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Abstract. A benchmark problem is formulated which is well suited for the validation

of mesoscopic phase-field models for grain-boundary migration in polycrystals. First,

an analytical steady-state solution of the sharp moving boundary problem is derived

for a symmetric lamellar structure, which is valid for arbitrary bulk driving forces and

triple junction angles. Characteristic quantities are identified to reduce the parameter

space which in turn allows a systematic comparison of simulations and analytical

results. Various multiphase-field (MPF) formulations are compared which approximate

the sharp interface problem in terms of a diffuse regularization. An interfacial thickness

convergence study reveals that the model error is largely dependent on the ratio

of bulk to interfacial stabilizing force as well as the underlying model formulation.

An additional grid convergence study highlights the efficiency of a more advanced

discretization scheme. The results can be used to guide the selection of appropriate

models and to estimate the interface thickness and spatial resolution required to achieve

a given accuracy target. The post-processing framework consists of a fully automated

determination of well-defined metrics from the phase field simulation data, eliminating

human bias and facilitating reproducibility. The corresponding code is made openly

available to assist the materials science and engineering community in validating MPF,

multi-order parameter and similar model developments. We believe that this work

provides a reliable benchmark procedure to better understand the potentials and

limitations of current multiphase-field models as well as alternative approaches.

Submitted to: Modelling Simul. Mater. Sci. Eng.
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Triple junction benchmark for multiphase-field models 2

1. Introduction

The phase-field (PF) method is a versatile and established tool in materials science

and engineering. Current models employing the multiphase-field (MPF) paradigm are

capable of handling a large number of phases and grains [1–3]. Such multiphase and/or

polycrystalline systems consist not only of grain and phase boundaries but also of triple

and higher order junctions, where the balance of interfacial forces should hold [4]. This

condition which is also known as Young’s law [5] in 2D defines the dihedral angles

at triple points (in 2D) or lines (in 3D) based on the interfacial energies of adjacent

interfaces. Deviations from these equilibrium angles may be of physical origin, e.g., as a

result of finite junction mobility [6–8], line tension of the junctions [9, p. 337 ff.]. Even

though such effects may lead to an observable size effect in nanocrystalline samples [10],

they can usually be neglected on the microscale. This stems from the fact that an

interface can be regarded as a region with its own atomistic arrangement and a finite

thickness [11, 12]. In the nanocrystalline case, it is clear that the importance of

crystal defects (boundaries and junctions) increases relative to the grain size, since

the length scales (grain diameter vs. interface/defect thickness) approach a comparable

magnitude [13]. When modelling microstructural problems using phase-field approaches,

the interfacial thickness is often artificially enlarged in order to reduce computational

cost. Therefore, such effects may arise much earlier than physically expected (i.e. at

the microscale) [14]. Interfacial-thickness dependent outcomes of a PF model are clearly

undesirable and the removal of such spurious terms facilitates quantitative and cost-

effective simulations [15]. Some approaches tremendously reduce the computational

cost without compromising accuracy by tailoring the discretization of the model to the

underlying grid [16–18]. Since these approaches allow for a much smaller interfacial

width than conventional PF methods, it is expected that interface-thickness dependent

effects can be significantly suppressed. In general, it would be desirable to benchmark

various model formulations with respect to a sound and accurate reference or gold

standard for well-defined geometries. Recent benchmarks [19, 20] address the case

of grain-boundary (GB) migration subject to purely capillary forces with respect to

a closed-form analytical solution of the GB geometry and velocity valid for arbitrary

dihedral angles. A similar setup has been used by Staublin et al. [21] for the validation of

an orientation-field model. The analytical solution used in both works was first derived

by Mullins [22] for the case of equal interfacial energies.

Additional bulk driving forces are often required to account for microstructural

phenomena such as recrystallization [23], solidification [24] or martensitic phase

transformations [25]. Large bulk driving forces can be challenging for PF models since

they promote distortion of the interface which renders the model result inaccurate or

even entirely meaningless. A working approach [25] based on an initial idea in [26]

incorporates an additional stabilizing interfacial energy term which can reduce the

distortion of the interface to a great extent. Very recently, an additional number of

new model formulations has been presented to tackle the problem of large bulk driving
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Triple junction benchmark for multiphase-field models 3

forces [14, 27, 28].

The efficiency and accuracy of PF models subject to simultaneous bulk and capillary

forces have mostly been evaluated for simple two-phase setups, see [16, Fig. 3] and [27,

Fig. 5/6]. Polycrystalline benchmarks of GB migration employed in the [27, 29, 30] are

claimed to be generic, but are in fact based on simplifying assumptions. A more detailed

discussion can be found in the works of Eiken [20] and Daubner et al. [19]. Therefore,

the evaluation of PF approaches including bulk effects in a polycrystalline environment

is currently prohibited due to the lack of an accurate reference solution.

To fill this gap, the present paper aims to provide an analytical solution for the case

where an additional bulk driving force acts on the curved interface, thus facilitating the

mutual comparison of existing models in terms of their accuracy and efficiency. For

simplicity, the driving force is assumed to be constant in time and across the domain.

The benchmark focuses on boundary migration according to rate-reaction theory [31],

also known as attachment kinetics [32], which is mainly relevant for grain boundaries.

It does not include the diffusion of heat or chemical species, which is commonly

encountered at phase boundaries (e.g. liquid/solid interfaces). The benchmark consists

of a steady-state solution that can be constructed for arbitrary dihedral angles and

arbitrarily large bulk driving forces. Although the GB geometry and velocity cannot be

given in a simple and accessible closed form, the implicit analytical solution only requires

a single numerical integration step, which can be easily implemented in any programming

language. We make the benchmark solution as well as the simulation postprocessing

environment available as open source software [33] to promote the utilization of the

benchmark in the materials science and engineering community.

2. Benchmark Definition

As discussed in our previous work [19], a triple junction is well-suited to benchmark

multiphase-field and multi-order parameter models. It contains all the model complexity,

which arises when formulating a multiphase extension to a two-phase problem while the

initial and boundary conditions are sufficiently simple. Furthermore, such a benchmark

is also a suitable reference for orientation-field models [21].

The initial setup is given by a rectangular domain containing three grains, each

distinguished by an order parameter, as sketched in Figure 1. The width of the domain

W is given in Table 1, while the height H needs to be adjusted depending on the

simulation input parameters. The simulation domain must be high enough to ensure

convergence of the grain boundary motion towards a steady state, which depends on

the interfacial energy ratio γαβ/γ0 and the driving force ∆f . All boundaries are subject

to insulating (Zero-Neumann) boundary conditions which reflects mirror symmetry on

the left and right boundaries, i.e. an infinite domain of alternating α and β lamellae.

The physical input parameters are chosen in the order of magnitude for typical

microstructure simulations of aluminum [9] as listed in Table 1. Please note that

numerical input parameters of the solver may conveniently be set employing a unit
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Triple junction benchmark for multiphase-field models 4

ϕα

ϕ0

ϕβ

W
(a) Initial setup

x

y

W

y(x, t)

Vvn

m
θ

(b) Steady state

Figure 1: Sketch of the triple junction in (a) the initial problem setup and (b) a steady-

state configuration. In the steady state the coordinate system moves in vertical direction

with a constant velocity V . This coordinate system is used for numerical evaluation in

Section 6.

system with 1ms as the time unit, 1 µm as the length unit and 1 pJ as the energy unit.

