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Introduction
New appliances in the distribution grid, such as Electric Vehicle (EV) chargers, heat 
pumps, and Photovoltaic (PV) systems, lead to a change in infrastructure utilization 
and possibly the violation of regulatory constraints. For example, the distribution grid 
can only accommodate a certain amount of photovoltaic generation without violating 
regulatory constraints (hosting capacity [1, 2]). Other challenges include the optimized 
control of Distributed Energy Resourcess (DERs), such as controllable heat pumps or 
schedulable electric vehicle charging infrastructure, as well as Demand-Side Man-
agement (DSM) of smart household appliances. As a result, the Distribution System 
Operator (DSO) must have comprehensive and up-to-date measurement data from the 
distribution grid. However, upgrading smart distribution grid infrastructure to moni-
tor the live state of the grid or detect bottlenecks is a gradual process [3]. Many legacy 
grid infrastructures are still in use. They are neither monitored nor equipped with the 
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necessary communications infrastructure and upgrading them is costly and time-con-
suming. Key components in the distribution grid, such as transformers and cables, have 
a life expectancy of about 35 years  [4], and monitoring the state of the grid with such 
old equipment is a challenge. However, smart home devices are becoming increasingly 
popular. In the US, 35.8 % and in the EU, 23.0 % of households had smart home systems 
installed in 2021 [5]. Smart plugs can turn power outlets on and off remotely, and some 
smart plugs also include hardware to measure the power consumption of the connected 
device and the line voltage of the socket outlet they are plugged into. We hypothesize 
that sufficiently accurate grid monitoring is possible with the use of smart plugs as mea-
suring devices.

Because a DSO usually cannot place measurement instruments at every node in the 
grid, some measurement data is missing. One way of generating a complete picture of 
the grid is to use pseudo-measurements as a supplement, for example, generated using 
neural networks  [6]. Furthermore, new measuring devices, such as smart plugs, allow 
for more measurement data to be recorded at a higher frequency. In order to make use 
of this data, the monitoring must also be calculated after each new measurement data, 
preferably with low computing time. These restrictions call for fast algorithms to cal-
culate the pseudo-measurement values for the distribution grid monitoring. However, 
either typical load profiles or historical data is often necessary for established tech-
niques  [7–10]. In instances where a restricted number of measurements are available, 
pseudo-measurements can be derived from them. Graph-based algorithms can be uti-
lized by constructing a graph from a distribution grid. The graphs representing distribu-
tion grids are cycle-free in the test cases we consider, and the nodes have homophilic 
features. This means that neighboring nodes have similar characteristics and enables 
the use of algorithms that exploit these properties such as the recently published feature 
propagation algorithm [11].

In contrast to machine learning methods to generate pseudo-measurement  [12], the 
feature propagation does not rely on historical or statistical data sources. This makes it 
applicable for changing grid areas, for example, due to increasing renewable generation 
or EV charging infrastructure. Furthermore, the monitoring results can be computed 
quickly and are only based on live data, which makes the feature propagation applicable 
for low-latency monitoring.

As the considered smart plugs are connected to a standard power outlet and monitor 
the voltage on a single phase, we only aim to monitor a single phase in the distribution 
grid. However, without loss of generality, the method proposed in the present work can 
also be applied to all phases of the distribution grid and enable a holistic monitoring 
solution.

The contributions of the present paper1 are as follows: 

1. It is shown that the measurement inaccuracies of the widely available smart plugs are 
low enough to be comparable to other distribution grid measuring devices.

2. It is demonstrated how a modified firmware can increase the measurement accuracy 
and frequency, and the firmware version is released as open-source [14].

1 This is an extended and revised paper of our previously published work on the use of smart plugs as devices for dis-
tribution grid monitoring [13].
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3. The feature propagation algorithm presented in  [11], and the GINN algorithm 
presented in [15] are adapted for use in an electricity grid.

4. A novel method to generate pseudo-measurements based on the smart plug data using 
feature propagation is outlined and evaluated. The feature propagation aspect is new 
with respect to the previously published algorithm [13] and significantly improves the 
results of  [13].Although the smart plugs have a lower measurement accuracy than 
a power analyzer such as the Janitza UMG 604EP-PRO [16], they can be a valuable 
asset for grid monitoring by providing frequent measurement data at a low price. 
Combined with the feature propagation algorithm presented in the present paper, an 
accurate distribution grid monitoring with low latency can be realized.

The remainder of the paper is organized as follows: Section 2 summarizes related works 
on distribution grid monitoring, the development of measuring devices, and the genera-
tion of pseudo-measurements. In the first part of Section 3, the data collection method 
for the selected smart plugs is detailed as previously published in  [13]. Afterward, in 
Section 3.4, the post-processing step to generate measurements for the complete distri-
bution grid is presented. The measurement accuracy of the smart plugs and the moni-
toring error of our method is evaluated in Section 4. Section 5 presents a case study that 
illustrates our approach and shows the relationship between an increasing number of 
measuring devices in the grid and the overall monitoring error. The results and the prac-
tical applicability of this research are discussed in Section 6, followed by a final conclu-
sion and outlook in Section 7.

Related work
Distribution grid monitoring

To assess the state of the distribution grid, several articles identify accurate voltage mea-
surements at different nodes in the distribution grid as an important prerequisite [1, 17]. 
The p.u. (per unit) value describes the factor between the real voltage and the nominal 
voltage. Different standards define the minimum and maximum p.u. values for different 
countries. For example, the EN-50160 standard specifies a p.u. of 0.9 to 1.1 as the per-
missible voltage variation. Therefore, to evaluate the hosting capacity for PV systems in a 
part of the distribution grid, the minimum and maximum p.u. levels that occur within a 
predefined period of time need to be known, and thus voltage measurements are needed.

