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Abstract This paper introduces filtered finite difference methods for numer-
ically solving a dispersive evolution equation with solutions that are highly
oscillatory in both space and time. We consider a semiclassically scaled non-
linear Schrödinger equation with highly oscillatory initial data in the form of
a modulated plane wave. The proposed methods do not need to resolve high-
frequency oscillations in both space and time by prohibitively fine grids as
would be required by standard finite difference methods. The approach taken
here modifies traditional finite difference methods by incorporating appro-
priate filters. Specifically, we propose the filtered leapfrog and filtered Crank–
Nicolson methods, both of which achieve second-order accuracy with time steps
and mesh sizes that are not restricted in magnitude by the small semiclassical
parameter. Furthermore, the filtered Crank–Nicolson method conserves both
the discrete mass and a discrete energy. Numerical experiments illustrate the
theoretical results.
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1 Introduction

As a basic model problem of a dispersive evolution equation with solutions that
are highly oscillatory in both space and time, we consider the time-dependent
weakly nonlinear Schrödinger equation in semiclassical scaling [5,6],

iε Btu`
ε2

2 ∆u “ λε |u|2u, (1.1)
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which is to be solved for the complex-valued function u “ upt, xq under periodic
boundary conditions with x P Td “ pR{2πZqd over a bounded time interval
0 ă t ď T and with highly oscillatory initial data at t “ 0:

up0, xq “ eiκ¨x{εa0pxq. (1.2)

Here, 0 ă ε ! 1 represents the semiclassical small parameter, and λ is a fixed
nonzero real number. In the initial condition, κ P Rdzt0u is a fixed wave vector,
and a0 : Td Ñ C is a given smooth profile function with derivatives bounded
independently of ε. The final time T is chosen independently of ε. On this time
scale, the nonlinearity has an Op1q effect on the solution.

The initial function up0, ¨q in (1.2) is required to be a 2π-periodic continuous
function. This is satisfied if the small parameter ε is assumed to take only
values for which κ{ε P Zd and a0 is 2π-periodic. This assumption on ε is not
a restriction, since it can always be achieved with an Opεq modification of κ
and a corresponding smooth modification of a0.

It is readily checked that there are two conserved quantities for (1.1) in
any dimension d ě 1: the mass

ż

Td

|u|2dx “ const.

and the energy
ż

Td

ˆ

ε2

2 |∇u|2 `
λε

2 |u|4
˙

dx “ const.

It is known that the solution upt, xq is highly oscillatory in both time and
space at a scale proportional to the small semiclassical parameter ε. This
poses significant challenges in the development of efficient numerical methods
and their error analysis.

Traditional finite difference methods like the leapfrog and Crank–Nicolson
schemes have been studied for Schrödinger-type equations in the semiclas-
sical scaling [21], where stringent constraints on the time step τ ! ε and
mesh size h ! ε are required to guarantee accurate approximations of ob-
servables. Time-splitting spectral discretizations [2,3,17,19] ease these restric-
tions, allowing for τ “ Opεq, h “ opεq while still providing accurate results.
Asymptotic-preserving methods have been proposed in [1,7,4] by reformulat-
ing the Schrödinger equation using the WKB expansion [10,5] or the Madelung
transform [20].

It is commonly believed that finite difference methods applied directly
to (1.1) require very restrictive meshing conditions and are thus not suit-
able for solving the semiclassical Schrödinger equation. In this work, we aim
to demonstrate the effectiveness of finite difference methods when enhanced
with appropriate filtering. Specifically, we present two finite difference meth-
ods, constructed by applying appropriate filters to the leapfrog and Crank–
Nicolson methods. These filtered schemes enable us to approximate the solution
of (1.1)–(1.2) with second-order accuracy even when using comparatively large
time steps τ and mesh sizes h that are not restricted by ε. The proposed filtered
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methods tend to the standard leapfrog and Crank–Nicolson schemes as the ra-
tios of the time step and mesh size to the semiclassical parameter ε approach
zero, which is, however, not the regime of principal interest in this paper. The
methods are not only asymptotic-preserving as ε Ñ 0 but are also uniformly
accurate (of order 1{2) for 0 ă ε ď 1. Moreover, the filtered Crank–Nicolson
scheme turns out to preserve the discrete mass and a modified discrete energy
exactly.