This ensures that all input parameters are within few orders of unity for numerical

reasons.

Table 1: Set of physical input parameters in a typical range for aluminum.

Parameter Symbol Value Unit

Width of domain W 50 µm

Interfacial energy γα0 = γβ0 = γ0 0.5 a J/m2

γαβ [
√
3γ0, γ0] J/m2

Mobility Mα0 = Mβ0 = M0 2× 10−8 b m4/(J s)

Mαβ 2× 10−8 m4/(J s)

Driving force ∆f ±[0, 0.01, . . . , 1] c MPa

a estimated from [9, Figure 2.4], b estimated from [9, Figure 3.61], c taken from [9, Table 3.1]
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Triple junction benchmark for multiphase-field models 5

3. Analytical Considerations

3.1. Characteristic Quantities

3.1.1. Relation of Capillary and Bulk Driving Forces In general, a good qualitative

understanding of the role of capillary and bulk driving forces is essential to estimate their

relative importance. It is necessary to discuss regimes of small and large bulk driving

forces by introducing characteristic nondimensional quantities that relate capillary and

bulk driving forces in an order-of-magnitude sense, just like the well-known Reynolds

number which estimates the relation of inertia to friction forces in a fluid.

The first characteristic quantity

p̃ ≡ W

γ0
∆f (1)

stems from the domain size§, i.e., the length scale which controls the order-of-magnitude

variation in the grain boundary geometry. It relates the bulk driving force ∆f to the

capillary driving force κγ0 where the curvature κ scales with the inverse width of the

domain κ ∝ 1/W .

Herewith, we define the following regimes

|p̃| < 1 ”small driving forces”

1 ≤|p̃| < 10 ”intermediate driving forces”

|p̃| ≥ 10 ”large driving forces”.

The values listed in Table 1 result in ratios p̃ = ±[0, 1, . . . , 100] and thus cover the

complete range from small to large driving forces.

3.1.2. Relation of Interface-Stabilizing and Bulk Driving Forces For phase-field models,

an additional length scale corresponds to the diffuse interface thickness. In the light of

the previous characteristic number, we replace W by the interfacial thickness η to derive

the dimensionless quantity

p̃PF ≡ η

γ0
∆f . (2)

This last expression can be interpreted as the ratio of the bulk driving force to the

interface stabilizing force (the well/obstacle potential scales with γ0/η). In general, the

interfacial thickness should be much smaller than the domain size, and thus, we obtain

|p̃PF| < |p̃|. Therefore, the bulk driving force can only be large with respect to the

interface stabilizing force when we are far in the large driving force regime.

§ For an arbitrary polycrystal, we may replace W by the average grain size.
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Triple junction benchmark for multiphase-field models 6

3.1.3. Characteristic timescales The analytical derivation assumes a steady state, but

the simulation starts with a T-shaped setup which will generally deviate from the steady-

state solution. Therefore, the moving grain boundary should be given sufficient time

to reach a time-invariant shape. The period of time during which the GB smoothly

approaches the shape of the steady state is commonly referred to as the transient regime.

To quantify this, we consider the time

ttransient =
W 2

MGBγ0
(3)

in order to derive a dimensionless time as t̃ = t/ttransient. We expect that the steady

state is reached when t̃ is sufficiently large with respect to unity.

In terms of the phase-field method, another time scale can be defined by replacing W

by η

tPF =
η2

MGBγ0
(4)

which can be interpreted as the time scale for forming the diffuse phase-field profile.

Since η << W , this time is much shorter than the transient, i.e.

tPF
ttransient

=
( η

W

)2
<< 1 .

Accordingly, choosing t̃ large enough should be a sufficient condition for the interfacial

profile to be constant in time.

3.1.4. Relation of interfacial energies An additional characteristic quantity is defined

by the ratio of the grain-boundary energies between the stationary (i.e. vertically

aligned) grain boundary and the moving curved GB. The ratio of the two grain boundary

energies is a dimensionless quantity

γ̃ =
γαβ
γ0

. (5)

According to Young’s law, the dihedral angle is directly related to this ratio [19, Eq. (29)]

θ = 2arccos

(
γ̃

2

)
. (6)

Therefore, a small ratio γ̃ should result in a relatively flat GB geometry, whereas a high

ratio leads to a steep GB profile. Moreover, only ratios below γ̃ = 2 are meaningful,

since θ tends to zero for this limit, corresponding to an infinitely steep GB profile.

3.1.5. Grid and Interface Resolution For a uniform grid, the grid spacings ∆x and

∆y are defined as the distance between two grid nodes in each direction (units of

length). In the current document, both dimensions are equally spaced, i.e. ∆x = ∆y.
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Triple junction benchmark for multiphase-field models 7

A dimensionless quantity is the number of grid points in each direction given by

Nx = W/∆x, Ny = H/∆x where H is the height of the domain. In order to resolve the

thin interface thickness in PF models, a sufficient number of grid points in the interface

is needed. Therefore, the quantity

nint ≡
η

∆x
(7)

is introduced, relating the interface thickness parameter η to the grid spacing. This

quantity is the number of grid points occupied by an equilibrium sinusoidal interface.

3.2. Sharp-Interface Solution

3.2.1. Problem Formulation Rate-reaction theory [31, 32] relates the interface normal

velocity vn to a driving force. In the current setup we consider the superposition of two

effects: A capillary driving force resulting from an isotropic grain-boundary energy γ0
and a constant bulk driving force ∆f . This leads to the equation

vn = MGB (∆f − γ0κ) (8)

where MGB is the constant mobility of the grain boundary and κ its curvature.

A curved grain boundary as sketched in Fig. 1b is given by the function y(x, t) in a

Cartesian coordinate system where x and y are the horizontal and vertical coordinate,

respectively. It is assumed that the GB moves vertically with a constant velocity

V ≡ ∂y(x, t)/∂t. This can be expressed more formally as

y(x, t) ≡ y(x) + y0(t) (9)

V = y′0(t) (10)

where [x = 0, y = y0(t)] is the location of the grain boundary at the mirror plane. y0(t)

is a linear function in time and y(x) is a univariate function representing the geometry

of the GB in the moving frame of reference. In contrast to our recent paper [19], V is

positive if the motion is upwards. The GB’s curvature can be expressed in terms of first

and second derivatives as

κ = − y′′(x)

(1 + (y′(x))2)3/2
. (11)

Since the normal velocity is given by

V = vn
√

1 + (y′(x))2 , (12)

the following nonlinear ordinary differential equation for y

y′′(x) =
V

MGBγ0

(
1 + (y′(x))2

)
− ∆f

γ0

(
1 + (y′(x))2

)3/2
(13)
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Triple junction benchmark for multiphase-field models 8

is obtained which is subject to the following boundary conditions

y(0) = 0, y′(0) = 0, y′(W/2) = −m.

The first condition fixes the location of the GB at the mirror plane, the second condition

ensures the mirror symmetry and the last condition enforces the triple-junction slope

m. Note that the geometry is only determined for the left-hand side of Fig. 1b (i.e., for

x ≤ W/2). The right-hand side can be determined from the symmetry constraint as

y(x, t) = y(W −x, t)∀x > W/2. The triple-junction slope m is related to the interfacial

energy ratio γ̃ by Young’s law [13, Eq. (127)] and is geometrically related to the dihedral

angle θ (cf. Fig. 1b)

m =
γ̃√

4− γ̃2
= cot

(
θ

2

)
. (14)

In the following, we start with certain limiting cases to gain some understanding of the

problem before solving it thoroughly.

