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Abstract
Estimating the statistical robustness of the inferred tree(s) constitutes an integral part of most phylogenetic analyses. 
Commonly, one computes and assigns a branch support value to each inner branch of the inferred phylogeny. The 
still most widely used method for calculating branch support on trees inferred under maximum likelihood (ML) is the 
Standard, nonparametric Felsenstein bootstrap support (SBS). Due to the high computational cost of the SBS, a 
plethora of methods has been developed to approximate it, for instance, via the rapid bootstrap (RB) algorithm. 
There have also been attempts to devise faster, alternative support measures, such as the SH-aLRT (Shimodaira– 
Hasegawa-like approximate likelihood ratio test) or the UltraFast bootstrap 2 (UFBoot2) method. Those faster alter
natives exhibit some limitations, such as the need to assess model violations (UFBoot2) or unstable behavior in the 
low support interval range (SH-aLRT). Here, we present the educated bootstrap guesser (EBG), a machine learning- 
based tool that predicts SBS branch support values for a given input phylogeny. EBG is on average 9.4 (σ = 5.5) times 
faster than UFBoot2. EBG-based SBS estimates exhibit a median absolute error of 5 when predicting SBS values be
tween 0 and 100. Furthermore, EBG also provides uncertainty measures for all per-branch SBS predictions and there
by allows for a more rigorous and careful interpretation. EBG can, for instance, predict SBS support values on a 
phylogeny comprising 1,654 SARS-CoV2 genome sequences within 3 h on a mid-class laptop. EBG is available under 
GNU GPL3.
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Introduction
Inferring phylogenetic trees under the maximum- 
likelihood (ML) criterion is time—and resource-intensive, 
as the number of possible tree topologies increases super- 
exponentially with the number of taxa under study. As a 
consequence, tree search algorithms, as implemented in 
RAxML-NG (Kozlov et al. 2019), conduct their search for 
a best-known, yet not necessarily globally optimal, tree 
topology via a plethora of distinct heuristics. As there is 
no guarantee that the tree search will converge to the 
globally optimal tree, subsequent analyses to quantify its 
uncertainty are necessary. Such uncertainty analyses con
stitute an integral as well as routine component of current 
phylogenetic analysis pipelines (Kapli et al. 2020). The 
most common approach to quantify uncertainty is to infer 
various types of inner branch support values. The still most 
common technique to calculate branch support values on 
a resulting phylogeny under ML is the Standard, non
parametric classic Felsenstein bootstrap support (SBS) 

(Felsenstein 1985). The SBS randomly samples the align
ment sites of the multiple sequence alignment (MSA) 
with replacement to create a set of replicate MSAs (called 
bootstrap replicates). On each such replicate, one subse
quently infers a respective ML tree. Thus, the SBS yields 
a set of bootstrap replicate ML trees. This SBS procedure 
is time- and resource-consuming, due to the high compu
tational cost of conducting a phylogenetic tree inference 
on each replicate. Note that typically 100 to 500 replicate 
trees need to be inferred to obtain stable support values 
(Pattengale et al. 2010).

To alleviate this computational bottleneck, a plethora 
of alternative, faster methods to infer branch support 
have been proposed. For example, Stamatakis et al. 
(2008) propose the rapid bootstrap (RB) as part of the 
phylogenetic inference tool RAxML (Stamatakis 2014) as 
a faster alternative to the SBS. RB uses a heuristic approach 
that implements a more superficial ML tree search to ap
proximate the SBS values and reduce computational costs. 
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On multiple large datasets (Stamatakis et al. 2008) show 
that RB support values are highly correlated with the 
SBS values (Pearson correlation between 0.92 and 0.99). 
The Ultrafast Bootstrap (UFBoot) (Minh et al. 2013) and 
its current version UFBoot2 (Hoang et al. 2018) interweave 
parametric (substitution model-dependent) and non
parametric aspects. While the tree space sampling of 
UFBoot2 is parametric, it deploys a nonparametric boot
strap sampling of the MSA. UFBoot2 yields easy-to- 
interpret, unbiased branch support values, the UltraFast 
bootstrap support (UFBS). According to the authors’ ex
periments, UFBoot2 is extremely fast, as, on median, it is 
778 times faster than SBS and 8.4 times faster than RB.

Both RB (optionally) and UFBoot2 employ an iterative 
approximation of their branch supports until they either 
meet a stopping criterion or reach a maximum number 
of iterations. Thus, the runtimes of these methods can 
vary, since they depend on the input MSA, which deter
mines if and when the support value calculations will 
converge.

Anisimova and Gascuel (2006) propose an alternative 
definition of branch support based on a parametric meth
od for branch support estimation: the approximate likeli
hood ratio test (aLRT). The aLRT compares the two best 
nearest-neighbor interchange (NNI) moves at each inner 
branch via an LRT test, to calculate a branch support value. 
To accelerate the NNI likelihood evaluation, aLRT only op
timizes the branches adjacent to the branch of interest. As 
aLRT is parametric, it can be sensitive to substitution mod
el violations. Substitution model violations occur, for ex
ample, when we choose a substitution model that is too 
simple for the data at hand. To correct for those violations, 
Guindon et al. (2010) propose the Shimodaira– 
Hasegawa-like (SH-like) aLRT, which constitutes a non
parametric version of the aLRT. The aLRT and SH-like 
aLRT only focus on local perturbations of the given ML 
topology on which they calculate supports. This can in
duce overconfidence in branches if there exist other highly 
likely, yet topologically substantially distinct tree topolo
gies (Guindon et al. 2010). One recent example of such a 
tree space with a multitude of topologically highly distinct, 
yet almost equally likely tree topologies is a phylogeny of 
SARS-CoV2 genome sequences (Morel et al. 2020).

Despite the availability of these tools, SBS remains an 
important approach for assessing branch support 
(Brandis 2021; Ahmed et al. 2022; Steck et al. 2022). 
Guindon et al. (2010) propose to combine the SBS with 
the SH-like aLRT to obtain a holistic estimate of branch ro
bustness. UFBoot2 is less vulnerable to severe model viola
tions than UFBoot (Hoang et al. 2018). Nonetheless, 
UFBoot2 still requires an additional step to assess such vio
lations. SBS is inherently robust against model violations, 
as it is nonparametric.

