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Abstract

Guarantees of correctness of programs are becoming more and more important nowadays.

KeY is one tool, which can be used to prove the formal correctness of Java programs. It

uses syntactic rewriting rules, called taclets, to successively simplify proofs. These taclet

rules can be applied by an automated proving mode in KeY. Because the automation can

be insufficient for closing some proofs and because proofs can contain thousands of rule

applications, it is desirable to provide stronger automated tools to the user. One such tool

is the Satisfiablity Modulo Theories (SMT) translation of KeY, which allows the use of

SMT provers to close proofs. The SMT translation also lacks the required rules or proving

strength for some proofs. It is thus still desirable to improve the already present automated

toolset of KeY users.

This work designs a translation of KeY proofs to the higher-order logic prover Is-

abelle/HOL. In addition to designing this translation this work also shows that the transla-

tion can be automated and integrated within KeY by implementing it as a GUI-Extension

of KeY.

This work tests the developed Isabelle translation on over 2 400 example proof obliga-

tions of KeY. In doing so the Isabelle translation has been found to offer some advantages

over the SMT translation and the KeY automation. Although the Isabelle translation does

not manage to close all proofs the KeY automation or SMT translation could close, it is

able to close proofs, which the KeY automation or the SMT translation could not close.

Thus the Isabelle translation expands the KeY user’s automated toolset in a meaningful

way, while also building a foundation for using Isabelle in ways outside automated proof

solving in KeY.
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Zusammenfassung

Korrektheitsgarantien für Programme werden heutzutage immer wichtiger. KeY ist ein

System, das genutzt werden kann, um die formale Korrektheit von Java Programmen zu

zeigen. Es nutzt syntaktische Ersetzungsregeln, genannt taclets, um Beweise sukzessive zu

vereinfachen. Diese taclet Regeln können in KeY von einem automatisierten Beweismodus

angewandt werden. Weil die Automatisierung nicht ausreichend ist, um manche Beweise

zu schließen, und, weil Beweise Tausende von Regelanwendungen enthalten können, ist es

wünschenswert, demNutzer stärkere automatisierteWerkzeuge bereitzustellen. Ein solches

Werkzeug ist die Satisfiability Modulo Theories (SMT) Übersetzung von KeY, die es erlaubt

SMT Beweiser zu nutzen, um Beweise zu schließen. Auch der SMT Übersetzung fehlt es

für manche Beweise an Regeln oder Beweisstärke. Es ist daher trotzdem wünschenswert,

die bereits vorhandenen automatisierten Werkzeuge, die KeY Nutzer zur Verfügung haben,

zu erweitern.

Diese Arbeit entwirft eine Übersetzung von KeY Beweisen zum generischen Beweisassis-

tenten Isabelle/HOL, der auf Logik höherer Ordnung aufbaut. Zusätzlich zum Entwerfen

dieser Übersetzung zeigt diese Arbeit auch, dass die Übersetzung automatisiert und in KeY

integriert werden kann, indem die Übersetzung als eine GUI-Extension für KeY implemen-

tiert wird.

Diese Arbeit testet die entwickelte Isabelle Übersetzung auf über 2 400 Beweiszielen aus

KeY Beispielen. Dadurch zeigte sich, dass die Isabelle Übersetzung einen Vorteil gegenüber

der SMT Übersetzung und der KeY Automatik bietet. Obwohl die Isabelle Übersetzung

nicht in der Lage ist, alle Beweise zu schließen, die die KeY Automatik oder die SMT

Übersetzung schließen konnten, war sie dennoch in der Lage, Ziele zu schließen, die die

KeY Automatik oder die SMT Übersetzung nicht schließen konnten.

Daher ergänzt die Isabelle Übersetzung die automatisierten Werkzeuge des KeY Nutzers

auf sinnvolle Weise, und schafft gleichzeitig eine Grundlage dafür, Isabelle in KeY auf

andere Weise als zur automatischen Beweisführung zu nutzen.
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1 Introduction

Programs nowadays have many applications - such as health and finance systems - that

demand a high degree of both security and correctness. Therefore it is of great interest to

formally prove the correctness of programs. The KeY system (Ahrendt et al., 2016) is a

tool for formally verifying Java programs. It uses a sequent calculus, where each sequent

has an antecedent and a succedent, which are sets of formulae. A sequent expresses that,

when all of the formulae in its antecedent hold, at least one of the formulae in its succedent

holds.

KeY has been continuously improved since its inception, enabling better reasoning about

programs with heaps and handling of strings among other improvements. Still there are

some constructs for which proofs cannot be completed automatically in KeY and whose

interactive proving presents a significant challenge for users, like vector-multiplication

and framing problems. In some of these problems the difficulty in interactive proving

stems from the user knowing that certain terms are true, but KeY lacking the specific

taclet rule to prove this. The issue of missing certain taclet rules could be solved by taking

advantage of the larger proof libraries other provers, like the generic theorem prover

Isabelle (Nipkow, Paulson, and Wenzel, 2002), possess. There may also be merit in using

the automation features of Isabelle in addition to the toolset of KeY to take advantage of

a diverse set of proof searching strategies and directions. To use both the Isabelle proof

library and the automation features of Isabelle, it is desirable to transfer proof obligations

from KeY to Isabelle.

This work focuses on translating proof obligations to Isabelle. The main goal of this

work is giving the KeY user an additional automated tool to use, which offers an advantage

over the currently available tools in KeY. Enabling KeY proof obligations to be translated to

Isabelle can also serve to verify parts of the KeY system itself by translating KeY taclets into

theorems in Isabelle, which can then be proven in Isabelle. Additionally, while proving

theorems in Isabelle additional lemmas can be created and proven, which could be used to

create new taclets for KeY. Ideally these taclets derived from Isabelle lemmas allow KeY to

close more proofs without transferring proof obligations to Isabelle.

This work defines a translation of proof parts and their context in KeY to Isabelle/HOL

proof goals and axioms where the original proof part is valid in the underlying model

of KeY, if its translation is provable in Isabelle. Where possible established structures of

Isabelle are used to represent their KeY counterparts. The translation equals the SMT

translation of KeY in relative completeness.

As part of this work the translation was automated. The automation provides KeY

users the option to transfer a subgoal of a KeY proof to Isabelle and to apply some of

the automated proving methods of Isabelle. To allow Isabelle to prove the subgoal, some

definitions and taclets of KeY are supplied to Isabelle in the form of a preamble. While it

is important that the translation is sound, proving this is not covered by this work. The
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1 Introduction

translation parts are deliberately kept to either directly transferring semantics from KeY

or make very conservative assumptions so they do not introduce any inconsistencies. My

hypothesis is that this implementation of the translation allows the user to automatically

close proofs that the automated features of KeY cannot close automatically. This will later

be tested on over 2 400 proof obligations taken from examples in KeY.

This work begins by introducing the KeY and Isabelle system and some of the more

advanced concepts used in the later parts in chapter 2. Related approaches are described in

chapter 3. This work then describes the translation itself by describing the translation of

the separate types and functions of the KeY core vocabulary in chapter 4. In the following

chapter 5 the automation of the translation is described. Then in chapter 6 the testing

methodology and the testing results are discussed. Finally chapter 7 gives an outlook on

possible future improvements and concludes this work.

2



2 Foundations

2.1 KeY

This section introduces KeY. Afterwards some of the underlying logic of KeY will be

introduced.

2.1.1 Introduction to KeY

KeY is a tool developed for the formal verification of Java programs. KeY allows the

user to load Java Modeling Language (JML) contracts out of Java source files. The proof

obligations of the contracts are expressed in sequents. A sequent expresses that, when

all its antecedents hold, at least one of its succedents holds. KeY uses a special version

of sequent calculus where the antecedent and the succedent are sets of formulae. KeY

uses syntactic rules for rewriting sequents, so-called taclets, to repeatedly simplify a given

sequent until either a formula in its antecedents is a falsity, a formula in the succedent is

truth, or a formula in the antecedent matches a formula in the succedent. Then one of

three corresponding “closing-rules”, called closeFalse, closeTrue, close respectively, is

used to close a given proof. Some taclets can split the proof obligation into other subgoals

with their own proof obligations. Thus a typical KeY proof forms a proof tree of subgoal

nodes.

The KeY user interface seeks to be especially user friendly and intuitive. KeY taclets are

applied from a context menu opened by clicking the part of the sequent the taclets should

be applied on.

2.1.2 JavaDL in KeY

This section describes the internal logic used by KeY. It should be noted that KeY uses an

extended version of first-order logic and as such does not allow quantification over types,

functions or sets. There is no set logic in KeY.

KeY uses a form of JavaDL. Its sequents can contain Java program parts in the form of

modalities. These modalities are succesively simplified and reduced to atomic assignments,

which are expressed in updates. The translation does not handle sequences that contain

updates, therefore we will not explore their inner workings.

KeY uses the type any as a top type, boolean to represent boolean values, int to represent
integers, Seq, Location Set (LocSet), Heap, Field, as well as java_lang_Object for the Object
class of Java and class types for other classes imported from Java source code. Finally

the Null type represents the Java class of the same name. The types are structured in a

hierarchy where any serves as the toptype. Java class types follow the class hierarchy of

3



2 Foundations

Null

Java class types

boolean int Seqjava_lang_Object LocSet HeapField

Any

Figure 2.1: The type hierarchy in KeY

Java and are thus subtypes of java_lang_Object and parent types of Null. The KeY type

hierarchy is depicted in Figure 2.1. The semantics of these types, where left unclear, will

be briefly introduced in the following paragraphs and later in their respective sections in

chapter 4.

There are additional functions instance for determining if a particular value is an instance

of a given type, exactInstance for determining if a value is an instance of a given type and

not of any of its bottom types.

Location Set LocSet is the type of sets of locations. A location is an (java_lang_Object,
Field) pair and is not explicitly defined as a type in KeY. Locations are used to describe an

address on a heap. Most of the LocSet functions are set functions that are only defined for

LocSet, as KeY does not support set logic outside of LocSet.

Field Field is a type to represent the fields of Java objects. They are mainly used to

describe locations on heaps. The Field type is left mostly unspecified. The only known

facts about fields are that they are distinct from each other and that there is an infinite

number of fields. There is a predefined created field to state that the object on the heap

at a location was created. To describe the location of the values of an array there is an

injective function arr, which maps integers to unspecified fields.

Seq Seq is the type of Sequences. Sequences are finite sequences of any values. They are

similar to list types in other logics. Their functions consist of many of the common list

functions, such as accessing the value at a given index, concatenation of two sequences,

removal of elements at a given index, etc. There are also functions to describe permutations

of sequences.

Heap Lastly Heap represents heaps of a Java program. Semantically they are functions

mapping locations to any values. Their functions are heap management functions, such as

4



2.2 Isabelle

store to store a value at a location, select to retrieve a value at a location, create to create a

new object on the heap, anon, which anonymizes a heap at a given set of locations and

wellFormed, which is a predicate to describe the well-formedness of a heap.

2.2 Isabelle

This section introduces Isabelle. A following section will introduce some more advanced

concepts that will occur in the later chapters describing the translation.

2.2.1 Introduction to Isabelle

Isabelle is a generic proof assistant, that can be used to formally prove theorems ranging

from complex mathematical proofs to formal verification for programs. It provides struc-

tures to introduce functions, abstract datatypes, definitions, axioms, etc. Proofs in Isabelle

are written in text form. Functions and definitions in Isabelle are written in a functional

programming style akin to Haskell. There are many logics implemented in the Isabelle

system, but this work only uses Isabelle/HOL (Nipkow, Paulson, and Wenzel, 2002), which

uses higher-order logic. The proof is usually conducted semi-automatically, where the

user can choose which tactics to apply at each proof step by writing their application onto

the proof text. Tactics combine multiple rule applications. These tactics can hold immense

value for the user as they do not require full knowledge of all rules defined in Isabelle and

their names to close proofs. Among these tactics are simpler ones like simp, linarith, force,

fastforce, which apply simplification, introduction and arithmetic rules. There are also

more high-level tactics like “try0”, which tries a list of the simpler tactics to see if they

can close a proof’s subgoal. Even more advanced is “sledgehammer”, which calls a list of

automatic theorem proving (ATP) provers and Satisfiability modulo theories (SMT) solvers.

Isabelle stores proofs in a “theory” file, which contains the proof text. Theory files can

be collated in “sessions”. Isabelle theories can import the contents of other theories and

sessions to take advantage of their theorems and definitions. Isabelle also possesses a large

library of theorems for different concepts, which the user can take advantage of.

2.2.2 Types in Isabelle

Isabelle uses a flat type hierarchy. This means there are no subtypes in Isabelle. The types

of terms and variables can be explicitly stated by adding “::type” to the term. If the type

of a variable is not explicitly stated, Isabelle uses type unification to infer the type of a

variable. There are also type variables in Isabelle, which usually follow the pattern ’a, to
express statements about multiple types.

typedef The main method of introducing new types to a theory is through the typedef

axiomatization scheme. To define a new type using typedef one must provide a set of an

existing type and prove it is non-empty. Isabelle then introduces morphisms, which map

between the new type and the specified set. It is possible to rename the morphisms from

the default names “Rep_type” and “Abs_type”. Rep_type is sometimes referred to as the

5



2 Foundations

representation function. It maps from instances of the newly defined abstract type to their

representation in the specified set. Abs_type is sometimes referred to as the abstraction

function. It maps from members of the specified set to their abstraction equivalent in the

new type.

locales Locales provide a way to reason about parametric theories like orders. A locale

can “fix” constants and provide assumptions, which hold within the locale. Within the body

of the locale the assumptions can be used like axioms. The locale provides an encapsulated

environment to prove theorems without stating concrete types by using type variables

instead. It is possible to instantiate a locale for a concrete type by supplying concrete

values for the constants in the locale, that fulfill the assumptions of the locale and whose

types can be unified with the type variables of the locale.

Typeclasses Typeclasses are syntactic sugar for locales, and provide a more readable

interface for the concepts held within. Some types share functions with similar concepts

like addition on the numeric types. Typeclasses can abstract from the concrete definition

of these functions and instead provide conditions which must hold for these functions

like commutative properties. The body of a typeclass can then be used to prove general

statements about the functions which can be used for all types that instantiate this class.

During instantiation of a class the fixed functions can be overwritten for the concrete

type. It then needs to be proven that these concrete instances fulfill the necessary prop-

erties stated in the typeclass’s definition. These typeclasses can have a hierarchy where

typeclasses inherit the properties of other classes. The numeric types nat, int, quot, real
and complex are examples of instantiations of various ring and field typeclasses, which

form a typeclass hierarchy. The conversion functions between these number types are

also declared in the type classes.

In contrast to locales typeclasses always include exactly one type variable, which stands

for a member of the class of types. Their statements thus always involve statements about

a type and cannot be used to express statements about other constructs like groups.

coercive subtyping Isabelle supports “coercive subtyping” (Luo, Soloviev, and Xue, 2013),

which implicitly applies coercion functions to terms of a subtype. The value of this coercion

is a member of the parent type. Thus coercive subtyping allows Isabelle to treat elements

of a subtype as elements of their parent type. Any function that maps between two types

can be used as a coercion. In this way the “Rep” morphism could be used as a coercion.