3.2.2. Stationary Grain Boundary For the special case of a stationary interface

(vn = 0), Eq. (8) yields the condition that the curvature is a constant equal to

κ =
∆f

γ0
. (15)

This means that the grain-boundary geometry is a circular arc (see Fig. 2b). In order

to satisfy the boundary conditions, it is possible to derive the picked value of κ by

a graphical construction: Draw an arc with its maximum located at the origin and

fulfilling the dihedral angle θ at x = W/2. This gives

κ =
1

R
=

2 cos
(
θ
2

)
W

=
γ̃

W
(16)

where R is the radius of the arc. Using the relation between the curvature and driving

force from Eq. (15), we find that the stationary case can only be satisfied for a certain

(dimensionless) driving force that equals the ratio of the interfacial energies

p̃ = γ̃ =
2m√
1 +m2

. (17)

Figuratively speaking, this is the driving force ”pushing the GB up” which is balanced

by the capillary driving force pointing downwards, so that the GB stops moving.

3.2.3. Large bulk driving force limits The solution for vanishing driving forces has

already been presented in [19] while in this context the behavior of the solution for large

bulk driving forces is of particular interest. Inspecting Eq. (8) for large |∆f | (or γ0 → 0,
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Triple junction benchmark for multiphase-field models 9

more precisely |p̃| → ∞), it is expected that the curvature term on the right-hand side

can be neglected. This yields

V√
1 + (y′(x))2

≈ ∆f . (18)

Since V and ∆f are constant, the only possibility to balance left- and right-hand side

for every x is that |y′(x)| approaches to a constant in the large-driving force limit.

This corresponds to a (piecewise) planar grain-boundary geometry. We expect two

possibilities:

(i) The GB tends to a hat shape, as shown in Fig. 2a: |y′(x)| → m. This fulfills

the triple-junction boundary conditions but violates the symmetry condition. This

implies V/(MGB∆f) →
√
1 +m2 as |p̃| → ∞.

(ii) The GB tends to a horizontal plane, as shown in Fig. 2c: |y′(x)| → 0 which would

fulfill the symmetry condition y′(0) = 0 but violate the boundary condition at the

triple junction. This implies V/(MGB∆f) → 1 as |p̃| → ∞.

In the first case, the symmetry could be recovered by a thin boundary layer near the

center x = 0 which regularizes the problem. In the second case, it is likely that the

curvature term leads to a boundary layer near x = W/2 which becomes thinner as |∆f |
increases in order to comply with the boundary condition.

For the hat case, the limiting tip curvature κtip = κ(x = 0) is calculated by inserting

V/(MGB∆f) =
√
1 +m2 and y′(0) = 0 into Eq. (8). This gives

κtip =
1

Rtip

=
∆f

γ0

(
1−

√
1 +m2

)
. (19)

This equation reveals an increasing sharpness of the tip with the magnitude of the

driving force and a discontinuity of the first derivative is reached in the limiting case.

Similarly, for the horizontal case, we calculate the limiting curvature κTJ at the triple

junction where |y′(1/2)| = m. This gives a similar relation

κTJ =
1

RTJ

=
∆f

γ0

√
1 +m2 − 1√
1 +m2

. (20)

Informally, for the hat shape, the tip curvature should ”glue” the two linear segments

with slope ±m together. For the lid-like shape, the GB near the triple junction needs to

bend toward horizontal alignment (i.e. become more flat). Accordingly, in both cases

we expect positive curvatures in order to ensure compatibility with the behavior far

away from the tip or the triple junction. Thus, it is expected that the hat shape is the

limiting shape for p̃ → −∞ and the horizontal plane is the limiting shape for p̃ → +∞.

The corresponding regularized shapes are shown schematically in Fig. 2.
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Triple junction benchmark for multiphase-field models 10

p̃ → −∞, ṽ/p̃ →
√
1 +m2

Rtip

(a) Rounded hat

p̃ = γ̃, V = 0

R = γ0
∆f

= W
γ̃

(b) Arc

p̃ → +∞, ṽ/p̃ → 1

RTJ

(c) Flat lid

Figure 2: Schematic depiction of the limiting grain-boundary geometries where the

dimensionless driving force p̃ = ∆fW/γ0 increases from left to right.

3.2.4. General Solution

Non-Dimensionalization To simplify the derivation, the dimensionless coordinates x̃, ỹ

and the dimensionless velocity ṽ are introduced as

x̃ ≡ x

W
, ỹ ≡ y

W
, ṽ ≡ VW

MGBγ0
.

This gives the following problem

ỹ′′(x̃) = ṽ
(
1 + (ỹ′(x̃))2

)
− p̃

(
1 + (ỹ′(x̃))2

)3/2
(21)

ỹ(0) = 0 (22)

ỹ′(0) = 0 (23)

ỹ′(1/2) = −m, (24)

which reduces the dimensionality of the variable set from six (V , W , MGB, ∆f , γαβ, γ0)

to three (ṽ, p̃, γ̃). We expect that ṽ and p̃ are not independent since a larger driving

force should result in an acceleration of the grain boundary. Therefore, we may consider

p̃ as the independent and ṽ as the dependent parameter.

GB Velocity Our goal is to solve Eq. (21) to determine the unknown relation between

velocity and driving force ṽ(p̃) together with the GB geometry. The detailed solution

procedure is presented in Appendix A. The solution for the velocity is given in an implicit

form based on the relation q ≡ ṽ/p̃ and reads

ṽ = 2

arctan

(
mq√

1+m2
√

1−q2

)
+ arctan

(
m√
1−q2

)
√
1− q2

− arctan (m)

 . (25)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

−0.1

−0.2

−0.3

−0.4
p̃ =

x/W

y(x)/W

100 10 0 −10 −100

(a)

−10 −5 0 5 10
−20

−10

0

10
θ = 120◦
θ = 90◦
θ = 60◦
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ṽ

1
√
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(b)

Figure 3: Sharp interface solution. (a) Grain-boundary geometry for θ = 120◦ (i.e.

γ̃ = 1) at varying driving forces and (b) dimensionless grain-boundary velocity as a

function of the dimensionless driving force for three different dihedral angles together

with the derived limiting cases (cf. Fig. 2)

The velocity can be obtained for values of p̃ through a root-finding algorithm. This

method is implemented in the Supplemental Python code [33]. Eq. (25) is ill-defined for

certain values of q. These singular cases are given in Table A1 which also includes the

case of a vanishing driving force as described in [19].

GB Geometry The analytical solution of the GB geometry is given by

x̃ =
1

qp̃

arctan (s) +

arctanh

(
sq√

1+s2
√

q2−1

)
+ arctanh

(
s√
q2−1

)
√

q2 − 1

 (26)

where the slope s ≡ y′(x) = ỹ′(x̃) is a parameter within the interval −m ≤ s ≤ m. This

formula can be graphically inverted to obtain ỹ′(x̃) in the interval −1/2 < x̃ < 1/2.

Numerical integration subject to the BCs from Eq. (22) then yields the final solution

ỹ(x̃). For q = 0 and q = −1, the above formula is undefined. We use L’Hospital rule to

determine the following limiting cases

lim
q→0

x̃ = − s

p̃
√
1 + s2

, lim
q→−1

x̃ =
1

p̃

(√
1 + s2 − 1

s
− arctan (s)

)
.

which completes the analytical treatment.