Here, we present the educated bootstrap guesser (EBG), 
a machine learning-based approach for predicting SBS va
lues. Predicting SBS values on 234 empirical MSAs with 
EBG is on average 9.4 (σ = 5.5) times faster with respect 
to time-to-completion compared to UFBoot2. Based on 

these experiments, we show that EBG can also predict 
whether a specific branch will exceed a particular SBS 
threshold (e.g. t : = 80) in a 1,000 replicate SBS run with 
a balanced accuracy (BAC) of at least 0.91. EBG is available 
as an open-source command line tool on GitHub github. 
com/wiegertj/EBG.

Materials and Methods
Phylogenetic Bootstrap
On each replicate, the SBS infers a corresponding ML tree, 
which yields a set of replicate trees. We can use the set of 
replicate trees to either construct a consensus tree or to 
map confidence values onto a reference tree (typically 
the best-known ML tree) as SBS values. The SBS value 
for a specific inner branch (also referred to as nontrivial 
split or bipartition) is the frequency of occurrence of this 
branch in the replicate tree set. Common representations 
of the SBS values are percentage values between 0 and 100, 
or fractions between 0 and 1. In the following, we represent 
SBS values as percentage values between 0 and 100.

Problem Formulation
We address the challenge of predicting the SBS values via 
two distinct steps: regression and classification. The EBG re
gressor directly predicts the respective SBS values for all in
ner branches of a given ML tree. In the classification 
approach, EBG then predicts the probability of the SBS va
lue of each single inner branch exceeding a given SBS 
threshold using the regressor output as input. This classifi
cation step is based on the SBS interpretation by 
Felsenstein and Kishino (1993). The authors propose to in
terpret the quantity of one minus the SBS value as a P-value 
for the null hypothesis of the branch not forming part of 
the true tree. However, Susko (2009) shows that one minus 
the SBS is too conservative as a P-value. Given an SBS value 
>95, the probability of the branch not being in the true 
tree is substantially lower than 5%. Their experiments sug
gest that, depending on the characteristics of the true tree, 
an SBS between 70 and 85 yields a 5% false positive (FP) 
bound. Consequently, we use this SBS range for our classi
fication step. More specifically, we predict the probability 
for each single inner branch i to exceed a specific SBS 
threshold t, that is, SBSi > t with t ∈ {70, 75, 80, 85}.

With our novel EBG tool, we address both the regres
sion and the classification challenge. In addition, we esti
mate the uncertainty of the resulting predictions.

Training Data
Trost et al. (2024) demonstrate that machine learning al
gorithms can easily distinguish between simulated and 
empirical MSAs with high accuracy and conclude that se
quence simulations do not fully capture all characteristics 
of empirical MSAs. Consequently, we exclusively used em
pirical MSAs to train EBG. We obtained the empirical 
MSAs from TreeBASE (Piel et al. 2009). As TreeBASE only 
contains MSAs of published studies, we assume that 
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they are representative of commonly analyzed datasets by 
practitioners.

We used 1,496 MSAs (93% DNA and 7% amino acid [AA]) 
for training and evaluating EBG. In addition, we randomly se
lected 234 additional MSAs for our final comparison with RB, 
UFBoot2, and SH-like aLRT. We noticed that approximately 
half of the MSAs in TreeBASE contain at least two exactly 
identical sequences, and therefore decided to remove all du
plicate sequences before training EBG. We selected the MSAs 
based on the Pythia difficulty (Haag et al. 2022). For a given 
MSA, Pythia quantifies the difficulty of the phylogenetic ana
lysis under the ML criterion. To obtain a comprehensive re
presentation of the Pythia difficulty spectrum in ML tree 
inference, we therefore predicted the Pythia difficulty for 
each MSA in TreeBASE using Pythia. Subsequently, we se
lected MSAs representing distinct Pythia difficulty levels to 
cover both, easy, and challenging MSAs.

For each MSA, we inferred 100 ML trees under the GTR 
+G substitution model using RAxML-NG (Kozlov et al. 
2019) and used the one with the highest log-likelihood 
as the ML tree. To obtain SBS “ground truth” values as a 
training target for EBG, we performed one SBS run with 
1,000 replicates for each MSA using RAxML-NG. Our final 
training dataset comprises approximately 80,000 inner 
branches and their corresponding SBS value. Ändeurng

Feature Engineering
To predict the SBS values, EBG computes a plethora of 
MSA features but also extracts features from the respect
ive best-known ML tree, including model parameter esti
mates. EBG uses a total of 23 features for the prediction 
(Table 1).

The majority of features are extracted from a set of par
simony starting trees (henceforth simply referred to as par
simony trees) that EBG infers using RAxML-NG. RAxML-NG 
infers parsimony starting trees via a randomized stepwise 
addition order algorithm (−−start-option). The develop
ment of Pythia already showed that by using the computa
tionally substantially less expensive parsimony trees, we can 
accurately predict features of the ML tree space (Haag et al. 
2022). Due to the high prediction accuracy of Pythia, we 
therefore expected that parsimony-based features will also 
be useful for predicting SBS values.

We calculated a set of 12 features based on parsimony 
trees. Those 12 features are subdivided into parsimony 
support (PS) and parsimony bootstrap support (PBS) fea
tures. Figure 1 provides an overview of the feature compu
tation and its inputs.

The PS is the frequency of occurrence of an inner 
branch in 1,000 parsimony starting trees that EBG infers 
on the original MSA. According to exploratory experi
ments (see supplementary section 7, Supplementary 
Material online), we set the number of inferred parsimony 
trees to 1,000, as more than 1,000 did not substantially im
prove prediction performance.

The PBS employs a procedure that is highly similar to 
the SBS and uses replicate MSAs. The only difference is, 

that PBS computes a parsimony starting tree for each 
bootstrap replicate, instead of inferring an ML tree, yield
ing the computation substantially faster. To capture the 
variance of the respective bootstrap tree space, EBG also 
uses the mean normalized Robinson–Foulds (nRF) 
(Robinson and Foulds 1981) distance between all PB trees 
as a feature. Again, based on exploratory experiments, in
ferring more than 200 PBs does not improve predictor per
formance (see supplementary section 7, Supplementary 
Material online).

In theory, we could decrease the number of trees as a 
function of the Pythia difficulty score, since the tree space 
is less complex for lower Pythia difficulties. Hence, for low
er Pythia difficulties, a smaller number of parsimony trees 
might be sufficient to approximate the SBS values. 
However, because this might introduce additional uncer
tainty in the prediction process, EBG keeps the number 
of parsimony trees for both the PBS and the PS features 
fixed.

