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A B S T R A C T

Forests provide important ecosystem functions such as carbon sequestration and climate regulation, particularly
in countries with high forest cover. Climate change-induced extreme weather events have a negative impact on
many forest ecosystems. In Germany, for instance, the drought of the years 2018 until 2020 resulted in signs of
damage in almost 80% of trees. This decline in forest vitality has additionally led to severe bark beetle in-
festations and widespread tree mortality, posing significant challenges to forest managers to obtain a complete
picture of the state of their forests. Since a completely ground-based monitoring of forest condition is not feasible
due to the forests’ vast extent, remote sensing and particularly multispectral satellite image time series (SITS)
analysis were suggested as efficient alternatives. Transformers, a state-of-the-art Deep Learning (DL) architec-
ture, have shown promising results in the classification of multivariate SITS for other applications. Here, we use
Transformers in combination with Sentinel-2 (S2) time series data to test if they can improve forest disturbance
detection capabilities in comparison to conventional methods by automatically extracting relevant information
from background variability throughout the whole time series. To match the large training data needs of
Transformers, we use a two-step approach including pre-training and finetuning. During pre-training, we use
outputs of earlier presented SITS approaches, while during finetuning, we use detailed reference data of known
disturbances covering between 10 and 100% of a Sentinel-2 pixel as extracted from aerial images. We test three
setups: DL base using ten S2 bands, DL IND using ten vegetation indices (VIs), and DL +IND utilising both as
model input. F1-scores across all of our six study sites range between approx. 0.65 (DL +IND) and 0.72 (DL base)
in a binary classification (undisturbed vs. disturbed) when considering both full and partial disturbances. DL base
outperforms the other setups in forest disturbance detection, and detects disturbance extents as small as 40 m2

within pixels of 100 m2 size. Given the best performance of DL base, handcrafted vegetation indices (VIs) do not
improve the model. Our model is competitive with existing approaches and slightly outperforms most earlier
reported results, even though a direct comparison is challenging. Considering the option to further refine our
trained model if additional reference data becomes available over time, we conclude that a combination of
Transformers and Sentinel-2 time series can be developed into an effective tool for forest disturbance monitoring
of Central European forests at fine spatial grain.

1. Introduction

Forests cover more than 30% of Germany’s (Bösch et al., 2018;
Holzwarth et al., 2023; Holzwarth et al., 2020) and Luxembourg’s land
surface (Schwarz et al., 2023), providing many ecosystem services such
as carbon sequestration, climate regulation and space for recreation

(Bösch et al., 2018; Senf and Seidl, 2020; Thom et al., 2017). Moreover,
forests are an important economic factor, providing more than 1 million
jobs and a turnover of billions of Euros in Germany (Holzwarth et al.,
2020).

In the last decades, extreme climatic events such as heat waves,
droughts and storms negatively impacted the vitality of German forests
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(Holzwarth et al., 2020). As a result, about 80% of trees in Germany
have been reported to show signs of damage in 2023
(Bundesministerium für Ernährung und Landwirtschaft (BMEL), 2023).
Driven by climate change (Ionita and Nagavciuc, 2021), the frequency of
extreme weather events is expected to increase even more in the future
(García-Herrera et al., 2019; Grillakis, 2019; Ionita and Nagavciuc,
2021), presumably leading to a higher frequency of forest disturbances
(Bréda et al., 2006; Gazol and Camarero, 2022; Holzwarth et al., 2020;
Seidl et al., 2017; Senf and Seidl, 2021). Climate-induced tree stress and
increased deadwood volumes as well as generally increased tempera-
tures also benefit European bark beetles (Ips typographus L. and Pity-
ogenes chalcographus L.) which have infested wide parts of forests in
Germany and central Europe over the last years (Latifi et al., 2014;
Netherer et al., 2019; Patacca et al., 2022; Senf et al., 2017).

A timely and area-wide monitoring of forest condition is urgently
needed, for example to prevent bark beetles from spreading by con-
ducting sanitation fellings (Dobor et al., 2020; Kautz et al., 2023), or to
assess drought-induced forest dieback and plan preventive measures.
For Germany’s large forest areas of more than 11 million ha
(Bundesministerium für Ernährung und Landwirtschaft (BMEL), 2023),
an efficient and timely area-wide monitoring of forest condition on the
ground is impossible (Holzwarth et al., 2020). Hence, remote sensing-
based approaches have been discussed frequently over the last years.
Remote sensing has shown potential for forest monitoring in numerous
earlier studies (Abdullah et al., 2019; Grabska et al., 2020; Latifi et al.,
2014; Senf and Seidl, 2020; Thonfeld et al., 2022). Many of these studies
show that particularly the multispectral Sentinel-2 (S2) satellite system
bears great potential due to its high spatial resolution of up to 10 m and
its short revisit time of approx. 5 days in Europe. The multispectral
sensor on board of S2 captures spectral data in the visible to shortwave
infrared range, which enables it to capture information related to forest
condition (Dutrieux et al., 2021a; Grabska et al., 2020; Mouret et al.,
2024; Verbesselt et al., 2010; Zhu and Woodcock, 2014) and make it
suitable as input for satellite image time series (SITS)-based forest
disturbance monitoring approaches.

The analysis of SITS allows for the detection of changes in forest
cover and state over time. Major challenges of SITS approaches include
the creation of homogeneous time series and extracting disturbance-
related changes from the diverse range of natural fluctuations in the
spectral characteristics of temperate forests. The latter are caused, for
instance, by the complex phenology of temperate forests with inter-
annual variations (Puhm et al., 2020), varied species compositions
and gradients in structural complexity (e.g. different stand ages, multi-
or single-layered stands, canopy gaps, various topographic situations
affecting sun-sensor geometries).

These challenges have been addressed in at least three existing SITS
analysis approaches: near real-time (NRT) monitoring, temporal seg-
mentation and time series classification. Near real-time monitoring al-
gorithms utilise a training period of presumably undisturbed forest to
model a baseline and detect deviations from forecasts of this baseline in
new observations. Examples for NRT monitoring algorithms are BFAST
Monitor (Verbesselt et al., 2012), CCDC/COLD (Zhu et al., 2020; Zhu
and Woodcock, 2014) and FORDEAD (Dutrieux et al., 2021b). The
second approach is referred to as temporal segmentation approach and
includes, for instance, BFAST (Verbesselt et al., 2010). Temporal seg-
mentation approaches decompose the SITS signal into a seasonal
component, a trend component and residuals to subsequently identify
breakpoints in the spectral time series. Depending on the strength of
signal changes at the breakpoints and the direction of the change, a
forest disturbance is then assumed. Features extracted from temporal
segmentation approaches can also be used as input to time series clas-
sification methods. This approach is usually based on machine learning
and can also be applied on the time series itself instead of the features
engineered by temporal segmentation (Du et al., 2023; Perbet et al.,
2024).

Deep Learning (DL), a sub-class of machine learning, has evolved as a

promising tool in remote sensing. Numerous successful applications
such as the mapping of standing deadwood (Schiefer et al., 2023), crop
classification (Yuan and Lin, 2021), wildfire detection (Kong et al.,
2018) and forest disturbance agent classification (Du et al., 2023) have
been presented. Transformers (Vaswani et al., 2017), a Deep Learning
architecture that revolutionized Natural Language Processing (NLP)
(Ahmed et al., 2023), e.g. in Neural Machine Translation tasks (Vaswani
et al., 2017), have been adapted to cope with a variety of time series data
(Ahmed et al., 2023; Yuan and Lin, 2021) including SITS. The main
innovation of Transformers is the self-attention algorithm, which enables
the model to learn (the strength of) both long- and short-term de-
pendencies between different observations.

Transformers exhibit at least three potential advantages over the
aforementioned approaches for forest disturbance detection using SITS:
(1) Transformers can consider single decisive observations at any posi-
tion within the time series explicitly and capture their links to subse-
quent events. This could be advantageous with respect to events that
trigger tree mortality after a certain time lag (Bigler et al., 2007) such as
forest dieback occurring more than a year after a drought at certain sites
(Haberstroh et al., 2022). Even an increased photosynthetic activity
observed at the beginning of a drought (caused by a lot of photosynthetic
active radiation hours) could be a subtle marker of a disturbance event
following much later (Reinermann et al., 2019). Related to that,
Transformers seem to offer an improved ability to detect small and
gradual disturbance signals which are hard to disentangle from spectral
variation caused by natural processes (Coops et al., 2020; Rodman et al.,
2021; Ye et al., 2021). Recent studies suggest that Transformers may be
able to capture such subtle disturbance signals in SITS (Perbet et al.,
2024).

