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For the water-air system, the density ratio is as high as about 1000; no model can fully tackle
such a high density ratio system. Here, we present an alternative theory for the density evolution
equations in computational fluid dynamics, differing from the concept of Navier-Stokes and Euler
equations. Our derivation is built upon the physical principle of energy minimization from the
aspect of thermodynamics. The present results are consistent with Landau’s theory of sound speed,
and, most importantly, provide a generalization of Bernoulli’s principle for energy conservation. The
present model can be applied for immiscible fluids with arbitrary density ratios, thereby, opening a
new window for computational fluid dynamics both for compressible and incompressible fluids.

Introduction. Immiscible fluids with a high density ra-
tio exist everywhere in our daily lives [1]. A typical ex-
ample is the water-air system, where the density ratio is
about 1000. In the classic fluid dynamics, for the water-
air system, the density is either assumed to be a constant
according to the Boussinesq approximation [2, 3] or in-
terpolated over the composition [4–6]. The latter consid-
eration leads to the paradox of density interpolation. In
these considerations, the variation of the density at the
water-air interface has not yet been resolved, preventing
us from a quantitative understanding on the fundamen-
tals of interfacial fluid dynamics for immiscible fluids.
Some recent attempts [7–9] have been made to shed light
on the density ratio problem.

Another daily example for the density variation is
evaporation of water and condensation of vapour. The
effect of diffusion and convection in the evaporation and
condensation processes cannot be coped by the Navier-
Stokes equations [8]. Even for pure fluids, like gas phase,
when the fluid velocity is close to the speed of sound,
the density varies in space with time (see Landau’s the-
ory of sound wave [10]). The density evolution equation
for high speed fluids is beyond the scope of Euler and
Navier-Stokes equations.

In this Letter, we will propose a generalized theory for
the evolution equations of fluids. Our concept is based
on the physical principle of energy minimization. We
will derive a novel kinetic equation for the density at
the water-air interface. In special cases, the present re-
sults are shown to be well consistent with Landau’s the-
ory of sound speed for inviscid fluids. The derived den-
sity evolution equation also provides a generalization of
Bernoulli’s law for the conservation of potential energy

plus kinetic energy. We show that for inviscid fluids, the
classic Bernoulli’s equation loses its validity when there
is a change in the density at the droplet-air interface.

Setup. We consider an isothermal closed system con-
sisting with two immiscible phases, say α and β. These
two phases consist of K ∈ Z components in a do-
main Ω. The volume concentration of component i
(i = 1, 2, · · · , K) is denoted by ϕi(r), ∀r ∈ Ω, lead-
ing to a concentration vector ϕ = (ϕ1, ϕ2, · · · , ϕK). The
boundary of the domain Ω is denoted by Γ. For a binary
system, we use the notation ϕ1 = ϕ, ϕ2 = 1 − ϕ. The
density of the mixture at any position r ∈ Ω is denoted
by ρ(r).

Paradox of the density interpolation. For a binary sys-

FIG. 1. Origin of the pressure energy for uniform and non-
uniform systems. For a uniform system (left), the pressure
at any position is the same, which is taken as a reference
value. In a non-uniform system with density variation (right),
the pressure is generally non-uniform due to the asymmetric
collisions of different sized molecules. Green and red spheres
depict two molecules or atoms with distinct sizes, leading to
a variation of the density in space. The arrows sketch the
thermal motion of the molecules/atoms.
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tem, the density of a mixture is often considered to be
a function of the composition ϕ, namely ρ = ρ(ϕ). In
such a consideration, it implies that the time evolution
of the density is defined when the time evolution of the
composition is given; the system is over-defined if both
ρ and ϕ are considered to be unknowns. As an example,
we discuss the linear interpolation of the density over the
composition for a binary system as

ρ(ϕ) = ρ1ϕ+ ρ2(1− ϕ), (1)

where ρ1 and ρ2 are respectively the density of the species
1 and 2, which are constants but generally ρ1 ̸= ρ2. Ac-
cording to the definition of density, we have the following
expression for the mixture density