Then the newly defined type could implicitly be used in place of the type its set was taken

from.

lifting Some functions and definitions can be transferred from a base type to its top

type. An example would be addition for the nat type of natural numbers and the int type,
which is defined based on nat. The lifting mechanism (Huffman and Kunčar, 2013) is

used for transferring such functions and definitions. It automatically adds the required

representation and abstraction functions in definitions to transfer the logic of parent types

to the abstract type. Additionally it can automatically prove additional proof obligations

6



2.2 Isabelle

that might arise from the use of representation and abstraction functions in the definition.

First the lifting package needs to be setup for a new type by the “setup_lifting” command,

which is given the type_definition predicate as well as the representation and abstraction

functions. Then definitions from the parent type can be lifted by the “lift_definition”

command.
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3 Related Work

In this work we aim to improve upon the automated toolset of KeY by translating KeY

proof obligations in the form of modality- and update-free sequents to the higher-order

logic generic theorem prover Isabelle/HOL.

Bian et al. (2021) used Isabelle as a back-end for KeY to reason about collections. They

specified abstract data types and parts of JML contracts in Isabelle. These abstract data

types were then imported as uninterpreted symbols into KeY. KeY would handle generation

of proof obligations from the JML contracts and the underlying Java source code. KeY

also handled resolving the modalities in the proof obligations. In order to enable KeY

to close these proofs additional properties of the ADTs were formulated as lemmas and

subsequently proven in Isabelle. Afterwards these lemmas were used to create taclets, the

internal representation of rules in KeY, for KeY to use, which allowed KeY to close proofs.

This work will not be adding imported data types to KeY. Consequently Isabelle will not be

proving the translation of specific abstract data types and their properties, but will instead

be proving formulae generated in KeY. Thus this work we will not be translating lemmas

from Isabelle to KeY taclets, but translating KeY proofs to Isabelle lemmas.

Trentelman (2005) translated three pivotal taclets for assignment rules into Bali, a

collection of formalizations of Java semantics in Isabelle, and proved them. In contrast to

this manual taclet translation, this work translates complete formulae instead.

Pusch (1999) used Bali to formalize parts of the Java Virtual Machine to formalize a

specification of a Java bytecode verifier and proved its soundness. This differs from my

approach as KeY does not operate on Java bytecode, but Java source code.

There have been several implementations of sequent calculi in Isabelle. One of these,

the Isabelle theory “Sequents”, is part of the Isabelle distribution. However, as it was

implemented in 1993 and has not received significant changes since, it conflicts with more

modern parts of Isabelle. The most critical conflict is between the “Sequents” and the

“Main” theory of Isabelle. To take advantage of the more recent features of Isabelle, the

“Sequents” theory will not be used. Another implementation of a sequent calculus was done

by From, Schlichtkrull, and Villadsen (2021), who formalized soundness and completeness

proofs of a one-sided sequent calculus - meaning that the succedent of a sequent consists

of one formula - for first-order logic in Isabelle. Their approach implemented a sequent

calculus for plain first-order logic, whereas this work handles multi-sorted sequents from

KeY.

The addition of Satisfiability Modulo Theories (SMT) solvers to KeY (Ahrendt et al., 2016)

shares with this work that it aims to aid KeY in finding difficult proofs. The connection

to SMT solvers translates certain formulas from KeY into instances of the satisfiability

problem for SMT solvers. Both the restrictions on which formulae can be translated and

the conversion effort could be reduced when translating to Isabelle, as there are estab-

lished structures in Isabelle, like integers, which can serve as a foundation for translating
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structures from KeY. However, the implementation serves as an architectural foundation

for the implementation of the translation to Isabelle.
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4 Translation

This chapter begins with an overview of the translation scheme. It continues with describ-

ing the translation by describing the translation of the separate parts of a proof obligation.

It concludes by listing some of the known limitations of the translation.

This work presents a translation of KeY proof obligations in the form of sequents to

Isabelle. The translation is restricted to sequents that are free of any updates/modalities

(subsection 2.1.2). Figure 4.1 shows the scheme of the translation that will be explained

now. The translation takes a KeY sequent as input and translates it to an Isabelle theorem.

As there is not sufficient context for all of the types and proof independent functions of

KeY in a theorem, the translation consists of the “TranslationPreamble” theory and the

main “Translation” theory, which are described in the following paragraph.

The “TranslationPreamble” theory holds all proof independent constants and types of

KeY. The full “TranslationPreamble” theory can be found in the appendix (section A.2).

The “Translation” theory imports the “TranslationPreamble” theory. The “Translation”

theory contains generated type definitions for all types found in the KeY sequent of the

proof obligation, that are proof dependent. This concludes the preamble-esque structure

inside the “Translation” theory. The core part of the “Translation” theory is a locale (see

subsection 2.2.2), which introduces a constant for every function found on the sequent.

Inside the locale is a theorem holding the translated proof obligation. The theorem contains

the antecedents of the sequent translations as its assumptions and the succedents of the

sequent connected by disjunctions as its proof goal.

The following sections describe the translation of various aspects found in KeY proof

obligations. Wewill first introduce the translation of pure first-order logic proof obligations,

then introduce translations for generic types, meaning both Java types and generic subtypes

of any, and, how the type hierarchy is translated. We then present the translations for

other JavaDL types mentioned in subsection 2.1.2, such as Field, LocSet and Heap. During

Proof locale

Constants for all functions of sequent
Theorem that holds proof obligation of sequent

Translation theory

Proof-dependent type definitions
Proof locale

TranslationPreamble theory

Proof-independent type definitions
Proof-independent functions

KeY Sequent

translates into

Figure 4.1: Scheme of the translation
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4 Translation

typedef javaDL_type = "(UNIV::any set set)"

by auto

setup_lifting type_definition_javaDL_type

lift_definition typeof::"any⇒javaDL_type⇒bool" is Set.member.
lift_definition subtype::"javaDL_type⇒javaDL_type⇒bool" is Set.subset_eq.
lift_definition disjointTypes::"javaDL_type⇒javaDL_type⇒bool" is Set.disjnt.

Isabelle listing 4.1: Abstraction type for JavaDL types

these steps we will occasionally remark on alternatives to the translations chosen in this

work.

First-order constructs, such as boolean functions and quantifiers, are defined the same

in both KeY and Isabelle and thus are translated directly. Predicates are converted to

functions that map to bool.

4.1 Type Hierarchy of KeY

4.1.1 Overview

KeY types have a hierarchy of subtypes. The toptype of the hierarchy is any. Figure 2.1
depicts the hierarchy. There are fixed subtypes of any and further Java class types and

generic any subtypes that can be added as part of the problem description. Isabelle does

not have a type hierarchy. The translation defines a javaDL_type type as an abstraction

of types. This type of types will be useful in further aspects of the translation, such as

array types. The javaDL_type type is defined based on the universes of any subtypes. The

UNIV constant of Isabelle ’a set types represents the universe of the given type ’a. Thus
for UNIV to represent universes of any subtypes it is necessary to explicitly type UNIV
as a set of sets of any values, because Isabelle cannot infer which kind of set UNIV is

meant to be in this context otherwise. The subtype relation is lifted (subsection 2.2.2) from

the subset relation, while the membership relation typeof is lifted from the membership

relation for sets, as in Isabelle listing 4.1.

The translation defines the any type as a nondescript type with a non-empty universe

using typedecl. The translation defines subtypes of any based on the set in any that

represents their universe. This is done using typedef (see subsection 2.2.2), which provides
morphisms between the specific subtype and any, also referred to as representation and

abstraction functions. The morphisms can be used for coercive subtyping in Isabelle (see

subsection 2.2.2). The translation of the hierarchy is thus based on the relations of the

universes of KeY types. It is necessary to state additional axioms to define the disjointness

of some types and their universes.

The inclusion of mandatory subtypes of any, that are already defined in Isabelle - like

int and bool - cannot be done using typedef as they are already defined. So the translation
defines their subtype relation using axiomatizations instead. The axiomatization states

that the type_definition predicate is valid for representation and abstraction functions

between any and the respective type and the types universe and introduces the required

12



4.1 Type Hierarchy of KeY

typedecl any

axiomatization where int_sub_any[simp]:"type_definition int2any any2int

(int_UNIV)"

declare [[coercion int2any]]

interpretation int:type_definition int2any any2int int_UNIV

by simp

Isabelle listing 4.2: Axiomatization for predefined subtypes of any

representation function, abstraction function and the respective types set representation

in any as new constants. The type_definition predicate states that the representation

and abstraction functions are isomorphisms between the abstract types universe and the

given set. Using this axiomatization it is ensured that the underspecified universe of any
contains the universe of the respective type or more specifically its representation as a set

of any. Based on this axiomatization the type can then be interpreted as an instance of the

type_definition locale. This models the way typedef would work on an undefined type.

4.1.2 Generic types

Java types are defined via the typedef mechanism of Isabelle (subsection 2.2.2). The types

defined by typedef are required to be non-empty, which needs to be shown prior to their

definition. Thus it is necessary to show that the parent types of the new type intersect.

For this purpose, bottom, a constant of type any is introduced. The bottom constant

is later used to define null. An abstraction of the bottom element is present in all other

types whose definitions are generated by this translation. This simplifies the proof that

the parent types intersect, which would otherwise have to be axiomatized, because all

type universes introduced by the translation are only stated to be non-empty subsets of

the universe of any.
The introduction of new types by the translation follows a pattern. An example of this

pattern is shown in Isabelle listing 4.3 for the Java type int[].

• It is shown that the universe representations of the parent types of the new type

intersect. In the example Isabelle listing 4.3 the corresponding lemma is called

“ex_intarr_UNIV”.

• The universe of the new type is introduced as a constant.

• specification is used to specify that the universe of the new type is a subset of the

universes of its parent types. specification requires a proof, which shows that a

value that fulfills the specification statements exists.

• Because specification requires some unusual workarounds to use its statements in

Isabelle proofs, the statements are repeated in a lemma.

• Using the “..._UNIV” constant, typedef is used to define the new type.

13
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• To shorten the proofs in the definitions of further subtypes of the new type, it is

shown that the bottom element is part of the universe of the new type. To more

conveniently prove subtype relations it is also shown that the new types universe

representation is a subset of its parent types universe representations.

• A “..._type” constant is introduced that represents the universe of the new type.

• Additionally functions, which map from the type to its parent types, are added. These

are declared as coercions.

This pattern can be used to translate any type by substituting “intarr” for the name of

the type and by replacing “java_lang_Object” with a parent type of that type. For types

with multiple parent types the statements about the subset relation between the new type

and its parent type can be repeated with conjunctions between them. The proofs in the

pattern can also be reused for other type definitions by replacing the type name and the

parent type names.

4.1.3 Type Hierarchy functions

cast The cast function in the JavaDL of KeY should map values of type any to the

required type A. The translation of cast functions is contained in the any typeclass (see
subsection 2.2.2) seen in Isabelle listing 4.4. The any typeclass contains functions to map

from any to the respective type and vice versa. The concrete functions are supplied during

instantiations for each type, which are either already present in the translation preamble

or are subsequently added for each generated type as seen toward the end of Isabelle

listing 4.3.

instanceand exactInstance instance is a family of functions in KeY that is used to determine

if a value is a member of a specific type. This function shares semantics with the typeof
function defined in Isabelle listing 4.1. The translation therefore defines it using typeof.
The translation gives it the “_type” value that corresponds to the type of the instance
function instance that was translated. While there is another function exactInstance in
KeY, this serves little purpose in Isabelle, because most variables and terms are already

explicitly typed. The translation introduces it as a constant without further semantics.

The translation of instance and exactInstance is contained in Isabelle listing 4.5.

4.1.4 Object and Null

The java_lang_Object is declared similar to the pattern used for the int[] type. Because
java_lang_Object is a direct subtype of any, there is no need to show that the parent types

intersect. The definition of this type is shown in Isabelle listing 4.6. The Null type as stated
earlier (subsection 4.1.2) is defined based on the bottom constant. null is the abstraction
of bottom in the Null type. The definition of Null is shown in Isabelle listing 4.7. The

relation between Null and other types is inferred from the inclusion of bottom in all

generated Java class type universes.

14
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lemma ex_intarr_UNIV:"{bottom} ⊆ (UNIV::java_lang_Object set) ∧ {bottom} ⊆
(UNIV::any set) ∧ bottom ∈ {bottom}"

by simp

consts
intarr_UNIV::"any set"

specification (intarr_UNIV) "intarr_UNIV ⊆ (UNIV::java_lang_Object set) ∧
intarr_UNIV ⊆ (UNIV::any set) ∧ bottom ∈ intarr_UNIV"

using ex_intarr_UNIV by blast

lemma intarr_UNIV_specification:"intarr_UNIV ⊆ (UNIV::java_lang_Object set) ∧
intarr_UNIV ⊆ (UNIV::any set) ∧ bottom ∈ intarr_UNIV"

by (metis (mono_tags, lifting) intarr_UNIV_def someI_ex ex_intarr_UNIV)

typedef intarr = "intarr_UNIV"

morphisms intarr2any any2intarr

using intarr_UNIV_specification by auto

declare [[coercion intarr2any]]

lemma intarr_type_specification[simp]:"(UNIV::intarr set) ⊆
(UNIV::java_lang_Object set) ∧ (UNIV::intarr set) ⊆ (UNIV::any set) ∧ bottom ∈
(UNIV::intarr set)"

using intarr_UNIV_specification using type_definition.Rep_range

type_definition_intarr by blast

fun intarr2java_lang_Object where "intarr2java_lang_Object x =

any2java_lang_Object (intarr2any x)"

declare [[coercion intarr2java_lang_Object]]

definition "intarr_type = Abs_javaDL_type (UNIV::intarr set)"

instantiation intarr::any

fun to_any_intarr where "to_any_intarr x = intarr2any x"

fun cast_intarr where "cast_intarr x = any2intarr x"

instance by standard

end

Isabelle listing 4.3: Generated definition for int[] type

class any =

fixes to_any::"’a⇒any"

fixes cast::"any⇒’a"

Isabelle listing 4.4: any typeclass declaration

15



4 Translation

fun instanceof::"any⇒javaDL_type⇒bool"

where "instanceof x type = typeof x type"

consts
exactInstance::"any⇒javaDL_type⇒bool"

Isabelle listing 4.5: Instance function translations

consts
java_lang_Object_UNIV::"any set"

specification (java_lang_Object_UNIV) "java_lang_Object_UNIV ⊆ (UNIV::any set)"

"bottom:java_lang_Object_UNIV"

by auto

lemma java_lang_Object_UNIV_specification:"java_lang_Object_UNIV ⊆ (UNIV::any

set) ∧
bottom:java_lang_Object_UNIV"

by (metis (mono_tags, lifting) java_lang_Object_UNIV_def UNIV_I subset_UNIV

verit_sko_ex_indirect)

typedef java_lang_Object = "java_lang_Object_UNIV"

morphisms java_lang_Object2any any2java_lang_Object

using java_lang_Object_UNIV_specification by auto

declare [[coercion java_lang_Object2any]]

definition java_lang_Object_type::"javaDL_type" where "java_lang_Object_type ≡
Abs_javaDL_type (UNIV::java_lang_Object set)"

lemma bottom_in_java_lang_Object[simp] :"bottom ∈ (UNIV::java_lang_Object set)"

using java_lang_Object_UNIV_specification

using type_definition.Rep_range type_definition_java_lang_Object by blast

instantiation java_lang_Object::any

fun to_any_java_lang_Object where "to_any_java_lang_Object x =

java_lang_Object2any x"

fun cast_java_lang_Object where "cast_java_lang_Object x = any2java_lang_Object x"

instance by standard

end

Isabelle listing 4.6: Definition of java_lang_Object type
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typedef (overloaded) Null = "{bottom}"

morphisms Null2any any2Null

by simp

declare [[coercion Null2any]]

lemma bottom_Null_set:"(UNIV::Null set) = {bottom}"

using type_definition.Rep_range type_definition_Null by blast

lemma Null_sub_java_lang_Object_Types: "(UNIV::Null set) ⊆
(UNIV::java_lang_Object set)"

using bottom_Null_set bottom_in_java_lang_Object by auto

definition "null ≡ any2Null bottom"

instantiation Null::any

fun to_any_Null where "to_any_Null (x::Null) = Null2any x"

fun cast_Null where "cast_Null x = any2Null x"

instance by standard

end

declare [[coercion Null2java_lang_Object]]

Isabelle listing 4.7: Definition of Null type

17



4 Translation

4.2 Integers

This chapter contains the details of the translation of integers from KeY to Isabelle. The

translation of integers is an important part of the translation, as all arithmetic operations

in KeY are converted to integer operations and all array and sequence accesses rely on

integers. We will start by explaining the translation of KeY integer operations, then we

will explain the translation of the functions representing Java integer operations in KeY.

