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Abstract
In continuum mechanics, one regularly encounters higher-order tensors that require tensorial bases for theoretical or
numerical calculations. By using results from SO(3) representation theory, we present a method to derive tensorial
harmonic bases which unifies existing approaches in one framework. Applying this convention to symmetric second-
order tensors results in a second-order harmonic basis which, for example, simplifies the depiction and numerical
handling of stiffness tensors for most common material symmetries and reduces the computational effort involved in
implementations of incompressible elastoviscoplastic material laws. The same convention can be applied to texture
analysis to yield tensorial texture coefficients for both polycrystals and fiber-reinforced composites. Rotations of higher-
order tensors are particularly efficient in harmonic bases as both material and index symmetries can be exploited.
While special attention is given here to the examples of small-strain material laws and texture analysis, the framework
is entirely general and can be used to simplify calculations in other physical contexts involving tensors of arbitrary
order and symmetry. A Python implementation of the harmonic basis convention defined in this work is available as a
Supplementary Material.
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1. Introduction
Continuum mechanics deals with tensorial quantities in all subareas, i.e., kinematics, balance equations, and
constitutive theory. The tensorial quanties necessitate a higher-order tensor algebra; however, matrix–vector
formulations are more accessible both numerically and didactically.

Depicting higher-order tensors as vectors is as simple as picking a set of higher-order basis tensors, but the
choice is not obvious. The oldest and most common approach dates back to Voigt [1]. The Voigt notation renders
symmetric second-order tensors as six-dimensional component vectors by defining six orthogonal second-order
basis tensors, not all of which are normalized. Therefore, co- and contravariant tensors need to be distinguished,
leading to different notations for stress and strain tensors. Although this non-normalized basis requires special
care [2], it is commonly used in commercial computer codes such as Abaqus, Ansys, and LS-DYNA.
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The Voigt basis can be normalized, resulting in a factor of
√

2 for each of the shear basis tensors. Originally
proposed by Voigt [1], the normalized Voigt basis is often called Mandel basis [3]. As it is an orthonormal
basis, results from elementary linear algebra can be applied to Mandel basis component vectors and matrices in
a straightforward manner.

While Voigt’s original decomposition into normal and shear tensors derives naturally from the standard
ei basis of the underlying vector space, the normal tensors can be further split into a spherical part and two
deviator parts. The deviatoric basis is due to Kocks et al. [4], who denoted it the natural basis due to its
particular usefulness in descriptions of cubic polycrystals. Kocks’s original non-orthonormalized basis was
followed by orthonormalized versions by, among others, Lequeu [5] and Van Houtte [6]. A lucid description as
an eigentensor basis of cubic stiffness tensors can be found in Kocks et al.’s study [7], Chapter 7.

Separately from stress and strain bases, texture description has undergone a number of evolutions. Roe [8]
and Bunge [9] are generally credited with texture coefficient descriptions of the orientation distribution function
based on spherical harmonics series. These scalar coefficients motivated a coordinate-independent tensorial
depiction, introduced by Adams et al. [10]. In actual calculation, these tensorial descriptions still necessitate
a choice of basis tensors [11]. Man and Du [12] recently proposed an orthonormal basis of harmonic tensor
spaces which uses results from complexified tensor algebra.

In this work, we define a harmonic basis convention for the space of real three-dimensional vectors and
related tensor spaces of various symmetries. Section 2 recapitulates relevant parts of the representation theory
of SO(3) and defines a harmonic basis convention for arbitrary tensor spaces. Section 3 applies this conven-
tion to second-order symmetric tensors, recovering an orthonormalized Kocks-type natural basis. This basis is
compared to the Mandel basis for common material symmetries in linear elasticity as well as for anisotropic
elastoplasticity models. In Section 4, higher-order harmonic bases are used for texture analysis in polycrystalline
and fiber-reinforced microstructures.

2. Constructing harmonic bases

2.1. The rotation group SO(3)

We recapitulate a few concepts from the representation theory of groups with a particular focus on the rotation
group SO(3). Of particular interest is the action of SO(3) on the space of three-dimensional real vectors R3

endowed with the usual scalar product, which will be denoted as R to reduce index confusion. In the context of
this work, an element Q of SO(3) is a linear map on R such that for v ∈ R,

Q(v) = Qv = Qijvjei. (1)

In other words, the action of Q ∈ SO(3) on R has a specific second-order tensor representation
Q = Qijei ⊗ ej. This representation can be used to calculate the action of SO(3) on an nth order tensor�n ∈ R⊗n

via the Rayleigh product defined as

Q(�n) =Q ��n

=QaiQbj . . .QckVij...kea ⊗ eb ⊗ . . .⊗ ec. (2)

After algebraic manipulation, we find the 2n-order tensor representation of the action of Q on the higher-
order tensor space,

Q(�n) =Q�n[�n]