For various classes of highly oscillatory ordinary differential equations, fil-
tered time-stepping methods have already been used successfully, e.g., in [9,
16,12,15,11,14,13]. Modulated Fourier expansions [15] are a powerful tool for
deriving and analyzing numerical methods for highly oscillatory problems.
They represent both the exact and the numerical solution as sums of products
of slowly varying modulation functions and highly oscillatory exponentials.
Comparing the modulated Fourier expansions of the numerical and the exact
solution then yields error bounds. We shall pursue a related approach also
here, for the first time combined in both time and space, which becomes pos-
sible under a consistency relation between the time step and the spatial mesh
size.

We will formulate the filtered finite difference methods and prove results for
them only in the spatially one-dimensional case (d “ 1). This apparent limita-
tion is introduced only for ease of presentation. The methods and the theoreti-
cal results can be extended to higher dimensions without additional difficulties.
The extension to the full space Rd instead of the torus Td is straightforward
for the formulation of the methods and can be done analogously in the theory.
The condition κ{ε P Zd imposed for 2π-periodicity is then no longer needed.

In Section 2, we introduce the filtered finite difference methods and state
the main results of this paper. We give the dominant term of the modu-
lated Fourier expansion of the numerical solution and prove second-order error
bounds over a fixed time interval (independent of ε), with step sizes τ and
meshwidths h that can be arbitrarily large compared to ε. For h " ε, there is
a mild stepsize restriction τ ď ch for the filtered leapfrog method and no such
restriction for the filtered Crank-Nicolson method. However, the step size τ
and the mesh width h cannot be chosen independently but are related by a
consistency condition.

The results of Section 2 are proved in Sections 3 and 4. In Section 3 we
study the consistency error, i.e., the defect obtained on inserting a function
with controlled small distance to the exact solution into the numerical scheme.
Section 4 first presents the linear Fourier stability analysis and then gives a
nonlinear stability analysis that bounds the error of the numerical solution in
terms of the defect.

In Section 5, numerical experiments are conducted to illustrate the theoret-
ical results. We also present numerical experiments on the long-time behaviour
of mass and energy with the filtered finite difference discretizations, which go
beyond the analysis in this paper.
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2 Numerical methods and main results

For simplicity of presentation, we introduce our two filtered finite difference
methods in the context of one spatial dimension, 0 ď x ď 2π, with periodic
boundary conditions. Let the time step be τ “ T {N ą 0 and the mesh size
h “ 2π{M ą 0, where N and M are positive integers. We denote by unj the
numerical approximation of uptn, xjq, where tn “ nτ for 0 ď n ď N , and
xj “ jh for 0 ď j ď M . The numerical methods and the theoretical results for
them can be extended to higher space dimensions without additional difficulty.

Filtered leapfrog algorithm. We first introduce an explicit algorithm, which
has the symmetric two-step formulation

iε
un`1
j ´ un´1

j

2τ sincpαq
`
ε2

2
unj`1 ´ 2ϕpβqunj ` unj´1

h2 ψpβq
“ λε

|unj |2unj
tancpαq

(2.1)

with sincpzq “ sinpzq{z and tancpzq “ tanpzq{z, and where

ϕpzq “ 3
2 sincpzq ´ 1

2 cospzq, ψpzq “
ϕpzq ´ cospzq

z2{2 ,

α “ 1
2κ

2τ{ε, β “ κh{ε.

Note that as z Ñ 0, we have sincpzq “ 1 `Opz2q and tancpzq “ 1 `Opz2q, and
ϕpzq “ 1 ` Opz4q and ψpzq “ 1 ` Opz2q, so that the filtered leapfrog scheme
tends to the classical leapfrog scheme in the limit τ{ε Ñ 0 and h{ε Ñ 0. Our
interest here is, however, to use the filtered scheme with large ratios τ{ε and
h{ε.