Finally we will discuss some alternative translation options.

4.2.1 KeY Integer Operations

This section describes the translation of the standard integer operations in KeY. The

universe of integers in KeY is defined as the universe of all mathematical integers, see

subsection 2.1.2. As this aligns with the integer definition in Isabelle, KeY integers are

translated directly into Isabelle int. Addition, subtraction and multiplication are defined the

same in both KeY and Isabelle. Thus addition, subtraction and multiplication are translated

directly to their Isabelle counterparts.

Division and modulo are defined differently in Isabelle and KeY. Division and modulo

are defined based on the euclidean semantics in KeY, also known as E-Division (Boute,

1992). In contrast division in Isabelle is defined as F-Division (Boute, 1992), that always

rounds down. For the reader’s convenience the definitions of both division functions are

found in Definition 1 and Definition 2. As can be seen in Table 4.1, the different division

definitions coincide for positive divisors and differ for negative ones. To translate the

KeY modulo function a new function euclMod is defined in the preamble. The euclMod
function coincides with the Isabellemod function for integers for positive divisors and

adds the absolute value of the divisor to the result of mod for negative divisors. The result

of euclMod is always nonnegative and smaller than the absolute value of the divisor.

Therefore euclMod corresponds to the modulo of E-Division. Using Euclid’s theorem

(Definition 3) the division of E-Division can be defined based on the modulo operation.

The translation for KeY division is another function introduced in the preamble called

euclDiv (Isabelle listing 4.9). This function is defined through Euclid’s theorem and the

euclMod function.

Translating KeY division is complicated by the deliberate underdefinedness of KeY

division, which does not prevent division by zero, but does not define its value. The

Isabelle definition stating that the multiplicative inverse of 0 is 0 also complicates any

translation. To avoid deriving proofs, which include division by 0, the translation uses a

locale (see section 2.2) called jArithmetics (Isabelle listing 4.8), which does not define

these functions, but instead introduces them as constants and provides assumptions from

which the values of the functions for non-zero divisors can be derived.

Definition 1 ( div𝐾𝑒𝑌 is the integer division function in KeY. This shows the definition

for dividing integer 𝑎 by integer 𝑏. The lack of a case for 𝑏 = 0 is intentional and reflects

underdefinedness in KeY).

𝑎 div𝐾𝑒𝑌 𝑏 =

{⌊
𝑎
𝑏

⌋
, b > 0,⌈

𝑎
𝑏

⌉
, b < 0.
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locale jArithmetics =

fixes jDiv::"int⇒int⇒int"

assumes jDiv_def [simp]: "b≠0 =⇒ jDiv a b =

(if ((a≤0 ∧ b<0) ∨ (a≥0 ∧ b>0) ∨ (b dvd a)) then (a div b)

else ((a div b) + 1))"

fixes euclMod::"int⇒int⇒int"

assumes eucl_Mod_def [simp]: "l≠0 =⇒ euclMod k l = (if (k mod l < 0) then ((k mod

l) + abs(l))

else (k mod l))"

Isabelle listing 4.8: Definition of the jArithmetics locale that holds the integer function

definitions

Table 4.1: Comparing different divisions

Euclidean F-Division Truncated

5 div 2 2 2 2

5 div -2 -2 -3 -2

-5 div 2 -3 -3 -2

-5 div -2 3 2 2

Definition 2 ( div𝐼𝑠𝑎𝑏𝑒𝑙𝑙𝑒 is the integer division function in Isabelle. This shows the

definition for dividing integer 𝑎 by integer 𝑏).

𝑎 div𝐼𝑠𝑎𝑏𝑒𝑙𝑙𝑒 𝑏 =

{⌊𝑎
𝑏

⌋
, 𝑏 ≠ 0,

0, 𝑏 = 0

Definition 3 (Euclid’s theorem).

𝑎 = 𝑏 · (𝑎 div 𝑏) + 𝑎mod 𝑏

4.2.2 Java Integer Operations

This section describes the translation of the Java integer operations in KeY. In addition

to KeY integer operations, KeY supports Java integer operations. These are modeled by

encasing the results of the respective operations in a modulo statement. Thus addition, sub-

traction and multiplication are translated to functions that combine this modulo statement

with the respective translation.

Division in Java follows the truncated division definition, sometimes referred to as

division rounding to 0 or T-Division (Boute, 1992). It coincides with the division of Isabelle
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fun jMod::"int⇒int⇒int" where
"jMod a b = a - (jDiv a b)*b"

fun euclDiv::"int⇒int⇒int" where
"(euclDiv k l) = (k - euclMod k l) div l"

Isabelle listing 4.9: Definition of euclDiv and jMod based on Euclid’s theorem

when dividend and divisor have the same sign. The translation introduces the jDiv
constant in the jArithmetics locale (Isabelle listing 4.8) to translate the jDiv function

that represents integer division in Java from KeY. The values for jDiv can be derived from

the assumption eucl_Mod_def in the locale. The definitional assumption is based on

div in Isabelle and ensures values are rounded up instead of down in case the divisor and

dividend had different signs.

Proofs I have proven that these functions fulfill the specifications of the respective

operations using Isabelle. The proofs are included in the full “TranslationPreamble” theory

in the appendix (section A.2). For euclMod - the equivalent to mod𝐾𝑒𝑌 - this requires

showing that it always returns a non-negative value that is smaller than the absolute value

of the divisor. Due to euclDiv being defined based on Euclid’s theorem, its correctness

follows from the correctness of euclMod. In the same way the correctness of jMod
follows from the correctness of jDiv.

4.2.3 Translation Alternatives

While there is an Isabelle theory about euclidean , the “Euclidean_Division” theory, using

it requires reinterpreting int as a member of a different typeclass. Doing so would restrict
access to the theories involving the standard division for int. Such a translation would also

be incompatible with the possible use of multiple types of division in KeY. A KeY proof

obligation can contain both the Java division and the E-Division of KeY. Therefore the

translation defines KeY division and Java division as new functions in Isabelle.

Instead of establishing the division operations as constants in a locale and using assump-

tions to define their values, one could use partial functions in Isabelle to translate division,

however partial functions significantly hamper the ability of Isabelle to automatically

prove a goal.

4.3 Fields

In KeY Field represents the fields of Java Objects. Their semantics are left fairly open. The

only specifications Ahrendt et al. (2016) makes are, that the Field universe contains the

created Field, and that all Field values are distinct. KeY itself additionally makes Field a

subtype of any.
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consts
Field_UNIV::"any set"

specification (Field_UNIV) "Field_UNIV ⊆ (UNIV::any set)"

"Field_UNIV ≠ {}"

by auto

lemma Field_UNIV_specification:"Field_UNIV ⊆ (UNIV::any set) ∧
Field_UNIV ≠ {}"

by (metis (mono_tags, lifting) Field_UNIV_def empty_not_UNIV someI_ex

top_greatest)

typedef Field = Field_UNIV

morphisms Field2any any2Field

using Field_UNIV_specification by auto

declare [[coercion Field2any]]

Isabelle listing 4.10: Declaration of the Field type

locale varsAndFunctions = jArithmetics +

fixes SumAndMax_max::"Field"

fixes SumAndMax_sum::"Field"

assumes distinct_fields:"(distinct [SumAndMax_max,SumAndMax_sum, created]) ∧
(({SumAndMax_max,SumAndMax_sum, created} ∩ image arr (UNIV::int set)) = {})"

Isabelle listing 4.11: Example of the distinct fields lemma in a translation of the “SumAnd-

Max” example

4.3.1 Type Definition

The Field type is introduced using a subset of any. The subset is a constant that is only
specified to be non-empty. The subset relation between this constant and the universe of

any is trivially true.

The created Field is introduced as a constant. During the translation of the sequent all

Field values are collected and a lemma is added to the proof locale. This lemma states that

all Field values found in the sequent are distinct, and that they are neither the created Field
nor do they lie in the image of arr. An example instance of this lemma can be found in

Isabelle listing 4.11

4.3.2 Arrays

KeYmodels arrays using an injective function, arr, whichmaps integers to a Field. Accessing
an array at index 𝑖 is then equivalent to accessing the heap at the Field arr (𝑖). The

translation retains this way of accessing arrays. As such the arr function is defined in

Isabelle as an injective function using axiomatization in Isabelle listing 4.12.
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consts
created::"Field"

axiomatization arr::"int⇒Field" where arr_inject[simp]:"(arr x = arr y) = (x

= y)"

Isabelle listing 4.12: Definition of special Field functions

Some axioms require determining the element type of an array. As such a function

elementType mapping from array type instances to their element types is declared in the

array typeclass. All array types are then given an instantiation of this typeclass, where
the concrete function for the type is defined.

Alternatively, due to arrays always having fixed types, it would be possible to translate

arrays to the ’a list type in Isabelle. This could offer a performance boost in automated

reasoning, because the ’a list functions are much better integrated and easier to resolve

than the semantics of the necessary Heap functions. However, this would require severe

changes when translating how array access is written on the sequent. Furthermore,

translating them to ’a list directly would cause a problem for axioms involving arrays.

Axioms would now have to account for the type variable in the definition of the ’a list
type. Lastly array access would have to be masked, as arrays are accessed using integers,

while ’a list instances can only be accessed using nat, the Isabelle type of natural numbers.

The translation would hence also need to check if the integers value can be converted to a

natural number. Isabelle cannot do this on its own, as the present functions for converting

int to nat map all negative int values to 0.

4.4 Location Sets (LocSet)

The Location Set type (abbreviated LocSet) models sets of locations. Locations are (Ob-
ject, Field) tuples, that describe a location on a heap. LocSet values are translated to an

abstraction of sets of (Object, Field) tuples.

4.4.1 Type Definition

The translation defines the LocSet type through typedef as seen in Isabelle listing 4.13.

LocSet is defined based on sets of (java_lang_Object, Field) tuples. “UNIV::(java_lang_Object
× Field set set)” is the universe of all sets of (java_lang_Object, Field) tuples.
To comply with the KeY type hierarchy, LocSet must be made into a subtype of any.

Thus this subtype relationship is axiomatized by the translation using the type_definition
predicate. Declaring the LocSet2any function as a coercion (subsection 2.2.2) ensures that

Isabelle uses this function to transform LocSet occurrences where terms of type any are

needed.
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typedef LocSet = "UNIV::(java_lang_Object × Field) set set"

by simp

consts
LocSet_Image::"any set"

LocSet2any::"LocSet⇒any"

any2LocSet::"any⇒LocSet"

axiomatization where LocSet_sub_any:"type_definition LocSet2any any2LocSet

LocSet_Image"

declare [[coercion LocSet2any]]

Isabelle listing 4.13: Definition of the LocSet type in the translation preamble

empty : LocSet
elementOf(java_lang_Object, Field, LocSet)
subset(LocSet, LocSet)
disjoint(LocSet, LocSet)
union : LocSet × LocSet −→ LocSet
intersect : LocSet × LocSet −→ LocSet
setMinus : LocSet × LocSet −→ LocSet
allLocs : LocSet
allFields : java_lang_Object −→ LocSet
allObjects : Field −→ LocSet
arrayRange : java_lang_Object × int × int −→ LocSet

Figure 4.2: Signature of LocSet functions. Function signatures are separated from their

name by“:”. Predicate signatures are shown in brackets.

4.4.2 Functions

As KeY does not include its own set logic, most LocSet functions have the semantics of

operations on sets. Here the translation uses the lifting package (subsection 2.2.2) to great

effect, as most LocSet functions are directly transferred from sets. The LocSet functions
and their translation (Isabelle listing 4.14) will be explained in the following paragraphs.

The pattern “Set.subset” states that this refers to the subset function of the “Set” theory to

avoid duplicate function names in Isabelle. The required LocSet functions consists of empty,
subset, union, intersect, setMinus, allLocs, singleton, elementOf. A list of these functions and

their signatures is shown in Figure 4.2 for the reader to compare them to their translations

in Isabelle listing 4.14.

empty The empty function returns an empty LocSet, which has the semantics of an empty

set of locations. As such its translation lifts the definition of the Isabelle function empty
for sets.

elementOf elementOf is used to check if a location is in a given LocSet. Because all

functions are curryied upon translation, the translation cannot simply lift the membership
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function for setsmember in Isabelle to define elementOf. It is necessary to convert the

two parameters to a tuple, before lifting the definition of member. The translation does

this by lifting a lambda construct, that reconstructs the tuple from the parameters.

subset The subset predicate has the semantics of the subset predicate on sets. Thus its

translation lifts the definition of the corresponding subset function of Isabelle.

disjoint The disjoint predicate states that two LocSet values are disjoint sets of locations.
Thus its translation lifts the definition of the disjnt function of Isabelle.

union The union function returns the union of two LocSet values. Thus its translation
lifts the definition of the Isabelle function union.

intersect The intersect function returns the intersection of two LocSet values. Thus its
translation lifts the definition of the Isabelle function inter, which returns the intersection

of two sets.

setMinus The setMinus function returns the set difference of two LocSet values. Its

translation lifts the definition of the Isabelle functionminus of the “Set” theory, which
returns the set difference of two LocSet values.

singleton singleton returns a LocSet containing only a single location. There is no direct

counterpart to this in Isabelle. Isabelle instead uses the Collect function with a single

parameter. The translation uses a lambda construct to convert the two parameters in a

location back to a tuple and to return the value of the Collect function, then lifts it to

define singleton.

allLocs The allLocs function returns a LocSet containing all possible locations. Its trans-
lation is the UNIV constant of the type of (Object, Field) tuples, which is the constant

representing the universe of (Object, Field) tuples.

allFields allFields returns the LocSet containing all locations that involve a given java_lang_Object.
The translation lifts a lambda construct to define allFields. This lambda construct maps

the given java_lang_Object to the cartesian product of the set containing just the given

java_lang_Object and the UNIV constant - the universe of the Field type.

allObjects allObjects returns the LocSet containing all locations that involve a given Field.
The translation lifts a lambda construct to define allObjects. This lambda construct maps

the given Field to the cartesian product of the set containing just the given Field and the

UNIV constant - the universe of the java_lang_Object type.
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4.5 Heaps

setup_lifting type_definition_LocSet

lift_definition empty::"LocSet" is Set.empty.
lift_definition subset::"LocSet⇒LocSet⇒bool" is Set.subset.
lift_definition disjoint::"LocSet⇒LocSet⇒bool" is Set.disjnt.
lift_definition union::"LocSet⇒LocSet⇒LocSet" is Set.union.
lift_definition intersect::"LocSet⇒LocSet⇒LocSet" is Set.inter.
lift_definition setMinus::"LocSet⇒LocSet⇒LocSet" is minus.
lift_definition singleton::"java_lang_Object⇒Field⇒LocSet" is "𝜆obj f. {(obj, f)}".
lift_definition elementOf::"java_lang_Object ⇒ Field ⇒LocSet⇒bool" is "𝜆obj f s.