(2) Many established methods only operate on univariate time series.
They either use satellite bands or vegetation indices (VIs) that are sen-
sitive to disturbance (e.g. Dutrieux et al., 2021b; Verbesselt et al., 2010),
or the algorithm is applied to multiple VIs/bands separately, followed by
a cumulative sum of detected anomalies to decide about the final
disturbance detection (e.g Puhm et al., 2020). Additionally, some of the
established methods demand averaging or interpolation of the SITS as
they require regular (e.g. 5 or 7 days) time series as input (Verbesselt
et al., 2010). Transformers (or adaptations thereof), on the other hand,
can take as input non-interpolated, multivariate time series (Yuan and
Lin, 2021; Zhang et al., 2024). This is favorable, since interpolation
leads to information loss (Zhang et al., 2024), and using univariate time
series as input does not exploit all of the available information.

(3) Some of the established methods need parameter tuning to work
for different regions and time frames (Pasquarella et al., 2022). In ideal
case, a Deep Learning model trained on a very large amount of data has
been exposed to many disturbed and undisturbed spectral time series,
which are representative for the vast majority of the existing variability
in spectral properties of disturbances of forests. If this is the case, it can
be assumed that Deep Learning models can be readily applied across
wider areas without further tuning.

Given these potential advantages, Transformers have been success-
fully used in classification of SITS for crop (Yuan and Lin, 2021) and land
cover classification (Zhang et al., 2024) as well as tree species mapping
(Mu et al., 2024). In the context of Deep Learning-based forest distur-
bance detection, Schiefer et al. (2023) use Long Short Term Memory
Networks (LSTMs) to estimate the fraction of standing deadwood given
S2 pixel time series in Germany. Wittich et al. (2022) use single Sentinel-
2 scenes to estimate the time of upcoming disturbances using a Con-
volutional Neural Network at a study site in Germany. However, only
few studies using Transformers for SITS have been published, yet. Du
et al. (2023) and Mullissa et al. (2023) detect stand-replacing distur-
bances using Landsat and Sentinel-1/2, respectively. Perbet et al. (2024)
successfully detect stand-replacing as well as partial disturbances using
annual composites of SITS of the Landsat satellites. To the best of our
knowledge, however, there is no study so far that uses Transformers on
SITS of raw Sentinel-2 data without temporal compositing to detect
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forest disturbance in temperate forests.
To fill this gap, we test if Transformers are capable of extracting

relevant information from complex and dense multi-year time series of
S2 observations to identify forest disturbances across a wide and varied
geographic area covering Germany and Luxembourg. We implement the
study as a binary classification task (undisturbed vs. disturbed forest).
We train on stand-replacing as well as partial disturbances of multiple
disturbance agents (incl. logging) in order to enable the detection of
disturbances at sub-pixel size as well. We hypothesize that this approach
might empower the model to detect early stages of gradual disturbances
such as bark beetle infestations. Since VIs have been widely and suc-
cessfully utilised in spaceborne forest disturbance detection tasks
(Abdullah et al., 2019; Bandyopadhyay et al., 2017; Cohen et al., 2010;
Mandl and Lang, 2023; Mouret et al., 2024), we examine three setups: 1)
DL base using only the ten 10 to 20 m S2 bands, 2) DL +IND using both
the ten S2 bands and ten commonly used VIs, 3) DL IND using only the
ten VIs. In short, the goal of this study is providing an advanced forest
disturbance monitoring tool capable of identifying spatially small forest
disturbances applicable to all forest pixels in Germany and Luxembourg
at any time of the year using state-of-the-art transformer models to
support forest management. Such a tool has been called for by numerous
stakeholders in the forest sector in the last years (Holzwarth et al., 2023;
Holzwarth et al., 2020).

This results in three research questions:

• To what degree can Transformers accurately detect forest distur-
bance on formerly unseen S2 time series?

• What is the smallest disturbance extent that can be detected by the
proposed method?

• Do Transformers need vegetation/disturbance indices for accurate
predictions?

2. Methods

We use Sentinel-2 multispectral time series and forest disturbance
information derived from published (mostly satellite-based) datasets
(pre-training step) and high-resolution aerial imagery (finetuning step)
to train a transformer model, a state-of-the-art architecture of Deep

Learning (DL) models for time series classification (Ahmed et al., 2023;
Du et al., 2023; Yuan and Lin, 2021). We implement the model for a
binary classification task (undisturbed vs. disturbed forest). In the
following, we describe in detail the steps to process input data (Sections
2.1 and 2.2), train the models (Sections 2.3 and 2.4) and compare the
results (Section 2.5), as summarized in Fig. 1.

2.1. Sentinel-2 data preprocessing

Sentinel-2 (S2) data for Germany and Luxembourg were processed
using the Framework for Operational Radiometric Correction for Envi-
ronmental Monitoring (FORCE) (Frantz, 2019), including co-
registration, atmospheric and topographic correction and cloud mask-
ing, among others. In the resulting datacube, S2 tiles with a cloud cover
of more than 70% as stated in the metadata of the respective S2 scene or
90% as determined by the FORCE cloud masking algorithm were dis-
carded. The level 2 datacube of bottom of atmosphere (BOA) re-
flectances for Germany was readily available from the EO-Lab platform
(EO-Lab, 2023), while the FORCE datacube for Luxembourg was pro-
cessed on the high-performance cluster of Free University Berlin
(CURTA) (Bennett et al., 2020) using all available S2 data and the same
FORCE parameters as the aforementioned datacube. We used the
following ten spectral bands of S2, which were upsampled to 10 m
spatial resolution using the ImproPhe algorithm implemented in FORCE:
Red (RED), Green (GRN), Blue (BLU), Red Edge 1 (RE1), Red Edge 2
(RE2), Red Edge 3 (RE3), Near Infrared (NIR), Broad Near Infrared
(BNR), Shortwave Infrared 1 and 2 (SWIR 1, SWIR 2). Additionally, we
computed the ten following vegetation and disturbance indices (VI’s)
from the aforementioned ten spectral bands, which are commonly used
for disturbance analyses: Continuum Removal Shortwave Infrared
(CRSWIR) (Dutrieux et al., 2021a; Mouret et al., 2024), Normalized
Burn Ratio (NBR) (García and Caselles, 1991), Tasselled-Cap Wetness
(TCW) (Crist and Cicone, 1984), Tasselled-Cap Disturbance (TCD)
(Healey et al., 2005), Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979), Normalized Difference Water Index (NDWI) (Gao,
1996), Normalized Difference Moisture Index (NDMI) (Gao, 1996), Leaf
Area Index (LAI) (Boegh et al., 2002), Moisture Stress Index (MSI) (Rock,
1985) and Normalized Difference Red Edge (NDRE) (Gitelson and

Fig. 1. Workflow of the study. After Sentinel-2 time series preprocessing (left), ten vegetation and disturbance indices were computed (left). For the three setups, pre-
training was conducted after sampling labels from published remote sensing-based disturbance datasets and Copernicus Land Monitoring Service (CLMS; top center
and top right). The pre-trained Deep Learning models were then finetuned using labels from six visually interpreted study sites and auxiliary data (bottom center and
right). A spatial block cross-validation on AOI level was conducted as validation (bottom right).
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Merzlyak, 1998) (see Supplementary Table 1 for details). For the pre-
training dataset, we computed the time series from the described S2
datacube as the area-weighted mean of polygons described in Section
2.2.1 with end and start dates being selected according to the detection
date of each disturbance (for details see below). Regarding the fine-
tuning dataset, we computed the disturbed area (dieback + logging) for
each S2 pixel, using each pixel’s fractional cover of disturbance as label
(see Section 2.2.2). We extracted the S2 time series for each pixel indi-
vidually and the end date of the time series was selected to match the
acquisition date of the DOPs from which the detailed reference data
were collected.