= (Qai . . .Qbjea ⊗ . . . eb ⊗ ei ⊗ . . . ek

)
[�n], (3)

where we call Q�n the nth Rayleigh power of Q. The properties of the Rayleigh power were previously discussed
in a continuum mechanics context by Zheng and Spencer [13], who denote it as a Kronecker exponent 〈Q〉n.
Being a linear map from R⊗n to R⊗n, the action of Q implies a (right) eigenvalue problem

Q�n[�n] = λ�n. (4)

The eigentensors �n of any particular Q�n depend on that rotation’s axis. However, they can be grouped into
certain sets of eigentensors which span subspaces of R⊗n which are independent of the axis chosen, forming a
complete decomposition of the tensor space. Formally, we call Wn ⊂ R⊗n an invariant subspace of R⊗n if

�
n ∈ Wn =⇒ Q�n[�n] ∈ Wn, ∀Q ∈ SO(3). (5)
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If an invariant subspace cannot be decomposed further into smaller invariant subspaces, we call it a harmonic
subspace. Correspondingly, the decomposition into harmonic subspaces is known in continuum mechanics as
the harmonic decomposition of R⊗n [14]. Harmonic subspaces of R⊗n are at most of order 2n + 1. In fact,
there is exactly one harmonic subspace of dimension 2n + 1, sometimes called irreducible subspace in contin-
uum mechanics. As it is traceless and symmetric, we will call it the deviatoric subspace Dn. Other harmonic
subspaces have dimension 2k + 1, k < n and are each isomorphic to the kth-order deviatoric subspace Dk. We
call the map from the kth order deviatoric subspace to an nth-order harmonic subspace the inclusion Pnk .

Using these concepts, we say that a basis of an nth-order tensor space is harmonic if its basis tensors are
elements of harmonic subspaces. In the following, we will calculate orthonormal harmonic bases by calculating
bases for deviatoric subspaces and finding their inclusions into higher-order spaces.

2.2. Harmonic bases for deviatoric tensor spaces

By the eigenvalue problem in equation (4), a basis of a deviatoric subspace can be found using deviatoric
eigentensors of an arbitrarily chosen rotation Q. Since the eigentensor decomposition of Q depends on the axis
of rotation, the harmonic basis convention depends on a choice of axis. We choose the Z axis e3 to ensure
compatibility to a number of other common conventions in continuum mechanics, such as the ZXZ and ZYZ
Euler angle conventions. This specific choice does not affect the generality of the approach.

While it is possible to calculate these eigentensors directly, for high-order tensors, it is cumbersome. Instead,
one may use the fact that SO(3) is a Lie group with a corresponding Lie algebra so(3). Eigentensors of Q are
eigentensors of q ∈ so(3) as eigentensors are preserved by the exponential map

Q = exp(q). (6)

Just as the action of SO(3) on higher-order tensor spaces is defined by the Rayleigh product �, the action of
its Lie algebra so(3) is described by the infinitesimal Rayleigh product

q(�n) = q ��n =qaiVij...kea ⊗ ej . . . ek

+ qbjVij...kei ⊗ eb . . . ek

+ . . .

+ qckVij...kei ⊗ ej . . . ec. (7)

Analogously to the Rayleigh power of equation (3), the infinitesimal Rayleigh power is defined as

(q�n
i ) =qai . . . δbjea ⊗ . . .⊗ eb ⊗ ei ⊗ . . .⊗ ej

+ . . .

+ δai . . . qbjea ⊗ . . .⊗ eb ⊗ ei ⊗ . . .⊗ ej. (8)

The following eigentensor calculation scheme is based on the angular momentum operator approach known
from quantum mechanics [15]. Using the Levi-Civita or permutation tensor ε and the imaginary number i, we
define angular momentum operators around the first-order axes ei as

J i = iε[ei]. (9)

These momentum operators form a basis of the tensor representation of the action of so(3) on R. The scalar
factor i is an arbitrarily chosen convention in quantum mechanics; we use it for our results to be compatible to
pre-existing results and implementations.

As J 3 is a second-order tensor, calculating its eigenvectors to use as a basis for R is straightforward. How-
ever, to define bases for nth-order tensor spaces, eigentensors of 2nth-order momentum operators J�n

i are
required. Based on the eigentensors of J i, the nth-order eigentensor associated with the eigenvalue −ni is given
by

�
n(−ni) =

(
1√
2

(e1 + ie2)

)⊗n

. (10)
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To calculate other eigentensors based on�n(−ni), we use the Z-axis raising operator given by Edmonds [15]
among others as

Jn
+ =J�n

1 + iJ�n
2 . (11)

This operator maps a given eigentensor �n(w) of J�n
3 with eigenvalue w to that with w + i, but introduces a

scalar factor. To calculate all 2n + 1 eigentensors, we recursively apply this operator and renormalize, resulting
in

�
n((k + 1)i) = 1√

(n − k)(n + k + 1)
Jn

+[�n(ki)]. (12)