(obj, f) ∈ s".
lift_definition allLocs::"LocSet" is Set.UNIV.
lift_definition allFields::"java_lang_Object⇒LocSet" is "𝜆x. {x} × (UNIV::Field

set)".
lift_definition allObjects::"Field⇒LocSet" is "𝜆x. (UNIV::java_lang_Object set) ×
{x}".
lift_definition arrayRange::"java_lang_Object⇒int⇒int⇒LocSet" is "𝜆obj x y. {obj}

× (image arr {x..y})".

Isabelle listing 4.14: The translations of core LocSet functions

arrayRange arrayRange maps a java_lang_Object and two integers 𝑖 and 𝑗 to the LocSet
containing all locations that involve the given java_lang_Object and the Field values, that

the arr function (see subsection 4.3.2) maps the integers between 𝑖 and 𝑗 to. The translation

defines a lambda construct, that maps the java_lang_Object and the two int values to the

cartesian product of the set containing only the java_lang_Object and the image of arr on
the set containing all int values that lie between the two given int values. This lambda

construct is lifted to define arrayRange.

4.5 Heaps

KeY defines the Heap type to represent Java heaps. The semantics presented in Ahrendt

et al. (2016) state that Heaps are functions mapping locations (Object, Field pairs) to values

of type any. KeY uses placeholder variables, that represent Heap instances in the various

Heap functions. This allows KeY to quantify over Heap without expanding the first-order

logic based reasoning of KeY to include higher-order logic features like quantifying over

functions. KeY deviates from the definition of Heap presented in Ahrendt et al. (2016).

While in Ahrendt et al. (2016) Heap is not a subtype of any, KeY itself makes them a subtype

of any. As a consequence nested Heap values are possible, where a Heap stores another

Heap at a location.
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typedef Heap = "UNIV::(java_lang_Object ⇒ Field ⇒ any) set"

by simp

declare [[coercion Rep_Heap]]

consts
Heap_Image::"any set"

Heap2any::"Heap⇒any"

any2Heap::"any⇒Heap"

axiomatization where Heap_sub_any:"type_definition Heap2any any2Heap Heap_Image"

declare [[coercion Heap2any]]

Isabelle listing 4.15: The definition of the Heap type in the translation preamble

4.5.1 Type Definition

The translation reflects the semantics of Ahrendt et al. (2016). By defining Heap based on

functions the translation takes advantage of the higher-order logic of Isabelle for reasoning

about Heap.
The translation defines the Heap type (Isabelle listing 4.15) using typedef. The defining

set for Heap is the set of all functions from java_lang_Object and Field to any. The coercion
mechanism (subsection 2.2.2) is then applied to allow Heap values to implicitly be used as

functions.

Heap being a subtype of any necessitates some level of abstraction from functions to

satisfy the type unification requirements of Isabelle. The use of the typedef definition
over functions by the translation fulfills the need for this abstraction. It is still required

to define the now defined Heap type as a subtype of any. Making Heap a subtype of any
is done akin to the way int and bool were made into subtypes of any (see section 4.1) by

introducing constants, which by axiomatization fulfill the properties of representation and

abstraction functions.

4.5.2 Functions

The translation for Heap includes the select, store, create, anon, unusedLocs functions and
the wellFormed predicate for Heap values. The signatures of these functions is presented

in Figure 4.3, so the reader can better compare the functions to their translations. Their

translations are shown in Isabelle listing 4.16 and will be explained in the following

paragraphs.

select The select function that accesses the value stored at a location in a Heap, is
equivalent to the value of the function representing the Heap, when the function is given

the location as parameters. Consequently the select operation is translated to a function

that returns the value of the Heap at the given location. Due to the select operation also

ensuring that the return has a specific type, the value of the Heap is cast to the required

type by way of applying the cast function to the value. In KeY there are multiple select
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4.5 Heaps

select𝐴 : Heap × java_lang_Object × Field −→ A for any subtype A of the any type

store : Heap × java_lang_Object × Field × any −→ Heap
create : Heap × java_lang_Object −→ Heap
unusedLocs : Heap −→ LocSet
anon : Heap × LocSet × Heap −→ Heap
wellFormed(Heap)

Figure 4.3: Signature of Heap functions. Function signatures are separated from their name

by“:”. Predicate signatures are shown in brackets.

functions, which form a family of functions with a select function for each returned type.

In the translation, the return type of select is stated to belong to any type instantiating the

any typeclass. Every occurrence of select in the translation of the sequent is then explicitly

typed. In this way it is ensured that the return type of each select function occurrence is

correct.

store The counterpart to the select function, the store function, which stores a value

in a given Heap at a location, should return a new Heap that has the given value at the

given location and otherwise coincides with the previous Heap. Therefore, the translation
defines a function that maps the old Heap, location and value to a new Heap, that fulfills
this property. The new Heap is the abstraction of a lambda construct that follows the select
operations semantics presented in Ahrendt et al. (2016).

create The create operation used to create new objects on a Heap should alter the Heap
only for the given Object and only at the created Field. The created Field should be set to

true for the given Object, while the rest of the Heap remains unaltered, provided the Object
is not null, in which case the Heap should remain unaltered. The translation maps the old

Heap and the Object to the abstraction of a lambda construct, which maps an Object and
Field to True - should the Object be the one just created - and to whatever value the old

Heap held otherwise.

unusedLocs A location on a Heap is unused, when the Object at this location has not been

created. Thus the function unusedLocs is translated to a function that maps a Heap to the

LocSet abstraction of the set holding all locations, whose Object values are not created -

meaning that the value of the created Field of this Object is False.

anon The anon operation, which is used to obfuscate access to a Heap outside a given

set of locations, maps two Heap values and a LocSet to a new Heap, which coincides with

the first Heap at locations in the LocSet and coincides with the second Heap for locations

outside the LocSet and locations that were unused in the first Heap. The translation defines

anon as a function, which maps both Heap values and the LocSet to the lambda construct,

which abstracts the function corresponding to the Heap that maps locations to the required

values.
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wellFormed KeY uses the wellFormed predicate to express if a Heap is well formed. The

value of the operation is determined through a series of axioms stating how transformative

Heap operations - such as select and store - create new well formed Heap values out of

other well formed Heap values.

As the semantics of the wellFormed predicate heavily rely on type information, which is

either not available in Isabelle or not available to the translation, the translation chooses to

translate the axioms of wellFormed instead of its semantics. The main issue in transferring

the semantics directly are array types. Translating the semantics of wellFormed directly

would require quantifying over all array types or, alternatively, checking, if a given Object
is an array type, both of which are not possible in Isabelle. While it is possible to quantify

over values of a theoretical polymorphic array type - similar to the type ’a list - by way

of the array typeclass, any quantification over values belonging to a polymorphic type

would only quantify over the values of a single type instead of all possible types. This

also introduces a type variable to the definition, which while possible, is discouraged

and requires instantiation of the type variable for the definition to be used. Defining

wellFormed as a function is not possible due to this extra type variable occurring on the

right hand side of the function.

4.5.3 Translation Alternatives

This section describes some alternative approaches to translating heaps. I have tried

multiple ways to transfer arrays and their element types, none of which enabled a true

transfer of the semantics of wellFormed. One approach introduces a general array top type,

through which introducing any type variables in the definition can be avoided. However,

using elements of such a top type would mean that information about the true element

types of array values are lost. The element types would have to be individually declared

for each array instance. This defeats the purpose of translating the wellFormed predicate,

because instead of axiomatizing every array, the well-formedness of every Heap on the

sequent could be axiomatized. Introducing the element type through type membership

of the specific array types would fail when taking subtype arrays into account. Subtype

arrays would inherit the larger element types of their parents, which is not correct.

Another approach to translating the array axioms declares arrays as polymorphic

types, but also suffers from introducing type variables into wellFormeds definition when

quantifying over a generic array type. Because of these issues, the semantics of wellFormed
are not translated. Instead, the translation opts for introducing the axioms present in KeY,

which preserve the semantics where arrays are not concerned. The axiom involving arrays

suffers from the type variable problem, but is present nonetheless.

It might be feasible to define an inductive function to reconstruct a Heap and derive its

well-formedness this way. However the necessary information is not available in a KeY

sequent. As most JML contract obligations do not require proving the well-formedness of

a Heap, this definition through axioms should suffice.

Presumably Bali could prove useful in this aspect, but due to heaps in Bali differing too

much semantically from the Heap of KeY Bali was not used in this translation.

Use of if-then-else statements in the definition of store could be replaced by preconditions.
This could make the values of the store function easier to find for automatic provers, but
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4.6 Sequences

hampers readability and requires the definition to be split into multiple parts. Splitting the

definition also prevents using the lifting package or defining store as a function at all. The

store function would have to be translated to a constant that is specified by axioms stating

its properties.

Instead of defining some Heap operations as functions and transferring the underlying

semantics presented in Ahrendt et al. (2016), it is possible to transfer the axioms/their

taclet representations. As the goal of this work was not to transfer taclets from the

taclet collection of KeY to Isabelle axioms and lemmas, or including many axioms in the

translation preamble, the taclet axioms were not translated.

It is possible and may be beneficial to the performance of sledgehammer to define

additional lemmas, which prove these taclets based on the present semantics. In doing

so one could use the present semantics of the translation to verify the correctness of the

transferred taclets.

4.6 Sequences

This section describes the translation of the Sequence type. First we will briefly recap the

explanation of the Sequence type from paragraph 2.1.2. Then I will explain the translation

of Sequence and the translation of its functions.

A Sequence represents a sequence of elements of type any. Sequence values can be nested

since Sequence is a subtype of any. Sequence is used as a list-esque structure in KeY.

4.6.1 Type Definition

Sequence being a list-esque structure means that lists in Isabelle are used as the translation

target for Sequence values. A Sequence corresponds to an any list meaning a list containing
elements of type any. Both Sequence and ’a list describe list-like structures of finite length
with most functions of Sequence finding their equivalents in Isabelle theories on ’a list. A
key difference between the two types is that, while the Isabelle list type is strictly typed,

Sequence values allow elements to be of any type, so long as it is a subtype of any. In
KeY this means all values can occur inside a Sequence as any is functionally a toptype in

KeY. Another difference between Sequence and ’a list is Sequence values are accessed with

integers and provide a constant that represents the value of accessing the Sequence outside
its bounds, while access of the Isabelle type ’a list is non-exhaustive - meaning it does not

necessarily have a value - and uses natural numbers. To preserve most of the theorems

on the Isabelle type list, Sequence is defined using typedef (subsection 2.2.2) given the

universe of any list. Conveniently this solves the issue of Sequence being ambiguous in its

typing by hiding nested Sequence values as elements of type any, which allows for infinite

nesting depths and mixed nesting depths in a single Sequence.
Defining Sequence based on list necessitates using axiomatization to introduce the

representation and abstraction functions to the any type, as well as the representative

universe of Sequence in the any type. Isabelle listing 4.17 is the part of the preamble

that introduces the Sequence type. Sequence is abbreviated to Seq inside KeY and in the

translation.
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fun select::"Heap⇒java_lang_Object⇒Field⇒’a::any" where
"select h obj f = cast (h obj f)"

fun store::"Heap⇒java_lang_Object⇒Field⇒any⇒Heap" where
"store h obj f x = Abs_Heap (𝜆(obj’::java_lang_Object) (f’::Field). (if obj’=obj

∧ f’=f ∧ f≠created then x else h obj’ f’))"

fun create::"Heap⇒java_lang_Object⇒Heap" where
"create h obj = Abs_Heap (𝜆(obj’::java_lang_Object) (f’::Field). (if obj’=obj ∧

f’=created ∧ obj≠null then cast True else h obj’ f’))"

fun unusedLocs where "unusedLocs (h::Heap) = Abs_LocSet {((obj::java_lang_Object),

(f::Field)). (h obj created=False)∧ obj≠null}"

fun anon::"Heap⇒LocSet⇒Heap⇒Heap" where
"anon h1 s h2 = Abs_Heap (𝜆(obj::java_lang_Object) (f::Field). (if elementOf obj f

s ∧ f≠created ∨ elementOf obj f (unusedLocs h1)

then select h2 obj f else select h1 obj f))"

axiomatization wellFormed::"Heap⇒bool" where
onlyCreatedjava_lang_ObjecteAreReferenced:"wellFormed h =⇒ select h obj f = null

∨
((select h (select h obj f) created)::bool)"

and onlyCreatedjava_lang_ObjectsAreInLocSets:"wellFormed h ∧ elementOf

(o2::java_lang_Object) f2 ((select

h obj f)::LocSet) =⇒ Null2java_lang_Object null=o2 ∨ ((select h o2

created)::bool)"

and wellFormedStorejava_lang_Object:"wellFormed h ∧ ((x::java_lang_Object)=null

∨ ((select

h x created) ∧ instanceof x (fieldType f))) =⇒ wellFormed (store h obj f x)"

and wellFormedStoreLocSet:"wellFormed h ∧ (∀ ov fv. (elementOf ov fv y −→ ov =

null ∨ select h ov created))

=⇒ wellFormed (store h obj f y)"

and wellFormedStorePrimitive:"(typeof x (fieldType f) =⇒ ¬typeof x

java_lang_Object_type =⇒ ¬typeof x LocSet_type =⇒ wellFormed h

=⇒ wellFormed (store h obj f x))"

and wellFormedCreate:"wellFormed h =⇒ wellFormed (create h obj)"

and wellFormedAnon:"wellFormed h ∧ wellFormed h2 =⇒ wellFormed (anon h y h2)"

axiomatization where wellFormedStoreArray:"wellFormed h ∧
((x::java_lang_Object)=null ∨ (select h x created ∧ (typeof x (element_type obj))))

=⇒ wellFormed (store h (cast (to_any (obj::’a::{array, any}))) (arr idx) x)"

Isabelle listing 4.16: The translations of the core Heap functions
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typedef Seq = "UNIV::any list set"

by auto

axiomatization Seq2any any2Seq Seq_UNIV

where Seq_sub_any:"type_definition (Seq2any::Seq⇒any) (any2Seq::any⇒Seq)

(Seq_UNIV::any set)"

interpretation Seq:type_definition Seq2any any2Seq Seq_UNIV

by (rule Seq_sub_any)

Isabelle listing 4.17: Definition of the Sequence type in the translation preamble

seqEmpty : Sequence
seqSingleton : Sequence
seqLen : Sequence −→ int
seqGet : Sequence × int −→ A for any subtype A of type any
seqDef : int × int × Sequence −→ Sequence
seqConcat : Sequence × Sequence −→ Sequence
seqSub : Sequence × int × int −→ Sequence
seqReverse : Sequence −→ Sequence
seqIndexOf : Seq × any −→ int
seqSwap : Sequence × int × int −→ Sequence
seqRemove : Sequence × int −→ Sequence
seqPerm(Seq, Seq)

seqNPerm(Seq)

Figure 4.4: Signature of Sequence functions. Function signatures are separated from their

name by“:”. Predicate signatures are shown in brackets.