2.2. Labels and validation datasets

2.2.1. Pre-training
For pre-training the transformer models, we acquired three spatially

explicit datasets containing forest disturbances and their approximate
time of occurrence in Germany. In the following, we refer to these
datasets as Senf (Senf and Seidl, 2020), Thonfeld (Thonfeld et al., 2022)
and Forwind (Forzieri et al., 2020) (see Table 1 for details). Forwind
contains windthrow disturbances following major storms (Forzieri et al.,
2020) with exact dates, while Thonfeld mainly contains stand-replacing
disturbances in and after the drought years of 2018–2020 in monthly
temporal resolution (Thonfeld et al., 2022). Senf contains forest
disturbance areas originating from a variety of forest disturbance agents
(Senf and Seidl, 2020), among them harvest, bark beetle, drought,
windthrow and fire, with a yearly temporal resolution. Additionally, it
provides the disturbance severity of detected disturbance events as a
percentage of lost canopy cover within a 30 m pixel. In the disturbance
datasets, we filtered for disturbance events that occurred after July 2019
to ensure that S2 time series with a minimum duration of 4 years could
be sampled (S2 data is available from July 2015). We avoided spatial
autocorrelation by removing Forwind disturbances from Thonfeld and
Senf, and Thonfeld disturbances from Senf, applying a buffer of 30 m to
each disturbance event. We gave priority to Forwind and Thonfeld, since
the former is mostly based on aerial imagery, and the latter is derived
from S2 as opposed to Senf’s Landsat approach, meaning that Forwind
and Thonfeld are spatially higher resolved and able to reflect forest
disturbances at smaller extents. Additionally, both commission and
omission errors are smaller in Thonfeld according to their own valida-
tion (Senf and Seidl, 2020; Thonfeld et al., 2022). The samples derived
from these three datasets were assigned to the disturbed class.

We then removed all the forest disturbance areas of Forwind, Senf
and Thonfeld including a buffer of 30 m from a forest mask of 2018
acquired from European Union’s Copernicus Land Monitoring Service
(CLMS) and randomly sampled S2 forest pixels from the remaining
forest patches. We made sure to have a buffer of at least 30 m in between
two sampled pixels to avoid spatial autocorrelation in training caused,
for instance, by an individual tree spanning over more than one sample.

These samples were assigned to the ‘undisturbed’ class. Since the Senf
method relies on medoid composites of the growing season ending in
September 30th of each year, we determined the end date of the corre-
sponding time series labelled with Senf data as Octobre 1st to make sure
it contains the disturbance. For Thonfeld, we used the 1st day of the
month after the disturbance detection. Next, we randomly assigned a
date between the aforementioned end date and the date up to 6 months
later to ensure that 1) the full time series actually contains the reference
disturbance time (possible uncertainties in time of detection and due to
temporal resolution of disturbance datasets) and 2) to support general-
ization of the model by preventing it from learning artefacts. Potential
artefacts occur, for instance, if time series labelled as disturbed always
end in September. In this case, the model might learn that an end date in
September qualifies for a disturbed prediction even in the absence of
disturbance (overfitting to artefacts). Moreover, the model is meant to
enable forest disturbance detection at any date in a year, meaning that it
needs to be trained on time series ending on an arbitrary date. The start
date of each time series was fixed four years before the chosen end date.
Hence, the resulting dataset contained time series of four years, the
reference disturbance detection occurring approximately, but not
exactly at the end of the time series and containing end dates between
July 1st, 2019 and May 1st, 2021 (last date of detected disturbances in
Thonfeld). Accordingly, the Undisturbed dataset was assigned an end
date of the time series between July 1st, 2019, and May 1st, 2021. Hence,
we assume a forest pixel of the undisturbed class to be undisturbed (or at
least resistant) during this period, meaning that omissions in the
disturbance datasets have led to time series labelled as undisturbed
despite its actual disturbance in our pre-training data. It also implies that
we expect that a pixel determined as forest by CLMS in 2018 has been
forest back in July 2015 already. According to Senf and Seidl (2020)’s
validation, their dataset exhibits rather small commission errors (14.6
± 1.8%). Still, we tried to prevent the models from adopting these
mistakes of the pre-training datasets by removing disturbances below
50% severity. This also guarantees a clear distinction between undis-
turbed and disturbed class during pre-training. The data from these four
datasets (Forwind, Thonfeld, Senf and Undisturbed) cover the whole of
Germany (Supplementary Fig. 1) and were used for pre-training the DL
models.

2.2.2. Finetuning
For the finetuning step, we used data from one forested area for

Luxembourg (LUX) (from Schwarz et al., 2023) and for five federal states
of Germany with significant forest cover and openly available digital
orthophotos (DOPs) to visually delineate forest disturbances ourselves.
The five federal states included Brandenburg (BB), Saxony (SAX),
Thuringia (THU), Rhineland-Palatinate (RLP) and Northrhine-
Westphalia (NRW). We made sure to cover areas representative for a
variety of environmental and forest characteristics such as open (BB)
and dense forest stands (RLP, LUX, NRW), steep slopes (RLP, NRW),
heavily (NRW), medium (THU, RLP) and moderately disturbed (LUX)
forest. These six areas of interest (AOIs) were complemented by forest
disturbance data from (Schiefer et al., 2023) (in the following: Schiefer)
originating from (mainly southwestern) Germany, from the FNEWS
project in the states of Baden-Württemberg, Lower Saxony and Saxony
(Langner et al., 2023), and (Schwarz et al., 2023) (in the following:
Schwarz) in Luxembourg (Fig. 2). In the six AOIs where we delineated
the forest disturbances ourselves, we considered all Sentinel-2 pixels
containing forest (after removal of natural forest openings, arable land,
urban areas, gravel pits, etc. by visual interpretation) excluding a 15 m
buffer off the forest edges to prevent edge effects for our analyses. We
manually delineated forest disturbance areas incl. logging and standing
deadwood using the very high resolution aerial imagery from image
flights from Luxembourg and Germany (between 10 and 40 cm spatial
resolution, see Table 2) and, in case of Schiefer, uncrewed aerial vehicles
(UAV). We compared the respective DOP with the preceding DOPs of
each AOI to enable a distinction between older logging areas and natural

Table 1
Table characterising the four datasets Senf (Senf and Seidl, 2020), Thonfeld
(Thonfeld et al., 2022), Forwind (Forzieri et al., 2020) and Undisturbed in the
pretraining step of the study. Ntraining: amount of training samples drawn for pre-
training.

Dataset Disturbance agents Temporal
resolution of
disturbance
detection

Sensor Ntraining

Senf harvest, biotic/
abiotic and others

year Landsat 4/
5/7/8

41,832

Thonfeld
mainly clear-cuts
after drought/bark
beetle damage

month Sentinel-2,
Landsat 8

87,665

Forwind windthrow day
aerial
imagery 377

Undisturbed – – Sentinel-2 927,005
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forest openings, since the latter are neither undisturbed forest nor forest
disturbance and, thus, had to be excluded from analyses. All apparent
loss of canopy cover between the DOPs without any sign of dieback (e.g.
standing deadwood) was labelled as logging. When in doubt if the forest
disturbance happened within a maximum of 3.5 years preceding the
DOP of interest, we excluded these pixels from analysis. Forest distur-
bance labels were then acquired by computing the area percentage of
the delineated forest disturbances for each S2 pixel covered by forest.
Note that although we distinguished between logging and dieback in
visual interpretation of the DOPs, we combined these two disturbance
categories into a single ‘disturbed’ class during classification, since their

disturbance cover distribution and number of samples did not allow for a
multi-class approach. We, however, made use of the information about
the two disturbance categories during the validation step.

2.3. Transformer model and setups

Deep Learning (DL) models apply transformations to the input data
(here: S2 time series) in order to produce an output (here: binary class
predictions) that is as close to the labels (here: undisturbed vs. disturbed
pixels) as possible. These transformations are stacked upon each other as
so-called layers. The difference between predictions and labels

Fig. 2. Study site for finetuning and validation in Germany and Luxembourg. Blue markers represent the six AOIs of the study, while black rectangles are the
bounding boxes of the regions in which some auxiliary data from Schiefer et al. (2023), FNEWS (Langner et al., 2023) and Schwarz et al. (2023) were available.
Coordinate reference system: EPSG:3035. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Information on finetuning datasets from Brandenburg (BB), Saxony (SAX), Thuringia (THU), Northrhine-Westphalia (NRW), Rhineland-Palatinate (RLP), Luxembourg
(LUX; Schwarz et al., 2023), Schiefer (Schiefer et al., 2023), Schwarz ((Schwarz et al., 2023)) and FNEWS (Langner et al., 2023). DOP: digital orthophoto, number
indicating spatial resolution; RGB: red-green-blue; RGBI: reg-green-blue-infrared; extent: refers to spatial extent of studied scene (only provided for the six AOIs); UAV:
uncrewed aerial vehicle; N: number of samples used in validation (Schiefer, Schwarz and FNEWS: only used in training phase, number approximate due to multiple
training runs with random sampling). DOPs are subject to courtesy of GeoBasis (licence: dl-de/by-2-0), open.NRW (dl-zero-de/2.0), Landesamt für Vermessung und
Geobasisinformation Rheinland-Pfalz (dl-de/by-2-0), Landesamt für Geobasisinformation Sachsen (GeoSN) (dl-de/by-2-0), Landesamt für Bodenmanagement und
Geoinformation Thüringen (dl-de/by-2-0), Administration du Cadastre et de la Topographie (ACT), Grand-Duchy of Luxembourg (CC0).