State of the art

In the past, the lack of measurement hardware in the distribution grid led to the explora-
tion of simulations based on sparse measurement data and pseudo-measurements [18–
20]. Others have increased the observability of the distribution grid by integrating smart 
meter data into a state estimation [21–24]. This enables the generation of forecasts [25, 
26] or the detection and localization of faults in the grid [27, 28]. Furthermore, network 
topology reduction techniques can be applied to carry out a grid state estimation with 
a limited number of smart meters  [22]. To increase the accuracy of the state estima-
tion in  [23], the unsynchronized measurements of multiple smart meters are filtered, 
and only the most recent measurements are included. Compared to a state estimation 
that assumes all smart meter measurements are recorded simultaneously, the proposed 
method is more accurate  [23]. However, smart meters require a professional elec-
trician to install, and most meters only take measurements every 15  minutes  [21]. In 
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comparison, the commercially available smart plugs can be installed by anyone and mea-
sure the voltage every second with a modified firmware.

Leveraging the Advanced Metering Infrastructure (AMI) already present in the distri-
bution grid saves costs and expenditures at the expense of the timeliness of the data [29], 
and consequently the accuracy of the grid state estimation at the present time. The lack 
of measurement hardware also leads to inaccurate load modeling of the distribution grid 
transformer. To calculate load profiles of the transformer and determine whether new 
loads could overload the current hardware, AMI can be included in the analysis  [30]. 
Installing monitoring devices on all transformers could also solve this problem, but is 
not cost effective  [30]. To improve the grid model and more accurately estimate the 
transformer peak load, several other sources of information such as temperature, geo-
graphic, customer, and facility management data can also be included. The near real-
time optimization of the distribution network with smart grid technology is identified as 
a significant improvement for the efficient operation of the grid [30].

A smart plug to monitor voltage and frequency in real-time is designed in  [31]. The 
measured values are sent to a smartphone that is connected via Bluetooth. The smart-
phone then forwards the data to a web server. With their implementation, they dem-
onstrate the feasibility of measuring the voltages at different points in the distribution 
grid and estimating the live state of the grid based on these measurements. The device 
is considered a working proof of concept for a low-cost substitute for smart metering 
hardware, although no measurement accuracy or time delay is specified. Other authors 
propose using specialized voltage meters to monitor the state of the grid [17]. They syn-
chronize their measurements and analyze the grid state with load flow simulations based 
on a series of snapshots of the grid. Furthermore, the underlying grid model is extended 
by learning from the differences between the calculated and measured voltages at dif-
ferent nodes. In  [32], a smart plug is designed for DSM. They develop a software that 
switches the connected load on or off depending on the voltage level and show that the 
load peaks are shaved off when the designed smart plugs are widely distributed in the 
grid. However, no communication mechanism is implemented, so the measured val-
ues cannot be used for distribution grid monitoring. The hardware is also a prototype 
design that is not commercially available. To monitor meteorological variables and PV 
generation, a low-cost data logger device with LoRa wireless communication is devel-
oped in [33]. The data is sent to the LoRa Gateway by the data logger and forwarded to 
an MQTT [34] Broker. The data is stored in the Google Cloud Platform. However, all of 
these devices are custom-built and cannot be considered widely available, which hinders 
widespread adoption.

By combining multiple input variables, such as historical data, weather, and day 
features, distribution grid loads can be forecasted accurately using deep neural net-
works  [12]. The forecasted loads can then be used to derive a grid state. Because of 
averaging effects, the aggregation of multiple distribution grid participants leads to a 
less volatile sum of loads than a single household load. However, when a single house-
hold’s load is of interest, other external inputs such as occupancy behavior and build-
ing characteristics need to be considered [12]. Therefore, to monitor a single branch in 
the distribution grid with only a few participants, a lot of information about the occu-
pants is needed. Manandhar et al. use Kalman filters to estimate different state variables 
in the distribution grid [35]. Discrepancies between Kalman filter estimates based on a 
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mathematical model for the power grid and measurement data trigger alarms. In their 
work, Kalman filters are used to detect attacks and faults in the smart grid by describing 
the relationship between dependent variables and predictor variables [35]. These predic-
tors represent a complete estimate of the distribution grid measurement values and an 
alternative to conventional distribution grid monitoring.

Distribution grid monitoring relies on sufficient measurement data [36]. Measurement 
data at nodes that are not equipped with measurement hardware can be derived from 
other data. For example, Madbhavi et al. use estimates from previous time steps to gen-
erate such pseudo-measurements [37].

When typical load profiles for the missing measurement values are known, they can 
be incorporated into the generation of pseudo-measurements  [7]. However, the actual 
load profiles often significantly deviate from the typical ones, and corrections need to 
be applied  [8]. Other approaches assume that the loads in the distribution grid follow 
probabilistic density functions and generate pseudo-measurements based on these [9]. 
The recent publication of Zhang et al. utilizes multiple data sources in a machine-learn-
ing approach to generate accurate pseudo-measurements of voltage levels [10]. By com-
bining historical data with up-to-date measurements, the voltage is estimated with high 
accuracy, and computation only takes a few milliseconds. It is shown that this method is 
particularly robust in the case of high PV penetration.