Filtered Crank–Nicolson algorithm. We further present the following im-
plicit scheme:

iε
un`1
j ´ un´1

j

2τ sincpαq
`
ε2

2
ũnj`1 ´ 2ϕpβqũnj ` ũnj´1

h2 ψpβq
“ λε

p|un´1
j |2 ` |un`1

j |2qũnj
2 tancpαq

,

(2.2)
with ũnj “ pun`1

j ` un´1
j q{p2 cospαqq. Scheme (2.2) gives the map un´1 ÞÑ

un`1; using half the time step τ Ñ τ{2, it can be written and implemented as
a one-step method un ÞÑ un`1.
Note that as τ{ε Ñ 0 and h{ε Ñ 0, this scheme tends to the classical Crank–
Nicolson scheme. We are, however, interested in using the filtered scheme with
large ratios τ{ε and h{ε.

Proposition 2.1 The filtered Crank–Nicolson algorithm (2.2) conserves the
following discrete mass and energy:

ÿ

j

|unj |2 “ const,

ε2

2
ÿ

j

|unj`1 ´ unj |2

h2 ψpβq
`
λε

2
ÿ

j

|unj |4

tancpαq
“ const.

(2.3)
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Proof These two conservation properties can be proved analogously to [8]. [\

The following result (Theorem 2.1) gives the dominant term of the mod-
ulated Fourier expansion of the numerical solutions of (2.1) and (2.2). Under
appropriate assumptions, this term is the same term apt, xq eipκx´κ2t{2q as for
the exact solution of (1.1) (see [6]), where apt, xq solves the hyperbolic initial
value problem

Bta` κ Bxa “ ´iλ|a|2a, ap0, xq “ a0pxq. (2.4)

To obtain the same dominant term for the numerical method, we need a
relation between ε, τ and h. The step size and the mesh width are chosen such
that α “ 1

2τ
2{ε and β “ κh{ε satisfy the following consistency condition: For

a fixed nonzero real number ρ,

ε

tancpαq
“
ε sincpβq

ψpβq
“ ρ. (2.5)

Condition (2.5) ensures that the profile apt, xq satisfies the same equation (2.4)
as for the exact solution.

For the filtered leapfrog method (though not for the filtered Crank-Nicolson
method) we further need the following stability condition: for a fixed θ ă 1,

ε τ

h2 |sincpαq|
1 ` |ϕpβq|

|ψpβq|
ď θ ă 1. (2.6)

When h " ε with sinpβq bounded away from 0, the last factor on the left-hand
side is proportional to h{ε2 by (2.5). The second factor is Opεq by (2.5). Hence,
condition (2.6) then reduces to requiring that τ{h be bounded by a sufficiently
small constant independent of ε. Note that in contrast the standard leapfrog
method has a time step restricition ετ ď h2 together with τ ! ε and h ! ε.

Theorem 2.1 (Dominant term of the numerical solution) Let unj be the
numerical solution obtained by applying the filtered leapfrog algorithm (2.1) un-
der the stability condition (2.6) or by the filtered Crank–Nicolson method (2.2)
without requiring a stability condition, and in both cases under the consistency
condition (2.5). Assume a0 P C4pTq. Then, the numerical solution unj can be
written as

unj “ apt, xq eipκx´κ2t{2q{ε `Rpt, xq

for t “ nτ ď T , x “ jh, where apt, xq is the solution of (2.4) and the remainder
term is bounded in the maximum norm by

}R}Cpr0,T sˆTq ď Cpτ2 ` h2 ` εq.

Here, C is independent of ε, τ, h, but depends on ρ and θ and the final time T .