We expected that the P(B)S values of branches adjacent 
to a focal inner branch of interest are indicative of its SBS 
value. Therefore, we also included summary statistics for 
the P(B)S values of respective child and parent branches 
as features. Additionally, we computed summary statistics 
over the per-site parsimony mutation count scores (PMS) 
as an additional group of features. Finally, EBG uses the 
mean closeness centrality (Bavelas 2005) of the two sub
trees connected to the focal inner branch. The closeness 
centrality quantifies how densely connected the tree’s 
nodes are to each other. By taking the closeness centrality 
ratio of those subtrees, we aim to capture if the branch 
connects two subtrees of different densities. Another fea
ture, that we refer to as the branch length ratio bipartition, 

Table 1. Overview of the features subset used in EBG

Feature

Parsimony bootstrap support (PBS)
Std. PBS parents
Mean PBS parents
Std. PBS children
Min. PBS children*
Max. PBS children*
Skewness PBS
Mean Robinson–Foulds distance parsimony bootstrap trees
Parsimony support (PS)
Min. PS children
Max. PS children
Max. PS children*
Min. PS children*
Normalized ML branch length
No. of child inner branches
Mean parsimony mutation per side (PMS)
Coefficient of variation PMS
Max. PMS
Skewness PMS
ML tree branch length
Branch number (ordered by level-order traverse)
Branch length ratio bipartition
Mean closeness centrality bipartition ratio

*: weighted by branch length.
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represents the ratio between the sums of branch lengths in 
the two subtrees induced by the focal branch.

The set of 23 features (see Table 1) that EBG uses is a 
subset of a larger set of over 150 features we experimented 
with. The supplementary section 2, Supplementary 
Material online comprises a detailed description of all fea
tures. We reduced this initial set of 150 features to 23 fea
tures via recursive feature elimination (Guyon et al. 2002) 
and a scikit-learn random forest (Pedregosa et al. 2011). 
The aim was to determine a good trade-off between the 
number of features and EBG performance for the following 
reasons. First, we strive to avoid unnecessary computa
tions. Second, fewer features yield the predictor more in
terpretable. Third, we aim to prevent overfitting our 
predictor to the training data. This can occur when train
ing a predictor with too little training data and too many 
redundant or nonpredictive features (Hawkins 2004). In 
the case of overfitting, the predictor will not generalize 
well to unseen inputs.

Predictor and Performance Metrics
According to preliminary experiments (cf. supplementary 
section 6, Supplementary Material online), the best ma
chine learning model choice for SBS prediction (both re
gression and classification) is the light gradient-boosting 
model (LightGBM) (Ke et al. 2017) tree-based boosting en
semble framework. To quantify the confidence of the EBG 
regression, we estimate the prediction uncertainty using 
quantile regression (Koenker and Bassett 1978). We deploy 
this approach to estimate the conditional quantiles of the 
SBS value. By training the model to predict the 5th and 
10th quantile of the SBS value, EBG provides lower bounds 
for the SBS value at 5% and 10%.

We optimized the hyperparameters of all models in 100 
trials using the Optuna (Akiba et al. 2019) hyperparameter 
optimization framework. Throughout the training process, 
we ensured that the TreeBASE MSAs we used were either 

exclusively contained in the training set or the test set. This 
guaranteed, that the inner branches of the respective ML 
tree are never split between the training and test set. 
Thereby, we obtained an estimate of the predictors’ per
formance on entirely new, that is, unseen trees. We evalu
ated the performance of EBG using two distinct sets of 
metrics, one for the regression, and one for the classification 
step. In the following, we briefly describe both sets of me
trics (see supplementary sections 3 and 4, Supplementary 
Material online for further details on their computation).

Botchkarev (2019) proposes a regression metric typ
ology, which we used to evaluate the EBG regressor. The 
typology describes regression performance metrics based 
on aggregation methods, distance measures, and normal
ization methods. Normalization is only necessary if we 
compare multiple predictions of different scales, which 
does not apply to EBG. We chose both, mean, and median 
as aggregation methods since the mean is sensitive to out
liers, while the median is not. Additionally, we selected 
three distance measures: the squared distance, the differ
ence, and the absolute difference between the SBS and 
EBG values. The squared distance between the SBS values 
and the EBG prediction is sensitive, whereas the difference 
and the absolute difference are robust to outliers. This re
sults in the following four metrics for evaluating the EBG 
regressor: the mean bias error (MBE), the mean absolute 
error (MAE), the median absolute error (MdAE), and the 
root mean squared error (RMSE). We used the MBE to 
evaluate whether the predictor is biased toward over- or 
underestimation. The MAE provides an outlier-sensitive, 
average performance of the predictor. The MdAE yields 
an outlier-insensitive performance metric. Finally, we 
used the RMSE as a measure that penalizes larger predic
tion errors more harshly.

The EBG classifier predicts class probabilities for the bin
ary classification task, that is, the probability that an SBS 
value is below or above a specific SBS threshold. We set 
the decision boundary for the binary classification to 0.5. 

FIG. 1. Overview of the EBG feature generation and prediction.
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We evaluated the prediction accuracy of the EBG classifier 
using four metrics: the accuracy (Acc), the BAC, the 
F1-score (F1), and the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. The Acc is 
easy to interpret and sensitive to class imbalances. The 
BAC is equivalent to the Acc with a weighting that is in
versely proportional to the class prevalence. Therefore, 
the BAC is insensitive to class imbalances. The F1 is the 
harmonic mean between precision and recall, thus it pena
lizes FP (erroneously predicting that the SBS value sur
passes the SBS threshold) and false negatives (FN) as 
being equally unfavorable. The F1 is robust against class 
imbalances. In contrast to Acc and F1, the AUC allows 
for a classification performance evaluation without the 
need to set a class probability decision boundary, since it 
relies on the raw class probabilities.

Results
We evaluated the performance of the EBG regressor and 
classifier using different splits of our curated dataset of 
1,496 TreeBASE MSAs into training and testing MSAs. 
For both the EBG regressor and classifier, we further tested 
the usage of EBG’s uncertainty measures for quantifying 
the reliability of its predictions. For our analysis, we refer 
to the usage of the uncertainty measures for EBG’s predic
tors as filtering and the respective uncertainty thresholds 
as filter values. We also compared EBG with RB, UFBoot2, 
and SH-like aLRT regarding prediction quality, and we 
compared EBG against its fastest competitors UFBoot2 
and SH-like aLRT in terms of time-to-completion and ac
cumulated CPU time. Furthermore, we analyzed the im
portance of the prediction features for EBG.

