near) zero overhead claim
are executed on up to 256 compute nodes of SuperMUC-
NG5, where each node is equipped with an Intel Skylake
Xeon Platinum 8174 processor with 48 cores. The internal
interconnect is a fast OmniPath network with 100Gbit/s. Our
code is compiled with g++-12.2.0 and Intel MPI 2021 using
optimization level -O3.

A. Sorting

As a first example, we use a textbook distributed sample
sort [24] with Fig. 7 showing a prototypical implementation
in KaMPIng. We have implemented the sample sort algorithm
using all previously discussed C++ MPI bindings comparably,
where all shared parts of the code have been extracted to

4Because this works with any STL-compliant container, KaMPIng also
supports accelerator-aware MPI implementations directly. Pointers or containers
(like thrust::device_vector) to device memory can be passed just like
normal containers.

5We also conducted some experiments on the smaller HoreKa supercomputer.
As the results obtained there are similar to our findings from SuperMUC-NG,
we omit them here.

6The source codes for all three examples are available at https://github.com/
kamping-site/kamping-examples/.

https://github.com/kamping-site/kamping-examples/
https://github.com/kamping-site/kamping-examples/


template<typename T>
void sort(std::vector<T>& data, MPI_Comm comm_) {

using namespace std;
Communicator comm(comm_);
const size_t num_samples = 16 * log2(comm.size()) + 1;
vector<T> lsamples(num_samples);
sample(data.begin(), data.end(), lsamples.begin(),

num_samples, mt19937{random_device{}()});
auto gsamples = comm.allgather(send_buf(lsamples));
sort(gsamples.begin(), gsamples.end());
for (size_t i = 0; i < comm.size() - 1; i++) {
gsamples[i] = gsamples[num_samples * (i + 1)];

}
gsamples.resize(comm.size() - 1);
vector<vector<T>> buckets = build_buckets(data, gsamples);
data.clear();
vector<int> scounts;
for (auto &bucket : buckets) {
data.insert(data.end(), bucket.begin(), bucket.end());
scounts.push_back(bucket.size());

}
data = comm.alltoallv(
send_buf(data), send_counts(scounts)

);
sort(data.begin(), data.end());

}

Fig. 7. Distributed sample sort using KaMPIng.

functions and the code has been formatted identically with
clang-format using the Google style template. In this
setting, we require only 16 lines of code (LOC) using KaMPIng
while the plain MPI example requires 32 LOC. The lines of
code for all bindings can be found in Table I. Fig. 8 shows the
running time of the different implementations in a weak-scaling
experiment. We sort a distributed array with 106 64-bit integers
per rank, which are drawn uniformly at random.

We see that KaMPIng introduces no additional overhead
compared to a hand-rolled implementation in plain MPI or
other libraries, but makes the implementation a lot easier to
read and write while being more flexible.

Suffix Array Construction: For a more complex example,
we consider an application from text processing: We sort all
suffixes of a text lexicographically, i.e., we compute the suffix
array [13]. Here, we implemented two algorithms: DCX [25]
and Prefix Doubling [13]. Our KaMPIng implementation
of DCX requires 1 264 LOC whereas the plain MPI imple-
mentation [26] needs 1 396 LOC. The additional 9.5 % of
code is mostly due to boilerplate code, e.g., distributing send
counts for MPI_Alltoallv and the tedious construction of
MPI types. Likewise, our KaMPIng implementation of the
Prefix Doubling algorithm requires 163 LOC. An existing plain
MPI implementation of the same algorithm [27] needs 426 LOC
(not counting the 1 442 LOC for wrapped MPI functionality
used by the plain MPI implementation). Even when using a
high-level distributed programming framework, implementing
the Prefix Doubling algorithm still requires 266 LOC [28].

B. Graph Algorithms

Currently, most state-of-the-art HPC platforms are mainly
designed for numerical applications with fairly regular data
access and communication patterns. However, data-intensive
irregular workloads become more and more frequent, for
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Fig. 8. Running time of sample sort using different MPI bindings.

example, in materials science or data analysis tasks such as
(human) brain analysis. Graphs are commonly used to represent
data sets in these applications and we therefore require efficient
distributed graph algorithms either for network analysis or as
important building blocks for more complex applications [29]–
[31]. To demonstrate the applicability of KaMPIng in this
setting, we provide a simple distributed breadth-first search
(BFS) implementation in Fig. 9. We assume the graph to be
distributed among the ranks with each rank holding a subset
of the vertices and their incident edges. Locally, the graph is
represented as an adjacency array. For each vertex v, the bfs
returns the distance (number of hops) between the source vertex
s and v. KaMPIng’s utility function with_flattened(...),
which flattens a container of nested destination-message pairs
by transforming it into a contiguous range while also providing
send counts, proves to be especially useful.