A further main result of this paper is the following error bound for the two
filtered finite difference methods, which follows directly from the representa-
tions of the numerical and exact solutions in Theorem 2.1 and in [6, Theorem
6.5], respectively.
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Theorem 2.2 (Error bound) Under the assumptions of Theorem 2.1, we
obtain

|uptn, xjq ´ unj | “ Opτ2 ` h2 ` εq

uniformly for tn “ nτ ď T and xj “ jh both for the filtered leapfrog scheme
and the filtered Crank–Nicolson method. The constant symbolized by the O-
notation is independent of ε, time step τ and mesh size h subject to the consis-
tency condition (2.5) and the stability condition (2.6) (the latter not needed for
the filtered Crank–Nicolson method), and independent of j and n with tn ď T .

Remark 2.1 In the less interesting regime where τ ! ε and h ! ε, standard
error analysis based on the Taylor series of the solution yields an Oppτ2 `

h2q{ε3q error bound, so that the error is bounded by

|uptn, xjq ´ unj | ď minpC0pτ2 ` h2 ` εq, C1pτ2 ` h2q{ε3qq

uniformly for tn “ nτ ď T , xj “ jh, and 0 ă ε ď 1. The maximum of this
error bound over 0 ă ε ď 1 is attained for ε4 „ τ2 ` h2, which yields an
Oppτ2 ` h2q1{4q uniform accuracy for all 0 ă ε ď 1 in the maximum norm.

3 Consistency

With the solution apt, xq of the hyperbolic initial value problem (2.4), it is
known from [6] that

vpt, xq “ apt, xq eipκx´κ2t{2q{ε (3.1)

approximates the solution of the nonlinear Schrödinger initial value problem
(1.1) up to an Opεq error in the maximum norm on a fixed time interval
0 ď t ď T where a is sufficiently differentiable.

We consider the defect obtained on inserting vpt, xq into the filtered leapfrog
scheme (2.1),

dpt, xq :“ iε vpt` τ, xq ´ vpt´ τ, xq

2τ sincpαq
(3.2)

`
ε2

2
vpt, x` hq ´ 2ϕpβqvpt, xq ` vpt, x´ hq

h2 ψpβq
´ λε

|vpt, xq|2vpt, xq

tancpαq
.

3.1 Defect bound in the maximum norm

Lemma 3.1 In the situation of Theorem 2.1, the defect (3.2) is bounded in
the maximum norm by

}d}Cpr0,T sˆTq ď cpτ2 ` h2 ` εq,

where c is independent of ε, τ , h and n with tn “ nτ ď T .
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Proof Using characteristics in (2.4) leads to the ordinary differential equation
i 9y “ λ|y|2y whose solutions preserve the norm of the initial value and therefore
have bounded derivatives and depend smoothly on the initial value. Since we
assumed a0 P C4pTq, this argument yields a P C4pr0, T s ˆ Tq. We note

vpt` τ, xq ´ vpt´ τ, xq (3.3)

“ 2
´

´i sinpαq a` τ cospαq Bta´
iτ2

2 sinpαq B2
t a`Opτ3q

¯

eipκx´κ2t{2q{ε,

where a and its partial derivatives are evaluated at pt, xq, and similarly

vpt, x` hq ` vpt, x´ hq (3.4)

“ 2
´

cospβq a` ih sinpβq Bxa`
h2

2 cospβq B2
xa`Oph3q

¯

eipκx´κ2t{2q{ε.

We thus have

iε vpt` τ, xq ´ vpt´ τ, xq

2τ sincpαq
“
κ2

2
vpt` τ, xq ´ vpt´ τ, xq

´2i sinpαq

“

ˆ

κ2

2
`

a`Opτ2q
˘

`
iε

tancpαq

`

Bta`Opτ2q
˘

˙

eipκx´κ2t{2q{ε,

and for ϕ and ψ defined after (2.1) and satisfying (2.5),

ε2

2
vpt, x` hq ´ 2ϕpβqvpt, xq ` vpt, x´ hq

h2 ψpβq

“
κ2

4
vpt, x` hq ´ 2ϕpβqvpt, xq ` vpt, x´ hq

ϕpβq ´ cospβq

“

ˆ

κ2

2
`

´a`Oph2 ` εq
˘

` iε sincpβq

ψpβq

`

κBxa`Oph2q
˘

˙

eipκx´κ2t{2q{ε.

