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ABSTRACT

As material modeling and simulation has become vital for modern materials science, research data with distinctive physical
principles and extensive volume are generally required for full elucidation of the material behavior across all relevant scales.
Effective workflow and data management, with corresponding metadata descriptions, helps leverage the full potential of
data-driven analyses for computer-aided material design. In this work, we propose a research workflow and data manage-
ment (RWDM) framework to manage complex workflows and resulting research (meta)data, while following FAIR principles.
Multiphysics-multiscale simulations for additive manufacturing investigations are treated as showcase and implemented on
Kadi4Mat – an open source research data infrastructure. The input and output data of the simulations, together with the
associated setups and scripts realizing the simulation workflow, are curated in corresponding standardized Kadi4Mat records
with extendibility for further research and data-driven analyses. These records are interlinked to indicate information flow and
form an ontology-based knowledge graph. Automation scheme for performing high-throughput simulation and post-processing
integrated with the proposed RWDM framework is also presented.

Introduction

Materials science stands at the forefront of numerous technological innovations spanning across various industries,
with a particular emphasis on its engineering background. It has evolved from its empirical and experimental
roots, which focused on engineering the chemical composition and the microstructure of materials to achieve
specific properties tailored for certain applications, to embracing modeling and simulation as another aspect in the
new century, revolutionizing the field with computer-aided material design. This modern approach significantly
accelerates the lifecycle of material innovation while reducing costs, time, resources, and energy waste, marking
a significant advancement in the pursuit of sustainable and smart material development1–3. The vast disparity
in scales and the interdisciplinary nature of material modeling and simulation present fresh challenges in this
domain, as materials exhibit behaviors across a wide range of spatial and temporal scales, which collectively
influence their overall properties. Addressing these phenomena demands a variety of theoretical methodologies,
each adhering to certain physical principles at corresponding scale. In other words, the multiphysics and
multiscale frameworks are required to fully elucidate material behaviors across all relevant scales. As a result,
extensive data bonded with corresponding physical principles at varying scales are normally anticipated in a
material modeling and simulation attempt. These data can be roughly classified into three types: (1) input data,
which are the pre-requisite quantities and geometries describing the raw/pure materials, intrinsic structures and
physical conditions to initiate certain physical processes at corresponding scale; (2) output data, which are the
direct/post-processed quantities and geometries presenting the response of the physical process according to
certain input data; (3) auxiliary/associated data, which are not related to the input/output of a simulation, but
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give the necessary information to reproduce the output from a given input. To follow the state-of-the-art FAIR
(findable, accessible, interoperable and reusable/reproducible) principles for data sharing4, all three types of data
should be collected and recorded as close to the data producing source as possible5, leading to the proper design
of the data infrastructure with considerations such as the efficiency, readability, extendibility, and reliability.

Meanwhile, with the rapid development of the high-performance computing clusters, it is possible to perform
material simulations in a high-throughput fashion, i.e., numerous extensive simulation tasks are simultaneously
executed, targeting on the objectives requesting vast volume of data, e.g., delivering the process-microstructure-
property (PMP) relationships for the manufacturing of a certain material system6. For instance, in additive
manufacturing realized by powder bed fusion (PBF) techniques, over one hundred process parameters directly
influence the final products7, 8. The most critical ones, including beam power, scan speed, beam diameter, layer
thickness, hatch distance, and scanning strategies, need to be adjusted for each individual build, considering
the specific material and geometry. In such cases, data-driven analyses based on statistics and/or machine
learning (ML) are generally adopted to extract the PMP relationships of the targeted material system. It has been
proven that data management following the FAIR principles is a key to perform scalable ML-based researches,
as it readily compacts data describing the raw/pure material, the process parameters and conditions, and the
response/effective properties of the processed materials, achieving the data-centric ML analyses9, 10. Meanwhile,
many modeling and simulation methods may have to be integrated as one workflow recapitulating essential
factors from various scales in a single material process, it is then essential to manage not just the data involved in
a simulation workflow, but also scripts or protocols that realize the workflow in an automatic way enabling the
high-throughput computations (HTC)11. This can help to adapt the established simulation workflow for similar
material systems while retaining complete reproducibility, fostering collaborative research and efficient knowledge
transfer. Beyond these, the effective management and curation of data, coupled with simulation workflows
adhering to FAIR principles, is also foundational to both scientific accountability and the robust validation and
verification of research findings12.