The grain-boundary geometry is shown for various driving forces in Fig. 3 (a) which

essentially matches the expected behavior from Fig. 2. The dependence of the interface

velocity on the driving force is illustrated in Fig. 3 (b) for three different dihedral angles

together with the corresponding large-driving force limits. It can be seen that the large-

∆f limiting behavior is very well established for |p̃| ≥ 5. For small driving forces,
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Triple junction benchmark for multiphase-field models 12

a linear approximation can be applied to the interface velocity as ṽ ≈ ṽ0 + p̃ṽ1 with

ṽ0 = θ − π and ṽ1 = 2arctanh (cos (θ/2)) /(π − θ) (more details given in Appendix A).

4. Benchmark Simulations

The triple junction benchmark described above can be used to quantitatively validate

and compare the accuracy of mesoscopic phase-field models that approximate the

moving boundary problem of a singular surface by a diffuse representation. In such

models, the interface width becomes a numerical parameter, while the capillary forces

should be accurately described in relation to the bulk driving force. Note that the

benchmark is equally applicable to other numerical approaches that solve the given

sharp interface problem such as multi-order parameter models, level-set methods, et

cetera. Within the scope of this work, we use a common multiphase field concept and

demonstrate how the benchmark can be applied to quantitatively validate the accuracy

of alternative model variations and implementations over a wide range of bulk driving

forces and numerical resolutions.

4.1. The multi-phase field formulation

The basic multi-phase field formulation is adopted from [3], where the spatial

arrangement of multiple phases or grains is described by multiple phase-field variables

ϕα(x, t) , α ∈ {1, . . . , N}. Their values are equal to unity in the bulk of the corresponding

phase (grain) and continuously change to zero over diffuse interface regions. The

collection of order parameters fulfills the unity sum constraint
∑N

α=1 ϕα = 1 everywhere

in space. Bulk and interfacial contributions in the free energy functional are decoupled

so that the interfacial thickness η can be adjusted for computational convenience.

Application of a multiphase relaxation approach under consideration of the unity sum

constraint yields the set of phase-field equations:

∂ϕα

∂t
=

Ñ∑
β ̸=α

Mαβ [ bαβ ∆fαβ − γαβKαβ + Jαβ ] (27)

The present notation is chosen so that the definition of the interfacial mobility Mαβ,

the interfacial energy γαβ and the driving force ∆fαβ match those in the sharp interface

solution in Eq. (8) and the corresponding data in Table 1. The term Kαβ accounts for

curvature and implicitly stabilizes the diffuse interface profile, while Jαβ accounts for

additional junction forces. Both terms are derived from a gradient term (∝ ∇ϕα ·∇ϕβ)

in combination with a multi-obstacle potential (∝ ϕαϕβ):

Kαβ =
1

Ñ

[
∇2ϕβ −∇2ϕα +

π2

η2
(ϕβ − ϕα)

]
, (28)

Jαβ =
1

Ñ

N∑
γ ̸=β ̸=α

(γβγ − γαγ)

(
∇2ϕγ +

π2

η2
ϕγ

)
. (29)
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Triple junction benchmark for multiphase-field models 13

A comparison of different interfacial formulations can be found in [19]. A special feature

of the multi-obstacle formulations is that only contributions of locally interacting phases

are considered. The amount of active phases Ñ appears as a denominator in Eq. (28) and

Eq. (29) to account for identical phase contributions from superimposed interactions.

Adopting the notation of [34] and [14], Ñ−1 is not directly multiplied with the mobility

which allows for a decoupled definition of the prefactor to the bulk driving force bαβ.

4.2. The bulk driving force prefactor

Special emphasis shall be on the factor bαβ which can be used to distribute the bulk

driving force along the diffuse interface under the constraint that the integral across

the interface remains unchanged. This is important to minimize the distortion of the

moving diffuse interface profile in mesoscopic models with a finite numerical interface

thickness. Direct matching of the phase-field equation (Eq. (27)) to the sharp interface

solution (Eq. (8)) reveals that the two-phase traveling wave solution is not distorted

for bαβ = |∇ϕα| = |∇ϕβ|. An open question is how to define the scaling factor bαβ in

multi-phase regions. A detailed discussion of this subject can be found in [14]. In the

context of this work, three different variants will be compared:

bαβ =



π

η

√
ϕαϕβ → B0

2π

Ñη

√
ϕαϕβ → B1

π

η
(ϕα + ϕβ)

√
ϕαϕβ → B2.

(30)

Note that in two-phase regions, all three variants B0-B2 reduce to π/η
√
ϕα(1− ϕα)

which is the analytical expression of |∇ϕα| for the sinusoidal traveling wave solution.

The first multiphase variant B0 simply equals the two-phase expression. The second

variant B1 which adopts the multiphase scaling (2/Ñ) from interfacial contributions

has been used by Kubendran et al. [35]. The last variant B2, used e.g. in [34, 36, 37],

refers to the one implemented in Micress since 2010, replacing the former variant B0.

4.3. Prefactors derived from interpolation functions

Alternatively, the weighting of the bulk driving force can be derived in a fully variational

way from different interpolation functions in the bulk free energy fbulk =
∑

α f
αhα(ϕ)

which yields three alternative model formulations H0-H2. Using the relaxation ansatz

by [38] the following set of phase-field equations is obtained:

∂ϕα

∂t
=

Ñ∑
β ̸=α

Mαβ

[
π2

4Ñη

(
∂fbulk
∂ϕβ

− ∂fbulk
∂ϕα

)
− γαβKαβ + Jαβ

]
(31)

which is almost identical to Eq. (27) but the term bαβ ∆fαβ has been replaced.

Commonly used interpolation functions hα = h(ϕα)/(
∑

β h(ϕβ)) are normalized based
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Triple junction benchmark for multiphase-field models 14

on the numerator

h(ϕα) =


ϕα → H0

ϕ2
α(3− 2ϕα) → H1

ϕ3
α(6ϕ

2
α − 15ϕα + 10) → H2

and ensure
∑

hα(ϕ) = 1 throughout the domain. Note that due to this normalization,

the bulk term ∂fbulk/∂ϕα = fαh′(ϕα)/
∑

β h(ϕβ) − h′(ϕα)/h
2(ϕα)

∑
β f

βh(ϕβ) contains

contributions from all driving forces fα, . . . fN for higher polynoms (i.e. H1 and H2).

4.4. Numerical implementation and automated parameter variation

In the following sections, two different codes are employed a) the software Pace3D [39]

and b) the commercial software Micress (V7.250). Both implementations are based on

similar multiphase-field formulations solved on finite difference stencils on equidistant

grids with spacing ∆x and explicit time stepping. The commercial software Micress is

based on model formulation B2 and comes with an additional grid correction scheme [16]

(see Section 6.3). To enable model comparison, all formulations B0-B2 and H0-H2 were

implemented in Pace3D. The execution of benchmark simulations has been automated

and, additionally, a metadata .json file is generated containing model parameters and

numerical resolution information for each simulation. This allows for fully automated

post-processing with the supplementary code [33]. This workflow approach is generic in

the sense that it could easily be adapted to similar models such as multi-order parameter

approaches. Once the code interface to another simulation software tool is defined, the

workflows can be used in a fully automated manner.