ρ =
ρ1v1 + ρ2v2

V
= ρ1

v1
V

+ ρ2
v2
V
, (2)

where V ⊂ Ω is a volume element and expressed as
V = v1 + v2 + ve; ve depicts the excess volume and
vi (i = 1, 2) is the volume of the i species. The vol-
ume element includes sufficient amount of fluid particles
for statistic thermodynamics. By assuming a zero excess
volume, i.e., ve = 0, we have V = v1 + v2. Substitut-
ing this expression into Eq. (2) and using the definition
of volume concentration ϕi = vi/V , Eq. (1) is replicated.
Suffice to say, the linear interpolation in Eq. (1) indicates
a zero excess volume of mixing throughout the system.
Any other kinds of interpolations define a certain excess
volume, which is uniform everywhere in the domain Ω.
The assumption of uniform excess volume (either zero or
non-zero) deviates from the physical fact that the local
excess volume ve is affected by the local pressure, which
should be space dependent; the excess volume at each
position in the domain should have its own characteris-
tics. An additional paradox in the interpolation concept
is the conflict of incompressibility with mass diffusion.
The incompressibility requires ρ̇ = 0. When diffusion
takes place, i.e., ϕ̇ ̸= 0, the density evolution based on
the linear interpolation is ρ̇ = (ρ1 − ρ2)ϕ̇ ̸= 0. In the fol-
lowing, we will shed light on this density paradox from
the physical principle of energy minimization.

System energy. We propose that the total energy of
the system consists of potential free energy F , potential
pressure energy P, macroscopic kinetic energy K, and
wall free energy W, reading

E = F + P +K +W. (3)

As derived by Cahn [11] and van der Waals [12], the
potential free energy F(ϕ,∇ϕ) is written as the integra-
tion over the non-local potential energy density e(ϕ,∇ϕ)
as [13]

F(ϕ,∇ϕ) =

∫
Ω

e(ϕ,∇ϕ)dΩ, (4)

e(ϕ,∇ϕ) = f(ϕ) +

K∑
i=1

1

2
κi(∇ϕi)

2, (5)

where f(ϕ) depicts the bulk free energy density and κi

represents the gradient energy coefficient which is related
to the interfacial tension of the α-β interface, σαβ .
The P =

∫
Ω
pdΩ term, often overlooked previously and

introduced here, describes the potential pressure energy.
We formulate the pressure energy density as

−p = e−
K∑
i=1

µiϕi, (6)

where µi is the chemical potential of species i, the for-
mulation of which will be derived in the following via the
energy dissipation principle. Herein, an essential consid-
eration is that the pressure p is always associated with
the potential energy F . A physical interpretation of the
pressure is shown in Fig. 1. A homogenous mixture of
two distinct species (Fig. 1a) leads to a uniform pres-
sure p0(r) = const, ∀r ∈ Ω, which can be taken as
a reference value. However, when the two species are
not homogeneously mixed (Fig. 1b), the pressure is non-
uniform in space; the non-uniform pressure is caused,
for example, by the collisions of different molecules with
distinct sizes due to the asymmetry in space. As consid-
ered in Dalton’s law, the partial pressure from different
phases is additive, namely p = pαωα + pβωβ , where ωθ

(θ = α, β) depicts the volume fraction of phase θ. In
the special case of a homogenous mixture, the pressure
defined in Eq. (6) is consistent with the Landau poten-

tial, −p = f(ϕ) −
∑K

i=1(∂f/∂ϕi)ϕi. The difference in
the Landau potential of different phases is the driving
force for the movement of the α-β interface, e.g., phase
transformation. A mathematical derivation of Eq. (6)
is similar to that for Landau potential; the derivation is
based on the fact that the internal energy of the system
is an extensive variable.
The K term denotes the macroscopic kinetic energy,

which is formulated as

K =

∫
Ω

ζ · udΩ, (7)

where ζ is the linear momentum density expressed in the
classic physics as ζ = ρu. We present three remarks for
the kinetic energy: (I) One should not write the kinetic
energy density as 1