Following the generalized data-information-knowledge (DIK) hierarchy as introduced by Chaffey and Wood13,
a comparison can be made with simulation-based investigations. As shown in the DIK hierarchy in Fig. 1, data
is considered to be a discrete set of facts which, when processed, transforms into information. Further analysis
of this information leads to knowledge. This vertical transformation of data is represented using a pyramid
which also signifies the condensation of volume as the data gradually transform into knowledge. Likewise,
in a typical simulation-based research, raw simulation data forms the foundation of this hierarchy and needs
processing for visualization. Further analysis leads to insightful trends which are usually well-documented in
form of scientific publications, as schematically represented in Fig. 1. In order to maintain the comprehensiveness
of the recorded knowledge, it is important to identify and recognize supporting items such as material datasets,
software configuration and input parameters used in the simulations, along with pre- and post-processing scripts
applied to the raw and the processed data. This strategy for research workflow and data management (RWDM)
concurs with the input-process-output (IPO) concept introduced by Griem et al14. They describe an atomistic
approach where research processes can be iteratively structured as tasks and those tasks are further represented as
horizontal transformation with three generic components: (1) Input, (2) Process and (3) Output. Applying the
IPO concept throughout the different stages of the DIK hierarchy ultimately enables us to represent the complete
research process. Therefore, it becomes evident that an effective RWDM framework must include both horizontal
as well as vertical components of a research investigation.

Kadi4Mat, the Karlsruhe Data Infrastructure for Materials Science, is an open-source research data infrastructure
developed by Karlsruhe Institute of Technology15, 16. It utilizes records, which are essentially digital objects, as
the fundamental building blocks for the infrastructure to store and manage research data. The records are
uniquely identified with their persistent identifiers (PID) and can hold associated metadata alongside the data itself.
Kadi4Mat offers various features to organize and manage (meta)data effectively. Records from an investigation
can be grouped together to form collections with further sub-categorization using child collections. Additionally,
customizable templates help maintain consistency and standardization within records. The curated research data,
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in the form of records, can be visualized as a knowledge graph, where individual records are linked based on their
relationships. This promotes data exploration and understanding of intricate relationships within the research
data. Kadi4Mat implements a role-based access control for the records. Owners can set permissions for users or
groups based on their predefined roles like administrator, editor, collaborator and member. This selective access
control ensures data security during the course of the investigation, meanwhile enhancing collaboration among
researchers and scientific staff at different access levels. On the other hand, the research data records can be
published for broader accessibility, and can even be published on open repositories such as Zenodo for universal
access. Apart from Kadi4Mat, there is a variety of electronic laboratory notebook (ELN) based research data
management (RDM) tools available, such as LabArchives17, labfolder18, NOMAD19 and eLabFTW20, 21. Although
most of them provide common functionalities for RDM as Kadi4Mat such as data integrity, data and research
security, version control and team collaboration, they lack in one way or the other in comparison with Kadi4Mat.
Some of them are commercial software, while Kadi4Mat is open source. In addition to serving as a ELN, Kadi4Mat
also functions as the data repository distinguishing it from the RDM tools that primarily function as lab notebooks.
In addition to the web interface, Kadi4Mat also provides programmatic access through its python-based application
programming interface (API) called KadiAPY22. This enables potentially automated interaction with Kadi4Mat
using personal access tokens (PAT), facilitating seamless integration of RWDM workflows with HTC workflows.
The research data generated from such investigations often needs to be exported for ML analyses. The data can be
fetched and processed directly into the ML models/algorithms using the API access or can simply be transferred
to Kadi4Mat-hosted ML utilities and applications such as KadiStudio14, KadiAI and CIDS23. These features make
Kadi4Mat the most appropriate infrastructure for the data management needs of complex investigations like this
one.

In this work, we present a RWDM framework which is implemented for our recent numerical investigation
on establishing PMP relationships during PBF process using Kadi4Mat24, 25. During the RWDM process of
this investigation, the crucial steps involved in the workflow, the identification, collection and organization of
(meta)data, their recording and crosslinking to indicate the information flow, will be discussed. Ontology-based
knowledge representation of the overall investigation using the records and capturing their relation promotes
further expansion and usage of the research database, as the relations are machine-readable and can be machine-
actionable as well. Automation in the implementation of the proposed RWDM framework and the further usage
of the curated data will also be discussed.