Without relying on other time steps, typical load profiles, or statistical load distribu-
tions, feature propagation enables the generation of missing features  [11]. By diffusing 
the known features in a graph, the missing features can be reconstructed. Rossi et al. 
interpret the feature propagation as a low-pass filter and expect it to be especially suit-
able for homophilic graph data [11]. In homophilic graphs, adjacent nodes tend to have 
similar features. This is also true for the voltages in the distribution grid, i.e., the voltage 
values of neighboring nodes are always quite close to each other [38]. Node classification 
tasks are performed by a Graph Convolutional Network (GCN) on various benchmark 
datasets to evaluate the feature propagation. A GCN is a Graph Neural Network (GNN), 
meaning it is either invariant or equivarant to the input data. Therefore, permutations of 
the input nodes either do not change the output nodes or permute them in the same way, 
respectively. This allows a GCN to generalize over all node permutations of a graph [39]. 
Feeding both the propagated and the original features into a GCN, the method proposed 
in [11] leads to a marginal drop in accuracy of only 4 % with 99 % of features missing. In 
their evaluation, Rossi et al. show that the feature propagation approach outperforms 
four other methods to recreate missing features on benchmark datasets, such as Cora, 
Citeseer, and PubMed [40].

Another approach to estimating missing values in a dataset is presented by Spinelli et 
al. [15]. They build a similarity graph from the training data that describes the connec-
tions between individual features. The weights of the edges are a measurement of the 
similarity of individual nodes. With this method, creating a graph that represents tabular 
data is possible. The created similarity graph is encoded as an intermediate graph with 
a higher dimension using a GCN autoencoder. Another GCN decodes this intermediate 
representation into data of the original dimension with imputed features. In comparison 
with other data imputation algorithms, the presented approach archives the best results 
in most cases. Therefore, we use the GINN algorithm  [15] to compare the approach 
developed in the present paper.
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In the present paper, we propose a distribution grid monitoring method using feature 
propagation. The feature propagation algorithm is strongly inspired by [11]. In contrast 
to machine-learning approaches  [7] or probabilistic mixture models  [9] to generate 
pseudo-measurements, we rely on the homophilic properties of the nodes in the dis-
tribution grid. This also eliminates the need to define typical load profiles for grid par-
ticipants and alleviates concerns about significant deviations from typical load profiles 
caused, for example, by the increasing number of installed renewable generation compo-
nents. To the best of our knowledge, such a feature propagation method has not yet been 
evaluated on electricity grids in literature.

Method
Data collection

Smart plugs connect to a Zigbee (a low-power personal area wireless network) hub, a 
LoRaWAN (a low-power wide area network) hub, or a WiFi access point. They consist of 
an outlet that can be turned on and off by smartphone apps or a smart home hub. Some 
smart plugs also contain hardware to measure the power consumption of the connected 
device and the line voltage of the socket outlet they are plugged into. The measurement 
data is typically sent to a device manufacturer’s server, allowing customers to monitor 
the values measured by the smart device via a web service. However, with suitable firm-
ware, some smart devices can connect to IoT gateways other than the manufacturer’s 
server. These gateways can forward the measured data, packaged into standardized mes-
sages, to a message broker, thus enabling remote monitoring and logging of the voltage 
levels and power consumption of connected devices.

Because these smart home devices are not intended to monitor the grid, the manu-
facturers of these devices do not provide data on the accuracy of the energy measure-
ments. Furthermore, the accuracy and frequency of the measurements can be modified 
by modifying the firmware of the smart plugs.

In addition, smart home devices may be calibrated differently. Due to manufacturing 
tolerances and environmental differences between the smart home devices, the mea-
sured voltage and current levels can vary between devices from the same manufacturer 
and production batch. We calculate a constant offset bias for all smart plugs separately 
by determining the average difference between the measured voltage values and the val-
ues measured by a reference meter, a Janitza UMG  604EP-PRO power analyzer  [16]. 
This offset-voltage is removed from the voltage measurements in a pre-processing step. 
After this step, the average voltage value measured by each smart plug connected to the 
same constant voltage is identical. The initial measurement of this offset-voltage must be 
completed for each smart plug before deployment in a live environment.

Communication interface

There are several types of smart home devices available. The main difference is the com-
munication interface available, which can be based on WiFi, LoRaWAN, or Zigbee. All 
three interfaces have different strengths and weaknesses, as can be seen in Table 1.

For this work, we use WiFi smart plugs. With a customized version of the Tasmota 
open source firmware [42], it is possible to collect measurements every second and send 
them directly to an MQTT [34] broker (a message queue with publishers and subscrib-
ers). With further modifications, a slightly higher measuring frequency could be realized, 
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but this caused problems during practical tests. Compared to the LoRaWAN and Zigbee 
smart devices, no hub or gateway device is required other than the WiFi access point. 
In the test environment, access points are already in place, so no additional hardware is 
required, making the deployment of WiFi smart plugs the most practical option. In addi-
tion, the higher bandwidth allows for more frequent and comprehensive measurement 
data. With the smart plug used for testing in this paper, the measurements are available 
in the simulation in less than one second.

Generally, the data sent over WiFi to an access point is not necessarily encrypted. 
However, the smart plugs evaluated in this paper contain an ESP8266 microcontroller 
that supports the WPA2 encryption standard. This enables the encryption of the com-
munication between the smart plug and the access point, which protects the transmis-
sion of measurements.

The TLS encryption standard is supported by the Mosquitto MQTT broker we use, 
and the Tasmota firmware for the smart plug also includes basic support for this stan-
dard. To enable the ESP8266 to send TLS-encrypted packets, a custom version of the 
Tasmota open-source firmware must be compiled that includes the very lightweight 
BearSSL library. Since the smart plugs are configured with the SSL fingerprint of the 
MQTT broker and a preshared key, a spoofing attack in which the attacker impersonates 
the smart plug and sends malicious or false data is not trivially possible.

A microservice application is used to subscribe to the MQTT broker. The application 
creates the adapter between the MQTT messages and the InfluxDB server. Incoming 
measurement data is mapped to specified fields. This architecture also allows for mul-
tiple different measuring devices to write to the same database server and, in this case, to 
compare voltage measurements recorded by different devices. In addition, metadata can 
be added to the measurements so that the voltage data is associated with a power phase, 
a geographic location, and the device manufacturer.