EBG Regressor Performance Evaluation
The EBG regressor predicts three values. In addition to the 
central SBS point estimate, EBG provides two SBS predic
tions that correspond to two lower bounds. One lower 
bound has a 5%, the other a 10% predicted probability 
that the SBS value is below the respective bound. On a ran
dom subset of 232 MSAs, EBG’s central SBS estimate is highly 
correlated, showing a mean Pearson correlation of μ = 0.91, 
with the actual SBS values. Note that we calculated the mean 
Pearson correlation using Fisher’s z-transformed Pearson 
correlations (Dunlap et al. 1998). For a more detailed view, 
we refer to supplementary section 9, Supplementary 
Material online. For the evaluation of the EBG regressor’s 
central SBS point estimate, we randomly sampled 20% of 
the 1,496 MSAs as a holdout testing dataset and trained 
EBG on the remaining 80%. Table 2 summarizes the results 
of 10 such random holdouts, showing the mean and stand
ard deviation of EBG’s performance across all 10 holdouts.

To assess the predictive power of EBG, we defined a 
baseline SBS value prediction based on the PBS of 200 re
plicates. If a branch is in the ML tree, but not in the PBS 
replicate tree set, the baseline prediction is zero, as this 
resembles the behavior of the SBS procedure. EBG 

outperformed this baseline across all four metrics. As the 
MBE indicates, the regressor exhibits no substantial sys
tematic bias with respect to either over—or underestimat
ing SBS values. The difference between MAE and MdAE, 
along with the higher RMSE value, suggests deviations of 
varying size between the EBG prediction and the true 
SBS value. The lower bound predictions of EBG can serve 
as a means to establish a bound for this prediction error 
and thus enable filtering for certain predictions.

Figure 2 illustrates, how the proximity of the lower 
bound predictions to the median prediction can be used 
to constrain the MdAE for the EBG median regression pre
dictions. This approach effectively mitigates prediction un
certainty by filtering. As the lower bound predictions 
approach the median prediction, the MdAE decreases. 
Thus, the inspection of the difference between the lower 
bound and the median SBS predictions limits and quanti
fies the prediction uncertainty.

We investigated the performance of EBG on a four- 
taxon tree from the Felsenstein zone (Huelsenbeck and 
Hillis 1993), a tree on which maximum parsimony typically 
fails to reconstruct the correct tree whereas ML recovers it. 
We used that tree to simulate an MSA with 1,000 sites un
der the Jukes–Cantor (JC) model using AliSim. EBG under
estimates the support value (72) of the true branch. 
However, we are able to detect its uncertainty via the 
5% lower bound filter value ≤23. Besides that, recent re
sults on ML reconstruction accuracy in the Felsenstein 
zone show that the accuracy as determined via large-scale 
experiments is as low as 70% (Leuchtenberger et al. 2020). 
This further indicates that even for ML methods, the 
Felsenstein zone remains difficult terrain.

EBG Classifier Performance Evaluation
In analogy to the EBG regressor, we evaluated the EBG clas
sifier based on 10 repeated holdout sets of 20%. Table 3
summarizes the resulting performance metrics for varying 
SBS thresholds t.

As baseline performance, we used the common SBS 
thresholds of t : = 80 (Koenen et al. 2020; Brandis 2021; 
Cruaud et al. 2021) on the PBS of 200 replicates. The base
line again is zero for all branches, that are present in the ML 
tree, but not in the PBS replicate trees. EBG outperformed 
the baseline for every metric.

Table 2. EBG regression performance for 10 repeated random holdouts 
against a parsimony bootstrap support of 200 replicate trees as the 
baseline

Metric EBG (μ ± σ) Baseline (μ ± σ)

MBE 0.6 ± 0.3 0.1 ± 0.5
MAE 8.3 ± 0.2 13.8 ± 0.4
MdAE 5.0 ± 0.1 8.6 ± 0.5
RMSE 12.8 ± 0.2 20.5 ± 0.5

To infer those replicate trees, we first obtained 200 replicate MSAs by sampling the 
original MSA in a site-wise manner with replacement. Subsequently, we inferred 
the corresponding parsimony (starting) tree using RAxML-NG to calculate the 
200 replicate trees.
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In analogy to the lower bound prediction for the EBG 
regressor, EBG also provides a prediction uncertainty 
measure for its classifier for filtering out uncertain predic
tions. As the EBG classifier solves a binary classification 
problem, with one class defined as SBS > t and the other 
as SBS≤ t, we can leverage the Shannon entropy 
(Shannon 1948) of the two class probabilities to obtain a 
prediction uncertainty measure u ∈ [0, 1]. Here, u = 0 re
presents absolute certainty, and u = 1 corresponds to ab
solute uncertainty. For the EBG classifier, we use u for 
filtering out uncertain predictions. Figure 3 provides an 
overview of the relationship between EBG classifiers 
with different SBS thresholds t and their Acc with increas
ing prediction uncertainty filter values. In particular for 
smaller uncertainties, a high-class imbalance implies an 
improved classification within the uncertainty interval 
of concern. Therefore, we decided to not compensate 
for class imbalances by using the BAC and used the 
Acc for this analysis instead. For cases with low 
u ∈ [0.1, 0.3], the prediction Acc consistently remains 
at or above 90% across all SBS thresholds t. For moderate 
u ∈ [0.4, 0.6], the Acc typically falls within the 80% to 
90% range. We only observe prediction accuracies below 
70% for u > 0.8.

In practical terms, when using EBG, we have the flexibil
ity to determine an acceptable filter value for uncertainty 
to attain confident predictions. Thereby, users can tailor 
the approach to their specific needs and preferences.

Performance in the Critical Support Range
Thus far, we presented EBG’s overall performance. 
However, not all support value ranges are equally critical 
for practical interpretation. Therefore, we analyzed EBG’s 
performance in the critical SBS range between 60 and 95. 
We observe that EBG’s regressor prediction error increases 
up to an MAE of 10.6 and an MdAE of 7.1, respectively. 
A detailed error distribution analysis is provided in 
supplementary section 10, Supplementary Material online.