In quantum mechanics, this complexified orthonormal eigentensor basis {�n(−ki), . . .�n(ki)} is used
directly. This approach is also used by Man and Du [12] in a texture description context. We note that, respective
to a complexified basis, even fully real tensors may have complex components. As classical continuum mechan-
ics deals with fully real tensors, it is simpler to use a real basis instead. We define the nth-order real deviatoric
basis�n

i as

�
n
2(n−k)+1 = 1√

2

(
�

n(ki) + (−1)k
�

n(−ki)
)

, k ∈ [1, n] (13)

�
n
2(n−k)+2 = −i√

2

(
�

n(ki) + (−1)k+1
�

n(−ki)
)

, k ∈ [1, n] (14)

�
n
2n+1 =�n(0). (15)

These tensors are real]-valued because the eigentensors form complex conjugate pairs

�
n(−ki) = Ē

n(−ki), k ∈ [1, n]. (16)

Furthermore, they are orthonormal because the �n(ki) are orthonormal. Finally, they form a basis because of
orthonormality and the fact that there are 2n + 1 tensors �n

i for any given n.
As the above definition is linear, there exists a transformation matrix Tn that maps �n

j to�n
i via

�
n
i = Tn

ij�
n (ji − ni) . (17)

With this particular convention for �n
i ,

�
1
i = ei. (18)

Because these deviatoric bases are fully real and orthonormalized, it is not necessary to distinguish between
primal and dual bases or co- and contravariant indices.

2.3. Harmonic bases for arbitrary tensor spaces

To compose arbitrary tensor spaces from deviatoric subspaces, we use the harmonic decomposition. Unlike the
usual depictions of that decomposition in continuum mechanics, e.g., Boehler et al. [16] or Forte and Vianello
[14], we construct the decomposition of higher-order tensor spaces directly from that of lower-order ones. For
brevity of notation, we introduce various operations on tensor spaces which can be defined by applying tensorial
operations to their respective basis tensors but are nonetheless basis-independent. The dyadic product of tensor
spaces contains all linear combinations of pairwise dyadic products of the respective basis tensors, reading

Vn ⊗ Vm = {Kij�
Vn

i ⊗�Vm

j : Kij ∈ R}. (19)

It can be shown that the space being spanned is independent of the precise choice of bases �Vn
and �Vm

.
An analogous definition of products between tensors and tensor spaces leads to element-wise application of

the product, e.g.
�[V] = {�[�] : � ∈ V}. (20)
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Figure 1. Maps between harmonic and deviator subspaces.

When writing the sum of two tensor spaces U and W , we presume that they form an orthogonal
decomposition of a tensor space V such that

U + W = {� +� : � ∈ U and� ∈ W} = V . (21)

As the fundamental units of the harmonic decomposition are the deviatoric tensor spaces, we first calculate
how the dyadic product of two deviatoric tensor spaces decomposes harmonically. Fundamentally, the space
decomposes harmonically into

Dm ⊗ Dn =
m+n∑

l=|m−n|
H(m, n, l) (22)

with one harmonic subspace H(m, n, l) per deviatoric order l. For example,

H(m, n, m + n) = Dm+n, (23)

while H(m, n, 0), which exists only for m = n, is isomorphic to the scalars and therefore an isotropic subspace.
Note that because each H(m, n, l) is of different dimension, this decomposition is unique. As the harmonic
subspaces H(m, n, l) are orthogonal to each other and their dimensions add up to mn, the decomposition is
complete.

To calculate H, consider the maps portrayed in Figure 1. First, there exists a unique projection from Dm⊗Dn

to H(m, n, l) which can be given as a 2m + 2n-order tensor of rank 2l + 1 that has projector properties. Its
pseudoinverse is the inclusion form H(m, n, l) into Dm ⊗ Dn. Second, the isomorphism between H(m, n, l) and
Dl is again a tensor, this one of order m + n + l and rank 2l + 1. This tensor, being an isomorphism, is bijective
when considered as a map from H(m, n, l). Being more interested in its inverse, we call this isomorphism(
�mnl

)−1
. By inserting

H(m, n, l) = �mnl[Dl] (24)

into equation (22), we retrieve

Dm ⊗ Dn =
m+n∑

l=|m−n|
�

mnl[Dl], (25)

which is an explicit harmonic decomposition of the dyadic product of two deviatoric tensor spaces. The super-
scripts m, n, and l which indicate tensor order are not indices and the summation convention does not apply to
them.