5. Post-Processing Framework

To compare the simulation results to the analytical solution of the grain boundary

velocity (Eq. (25)) and profile (Eq. (26)), we need to retrieve the sharp interface solution

from the phase-field results. Therefore, pairwise isolines of phase-field variables are

extracted where ϕα = ϕβ, ϕα = ϕ0 and, accordingly, ϕβ = ϕ0. The coordinates of the

triple point (TPx, TPy) are then given by the intersection of pairwise isolines as shown

in Figure 4 and, thus, the simulated grain boundary profile is given by the gray dotted

line which combines the isoline given by ϕα = ϕ0 (blue line) left of the triple point and

ϕβ = ϕ0 (white line) to the right. The described procedure is implemented as a function

on regular grids in the supplemental code [33] which is openly available on github.
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Triple junction benchmark for multiphase-field models 15

Figure 4: Exemplary triple junction in a diffuse representation with corresponding

isolines between the phase-fields. The gray dotted line corresponds to the extracted

grain boundary profile.

For quantitative comparison of simulation studies with regard to the analytical solution,

we define the following metrics:

(i) The velocity can be measured as the temporal change of

• the y-coordinate of the grain boundary profile at the domain boundary

Vleft = [(yx=0
ϕ0=ϕα

)n − (yx=0
ϕ0=ϕα

)n−1]/∆t,

Vright = [(yx=W
ϕ0=ϕα

)n − (yx=W
ϕ0=ϕα

)n−1]/∆t;

• the y-coordinate of the triple point VTP = [(TPy)
n − (TPy)

n−1]/∆t;

• the phase fraction of ϕ0 as Vphase = −[(
∫
ϕ0dV )n − (

∫
ϕ0dV )n−1]/(W∆t);

Note that the velocities are defined along the y-direction as indicated in Figure 1b.

(ii) The (mis-)match of numerical results for the grain boundary geometry

with regard to the analytical solution is quantified by a relative error measure

introduced by the L2-norm as

L2 =
√∫ 1

0
(ỹnumeric(x̃)− ỹanalytic(x̃))2dx̃/

∫ 1

0
(ỹanalytic(x̃))2dx̃.

We numerically perform the integrals using composite trapezoidal rule on the

discrete x̃-locations of the isoline representation ỹnumeric. In order to compare the

analytical and numerical GB geometry in the same moving frame of reference, the

maximum of the ỹ-curve is set to zero, i.e. max(ỹnumeric) = 0 is enforced.

The dihedral angle θ at the triple junction is not used as a metric for model evaluation as

the computation is non-trivial and large errors can arise from the numerical evaluation

of the angle. Schemes that assume linear segments in the triple phase region [40] depend

on grid resolution and on the model parameters which define the diffuse interface width.

Arc-fitting procedures [29, 41] are based on the assumptions that the GB geometry can

be described by a circular arc which does not cover the general range of GB profiles as

sketched in Fig. 2.

The evaluation procedure for a single simulation is illustrated in Figure 5. The

simulation is based on the values given in Table 1, a numerical discretization with

100 cells along the x-direction, 10 grid points within the diffuse interface and a non-
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Triple junction benchmark for multiphase-field models 16

dimensional driving force of p̃ = 10. The simulation was carried out using explicit

time-stepping until a final time of tend = ttransient according to Eq. (3) was reached.

From the velocity plot in Fig. 5 (a), it becomes obvious that the various methods

to measure velocity exhibit different convergence behaviours. The triple point velocity

shows strong oscillations which can, in this case, be traced back to the obstacle potential

and numerical errors which arise from the calculation of the triple point. The velocities

vleft and vright show the same convergence and much less oscillations. The magnified

view in Fig. 5 (b) reveals that even after the transient regime, oscillations persist as

a result of the obstacle potential. The velocity value which is calculated based on the

phase fractions vphase shows the smoothest behavior due to area integration. Minor

oscillations still persist.

0 0.125 0.25
1.82

1.83

1.84

1.85
(a)

t in s

V
in

[m
m
/s
]

vleft vright
vtriple vphase

0 0.125 0.25

1.8365

1.8370

1.8375
(b)

ttransient
2

t in s

V
in

[m
m
/s
]

vleft vphase
vmean
left vmean

phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

−0.1

(c)

x̃

ỹ GBanalytic

GBsim

Figure 5: Evaluation of example simulation. (a) velocity of grain boundary measured

with methods introduced in Section 5. (b) magnified view of oscillations in the

numerically obtained velocities and averaging procedure in the steady-state regime, (c)

numerically extracted final grain boundary profile in comparison with analytic solution.

Due to the oscillating behavior, it is not straight forward to define an absolute or

relative measure of convergence. For this reason, we decided to determine the mean

value plus standard deviation over the time period from ttransient/2 until ttransient which

is exemplarily shown in Fig. 5 (b). The green background color marks the time interval

of averaging, the blue line is the mean value of vleft, while the blue shaded area illustrates

the standard deviation. Similarly, the red line is the mean value of vphase. Note that

although vphase has a smaller standard deviation, this metric is more susceptible to the

formation of spurious phases, i.e., both vleft and vphase should be evaluated.

Fig. 5 (c) shows the extracted grain boundary profile in the non-dimensional (x̃, ỹ)
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Triple junction benchmark for multiphase-field models 17

coordinate system. The L2 measure quantifies the mismatch of the analytic and

simulated grain boundary profile. In the following, only the steady-state values defined

above by the mean averaging over the time interval tend = ttransient will be plotted for

various model formulations and over a range of driving forces. We apply the same

procedure to compute the mean and standard deviation for the L2 norm, to average

oscillations arising from the calculation of the triple point.

In the following, we illustrate the numerical evaluation procedure of the benchmark,

firstly by performing convergence studies according to common phase field practice, and

secondly by comparing some common model formulations.

6. Simulation Results

6.1. Convergence toward sharp interface

For meso-scopic length scales, the phase-field approach yields a diffuse representation of

a sharp interface problem which leads to a model-intrinsic dependence of the solution

on the width of the diffuse interface η. If a model formulation introduces a model error,

we still expect convergence toward the analytical solution for a finer mesh resolution as

η converges toward a small value with respect to the physical problem (i.e. η/W → 0

which implies p̃PF → 0 at constant ∆f). This can be easily tested by running the same

simulation input parameters while changing the grid resolution and η, respectively. For

this study, we choose driving forces of p̃ = ±10, i.e. at the transition from intermediate

to large driving forces. This ensures that the driving force is sufficiently large such

that a change in interface thickness results in a measurable deviation (for small driving

forces we do not expect significant deviations). In all current cases, the diffuse interface

is discretized with 10 cells (η = 10∆x) which should keep the discretization error small

and constant. For a constant physical domain size, we vary the interface thickness

η ∈ {1.25, 2.5, 5, 10} µm to test convergence of the model. This corresponds to refined

grids with ∆x ∈ {0.125, 0.25, 0.5, 1} µm and Nx ∈ {400, 200, 100, 50}. The convergence

of the grain boundary profile toward the analytical solution is illustrated for p̃ = −10 and

the model formulation H1 in Figure 6 (a). Note that the width of the diffuse interface is

implicitly given by p̃PF as defined in Eq. (2). Similar convergence was observed for the

other model formulations (see Section 6.2). This deviation from the analytical profile

can be quantified by the L2 error norm defined in Section 5 which is shown in Figure 6

(b).