4.6.2 Functions

The Sequence functions in consist of seqEmpty, seqSingleton, seqLen, seqGet, seqDef,
seqConcat, seqSub, seqReverse, seqIndexOf, seqSwap, seqRemove, seqPerm and seqNPerm.

The signatures of these functions in KeY are collated in Figure 4.4 to allow the reader

to compare the functions to their translations. The following paragraphs describe the

Sequence functions and their translations in Isabelle listing 4.18.

seqEmpty The seqEmpty function represents the empty Sequence. The “List” theory holds
an equivalent function empty for the list type. Thus the translation of seqEmpty lifts the

empty function for use with Sequence values.

seqSingleton The seqSingleton function returns a Sequence containing a single element.

While there is no function that returns a list containing a single element, such a function

can be emulatedwith a lambda construct, whichmaps the single element to a list containing
the single element. This lambda construct can then be lifted to the Sequence type.
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seqLen The seqLen function returns the length of a Sequence. This nearly matches the

length function for list values. They differ in their return type. seqLen returns an int
whereas the length function returns a nat. Thus the conversion function int is prepended.

seqGet seqGet is used to access the value of the Sequence at a specified position. The

position is specified by an integer. This again differs from list in Isabelle, which supports

the similar function nth that uses nat to specify the position. Additionally, where KeY

somewhat uncharacteristically specifies a value used for all accesses of positions outside of

a Sequence instead of using underdefined functions, Isabelle uses non-exhaustive recursive
functions, which do not necessarily have a value. Because of this, the access needs to be

gated before passing the values to the Isabelle function nth. This is done by the translation
in a lambda construct with an if-then-else statement, that maps to the seqGetOutside
constant, if the int is not a valid position of the Sequence. The lambda construct is then

lifted to define seqGet.

seqDef The seqDef function is used to generate more complex Sequence values. It maps

two integers 𝑖, 𝑗 and a term to a new Sequence. Additionally it binds a variable of type int.
The new Sequence is constructed by substituting the bound variable in the term for each

of the integers between 𝑖 and 𝑗 . The new Sequence consists of these substituted values in

ascending order of the substituted integers. In effect this is similar to mapping the list

containing 𝑖 to 𝑗 using the supplied term. Themap function in Isabelle accepts a ’a list
and a function mapping from ’a to ’b and returns a ’b list. To use the term of seqDef for

themap function, the term needs to be converted to a function from int to any. This is
accomplished by turning the term into a lambda construct which binds the bound variable

of the seqDef occurrence. The int list containing 𝑖 to 𝑗 is easily constructed with the upto
function in Isabelle, which returns a int list containing all integers starting from the first

integer up to the second one. It is written in its infix notation in Isabelle listing 4.18. With

map and upto, the translation transfers the semantics of seqDef to the Isablle type list
and then lifts it to the Sequence type.

seqConcat seqConcat describes the concatenation of two Sequences and finds its counter-

part in the Isabelle function append for list. The translation lifts append to the Sequence
type to define seqConcat.

seqSub seqSub is used to return a sub-Sequence of the Sequence from its 𝑖th to its 𝑗th

value - where 𝑖 and 𝑗 are integers. There is no direct counterpart to seqSub in the “List”

theory, so the translation uses the semantics of seqSub presented in Ahrendt et al. (2016)

to define the translation for seqSub. Alternatively, a new function could be introduced,

which returns a sublist of an Isabelle list using the take and drop functions, which in turn

return the first 𝑛 or last 𝑛 elements in a list - where 𝑛 is an integer.

seqReverse seqReverse returns a Sequence, which holds the same elements in the reverse

order of the original Sequence. seqReverse has a counterpart in the Isabelle function rev
for the Isabelle type list, which is lifted to the Sequence type by the translation.
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seqIndexOf seqIndexOf takes a Sequence 𝑠 and a value of type any 𝑥 and returns the

index of the first occurrence of 𝑥 in 𝑠 . If 𝑥 does not occur in 𝑠 , the value of seqIndexOf is

not defined. Because of this underdefinedness, it is not possible to use a regular function

in Isabelle for the semantics of seqIndexOf. The translation first defines a non-exhaustive

recursive function on the list type, which finds the index of the first occurence of 𝑥 in the

list. This new function is then lifted to define seqIndexOf.

seqSwap seqSwap returns a Sequence where the elements at the indices 𝑖 and 𝑗 are

swapped. There is no equivalent function for the Isabelle type list in the “List” theory, but

the translation defines such a function in the translation preamble. The definition of the

listSwap function uses the list_update function to set elements at the indices 𝑖 and 𝑗 ,

provided they are valid indices. The translation then lifts this function to define seqSwap.

seqRemove seqRemove removes the element in the Sequence at position 𝑘 and returns

the resulting Sequence. If there is no element at position 𝑘 , the unchanged Sequence is
returned. seqRemove does not have an equivalent function in the “List” theory and thus is

defined in the preamble. The semantics are first defined on the list type and then lifted to

the Sequence type.

seqPerm Finally, there are two functions dealing with Sequence values and their permu-

tations. The first is seqPerm. seqPerm is a predicate which holds for all Sequence pairs,
where the Sequence values are permutations of each other. The “List_Permutation” theory

contains an equivalent predicate for the list type, which the translation lifts to define

seqPerm.

seqNPerm The second of the Sequence permutation functions is seqNPerm. seqNPerm
holds, if the Sequence is a permutation of the Sequence holding all integers from 0 to the

length of the Sequence. The translation uses the semantics of seqNPerm to define the

function directly without first defining an equivalent function on list.
This concludes the translation for Sequence functions present in KeY. There is a further

function seqDepth in Ahrendt et al. (2016) to return the nesting depth of a Sequence,
however this function is not present in KeY and thus is not translated.

4.7 Limitations of the Translation

This section will describe the known limitations of the translation.

First and foremost, the translation currently does not have any way to translate modali-

ties/updates (subsection 2.1.2) on the KeY sequent. There is merit in adding a translation

for these, even if it does not translate their contents, because the SMT translation has

shown that some proofs are provable even without taking updates into account. Adding

this should be straightforward and can likely be copied from the SMT translation with

minor adjustments.

Another limitation are proofs that involve proving the wellformedness of a Heap. Due
to the nature of the translation of wellFormed (section 4.5) it is not possible to prove a heap
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setup_lifting type_definition_Seq

consts
seqGetOutside::any

lift_definition seqEmpty::"Seq" is "[]".
lift_definition seqSingleton::"any⇒Seq" is "𝜆x. [x]".
lift_definition seqLen::"Seq⇒int" is "int ◦ List.length".
lift_definition seqGet::"Seq⇒int⇒’a::any" is "𝜆s i. (if (0::int)≤i∧i<(int (length

s)) then cast (s ! (nat i)) else cast seqGetOutside)".
lift_definition seqDef::"int⇒int⇒(int⇒any)⇒Seq" is "𝜆le ri e. map e [le..ri -

1]".
lift_definition seqConcat::"Seq⇒Seq⇒Seq" is List.append.

fun seqSub::"Seq⇒int⇒int⇒Seq" where
"seqSub s i j = seqDef i j (𝜆x. seqGet s x)"

lift_definition seqReverse::"Seq⇒Seq" is List.rev.

primrec (nonexhaustive) listIndexOf::"’a list⇒’a⇒int" where
"listIndexOf (x#xs) a = (if (x=a) then 0 else 1+(listIndexOf xs a))"

lift_definition seqIndexOf::"Seq⇒any⇒int" is "listIndexOf".

fun listSwap::"’a list⇒int⇒int⇒’a list"

where "listSwap l i j =

(if ¬(0≤i ∧ i<int (length l) ∧ 0≤j ∧ i<int (length l))

then l

else list_update (list_update l (nat i) (l ! (nat j))) (nat j) (l ! (nat i)))"

lift_definition seqSwap::"Seq⇒int⇒int⇒Seq" is listSwap.

fun listRemove::"’a list⇒nat⇒’a list"

where "listRemove [] _ = []"

| "listRemove (x#xs) 0 = xs"

| "listRemove (x#xs) (Suc k) = x # (listRemove xs k)"

lift_definition seqRemove::"Seq⇒int⇒Seq" is "𝜆s (i::int). (if ¬(0≤i ∧ i<int

(length s)) then s else listRemove s (nat i))".

lift_definition seqPerm::"Seq⇒Seq⇒bool" is List_Permutation.perm.
fun seqNPerm::"Seq⇒bool"

where "seqNPerm s = seqPerm s (seqDef 0 (seqLen s - 1) (to_any))"

Isabelle listing 4.18: Translations of the core Sequence functions
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4.7 Limitations of the Translation

is well formed, if it contains arrays. Enhancing wellFormed would be a difficult task as this

requires redesigning the way arrays are translated. It could be possible to merge the heap

definition of Bali with the Heap type of KeY to form new semantics for the wellFormed
predicate, but this falls out of the scope of this work.

Non-core functions in KeY, like bprod for bounded products, are currently translated as

unknown symbols. Adding translations for these should be fairly straightforward as most

of them have a definitional taclet from which the semantics can be extracted. There may

be some functions that require more complex translations because they involve arrays

or updates. Functions that are not totally defined could also require more thoughtful

translation.
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5 Implementation

In this chapter we will describe the implementation. As a side effect we will showcase

some bugs that have been found in KeY during the implementation. The code of the

implementation can be found at https://gitlab.kit.edu/uguxj/key.

5.1 Overview

This section is meant to give an overview of the Implementation. I have implemented the

Isabelle translation as a GUI extension of KeY. It is possible to call the Isabelle translation

from the context menu of a sequent. The context menu is shown in Figure 5.1. The Isabelle

translation extension also implements settings for the path where the translations are saved

and the path to the Isabelle directory. The GUI implementation does lack refinement in the

sense that the user is given minimal information about any errors during the translation

or during sledgehammer and the success of the translation can only be inferred by the

goal it originated from closing.

The architecture of the translation is strongly based on the way the new SMT translation

of KeY is designed. Building the general structure of the translation theories, including the

theory header, constant declarations for translated variables and the placement of locales,

is handled by the IsabelleTranslator class. The actual translation of terms and collection

of types and fields present on the sequent are handled by the IsabelleMasterHandler
class. The IsabelleMasterHandler is given a collection of handler classes, which can

each handle specific types of terms. Examples of these handlers are IntegerOpHandler
for handling integers and their operations and the FieldHandler, which handles the

translation of Field instances. Handlers can have preambles attached to them, which form

the “TranslationPreamble” theory.

The master handler collects all predefined functions from the handlers, which should be

defined in their preambles. This avoids redefining already present functions like the store
operation on Heap values (see subsection 4.5.2) and losing their semantics. The master

handler also collects all Field values found on the sequent to form the translation locale

assumption that states that the Field values on the sequent are distinct (see subsection 4.3.1).
In addition the master handler needs to collect all functions and variables which need to

be declared in the translation locale. Because KeY sorts can include symbols that cannot be

included in a name in Isabelle, the master handler accounts for illegal symbols in function

names. In a similar manner, variable and function names need to be checked for illegal

symbols.

The IsabelleTranslator class also handles saving the “TranslationPreamble” theory and

the “Translation” theory to a translation directory specified in the settings. Additionally a

“ROOT” file, which describes an Isabelle session (see section 2.2) is added to the translation
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5 Implementation

directory. This “ROOT” file is used to build the Isabelle session for use in the automated

prove attempts. By building the session, the content of the “TranslationPreamble” theory

can be accessed quicker, because Isabelle stores heap images of built sessions. Isabelle

uses the built images of sessions instead of opening the theory and building the images on

demand, which would take longer.

This concludes the general overview of the modus operandi of the translation.

5.2 Scala-Isabelle

In this section we introduce Scala-Isabelle, which is used to automatically call Isabelle.

Calling Isabelle from other programs was not intended by the developers of Isabelle and

is not favored by parts of the Isabelle community. They have favored embedding other

programs in ML in Isabelle instead. Unruh (2021) provides an interface to interact with

an Isabelle process from a Scala or Java process in Scala-Isabelle. The implementation

in this work uses Scala-Isabelle to call the try0 and sledgehammer tactics from KeY.

Scala-Isabelle can send and receive values and functions to/from ML. To this end it can

also convert ML code into function objects.

To call sledgehammer on a theory, the text of the theory is parsed first. The parsing

creates a state object on which the sledgehammer and try0ML code can be executed.

try0 returns a boolean object, while sledgehammer returns an “option”, which contains

the successful tactics found by sledgehammer.
A disadvantage of this approach is that building the session containing the “Transla-

tionPreamble” theory is executed before every sledgehammer attempt. Perhaps even

worse is that the underlying logic of the Isabelle process cannot be set and thus additional

time is required to create the object representing the “Translation” theory before calling

sledgehammer.
This can be circumvented by storing the Isabelle process object and the theory object.

The theory object is not loaded from the translation theory file, but generated from the

header of the “Translation” theory. Executing the ML functions that call sledgehammer
and try0 does not change the theory object, which is why it can be reused for another

proof. The IsabelleLauncher class implements reusing the process and theory instances

to speed up calling sledgehammer on multiple goals.

5.3 Alternatives to Scala-Isabelle

Instead of using Scala-Isabelle to call sledgehammer it is possible to use Mirabelle.
Mirabelle is an Isabelle tool for benchmarking the proof steps in a theory. It can only

be applied to closed theories and as such its applicability is not immediately apparent,

because the “Translation” theory contains the open proof obligation that was translated.

With some workarounds, that involve axiomatizing the proof obligation with a lemma that

cannot be used by sledgehammer, it is possible to use Mirabelle in place of Scala-Isabelle.
However, this requires additional theory splitting to ensure that there are no other proofs

Mirabelle could be trying in addition to the translated proof obligation. These additional
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5.4 Issues found in KeY

Figure 5.1: Context Menu of the Implementation

requirements for the translation theory would make interactive proving attempts very

confusing. Additionally, Mirabelle was not designed with the application of calling tactics

on open goals to search for proofs in mind. Therefore it was not chosen.

It should also be possible to emulate user inputs on a command line to interact with an

Isabelle process, but this likely does not improve upon Scala-Isabelle in most cases. Where

this has an advantage, enhancing Scala-Isabelle should be preferred instead of building a

new interface between Java and Isabelle.

5.4 Issues found in KeY

Finally I want to address some bugs in the KeY system, which became apparent during the

implementation.

For one KeY sequents can contain multiple functions of the same name. This is uninten-

tional especially in the case of the “self” variable, which is meant to represent the Java

object whose JML contract is being proven. The implementation of the translation does not

account for duplicate functions and therefore errors can occur during the sledgehammer
call. Future additions to the implementation could prevent both this and other duplicate

variable translations.