Results

RWDM infrastructure design
The RWDM framework outlined in this study comprises of workflow (including simulation sub-routines) manage-
ment, (meta)data identification and curation. The practical implementation of this framework is illustrated by
curating the research workflow and the data generated from our recent works on multilayer PBF simulations24, 25.
The simulation workflow is explained in the methods section and is also visually summarized in Fig. 2(a). Sample
results from this workflow are schematically displayed in Fig. 2(b1−5). The four-layer PBF process simulations
using non-isothermal phase-field model results in the evolution of the thermal microstructure containing the
temporal information of the fused strut. Subsequent thermo-elasto-plastic calculations are performed to estimate
the evolution of residual stress and plastic strain in the thermal microstructure from the process simulations. The
effective mechanical properties of the PBF processed microstructure are calculated using a computational homoge-
nization scheme. As implied in Fig. 2(b), the research data generated during the multilayer PBF investigation was
carefully collected, organised and stored into Kadi4Mat in form of records. Three distinct record types are utilized
to curate the research data from the multilayer PBF work: (1) dataset, (2) protocol and (3) simulation records.
From technical point of view, these various types of records are on the same level in the RWDM infrastructure,
however from managerial aspect, they are distinguished by their data content, as outlined in table 1. The usage
and integration of these different record types in this RWDM infrastructure will be further discussed in detail in
the following subsection.
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An overview of the curated data from the multilayer PBF work can be seen in form of an ontology-based
knowledge graph, in Fig. 3. The research workflow and data curated from multilayer PBF simulations consists
of several records, indicated by circular nodes. These nodes can be seen arranged prominently, to visualize the
child collections representing the three clusters of simulations: (1) phase-field simulations, (2) thermo-mechanical
simulations and (3) computational homogenization. The records are labeled with their respective identifiers and
the record types. The record type can also be identified by the node colors.

Data records design
The dataset records, for example @mfm materials ss316l contains the temperature-dependant material prop-
erties of the material SS316L that were used for phase-field simulations, thermo-mechanical simulations and
computational homogenization, as shown in Fig. 4(a3). The material property data is stored in the metadata field.
Protocol records, such as @inputfile pf utilize the description field to document the workflow to generate input
files with a new layer of deposited powder particles, as shown in Fig. 4(a1). This particular workflow involves
several sub-routines, including: conversion of phase-field based microstructure to voxel based microstructure,
importing the voxelized microstructure into discrete element method (DEM) software (e.g., GeoDict26, YADE27),
depositing a new layer of powder over the previously processed layer, exporting the center and radii information
of the newly formed powder bed and finally, using it to generate input file to process another layer of powder
bed. The relevant metadata like software versions and powder characteristics are stored in the metadata field,
while the supporting files like, macros and processing scripts are uploaded to the protocol record as attachments
with their usage sufficiently documented in the description field. Fig. 4(a2) is an example of a simulation record
corresponding to @tep 30-75 on the knowledge graph in Fig. 3. Information like process parameters, powder
bed characteristics, simulation domain size and the output quantities along with their normalized values and units
are curated in the metadata fields, whereas the input files, containing the initial conditions, boundary conditions
and the output result, in this case the localized temporal stress and strain in the microstructure is stored as file
attachments within this record. The description field is employed to explain and/or document the usage of the
files and the meta(data) values as well as the software versions used.

Records on Kadi4Mat have persistent and unique identifiers that distinguish them and ensure efficient retrieval
and management. Upon creation, records are automatically assigned with a numeric PID, which remains
unchanged. However, users can assign unique alphanumeric identifiers to further distinguish the records. The
nomenclature for these identifiers is chosen to concisely represent the content of the record, such as material
properties or simulation setup and results. In case of dataset records, the identifier name reflects the type of data as
well as the material system. The identifiers of protocol records represent the procedure documented within them.
Data from the three types of simulations with varying process parameters is curated in form of simulation records.
Their identifiers take the form @<type> <P>-<v>, to represent the simulation type as well as the distinguishing
process parameters, in this case, the beam power <P> and scan speed <v>. <type> is a placeholder for the
simulation type. For instance, @pf 20-100 would represent the simulation record for a multilayer phase-field
simulation with beam power 20 W and scan speed 100 mms−1. Likewise, @tep 20-100 and @homogen 20-100