As for the sample sort example, we implemented the
distributed BFS algorithm using all previously discussed (C++)
MPI bindings comparably. The implementations only differ
for the frontier exchange and completion logic, which can be
implemented in KaMPIng using only 22 lines of code, whereas
plain MPI requires 46 lines. Our closest competitor regarding
code length is RWTH-MPI with 32 LOC (see Table I for all
other bindings) 7.

In Fig. 10 we evaluate these implementations using a variety
of different graph families and observe that KaMPIng introduces
no additional overhead compared to plain MPI. KaMPIng
also provides optimized collective operations, which provide
better scalability than MPI_Alltoallv on some graph families,
which we discuss in Section V-A.

Our base KaMPIng implementation as well as RWTH-MPI
and Boost.MPI (omitted in the plot) are always on par with
the MPI implementation. MPL (also omitted in the plot)
internally uses MPI_Alltoallw for all-to-all exchanges and is
(considerably) slower than MPI on all configurations, as already
discussed previously [9].

Graph Partitioning: As a more complex showcase, we in-
tegrated KaMPIng into the state-of-the-art distributed multilevel
graph partitioner dKaMinPar [32], consisting of roughly 30 000
LOC and including its own abstraction layer with specialized

7The code considered here is structured slightly differently compared to Fig. 9,
which has been shortened for readability. See https://github.com/kamping-site/
kamping-examples/tree/main/include/bfs/ for full implementations.

https://github.com/kamping-site/kamping-examples/tree/main/include/bfs/
https://github.com/kamping-site/kamping-examples/tree/main/include/bfs/


using VId = size_t;
using VBuf = std::vector<VId>;
constexpr VId undef = std::numeric_limits<VId>::max();

bool is_empty(auto &frontier, Communicator const& comm) {
return comm.allreduce_single(send_buf(frontier.empty()),

op(std::logical_and<>{}));
}
VBuf exchange(auto frontier, Communicator const &comm) {

return with_flattened(frontier, comm.size()).call(
[&](auto... flattened) {

return comm.alltoallv(std::move(flattened)...);
});

}
vector<size_t> bfs(Graph const &g, VId s, MPI_Comm _comm) {

Communicator comm(_comm);
VBuf frontier;
std::unordered_map<int, VBuf> next_frontier;
if (g.is_local(s)) {
frontier.push_back(s);

}
std::vector<size_t> dist(g.local_size(), undef);
size_t level = 0;
while(!is_empty(frontier, comm)) {
next_frontier = expand_frontier(g, frontier, dist, level);
frontier = exchange(std::move(next_frontier), comm);
next_frontier.clear();
++level;

}
return dist;

}

Fig. 9. Distributed BFS using KaMPIng.
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graph-specific communication primitives over plain MPI. The
partitioner uses size-constrained label propagation to iteratively
cluster and contract the input graph, shrinking it down until its
size falls below a certain threshold. Due to the project’s size, we
only focus on this component and compare an implementation
based on dKaMinPar’s application-specific MPI abstraction
layer, a plain MPI-based implementation and a KaMPIng-based
implementation. We have extracted the shared code of all
implementations (202 LOC) to a base class and only focus on
the MPI-heavy part of the algorithm’s implementation. Here,
the plain MPI-based implementation (154 LOC) is roughly

// Before. The self-written mpi_broadcast(...) wrapper and
// serialization/deserialization of data is not shown.
template<typename T>
static void mpi_broadcast(T& obj) {
if (_num_ranks > 1) {

size_t size = master() ?
BinaryStream::serialize(
_parallel_buf.data(),
_parallel_buf.capacity(),
obj)

: 0;
mpi_broadcast((void *) &size, sizeof(size_t));
mpi_broadcast((void *) _parallel_buf.data(), size);
if (!master()) {

BinaryStream bs(_parallel_buf.data(), size);
bs >> obj;

}
}

}

// After. KaMPIng provides all required functionality.
template <typename T>
static void mpi_broadcast(T &obj) {
if (_num_ranks > 1) {

_comm->bcast(send_recv_buf(as_serialized(obj)));
}

}

Fig. 11. Example of a routine in the RAxML-NG parallelization abstraction
layer simplified substantially using KaMPIng. We are able to replace custom
serialization logic entirely.