Dataset Product Acquisition date Location Extent N Nbroeadleaved;
Nconiferous

Source

BB DOP20
RGBI

2022–06-18 (2019-04-19, 2016-04-
21)

Brandenburg (GER) 2*2 km 29,879 3779; 26,100 own work

SAX DOP20
RGBI

2022–06-03 (2020-07-30, 2017-08-
05)

Saxony (GER) 2*2 km 32,940 3865; 29,075 own work

THU DOP20
RGBI

2022–06-19/15 (2021-04-28, 2020-
03-15, 2019-04-17, 2018-04-07,
2016-05-06)

Thuringia (GER) 2*2 km 26,880 5599; 21,281 own work

NRW DOP10
RGBI

2021-06-14 (2018-04-07, 2015-06-
05)

Northrhine-Westphalia (GER) 2*2 km 19,995 13,989; 6006 own work

RLP DOP40
RGB

2021-09-06/07 (2019-07-24, 2018-
07-02, 2015-06-05)

Rhineland-Palatinate (GER) 4*4 km 49,503 45,752; 3751 own work

LUX DOP10
RGBI

2019-08-22 (2018-07-02, 2017-06-
14, summer 2016)

Luxembourg 1.75*1.3
km

19,683 17,731; 1952 Schwarz et al.,
2023; own work

Schiefer DOP RGB
(UAV)

2019/2021–09/10 Black Forest (GER), Dresden Heath (GER),
Karlsruhe-Bretten (GER), Hainich National
Park (GER)

– ~ 1819 ~ 560; ~ 1259 Schiefer et al.,
2023

Schwarz DOP10
RGBI

all DOPs 2016–2020 Luxembourg –
~ 5872

~ 4884; ~ 988 Schwarz et al.,
2023

FNEWS DOP different dates Baden-Württemberg, Lower Saxony, Saxony – ~
502,789

~ 188,104; ~
314,685

Langner et al.,
2023
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(reference data), which is called loss, is described by a loss function (here:
binary cross-entropy loss). The Stochastic Gradient Descent (SGD) algo-
rithm is then applied to compute the gradient of the loss function. Af-
terwards, the weights, which are the parameters of the layers defining the
data transformations, are adjusted such that the loss approaches the
minimum of the loss function. The learning rate determines how much
the weights are changed in one step, i.e. after one batch of data has been
input to the model.

Transformers, a state-of-the-art DL model architecture originating
from Natural Language Processing (NLP; Vaswani et al., 2017), are
becoming increasingly popular in predictive time series analysis tasks
(Ahmed et al., 2023) and have been adapted to specifically suit the
challenges accompanying satellite image time series (SITS; e.g. irregular
time series) as well (Yuan and Lin, 2021). The main innovation of
Transformers are the self-attention layers (also called self-attention heads),
within which attention scores are computed. These attention scores
inform the model which and to what extent observations of the time
series (in NLP: words of a sequence) are linked (Vaswani et al., 2017).
Self-attention layers can be run in parallel to learn different represen-
tations (Vaswani et al., 2017). In the encoder, self-attention heads are
followed by a dense layer that can be found in any DL model containing
weights to transform the input of the preceding self-attention layers. The
self-attention layers and succeeding dense layers together form the
encoder. Encoder blocks can be stacked to allow the model to learn from
different levels of abstraction of the time series (e.g. long-term period-
icity vs. short-term events) (Jawahar et al., 2019; Yuan and Lin, 2021).
The succeeding encoder block gets as input the output of the preceding
encoder block, i.e. the weights of the dense layer following each self-
attention block.

The self-attention algorithm does not know the order of the obser-
vations, however. Therefore, a Positional Encoding (PE) is added to the
input data, which informs the model about the notion of order (here:
time) (Ahmed et al., 2023; Vaswani et al., 2017).

Here, we deploy SITS-BERT (Yuan and Lin, 2021), which is a
Transformer architecture specifically designed to approach the chal-
lenges usually faced in satellite image time series (SITS), e.g. irregular
time series due to cloud-masked observations. Other than in the original
Transformer (Vaswani et al., 2017), the PEs are not summed to the input
data, but concatenated (i.e., processed separately). This prevents the
model from confusing the representations of time with the actual ob-
servations (Yuan and Lin, 2021). In fact, in SITS other than in NLP, there
is a very important seasonal pattern in the dataset, so the dates should be
modelled distinctly (Yuan and Lin, 2021). This also implies that SITS-
BERT does not need equidistant time steps in the sequences (i.e., no
gap filling, interpolation or averaging of multiple observations) (Yuan
and Lin, 2021). This was considered important since interpolation and
averaging always induces additional noise into the sequence, deviating
from real observations (Zhang et al., 2024).

Furthermore, embedding layers precede the encoder blocks. In NLP,
they are used to encode words into integer values and reduce the
dimensionality of the vocabulary, since DL models can only process
numbers, not words. In time series analysis, they serve a different pur-
pose: they provide higher-dimensional representations of the input
features (S2 bands and VIs). In simple terms, this can be interpreted as
computing its own VIs from combinations of the input features in a
dynamical (and less rigid) way. For instance, the embedding layer might
combine the RED and NIR bands to model the difference between those
bands.

On top of the encoder blocks, a classifier is stacked, which consists of
a dense layer and provides a single output for each input time series.
This represents the confidence score for the disturbed class (range:
[0,1]), which can then be translated into binary classes by a threshold
(here: 0.5). In DL training, the data is usually split into training, vali-
dation and test datasets. The model weights are altered in steps, which
consist of batches of training data, while the validation data is used to
monitor the training progress. Note that in Deep Learning, the so-called

validation dataset is not used for validation of the model, but for vali-
dation of the progress of the model training. Validation of the model is
done using the test dataset. The loss and accuracy were computed on the
validation data after the complete set of training batches was fed to the
model (which is called an epoch). Afterwards, the training samples were
shuffled and input to the model in the next epoch. This was repeated
until a stop criterion was reached (see below).

For the DL base setup, we used the ten S2 bands with 10 and 20 m
spatial resolution, namely BLU, GRN, RED, RE1, RE2, RE3, BNR, NIR,
SWIR1 and SWIR2. Since VIs are widely used in remote sensing to detect
changes in vegetation (e.g. (Bandyopadhyay et al., 2017; Cohen et al.,
2010; Grabska et al., 2020; Kennedy et al., 2010; Mandl and Lang,
2023)), we test two more setups, taking as input only the ten VIs (DL
IND) or both the ten VIs and the ten S2 bands (DL +IND).

2.4. Deep Learning training procedure

The training of DL models can be conducted in multiple steps. Here,
we conduct a pre-training on a large amount of medium quality data (pre-
training datasets), followed by a finetuning on a medium amount of high
quality data (finetuning datasets). The pre-training dataset is considered
less accurate, as the reflectance values acquired from it are area-
weighted means of the pixels using coverage fractions of disturbance
polygons (polygon-based approach), while we use pixel-based distur-
bance labels and no averaging of reflectances in finetuning. Addition-
ally, most of the pre-training datasets are satellite-derived itself and thus
contain errors. The idea of this two-step approach is that the model gets
a general notion of the task to solve in pre-training, and improves on that
in finetuning. Thus, the general dependence on Big Data is met and at
the same time, data with higher quality is used for training the best
model for the task. We added the day of the year (DOY) of each obser-
vation as additional input for the Positional Encoding. The DOY
increased with every year, i.e. in the second year of each time series,
DOYs were computed by adding 365, and so on. This was done to make
sure that the model does not consider two observations with the same
DOY from different years as the same time step, since the order and
timeliness of the observations is relevant for classification.

We used a single classification layer with one output unit for this
binary classification task, and Binary Cross-Entropy loss as loss function.
The learning rate was set to 0.0001 in pre-training and 0.00001 in
finetuning. The learning rate was one magnitude smaller in finetuning in
order not to erase the learned representations from pre-training.
Training was conducted with a batch size of 128. The embedding size
was 128, where 64 units were reserved for the SITS embeddings, and
another 64 units modelled the observation dates. We utilised three
encoder blocks with eight attention heads each. The complete model
contained 594,753 trainable weights. For all training runs, we utilised
early stopping with a patience of 10, meaning that training was con-
ducted until the validation loss did not improve for ten consecutive
epochs. The best-performing model was determined by the best accuracy
on the validation dataset.