This infrastructure also enables fast integration of new sensors by developing new 
microservices to map the measurement data messages. Should new smart plugs that 
do not support the MQTT protocol be introduced, new microservices can be added to 
inject data into the time-series database without losing support for the existing devices. 
Furthermore, adding other database servers for specific measurement data only requires 
the development of another microservice and does not require changes to the existing 
structures. An overview of the resulting networking infrastructure is shown in Fig. 1.

Measurement hardware

Besides the communication interface, another difference between the smart plugs is the 
measurement hardware. Popular energy measurement integrated circuits (ICs) for smart 
plugs are the Shanghai Belling BL0937 and the Shanghai Belling BL0940 [43]. The Nous 
A1T, Gosund SP1, and Shelly Plug S smart plugs used for testing in this paper contain 
the BL0937  IC. However, the same measurement hardware is also included in many 

Table 1 Comparison of smart home communication technologies [41]. Depending on the grid 
topology and availability of an internet connection, different protocols may be preferable
Protocol Hub needed Data Rate Range Prerequisite
WiFi No High Low Internet connection available everywhere
LoRaWAN Yes Low High No available internet connection
Zigbee Yes Medium Medium Internet connection partially everywhere
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other smart plugs, so the measurement accuracy of the plugs is identical. All tested 
smart plugs share the same measurement characteristics.

The measurements taken by the smart plugs are compared to the values measured by a 
Janitza UMG 604EP-PRO power analyzer [16]. This power analyzer implements a mea-
surement process according to IEC 61000-4-30 and is connected to an Influx database 
via TCP/IP.

Data processing

In order to generate a complete picture of the distribution grid area where the smart 
plugs are installed, pseudo-measurements are generated. This is undertaken using a fea-
ture propagation algorithm, which is adapted from [11]. As this algorithm works on a 
graph data structure, a graph representation of the distribution grid area must first be 
created. The following sections describe the graph data structure and the feature propa-
gation algorithm.

Distribution grid graph

A graph is described as G = (N,E) , where the set of nodes N = 1, ..., n  represents the 
buses, and the set of edges E⊆N×N  represents the lines of the grid. Each node n is a 
distribution grid participant, such as a building or DER, and has a voltage value assigned 
to it if a voltage measurement value is available at that node. All edges contain informa-
tion about the admittance of the distribution grid line they represent. Since the smart 
plugs only measure voltage, we use a simplified Direct Current (DC) representation of 
the distribution grid, and all edges have a reactance of 0 Ω. This results in a simple graph 
of nodes with one feature and edges with one feature.

Feature propagation

In Fig. 2, the input data for the feature propagation algorithm is illustrated. The nodes 
colored in red do not have voltage values assigned because these nodes are not instru-
mented in the grid. Reconstruction of the missing features can be conducted using dif-
ferent strategies. As a baseline, filling all missing features with the average of the known 
features is a straightforward and fast strategy. However, this strategy does not consider 

Fig. 1 Network infrastructure between the smart plug and the InfluxDB server
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the structure of the graph and the underlying data. In order to improve this, a feature 
propagation similar to heat diffusion is devised. The features are propagated accord-
ing to the adjacency matrix and the edge weights. This is calculated by multiplying the 
adjacency matrix with the feature matrix, which results in a new feature matrix. All 
features are thus propagated by one node. The edge weights represent the line conduc-
tance between the nodes and can be interpreted as a measurement of how strongly the 
neighboring nodes are connected. The adjacency matrix, therefore, is equal to the admit-
tance matrix for a DC grid. After each propagation step, the known features are reset 
to their original values. In other words, the real measurements are not modified dur-
ing the feature propagation. For this reason, the measurement errors also remain the 
same. This process can be interpreted as heat diffusion, where the heat comes from the 
known features [11]. Between known features, the algorithm creates a gradient with an 
incline corresponding to the strength of the connections. This algorithm is presented as 
Algorithm 1.

Algorithm 1 Feature propagation algorithm as presented by Rossi et al.  [11]. xk  contains the known fea-
tures, and A represents the adjacency matrix that contains the edge weights, i.e., the line conductances. In our 
case, the adjacency matrix equals the DC admittance matrix. The indices of the known features are depicted by 
k = {k1, k2, ..., kn} , and y(i) contains all features after iteration i. Each algorithm iteration only requires one 
matrix multiplication and is, therefore, computationally very cheap.

The number of iterations the feature propagation algorithm needs to converge depends 
on the number of available measurements, the location of the available measurements, 
and the distribution grid in question. The algorithm is stopped once the difference delta 

Fig. 2 A diagram illustrating the distribution grid monitoring with missing features. The p.u. values are the node 
features we aim to reconstruct, and the resistance values in Ω are used as edge weights
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to the previous iteration is lower than the threshold ε . With seven available measure-
ments and ε = 10−5, the algorithm stops after 153 iterations on the IEEE bus system 37. 
The GINN algorithm [15], which we use for comparison, does not use the graph data 
structure but imputes the missing features based on training data. A training data set 
consists of the same power grid in different states. The grid remains the same for the 
training data set, but the voltage measurements change depending on the loads placed 
in the grid. The internal GCNs learn the relationships between nodes using this training 
data and do not require the adjacency matrix as an input.

In each iteration of the feature propagation algorithm, a matrix multiplication is 
performed. The complexity of the feature propagation algorithm is, therefore, directly 
related to the size of the matrix, which is equal to the number of nodes. This results in 
a complexity of between about O(n2.38)  and O(n3) , depending on the algorithm  [44]. 
In the GINN algorithm, a similarity graph is constructed internally, which can be done 
efficiently  [15]. This only needs to be done once for a dataset during training. For the 
recurring generation of pseudo-measurements, inferring the GCNs is necessary. The 
inference has a complexity of O(|E|CF) with |E| denoting the number of edges and C and 
F denoting the number of input and output features of the GCN respectively [15].