2ρu
2; the reason will be elucidated

in the following. (II) The macroscopic kinetic energy
should not be confused with the microscopic kinetic en-
ergy, which has already been considered in the poten-
tial energies, F and P. (III) One should not interpo-
late the velocity via u = u1ϕ1 + u2ϕ2; this interpolation
leads to an artificial contribution to the kinetic energy
ρu1 · u2 [14]. In other words, the fluid velocity is not a
thermodynamically extensive variable.

The W term in Eq. (3) represents the wall free energy,
which is integrated over the wall free energy density fw
on the boundary Γ as W =

∫
Γ
fwdΓ. The formulation of

the wall free energy density fw has been comprehensively
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discussed elsewhere [14–16] and is not the scope of this
work.

Energy dissipation. We derive the equilibrium condi-
tion and the kinetic equations based on the principle of
energy minimization, namely

dE
dt

= Ė ≤ 0.

Next, we evaluate the total time derivative of the free en-
ergy F , the pressure energy P, and the kinetic energy K.
By using the chain rule and noting that the functional F
has two arguments, ϕ and ∇ϕ, the total time derivative
of the potential free energy F reads

Ḟ(ϕ,∇ϕ) =

∫
Ω

K∑
i=1

∂e

∂ϕi

dϕi

dt
+

∂e

∂∇ϕi
· d∇ϕi

dt
dΩ. (8)

By using the vector calculus∇·(∇ϕi⊗∇ϕi) = ∇2ϕi∇ϕi+
(∇ϕi ·∇)∇ϕi, the definition of materials derivative ˙∇ϕi =
∂t∇ϕi + u · ∇∇ϕi, and integration by parts with no-flux
boundary condition for a closed system (more details can
be found in Refs. [14, 17]), we obtain the following equa-
tions

Ḟ =

∫
Ω

K∑
i=1

µiϕ̇i + (∇ ·Θ) · udΩ; (9)

µi =
∂e

∂ϕi
−∇ · ∂e

∂∇ϕi
; (10)

Θ =
∑
i

∂e

∂∇ϕi
⊗∇ϕi. (11)

The first part of Eq. (9) defines a generalized formulation
for the chemical potential, as stated in Eq. (10). At ther-
modynamic equilibrium, the chemical potential is a con-
stant value throughout the system. In a special case of a
zero chemical potential, i.e., µi = 0, Eq. (10) is equivalent
to the Euler-Lagrange equation; Eq. (10) also provides a
physical interpretation for the variational derivative in
mathematics. The second part of Eq. (9) defines a stress
tensor Θ, which is responsible for the transformation of
the potential free energy into the macroscopic kinetic en-
ergy [18]. This stress tensor is consistent with the Ko-
rteweg stress by evaluating the derivative via considering
Eq. (5), namely ∂∇ϕie = κi∇ϕi.

Noteworthily, a uniform chemical potential throughout
the system cannot well define the thermodynamic equi-
librium; the pressure evolution should be considered as
well. An evaluation of the time derivative for the pressure
energy and the kinetic energy leads to

Ṗ =

∫
Ω

dp(r)

dt
dΩ =

∫
Ω

∇p · ṙdΩ =

∫
Ω

∇ · (pI) · udΩ,

(12)

K̇ =

∫
Ω

(ζ̇ · u+ ζ · u̇)dΩ, (13)

where I is an identity tensor. For the derivation of
Eq. (12), we have used the chain rule and the definition
of the velocity, ṙ = u; for the derivation of Eq. (13), the
chain rule of total derivative has been applied. Summa-
rizing Eq. (9), Eq. (10), Eq. (12), and Eq. (13) and col-
lecting all the ·u terms, we obtain the total time deriva-
tive of the system energy E as

Ė =

∫
Ω

K∑
i=1

µiϕ̇i︸︷︷︸
I

+ [∇ · (Θ+ pI) + ζ̇]︸ ︷︷ ︸
II

·u+ ζ · u̇︸︷︷︸
III

dΩ. (14)

The physical interpretation for the three parts of the en-
ergy evolution in Eq. (14) is sketched in Fig. 2.