Finer mesh resolution leads to a massive increase in computation time. For finite

difference schemes on a regular grid, reducing ∆x by a factor of two results in a fourfold

increase in grid cells in 2D. In addition, ∆t needs to be reduced by a factor of four when

explicit time stepping is used, resulting in a 16 times increase in computation time.

Therefore, an important question in the context of phase-field modelling is: Which

model formulation allows maximum accuracy at low resolution of the diffuse interfaces?
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Figure 6: Interface-thickness convergence study of model H1 for varying η at constant

number of grid points in the interface (nint = 10) and constant physical width

W . (a) Grain boundary geometries for p̃ = −10 and grid spacings of ∆x ∈
{1, 0.5, 0.25, 0.125} µm. The analytical GB profile is shown as a black dashed curve.

(b) Deviation of the GB profile expressed in terms of L2 error for p̃ = −10 (filled

circles) and p̃ = 10 (open circles).

6.2. Model comparison

We compare the multiphase-field formulations given in Section 4 by testing their model

error with respect to the defined benchmark. As in the previous example, driving

forces of p̃ = ±10 are considered. We modify the interface thickness as in the previous

subsection, keeping the number of cells in the interface constant at nint = 10 to test

convergence of the model formulations. The results in Figure 7 (a) clearly show that

even at the same interface thickness of η = 5 µm (i.e. at p̃PF = −1), the model

formulations perform differently. This becomes even more pronounced for increasing

interface thickness as can be seen from the L2 geometry error in Fig. 7 (b) and the

relative velocity error in Fig. 7 (c).

Overall, there is a distinct model formulation B2 (i.e. Eq. (30)) which outperforms all

others even at large interface thicknesses. For all mesh resolutions in this simulation

study, the velocity error of B2 is below 1% for p̃ = −10 and below 1.5% for p̃ = 10.

Additionally, as this formulation is implemented both in Pace3D and Micress, Fig. 7

includes results from two different implementations of this model. Since the error

curves of both implementations nearly overlap, the two implementations yield very

similar results. This indicates that both implementations correctly reflect Eq. (30) up

to negligible deviations. Based on the results, model B2 seems to be a very efficient

choice for practical applications. Therefore, we restrict the further investigations to this

model formulation to discuss the effects of discretization and large driving forces.
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Figure 7: Performance of various model formulations. (a) Grain boundary geometry for

p̃ = −10 and p̃PF = −1 with the model formulations given in Sec. 4. The analytical GB

geometry is shown as a black dashed curve. (b) Deviation of the GB profile expressed

in terms of relative L2 error for p̃ = ±10 and (c) corresponding relative error of GB

velocity.

6.3. Discretization Error

In the previous section which focused on model error, we aimed at minimizing the

discretization error by using a high number of interface cells (nint = 10). In this

section, in contrast, we minimize the model error by selecting model variant B2 and

investigate the discretization error that results from a reduced number of interface cells.

We study this effect by fixing the interface width to η = 2.5 µm while varying ∆x

and, thus, the amount of interface cells. Note that low numbers of interface cells are

essential to reduce computational costs in applied simulations. In this context, Micress

uses a dedicated finite difference correction (FDC) that reduces the discretization error

based on the work of Eiken [16]. In the following, we compare the geometry error and

velocity error resulting from Micress simulations with and without FDC for various

discretizations ∆x = {0.625, 0.417, 0.315, 0.25} µm . The results in Figure 8 (c) and (d)

show that, generally, the error increases when the diffuse interface is resolved with less

grid points. The reduction of grid points leads to stronger numerical pinning which can
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be compensated by the FDC scheme as can be seen in Fig. 8 (d). Even for a coarse

interface resolution of four interface cells, the velocity error is below 1%.
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Figure 8: Quantification of discretization error for Micress-simulations. A fixed

interface thickness η = 2.5 µm and varying nint ∈ {4, 6, 8, 10} corresponding to

∆x = {0.625, 0.417, 0.315, 0.25} µm are considered. GB profiles and magnification of

triple-junction region for (a)/(b) p̃ = −10 and (c)/(d) p̃ = 10. Deviation of the GB

profile expressed in terms of L2 error for p̃ = ±10 (e) and corresponding relative error

of GB velocity (f).

6.4. Large driving forces

While the previous investigations were limited to p̃ = ±10, we now investigate larger

driving forces to cover a wide range of geometries. The first study, summarized in

Fig. 9, is performed with Micress including finite difference correction and a range
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Figure 9: Comparison of geometry and velocity error in Micress-FDC for large driving

forces. (a) Deviation of GB profile in terms of L2 error, (b) relative error of velocities.

All simulations have been performed with model B2, η = 10∆x and including finite

difference correction.

of driving forces p̃ ∈ {−80,−50,−10, 10, 50, 80}. For each driving force, simulations

are performed with ten interface cells (η = 10∆x) but different resolution settings, i.e.,

∆x ∈ {1.0, 0.625, 0.5, 0.25, 0.125} which in turn varies the phase-field specific driving

force p̃PF. First of all, Fig. 9 (a) reveals that large driving forces still pose a challenge

for state-of-the art PF models since errors up to 100% in the GB-geometry are obtained.

On the contrary, the relative error in the GB velocity shown in Fig. 9 (b) is roughly an

order of magnitude smaller. This shows that in contrast to the geometry, the predicted

dynamics are more accurately reproduced and have a significantly smaller interface-

thickness dependency. A peculiar feature is the very strong asymmetry in the velocity

error with respect to a change of sign in driving force (and thus p̃PF). For positive driving

forces, the error is negligible in comparison to the error for negative driving forces. We

think that a possible explanation can be given as follows: For negative driving forces,

the geometry is fully determined by the triple-junction angle (hat-like shape), whereas

for positive driving forces (lid-like shape) the triple-junction slope m has a negligible

influence (cf. Fig. 2). Considering that the vertical velocity is directly influenced by

the slope of the GB according to Eq. (12), it is likely that the deviations are due to an

incorrect dihedral angle θ.

An important feature of Figure 9 is that the error converges toward zero for p̃PF → 0

in accordance with the results in Section 6.2. Thus, reducing the interface thickness η

for a constant driving force improves the simulation accuracy for both the GB profile
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and velocity. For increasing driving forces ∆f , the error can be kept almost constant

by simultaneously decreasing the interface thickness η by the same factor. This shows

that larger driving forces require proportionally smaller interface widths in order to

maintain the same level of accuracy and reveals an interesting fact: The error primarily

depends on p̃PF rather than on the dimensionless driving force p̃. This in turn means

that the geometry of the GB, which varies strongly with p̃, has a subdominant influence

on the total error. This result is remarkable as it suggests that the model error can

be estimated for arbitrary scenarios such as polycrystalline setups, knowing only the

interface thickness η, the involved driving force ∆f and the interfacial energies γ.
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p̃PF = η∆f/γ0

L2

−10 −5 0 5 10
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−0.2

−0.1

0

(b)

p̃PF = η∆f/γ0

(vphase − vanalytic)/vanalytic

Micress-FDC
Pace3D

Figure 10: Large driving force study for θ = 60◦. (a) Deviation of GB profile in terms

of L2 error, (b) relative error of velocities. Blue lines corresponds to Micress with

FDC and green line corresponds to Pace3D (without FDC). All simulations are with

η = 10∆x. Gray dashed lines show the result for θ = 120◦ from Fig. 9 for comparison.