Evaluation
The evaluation of the proposed method is split into two parts. First, the accuracy of the 
measurements of the smart plugs is evaluated. To do so, two smart plugs are installed 
in a real-world test environment, and the measurements taken by the smart plugs are 
compared to calibrated professional measuring devices. In the second part, the complete 
monitoring of the distribution grid area is evaluated.

Smart plug accuracy

Two smart plugs are installed in the real-world test environment to evaluate the accu-
racy of the smart plug voltage measurements. In our test setup, the power analyzer is 
configured to send one measurement value per second. Since the smart plugs contain 
the same measurement IC, the difference in the measured values is only due to the dif-
ference between the modified and the unmodified firmware versions.

First, we analyze the measurements of the smart plug with the unmodified Tasmota 
open-source firmware  [43]. With this firmware, the smart plugs output voltage mea-
surements with one decimal place. Therefore, one could assume that the error of a mea-
surement is at most 0.1 V. However, due to rounding errors in the unmodified Tasmota 
firmware, the measurement error is higher. The smart plug only takes voltage measure-
ments in steps of at least 0.2 V, sometimes even only 0.3 V.

In Fig. 3, the measurement error of the smart plug with the unmodified firmware ver-
sion is plotted in orange, and the measurement error of the smart plug with the modified 
firmware is plotted in blue. Since the unmodified firmware version outputs one mea-
surement value every ten seconds and the modified firmware version outputs one value 
per second, there are exactly ten times as many measurement values of the modified 
firmware version in the same time span. The Y-axis values are relative to the total num-
ber of measurements.

The measurements of the smart plug with the unmodified Tasmota firmware are 
more spread out than those with the modified firmware, indicating that the standard 



Page 11 of 21Grafenhorst et al. Energy Informatics           (2024) 7:116 

deviation of the blue measurements is lower than the standard deviation of the orange 
measurements. This is indeed the case, as the standard deviation of the smart plug with 
the unmodified firmware is 0.33 V, and the standard deviation of the smart plug with the 
modified firmware is 0.27 V.

Neither the Anderson-Darling test  [45] for normality nor the Shapiro-Wilk test  [46] 
allow us to reject the null hypothesis that the data are normally distributed. The Ander-
son-Darling test returns a statistic of 0.44 and a critical value to reject the null hypoth-
esis of 0.57, even at a significance level of 15 %. The Shapiro-Wilk test gives a p-value 
of 0.54. Therefore, we conclude that the measurement error is likely to follow a normal 
distribution or some other very similar distribution.

Distribution grid monitoring error

In the context of monitoring the distribution grid, it is of interest to observe the voltage 
levels at the Point of Common Coupling (PCC). At this point, where the building wir-
ing ends and the distribution grid operator’s area of concern starts, the voltage levels 
must be within a range specified by the regulating authorities. For instance, the stan-
dard EN-50160 permits voltage levels between 0.9 p.u. and 1.1 p.u. Consequently, it is 
advisable to install measuring devices in close proximity to the PCC. In our scenario, 
we assume that the smart plugs used to measure the voltage levels are installed at an 
outlet that is in very close proximity to the PCC, such that the voltage level at this point 
is nearly identical to the level at the PCC. Consequently, only the measurement error of 
the smart plug itself must be considered in the context of grid monitoring; no additional 
error has to be attributed to the placement of the smart plug behind the PCC.

In order to evaluate the overall error of the distribution grid monitoring, we calcu-
late the Mean-Square Error (MSE) for multiple test cases. As a baseline comparison, the 
GINN algorithm presented in [15] is implemented and evaluated. We also compare the 
results with the basic approach of inserting the mean value of the measured values wher-
ever measurements are missing.

As a test case, the grids “1-LV-rural3–1”, “1-LV-semiurb5–2”, and “1-LV-urban6–2” 
from the SimBench dataset  [47] are used. All three grids are low-voltage grids with a 
nominal voltage level of 0.4 kV. They contain PV generation and consist of 118, 104, and 
53 nodes, respectively. The power flows for 5000 time steps for each grid are calculated, 

Fig. 3 Relative frequency histogram of the measurement error of smart plugs with the modified firmware (blue) 
and the unmodified firmware (orange)
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and the resulting voltage values are used as the ground truth. In order to generate a real-
istic test case, a percentage of values are removed from the results. The remaining volt-
age values are modified with a measurement error, following the normal distribution of 
the measurement error of the smart plugs. The dataset contains between 2 % and 50 % 
of voltage values for each time step (i.e., 50 %, 80 %, 90 %, 95 %, or 98 % of features are 
missing). Furthermore, the existing voltage values are offset by a simulated measurement 
error corresponding to the smart plug measurement error.

In Fig.  4, the MSE of the pseudo-measurement voltage values generated using the 
GINN algorithm and the feature propagation algorithm are illustrated. The shaded area 
represents the standard deviation. For this test, 1.000 time steps from the three grids 
are evaluated. At every time step, a randomized mask is applied to the data, removing a 
random set of input values and generating a realistic test case with missing features. This 
dataset, containing incomplete voltage values for the three grids for 1000 time steps, is 
input into the GINN algorithm or the feature propagation (Algorithm 1).

The GINN algorithm is trained and evaluated separately on the three grids, resulting 
in a best-case scenario without transfer learning. The algorithm only deals with a single 
electricity grid in training and testing, and this process is repeated for each grid used for 
the evaluation.