The forest types in both pre-training and finetuning dataset were
strongly skewed towards coniferous trees in the disturbed class and
broadleaved trees in the undisturbed class. In pre-training, we under-
sampled the majority forest type in both the undisturbed and disturbed
class to prevent the model from adopting this bias. Since the resulting
dataset contained many more samples in the undisturbed than in the
disturbed class, we used class weights in order to prevent the model from
majority votes on the undisturbed class. The class weight was deter-
mined by the ratio of amount of undisturbed to amount of disturbed
samples divided by 3. In finetuning, the data distribution allowed for
applying a different sampling strategy in the training phase. In the
disturbed class, we oversampled the minority forest type by a factor of 2,
followed by undersampling the samples of the majority forest type to
yield the same amount of samples as the doubled minority class. In the
undisturbed class, we undersampled the samples of the majority forest
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type to the equal amount of data of the minority forest type. The
resulting dataset contained the same amount of deciduous and conif-
erous forests’ pixels in both classes. Resampling to overcome challenges
associated with class imbalance has shown to be effective before
(Wittich et al., 2022). Applying class weights as in the pre-training step
was not necessary in finetuning, since the resulting dataset was less
imbalanced. This sampling strategy for pre-training and finetuning was
confirmed by the best performance in preliminary model runs.

In finetuning, we discarded all samples with disturbance labels
greater than 0% and smaller than 10% in order to make a distinction
between undisturbed and disturbed time series during model training
and hence enable it to differentiate between the two classes. The
threshold of 10% in finetuning differs from the threshold of 50% in pre-
training, since the labels of the latter contain commission errors, which
are more likely in case of low disturbance severities. In finetuning,
however, the labels are sufficiently accurate to allow for a lower
threshold. A threshold was necessary, since we cannot expect the model
to be able to differentiate between, for instance, 0% (healthy) and 1%
(disturbed class) disturbance fraction. Taking all disturbance labels as
training data would have led to an insufficient separability of the two
classes.

In the validation phase (i.e. the testing in the finetuning step), we did
not discard very low disturbance pixels (smaller than 10%) from analysis
to avoid an overestimation of model performance (see also Section 4.1).

For pre-training, the dataset comprised of Forwind, Thonfeld, Senf
and Undisturbed dataset (see Section 2.2) was split into training and
validation datasets randomly by sampling 20% of the samples as vali-
dation and 80% as training dataset. The validation dataset was used to
monitor the increase of model accuracy during each training epoch. The
test data was used to verify the model’s ability to reproduce the labels
from the pre-training datasets after completing the training procedure
(for results see Supplementary Table 2).

In the finetuning step, we conducted a spatial block cross-validation
on AOI level with three repetitions. Hence, we used each of the six AOIs
as spatial hold-out once, performing the training on the time series of the
five remaining AOIs and the auxiliary finetuning data (Schiefer, FNEWS
and Schwarz). We used three different random samples of training and
validation datasets (with a ratio of 4:1) in the cross-validation steps
(hence the three repetitions), while the test dataset remained stable (all
forest pixels of the corresponding AOI). Using 3 repetitions ensured that
the model predictions did not depend on the split into training and
validation dataset. Note that the term validation dataset refers to the
Deep Learning training process here (see Section 2.3), and not to the
spatial hold-out for testing. The described procedure guarantees that
each model is neither exposed to the test dataset’s time series nor to their
site conditions during training. Thus, the validation procedure contains
independent test data (spatial hold-out AOI in each training run) while
at the same time, the number of data and exposure to different site
conditions is maximized during training. We used the same pre-trained
model for all of the finetuning setups.

2.4.1. Time series augmentation during training
To reduce overfitting and improve generalization of the model

(Iwana and Uchida, 2020), we applied the following time series
augmentation (TSA) procedures during training:

window slicing, window warping, and adding random noise (also
called jitter) in satellite signal and DOY of observations to the training
process.

Window warping was implemented as in Iwana and Uchida (2020)
by randomly picking a window within the time series and either
stretching it by 2 or contracting it by 0.5. This method has been shown to
improve accuracy and generalization (Iwana and Uchida, 2020). Jitter
was added to the time series by adding or subtracting up to 5 days
randomly to the DOY of the observation, and adding random values of
mean 0 and standard deviation 0.05 to the satellite values. The former
allowed for more generalization concerning phenological events (inter-

annual variations (Puhm et al., 2020)). The satellite signal jitter was
meant to account for the noise inherent to satellite data due to topo-
graphic and atmospheric effects, undetected clouds and cloud/tree
shadows, etc. (Yuan and Lin, 2021).

Window slicing consisted of dropping the beginning of the sequence
to yield a time series between two and four years (pre-training), or 3.5
and 4 years (finetuning) randomly. This guaranteed a minimum time
series length of 2 (pretraining) and 3.5 (finetuning) years while making
sure that the disturbance event is still part of the time series (temporal
resolution of as low as approx. 3 years in DOP acquisition dates used for
labelling).

2.5. Validation

We performed a number of analyses to validate and compare the
models with respect to performance and plausibility of the detected
disturbance patterns, accuracy, minimum detectable damage extent and
generalisability (i.e., predictive performance across forest types broad-
leaved and coniferous).

Firstly, we mapped the confidence of the models with respect to the
disturbed class (i.e., before binarization) to investigate if detected pat-
terns match with the damage observations based on aerial imagery in
the six AOIs. We provide error matrices and performance metrics for the
three setups. Afterwards, we analysed the capability of the models to
detect small disturbance areas by stratifying the fraction of disturbance
(dieback and logging combined) per pixel into 10 m2 categories, e.g. 10
to 20 m2, 20 to 30 m2, and so on. Note that in case of our 100 m2 S2
pixels, m2 equals percentage. Only the 0 m2 damage category was
considered undisturbed forest. We show the models’ Producer’s Accu-
racies for each of these strata. Afterwards, we further stratified these
results by forest type, i.e. broadleaved and coniferous forest. The forest
type information was extracted from European Union’s Copernicus Land
Monitoring Service (CLMS).

Preprocessing of all datasets and retrieval of S2 time series from the
FORCE datacube was conducted in R (R Core Team, 2023) (v4.3.1) using
terra (Hijmans, 2023) (v1.7–39), sf (Pebesma, 2018) (v1.0–14) and
exactextractr (Baston, 2022) (v.9.1) packages, while model training and
validation was conducted in Python 3 (Van Rossum and Drake, 2009)
(v3.8) using PyTorch (Paszke et al., 2019) (v1.13.1), and captum
(Kokhlikyan et al., 2020) (v.6.0).

3. Results

3.1. General performance metrics

False positives across all AOIs range between 0.01 ± 0.001 (DL
+IND) and 0.027 ± 0.004 (DL base) in the relative error matrices
(Tables 3, 4 and 5), while the false negatives yield between 0.055 ±

0.002 (DL base) and 0.078 ± 0.001 (DL +IND). Commission errors
(omission errors) are highest (lowest) in DL base with 0.032 ± 0.005
(0.34 ± 0.014; Table 6). The overall accuracy reaches above 0.91 for all
setups. The highest (lowest) f1-score is achieved by DL base (DL +IND)
with 0.722 ± 0.001 (0.654 ± 0.002). When considering all disturbances
(i.e., all disturbances >0% of a pixel), omission errors yield up to 0.485
± 0.004 (DL +IND).

Table 3
Relative error matrix of all predictions and reference data across all of the 6 AOIs
for DL base setup expressed as mean and standard deviation across three repe-
titions of spatial block cross-validation.

Reference Total

Undisturbed Disturbed

Predictions
Undisturbed 0.812 ± 0.004 0.055 ± 0.002 0.867 ± 0.007
Disturbed 0.027 ± 0.004 0.106 ± 0.002 0.133 ± 0.007
Total 0.839 ± 0 0.161 ± 0 1
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When looking at the single AOI’s results, omission errors range be-
tween 0.2 ± 0.027 (DL Base) and 0.249 ± 0.008 (DL +IND) in NRW
(Supplementary Table 3). When only considering larger disturbance
extents within a pixel (> 50%), the omission errors in NRW are reduced
to 0.029 ± 0.011 (DL base) and 0.052 ± 0.005 (DL +IND). As opposed
to that, omission errors reach up to 0.85 ± 0 (DL +IND) in THU. Com-
mission errors are lower than 0.1 in almost every AOI and setup, but are
highest in NRW and RLP, reaching up to 0.103 ± 0.034 (DL IND) and
0.036 ± 0.024 (DL base), respectively.