would be the records for thermo-mechanical simulation and computational homogenization respectively.
Interlinking of records represents the relationships between them and the data flow within them as shown in

the edges connecting the nodes in Fig. 3. These linkages can be used to understand the overall simulation workflow.
For instance, the protocol record @powder-bed-gen explains the procedure to generate the initial layer of powder
bed. The centre and radii information of the initial powder bed is then exported to @inputfile pf for generating
the input files to simulate the PBF process. @inputfile pf also receives temperature-dependant material
properties of SS316L alloy from the dataset record @mfm materials ss316l. The input files generated from
@inputfile pf is sent to the phase-field simulation records, which also store the simulated microstrutures of the
processed layers. @inputfile pf adds another layer of powder on the previously processed microstructure and
subsequently generates another input file and sends to the phase-field simulation records to process the PBF scan
of new layer of powder. The transient thermal microstructure is delivered to the thermo-mechanical simulation
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records, where the relevant input files are sent by @inputfile tep upon recieving the material properties
from @mfm materials ss316l. Likewise, for the computational homogenization, the final microstructure is
transferred by the phase-field simulation records and the input file is created by @inputfile homogen to
simulate the effective mechanical properties of the PBF processed parts with varying process parameters.

The research data curated from the aforementioned three simulation clusters is organised into collections on
Kadi4Mat. Each collection is identified by the following identifiers: @pf sls, @tep sls and @homogen sls.
These collections are published on Zenodo to boost the findability and accessibility of the curated research data.
The Zenodo entries contain records in JSON, RDF, and PDF formats, along with their corresponding metadata
and file uploads. This comprehensive approach ensures that the records are stored in both human-readable and
machine-readable formats, therefore, increasing their interoperability.

Automation of data recording integrated with high-throughput simulations
Collecting and managing (meta)data from high-throughput investigations is of paramount importance for its
further analysis and potential data-driven studies, however it can be a daunting task, if not automated. Automating
the data collection step in a HTC workflow, not only boosts the efficiency of a laboratory, by eliminating the need
for an intermediary (i.e. human operator), but also ensures consistency of the data records and compliance with
the community-agreed standards.

Fig. 5 depicts a typical HTC workflow, implemented on a master Jupyter session, with sub-routine scripts
executed on the worker computer via ssh and the seamless interaction with Kadi4Mat powered by KadiAPY. In
a high-throughput investigation, batch simulations are performed with an array of combinations of processing
parameters. The selection of process parameter combinations, often aided by design of experiments, is a critical
step and depends on the processing window for the particular process and the process-material relationship.
The process parameters and setup are normalized and formulated as metadata by the master console and are
then fed into the inputfile composing scripts of the worker console along with the inputfile template pulled
from the protocol records in data repository, to create batch inputfiles corresponding to the parameters. These
batch inputfiles are submitted as batch jobs on the computing cluster, meanwhile, the master console pulls
simulation record template from Kadi4Mat repository to create empty records for each simulation with the
parameter information as metadata. Timed python scripts are used to check the status of the simulation jobs,
completed jobs are verified for successful completion. The data from successfully completed jobs are further sent
for processing, whereas unsuccessful jobs are resubmitted upon inspection. The post-processed data is pushed to
their corresponding simulation records on Kadi4Mat. The data is further analyzed and summarized into a dataset,
which would serve as an end-result of the HTC investigation. This dataset is also pushed as a dataset record in
Kadi4Mat and could be retrieved for further data-cetric machine learning analysis. In this context, Kadi4Mat serves
as a community repository as well as an ELN. Alternatively, the data could be directly fetched into Kadi4Mat’s ML
workflow suite called KadiStudio14, 23. KadiStudio has ML modules such as KadiAI and cids-tools to facilitate the
development and implementation of data-driven models in ML workflows. These workflows can be documented
as Kadi4Mat records to ensure their reproducibility.

Discussion

The suggested RWDM framework was implemented for the simulation based multilayer PBF investigations.
Standardization and consistency of the records was maintained by employing record templates. Python scripts
based on KadiAPY library were used to create multiple records, making the framework capable of scaling up for
even larger datasets, with the possibility of automating the data curation step, especially for HTC investigations.
The current RWDM database for multilayer PBF studies can be expanded for an even wider range of processing
parameters and can be extended to similar material systems.