The feature propagation algorithm is able to reconstruct the missing features relatively 
accurately, even in cases with 95 % or 98 % of missing features. With more features being 
present, the GINN algorithm can also generate accurate substitutes. However, the fea-
ture propagation that is purely based on the phenomenon that the neighboring nodes 
have similar characteristics is outperforming the GINN algorithm at every tested per-
centage of missing values. The feature propagation algorithm is able to reconstruct the 
missing voltage values with an MSE of 0.43 · 10−3p.u. with 95 % of voltage values missing 
in the graph. In a 230 V grid, this equals an MSE of 0.099V. The GINN algorithm pro-
duces voltage values with an MSE of 0.64 · 10−3p.u. when 95 % of the values are missing, 
which is equal to 0.147V in a 230 V grid. The basic approach of inserting the average 

Fig. 4 The MSE between the imputed and true values in the dataset. The shaded area illustrates the standard 
deviation
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measurement value as a pseudo measurement wherever measured values are missing 
leads to a very high MSE. All results are summed up in Table 2.

Case study
The use of smart plugs as distributed measuring devices in the distribution grid can 
enable real-time monitoring of voltage levels, allowing operators to detect and address 
issues promptly. However, measurement errors could be an issue when monitoring the 
distribution grid accurately. To further explore the impact of the measurement error and 
the correlation between the number of measuring devices and the accuracy of grid mon-
itoring, this section presents a case study of exemplary distribution grid monitoring.

In the present case study, we simulate the power flow in an IEEE 37 bus system. Smart 
plugs are emulated by adding a measurement error to all measurements, according to 
our findings in the previous section. We utilize the feature propagation algorithm pre-
sented in Section  3.4.2 and achieve much better results than previously published 
research [13].

Problem formulation

Distribution grid monitoring and state estimation are becoming increasingly impor-
tant for DSOs due to the rise in flexible consumption, distributed generation, and the 
increase of demanding loads such as heat pumps and electric vehicle chargers. However, 
accurately monitoring the distribution grid and determining the impact of new loads 
and distributed electricity generation requires many measuring devices. This case study 
shows how a limited number of smart plugs can provide valuable insight into the voltage 
levels at different nodes within the distribution grid area. It also outlines the relationship 
between the number of smart plugs in the grid area and the monitoring accuracy.

Method

In order to evaluate the benefit of smart plug measurements for grid state monitoring, an 
IEEE 37 bus system is simulated. We implement the grid simulation using pandapower, 
an open-source tool written in Python for modeling and analyzing power grids [48]. The 
smart plugs providing the measurements are also simulated. This standardized distribu-
tion grid bus system is shown in Figs. 5 and 6.

The transformer T is connected to the 20 kV grid on the primary side and the 400 V 
distribution grid on the secondary side. The nodes in the graph represent the houses in 
the distribution grid. In this power flow simulation, all the houses are placed 40 m away 
from each other, and NAYY 4x150 SE lines are used to connect them. These are the most 
common lines used in Germany [49], and 40 m is a common distance between neighbors 
in a rural German distribution grid [50]. We assume that the Root-Mean-Square (RMS) 
voltage at the transformer is constant for this simulation model. To evaluate the impact 

Table 2 MSE of the distribution grid monitoring in 10−3 p.u.  from 1000 time steps of the grids 
“1-LV-rural3–1”, “1-LV-semiurb5–2”, and “1-LV-urban6–2”
Missing rate Averaging GINN Feature propagation
0.5 4.375 0.121 0.030
0.8 6.668 0.300 0.105
0.9 8.019 0.503 0.242
0.95 8.792 0.640 0.431
0.98 11.630 1.146 0.626
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Fig. 6 Graph representation of the IEEE bus system 37 and illustration of the monitoring results at a single time 
step. Nodes are colored based on the voltage monitoring error at an exemplary time step that results from the fea-
ture propagation algorithm. Monitored voltages at white and yellow nodes are similar to the ground truth voltage 
levels, and monitored voltages at the red nodes differ more from the ground truth voltage levels. In this example, 
seven smart plugs are installed at nodes 736, 706, 709, 711, 742, 722, and 725. The average monitoring error E is 
about 0.169 V with an MSE of about 0.029 V, and the coloring is consistent with Fig. 5

 

Fig. 5 Graph representation of the IEEE bus system 37 and illustration of the monitoring results at a single time 
step. Nodes are colored based on the voltage monitoring error at an exemplary time step that results from the fea-
ture propagation algorithm. Monitored voltages at white and yellow nodes are similar to the ground truth voltage 
levels, and monitored voltages at the red nodes differ more from the ground truth voltage levels. In this instance, 
only two smart plugs are installed at node 736 and node 702. The average monitoring error E is about 0.200 V, and 
the MSE is about 0.044 V
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of the measurement error of the distributed smart plugs on the monitoring of the grid 
area, we implement several scenarios with different numbers of smart plugs installed in 
the grid area. We add realistic loads from the SimBench dataset [47] to the nodes, repre-
senting household appliances and electric vehicle chargers.

In the case study, we use the voltage levels generated by power flow calculations as the 
ground truth. We offset them with random values sampled from a normal distribution 
with the standard deviation calculated in Sect. 4 to model the measurement accuracy of 
the smart plugs. This results in voltage levels that a DSO could measure in a real-world 
experiment, and we call them artificial voltage measurements.

In the following, we aim to estimate the true voltage levels at all nodes in the IEEE bus 
system 37 from the perspective of the DSO with the presented feature propagation algo-
rithm. The artificial voltage measurements represent the features that are present. We 
assume that the DSO also knows the voltage at the transformer.