To assess the performance of the EBG classifier in the 
critical range, we use the fraction of FP according to SBS 
thresholds t. The FP rate represents the fraction of predic
tions where EBG incorrectly classifies the branch support 
to exceed t. Therefore, the FP rate is of great relevance 
to practitioners. Table 4 summarizes the results.

Table 4 once more emphasizes the importance of EBG’s 
uncertainty prediction as a filtering tool. When discarding 
the uncertain predictions, we can halve EBG’s FP rate. 
Overall, EBG’s regressor exhibits a larger error in the critical 

FIG. 2. Relationship between the difference of the lower bound predictions to the median prediction and their influence on the MdAE.

Table 3. EBG classifier performance for different decision boundaries t

Metric t : = 70 t : = 75 t : = 80 t : = 85 baseline

BAC 0.92 ± 0.00 0.91 ± 0.00 0.91 ± 0.00 0.92 ± 0.00 0.85 ± 0.01
AUC 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.85 ± 0.01
F1 0.90 ± 0.00 0.90 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 0.82 ± 0.01

We indicate the mean and standard deviation of 10 repeated random holdouts against a baseline consisting of the PBS of 200 replicates for t : = 80. We decided to use 200 
replicates as this is the number of replicates that EBG uses for its PBS feature computation.
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SBS interval between 60 and 95 compared to the entire SBS 
value range. Therefore, we highly recommend using the 
EBG classifier, as its uncertainty filtering substantially re
duces the crucial FP rate.

In summary, EBG’s regressor exhibits a larger error in the 
critical interval between an SBS of 60 and 95 compared to 
the whole SBS range. Therefore, we recommend using the 
EBG classifier instead, as its uncertainty filtering effectively 
bounds the crucial FP rate.

Feature Importances
Table 5 lists the five most important features of the EBG 
regressor. The feature importance quantifies to which ex
tent a feature contributes to achieving an improved pre
diction during training.

According to the feature importances of EBG, the PBS 
feature with a feature importance of 82.2% is by far the 
most important one for predicting SBS values. We provide 
further insight into the relationship between EBG’s 
prediction and the PBS in supplementary section 11, 
Supplementary Material online. We interpret the substan
tial importance of the PBS features with an analogy to en
semble methods in machine learning. These methods 
aggregate numerous weak learners, to create a robust, 

strong one. Similarly, EBG uses the contributions of mul
tiple “weak” parsimony inferences, to obtain a precise esti
mate of the SBS values. However, using only the PBS or 
exclusively the PS values results in worse performance 
compared to EBG as indicated by the baselines used for 
evaluation (Tables 2 and 3 and supplementary section 7, 
Supplementary Material online). This aligns with the re
sults of Buckley and Cunningham (2002). On a compara
tively small set of phylogenies, the authors showed that 
PBS alone constitutes the worst support predictor of 
true branches compared to SBS estimates under models 
of varying complexity. While PBS is the most important 
EBG feature, it is the combination with the remaining fea
tures that enables an accurate SBS prediction. See 
supplementary section 2, Supplementary Material online 
for a more detailed overview of all prediction features 
and their importance.

Performance Comparison with UFBoot2, SH-Like 
ALRT, and RB
EBG, UFBoot2, and SH-like aLRT branch support values all 
have different interpretations. EBG approximates the SBS 
which is conservative, whereas UFBoot2’s UFBS values 
are unbiased (Minh et al. 2013). SH-like aLRT is also 

FIG. 3. Relationship between 
the prediction Acc of EBG clas
sifiers and their prediction un
certainty filter values for 
varying SBS thresholds t. 

Table 4. FP rate of the EBG classifier in the critical SBS range (subscript c) 
between 60 and 95 on a holdout set of 20%

Threshold FP rate FP rate∗ FP ratec FP rate∗c

70 0.11 0.04 0.33 0.19
75 0.10 0.03 0.27 0.13
80 0.08 0.02 0.20 0.08
85 0.07 0.02 0.16 0.07

Column “FP rate∗” denotes an uncertainty filtering of the predictions with a filter 
value of u= ≤ 0.6.

Table 5. Overview of the five most important features that EBG uses for 
the prediction and their respective importance in percent

Feature Importance in %

PBS 82.2
PS 3.1
Normalized branch length 2.0
No. of child inner branches 1.7
Skewness PBS 1.5
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conservative but not in the same way as SBS, reasonable 
thresholds for SH-like aLRT can be between 0.8 and 0.9 
(Guindon et al. 2010). Therefore, to compare all three 
branch supports against each other, we required a ground 
truth phylogeny. Consequently, we performed the follow
ing performance comparison using simulated MSAs. We si
mulated a total of 979 DNA MSAs without gaps (i.e. 
without simulating indel events) along empirical ML trees 
inferred on TreeBASE MSAs using AliSim (Ly-Trong et al. 
2022) under the GTR+G model. The corresponding tree 
(true tree) of the simulated MSAs served as the ground 
truth for our experiment.

On all simulated datasets, we then performed one ML 
search with default parameters per simulated MSA using 
RAxML-NG and used the resulting ML tree as input tree 
for EBG. We added SBS and RB to the evaluation for further 
comparison and mapped SBS and RB values to the same 
ML tree.

We also computed SH-like aLRT support values using 
IQ-TREE2 (Minh et al. 2013); we provide all commands 
we used in supplementary section 1, Supplementary 
Material online. We then mapped SH-aLRT and UFBS sup
port values to the ML tree computed by the corresponding 
IQ-TREE2 command.

Therefore, our experimental setup also differs from the 
evaluation of UFBoot(2) (Minh et al. 2013; Hoang et al. 
2018) as the authors used the set of unique branches of 
all bootstrap trees for further evaluation. Instead, we use 
the branches and corresponding support values of the sin
gle ML tree, either inferred using RAxML-NG or IQ-TREE2. 
We decided to alter the procedure in this way since EBG is 
not computing a set of bootstrap replicate trees. In add
ition, this specific experimental setup represents one com
mon use case of the respective support methods on 
empirical data. The other common use case, that is, con
structing a consensus tree on the set of SBS replicates 
can not be assessed since EBG, or the SH-aLRT test, for in
stance, does not generate a tree set. Therefore, we ended 
up with one ML tree per tool with the corresponding 

support values. Note that, the ML trees inferred on the 
simulated datasets by RAxML-NG and IQ-TREE2 might 
be topologically distinct trees. In fact, we observe substan
tial nRF distances between the ML trees inferred by 
RAxML-NG and IQ-TREE2 (μ = 0.30, σ = 0.28), yet ap
proximately 20% of the inferred RAxML-NG and the corre
sponding IQ-TREE2 trees are topologically identical.