So far, the simulation studies were based on equal interfacial energies γαβ = γ0 which

results in a dihedral angle of θ = 120◦. For this combination, the junction term Eq. (29)

vanishes. The analytical solution is general for arbitrary dihedral angles. In order

to study a case significantly deviating from the simple case of θ = 120◦, we increase

the energy of the vertical GB by a factor γαβ =
√
3γ0 which corresponds to θ = 60◦

according to Eq. (6). Fig. 10 compares the finite difference correction in Micress and

the standard discretization used in Pace3D.

For negative driving forces, the geometry error of the FD-correction and the standard

scheme are of a similar magnitude as for the 120◦ case with FDC. Here, thePace3D code

slightly outperforms Micress with respect to the measured errors in the GB geometry

and velocity. However, for positive driving forces, the FD-correction implemented in

Micress seems to give very accurate results both with respect to the geometry and
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velocity of the GB. This level of accuracy cannot be achieved with a standard numerical

scheme in Pace3D. It is worth noting that despite the high resolution of nint = 10,

significant differences exist between the two numerical schemes at large driving forces.

Without further proof, we think that this is rooted in the high absolute velocities of the

GB which imply a high cell-Péclet number V∆x/(M0γ0) ∝ ∆f∆x/γ0 and thus seem to

pose a challenge for the numerical schemes at a finite resolution.

6.5. Polycrystalline sample subjected to large driving forces

In the final simulation study, we investigate whether the conclusions from the triple

junction benchmark can be transferred to arbitrarily complex polycrystalline systems.

For this purpose, we study a population of grains growing into another polycrystalline

domain as shown in Fig. 11. The orange grains exhibit a constant positive driving force

of ∆f = 1MPa and the domain size equals 250µm × 250µm. The other simulation

parameters are taken from Table 1 as γαβ = 0.5 J/m and M = 2 × 10−8m4/(Js). The

initial grain structure is generated based on a randomized seed creation followed by a

Voronoi tesselation. To the best of our knowledge it is not possible to derive an exact

analytical solution for this case, so we perform a classical mesh convergence study where

we reduce ∆x by factors of two while keeping the amount of grid points in the diffuse

interface constant nint = 10 (i.e. η = 10∆x).

Figure 11: Temporal evolution of a polycrystalline system. The orange grain population

grows due to a positive constant driving force while at the same time all grains coarsen

to reduce interfacial energy. The physical domain is 250 × 250µm, other simulation

parameters are taken from Table 1.

Starting from the same initial setup, the phase evolution is first computed with Pace3D

for model formulations B0-B2 and grid resolutions of 5002, 10002, 20002 and 40002.

Based on the results of the triple junction benchmark in section 6.2 we expect that all

models converge towards a similar microstructure with refined resolution, but model B2

should converge significantly faster. From the results in Fig. 9 and 10, we also expect

that all model formulations exhibit a velocity error > 5% for values of p̃PF > 5. The

visual comparison of the grain structure for t = 3ms in Fig. 12 reveals that formulation

B0 leads to a faster growth while B1 leads to a slower growth compared to model variant

B2. This is consistent with the results in Section 6.2. Furthermore, all models seem to

converge towards the same microstructure evolution as p̃PF becomes smaller. The two
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finest resolutions of model B2 yield almost identical results which is a hint for mesh

convergence.

Figure 12: Grain structure at same point in time t=3ms computed with model

formulations B0-B2 implemented in Pace3D at various grid resolutions.

To quantify the simulation results, we evaluate an effective radius R(t) =
√

A(t)/π

from the area A of the orange grain population. Fig. 13 a) shows the radial velocity

∂R/∂t for the different model variants and numerical resolutions. As the number of

grid points is increased, the different model formulations converge towards the same

radial velocity. While the solution still changes for models B0 and B1 when going from

a grid resolution of 2000 to 4000, the model formulation B2 is already converged at 2000

cells. Therefore, we take the simulation with B2 at the finest resolution as a reference

to compute the relative deviation of ∂R/∂t which is shown in Fig. 13 c). There is

little variation in computation times between the different model variants at constant

resolution. However, each doubling of the resolution leads to a 10-16 fold increase in

computation time. A factor of 16 is expected for a regular grid (4-fold increase in number

of cells) and explicit time-stepping (4× smaller time step) which can be mitigated by

the fact that for the obstacle potential all computations in bulk cells (where ϕα = 1.0,

ϕβ = 0 ∀β ̸= α and ∇ϕα = 0 ∀α) can be skipped.

For a given accuracy limit of e.g. <5% deviation in the velocity as marked by the gray

shaded area in Fig. 13 c), model B0 requires a resolution of 40002 cells (p̃PF = 1.25)
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Figure 13: Comparison of model performance at various grid resolutions (a) given in

terms of radial velocity, (b) wall time and (c) relative deviation of radial velocity with

respect to converged solution (model B2 at 40002 cells).

which comes at the computational cost of twall = 4580 s. Meanwhile, model B1 requires

a resolution of at least 20002 cells (p̃PF = 2.5) while for model B2 a resolution of 10002

cells (p̃PF = 5) would be sufficient. The resulting simulation time for B2 was 40.6 s

which corresponds to a reduction of computational time by a factor of 113 compared to

model B0.

Finally, we compute the same polycrystalline system withMicress and vary the amount

of interface grid points, namely nint = 5 and nint = 10. The predicted grain structures in

Fig. 14 a) are almost identical to the simulated results with Pace3D at high resolution.

However, it is important to note that the prediction of polycrystalline grain evolution

is not necessarily unique, as for the dissociation of a quadruple junction into two triple

junctions two equivalent topological solutions exist. For a more quantitative comparison,

the relative deviation of effective radial velocity is plotted in Fig. 14 b), taking the

Micress simulation with highest resolution and 10 interface cells as a reference. The

evaluation confirms that the converged Micress and Pace3D predictions are in good

agreement, while the FDC inMicress [20] allows for enhanced accuracy even at reduced

numerical resolution and a reduced number of interface cells. In summary, this example
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Figure 14: Polycrystalline simulation with Micress at various grid resolutions with

nint = 5 and nint = 10 interface cells. a) grain structure at t = 3ms and b)

relative deviation of radial velocity. The simulation with highest resolution (40002 cells,

nint = 10) is taken as a reference.

demonstrates that all conclusions from the simple triple junction benchmark hold true

for the more complex polycrystalline sample. Furthermore, the results highlight the

dramatic impact of the model formulation on the simulation accuracy, and consequently,

on the computational time required to achieve a given level of accuracy.

7. Conclusion and Outlook

A benchmark is presented for grain-boundary migration under the combined action of

capillary and bulk driving forces. The benchmark consists of a three-phase setup for
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which an analytical steady-state solution is derived. The solution is kept general for

arbitrary driving forces and dihedral angles.