Some of the examples from KeY suffer from the duplicate variable problem as well,

where the SMT translation cannot differentiate between symbols introduced from the

JML contract and Java code and symbols already present as part of the JavaDL in KeY

(subsection 2.1.2).

During the design process of the translation of integers (section 4.2), it became apparent

that the SMT translation of KeY lacked a proper translation for the modulo operation. The

modulo translation for SMT could be added easily as KeY already had a translation in place

for division. Thus modulo could be translated similarly due to Euclid’s theorem.
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6 Evaluation

This chapter discusses hypotheses about the performance of the implementation, the

results of my testing and the conclusions drawn from it.

6.1 Process of Evaluation

I tested my implementation on most of the examples in the KeY system. Some examples

were not tested because the KeY API could not load their contracts or the SMT preparation

macro could not be applied. Subgoals in which the SMT preparation macro could not fully

resolve the heap updates were also not tested. Subgoals which were already solved by the

SMT preparation macro or the propositional expansion macro, were not tested.

I tested my implementation against the automation of KeY and the Z3 solver (De Moura

and Bjørner, 2008) as a representative of the SMT translation in KeY. Each of these were

given a timeout of 30 seconds. The KeY automation used the default strategy of KeY with

no restriction to the number of proof steps.

In the case of Isabelle this timeout is applied first to try0 and then to sledgehammer,
leading to the possibility of up to a 60 second timeout. In practice this did not occur

often, because try0 usually concludes within less than 5 seconds that it could not find a

proof. The additional time does not give Isabelle an advantage as the calls to try0 and

sledgehammer are separated.
The testing was performed on a machine running 64-bit Ubuntu 22.04.4 LTS on a Ryzen

5 5600 6-core processor at 4.6 GHz with 32 GiB of RAM at 3600MHz. section 6.1 holds a

summary of the results. The columns contain the number of successful proofs for KeY, Z3

and Isabelle. Table 6.2 holds the average time spent searching for a successful proof by

each prover - note that unsuccessful proofs are not accounted for in this table.

A more expansive list of results can be found in section A.1.

6.2 Hypotheses and Conclusions

Since the translation does not remove any semantics and at most renames a function, my

initial assumption was that the automation of Isabelle would be successful in finding a

proof if the direct call from KeY to SMT solvers was successful in finding a proof. The

results of my testing contradict this assumption. Especially in cases where there are nested

if-then-else statements that need to be resolved, Isabelle seems to struggle to find a proof.

The translations generated by the SMT translation contain additional axioms, which might

affect this difference in proving strength too. Tests on the difference these axioms make

were out of the scope of this work due to time restrictions.
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The initial assumption that Isabelle offers stronger automated reasoning capabilities for

bounded sums appears to be false. Proofs involving bounded sums require induction in

Isabelle. This induction is not done by the automation of Isabelle. The induct tactics also

require special parameters to use the inbuilt induction rules for int and other predefined

types. The induct tactic defaults to the induction rules generated by the interpretation

of int and other predefined types as any subtypes (section 4.1), which are not useful for

induction over sums.

An initial assumption was that Isabelle offers stronger automated reasoning for proofs

involving Heap and sets. Based on the present examples it cannot be said that Isabelle

offers stronger automated reasoning capabilities than the automation of KeY for sets. This

may in part be due to the examples in KeY being largely provable by KeY already. More

complex examples could offer more insights, but were not in the scope of this work due to

time constraints.

Isabelle works especially poorly on the examples “MiniExamples”, “MethodContracts”

and “NewObjects”. These heavily involve invariants of JML contracts. These are translated

without semantics, causing Isabelle to lack the required information to close these proofs.

There may be merit in adding a KeY strategy macro to automatically remove them. Alter-

natively the taclets containing the semantics of invariants could be translated to Isabelle at

time of translation, but an automatic translation of taclets is out of the scope of this work.

The main hypothesis of this work was that Isabelle offered an advantage compared to

the SMT translation and the KeY automation. The results compiled in section 6.1 seem

to suggest that the Isabelle translation offers no advantage and is a weaker automated

tool than the SMT translation and KeY automation. When counting the number of goals

closed by each combination of provers (Table 6.3), it is apparent, that the automation of

KeY is very suitable for the chosen examples. This does not come as a surprise as the

examples were taken from the example library of KeY. Still there are 104 goals, which the

KeY automation could not close. Of these 104 goals Isabelle manages to close 10. SMT

manages to close 19. It therefore appears that Isabelle offers an advantage when compared

to the KeY automation. There is one goal in the “PairInsertionSort” example, that was only

closed by Isabelle and not by the SMT translation or the KeY automation. The proof for this

goal can be found by SMT too, but requires a timeout of around 10 minutes. Perhaps more

extensive testing on other examples can find additional proofs, which Isabelle manages to

close, but the other provers do not. Because there is an example in which Isabelle closes

a proof no other prover could close, it appears that the Isabelle translation does offer an

advantage over the SMT translation and the KeY automation.

In conclusion the Isabelle translation should serve as a valuable addition to the toolbox

of the KeY user for finding proofs automatically. Due to its longer computation times

compared to the SMT translation (see Table 6.2) and the lower overall rate of success it

would seem prudent to first try the SMT translation and the KeY automation before calling

Isabelle to close less computationally intense subgoals.

6.3 Issues in KeY found during evaluation

The issue of duplicate variables in the sequent mentioned in section 5.4 affected the SMT

translation in a different way in the removeDups example. Where the Isabelle translation
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6.3 Issues in KeY found during evaluation

Table 6.1: Number of goals translated and closed by each prover. Goals, that were not

translated, are not counted toward the number of closed goals for other provers.

Example # Goals # Translated # KeY # Z3 # Isabelle

SumAndMax 18 18 18 13 15

information_flow 18 18 17 10 10

BinarySearch 19 19 17 19 12

fm12_01_LRS 19 19 16 19 18

AddAndMultiply 22 22 22 14 12

Sum 37 37 37 30 32

quicksort 47 47 45 33 24

Transactions 51 51 45 18 14

removeDups 57 57 57 41
i

47

list_ghost 59 59 59 30 21

ToyVoting 78 76 72 19 15
ii

SmansEtAl 99 99 99 21 13
iii

Quicktour 106 104 104 68 58

MiniExamples 106 106 92 47 5

MethodContracts 130 130 127 34 24

block_loop_contracts/Simple 194 194 189 123
iv

170

NewObjects 214 208 203 65 24
v

LoopInvariants 223 181 177 150 120

PairInsertionSort 240 240 214 209 139

list_seq 298 298 278 200 146

ToyBanking 457 446 436 326 319

All Examples combined 2492 2429 2324 1489 1238

i
There are 13 goals, on which Z3 encountered an error.

ii
Duplicate Variable caused 2 errors.

iii
Duplicate Variable caused 3 errors.

iv
There are 55 goals, on which Z3 encountered an error. These are caused by a bitvector issue in the SMT translation.

v
Duplicate Variable caused 3 errors
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Table 6.2: Average time spent searching for a successful proof (in ms) by the provers

Example KeY Z3 Isabelle

SumAndMax 122 39 10 145

information_flow 100 36 12 242

BinarySearch 132 77 13 087

fm12_01_LRS 100 32 12 560

AddAndMultiply 100 43 5 879

Sum 100 44 11 447

quicksort 847 516 14 357

Transactions 539 41 6 400

removeDups 134 361 10 984

list_ghost 114 43 15 333

ToyVoting 377 42 9 968

SmansEtAl 155 41 18 784

Quicktour 127 34 11 636

MiniExamples 100 39 6 226

MethodContracts 110 36 11 854

block_loop_contracts/Simple 111 33 8 402

NewObjects 465 44 8 781

LoopInvariants 135 37 4 413

PairInsertionSort 2089 502 14 126

list_seq 535 51 12 919

ToyBanking 841 71 11 158

Table 6.3: Number of successful proofs by prover combination

Provers that found proofs #

All provers 1 153

KeY and Isabelle 21

KeY and Z3 315

KeY 760

Z3 and Isabelle 9

Isabelle 1

Z3 10

No prover 84
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6.3 Issues in KeY found during evaluation

is affected by duplicate declarations for these variables, the SMT translation cannot differ-

entiate between the length function to determine the length of an object and length as a

program variable. Thus the SMT translation fails for some of the goals in removeDups.
There were also 8 subgoals among the chosen examples, which caused errors in the

translation due to duplicate variables appearing on the sequent.

There is an issue with bitvectors in block_loop_contracts/Simple, which causes the SMT

translation to fail on multiple goals.
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7 Conclusion

7.1 Future Work

As this work was a foray into an unexplored direction, there are many open avenues.

Improving the translation and automation The first to come to mind are improvements to

the translation, which could not be pursued in this work due to time restrictions. Improving

the translation can come in the form of adding some of the less integral functions in KeY

that do not appear in the translation. Fine tuning the parameters given to sledgehammer
could be more successful in improving the automation of the translation. Changing

the rules for the handling of if-then-else constructs could be of particular interest here.

Improving the sledgehammer parameters can also come in the form of adding better

tags to the lemmas in the translation. By using certain tags for lemmas they are added

to the default repertoire of certain tactics, like “[simp]” for the simp tactic, but there are

many other possibilities for which tags to use.

Another approach to improving the translation is adding more taclets of KeY to the

preamble. While adding the taclets could be done manually for select taclets, due to the

large collection of taclets in KeY an automated approach would be preferred. Finding a

way to automatically transfer taclets to Isabelle would also allow to extensively check the

correctness of the taclet base of KeY.

This work intentionally did not try to translate update applications of KeY on the sequent.

If not for the SMT preparation macro failing to fully resolve all updates in the sequent

for some problems, this would not affect the translation. Because the SMT preparation

macro does not fully resolve all updates, it might be worthwhile to research a macro that

is able to resolve the updates in more cases. Alternatively there may be merit in finding a

method for translating updates as well.

Better KeY integration Future work may resolve around better integrating Isabelle in KeY.

Some proofs may not be provable by Isabelle, but Isabelle can reduce the proof to an easier

form. It is feasible that these reduced proofs could then be closed by KeY. Therefore there

could be merit in re-translating open proof goals from Isabelle to KeY. Likewise helpful

lemmas proven by the user in Isabelle could be of use in KeY. In this way KeY’s reasoning

could be strengthened.

It should also be possible to use Isabelle for the “focus” mechanism of the SMT translation.

The “focus” mechanism allows the user to hide all antecedent and succedent formulae that

are not part of the unsat core found by SMT. As sledgehammer indicates which rules

and which assumptions of the theorem were used, it should be possible to at least reduce
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the number of formulae in the antecedent in KeY. Perhaps it is even possible to direct the

automation of KeY toward using select taclets.

As the testing has shown, there are quite a few proofs in KeY, which require invariants

and method contracts. These were translated as unknown symbols. At present there is no

automated way of resolving or adding the semantics of these invariants and contracts to

the sequent or the translation. An automated translation of taclets like the one mentioned

earlier in this section could also solve this problem by translating the invariant taclets. As

the testing has shown, there are some goals which cannot be closed by sledgehammer
and require user interaction. Therefore it is beneficial to allow KeY to use the results of

interactive proving in Isabelle. This would require extensive checking of the translation

theory file to ensure that the proofs are correct, as the user could have introduced additional

axioms to close the proof.

7.2 Summary

This work presented a translation of KeY proof obligations without modalities and updates

to Isabelle. It presented the translation for each of the core parts of KeY. This work provided

an implementation of this translation and a way to utilize the automated proving methods

of Isabelle in KeY. This work tested these against the already present automated proving

methods in KeY on over 2 400 proof obligations and showed that there is merit in adding

the Isabelle translation to the automated toolset of KeY. Additionally this work laid the

groundwork for using Isabelle in other ways than automatic proof searching.

The current implementation, once its user interface has been refined, should serve as a

valuable addition to KeY.
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A Appendix

A.1 Extended Evaluation Statistics

The proof states are as follows:

CLOSED means the prover found a proof.

OPEN means the prover did not manage to find a proof.

ERROR means there was an error (see section 6.3) during the proof attempt.

UNKNOWN means the translation failed, because there were updates on the sequent.

Table A.1: Detailed proof states for all provers (1)

Example KeY Z3 Isabelle #

AddAndMultiply CLOSED CLOSED CLOSED 12

AddAndMultiply CLOSED CLOSED OPEN 2

AddAndMultiply CLOSED OPEN OPEN 8

BinarySearch CLOSED CLOSED CLOSED 12

BinarySearch CLOSED CLOSED OPEN 5

BinarySearch OPEN CLOSED OPEN 2

LoopInvariants CLOSED CLOSED CLOSED 120

LoopInvariants CLOSED CLOSED OPEN 30

LoopInvariants CLOSED OPEN OPEN 58

LoopInvariants CLOSED OPEN UNKNOWN 4

LoopInvariants OPEN OPEN OPEN 9

LoopInvariants OPEN OPEN UNKNOWN 2

MethodContracts CLOSED CLOSED CLOSED 24

MethodContracts CLOSED CLOSED OPEN 10

MethodContracts CLOSED OPEN OPEN 93

MethodContracts OPEN OPEN OPEN 3

MiniExamples CLOSED CLOSED CLOSED 5

MiniExamples CLOSED CLOSED OPEN 42

MiniExamples CLOSED OPEN OPEN 45

MiniExamples OPEN OPEN OPEN 14
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Table A.2: Detailed proof states for all provers (2)

Example KeY Z3 Isabelle #

NewObjects CLOSED CLOSED CLOSED 24

NewObjects CLOSED CLOSED ERROR 2

NewObjects CLOSED OPEN ERROR 1

NewObjects CLOSED CLOSED OPEN 39

NewObjects CLOSED OPEN OPEN 137

NewObjects CLOSED OPEN UNKNOWN 6

NewObjects OPEN OPEN OPEN 5

PairInsertionSort CLOSED CLOSED CLOSED 133

PairInsertionSort CLOSED OPEN CLOSED 3

PairInsertionSort CLOSED CLOSED OPEN 66

PairInsertionSort CLOSED OPEN OPEN 12

PairInsertionSort OPEN CLOSED CLOSED 2

PairInsertionSort OPEN OPEN CLOSED 1

PairInsertionSort OPEN CLOSED OPEN 8

PairInsertionSort OPEN OPEN OPEN 15

Quicktour CLOSED CLOSED CLOSED 58

Quicktour CLOSED CLOSED OPEN 10

Quicktour CLOSED OPEN OPEN 36

Quicktour OPEN OPEN UNKNOWN 2

SmansEtAl CLOSED CLOSED CLOSED 13

SmansEtAl CLOSED OPEN ERROR 3

SmansEtAl CLOSED CLOSED OPEN 8

SmansEtAl CLOSED OPEN OPEN 75

Sum CLOSED CLOSED CLOSED 27

Sum CLOSED OPEN CLOSED 5

Sum CLOSED CLOSED OPEN 3

Sum CLOSED OPEN OPEN 2

SumAndMax CLOSED CLOSED CLOSED 13

SumAndMax CLOSED OPEN CLOSED 2

SumAndMax CLOSED OPEN OPEN 3

ToyBanking CLOSED CLOSED CLOSED 315

ToyBanking CLOSED CLOSED OPEN 7

ToyBanking CLOSED OPEN OPEN 114

ToyBanking CLOSED CLOSED UNKNOWN 8

ToyBanking CLOSED OPEN UNKNOWN 3

ToyBanking OPEN CLOSED CLOSED 4

ToyBanking OPEN OPEN OPEN 6
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Table A.3: Detailed proof states for all provers (3)