Here, the Oph2 ` εq term requires an explanation: The factor multiplying B2
xa

equals
ε2

2
1

h2 ψpβq
h2 cospβq “ 1

2ε
2 cospβq

ψpβq

“ 1
2ε

2 cospβq ´ sincpβq

ψpβq
` 1

2ε
2 sincpβq

ψpβq

“ ´ 1
6κ

2h2 ` 1
2ερ,

where we used the second equation of (2.5) in the last equality. This argument
yields the Oph2 ` εq term above.

More importantly, the first equation of condition (2.5) ensures that with
the solution a of the hyperbolic differential equation (2.4) chosen in (3.1), the
defect of v inserted into the numerical scheme becomes small:

dpt, xq “
iε

tancpαq

´

Bta` κ Bxa` iλ |a|2a
¯

loooooooooooooomoooooooooooooon

“0

`Opτ2 ` h2 ` εq.

This yields the stated result. [\
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However, the maximum norm in the defect bound of Lemma 3.1 turns out
to be too weak a norm for the proof of Theorems 2.1 and 2.2.

3.2 Defect bound in the Wiener algebra norm

Let ApTq be the space of 2π-periodic complex-valued functions with absolutely
convergent Fourier series fpxq “

ř8

k“´8
pfpnq eikx, equipped with the ℓ1pZq

norm of the sequence of Fourier coefficients. For the pointwise product of two
functions f, g P ApTq we then have (see, e.g., [18, Section I.6])

}fg}ApTq ď }f}ApTq }g}ApTq, (3.5)

which makes ApTq a Banach algebra, known as the Wiener algebra. Note that
the maximum norm of a function in ApTq is bounded by its ApTq-norm, and
conversely, the ApTq-norm is bounded by the maximum norm of the function
and its derivative, see [18, Section I.6]:

}f}CpTq ď }f}ApTq and }f}ApTq ď c1 }f}C1pTq. (3.6)

The space Cpr0, T s, ApTqq is the Banach space of ApTq-valued continuous func-
tions on the interval r0, T s, with }d}Cpr0,T s,ApTqq “ max0ďtďT }dpt, ¨q}ApTq.

Lemma 3.2 In the situation of Theorem 2.1, the defect (3.2) is bounded in
the Wiener algebra norm by

}d}Cpr0,T s,ApTqq ď cpτ2 ` h2 ` εq,

where c is independent of ε, τ , h, and n with tn “ nτ ď T .

Proof The proof uses the proof of Lemma 3.1 together with the second bound
of (3.6), as well as the fact that the absolute sum of the Fourier coefficients of
a function is invariant under multiplication of the function with 2π-periodic
exponentials eikx.

The Oph3q remainder term in (3.4) equals, up to the irrelevant factor
eipκx´κ2t{2q{ε,

spt, xq “ rpt, x, hq eiβ ` rpt, x,´hq e´iβ with

rpt, x, hq “ h3
ż 1

0

1
2 p1 ´ θq2 B3

xapt, x` θhq dθ,

which for a P Cpr0, T s, C4pTqq is bounded by Oph3q in Cpr0, T s, C1pTqq. The
Opτ3q remainder term in (3.3) is bounded similarly in Cpr0, T s, C1pTqq, as are
all other terms in the proof of Lemma 3.2. So the defect is still bounded by
Opτ2 ` h2 ` εq in the Cpr0, T s, C1pTqq norm, and thus by (3.6) also in the
Cpr0, T s, ApTqq norm. [\

While we have only considered the filtered leapfrog method so far, an anal-
ogous proof shows that the defect of the filtered Crank–Nicolson method sat-
isfies the same bound as in Lemma 3.2.
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4 Stability

4.1 Linear stability analysis in the Wiener algebra

In this subsection we give linear stability results for the filtered leapfrog and
Crank–Nicolson schemes. We bound numerical solutions corresponding to the
linear Schrödinger equation (1.1) (without the nonlinearity) in the Wiener
algebra norm, using Fourier analysis.