We used those trees to compute the fraction of 
branches in the true tree for each branch support value. 
We emphasize that SH-aLRT was not designed to be inter
preted in this manner (Guindon et al. 2010). However, for 
the sake of completeness and comparability between the 
different fast support value inference methods, we decided 
to include them in our analyses. Figure 4 summarizes the 
results of our analyses. An ideal branch support measure 
would yield the unbiased probability of the branch being 
in the true tree (dashed, red line). In our experiments, all 
three tools, the estimation of the true branch probability 
is too liberal. As already observed by Minh et al. (2013), 
low SH-like aLRT values (<50) are not informative with re
spect to the true probabilities. For larger values, the SH-like 
aLRT behaves analogously to EBG. EBG is fairly unbiased for 
low support values (<60). For branch supports >60, it tends 
to overestimate the true probability of the branches present 
in the true tree. In this experiment, UFBoot2 overestimates 
the true branch probability the most. Besides all three tools 
being overconfident in predicting the true support, EBG is 
the closest to the ideal branch support value line.

We also compared the performance of the different 
tools as a function of the Pythia difficulty of the simulated 
MSAs. We computed the BAC for specific branch support 
thresholds and compared them across all tools. The results 
suggest that EBG is best able to handle varying MSA diffi
culties. We provide a detailed analysis in supplementary 
section 5, Supplementary Material online.

Our results using the MSAs simulated by AliSim differ 
substantially from the evaluation results in the original 

FIG. 4. Moving average with window size five of the fraction of 
branches in the true tree for all branch support values.

FIG. 5. Moving average with window size five of the fraction of 
branches in the true tree for all branch support values using the 
PANDIT-based DNA simulations used for the evaluation of the ori
ginal UFBoot method.
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UFBoot experiments that rely on simulations from the 
PANDIT (Whelan et al. 2003) database. Therefore, we 
also replicated the experimental setup deployed to evalu
ate tool performance on the set of PANDIT-based DNA si
mulations used in the evaluation of UFBoot (Fig. 5).

While the results on those MSAs are closer to the ideal 
branch support measure, they still differ from the results 
presented by the authors of UFBoot. We assume that one 
reason for the discrepancy is the aforementioned differing 
experimental setup (focus on mapping support values on 
tree versus focus on all bipartitions). Furthermore, the dif
ferences between our AliSim-based simulation results 
(Fig. 4) and those of the PANDIT-based simulations 
(Fig. 5) are most likely due to the pronounced dissimilarity 
of the respective underlying Pythia difficulty distributions 
over the datasets (Fig. 6). On average, the PANDIT-based 
DNA simulations exhibit a very low Pythia difficulty 
(μ = 0.09, σ = 0.14), whereas the AliSim simulations better 
cover the phylogenetic inference difficulty range (μ = 0.33, 
σ = 0.24). Furthermore, we observe that for the PANDIT- 
based data 74% of the mapping target trees inferred by 
RAxML-NG and the corresponding IQ-TREE2 tree are topo
logically identical, a consequence of the low Pythia difficulty 
scores. For more details, we refer to supplementary section 
10, Supplementary Material online.

As an additional performance assessment, we analyzed 
the TP and FP rates for different support thresholds on our 
simulated datasets. Ideally, support inference methods 
should attain a high TP rate and minimize the FP rate. 
We used the EBG classifier for this comparison as it per
forms better in the critical support range. Table 6 sum
marizes the results. To yield different support inference 
tools comparable, we apply the same support threshold 
to all of them. We nonetheless emphasize again that 
SH-aLRT was not designed to be interpreted in this way, 
but that we included it for the sake of completeness.

Particularly for stricter filtering (smaller uncertainty fil
ter values), the EBG classifier yields the best performance 
in terms of reduced FP rate compared to its competitors 
at the cost of not providing predictions for all branches. 
The FP and TP rates both drop to zero in this experiment 
for uncertainty filter values u ≤ 0.16. We interpret this as 
EBG being particularly confident about cases where the re
spective branch is not in the true tree, resulting in an ex
ceptionally low FP rate. However, this conservative 
behavior results in a TP rate of zero for 7% of the true 
branches in this case, when considering uncertainty filter 
values of u ≤ 0.16 or smaller. The EBG classifier even out
performs SBS with respect to both, TP, and FP rates when 
using an uncertainty filtering with an uncertainty filter va
lue u ≤ 17. UFBoot2’s high TP fraction comes at the cost of 
the highest FP fraction. Interestingly, RB and SBS perform 
equally well in this experiment. We provide an analogous 
analysis for the EBG regressor in supplementary section 
12, Supplementary Material online.

Finally, we directly compared EBG with RB on empirical 
MSAs. This is possible since RB is highly correlated with the 
SBS values (Stamatakis et al. 2008). We randomly selected 

234 MSAs (20% AA, 80% DNA) from TreeBASE and com
puted the ground truth SBS for each branch based on 
1,000 bootstrap replicates using RAxML-NG. Table 7 sum
marizes the respective classification and regression metrics 
for EBG and RB.

Based on our experimental findings, RB achieves the 
highest Acc when predicting SBS values. EBG’s prediction 
performance falls short compared to RB, as evidenced by 
a higher MdAE (RB: 2.0, EBG: 6.0) and a lower BAC (RB: 
0.96, EBG: 0.89). However, if we also use EBG’s uncertainty 
filtering, the performance becomes comparable, in par
ticular for the EBG classifier.

Note that EBG* in Table 7 summarizes the results for an 
uncertainty filtering of the predictions we conducted for 
both, the regression, and classification tasks. In the regres
sion scenario, our focus is on branches where we expect 
the MdAE to be less than or equal to 8 (as Fig. 2 depicts), 
that is, a 5% filter value of ≤ 23. This uncertainty filtering 
results in the exclusion of 28% of predictions that we deem 
as being too uncertain for consideration. For classification, 
we restrict our attention to predictions with a filter value 
of u ≤ 0.7 (as Fig. 3 depicts). This leads to excluding 21% of 
the predictions, that we consider as being too uncertain. 
While this approach may not provide predictions for every 
branch, it effectively constrains prediction errors. It repre
sents a trade-off between the number of predictions that 
we consider to be trustworthy and the level of certainty of 
those predictions.