3.2. Disturbance maps, detectable minimal disturbance extent

Concerning the disturbance area of a pixel, all methods’ Producer’s
Accuracies increase with larger damage proportions: DL base shows
Producer’s Accuracies higher than 50% (i.e., better than random) for
disturbance areas of approx. 40 m2 (= 40%, as pixel area is 100 m2),
while DL +IND and DL IND reach more than 50% Producer’s Accuracy
at approx. 60 m2 disturbance area (Fig. 3). In the following, we focus on
THU, NRW and RLP for brevity. In THU, most disturbed pixels are
missed by all methods except DL base and DL IND with approx. 76% and
65% Producer’s Accuracies in the disturbance stratum of >90% (Sup-
plementary Fig. 2). Fig. 4, however, shows that the large disturbance
areas (especially logging) in THU are captured completely by DL base,

Table 4
Relative error matrix of all predictions and reference data across all of the 6 AOIs
for DL IND setup expressed as mean and standard deviation across three repe-
titions of spatial block cross-validation.

Reference

Undisturbed Disturbed Total

Predictions
Undisturbed 0.82 ± 0.002 0.064 ± 0.003 0.884 ± 0.005
Disturbed 0.019 ± 0.002 0.097 ± 0.003 0.116 ± 0.005
Total 0.839 ± 0 0.161 ± 0 1

Table 5
Relative error matrix of all predictions and reference data across all of the 6 AOIs
for DL +IND setup expressed as mean and standard deviation across three rep-
etitions of spatial block cross-validation.

Reference

Undisturbed Disturbed Total

Predictions
Undisturbed 0.829 ± 0.001 0.078 ± 0.001 0.907 ± 0.001
Disturbed 0.01 ± 0.001 0.083 ± 0.001 0.093 ± 0.001
Total 0.839 ± 0 0.161 ± 0 1

Table 6
Performance metrics across all AOIs for the three setups. OE: omission error (>50%: only disturbances larger than 50% of pixel), CE: commission error, BA: balanced
accuracy, OA: overall accuracy.

Setup CE OE F1 BA OA

DL base 0.032 ± 0.005 0.34 ± 0.014
(0.204 ± 0.011)

0.722 ± 0.001 0.814 ± 0.005 0.918 ± 0.002

DL IND 0.023 ± 0.003
0.4 ± 0.018
(0.27 ± 0.018) 0.697 ± 0.008 0.788 ± 0.008 0.916 ± 0.001

DL +IND 0.012 ± 0.001
0.485 ± 0.004
(0.368 ± 0.003) 0.654 ± 0.002 0.752 ± 0.002 0.912 ± 0

Fig. 3. Barplot showing the Producer’s Accuracies of the three studied methods (DL base, DL +IND, DL IND) for undisturbed class (left group of bars; white
background) and disturbed class (dieback and logging pixels) stratified by disturbance area in 10 m2 strata (other ten groups of bars, gray background) of spatial
block cross-validation with three repetitions across all of the six AOIs. Numbers indicate amount of pixels in the respective class/stratum. Error bars indicate
standard deviation.
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and partially by DL IND/+IND.
The small dieback areas in the northeast of THU are not captured by

any method. As opposed to that, all methods show accuracies greater
than 50% for disturbances between approx. 20–30 m2 in NRW (Sup-
plementary Fig. 3). In NRW, small disturbances are partly detected by all
setups, except the very small dieback areas (mainly single dead trees) in
the southwest, south and southeast of the AOI (Fig. 5). Finally, Pro-
ducer’s Accuracies of the disturbed class pixels in RLP are greater than
50% from damage areas of between approx. 40 m2 in DL base, while the
other two setups reach more than 50% Producer’s Accuracy only in the
disturbance stratum of >90% (Supplementary Fig. 4). In RLP, however,
DL base reaches a lower Producer’s Accuracy in the undisturbed class
(approx. 96%), while the other setup’s Producer’s Accuracies are
approx. 99%. This is reflected in patches of false positives by the DL base
setup, which are not present in DL +IND and DL IND (Fig. 6). Results for
SAX, LUX and BB are shown in Supplementary Figs. 2, 3, and 4.

4. Discussion

In this study, we use data from (mostly public) forest disturbance
datasets and six visually interpreted AOIs to train transformer models to
detect forest disturbances using satellite image time series (SITS) in a
two-step approach (pre-training and finetuning). We include samples
with small disturbed pixel fractions in training in order to test if these
models, using either ten S2 bands, 10 VIs or both, are capable of
detecting forest disturbances of sub-pixel size.

In the following, we discuss the three models’ performances and
challenges (Section 4.1), assess the minimal detectable disturbance

extent of our method (Section 4.2) and discuss the performance of the
models depending on the input of VIs (Section 4.3). We discuss the
generalisability of the models in Section 4.4. Section 5 draws conclu-
sions from the study.

4.1. Research question 1: to what degree can Transformers accurately
detect forest disturbance on formerly unseen S2 time series?

Several SITS-based forest disturbance monitoring products on Cen-
tral European forests have been published so far, e.g. Puhm et al. (2020),
Senf and Seidl (2020); Thonfeld et al. (2022) and Dutrieux et al. (2021a).

Senf and Seidl (2020) use Landsat SITS and the LandTrendr seg-
mentation algorithm (Kennedy et al., 2010) to detect trend changes in
medoid composites of each year’s growing season, yielding commission
and omission errors of 0.17 and 0.37, respectively. Thonfeld et al.
(2022) define a threshold Tasselled-Cap Disturbance Index value using
S2 and Landsat 8 in the presumably undisturbed year of 2017 (before the
hot drought years) and use this value as threshold for disturbance
detection afterwards. Their commission and omission errors are 0.29
and 0.08, respectively. Two approaches using fitted harmonic models of
undisturbed time series of each pixel, and detecting deviations of their
consecutive predictions from new observations, have been developed by
Puhm et al. (2020) and Dutrieux et al. (2021a). They achieve average
commission errors of 0.23 and 0.15 as well as average omission errors of
0.2 and 0.1, respectively. Our validation indicates a smaller commission
error than the mentioned methods of between approx. 0.012 (DL +IND)
and 0.032 (DL base). Regarding the omission error, most of the
mentioned methods achieve better performance than ours, which yield

Fig. 4. Disturbance maps of NRW for A) DL base (top left), B) DL +IND (top right) and C) (bottom left) of the best seed of spatial block cross-validation with three
repetitions. Predictions (disturbance confidences) greater than 0.5 belong to disturbed class, while predictions lower than 0.5 belong to undisturbed class. The higher
the predicted value, the more confident the model is about a disturbance. DOPs courtesy of open.NRW (dl-zero-de/2.0).
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between 0.34 (DL base) and 0.485 (DL +IND). The overall omission
error in our study, however, is strongly influenced by the very high
omission errors in the small disturbance extent strata (cp. Table 6:
omission error when only considering disturbances greater than 50%).
Note that most of the mentioned publications do not consider partial
disturbances (Dutrieux et al., 2021a; Puhm et al., 2020) or explicitly
remove disturbances smaller than three pixels from their validation
(Thonfeld et al., 2022). When considering only large disturbance extents
of at least 90% of a pixel, our methods omit between approximately 0.08
(DL base) and 0.23 (DL +IND) of the disturbances (cp. Fig. 3), thus
improving upon most of the aforementioned methods in this disturbance
stratum w.r.t. omission error as well.