To calculate the tensor �mnl, we borrow established calculation schemes from quantum mechanics. There, the
deviatoric eigentensors �(ki) are discussed in the context of angular momentum as Eigenstates of the angular
momentum operator J . Correspondingly, �mnl is discussed in the context of coupled angular momenta and is
known by its tensor components

(Cmnl)q′
o′p′ = �mnl · (em(q′i) ⊗ en(o′i) ⊗ ēl(p′i)), (26)

which are called Clebsch–Gordan coefficients, see e.g. Griffiths [17]. Here, the indices q′, o′, and p′ start at −m,
−n, and −l respectively, as is common in quantum mechanics, and the complex conjugate ē is a consequence
of the complexified tensor algebra involved. Edmonds [15] gives explicit recursive calculation schemes for
Clebsch–Gordan coefficients but uses the Bra–Ket notation, which compares to the one above via

(Cmnl)q′
o′p′ = 〈mno′p′|mnlq′〉. (27)
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The Bra–Ket notation emphasizes the Clebsch–Gordan coefficients being linear maps from component vectors
of dimension 2l + 1 to component matrices of size 2(m + 1) × 2(n + 1), while the notation used above empha-
sizes their tensorial nature. In either case, the Clebsch–Gordan coefficients, being tensor components, admit
basis transformations, in particular the transformation from equation (17), which yields

cmnl
ijk = im+n+lTm

ioTn
jpT l

kq(Cmnl)q′
o′p′ . (28)

The indices without primes are defined as o = o′ + m + 1 such that o ∈ [1, 2m + 1], and respectively for
q and n and p and l. The components cmnl

ijk are given respective to real-valued deviatoric bases, such that the
Clebsch–Gordan tensor can be written

�
mnl = cmnl

ijk �
m
i ⊗�n

j ⊗�l
k . (29)

Because the coefficients and basis tensors in this expression are fully real, �mnl is a fully real tensor. Further
properties of � are elaborated on in Appendix 1.

Using the Clebsch–Gordan tensors, the harmonic basis for Dm ⊗ Dn has orthonormal basis tensors

�
m+n
i(l,j) =�mnl[�l

j], l ∈ [|m − n|, m + n], j ∈ [0, l], (30)

with an appropriate enumeration convention i(l, j). By convention, we sort the harmonic subspaces starting from
the least-dimensional, which leads to

i(l, j) =j +
l∑

k=|m−n|
2(k + 1). (31)

In the general case, we are interested in the harmonic decomposition of an arbitrary tensor space which is
constructed as the dyadic product of two other tensor spaces Vm and Vn. In the interest of building an iterative
procedure, we assume that Vm is already decomposed into harmonic subspaces of dimension 2l + 1, of which
there are a(m, l). Instead of giving a formula for a(m, l), we treat it as the number of inclusions P

mp
i which map

the deviatoric space Dp to the various 2l + 1-dimensional harmonic subspaces and give a formula for those
inclusions. Then, Vm is given as

Vm =
m∑

p=0

a(m,p)∑
i=1

P
mp
i [Dp], (32)

and Vn is given as

Vn =
n∑

q=0

a(n,q)∑
j=1

P
nq
j [Dq]. (33)

Brevity here causes an imprecision of notation. Even if m = n, Vm is not necessarily equal Vn, for example, if
different index symmetries apply to these spaces. Therefore, the inclusions P

mp
i depend on the space considered.

The same is true for the number of inclusions a(m, l), which generally increases with m but may be as small as 0
depending on the index symmetries which apply to Vm, in which case, there are no summands in the respective
sum. These imprecisions of notation notwithstanding, the calculation shown here is general.

The space Vm ⊗ Vn is given as

Vm ⊗ Vn =
m∑

p=0

n∑
q=0

a(m,p)∑
i=1

a(n,q)∑
j=1

P
mp
i [Dp] ⊗ P

nq
j [Dq]. (34)

We define a p, q-order tensorial Kronecker product
pq× such that(

P
mp pq× P

nq
)

[Dp ⊗ Dq] = P
mp[Dp] ⊗ P

nq[Dq]. (35)
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Using the Clebsch–Gordan tensors, we find

P
mp
i [Dp] ⊗ P

nq
j [Dq] =

p+q∑
l=|p−q|

(
P

mp
i

pq× P
nq
j

) [
�

pql[Dl]
]

. (36)

The sums can be rearranged with the deviatoric order l and a new index variable k such that a tensor product
of arbitrary tensor spaces Vm ⊗ Vn can be harmonically decomposed into

Vm ⊗ Vn =
m+n∑
l=0

a(m+n,l)∑
k=0

P
(m+n)l
k [Dl]. (37)

With the n-fold tensor contraction
n·, the new inclusions can be written as

P
(m+n)l
k =

(
P

mp
i

pq× P
nq
j

)
p+q· �pql. (38)

Here k enumerates all possible combinations of p and q for which �pql exists, i.e. with l ∈ [|p − q|, p + q].
Within each of these p, q combinations, all combinations of i, j need to be enumerated, of which there are
a(m, p)a(n, p). We choose an enumeration convention for k by sorting in the order p, q, i, j, each ascending.
In all concrete examples considered in this paper, the number of harmonic subspaces is limited due to various
index symmetries, and the enumeration of the various projectors proves quite simple.