Before further analyzing the energy dissipation, we
state the following dissipation-conservation theorem
which connects the first law and the second law of ther-
modynamics.

vacancy

vacancy

I: Diffusion dissipation due to exchange of atoms and vacancies

II: Momemtum conservation due to the conservative force

III: Velocity dissipation due to the spring drag effect

u1

u2

u3

u4

u5

u6

FIG. 2. The energy dissipation mechanisms in Eq. (14). I:
The diffusion via the exchange of the molecules and vacancies
leads to the dissipation of the free energy F . II: The gradient
of the free energy F and the associated pressure P result in
an increase in the momentum ζ = ρu. III: The difference
in the velocity, density, and viscosity in distinct subdomains
(dashed rectangle) gives rise to the dissipation of the velocity
u caused by the “spring” drag effect; the spring symbol de-
note the interaction between the atoms/molecules in different
subdomains.

Dissipation-conservation theorem. In a closed system,
for a conserved scalar field ϕ and the conjugate potential
µ, the energy dissipation

∫
Ω
µϕ̇dΩ = −

∫
Ω
M(∇µ)2 ≤ 0

is equivalent to the conservation equation ϕ̇ = ∇ ·M∇µ.
Here, M is a positive mobility. The proof is straightfor-
ward by using integration by parts

∫
Ω
µϕ̇dΩ =

∫
Ω
µ∇ ·

M∇µdΩ =
∫
Γ
µM∇µ · ndΓ−

∫
Ω
M(∇µ)2dΩ and the no-

flux boundary condition, ∇µ · n = 0. The dissipation-
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conservation theorem shows that the conservation and
dissipation are not independent, but always associated.

According to the dissipation-conservation theorem, the
first part in Eq. (14), I, defines the generalized diffusion-
convection equation as

ϕ̇i = ∇ · ςi∇µi. (15)

The coefficient ςi is the mobility subjected to the Gibbs-
Duhem constraint; see Ref. [19] for the derivation of the
mobility. For a binary case, this equation returns to the
Cahn-Hilliard equation.

The second part in Eq. (14), II, reveals the momentum
conservation

ζ̇ =
d(ρu)

dt
= −∇ · (Θ+ pI). (16)

The conservative force at the right hand side is responsi-
ble for the exchange of the microscopic potential energy
F + P with the macroscopic kinetic energy K. This re-
sult is nothing but Newton’s law of momentum balance.
Here, a more clear physical meaning of the force is pre-
sented; the force term consists of the pressure p and the
stress tensor Θ. The stress tensor is due to the gradi-
ent term in the potential energy F , while the pressure is
contributed by the associated free energy.

The only term left in the time evolution of system en-
ergy, III, is

∫
Ω
ζ · u̇dΩ. By applying the same dissipation

principle as done for the scalar field in Eq. (15), we obtain
the dissipation equation for the velocity as

u̇ = ∇ · τ1(∇ζ +∇ζT ) +∇ · τ2(∇ · ζ)I. (17)

Unlike the dissipation rule for the scalar variable ϕi with
the conjugate potential ∇µi (see Eq. (15)), three terms
∇ζ, ∇ζT , and (∇ · ζ)I have to be taken into account
for the dissipation of a vector u [10] (for the dissipation
of a tensor field, like strain tensor, one has to consider
Oldroyd derivative [20]).

The right hand side of Eq. (17) is equivalent to Newton
viscous stress tensor if we define the mobilities τ1 and τ2
as

τ1 = η/ρ2, τ2 = λ/ρ2, (18)

where η and λ are the shear and bulk viscosities [22],
respectively.