We momentarily omit the nonlinearity and interpolate the filtered leapfrog
scheme (2.1) from discrete spatial points xj “ jh to arbitrary x P T by setting

iε u
n`1pxq ´ un´1pxq

2τ sincpαq
`
ε2

2
unpx` hq ´ 2ϕpβqunpxq ` unpx´ hq

h2 ψpβq
“ 0. (4.1)

We clearly have unpxjq “ unj of (2.1) for all n ě 2 if this holds true for n “ 0
and n “ 1. In particular, we have maxj |unj | ď maxxPT |unpxq| ď }un}ApTq.

Lemma 4.1 (Linear stability of the filtered leapfrog method) Under
condition (2.6), the filtered leapfrog algorithm (4.1) without the nonlinear term
is stable: There exists a norm ~ ¨ ~ on ApTq ˆ ApTq, equivalent to the norm
} ¨ }ApTqˆApTq uniformly in ε, τ, h subject to (2.6), such that

~Un~ “ ~Un´1~, where Un “

ˆ

un`1

un

˙

.

Proof Let ûn “ pûnk q be the sequence of Fourier coefficients of un, i.e.,

unpxq “

8
ÿ

k“´8

eikx ûnk .

Substituting this into (4.1) yields, for all j,

ÿ

k

eikxj

ˆ

iε
ûn`1
k ´ ûn´1

k

2τ sincpαq
` ε2 cospkhq ´ ϕpβq

ψpβq
ûnk

˙

“ 0,

and thus

iε
ûn`1
k ´ ûn´1

k

2τ sincpαq
` ε2 cospkhq ´ ϕpβq

ψpβq
ûnk “ 0,

which is equivalent to the system
ˆ

ûn`1
k

ûnk

˙

“ Gk

ˆ

ûnk
ûn´1
k

˙

,

where

Gk “

ˆ

2iµk 1
1 0

˙

with µk “
ετ

h2 sincpαq
cospkhq ´ ϕpβq

ψpβq
. (4.2)
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Let λ`
k , λ

´
k be the two roots of the characteristic polynomial

ρkpζq “ ζ2 ´ 2iµkζ ´ 1,

i.e.,
λ˘
k “ iµk ˘ p1 ´ µ2

kq1{2.

Under condition (2.6), we have |µk| ă 1 and thus |λ˘
k | “ 1. The vectors

pλ`
k , 1qJ and pλ´

k , 1qJ are eigenvectors of Gk with eigenvalue λ`
k and λ´

k , re-
spectively. This is because (similar for λ´

k )
ˆ

2iµk 1
1 0

˙ ˆ

λ`
k

1

˙

“

ˆ

2iµkλ`
k ` 1

λ`
k

˙

“ λ`
k

ˆ

λ`
k

1

˙

.

Therefore Gk is diagonalizable,

P´1
k GkPk “ Λk “ diagtλ`

k , λ
´
k u, (4.3)

and Λk is a unitary matrix. Using the transformation matrix Pk, we have, for
any vector y P C2,

|P´1
k Gky|2 “ |ΛkP

´1
k y|2 “ |P´1

k y|2.

Therefore,

~Un~ :“
ÿ

k

ˇ

ˇ

ˇ

ˇ

P´1
k

ˆ

ûn`1
k

ûnk

˙
ˇ

ˇ

ˇ

ˇ

2
“

ÿ

k

ˇ

ˇ

ˇ

ˇ

P´1
k Gk

ˆ

ûnk
ûn´1
k

˙
ˇ

ˇ

ˇ

ˇ

2

“
ÿ

k

ˇ

ˇ

ˇ

ˇ

P´1
k

ˆ

ûnk
ûn´1
k

˙
ˇ

ˇ

ˇ

ˇ

2
“ ~Un´1~.