Relative to a harmonic basis, an nth-order tensor 	n is depicted as

	
n =

n∑
k=0

a(n,k)∑
i=0

2k+1∑
j=1

Ah(k,i,j)P
nk
i [�k

j ] (39)

with the harmonic basis components Ah(k,i,j) and basis tensors Pnk
i [�k

j ]. In the form

	
n =

n∑
k=0

a(n,k)∑
i=0

P
nk
i

⎡
⎣2k+1∑

j=1

Ah(k,i,j)�
k
j

⎤
⎦ , (40)

it is more clear that the harmonic components Ah(k,i,j) are organized into groups of 2k + 1 components with the
same k and i which belong to the same harmonic subspace. Therefore, the components themselves represent a
harmonic decomposition of 	n.

The construction of inclusions from Clebsch–Gordan tensors defined above allows the calculation of a har-
monic decomposition from the ground up by repeatedly applying dyadic products. By using the�p basis for the
deviatoric spaces Dp, we can thus construct harmonic bases, albeit with some effort. Thankfully, in continuum
mechanics, a few specific harmonic bases are most interesting, and it is usually not necessary to construct others.
With that in mind, the following sections are concerned with specific bases and their practical applications.

3. Second-order harmonic bases

3.1. Definition

To calculate the harmonic basis equivalent of the Voigt basis, we harmonically decompose the space of second-
order tensors R⊗2. First, we note that both the zeroth-order tensor space R and the first-order tensor space R
are fully deviatoric, i.e.,

R = D1. (41)

The harmonic basis of R⊗2 fundamentally results from the definition of invariant subspaces (equation (5)).
Working with this definition, the isotropic (or spherical) subspace

V ◦ = sp(V )

3
I (42)
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is harmonic. The traceless part of R⊗2 remains. Since rotations only map symmetric tensors to symmetric
tensors, the remaining traceless tensors can be further split into the skew-symmetric and symmetric deviatoric
parts

skw (V ) = 1

2

(
V − V T) , (43)

V ′ = V − V ◦ − skw (V ) . (44)

We thus arrive at the harmonic decomposition of R⊗2, which is exactly the decomposition into spherical,
symmetric-deviatoric, and skew-symmetric parts. The same result can also be reached by direct calculation. We
define R⊗2 via the product

R⊗2 = R ⊗ R = D1 ⊗ D1 (45)

and use equation (25) to calculate the harmonic decomposition in the form

D⊗2 = c110[D0] + �111[D1] + �112[D2]. (46)

The relevant Clebsch–Gordan tensors can be calculated via equation (29) as

c110 = 1√
3

I , (47)

�
111 = 1√

2
ε, (48)

�
112 =P

′. (49)

Using equation (39), a second-order tensor can therefore be depicted as

A = Ah(0,1,1)P
20
1 D0 + Ah(1,1,i)P

21
1 [D1

i ] + Ah(2,1,j)P
22
1 [D2

j ]. (50)

Because R2 is the product of two deviatoric spaces, the inclusions are Clebsch–Gordan tensors. With D0 = 1
and D1

i = ei,

A = Ah(0,1,1)c
110 + Ah(1,1,i)c

111[ei] + Ah(2,1,j)c
112[D2

j ]. (51)

To find the basis of D2, we apply the eigentensor calculation scheme of subsection 2.2, finding as
eigentensors

E2(0) = 1√
6

(3e3 ⊗ e3 − I) , (52)

E2(i) = − sym (e1 ⊗ e3) + i sym (e2 ⊗ e3) , (53)

E2(−i) = sym (e1 ⊗ e3) + i sym (e2 ⊗ e3) , (54)

E2(2i) =1

2
(e1 ⊗ e1 − e2 ⊗ e2) − i sym (E2 ⊗ e1) , (55)

E2(−2i) =1

2
(e1 ⊗ e1 − e2 ⊗ e2) + i sym (E2 ⊗ e1) , (56)
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from which D2
i can be calculated via equation (17). After combining the deviatoric bases and the inclusion

tensors, the second-order harmonic basis tensors in the Z-axis-convention read

H2
1 = 1√

3
I , (57)

H2
2 = 1√

2
skw (e2 ⊗ e3) , (58)

H2
3 = 1√

2
skw (e3 ⊗ e1) , (59)

H2
4 = 1√

2
skw (e1 ⊗ e2) , (60)

H2
5 =D2

2 = 1√
2

(e1 ⊗ e1 − e2 ⊗ e2), (61)

H2
6 =D2

1 =
√

2 sym (e1 ⊗ e2) , (62)

H2
7 =D2

3 =
√

2 sym (e1 ⊗ e3) , (63)

H2
8 =D2

4 =
√

2 sym (e2 ⊗ e3) , (64)

H2
9 =D2

5 = 1√
6

(3e3 ⊗ e3 − I). (65)

3.2. Application 1: small-strain elasticity

Small-strain elasticity is described by Hooke’s Law,

σ = C[ε], (66)

a linear constitutive material law which links the second-order Cauchy stress σ and the second-order strain
tensor ε via the fourth-order stiffness tensor C. In the full second-order harmonic basis of equations (57)–(65),
Hooke’s Law is a nine-dimensional matrix-vector equation. Since both stresses and strains are symmetric, the
skew-symmetric parts of the second-order harmonic basis can be neglected, and stresses and strains may be
written as vector components in a six-dimensional space,