Additionally, most of the earlier studies (Puhm et al., 2020; Senf and
Seidl, 2020; Thonfeld et al., 2022) have in common a validation using
random sampling points, which is not directly comparable to ours,
which takes into account all forest pixels of our AOIs and focuses on all
disturbance extents in the disturbed class. Recently, Perbet et al. (2024)
examined the capability of Transformers to identify disturbances on sub-
pixel level (called “partial disturbances”, here: partial harvest and par-
tial windthrow, defined as between 25% and 75% of the pixel covered
by a disturbed area) on Landsat yearly composites of boreal forest in
Canada. They report omission errors of 0.155 (partial windthrow) and
0.205 (partial harvest) with a similar validation approach. While their
reported results clearly outperform ours, note that these metrics are
strongly dependent on the label distribution (e.g. if most of the partial
harvest was actually 25% harvested or rather 75% harvested), which is
not reported in the study. Additionally, our method has to cope with the

more complex phenology and species composition of deciduous, conif-
erous and potentially mixed forest types in temperate forest, which
imposes many challenges on SITS-based forest disturbance monitoring.
Broadleaved and mixed forests exhibit more fluctuations in the spectral
signal of the time series, for instance caused by a more pronounced
phenological cycle and understory vegetation during leaf-off periods.
The DL model architecture used in this study is specifically designed to
address these challenges, as half of the weights in the encoder of the
models have the sole purpose of modelling the understanding of time
and seasonality (Yuan and Lin, 2021). Accordingly, the periodicity of
broadleaved forest is almost never confused with a disturbance signal, as
shown in the stable and low commission errors across forest types in
Supplementary Table 4. While the omission errors are higher in broad-
leaved forest, Producer’s Accuracies are still reasonably high.

Another key challenge of SITS-based forest disturbance detection
models is the occurrence of gradual and partial disturbances and co-
morbidities. Biotic disturbance agents, for instance, often lead to
gradual or partial crown dieback with widely differing durations (Senf
et al., 2017), e.g. drought dieback within years (Bigler et al., 2007;
Haberstroh et al., 2022) and mortality from bark beetle infestations
within weeks (Štursová et al., 2014). Additionally, disturbance agents
differ in their intra-annual timing (e.g. windthrow in winter, bark beetle
in spring/summer) (Senf et al., 2017) and co-morbidities occur
frequently (Seidl et al., 2017). All of this may lead to mixed spectral
responses. To cope with this challenge, different levels of aggregation
are considered by Transformers by stacking encoder blocks upon each
other (Jawahar et al., 2019; Yuan and Lin, 2021). Hence, the overall

Fig. 5. Disturbance maps of THU for A) DL base (top left), B) DL +IND (top right) and C) (bottom left) of the best seed of spatial block cross-validation with three
repetitions. Predictions (disturbance confidences) greater than 0.5 belong to disturbed class, while predictions lower than 0.5 belong to undisturbed class. The higher
the predicted value, the more confident the model is about a disturbance. DOPs courtesy of Landesamt für Bodenmanagement und Geoinformation Thüringen (dl-de/
by-2-0).
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periodicity across years can be modelled as well as short-term deviations
thereof. As indicated by an additional analysis using explainable AI
(Supplementary Fig. 11; Sundararajan et al., 2017), our models seem to
take into account temporal cues throughout the whole time series, while
at the same time putting emphasis on specific observations. This sug-
gests that sudden forest disturbances such as windthrows and harvest
can likely be detected by Transformers as well as gradual drought ef-
fects, as confirmed by Perbet et al. (2024) and Du et al. (2023). During
training, our models have been exposed to a very large number of time
series of multiple disturbance agents’ responses (Senf and Seidl, 2020;
Thonfeld et al., 2022), potentially enabling them to internalise a large
variety of spectral trajectories under different conditions. Due to co-
morbidities and the lack of reliable reference data for disturbance
agents, we could unfortunately not test if this is really the case.

While all of the models are able to detect most of the disturbance
patches across all AOIs (except DL +IND in some cases, e.g. Fig. 5), the
performance metrics of our validation reveal large differences in the
predictive performance among the six AOIs (cp. Supplementary Table 3,
Figs. 3, 4, 5, Supplementary Figs. 2, 3, 4). F1-scores in THU and BB are
especially low across all setups. In BB, this might be attributed to the
influence of soil background on the spectral trajectory shining through
the sparse canopy. BB is the only AOI with large areas of open Pinus
sylvestris L. stands with a corresponding notable amount of subpixel bare
soil fractions.

Given that such stands only occur in BB, our spatial block cross-
validation approach may lead to pessimistic results (Kattenborn et al.,
2022), as the models have to cope with this feature of the time series

unknown from training when trying to distinguish between undisturbed
and disturbed pixels. This explanation is supported by the observation
that in the southwestern part of BB, the dense forest stands are largely
classified correctly, while in the open stands in the northern part, mis-
classifications occur (especially DL base and DL IND, cp. Supplementary
Fig. 7). Secondly, in open forest stands on sandy soils as in BB, the
spectral signal of soil likely superimposes the overall spectral trajectory
of the forest canopy. This might also be the case for open bedrock in the
steep slopes in our AOI in RLP, which might explain the overpredictions
of disturbance in the DL base model (cp. Fig. 6).

Another reason for misclassifications in open stands and steep slopes
might be a strong impact of the understory on the spectral signal
(Haberstroh et al., 2022). This might be a particular problem in case of
open forest stands (Eriksson et al., 2006). Since grasslands’ photosyn-
thetic activity and the corresponding spectral signal change more
rapidly than forests under adverse conditions (Nicolai-Shaw et al.,
2017), it is possible that the understory of open forest stands appears
stressed more rapidly in drought years, while the response from the trees
is delayed (Haberstroh et al., 2022; Nicolai-Shaw et al., 2017; Reiner-
mann et al., 2019). The models then might perceive the degradation of
the undergrowth as dieback of the canopy trees in BB.

In THU, the effect of undergrowth on the high omission error might
be attributed to natural succession and remaining undergrowth after
logging. Here, the disturbances (mostly logging) mainly occurred
around 2019/2020 as confirmed by visual interpretation of historical
DOPs, while the time series for validation ended in June 2022. Thus,
many of the disturbances happened early in the time series, and

Fig. 6. Disturbance maps of RLP for A) DL base (top left), B) DL +IND (top right) and C) (bottom left) of the best seed of spatial block cross-validation with three
repetitions. Predictions (disturbance confidences) greater than 0.5 belong to disturbed class, while predictions lower than 0.5 belong to undisturbed class. The higher
the predicted value, the more confident the model is about a disturbance. DOPs courtesy of Landesamt für Vermessung und Geobasisinformation Rheinland-Pfalz (dl-
de/by-2-0).
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vegetation recovery became apparent afterwards. As indicated in Sup-
plementary Fig. 11, all setups tend to regard the most recent observa-
tions of the time series as most important, meaning that re-growth and
natural succession have a large impact on the predictions. Consequently,
vegetation (but not necessarily tree) recovery seems to lead to undis-
turbed predictions in DL +IND and DL IND, and less pronounced in DL
base. This is supported by the observation that recent clear-cuts
revealing bare soil as shown in NRW (Fig. 4) are detected much more
accurately than the large logging activities in THU. Consequently, the
performance on logging areas will likely improve if running the models
operationally on each new S2 observation and keeping record of
disturbed predictions. Such an operational mode is fully feasible for the
current version of the model. This would also enable the retrieval of a
disturbance date, which the model is currently not capable of providing
for a single prediction. To show the mentioned effect, we made pre-
dictions on THU for each year between 2019 and 2022 using DL base,
revealing that the disturbances have been captured earlier, but succes-
sion led the model to revert to undisturbed predictions afterwards (e.g.
in the north- and southeast in Supplementary Fig. 8).

Since dieback patches are often logged afterwards, the dieback
apparent in our DOPs likely happened closer to the DOP acquisition date
than many of the logging activities (if they happened earlier, they would
appear as logging). Observing that recent disturbances are detected
more accurately by our models (see above), it is plausible that less
omissions occur when considering only dieback and excluding logging
from analyses (Supplementary Fig. 9). Here, Producer’s Accuracies in-
crease to approx. 59% in the 40–50 m2 and 94% in the >90 m2 distur-
bance extent strata (both DL base).