The admittance matrix, which the feature propagation algorithm uses as the adjacency 
matrix, is derived from the bus system lines. By removing the unmonitored nodes from 
the power flow results and adding a measurement error to the monitored nodes, the 
input data for the feature propagation algorithm is generated. The algorithm then propa-
gates these measurements during numerous iterations.

Evaluation

In order to evaluate the use of smart plugs as measuring devices in combination with the 
feature propagation algorithm, we compare the propagated voltage measurements with 
the true voltage levels. The nodes in Fig. 5 and Fig. 6 are colored based on the differ-
ence between the true voltage levels and these propagated voltage measurements. Red 
nodes represent a greater difference between the true voltage levels and the propagated 
voltage measurements, and the lighter the nodes are colored, the smaller the monitor-
ing error is. The voltage error is lowest at the nodes where the measuring devices are 
installed. However, due to the measurement inaccuracy of the smart plugs, even these 
voltage levels are not perfectly accurate. As a general rule, the further the measurements 
are propagated by the feature propagation algorithm, the less accurate they are. This 
means that, especially in large networks, meters should be placed at points that need to 
be monitored accurately. In the grid shown in Fig. 5, only two smart plugs are used for 
monitoring. In Fig. 6, seven smart plugs are placed in the grid area. It can be seen that 
with seven smart plugs, the monitoring error is lower on average. Furthermore, in the 
experiment with seven smart plugs, the maximum monitoring error is also significantly 
reduced compared to the monitoring result using only two smart plugs.

The correlation between the number of measuring devices in the grid and the average 
voltage error in a 230 V grid is illustrated in Fig. 7. This figure also shows the improve-
ment of the feature propagation algorithm compared to the previously used pseudo-
measurement generation algorithm from the original version of this paper [13].

In this case study, we utilize typical load profiles drawn from the Simbench dataset 
to create the ground truth distribution grid state. The aforementioned realistic pro-
files result in a typical voltage gradient between the feeder and the buses. The further 
away the buses are from the feeder, the greater the voltage drops. The feature propa-
gation algorithm establishes a similar gradient by diffusing the known measurements 
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throughout the grid. However, for vastly different load scenarios compared to those eval-
uated in this case study, the feature propagation algorithm may perform worse.

Discussion
The voltage standard deviation observed in the smart plug measurements with the mod-
ified firmware of 0.27 V is well within the range of what is considered acceptable in other 
publications (0.6 % in [26] and 0.3 % to 0.9 % in [24]). Installing multiple smart plugs in 
the same distribution grid area further improves the accuracy of the measurements, and 
monitoring multiple phases in three-phase distribution networks would allow asymmet-
ric loads to be detected. The smart plugs with the modified firmware version allow up 
to one voltage measurement per second, and they are available almost immediately for 
a grid state analysis. In contrast, smart meters often take only one measurement every 
fifteen minutes and transmit the data at intervals of up to six hours  [29]. In addition, 
the deployment of the smart plugs in a real-world test environment can be completed in 
minutes by configuring the smart plug and connecting it to a nearby WiFi network, and 
no electrician is required for installation.

Smart meters are typically installed near the point of common coupling. Smart plugs, 
on the other hand, measure the voltage at the outlet to which they are connected. This 
means that the voltage drop within the resident’s home is included in the smart plug’s 
measurements. This voltage drop depends on the loads within the home’s electrical sys-
tem and is, therefore, not constant. In order to reduce the voltage drop on the local line, 
it is necessary to install the smart plug as close as possible to the point of common cou-
pling. In addition, the smart plugs monitor only one phase. However, the load in the dis-
tribution grid is predominantly symmetrical [51], which results in a symmetrical voltage 
drop as well.

The approach of using widely available smart plugs to monitor the distribution grid is 
mainly limited by privacy concerns and the accuracy of the measurements, especially 
when compared to the measurements from calibrated smart metering systems or power 
analyzers. Linking the measurement data of the individual smart plugs to a distribution 
grid customer could reveal daily routines or installed appliances. Installing the smart 

Fig. 7 Correlation between the number of smart plugs in the grid area and the average monitoring error. The blue 
squares depict the monitoring error of the previously published pseudo-measurement value generation [13], and 
the red stars depict the monitoring error of the feature propagation (Algorithm 1). The monitoring error of the fea-
ture propagation algorithm also decreases the more measuring devices are installed, from 0.210 V with one smart 
plug to 0.169 V with seven smart plugs
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plugs away from the common coupling point may reduce the validity of the measure-
ments, and the constant offset of each device must be determined and compensated 
for. However, the frequency of the measurements could permit some compensation for 
these shortcomings, e.g., employing filters. Another issue for practical implementation 
in the field is the availability of a WiFi connection to transmit the measurements. Per-
haps allowing customers to use the switching function of the smart plug would be an 
incentive to allow the use of their private WiFi access.

In general, installing a custom firmware to monitor the distribution grid voids the war-
ranty of the smart plugs. The manufacturers of the smart plugs would need to provide 
a software interface to collect measurement data or connect to a custom server to use 
the smart plugs without flashing a custom firmware. Without the manufacturer’s sup-
port for such a feature, the DSO would need to flash the custom firmware before dis-
tributing the smart plugs to the customers. The smart plugs used in this paper can be 
flashed remotely without opening them, making the flashing process scalable. Because of 
the small amount of data transferred, thousands of smart plugs can connect to the same 
server. If many more Smart Plugs are installed, the load can also be distributed among 
several servers.