εH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
3
(ε11 + ε22 + ε33)

1√
2
(ε11 − ε22)√

2ε12√
2ε13√
2ε23

1√
6
(2ε33 − ε11 − ε22)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (67)

where we denote this symmetrized harmonic basis sym
(
H2
)

as H for brevity. We note here that Zheng and
Spencer [13] show how the full harmonic basis including skew-symmetric tensors is useful in micropolar elas-
ticity. Their canonical basis is similar in origin to our harmonic basis, but differs in convention. As a result,
our symmetric second-order harmonic basis tensors are associated with elementary strain modes, as shown in
Figure 2.

When purely deviatoric tensors are considered, the resulting five-dimensional D2-basis is equivalent to the
various Kocks-type bases, for example those of [5]

εLequeu =

⎛
⎜⎜⎜⎜⎜⎝

1√
2
(ε22 − ε11)√

3
2 (ε11 + ε22)√

2ε23√
2ε13√
2ε12

⎞
⎟⎟⎟⎟⎟⎠ (68)
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Figure 2. Harmonic second-order basis tensors visualized as elementary strain modes. (a) H2
1; (b) H2

2; (c) H2
6; (d) H2

3; (e) H2
4; and

(f) H2
5.

and [6]

εvan Houtte =

⎛
⎜⎜⎜⎜⎜⎝

(
√

3+1)ε22+(
√

3−1)ε33
2

(
√

3−1)ε22+(
√

3+1)ε33
2√

2ε23√
2ε13√
2ε12

⎞
⎟⎟⎟⎟⎟⎠ . (69)

A full discussion of those bases can be found in Manik’s study [18].
The basis most commonly used in commercial software is the non-normalized basis of Voigt [1]. Also

common is its normalized equivalent, the Mandel basis described by e.g. Mandel [3]. Conversions between the
harmonic basis and the Mandel basis can be written as

εH = M εM (70)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

0 0 0
1√
2

−1√
2

0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
−1√

6
−1√

6
2√
6

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (71)

For conversions from the non-normalized Voigt basis, rows 3–5 acquire a factor of
√

2 or its inverse depend-
ing on whether the strain or stress Voigt basis is used. As some commercial software uses different index
conventions, the shear components in rows 3–5 may need to be reordered.
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We now compare the harmonic and the Mandel basis for depicting the stiffness C given common material
symmetries. First, for the isotropic case C = CI,

CI
H

=

⎛
⎜⎜⎜⎜⎜⎝

3K 0 0 0 0 0
0 2G 0 0 0 0
0 0 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

⎞
⎟⎟⎟⎟⎟⎠ (72)

=diag (3K, 2G, 2G, 2G, 2G, 2G) , (73)

with the compression modulus K and the shear modulus G. In the Mandel notation,

CI
M

=

⎛
⎜⎜⎜⎜⎜⎝

λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

⎞
⎟⎟⎟⎟⎟⎠, (74)

with λ = K − 2G/3. The diagonal structure of CI
H

arises naturally from the fact that the symmetric isotropic
projectors P◦ and P′, which are the projectors on spherical and deviatoric second-order tensors respectively, are
partial identity matrices in a basis which derives from that decomposition, i.e.

P◦
H

= diag (1, 0, 0, 0, 0, 0), (75)

P′
H

= diag (0, 1, 1, 1, 1, 1). (76)

Diagonal matrices have many numerical advantages to non-diagonal matrices, in particular when inverting

(
CI

H

)
= diag

(
1

Ci

)−1

, (77)

or applying non-linear functions F with a scalar equivalent f ,

F(C)H = diag (f (Ci)), (78)

or in matrix-vector multiplications, which are of complexity order O(n) for diagonal matrices, instead of O(n2)
for non-diagonal matrices. Therefore, isotropic linear elastic material laws, when evaluated in the harmonic
basis, are less expensive than their Mandel counterparts.

For crystals aligned with the axes e1, e2, and e3, cubic stiffness tensors take the form

CC
H

= diag
(
λC

1 , λC
2 , λC

3 , λC
3 , λC

3 , λC
2

)
(79)

with

λC
1 =C1111 + 2C1122, (80)

λC
2 =C1111 − C1122, (81)

λC
3 =2C2323. (82)

Similarly to the isotropic case, the diagonality of C can be explained using the symmetric cubic projectors PC
1 ,

PC
2 , and PC

3 , which are partial identity matrices in the crystal-aligned harmonic basis, reading

PC
1H

= diag (1, 0, 0, 0, 0, 0), (83)

PC
1H

= diag (0, 1, 0, 0, 0, 1), (84)