17.5% larger than the KaMPIng-based implementation (127
LOC), which in turn is 16.5% larger than the implementation
based on dKaMinPar’s specialized abstraction layer (106 LOC).
We observed the same running times for all variants.

C. Integrating KaMPIng in RAxML-NG

As our largest application benchmark, we consider
RAxML-NG. RAxML [33] and its modern rewrite
RAxML-NG [14] are widely used real-world programs for
phylogenetic inference in the field of bioinformatics with over
50 000 citations. RAxML-NG is written in C++ and uses a
custom non-trivial abstraction layer over pthreads + MPI
parallelism with over 700 lines of code. We use KaMPIng to
substantially simplify the MPI part of this abstraction layer;
demonstrating that KaMPIng can easily be integrated even in
large and well-established scientific codes which use hybrid
parallelization (for an example, see Fig. 11). If KaMPIng had
been available at the time, the RAxML-NG developers would
have never needed to write, unit-test, maintain, and document
over a hundred lines of complex code8.

We empirically verified that replacing the abstraction layer
with KaMPIng does not incur a measurable performance
overhead even though RAxML-NG issued nearly 700 MPI
calls per second9. The binary’s size does also not increase
substantially (by 2.5%); the compilation time increases from
1:15 min to 1:30 min.

8Here, MPI and application code are heavily intertwined, making a fair
comparison for exact LOC hard.

9The mean running times are less than one standard deviations apart.



V. TOWARDS GENERAL BUILDING BLOCKS FOR
DISTRIBUTED COMPUTING

Ease of development for MPI applications can be massively
improved by providing a standard library of distributed (commu-
nication) algorithms and data structures, but incorporating this
functionality in KaMPIng’s core would make it overly complex.
With KaMPIng we ship multiple library extensions (plugins)
including an STL-like distributed sorter (see Section IV-A), spe-
cialized personalized all-to-all communication, fault-tolerance,
and reproducible reduction operations which we will briefly
highlight in the following.

A. Sparse and Low-Latency All-To-All communication

All-to-all exchanges are one of the most frequent communica-
tion patterns in distributed computing. However, there is a large
algorithmic design space for all-to-all communication ranging
from algorithms with near-optimal communication volume but
latency at least linear in the number of processing elements to
algorithms following a hypercube communication scheme with
logarithmic latency but also a communication volume that is
increased by a logarithmic factor [24].

With KaMPIng’s GridCommunicator plugin we go part
of the way of trading communication volume for reduced latency
by resorting to two-dimensional grid communication [34]. The
processors are organized in a virtual two-dimensional grid and
messages are routed in two hops to their destination to achieve
a message start-up latency in O(

√
p), where p denotes the size

of the communicator. This enables hardware-agnostic latency
reduction with asymptotic guarantees, in contrast to the variants
provided by most MPI implementations.

Additionally, MPI’s standard collectives have not been
designed with sparse communication patterns in mind.
MPI_Alltoallv, for example, requires a send counts param-
eter consisting of an array with one entry for each rank of
the communicator, yielding a time complexity linear in the
communicator size. To mitigate this problem for static commu-
nication patterns, neighborhood collectives have been added
to MPI-3.0 allowing the user to perform MPI_Alltoall(v)

and MPI_Allgather(v) on a previously defined (sparse)
graph topology. However, for applications and algorithms with
rapidly changing communication partners, e.g., (dynamic) graph
algorithms, the overhead of defining a new communication
graph topology every few all-to-all exchanges may impose too
much overhead. KaMPIng’s SparseAlltoall plugin offers
a lightweight alternative for these scenarios, accepting a set
of destination-message pairs as argument. For the actual data
exchange, the plugin uses the NBX algorithm for sparse all-to-all
communication by Hoefler et al. [35].

Both techniques for improving irregular sparse exchanges
work especially well for improving scalability of distributed
graph algorithms [36], [37]. Fig. 10 shows an evaluation
of our different all-to-all strategies using the weak-scaling
BFS benchmark introduced earlier on three different graph
families [38], where each rank holds 212 vertices and 215

edges. Erdős-Rényi graphs possess almost no locality (most
edges cross rank boundaries) but small diameter, whereas

try {
comm.allreduce(/* ... */);

} catch ([[maybe_unused]] MPIFailureDetected const& _) {
if (!comm.is_revoked()) {

comm.revoke();
}
// Create a new communicator containing only the
// surviving processes.
comm = comm.shrink();

}

Fig. 12. Handling a process failure using KaMPIng’s ULFM plugin.