Example KeY Z3 Isabelle #

ToyVoting CLOSED CLOSED CLOSED 15

ToyVoting CLOSED OPEN ERROR 2

ToyVoting CLOSED CLOSED OPEN 4

ToyVoting CLOSED OPEN OPEN 51

ToyVoting CLOSED OPEN UNKNOWN 2

ToyVoting OPEN OPEN OPEN 4

Transactions CLOSED CLOSED CLOSED 14

Transactions CLOSED OPEN OPEN 27

Transactions CLOSED CLOSED OPEN 4

Transactions OPEN OPEN OPEN 6

block_loop_contracts/Simple CLOSED CLOSED CLOSED 118

block_loop_contracts/Simple CLOSED ERROR CLOSED 41

block_loop_contracts/Simple CLOSED OPEN CLOSED 11

block_loop_contracts/Simple CLOSED CLOSED OPEN 5

block_loop_contracts/Simple CLOSED ERROR OPEN 11

block_loop_contracts/Simple CLOSED OPEN OPEN 3

block_loop_contracts/Simple OPEN ERROR OPEN 1

block_loop_contracts/Simple OPEN OPEN OPEN 4

fm12_01_LRS/lcp.key CLOSED CLOSED CLOSED 15

fm12_01_LRS/lcp.key CLOSED CLOSED OPEN 1

fm12_01_LRS/lcp.key OPEN CLOSED CLOSED 3

information_flow CLOSED CLOSED CLOSED 10

information_flow CLOSED OPEN OPEN 7

information_flow OPEN OPEN OPEN 1

list_ghost CLOSED CLOSED CLOSED 21

list_ghost CLOSED CLOSED OPEN 9

list_ghost CLOSED OPEN OPEN 29

list_seq CLOSED CLOSED OPEN 54

list_seq CLOSED OPEN OPEN 78

list_seq OPEN OPEN OPEN 20

quicksort CLOSED CLOSED CLOSED 24

quicksort CLOSED CLOSED OPEN 9

quicksort CLOSED OPEN OPEN 12

quicksort OPEN OPEN OPEN 2

removeDups CLOSED CLOSED CLOSED 34

removeDups CLOSED ERROR CLOSED 13

removeDups CLOSED CLOSED OPEN 7

removeDups CLOSED OPEN OPEN 1

removeDups CLOSED ERROR OPEN 2

53



A Appendix

Isabelle listing A.1: Complete TranslationPreamble theory

A.2 Complete TranslationPreamble theory
theory TranslationPreamble imports Main "HOL-Combinatorics.List_Permutation" begin

locale jArithmetics =

fixes jDiv::"int⇒int⇒int"

assumes jDiv_def [simp]: "b≠0 =⇒ jDiv a b =

(if ((a≤0 ∧ b<0) ∨ (a≥0 ∧ b>0) ∨ (b dvd a)) then (a div b)

else ((a div b) + 1))"

fixes euclMod::"int⇒int⇒int"

assumes eucl_Mod_def [simp]: "l≠0 =⇒ euclMod k l = (if (k mod l < 0) then ((k mod l)

+ abs(l))

else (k mod l))"

begin

definition int_HALFRANGE::int where [simp, intro]:"int_HALFRANGE=2^31"

definition int_RANGE::int where [simp, intro]:"int_RANGE=2^32"

definition int_MIN::int where [simp, intro]:"int_MIN=-(2^31)"

lemma jDiv_spec_requirement:

fixes a::int

fixes b::int

assumes "b≠0"

shows "abs(jDiv a b * b) ≤ abs(a) ∧ abs(a) < abs(jDiv a b * b) + abs(b)"

proof -

have "abs(jDiv a b * b) + abs(b) ≡ abs(jDiv a b) * abs(b) + abs(b)"

by (simp add: abs_mult)

also have "... ≡ (abs(jDiv a b) + 1) * abs(b)"

by algebra

finally have dist_jDiv_largest: "abs(jDiv a b * b) + abs(b) ≡ abs((abs(jDiv a b) + 1)

* b)"

by (simp add: abs_mult)

consider (is_Div) "(a≥0 ∧ b>0) ∨ (a≤0) ∧ (b<0) ∨ (b dvd a)" | (not_Div) "(a<0∧b>0
∨ a>0∧b<0) ∧ ¬(b dvd a)" using assms by linarith

then show ?thesis

proof cases

case is_Div

then have jDiv_eq_div: "jDiv a b = a div b" using assms by auto

consider (b_dvd_a) "b dvd a" | (both_pos) "(a>0 ∧ b>0)" | (both_neg) "(a<0) ∧ (b<0)"

using is_Div by (metis dvd_0_right leD linorder_neqE_linordered_idom)

then show ?thesis

proof cases

case (b_dvd_a)

then have "a div b * b = a" using assms by simp
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then show ?thesis by (simp add: assms jDiv_eq_div)

next
case (both_pos)

then have "abs(a div b * b) ≤ abs(a) ≡ a div b * b ≤ a"

by (simp add:pos_imp_zdiv_nonneg_iff)

also
have "... ≡ a div b * b ≤ a div b * b + a mod b" using both_pos by simp

also
have "... ≡ 0 ≤ a mod b" using both_pos by linarith

finally
have req:"abs(jDiv a b * b) ≤ abs(a)"

by (simp add: both_pos jDiv_eq_div)

have "a mod b < abs(b)" using both_pos by auto

then have "a < a div b * b + abs(b)"

by (metis add.commute add_less_cancel_right mod_mult_div_eq mult.commute)

then have largest:"abs(a) < abs(jDiv a b * b) + abs(b)" using both_pos by auto

then show ?thesis using req largest by blast

next
case (both_neg)

then have "abs(a div b * b) ≤ abs (a) ≡ -(a div b * b) ≤ -a"

by (simp add: div_int_pos_iff mult_nonneg_nonpos)

also
have "... ≡ a div b * b ≥ a div b * b + a mod b" by simp

also
have "... ≡ 0 ≥ a mod b" by linarith

finally
have req:"abs(jDiv a b * b) ≤ abs(a)"

by (simp add: both_neg jDiv_eq_div)

have "abs(a) < abs(jDiv a b * b) + abs(b) ≡ -((a div b * b) + a mod b) < abs(a

div b * b) - b" using both_neg by simp

also have "... ≡ -((a div b * b) + a mod b) < -(a div b * b) - b" using both_neg

by (simp add: div_int_pos_iff mult_nonneg_nonpos)

also have "... ≡ (a div b * b) + a mod b > (a div b * b) + b" by linarith

also have "... ≡ a mod b > b" by linarith

finally have largest:"abs(a) < abs(jDiv a b * b) + abs(b)" using both_neg neg_mod_bound

by blast

then show ?thesis using req largest by blast

qed
next
case not_Div

then have jDiv_eq_divplus: "jDiv a b = (a div b) + 1" using assms by auto

then have "abs(jDiv a b * b) ≤ abs(a) ≡ abs(a div b * b + b) ≤ abs(a div b * b

+ a mod b)"

by (simp add: distrib_left mult.commute)

consider (b_neg) "b<0∧a>0" | (b_pos) "b>0∧a<0" using assms not_Div by linarith

then show ?thesis

proof cases
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case (b_neg)

then have quotient_neg:"a div b < 0"

by (simp add: neg_imp_zdiv_neg_iff)

then have abs_jDiv:"abs((jDiv a b) * b) = (a div b + 1) * b" using b_neg jDiv_eq_divplus

by (simp add: mult_nonpos_nonpos)

then have "abs(jDiv a b * b) ≤ abs(a) ≡ (a div b + 1) * b ≤ a div b * b + a mod

b"

by (simp add: abs_of_pos b_neg jDiv_eq_divplus)

also have "... ≡ a div b * b + b ≤ a div b * b + a mod b"

by (simp add: distrib_left mult.commute)

also have "... ≡ b ≤ a mod b"

by linarith

finally have requirement:"abs(jDiv a b * b) ≤ abs(a)" using b_neg neg_mod_bound

order_less_imp_le

by blast

have mod_le_zero:"a mod b < 0" using mod_eq_0_iff_dvd not_Div b_neg neg_mod_sign

by (metis linorder_not_less verit_la_disequality)

have "abs(a) < abs(jDiv a b * b) + abs(b) ≡ a < ((a div b + 1) * b) + abs(b)" us-
ing jDiv_eq_divplus b_neg abs_jDiv

by simp

also have "... ≡ a < a div b * b + b + abs b"

by (simp add: distrib_left mult.commute)

also have "... ≡ a < a div b * b" using b_neg abs_of_neg

by simp

also have "... ≡ a div b * b + a mod b < a div b * b" using mult_div_mod_eq

by simp

also have "... ≡ a mod b < 0"

by linarith

finally have largest:"abs(a) < abs(jDiv a b * b) + abs(b)" using mod_le_zero

by blast

show ?thesis using requirement largest by blast

next
case (b_pos)

then have "a div b < 0"

by (simp add: pos_imp_zdiv_neg_iff)

then have abs_jDiv:"abs((jDiv a b) * b) = -((a div b + 1) * b)" using b_pos jDiv_eq_divplus

by (simp add: mult_le_0_iff)

then have "abs(jDiv a b * b) ≤ abs(a) ≡ -((a div b + 1) * b) ≤ -(a div b * b

+ a mod b)"

by (simp add: abs_of_neg b_pos jDiv_eq_divplus)

also have "... ≡ (a div b + 1) * b ≥ a div b * b + a mod b"

by simp

also have "... ≡ a div b * b + b ≥ a div b * b + a mod b"

by (simp add: distrib_left mult.commute abs_of_neg b_pos jDiv_eq_divplus)
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also have "... ≡ b ≥ a mod b" by linarith

finally have requirement:"abs(jDiv a b * b) ≤ abs(a)" using b_pos pos_mod_bound

order_less_imp_le

by blast

have mod_greater_zero:"a mod b > 0" using mod_eq_0_iff_dvd not_Div

by (metis b_pos mod_int_pos_iff order_antisym_conv verit_comp_simplify1(3))

have "abs(a) < abs(jDiv a b * b) + abs(b) ≡ -a < -((a div b + 1) * b) + abs(b)"

using jDiv_eq_divplus b_pos abs_jDiv

by simp

also have "... ≡ -a < -(a div b * b) - b + abs b"

by (simp add: distrib_left mult.commute)

also have "... ≡ a > a div b * b" using b_pos abs_of_pos

by simp

also have "... ≡ a div b * b + a mod b > a div b * b" using mult_div_mod_eq

by simp

also have "... ≡ a mod b > 0"

by linarith

finally have largest:"abs(a) < abs(jDiv a b * b) + abs(b)"

using mod_greater_zero by blast

show ?thesis using requirement largest by blast

qed
qed

qed

fun jMod::"int⇒int⇒int" where
"jMod a b = a - (jDiv a b)*b"

lemma jMod_jDiv_eq:

fixes a::int

fixes b::int

assumes "b≠0"

shows "a = (jDiv a b)*b + jMod a b"

by simp

fun moduloInt::"int⇒int"

where "moduloInt a = int_MIN + ((int_HALFRANGE + a) mod (int_RANGE))"

fun jAdd::"int⇒int⇒int"

where "jAdd a b = moduloInt (a+b)"

fun jSub:: "int⇒int⇒int" where
"jSub a b = moduloInt (a-b)"

fun jMul:: "int⇒int⇒int" where
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"jMul a b = moduloInt (a*b)"

lemma euclMod_spec:

fixes a::int

fixes b::int

assumes "b≠0"

shows "0≤euclMod a b ∧ euclMod a b < abs(b)"

proof -

consider (mod_neg) "a mod b < 0" | (mod_nonneg) "a mod b≥0" by linarith

then show ?thesis

proof cases

case (mod_neg)

then have "0≤euclMod a b ∧ euclMod a b < abs(b) ≡ 0≤a mod b + abs(b) ∧ a mod b

+ abs(b) < abs(b)" using assms

by auto

also have "... ≡ -abs(b)≤a mod b ∧ a mod b + abs(b) < abs(b)"

by linarith

also have "... ≡ abs(b) ≥ abs(a mod b) ∧ a mod b + abs(b) < abs(b)"

using mod_neg by linarith

also have "... ≡ a mod b + abs(b) < abs(b)"

by (simp add: abs_mod_less assms dual_order.order_iff_strict)

finally show ?thesis

using mod_neg by auto

next
case (mod_nonneg)

then have "0≤euclMod a b ∧ euclMod a b < abs(b) ≡ 0≤a mod b ∧ a mod b < abs(b)"

using assms

by auto

then show ?thesis

by (metis abs_mod_less abs_of_nonneg assms mod_nonneg)

qed
qed

fun euclDiv::"int⇒int⇒int" where
"(euclDiv k l) = (k - euclMod k l) div l"

lemma euclMod_euclDiv_eq:

fixes a::int

fixes b::int

assumes "b≠0"

shows "a = euclDiv a b * b + euclMod a b"

proof -

consider (mod_le0) "a mod b<0" | (mod_geq0) "a mod b≥0" by linarith

then show ?thesis

proof cases

case mod_le0
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then have "euclMod a b = a mod b + abs(b)" using assms

by simp

then have "euclMod a b = a - ((a div b) * b) + abs(b)"

by (metis minus_div_mult_eq_mod)

then have "(euclDiv a b) = (a div b * b) div b - (abs(b)) div b"

by simp

then have "euclDiv a b = (a div b) - sgn(b)"

by (metis div_by_0 linordered_idom_class.abs_sgn nonzero_mult_div_cancel_left nonzero_mult_div_cancel_right

sgn_0)

then have "euclDiv a b * b = (a div b)*b - abs b"

by (metis linordered_idom_class.abs_sgn mult.commute right_diff_distrib’)

then show ?thesis using assms

by auto

next
case mod_geq0

then have euclMod_eq_mod:"euclMod a b = a mod b" using assms

by simp

then have "euclDiv a b = a div b"

by (simp add: minus_mod_eq_mult_div)

then show ?thesis using euclMod_eq_mod

by auto

qed
qed
end

declare [[coercion_enabled]]

declare [[coercion_map image]]

typedecl any

consts
bottom::"any"

specification (bottom) "bottom = bottom"

by simp

lemma bottom_in_any:"bottom ∈ (UNIV::any set)"

by simp

typedef javaDL_type = "(UNIV::any set set)"

by auto

setup_lifting type_definition_javaDL_type

lift_definition typeof::"any⇒javaDL_type⇒bool" is Set.member.
lift_definition subtype::"javaDL_type⇒javaDL_type⇒bool" is Set.subset_eq.
lift_definition strict_subtype::"javaDL_type⇒javaDL_type⇒bool" is Set.subset.
lift_definition disjointTypes::"javaDL_type⇒javaDL_type⇒bool" is Set.disjnt.
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consts
int_UNIV::"any set"

int2any::"int⇒any"

any2int::"any⇒int"

axiomatization where int_sub_any[simp]:"type_definition int2any any2int (int_UNIV)"

declare [[coercion int2any]]

interpretation int:type_definition int2any any2int int_UNIV

by simp

definition int_type::"javaDL_type" where "int_type ≡ Abs_javaDL_type (UNIV::int set)"

consts
bool_UNIV::"any set"

bool2any::"bool⇒any"

any2bool::"any⇒bool"

axiomatization where bool_sub_any[simp]:"type_definition bool2any any2bool (bool_UNIV)"

declare [[coercion bool2any]]

interpretation bool:type_definition bool2any any2bool bool_UNIV

by simp

definition bool_type::"javaDL_type" where "bool_type ≡ Abs_javaDL_type (UNIV::bool set)"

consts
java_lang_Object_UNIV::"any set"

specification (java_lang_Object_UNIV) "java_lang_Object_UNIV ⊆ (UNIV::any set)"