PC
1H

= diag (0, 0, 1, 1, 1, 0). (85)
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For transversal-isotropic or hexagonal stiffness tensors whose symmetry axis is aligned with e3,

CH
H

=

⎛
⎜⎜⎜⎜⎜⎝

CH
H11 0 0 0 0 CH

H16
0 CH

H22 0 0 0 0
0 0 CH

H22 0 0 0
0 0 0 2C2323 0 0
0 0 0 0 2C2323 0

CH
H16 0 0 0 0 CH

H66

⎞
⎟⎟⎟⎟⎟⎠. (86)

with

CH
H11 =1

3
(2C1111 + 2C1122 + 4C1133 + C3333), (87)

CH
H22 =C1111 − C1122 (88)

CH
H66 =

√
2

3
(−C1111 − C1122 + C1133 + C3333), (89)

CH
H16 =1

3
(C1111 + C1122 − 4C1133 + 2C3333) . (90)

Note that CH
H

is not diagonal as the eigentensors of a hexagonal stiffness tensor depend on its exact val-
ues; the matrix exhibits spherical-deviatoric coupling. If necessary, a full diagonalization can be achieved by
diagonalizing the remaining 2x2 block matrix. By comparison, the hexagonal Mandel stiffness matrix reads

CH
M

=

⎛
⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 0 0 0
C1122 C1111 C1133 0 0 0
C1133 C1133 C3333 0 0 0

0 0 0 2C2323 0 0
0 0 0 0 2C2323 0
0 0 0 0 0 CH

H22

⎞
⎟⎟⎟⎟⎟⎠. (91)

In the harmonic basis, trigonal, tetragonal, and monoclinic stiffnesses are also simplified, as shown in
Appendix 2. Orthotropic and fully triclinic stiffnesses are of a similar degree of complexity as in the Man-
del notation. We conclude that choosing the harmonic basis instead of the Mandel basis, which is purely a
matter of convention, simplifies calculations and representations for a large class of material symmetries.

Anisotropic quantities are not always aligned to the coordinate axes as in the cases above. A non-aligned
stiffness tensor C can be transformed from an aligned stiffness tensor CA via an active rotation

C = Q � C
A. (92)

Respective to the harmonic basis, CA is depicted as a component matrix CA
H

, such that

C
H

= R
H

CA
H

R
H

T (93)

with 6 × 6 rotation matrices given by

RHij = Q�2 · (H2
i ⊗ H2

j ). (94)

To calculate these harmonic rotation matrices, we begin with deviatoric rotation matrices. The nth order
eigentensor basis �n from equation (12) is defined via eigentensor decomposition of Z rotations. Therefore, Z
rotations act on Dn as

Q�n
Z (α)[Dn] =

n∑
k=−n

eikα (�n(ki) ⊗�n(ki)) [Dn]. (95)
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Figure 3. D2-transformed cylinders visualize the Z-rotation of D2.

After transforming into the deviatoric basis via equation (17),

n∑
k=−n

e−ikα
�

n
k ⊗�n

k = dn
Zij�

n
i ⊗�n

j (96)

with

dn
Zij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cos(kα) i = j = 2(n − k) + 1
cos(kα) i = j = 2(n − k) + 2
− sin(kα) i = 2(n − k) + 2, j = 2(n − k) + 1
sin(kα) i = 2(n − k) + 1, j = 2(n − k) + 2
1 i = j = 2n + 1
0 else.

(97)

For n = 1, this is the classic rotation matrix around e3. Increasing the tensorial order from n − 1 to n adds
a 2 × 2 block analogous to an nα rotation matrix. To further clarify this point, we may consider the involved
rotations. The rotation of D1 around the Z-axis proceeds as usual: of the three basis tensors D1

i = ei, e3 does
not rotate while the other two complete a full rotation after α = 2π . In Figure 3, the second-order tensors are
visualized as strain modes applied to a cylinder which may be imagined to rotate around e3. D2

5 = e3 ⊗ e3

does not rotate. D2
3 and D2

4 complete a full rotation after α = 2π , while D2
1 and D2

2, due to symmetry, are
indistinguishable from their starting form after α = π . In other words, D2

1 and D2
2 rotate with 2α.

For rotations around other axes, the d-matrices are different. Rotations around Y and X are calculated in
quantum mechanics via Wigner-d-matrices. These are components respective to the �n-basis and are given by
Wigner [19] as

dn
Y*ij(β) = (

(n + m′)(n − m′)!(n + m)(n − m)!
) 1

2

smax∑
s=smin

(−1)m′−m+s
(
cos β2

)2n+m−m′−2s (
sin β

2

)m′−m+2s

(n + m − s)!s!(m′ − m + s)!(n − m′ − s)!
(98)

and

dn
X*ij(β) = (

(n + m′)!(n − m′)!(n + m)!(n − m)!
) 1

2

smax∑
s=smin

(−1)sim−m′ (
cos β

2

)2n+m−m′−2s (
sin β

2

)m′−m+2s

(n + m − s)!s!(m′ − m + s)!(n − m′ − s)!
(99)

with

i = m′ + n, j = m + n, (100)

and

smin = max(0, m − m′), (101)

smax = min(n + m, n − m′). (102)
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The Wigner-d-functions can be transformed into the corresponding deviatoric basis via equation (17). For
D2, we retrieve rotation matrices as shown in Appendix 3, Equations (184)–(186), from which the usual ZXZ
or ZYZ Euler conventions can be assembled by multplication.