Another formulation for the kinetic energy is K′ =∫
Ω

1
2ρu

2dΩ. In this case, the time derivative of the ki-
netic energy reads

dK′

dt
=

∫
Ω

1

2

dρ

dt
u2 + ρu · du

dt
dΩ. (19)

The second part leads to the classic Navier-Stokes equa-
tion by applying the dissipation-conservation theorem to
the momentum vector ρu. A noteworthy shortcoming for
the formulation of Eq. (19) is the missing information of

the momentum balance as well as the transformation be-
tween the potential and kinetic energies. Moreover, the
first part in Eq. (19) requires a prior knowledge about the
time evolution of the density, which is unknown for two
immiscible phases. The density evolution can be avoided
if the kinetic energy is written as ρu · u = ζ · u; in this
case, the time evolution of the momentum ζ as a whole
term is sufficient, subjected to the momentum conser-
vation. Noteworthily, the so-called continuity equation
∂tρ + ∇ · (ρu) = 0 cannot be applied here for density
evolution. The reason is as follows: (I) The classic conti-
nuity equation is derived for pure fluid, where there is no
density variation in space. (II) When considering two im-
miscible fluids, the classic continuity equation cannot be
straightforwardly adopted, since the density varies across
the interface. In this case, the mass conservation and en-
ergy dissipation are not independent. Suffice to say, one
cannot directly apply a mass conservation without con-
sidering the energy dissipation across the interface. (III)
At the interface of two immiscible fluids, one cannot use
the condition ∇·u = 0 which is used for pure fluids. The
divergence free condition ∇ ·u = 0 implies a uniform ex-
cess volume everywhere in the whole domain Ω and that
the mass is uniformly distributed in the speed of sound.
In other words, when the fluid velocity is much less than
the speed of sound, the density almost has no variation
in space; only in this case, the condition ∇ · u = 0 can
be applied. For pure homogenous fluids, the condition
∇·u = 0 is used to solve the unknown pressure p0, which
is homogenous and can be considered as a reference value
(Fig. 1a). However, for two immiscible fluids, the pres-
sure is inhomogeneous across the interface, which cannot
be solved by ∇ · u = 0 due to the density variation.

Density evolution equation and generalization of
Bernoulli’s law. Eq. (16) subtracting Eq. (17) with the
relation ζ̇ = ρ̇u + ρu̇, we obtain the temporal equation
for the density as

u2ρ̇ = {∇·[(pI+Θ)+τ1(∇ζ+∇ζT )+τ2(∇·ζ)I]}·u. (20)

As demonstrated in the following, Eq. (20) is consisent
with Landau’s theory of sound speed and provides a gen-
eralization of Bernoulli’s law.

For inviscid flow, there is no energy dissipation for ki-
netic energy, i.e., τ1 = τ2 ≈ 0. In this case, Eq. (20) is
rewritten as

u2 dρ

dt
= ∇ · (pI+Θ) · u. (21)

By using the definition of the velocity and pressure gra-
dient in one dimension, u = dr/dt, and ∇p = dp/dr, we
obtain the relation between velocity, pressure, and den-
sity as

u2 =

(
dp

dρ

)
s

, (22)
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where the stress tensor has been overlooked. The result
stated by Eq. (22) is fully consistent with the definition
of sound speed. The condition for this definition is that
there is no energy dissipation, namely, isentropic, as indi-
cated by the subscription s denoting the isentropic condi-
tion. This result coincides with Landau’s theory of sound
speed [10].

Considering inviscid fluids via setting τ1 = τ2 ≈ 0, and
the steady state, ρ̇ = u · ∇ρ where we set ∂tρ = 0, we
rewrite Eq. (20) as

u2(u · ∇ρ) = [∇ · (pI+Θ)] · u. (23)

By considering an one-dimensional setup and using the
relation d(ρu2) = u2dρ+ 2ρudu, Eq. (23) is further sim-
plified as

d(p+ ρu2) = 2udρ. (24)

This result is nothing but a generalized Bernoulli’s equa-
tion. When there is no density variation, namely, d(p +
ρu2) = 0, we have p+ρu2 = constant, which is Bernoulli’s
principle [23, 24]. However, when density varies, dρ ̸= 0,
the associated energy is changed as well; in this case, the
classic Bernoulli’s equation loses its validity.