In addition to the above accuracy analyses, we con
ducted a comparison of the time-to-completion of EBG 
with UFBoot2 and the SH-like aLRT (using IQ-TREE2) as 
fastest competitors on empirical datasets. The SBS compu
tation with RAxML-NG, UFBoot2 as well as the aLRT im
plementation of IQ-TREE2 can use multiple threads. 
Since the independent parsimony tree inferences neces
sary for the feature computation of EBG can also be paral
lelized straightforwardly, we performed our benchmark on 
a reference machine using multiple threads. This reference 
machine is equipped with an Intel Xeon Platinum 8260 
Processor (48 physical cores, 2.4 GHz) and 754 GB mem
ory. RAxML-NG and IQ-TREE2 provide the option to auto
matically determine the optimal number of threads for a 
given MSA, and we used this feature in both tools with 
up to a total of 60 threads. Figure 7 summarizes the results 
of the benchmark on the 234 empirical TreeBASE MSAs we 
used for the EBG/RB comparison. For the sake of simplicity, 
we define MSA size as the product of the number of se
quences times the number of site patterns (unique MSA 
sites). Furthermore, we separately depict run times for 
AA (dashed lines) and DNA datasets (straight lines) to as
sess potential differences between data types. Since EBG 
requires an existing phylogenetic tree and substitution 
model parameters as input, we included the inference 
time of adaptive RAxML-NG (Togkousidis et al. 2023) in 
the time-to-completion of the EBG prediction (EBG + in
ference). We observed that over all 234 MSAs, EBG ac
counts for 19% and the ML inference for 81% of the 
total time-to-completion. SH-like aLRT and UFBoot2 
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exhibit a similar time-to-completion, both for DNA, and 
AA MSAs. For 97% of the datasets (DNA and AA), EBG 
outperformed UFBoot2 in terms of time-to-completion, 
with an average speedup of 9.4 (σ = 5.5). Considering 
MSAs of size ≥200,000, EBG yielded an average speedup 
of 2.8 in comparison to UFBoot2. We observe an average 
speedup of 104 (σ = 82) of EBG compared to SBS when 
considering MSAs of size ≥200,000. With increasing MSA 
sizes, the time-to-completion differences between 
UFBoot2 and EBG gradually decrease for AA datasets. 
We do not observe an analogous trend for DNA data.

Additionally, we used a random sample of 84 MSAs 
from the total of 234 MSAs to assess the disparity in accu
mulated CPU time between EBG and UFBoot2. In the me
dian, running EBG along with an adaptive RAxML-NG ML 
tree search requires 28% less accumulated CPU time in 

comparison to the corresponding UFBoot2 execution. 
However, summed over all 84 MSAs EBG including the in
ference, requires 57% more accumulated CPU time (65,137 
vs. 43,090 s) than UFBoot2. This suggests that there are 
some outliers where UFBoot2’s time-to-completion is sub
stantially smaller than EBG’s time-to-completion when we 
include the ML inference time in the calculation. 
According to our analysis, this occurs primarily on MSAs 
with a Pythia difficulty of ≥0.5 (see supplementary 
section 8, Supplementary Material online for a detailed 
visualization). Furthermore, we observe, that on the 
same 84 MSAs, EBG only accounts for 4% of the accumu
lated CPU time while the remaining 96% are required for 
the adaptive RAxML-NG tree inference that is needed as 
an input for EBG.

We conclude that it is challenging to devise a fair 
time-to-completion comparison between EBG and 
UFBoot2, as for EBG, we are undecided whether the ML in
ference time should be included or not. In contrast, for 
UFBoot2, it represents an intrinsic requirement for the 
computation of support values, as the ML search and 
the support calculations are necessarily intertwined. For 
instance, on 10 randomly selected datasets, the average 
time to completion of IQ-Tree increased by 22% with 

FIG. 6. Histogram of Pythia dif
ficulties of the 979 AliSim 
(Ly-Trong et al. 2022) simula
tions used as well as 979 ran
domly sampled MSAs of the 
PANDIT (Whelan et al. 2003) 
DNA simulations from the ori
ginal Ultrafast Bootstrap (Minh 
et al. 2013) evaluation.

Table 6. FP and true positive (TP) rates of the different support inference 
tools compared to the EBG classifier for a support threshold of 80

Tool Filter value Fraction considered FP rate TP rate

EBG – 1.0 0.14 0.66
0.80 0.89 0.10 0.68
0.50 0.80 0.08 0.70
0.30 0.73 0.06 0.71
0.17 0.63 0.05 0.77
0.16 0.48 0.00 0.00

SH-aLRT N/A 1.0 0.17 0.74
UFBoot2 N/A 1.0 0.23 0.85
SBS N/A 1.0 0.15 0.72
RB N/A 1.0 0.15 0.72

The FP rate is the fraction of branches for which the support exceeds 80, but the 
respective branch is not in the true tree. The interpretation of TP is analogous. The 
fraction considered describes the fraction of analyzed branches after applying 
EBG’s uncertainty filtering with the respective uncertainty filter value.

Table 7. Performance evaluation of the EBG regressor, EBG classifier with 
SBS threshold t : = 0.80, and RB

Tool MBE MAE MdAE RMSE BAC F1 AUC

EBG 0.0 8.7 6.0 12.8 0.89 0.87 0.89
EBG∗ 0.1 7.1 4.0 11.1 0.95 0.94 0.95
RB 0.0 4.5 2.0 8.0 0.97 0.96 0.97

∗EBG with uncertainty filtering
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UFBoot2 enabled. Hence, the above time comparisons re
flect, to a large extent, a time comparison between the 
adaptive RAxML-NG and IQ-TREE2 ML search algorithms.

Performance on Edge Cases
To demonstrate the performance of EBG on an edge case, 
we predicted the SBS values for an MSA that was shown to 
be difficult to analyze in terms of phylogenetic inference. 
Morel et al. (2020) demonstrate the difficulties of obtain
ing a reliable ML phylogeny on a set of SARS-CoV-2 
genome sequences. This difficulty is caused by the combin
ation of a large number of sequences and a relatively low 
mutation rate, resulting in numerous branches with low 
bootstrap values. For our experiment, we used a set of 
1,654 complete SARS-CoV-2 genomes, each with a length 
of 29,800 base pairs. We employed 100 RAxML-NG 
searches to determine the ML tree with the highest 
log-likelihood. We then performed an SBS run with 1,000 
replicates to establish the ground truth SBS values. This 
analysis shows that only 13.9% of the inner branches of 
the ML tree yield an SBS value >70, indicating an overall 
low support of the ML tree.