random geometric graphs (RGG) are highly local with a high
diameter. Regarding locality, random hyperbolic graphs (RHG)
range somewhere in between and also have small diameter.
In contrast to Erdős-Rényi graphs and RGGs they possess
high-degree vertices. In the experiment, we compare different
algorithms for the actual frontier exchange in each BFS step:
built-in MPI_Alltoallv (mpi, KaMPIng), KaMPIng’s
sparse all-to-all plugin, KaMPIng’s grid all-to-all plugin, and
MPI_Neighbor_alltoallv (mpi_neighbor). For RHGs
(and less pronounced for Erdős-Rényi graphs) the most scal-
able communication method is our grid all-to-all approach.
Grid all-to-all also outperforms built-in MPI_Alltoallv on
RGGs. Due to their high diameter and locality, a competitive
performance on RGGs can only be achieved with sparse
communication. KaMPIng’s sparse all-to-all approach is only
slightly slower than MPI_Neighbor_alltoallv. Note that
when rebuilding MPI’s communication graph before each
frontier exchange, which simulates dynamic communication
patterns to some extent, MPI_Neighbor_alltoallv does not
scale.

B. User-Level Failure Mitigation

With the increasing number of processors in high-performance
computing clusters, the probability that some processors fail
during a computation rises. Handling such failures constitutes a
major challenge for future exascale systems [39]. In upcoming
systems, we expect a hardware failure to occur every 30 to 60
minutes [40]–[42]. The upcoming MPI 5.0 standard enables
developers to develop software able to recover from such failures
by employing User-Level Failure-Mitigation (ULFM) [43].
As one example of the potency of our plugin architecture
(Section III-F) we developed an abstraction layer over ULFM
supporting all functions of the proposal10. As plugins can add
custom error handling hooks, this enables users to develop
fault-tolerant algorithms using idiomatic C++ exceptions instead
of checking return codes, as shown in Fig. 12.

C. Reproducible Reduce

Reproducibility of results is a key aspect of scientific work.
One challenge in distributed computing is to ensure that the
results of a computation are consistent across different runs
using different numbers of processors. IEEE 754 floating point
math is not associative because of rounding errors and thus

10https://fault-tolerance.org/

https://fault-tolerance.org/
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Fig. 13. Reduction tree for 7 elements distributed across 3 ranks. The operations
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the order of operations, which often depends on the number of
processors, influences the result.

We include an implementation of MPI_Reduce as a
KaMPIng plugin which fixes the reduction order independent
of the number of processors but is faster than a gather + local
reduction + broadcast. We use a binary tree scheme inspired by
Villa et al. [44] and include various performance improvements
(Fig. 13; for details see Stelz [45]). This enables parallel
computations while using only a few messages to exchange
intermediate results.

Similar to “normal” KaMPIng reduce, we support plain-
MPI constants, function pointers, and lambda functions as
operations. We hope that the availability of a convenient off-
the-shelf library method encourages more authors to ensure that
their applications produce consistent and reproducible results.

VI. CONCLUSION

We introduced KaMPIng, a set of novel near zero-overhead
C++ MPI bindings. Through configurable inference of parameter
defaults, fine-grained memory allocation control, enhanced
safety guarantees, and a flexible plugin system, it enables both
rapid prototyping and careful engineering of distributed algo-
rithms, which we demonstrated using a variety of benchmarks
from different application domains.

KaMPIng is open source, extensively tested, and currently
used in multiple research projects. In the future, we plan to
extend the standard coverage while also working towards our
goal of building a basic algorithmic toolbox on top of it, to
ease rapid prototyping and analysis of distributed algorithms
with a strong focus on performance. To this end, we will also
further elicit the needs of the MPI community.

We are currently working on generalizing the indirection
patterns for all-to-all primitives to higher dimensions, while also
incorporating message aggregation. This is applicable in both
request-replay patterns when reading from globally distributed
data, and algorithms with highly-irregular communication
without hard synchronization. We are implementing these
building blocks on top of KaMPIng and will integrate them
into future library releases.

With distributed containers, we want to enable lightweight
bulk parallel computation inspired by MapReduce [46] and
Thrill [47], while not locking the programmer into the walled
garden of a particular framework. We strive to establish
KaMPIng as a stable core for a whole ecosystem of future
general-purpose distributed algorithms and applications.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer
SuperMUC at Leibniz Supercomputing Centre (www.lrz.de).

This work was performed on the HoreKa supercomputer
funded by the Ministry of Science, Research and the Arts
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