"bottom:java_lang_Object_UNIV"

by auto

lemma java_lang_Object_UNIV_specification:"java_lang_Object_UNIV ⊆ (UNIV::any set) ∧
bottom:java_lang_Object_UNIV"

by (metis (mono_tags, lifting) java_lang_Object_UNIV_def UNIV_I subset_UNIV verit_sko_ex_indirect)

typedef java_lang_Object = "java_lang_Object_UNIV"

morphisms java_lang_Object2any any2java_lang_Object

using java_lang_Object_UNIV_specification by auto
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declare [[coercion java_lang_Object2any]]

definition java_lang_Object_type::"javaDL_type" where "java_lang_Object_type ≡ Abs_javaDL_type

(UNIV::java_lang_Object set)"

lemma java_lang_Object_subset_any[simp]:"(UNIV::java_lang_Object set) ⊆ (UNIV::any

set)"

by simp

lemma bottom_in_java_lang_Object[simp] :"bottom ∈ (UNIV::java_lang_Object set)"

using java_lang_Object_UNIV_specification

using type_definition.Rep_range type_definition_java_lang_Object by blast

consts
Field_UNIV::"any set"

specification (Field_UNIV) "Field_UNIV ⊆ (UNIV::any set)"

"Field_UNIV ≠ {}"

by auto

lemma Field_UNIV_specification:"Field_UNIV ⊆ (UNIV::any set) ∧
Field_UNIV ≠ {}"

by (metis (mono_tags, lifting) Field_UNIV_def empty_not_UNIV someI_ex top_greatest)

typedef Field = Field_UNIV

morphisms Field2any any2Field

using Field_UNIV_specification by auto

declare [[coercion Field2any]]

consts
created::"Field"

fieldType::"Field⇒javaDL_type"

axiomatization arr::"int⇒Field" where arr_inject[simp]:"(arr x = arr y) = (x = y)"

definition Field_type::"javaDL_type" where "Field_type ≡ Abs_javaDL_type (UNIV::Field

set)"

typedef LocSet = "UNIV::(java_lang_Object × Field) set set"

by simp

setup_lifting type_definition_LocSet
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lift_definition elementOf::"java_lang_Object ⇒ Field ⇒LocSet⇒bool" is "𝜆obj f s. (obj,

f) ∈ s".
lift_definition empty::"LocSet" is Set.empty.
lift_definition allLocs::"LocSet" is Set.UNIV.
lift_definition singleton::"java_lang_Object⇒Field⇒LocSet" is "𝜆obj f. {(obj, f)}".
lift_definition disjoint::"LocSet⇒LocSet⇒bool" is Set.disjnt.
lift_definition union::"LocSet⇒LocSet⇒LocSet" is Set.union.
lift_definition intersect::"LocSet⇒LocSet⇒LocSet" is Set.inter.
lift_definition setMinus::"LocSet⇒LocSet⇒LocSet" is minus.
lift_definition allFields::"java_lang_Object⇒LocSet" is "𝜆x. {x} × (UNIV::Field set)".
lift_definition allObjects::"Field⇒LocSet" is "𝜆x. (UNIV::java_lang_Object set) × {x}".
lift_definition arrayRange::"java_lang_Object⇒int⇒int⇒LocSet" is "𝜆obj x y. {obj} ×
(image arr {x..y})".
lift_definition subset::"LocSet⇒LocSet⇒bool" is Set.subset.
lift_definition infiniteUnion::"LocSet set⇒LocSet" is Complete_Lattices.Union.

consts
LocSet_Image::"any set"

LocSet2any::"LocSet⇒any"

any2LocSet::"any⇒LocSet"

axiomatization where LocSet_sub_any:"type_definition LocSet2any any2LocSet LocSet_Image"

declare [[coercion LocSet2any]]

interpretation LocSet:type_definition LocSet2any any2LocSet LocSet_Image

by (rule LocSet_sub_any)

definition LocSet_type::"javaDL_type" where "LocSet_type ≡ Abs_javaDL_type (UNIV::LocSet

set)"

typedef Heap = "UNIV::(java_lang_Object ⇒ Field ⇒ any) set"

by simp

declare [[coercion Rep_Heap]]

consts
Heap_Image::"any set"

Heap2any::"Heap⇒any"

any2Heap::"any⇒Heap"

axiomatization where Heap_sub_any:"type_definition Heap2any any2Heap Heap_Image"

declare [[coercion Heap2any]]
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interpretation Heap:type_definition Heap2any any2Heap Heap_Image

by (rule Heap_sub_any)

definition Heap_type::"javaDL_type" where "Heap_type ≡ Abs_javaDL_type (UNIV::Heap set)"

class any =

fixes to_any::"’a⇒any"

fixes cast::"any⇒’a"

instantiation any::any

begin
fun to_any_any where "to_any_any x = (id::any⇒any) x"

fun cast_any where "cast_any x = (id::any⇒any) x"

instance by standard

end

instantiation int::any

begin
fun to_any_int where "to_any_int x = int2any x"

fun cast_int where "cast_int x = any2int x"

instance by standard

end

instantiation bool::any

begin
fun to_any_bool where "to_any_bool x = bool2any x"

fun cast_bool where "cast_bool x = any2bool x"

instance by standard

end

instantiation Field::any

begin
fun to_any_Field where "to_any_Field x = Field2any x"

fun cast_Field where "cast_Field x = any2Field x"

instance by standard

end

instantiation LocSet::any

begin
fun to_any_LocSet where "to_any_LocSet x = LocSet2any x"

fun cast_LocSet where "cast_LocSet x = any2LocSet x"

instance by standard

end
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instantiation Heap::any

begin
fun to_any_Heap where "to_any_Heap x = Heap2any x"

fun cast_Heap where "cast_Heap x = any2Heap x"

instance by standard

end

instantiation java_lang_Object::any

begin
fun cast_java_lang_Object where "cast_java_lang_Object x = any2java_lang_Object x"

fun to_any_java_lang_Object where "to_any_java_lang_Object x = java_lang_Object2any

x"

instance by standard

end

typedef (overloaded) Null = "{bottom}"

morphisms Null2any any2Null

by simp

declare [[coercion Null2any]]

lemma bottom_Null_set:"(UNIV::Null set) = {bottom}"

using type_definition.Rep_range type_definition_Null by blast

lemma Null_sub_java_lang_Object_Types: "(UNIV::Null set) ⊆ (UNIV::java_lang_Object

set)"

using bottom_Null_set bottom_in_java_lang_Object by auto

definition "null ≡ any2Null bottom"

instantiation Null::any

begin
fun to_any_Null where "to_any_Null (x::Null) = Null2any x"

fun cast_Null where "cast_Null x = any2Null x"

instance by standard

end

abbreviation "Null2java_lang_Object≡any2java_lang_Object ◦ Null2any"

declare [[coercion Null2java_lang_Object]]

fun instanceof::"any⇒javaDL_type⇒bool"

where "instanceof x type = typeof x type"

typedef Seq = "UNIV::any list set"

by auto
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axiomatization Seq2any any2Seq Seq_UNIV

where Seq_sub_any:"type_definition (Seq2any::Seq⇒any) (any2Seq::any⇒Seq) (Seq_UNIV::any

set)"

declare [[coercion Seq2any]]

interpretation Seq:type_definition Seq2any any2Seq Seq_UNIV

by (rule Seq_sub_any)

instantiation Seq::any

begin
fun to_any_Seq where "to_any_Seq (x::Seq) = Seq2any x"

fun cast_Seq where "cast_Seq (x::any) = any2Seq x"

instance by standard

end

definition Seq_type::"javaDL_type" where "Seq_type ≡ Abs_javaDL_type (UNIV::Seq set)"

consts
seqGetOutside::any

setup_lifting type_definition_Seq

lift_definition seqLen::"Seq⇒int" is "int ◦ List.length".
lift_definition seqGet::"Seq⇒int⇒’a::any" is "𝜆s i. (if (0::int)≤i∧i<(int (length s))

then cast (s ! (nat i)) else cast seqGetOutside)".
lift_definition seqDef::"int⇒int⇒(int⇒any)⇒Seq" is "𝜆le ri e. map e [le..ri - 1]".
lift_definition seqEmpty::"Seq" is "[]".
lift_definition seqSingleton::"any⇒Seq" is "𝜆x. [x]".
lift_definition seqConcat::"Seq⇒Seq⇒Seq" is List.append.
lift_definition seqReverse::"Seq⇒Seq" is List.rev.
lift_definition seqPerm::"Seq⇒Seq⇒bool" is List_Permutation.perm.

fun seqNPerm::"Seq⇒bool"

where "seqNPerm s = seqPerm s (seqDef 0 (seqLen s - 1) (to_any))"

fun seqSub::"Seq⇒int⇒int⇒Seq" where
"seqSub s i j = seqDef i j (𝜆x. seqGet s x)"

primrec (nonexhaustive) listIndexOf::"’a list⇒’a⇒int" where
"listIndexOf (x#xs) a = (if (x=a) then 0 else 1+(listIndexOf xs a))"

lift_definition seqIndexOf::"Seq⇒any⇒int" is "listIndexOf".

fun listSwap::"’a list⇒int⇒int⇒’a list"

where "listSwap l i j =

(if ¬(0≤i ∧ i<int (length l) ∧ 0≤j ∧ i<int (length l))

65



A Appendix

then l

else list_update (list_update l (nat i) (l ! (nat j))) (nat j) (l ! (nat i)))"

lift_definition seqSwap::"Seq⇒int⇒int⇒Seq" is listSwap.

fun listRemove::"’a list⇒nat⇒’a list"

where "listRemove [] _ = []"

| "listRemove (x#xs) 0 = xs"

| "listRemove (x#xs) (Suc k) = x # (listRemove xs k)"

lift_definition seqRemove::"Seq⇒int⇒Seq" is "𝜆s (i::int). (if ¬(0≤i ∧ i<int (length

s)) then s else listRemove s (nat i))".

consts
exactInstance::"any⇒javaDL_type⇒bool"

axiomatization obj_length::"java_lang_Object⇒int" where length_nonneg[simp]:"obj_length

obj ≥ 0"

fun unusedLocs where "unusedLocs (h::Heap) = Abs_LocSet {((obj::java_lang_Object), (f::Field)).

(h obj created=False)∧ obj≠null}"

fun select::"Heap⇒java_lang_Object⇒Field⇒’a::any" where
"select h obj f = cast (h obj f)"

fun anon::"Heap⇒LocSet⇒Heap⇒Heap" where
"anon h1 s h2 = Abs_Heap (𝜆(obj::java_lang_Object) (f::Field). (if elementOf obj f s

∧ f≠created ∨ elementOf obj f (unusedLocs h1)

then select h2 obj f else select h1 obj f))"

fun store::"Heap⇒java_lang_Object⇒Field⇒any⇒Heap" where
"store h obj f x = Abs_Heap (𝜆(obj’::java_lang_Object) (f’::Field). (if obj’=obj ∧

f’=f ∧ f≠created then x else h obj’ f’))"

fun create::"Heap⇒java_lang_Object⇒Heap" where
"create h obj = Abs_Heap (𝜆(obj’::java_lang_Object) (f’::Field). (if obj’=obj ∧ f’=created

∧ obj≠null then cast True else h obj’ f’))"

class array = any +

fixes element_type::"’a⇒javaDL_type"

axiomatization wellFormed::"Heap⇒bool" where
onlyCreatedjava_lang_ObjecteAreReferenced:"wellFormed h =⇒ select h obj f = null ∨

((select h (select h obj f) created)::bool)"
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and onlyCreatedjava_lang_ObjectsAreInLocSets:"wellFormed h ∧ elementOf (o2::java_lang_Object)

f2 ((select

h obj f)::LocSet) =⇒ Null2java_lang_Object null=o2 ∨ ((select h o2

created)::bool)"

and wellFormedStorejava_lang_Object:"wellFormed h ∧ ((x::java_lang_Object)=null ∨
((select

h x created) ∧ instanceof x (fieldType f))) =⇒ wellFormed (store h obj f x)"

and wellFormedStoreLocSet:"wellFormed h ∧ (∀ ov fv. (elementOf ov fv y −→ ov = null

∨ select h ov created))

=⇒ wellFormed (store h obj f y)"

and wellFormedStorePrimitive:"(typeof x (fieldType f) =⇒ ¬typeof x java_lang_Object_type

=⇒ ¬typeof x LocSet_type =⇒ wellFormed h

=⇒ wellFormed (store h obj f x))"

and wellFormedCreate:"wellFormed h =⇒ wellFormed (create h obj)"

and wellFormedAnon:"wellFormed h ∧ wellFormed h2 =⇒ wellFormed (anon h y h2)"

axiomatization where wellFormedStoreArray:"wellFormed h ∧ ((x::java_lang_Object)=null

∨ (select h x created ∧ (typeof x (element_type obj))))

=⇒ wellFormed (store h (cast (to_any (obj::’a::{array, any}))) (arr idx) x)"

definition "setOfStandardAnySubtypes≡{int_type, bool_type, java_lang_Object_type, Field_type,

Heap_type, LocSet_type, Seq_type}"

axiomatization where distinctStandardTypes[simp]:"∀ x∈setOfStandardAnySubtypes. (∀ y∈setOfStandardAnySubtypes.
disjointTypes x y)"

lemma induct_sum_upper_limit:

fixes f::"int⇒int"

fixes lower::int

fixes upper::int

assumes "lower<upper"

shows "(
∑

(i::int) = lower..<upper. f i) = (
∑

(i::int) = lower..<upper - 1. f i) +

f (upper - 1)"

proof -

have "{lower..<upper} = {lower..<upper-1} ∪ {upper-1..<upper}"

using assms by auto

have "{upper-1..<upper} = {upper - 1}"

by auto

then have "sum f ({lower..<upper-1} ∪ {upper-1..<upper}) = (
∑

(i::int) = lower..<upper-1.

f i) + (
∑

(i::int) = upper-1..<upper. f i) - sum f ({lower..<upper-1} ∩ {upper-1..<upper})"

by (subst sum.union_inter [symmetric]) (auto simp add: algebra_simps)

then have "sum f {lower..<upper} = (
∑

(i::int) = lower..<upper-1. f i) + (
∑

(i::int)

= upper-1..<upper. f i) - sum f ({lower..<upper-1} ∩ {upper-1..<upper})"

using ‹{lower..<upper} = {lower..<upper-1} ∪ {upper-1..<upper}› by presburger

also have "... = (
∑

(i::int) = lower..<upper-1. f i) + (
∑

(i::int) = upper-1..<upper.

f i)"
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by simp

finally show ?thesis

using ‹{upper-1..<upper} = {upper - 1}› by auto

qed

end
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