Discussion. The key point of the present work is the
energy minimization based on an alternative formulation
for the macroscopic kinetic energy, ρu · u, rather than
1
2ρu

2. In our derivation, the dissipation of the kinetic
energy is divided into two parts. The first part is the mo-
mentum conservation, d(ρu)/dt which changes not only
the fluid velocity u but also the density ρ. This derivation
differs from Euler and Navier-Stokes equations where the
momentum variation is only caused by the evolution of
the fluid velocity. The second part of the kinetic energy
dissipation is the velocity dissipation due to the differ-
ence in the density, viscosity, and velocity, as explained
in Fig. 2III.

Another vital point of the current work is the pres-
sure energy, the formulation of which is consisent with
many pioneers [13]. The physical meaning of the pres-
sure has been elucidated in Fig. 1. The minimization
of the pressure energy leads to the so-called grand po-
tential model [25]. In the lattice model, the free energy
and the pressure can be explicitly formulated according
to the theory of thermodynamics, such as Landau poten-
tial. However, for non-lattice models, the pressure cannot
be explicitly identified. This case is the consideration in
Euler and Navier-Stokes equations, where the unknown
pressure is solved by the divergence free of the velocity
for incompressible flow. For liquid and solid phases, the
lattice model can be applied because of the regularized
order of the structure within the short range. For gas
phases, the lattice model loses its validity due to the dis-
order of the structure; one has to use the equation of state
to formulate the partial pressure of the gas phase [7, 26].

Additional remark is the dissipation of the veloc-
ity. Following the dissipation-conservation principle, the

dissipation of the velocity equals to ∇ · τ1∇ζ = ∇ ·
τ1∇(∂K/∂u), where ζ = ∂K/∂u is analogous to the
chemical potential µ = ∂F/∂ϕ with the associated dissi-
pation term ∇ · ς∇µ = ∇ · ς∇(∂F/∂ϕ). Within the con-
text of the dissipation-conservation theorem, the Newton
viscous stress tensor is obtained when defining τ1 = η/ρ2.
The question is that if the velocity is a conserved variable
or not. If not, the dissipation has to be modified by the
non-conserved form as

u̇ = −τζ, (25)

where τ is a positive mobility. The non-conserved form
is known as the Allen-Cahn type dissipation following
the gradient descendent path, being consisent with the
Langevin equation. In the current work, we consider the
linear momentum ζ = ρu. Non-linear terms in terms of
fluid velocity may be accounted for the dissipation if we
consider non-linear momentum, for example, ζ ∝ un or
ζ ∝ (∇u)n. The non-linear momentum not only modifies
the velocity dissipation but also changes the momentum
balance, which may be applied for understanding highly
nonlinear effects, such as turbulence. These specialized
cases are out of the scope of the present discussion.

In conclusion, we have proposed an alternative theory
differing from Navier-Stokes and Euler equations to ad-
dress the high density ratio problem in fluid dynamics.
Our consideration is based on the basic principle of en-
ergy minimization. A noteworthy outcome of the present
work is a novel evolution equation for the high density
ratio system, such as water-air. For inviscid fluids, our
derivation of the density evolution is fully consistent with
Landau’s theory of sound speed. Our derivation also
leads to a generalization of Bernoulli’s law for steady-
state flow when there is a density variation in space.
The current work reshapes the understanding of momen-
tum conservation in Newton’s law. We expect that the
present model can be used for immiscible fluids with ar-
bitrary density ratios as well as for pure fluids when the
fluid velocity is close to the speed of sound.
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