Predicting the branch support using our EBG regressor 
results in an overall good performance, with an MAE of 3, 
an MdAE of 0, and an RMSE of 9. Meanwhile, the EBG clas
sifier, with an SBS threshold of t : = 70, achieved a BAC of 
0.82, an F1 of 0.77, and an AUC of 0.82. Therefore, even on 
an MSA that is known to be difficult-to-analyze, EBG can 
provide an accurate estimate of the SBS values for the cor
responding ML tree. The prediction of the bootstrap sup
port, using a mid-class laptop equipped with 4 cores and 8  
GB of memory, has a time-to-completion of approximately 
3 h. In contrast, computing the ground truth SBS values 
took 35 h, utilizing 10 nodes of a large computing cluster, 
each equipped with an Intel Xeon Gold 6230 (20 cores, 2.1  

GHz) and 96 GB memory. On the same amount of com
puting nodes, the RB computation using the MPI version 
of RAxML required 5.5 h, whereas the MPI-based 
UFBoot2 analysis only took 31 min.

Another dataset that is notoriously difficult to analyze is 
the internal transcribed spacer (ITS) 354 (Grimm et al. 
2007). ITS 354 is a short alignment (348 MSA sites) ex
tracted from the ITS genes from 354 maple tree genomes. 
Predicting the SBS values using the EBG regressor results in 
an MAE of 6, an MdAE of 4, and an RMSE of 9. Hence, on 
this difficult MSA EBG also yields a good accuracy.

Finally, we tested EBG on the edge case of a deep time
scale phylogeny. We used an amino acid MSA of 11 insects, 
including damselfly Calopteryx (Ioannidis et al. 2017). On 
this dataset, EBG performs analogously to our systematic 
experiments with an MAE of 8.88.

Discussion and Conclusion
In this paper, we introduced EBG, a novel machine 
learning-based approach for predicting SBS values on phy
logenies. For a given phylogeny and the respective MSA, 
EBG predicts point estimates of the SBS values for all inner 
branches, a probability of the SBS values exceeding a cer
tain threshold, and uncertainty estimates for both predic
tion scenarios.

While EBG exhibits a high prediction accuracy, we 
do observe that RB remains the most accurate approxima
tion method for directly predicting SBS values. Yet, we also 
demonstrate how the EBG uncertainty measures can help 
to reduce the accuracy gap to RB. By filtering the predic
tions of the EBG classifier to a filter value of u ≤ 0.7, we 
can close this accuracy gap. EBG, even when including 
the ML tree inference time, requires substantially lower 
time-to-completion compared to the major competitor 

FIG. 7. Time-to-completion 
comparison for datasets of 
varying sizes with a moving 
average of window size 20. 
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UFBoot2 with an average speedup of 9.4 (σ = 5.5). This 
speedup comes at the cost of an increase in total accumu
lated CPU time summed over all test MSAs of 57% due to 
outliers.

On 979 simulated MSAs, EBG, UFBoot2, and SH-like 
aLRT are generally overconfident in predicting the true 
SBS values. Among the analyzed tools, EBG yields support 
predictions that are closest to the true branch support 
value.

EBG was trained and evaluated on phylogenies under 
the GTR+G model. Incorporating additional models and 
investigating EBG’s performance on a variety of models is 
subject to future work.

Currently, EBG implements the sampling part of the PB 
procedure in Python. The PB is a performance bottleneck 
that substantially contributes to the prediction time and 
accounts for up to 70% of the overall time-to-completion 
of EBG excluding the ML inference time. Furthermore, EBG 
performs 204 RAxML-NG calls: one for each of the 200 par
simony bootstrap inferences, one for the parsimony infer
ence, two for the support computation of both, and one 
for the nRF distance computation. Additionally, EBG stores 
and retrieve the results of those calls in individual files, in
ducing a potential I/O overhead. Unifying EBG’s feature 
computation and the prediction as a command imple
mented within the RAxML-NG tool would likely result in 
a substantial speedup and streamline the entire prediction 
process. Since RAxML-NG is developed in our lab, the inte
gration of EBG into RAxML-NG constitutes future work.

While EBG successfully establishes lower bounds for the 
EBG regression, we were not able to devise a prediction for 
the upper bound of SBS values. In our experiments, the at
tempts to optimize for any upper bound were unsuccess
ful, since they converged to the trivial upper bound of an 
SBS of 100. An upper bound for EBG regression would be 
useful to construct a comprehensive prediction interval. 
Future research could focus on the development of a 
method or model that is capable of reliably estimating 
upper bounds. A more informative prediction interval 
will be highly beneficial for assessing the range of potential 
SBS values. Future research might explore if EBG’s uncer
tainty filtering can also enhance the performance of alter
native support estimation tools such as SH-aLRT or 
UFBoot2. Since EBG is currently the only tool that can infer 
support uncertainty estimates, applying EBG-based filter
ing might be beneficial for other support inference tools 
as well.

Practitioners should be aware of the following recom
mendations when using EBG: 

• The reference ML phylogeny should be inferred under 
the GTR+G model.

• In our experiments, the EBG classifier yields a more 
robust SBS prediction in the critical range 
(60 ≤ SBS ≤ 95) than the EBG regressor. Thus, we 
recommend to primarily use the classifier.

• We strongly recommend using EBG’s uncertainty 
measures for filtering out uncertain predictions to 

avoid incorrect conclusions. Table 6 and Fig. 3 shall 
serve as references for interpreting the uncertainty es
timates of the EBG classifier.

We compare a comprehensive set of methods for SBS sup
port estimation and approximation. EBG aims to rapidly 
and accurately predict the SBS values for a given phyl
ogeny, in particular for the purpose of dataset exploration. 
However, depending on the biological question at hand, 
the anticipated downstream analyses, and if the goal is 
to obtain and extensively discuss publication-quality sup
port values, we recommend to also calculate SBS values.

Finally, we note that parsimony-based methods may ex
perience a renaissance, since as we show here and as al
ready demonstrated by the Pythia tool, they constitute 
the by far most important and computationally inexpen
sive feature for conducting predictions about ML method 
results.
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and Evolution online.
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