We compare the analytical solution to phase-field simulations in a fully automated

manner using well-defined metrics such as the relative L2 error of the GB geometry and

the relative error in the interface velocity. The comparative study covers many different

multiphase-field models and two different numerical implementations, namely Pace3D

and Micress. The post-processing framework, written in the Python programming

language, is made available as open source software. This facilitates reproducibility

of the results and allows a direct comparison with other models in the future. An

interfacial thickness study shows that although all model variants seem to converge

to the same sharp-interface limit, the model accuracy at a finite interfacial thickness

can be substantially different. The error typically increases strongly with the ratio

of the absolute bulk driving force to the interface stabilizing force, here denoted as

|p̃PF|. Based on these results, a model formulation is identified that achieves superior

performance with respect to all other formulations. This model formulation is then

further investigated. An additional convergence study reveals the error introduced

by a finite grid spacing and allows to identify the resolution required to achieve a

given accuracy goal. Two different discretization schemes are compared: A standard

finite-difference scheme and the correction introduced in [20] which is implemented in

Micress. The latter approach yields a much higher accuracy in most of the cases,

demonstrating its efficiency. A related approach, the so-called sharp phase-field method

[17] has also recently been applied to grain growth [18]. It would be interesting to

benchmark this model, the formulation from [25, 26] as well as other new approaches

[14, 27, 28] with the proposed framework in order to assess their efficiency and suitability

for large driving forces. The results of the final simulation study underline the generality

of the proposed benchmark as all predictions derived from the triple junction setup

are observed as well in the polycrystalline case. This means that once a model

formulation has been benchmarked using the analytical triple junction example, the

model error can be predicted purely based on the phase-field specific driving force p̃PF.

This procedure increases the reliability of multiphase-field studies while making time-

consuming convergence studies redundant.

In general, the current work shows how sensitive simulation results are with respect

to slight modifications of phase-field models (e.g. all variations based on Eq. (27) only

differ in a single prefactor but show completely different accuracy (cf. Fig. 7)). There are

many different model formulations in the literature based on a large number of possible

combinations of energetic terms. It is concluded that any newly proposed model, even

if it consists of a novel combination of existing terms, should be benchmarked before

application.
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Data availability

Simulation studies were performed using the software packages Pace3D and Micress.

Software licences for Pace3D in individually compiled form and optimised for specific

applications can be purchased from the Steinbeis Transfer Centre ”Materials Simulation

and Process Optimisation (stw1272)” [42]. Micress is commercially available on

www.micress.de. The post-processing framework, written in the Python programming

language, is made available as open source software on github [33].
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Appendix A. Sharp-Interface Steady-State Solution

Appendix A.1. General solution

Eq. (21) can be solved using integration by substitution. We first separate the variables

by dividing through the right-hand side which gives

ỹ′′(x̃)

ṽ (1 + (ỹ′(x̃))2)− p̃ (1 + (ỹ′(x̃))2)3/2
= 1 . (A.1)

Integrating with respect to x̃ and substituting ỹ′(x̃) ≡ s(x̃) yields∫ s(x̃)

s(0)

1

ṽ (1 + s2)− p̃ (1 + s2)3/2
ds = x̃ . (A.2)

We use WolframAlpha [43] to perform the integral on the left-hand side. This gives

arctan (s)

ṽ
+

p̃

ṽ
√

ṽ2 − p̃2

(
arctanh

(
sṽ√

1 + s2
√

ṽ2 − p̃2

)
+ arctanh

(
sp̃√

ṽ2 − p̃2

))
= x̃+ x̃0

(A.3)

where x̃0 is an integration constant. The boundary condition at the mirror plane

(Eq. (23)) requires x̃0 = 0. The second boundary condition (Eq. (24)) gives an expression

relating the GB velocity to the driving force:

p̃

ṽ
√

p̃2 − ṽ2

(
arctan

(
mṽ√

1 +m2
√

p̃2 − ṽ2

)
+ arctan

(
mp̃√
p̃2 − ṽ2

))
− arctan (m)

ṽ
=

1

2
.

(A.4)
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Solving for ṽ for a given driving force p̃ therefore turns into a rootfinding problem. There

exist special relations q = ṽ/p̃ for which ṽ can be directly obtained by a limit from the

equivalent expression in Eq. (25). These are tabulated in Table A1. We derive lower

Table A1: Limiting interface velocities for certain special relations q = ṽ/p̃.

q ṽ p̃

−
√
1 +m2 ln

(
1 +m2

)
/m− 2 arctan (m) −ṽ/

√
1 +m2

−1 2
((√

1 +m2 − 1
)
/m− arctan (m)

)
−ṽ

0 0 2m/
√
1 +m2

√
1 +m2 −∞ −∞

1 ∞ ∞

±∞ −2 arctan(m) 0

and upper bounds for ṽ under the assumption that ṽ increases monotonously with p̃ ∥.
Starting from these bounds, we then apply a bracketing algorithm implemented in SciPy

according to [44] in order to solve Eq. (A.4) for ṽ. This routine usually converges within

a small number of iterations to reach the desired numerical accuracy. The applied lower

and upper bounds are tabulated in Table A2.

Table A2: Derived lower and upper bounds for the dimensionless interface velocity

depending on the driving force. The criticial driving forces are given by p̃1 =

(2 arctan(m)− ln(1 +m2)/m)/
√
1 +m2, p̃2 = 2(arctan(m) + (1 −

√
1 +m2)/m) and

p̃stat = 2m/
√
1 +m2. The bounds rest on the limits tabulated in Table A1 and the

bounds for negative p̃ are derived as detailed in the Supplementary Material.

p̃-Interval Lower Bound (ṽ) Upper Bound (ṽ)

−∞ < p̃ < 0 min(−6 arctan(m),−
√

(1 +m2)p̃2 + 6m|p̃|) min(−2 arctan(m),
√
1 +m2p̃)

0 < p̃ < p̃1 −2 arctan(m) ln(1 +m2)/m− 2 arctan(m)

p̃1 < p̃ < p̃2 ln(1 +m2)/m− 2 arctan(m) 2((
√
1 +m2 − 1)/m− arctan(m))

p̃2 < p̃ < p̃stat 2((
√
1 +m2 − 1)/m− arctan(m)) 0

p̃stat < p̃ < ∞ 0 p̃

After solving for ṽ, the solution ỹ(x̃) is numerically computed by first selecting a finite

number of slopes s between −m and m and computing the corresponding coordinate x̃

using Eq. (A.3). Thereafter, composite trapezoidal rule is used to compute a numerical

approximation to ỹ(x̃). This procedure is repeated for a number of grid refinements

(w.r.t. s) until a certain relative L2-error between the coarse and fine solution is reached.

∥ Proving this seems not to be straightforward, but we think this is a reasonable assumption since an

increase in driving force should result in an increase of the velocity in the same direction.
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Appendix B. Instabilities
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Figure B1: Instable GB evolution observed for variant Pace3D-B1 and θ = 60◦ at a

driving force of p̃ = 10.

Although most of the simulations reach a steady-state configuration that is symmetric

with respect to x = W/2, some cases develop an asymmetry that is either small

(Fig. 8(d)) or large and growing significantly with time (cf. Fig. B1). This reveals a clear

limitation of the benchmark – the vertical GB tends to move horizontally as soon as a

perturbation (e.g. due to round-off errors) exists which in turn may lead to a violation

of the assumed symmetry. We have observed such cases rarely and only for p̃ > 0. It

is worth stressing that this may complicate the application of the benchmark in certain

practical cases. In phase-field models, a strategy which might help suppressing this

effect is to reduce the mobility of the vertical GB (i.e. Mαβ) which hinders its movement.

However, this might induce an additional pinning effect according to Nani and Nestler

[45] depending on which formulation is used. It should be noted that violation of the

symmetry is an artificial effect which only exists due the simplified setup, which is absent

in most if not all real polycrystalline scenarios. Therefore, without further proof, we

consider it as a limitation of the benchmark rather than the model implementation.
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