4.2. Research question 2: what is the smallest disturbance extent that can
be detected by the proposed method?

While large disturbances above 90% disturbance extent of a pixel are
detected reliably by all setups (e.g. >90% Producer’s Accuracy in DL
base, see Section 4.1), a drop of Producer’s Accuracies is visible in the
60–90% disturbance extents. This might indicate that even large partial
disturbances are much more difficult to detect than stand-replacing
disturbances, as they still show a spectral trajectory resembling forest.
Additionally, these pixels are usually located at the edge of disturbance
areas, which are difficult to delineate. Hence, inaccuracies in the geo-
location of the reference data compared to the S2 data or imprecisely
labelled disturbances could also lead to this effect. Additionally, very
small and isolated forest disturbance patches are mostly omitted by our
transformer models. Examples are the single isolated trees and small
dieback patches scattered around SAX (Supplementary Fig. 5), in the
southwest of NRW (Fig. 4) and in the northwest of BB (Supplementary
Fig. 7), among others. One reason that single isolated or small groups of
trees cannot be detected is that we exclude pixels with disturbance
fractions of less than 10% from training. This, however, was a necessary
step, since the model needs to be able to distinguish between the two
classes in the first place. We decreased this threshold as much as possible
in order to allow for the detection of disturbances that are as small as
possible. Investigating the distribution of disturbance confidences
among the disturbance extent strata (severities; Supplementary Fig. 10)
indicates that the models are 1) able to identify undisturbed and clearly
disturbed (large disturbance fractions) pixels with high confidence, and
2) are increasingly confident about disturbance predictions with
increasing disturbance size. Obviously, there is greater uncertainty in
the smaller disturbance area strata (Supplementary Fig. 10), as the
model has to distinguish between phenological fluctuations of partly
intact forest, the potentially diverse disturbance signals superimposed
by phenology (Perbet et al., 2024), spectral influence of the understory
(see Section 4.1), and noise inherent to satellite data (atmospheric and
topographic effects, etc.). Still, the models achieve a Producer’s Accu-
racy greater than 50% for disturbance fractions as small as approx. 40
m2 (DL base) and 60 m2 (DL +IND, DL IND). When regarding coniferous

trees only, the minimum disturbance extents with Producer’s Accuracies
greater than 50% are even smaller (e.g. 30–40 m2 stratum for DL base,
Supplementary Table 4). In coniferous forest, detecting small distur-
bances is more important, as it may be beneficial for the detection of the
beginning of bark beetle infestations and other pests (Kautz et al., 2023).
This might enable early warnings in future applications. The capability
of Transformers to detect disturbances on sub-pixel level using SITS has
been confirmed by Perbet et al. (2024) even on yearly composites. Yet,
the disturbance signal of disturbances smaller than 30–40% of a pixel (in
coniferous forest; about 50% in deciduous forest, Supplementary
Table 4) might be too subtle and dominated by noise and phenological
variability for a reliable detection.

4.3. Research question 3: do Transformers need vegetation/disturbance
indices for accurate predictions?

Although the three DL setups are exposed to roughly the same in-
formation, they express considerable differences in their predictions
(Fig. 3). This is surprising, since DL +IND should be able to revert to the
S2 bands as in DL base and the VIs as in DL IND. The VIs of DL IND and
DL +IND, in turn, resort to the S2 bands exclusively. Therefore, one
might expect the models to draw similar conclusions from the SITS, and
the DL +IND setup to be best, as it contains all the information. The VIs,
however, have been handcrafted for a specific purpose, meaning that
they condense information to be sensitive for a specific vegetation
feature. Some of the applied VIs, for instance, are sensitive to changes in
chlorophyll content or cell structure (e.g. NDVI, NDRE, TCG), while
others focus on water stress (MSI, TCW, NDMI, NDWI, CRSWIR). This
also imposes prior knowledge on the DL IND/DL +IND setups, which
might limit DL IND’s predictive capability (so-called hypothesis space) to
specific target features. Although not restricted to specific features as DL
IND, we also include a high redundancy of information in DL +IND,
which might confuse the model. Zhu et al. (2020) also confirmed that
inputting more than the essential bands to their model does not lead to
further improvement of model performance. In our case, it even results
in DL +IND performing worse than the other two methods.

As opposed to that, DL base can combine the S2 bands differently and
more dynamically, not being limited to prior knowledge constraints.
Since DL base is able to detect more (and smaller) disturbances, while
appearing to wrongly classify more undisturbed pixels, it seems to be
more sensitive to subtle deviations of the satellite signal from the un-
disturbed class. This is also indicated by the higher confusion between
confidence scores regarding small dieback and undisturbed forest in DL
base compared to DL +IND/IND (Supplementary Fig. 10). Also, DL base
appears to overpredict the disturbed class in case of steep terrain, as
visible in the center and north of RLP (Fig. 6). Steep terrain usually has
shallower soils, sometimes even exposing bedrock, which desiccates
more rapidly. Thus, a higher sensitivity to small disturbances inevitably
leads to commission errors regarding forests with less stable spectral
conditions. Indeed, a certain amount of false positives is likely un-
avoidable in the attempt of detecting small forest disturbance. The
output of the DL models, however, is not a binary class label in the first
place, but rather a confidence score for the disturbed class. Therefore, it
is possible to shift the threshold for binarization to, for instance, 0.8
rather than the commonly used 0.5 to address these false positives.
When doing so, commission errors are further reduced and these po-
tential systematic errors are avoided (cp. Fig. 6). We conclude that our
models do not rely on VIs for accurate predictions.

4.4. Generalisability

In this study, we tried to cover many different environmental and
forest conditions in our six validation AOIs. Yet, the number of pixels
and AOIs as well as their distribution was limited due to limited human
resources for labeling and availability of DOPs across Germany. Thus,
large parts of Germany such as the north and the southeast, including
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whole ecoregions such as the German Alps, have been completely
omitted in validation (cp. Fig. 2). While the absence of comprehensive
validation data prevents an accuracy assessment for these areas, we
provide predictions throughout Germany for time series ending in
September 2021 (after the end of the major drought from 2018 to 2020)
for a general assessment in Supplementary Fig. 12. These results show
major disturbances in regions that are known to be affected strongly by
the drought, e.g. eastern Northrhine-Westphalia (A in Supplementary
Fig. 12), the Harz Mountains (B) as well as the National Park Saxony
Switzerland (C). On the contrary, the south and north of Germany
appear less affected by disturbances. All in all, this result shows that the
model provides plausible predictions in areas without finetuning data as
well. Yet, without comprehensive validation data, it remains unclear if
the model is ready to be employed throughout Germany.

5. Conclusions and outlook

Here, we present a forest disturbance monitoring method using
Transformers, a state-of-the-art Deep Learning (DL) architecture, using
dense Sentinel-2 time series. Our models have been trained on a rich
input dataset (more than 1 million Sentinel-2 pixels in pre-training,
more than 500k in finetuning) consisting of different forest types
(coniferous, broadleaved), environmental conditions (steep vs. shallow
slopes), forest characteristics (open forest stands with large amount of
bare ground in BB vs. dense forest cover in the other AOIs) and distur-
bance agents (windthrow, bark beetle, drought damage, etc.). Our
transformer models do not need compositing or gap filling and can cope
with multivariate time series as input. The results are stable across
different random sets of training data (three repetitions in spatial block
cross-validation) and number of observations in the time series (average
number of observations: 62 in LUX vs. 180 in THU). Since DL base de-
tects more (and smaller) disturbances than the setups using VIs, hand-
crafted vegetation and disturbance indices seem not to be required by
Deep Learning-based remote sensing of forest disturbance. The rather
small performance gains compared to existing methods, however, are
traded off by a large amount of training data needed and the complexity
of the model.

Since disturbances that happened early in the classified time series
tend to be omitted, an operational monitoring system should encompass
a record of former detections. Since we vary the end dates of the input
time series throughout training, we expect the models to be applicable at
any time of the year. Given that our DL base model is able to capture sub-
pixel disturbances starting at about 40 m2 and larger, this might enable a
near real-timemonitoring by invoking a newmodel inference every time
a new S2 acquisition is available, and comparing the change of its pre-
dictions afterwards. However, to what extent our models are capable of
timely detections of emerging disturbances such as early-stage bark
beetle infestations has yet to be investigated in further studies.

Some steps can be undertaken to further enhance the model’s per-
formance and generalisability. The data coverage in finetuning must be
improved, e.g. by incorporating data from southeastern and northern
Germany. We hope that with future advancements in open data policies,
this can be realized in the near future. Limited access to remote sensing
data (e.g. aerial images) collected by federal administrations currently
prevents an operational nationwide application of the model in Ger-
many. Furthermore, the spatial context of time series also contains
valuable information about disturbance regimes and their growth, e.g.
bark beetles spreading out to infest neighboring trees (Kautz et al.,
2023). Recently developed adaptations of transformer models can also
incorporate the spatial context (Yuan et al., 2022), which could be
beneficial for enhancing detection capabilities. Such an approach could
also enable a model to distinguish between standing deadwood and
logging, which would be valuable information for many stakeholders in
forestry (Holzwarth et al., 2023).
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Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under
severe drought: a review of ecophysiological responses, adaptation processes and
long-term consequences. Ann. For. Sci. 63, 625–644. https://doi.org/10.1051/
forest:2006042.
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Štursová, M., Šnajdr, J., Cajthaml, T., Bárta, J., Šantrůčková, H., Baldrian, P., 2014.
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