Finally, we show that

}P }2 :“ max
k

}Pk}2 ď C1, }P´1}2 :“ max
k

}P´1
k }2 ď C2,

which yields that the newly introduced norm ~¨~ is equivalent to }¨}ApTqˆApTq.
Since

P˚
k Pk “

˜

2 1 ` λ`
k λ

´
k

1 ` λ´
k λ

`
k 2

¸

,

the eigenvalues of P˚
k Pk can be calculated as 2p1 ˘ µkq. Since |µk| ď θ ă 1 by

condition (2.6), we have for all k that

}Pk}2 “

b

λmaxpP˚
k Pkq ă 2,

}P´1
k }2 “ 1{

b

λminpP˚
k Pkq ď 1{

a

2p1 ´ θq,

so that
1
2 }U}ApTqˆApTq ď ~U~ ď

1
a

2p1 ´ θq
}U}ApTqˆApTq

for all U P ApTq ˆApTq. [\
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We similarly extend the filtered Crank–Nicolson algorithm (2.2) to all x P T
and omit the nonlinearity.

Lemma 4.2 (Linear stability of the filtered Crank–Nicolson method)
The filtered Crank–Nicolson algorithm (2.2) without the nonlinear term is un-
conditionally stable with

}un`1}ApTq “ }un´1}ApTq.

Proof Substituting the Fourier series of un into (2.2) without the nonlinear
term yields

ÿ

k

eikx
ˆ

iε
ûn`1
k ´ ûn´1

k

2τ sincpαq
` ε2 cospkhq ´ ϕpβq

h2ψpβq

ûn`1
k ` ûn´1

k

2 cospαq

˙

“ 0,

which leads to
ˆ

iε
2τ sincpαq

`
ε2

2 cospαq

cospkhq ´ ϕpβq

h2ψpβq

˙

ûn`1
k

“

ˆ

iε
2τ sincpαq

´
ε2

2 cospαq

cospkhq ´ ϕpβq

h2ψpβq

˙

ûn´1
k .

Therefore we have |ûn`1
k | “ |ûn´1

k | for all k, which yields the result. [\

4.2 Nonlinear stability

Lemma 4.3 (Nonlinear stability of the filtered leapfrog method) Let
the function v P Cpr0, T s, ApTqq be arbitrary and let the corresponding defect d
be defined by (3.2). Under condition (2.6), the interpolated numerical solution
of (2.1), interpolated to all x P T as in (4.1) (but now with the nonlinear term
included), satisfies the bound, for tn “ nτ ď T

}un´vptn, ¨q}ApTq ď C
´

}u0 ´vp0, ¨q}ApTq `}u1 ´vpt1, ¨q}ApTq `}d}Cpr0,T s,ApTqq

¯

,

where C is independent of ε, τ , h, and n with tn ď T , but depends on T and
on upper bounds of the above term in big brackets and of the Cpr0, T s, ApTqq

norm of v.

Proof We define the error function enpxq “ unpxq ´ vptn, xq, which satisfies

en`1pxq ´ en´1pxq “
iε2τ sincpαq

h2ψpβq

`

enpx` hq ´ 2ϕpβqenpxq ` enpx´ hq
˘

´ 2iλτ cospαq
`

|unpxq|2unpxq ´ |vnpxq|2vnpxq
˘

´
2iτ sincpαq

ε
dptn, xq.

(4.4)



12 Y. Shi, Ch. Lubich

The discrete Fourier transform of en then satisfies

ên`1
k ´ ên´1

k “
iε2τsincpαq pcospkhq ´ ϕpβqq

h2ψpβq
ênk

´ 2iτ cospαqλF
`

|un|2un ´ |vn|2vn
˘

pkq ´ 2iτ cospαqρ´1d̂nk ,

where we used (2.5) in the last term. This equation is equivalent to the one-step
formulation

ˆ

ên`1
k

ênk

˙

“ Gk

ˆ

ênk
ên´1
k

˙

´ 2iτ cospαqλ

ˆ

F
`

|un|2un ´ |vn|2vn
˘

pkq

0

˙

´ 2iτcospαqρ´1
ˆ

d̂nk
0

˙

,

where Gk is defined in (4.2).