As the temporal thermal microstructure resulting from the process simulation was utilized as input in
computational homogenization and thermo-mechanical analysis, they can be easily transferred for further scientific
investigations such as nanoparticle migration behavior during PBF28, 29, influence of process parameters on the
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magnetic properties of AM produced parts30, thermal anisotropy in porous AM parts31. Data from the Kadi4Mat
records can be exported in machine-readable formats such as JSON and can be fetched automatically using
KadiAPY based python scripts. The existing data can be extrapolated and utilised for further data-driven analysis
as illustrated in Fig. 2(b). These studies could possibly optimize the fused strut geometry by manipulating the
volumetric energy input, predict the part properties for a particular set of processing parameters or tailoring the
mechanical properties. Finally, reusing research data generated from computationally intensive simulations for
further investigation is a step towards sustainable research.

The data curated through this RWDM workflow could later on serve as reference learning material for bachelor
and master’s degree students. Access to extensive research data can expedite the learning process for the students32.
In conjunction with the learning process, access to a reference data would make it easier for other researchers
to benchmark their simulation code and setup. The meticulously curated research workflow presented in this
work underwent a rigorous test of reproducibility when a master’s student was tasked with replicating the results
solely by adhering to the documented procedures. With minimal guidance, the student successfully executed
the workflows and reproduced the results, demonstrating the robustness and accessibility of the framework. The
framework can be customized and extended to cater the data management needs of various other research works
and could even facilitate collaboration within multiple levels of researchers. Principal investigators can initialize
the customization of the RWDM framework by identifying the needs of their corresponding research projects.
Followed by the breakdown of the project goals into tasks, and further breakdown into input, process and output
components. These components can be managed using records, with detailed instruction of their usage along with
automated macros/scripts in form of protocol records describing sub-workflows. Notably, it is important to set
standards such as nomenclature of records, files and metadata descriptors, particularly in the case of collaborative
research works. Upon customization of the framework, it can be implemented by research assistants/students or
can be automated, especially for repetitive tasks, thereby accelerating the overall research workflow. Implementing
a similar RWDM framework would be a necessity for large projects like inter-laboratory study (ILS) involving
numerous researchers from various research institutes, dealing with wide processing windows and multiple
material systems33.

Methods

Data generation: Simulation scheme and workflow
In this section, the simulation methods used to simulate the evolution of microstructure and the mechanical
quantities (like stress and strain) during PBF processing are introduced. Based on our former research, a non-
isothermal phase-field model was employed to simulate the microstructural evolution, while considering the
aforementioned physical phenonema during single-scan multilayer PBF processing of SS316L parts24, 25, 30, 34.

The simulation scheme used to comprehensively investigate microstructural evolution and thermo-mechanical
analysis is arranged in multiple stages, as shown in Fig. 2(a). It starts with the parameterization and normalization
of quantities used in the simulation models employed in this research work, such as phase-field parameters,
temperature dependant material properties of SS316L and Argon atmosphere for thermo-mechanical analysis
and the powder characteristics for powder bed deposition24, 25. A process window was selected with variation of
the two most important process parameters for PBF: Beam power and scan speed. The non-isothermal simulator
(NIsoS) program based on the MOOSE framework is employed to implement the non-isothermal phase-field
model using finite element method35. A simulation subdomain is selected and further imported into the thermo-
elasto-plastic model and further into the computational homogenization scheme for calculating the mechanical
quantities of the printed parts. The intricate details of the models used and the simulation workflow is sufficiently
reported in our previous works24, 25, 34.

Data sorting and organisation
Diverse multifaceted data is generated throughout the simulation workflow as explained in previous section. The
generated data is categorized in three main clusters, each representing a simulation stage from the workflow: (1)

6/14



Phase-field simulations, (2) Thermo-mechanical simulations and (3) Computational homogenization. Apart from
the data generated from these simulations, there is a variety of supporting metadata with information crucial to
reproduce these data. Therefore, it is imperative to identify, collect and organize the metadata from each stage of
the simulations. Typical metadata for these simulations would be the material- and processing parameters, and
their normalization, simulation setup such as, boundary conditions, initial conditions, numerical solver setup,
powder characteristics for the generation of powder bed, software versions, etc. Furthermore, a comprehensive
documentation of the sub-routines entailing the techniques and usage of software is necessary to achieve the
reproducibility goal from the FAIR guiding principles4.