The presented method to generate pseudo measurements enables the monitoring of 
the complete distribution grid area with only a few measuring devices being installed. 
The comparison in Table  2 illustrates that simply replacing the missing values with 
the average of the measured values does not lead to accurate results. By exploiting the 
homophily of the neighboring nodes, it is possible to propagate the known features 
through the graph that represents the distribution grid. This process is computationally 
inexpensive. On the evaluated test cases, the feature propagation leads to better results 
than what we can achieve using the GINN algorithm and our previously published 
algorithm [13]. To the best of our knowledge, this is the first application of this kind of 
feature propagation in the electricity grid. In the evaluation, we show that the feature 
propagation can reconstruct the missing measurement values with high accuracy and 
an MSE of 0.431  p.u., equal to 0.099  V, when 95% of measurements are missing. This 
approach produces more accurate results than the GINN algorithm published by Spinelli 
et al. [15], which, in our tests, provided pseudo-measurements with an MSE of 0.640 p.u. 
or 0.147 V. However, tuning the hyper-parameters of the GCNs might increase the qual-
ity of the results. In addition, other algorithms for generating pseudo-measurements 
may produce even better results, for example, by incorporating typical load profiles. In 
their publication, Rossi et al. test the feature propagation algorithm on multiple datasets 
with various levels of homophily [11]. This suggests that other approaches may produce 
more accurate pseudo-measurements than feature propagation, especially when consid-
ering less homophilic distribution grids. These could be distribution grids containing 
very different types of lines. However, such grids are not included in the SimBench data-
set. In scenarios with very high measurement errors or false data, feature propagation 
will propagate these values. However, such erroneous measurements could be detected 
by analyzing the gradient of the propagated measurements. This should be investigated 
in future work.

Because the IEEE bus system 37 is relatively small for a distribution grid and only one 
line is connected directly to the transformer, the voltage values can be propagated along 
the lines, and the resulting values are very accurate. The larger SimBench grids used to 
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compare the feature propagation algorithm and the GINN algorithm result in less accu-
rate pseudo-measurements. Depending on the distribution grid topology where this 
monitoring technique is applied and the accuracy required, different numbers of mea-
suring devices will be needed.

Applicability in the real world In a realistic use case, the distribution grid operator 
must know the line lengths, line types, and possible connected loads and electricity gen-
eration systems at all nodes. With this information, the adjacency matrix - the respective 
admittance matrix - needed for the feature propagation algorithm can be created. Our 
evaluation of the presented approach suggests that it is invariant to the location of the 
known features. With the feature propagation algorithm and the known features being 
diffused across the graph, randomly located measuring devices in the grid produce good 
results with a small standard deviation. However, extreme test cases with the measuring 
devices only being installed at one end of the grid would probably perform worse than 
evenly distributed measuring devices. Moreover, positioning the smart plugs in proxim-
ity to the PCC is crucial for precisely measuring grid voltage levels. In the present paper, 
the smart plugs are placed at the PCC at every node, representing the optimal location. 
If the smart plugs are positioned further away from the PCC, the discrepancy between 
the grid voltage and the measured voltage is amplified. This relationship warrants fur-
ther investigation in future studies.

Because of the low computational effort of the proposed method, new grid monitor-
ing results can be generated quickly with every incoming smart plug measurement. 
Accordingly, the monitoring can be accomplished with minimal latency on decentral-
ized devices. This allows devices in the field to monitor the grid autonomously without 
relying on a central controller.

We show that the feature propagation algorithm yields accurate results for the investi-
gated use cases. However, our evaluation is limited to grids from the SimBench dataset. 
It does not include very large distribution grids with extreme loads nor bad measure-
ment data, which may significantly impact feature propagation results and require a data 
clean-up step. There are also country-specific regulatory hurdles, which may impede the 
real world use of smart plugs as measuring devices.

Conclusion
In this paper, we determine the accuracy of smart plug measurements by comparing the 
calculated values with voltage readings from a Janitza UMG  604EP-PRO power ana-
lyzer. We use commercially available devices in the present work that are able to connect 
directly to a WiFi network and transmit the measurement data to a server, eliminat-
ing the need for a relay. The voltage measurements of the tested smart plugs with the 
modified Tasmota firmware have a standard deviation of 0.27 V, which is lower than the 
standard deviation of the measurements taken by smart plugs with the unmodified Tas-
mota firmware. The modified firmware is published as open-source. We also describe 
the network structure and the integration of smart plug measurement data into an exist-
ing time-series database. Installing the commercially available smart plugs does not 
require an electrician, the hardware is inexpensive, and the individual configuration of 
the devices is simple.

By propagating the measured voltage values within the distribution grid using a fast 
feature propagation algorithm, pseudo-measurement values can be generated. This 
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feature propagation algorithm is based on the heat diffusion equation, and the required 
number of iterations can be computed with very little effort. Compared to our previously 
published algorithm and the GINN algorithm, the feature propagation algorithm pre-
sented in the present paper leads to a more accurate monitoring result with less compu-
tational complexity. In this light, simple smart plugs can help to monitor the distribution 
grid and provide valuable information to the DSO. Such monitoring can help identify 
impending congestion in rapidly changing grid areas, for example, due to the growth 
of distributed renewable generation or the installation of new EV charging infrastruc-
ture. Because of the low computational effort, the grid monitoring can be updated with 
every new smart plug measurement. This also enables the computation of pseudo-mea-
surements on smart grid devices with low computing power at a decentralized location. 
For example, DERs could monitor the distribution grid and provide ancillary services to 
the grid without communicating with a central controller but only with local measuring 
devices. As a result, distribution grid monitoring is more resilient to cyber-attacks and 
internet connection disruptions.

Future work includes evaluating other electricity grids, more algorithms to generate 
pseudo-measurements, and real-world tests. In particular, the applicability of the feature 
propagation algorithm to larger, more complex distribution grids with additional load 
profiles remains to be investigated. Additionally, the homophilic characteristics of the 
nodes in the electricity grid could potentially be used not only to propagate voltage fea-
tures but also to approximate other problem solutions on power grids, such as optimal 
power flow.
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