Introducing En “

ˆ

en`1

en

˙

, using Lemma 4.1 and (3.5) for dealing with the

nonlinearity, we obtain

~En~ ďp1 ` cτq~En´1~ ` rcτ}dptn, ¨q}ApTq

ďp1 ` cτqn~E0~ ` rcτ
n

ÿ

j“1
p1 ` cτqn´j}dptj , ¨q}ApTq

ď exppcnτq~E0~ ` rcτ
exppcnτq ´ 1

cτ
sup
tPr0,T s

}dpt, ¨q}ApTq,

which yields the result. [\

An analogous result holds true for the filtered Crank–Nicolson method,
with essentially the same proof, now based on Lemma 4.2.

Combined with Lemma 3.2 (consistency), Lemma 4.3 (stability) proves
Theorem 2.1 with the Opτ2 ` h2 ` εq remainder bound in the Wiener alge-
bra norm, which is stronger than the maximum norm and hence this yields
the same bound in the maximum norm. Theorem 2.1 together with [6, Theo-
rem 6.5] further implies the error bound of Theorem 2.2.

5 Numerical experiments

In this section, we consider the one dimensional semiclassical nonlinear Schrödinger
equation

iεBtu`
ε2

2 Bxxu “ ε|u|2u

with the initial value
up0, xq “ e´x2

eix{ε,

and we choose x P r´4, 4s with periodic boundary conditions.
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We first test our algorithms with ε “ 1. In this case the solution of (1.1) is
not highly oscillatory, and condition (2.5) is not required in our implementa-
tion. We select different mesh sizes h “ 0.4, 0.2, 0.1, 0.05 and accordingly, the
time step is set as τ “ h2{4 for the filtered leapfrog method and τ “ h{8 for
the filtered Crank–Nicolson method. The reference solution is obtained using
Fourier collocation with 6000 grid points in space and Strang splitting with
time step 10´4 in time.
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Fig. 5.1 Error vs. h with ε “ 1 for filtered leapfrog method (left column) and filtered
Crank–Nicolson method (right column).

Since the filtered leapfrog and filtered Crank–Nicolson methods converge
to the standard leapfrog and standard Crank–Nicolson methods, respectively,
we observe second-order accuracy in Figure 5.1. The errors for both methods
are measured at the final time T “ 1 using the discrete L8 norm over r´4, 4s.

For small ε, condition (2.5) is necessary. We first set ρ and then obtain α by
solving the nonlinear equation ε

tancpαq
“ ρ, which can be accomplished using

the “fsolve” function in MATLAB. It is noted that starting with α “ nπ, n ‰ 0
is generally a good choice. The time step can be determined immediately after
obtaining α. Similarly, we can find β by solving the relation ε sincpβq

ψpβqq
“ ρ with

the starting value β “ κτ{pmεq,m ‰ 0, where m is introduced to satisfy the
stability condition (2.6). In this example, we choose ρ “ 4.

Figure 5.2 illustrates the accuracy order of the two methods for small ε,
which is consistent with our theoretical estimate presented in Theorem 2.2.
Both methods demonstrate second-order accuracy for small ε with relatively
large mesh sizes. The error is again measured at the final time T “ 1 using
the discrete counterpart of the maximum norm on r´4, 4s.

We also investigate the long-time behavior of the filtered Crank–Nicolson
method. Figure 5.3 shows the evolution of the relative error of discrete mass
and energy (2.3) for ε “ 10´3 over a long-time interval. It is observed that
the filtered Crank–Nicolson scheme (2.2) preserves the discrete mass and en-
ergy very well, even with large time step and mesh size. In this test, we set
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Fig. 5.2 Error vs. h with small ε for filtered leapfrog method (top row) and filtered Crank–
Nicolson method (bottom row).

the iteration tolerance as 10´14. The filtered leapfrog method approximately
preserves the discrete mass and energy well over a rather long time interval
t ď 400 but then the numerical solution blows up. The interval gets longer
when the time step τ is reduced.
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