Data recording and linking
The huge variety of data generated from the series of simulations during the multilayer PBF investigation is
recorded and curated in manner that it follows the FAIR principles4. Kadi4Mat is employed to curate our
research data in form of records. These records have various fields, such as title, identifier, description, metadata
and file attachments to store the data and relevant metadata containing crucial information about the stored
data. The records are uniquely identified using an alphanumeric identifier and a persistent numeric identifier.
Standardization and consistency among the records are maintained by creating templates, which were then used
to create records to store data from simulations with varying process parameters. Kadi4Mat offers the capability
to store data in various record types, such as simulation records, protocol records and dataset records, as listed in
table 1. Protocol records were used to document the sub-routines and/or standard operating protocols (SOPs)
used for a particular task from the workflow. Dataset records, as the name suggests, were used to store datasets,
for example, material properties of SS316L used in the multilayer PBF investigation. The organised data from each
simulation cluster was documented in form of simulation records using python scripts based on KadiAPY. This
ensured the scalability of our RDM framework by automating the data fetching and recording step to an extent.
Linking of records with other records enables the visualization of data flow and exchange between the records,
sometimes even depicting usage of particular data in the overall workflows.

Accessibility and publishing of data
The records created on Kadi4Mat have the capability of being shared with the researchers within the Kadi4Mat
consortia of institutions. However, for sharing the data with researchers outside the consortia, the records can
be exported in various formats, including PDF, RDF and JSON. The records are also exported on Zenodo and is
linked to a digital object identifier (DOI), thereby making the data findable and accessible to all. Zenodo supports
data storage of up to 50 GB per record. For datasets exceeding this limit, multiple Zenodo records can be created
or a third party data repositories can be utilized.

Data availability

The authors declare that the data curated using the RWDM framework described in this study for our multilayer
powder bed fusion investigations are available on Kadi4Mat under the collection @multilayer sls with PID:
592. An open access mirror copy of the summarized dataset is published on Zenodo and can be accessed via
doi.org/10.5281/zenodo.10940626.

Code availability

Source code for MOOSE-based application NIsoS and related utilities are available via the online repository
bitbucket.org/mfm_tuda/nisos.git. The corresponding authors can be contacted for granting access.
Exemplary python scripts, based on KadiAPY library, used to automate the data recording and fetching steps are
available on Zenodo via doi.org/10.5281/zenodo.8419354.
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Fig. 1. (a) Data-Information-Knowledge (DIK) hierarchy of research data inspired by Chaffey and Wood, 2005
(Chapter 5)13, 36. This hierarchy is analogous to a typical research data lifecycle, which starts as sets of discrete
data. The data is processed into information and then further condensed into knowledge, which is generally
documented in form of research articles. (b) Workflow of a simulation-based research, where various (meta)data
aid the generation of raw simulation data. This data is further processed using scripts and macros on various
software. The processed data is further analysed to form meaningful correlations, predictions and trends, which
are ultimately published as scientific research.

Record type Data stored
Protocol Workflows, sub-routine, technical SOPs, relevant macros/scripts
Simulation Input files, output files, relevant parameters
Dataset Material-specific parameters, data from secondary sources, aggregated output data

Table 1. Record types and the corresponding research (meta)data stored.
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Fig. 2. Schematic of the research framework consisting of (a) Multiphysical simulation scheme for multilayer
powder bed fusion simulations including paramterization for phase-field model, thermomechanical analysis,
process parameter selection for PBF, powder bed parameters and deposition, process simulations using
non-isothermal phase-field model, thermomechanical analysis, RVE selection for homogenization of mechanical
properties; (b) Storing the relevant (meta)data in form of several record types, namely simulation, dataset and
protocol in Kadi4Mat, to be further used in data-driven analysis. Illustration of (b1−4) the simulation results
stored in simulation records and (b5) data stored in form of dataset records.
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Fig. 4. Snapshot of different record types: (a1) Protocol record, (a2) Simulation record and (a3) Dataset record.
These records along with other records form a collection as illustrated in (b).
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