The full rotation R
H

of Sym2 is

R
H

=
(

d0
ZXZD0

0

0 d2
ZXZD2

)
H

with d0
ZXZ = 1. (103)

Even for the full three-angle rotation, the block matrix structure of R remains. This sparsity simplifies calcula-
tions particularly in a theoretical context. For example, the effect of a rotation on a cubic stiffness is evident in
this form: the compression modulus of a cubic single-crystal is rotation-invariant.

The above discussion is limited to elastic small-strain materials, which are a particularly simple material
class. Similar issues of symmetry and anisotropy also arise in kinematically sophisticated approaches such
as gradient materials or generalized continua (for general references on these topics, see Gurtin et al. [20] and
Neff et al. [21], respectively). These continuum theories involve higher-order tensors which can result in lengthy
expressions in the anisotropic case (see, e.g., Lazar et al. [22] and the references therein) for which the harmonic
basis offers a concise representation. As the inclusion of gradient materials would go beyond the scope of the
manuscript, we will not go into detail here.

3.3. Application 2: computational elastoviscoplasticity

The natural basis as defined by Kocks arose from a context of computational crystal plasticity. In this context,
the natural basis is advantageous because it diagonalizes cubic stiffnesses and explicitly splits second-order
tensors into spherical and deviatoric parts, as discussed by Kocks et al. [7] and, more recently, Mánik et al.
[23]. When implementing crystal plasticity material laws, this spherical-deviatoric split reduces the size of
equations systems that need to be solved numerically. As discussed in Section 3.2, the harmonic basis has the
same properties. Mánik [18] showed that basis representations with these properties also reduce the numerical
effort for calculations involving more general elastoplastic models that are not cubic, particularly if plastic
strains conserve volume. This result can be extended beyond associated elastoplasticity by using the generalized
standard material (GSM) framework defined by Halphen and Nguyen [24] and Germain et al. [25] in a small-
deformation context. A GSM is specified by a free energy density 	, which governs, e.g., elastic effects, and
a dissipation potential φ, which describes the dissipative behaviour of the material such as viscoplastic effects.
As a simple example, we assume an elastoviscoplastic material for which the elastic behavior is linear, which
has no defect energies and for which the plastic strain εp is the only internal variable. In that case, the elastic
energy density is given as

ψ(ε, εp) = 1

2
(ε − εp) · C[ε − εp]. (104)

If plastic strains conserve volume, the plastic strain is fully deviatoric,

ε′
p = εp, (105)

and the dual variable of the plastic strain is likewise the deviatoric stress, here written with the deviatoric
projector P′ as

− ∂ψ
∂εp

= P
′
C[ε − εp] = σ ′. (106)

The dual dissipation potential ϕ∗ then depends only on σ ′. In this example, we will make no further assumptions
regarding its form. The evolution equation is given by

ε̇p = ∂ϕ∗(σ ′)
∂σ ′ . (107)

The viscoplastic strain rate given by this evolution equation directly depends on the stress and therefore
describes rate-dependent, i.e. viscoplastic behaviour. Rate-independent behaviour can be described in the GSM
framework as well, but requires a more complex mathematical apparatus involving non-differential dissipation
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potentials as described by Halphen and quoc Son [26]. For reasons of simplicity, we continue with the rate-
dependent form specified above, which we discretize via an implicit Euler approach, yielding

�εp

�t
= ∂ϕ∗(P′C[ε − εn

p −�εp])

∂σ ′ , (108)

where εn
p is the plastic strain from the previous time step. This implicit equation for �εp has second-order

tensors as values and parameters. In the Mandel notation, it would appear as a six-dimensional vector equation;
using the harmonic basis, it is five-dimensional. When solving via Newton’s method, the harmonic basis directly
reduces the computational expense of evaluating the residual function

f (�εp) = ∂ϕ∗(C[ε − εn
p −�εp]′)

∂σ ′ − �εp

�t
(109)

by one dimension. Furthermore, the Jacobian

J = ∂f (�εp)

∂�εp
= ∂2ϕ∗(C[ε − εn

p −�εp]′)

∂σ ′∂�εp
− 1

�t
P

′ (110)

is reducible to a 5 × 5 matrix in the harmonic basis. The residual update equation for the iteration step i + 1,

J(�εi
p)[�εi+1

p ] = f (�εi
p), (111)

can be solved via a direct method with computational expense of order O(n3). For the concrete example of a
Cholesky factorization as described by e.g. [27], reducing the dimension of the problem from 6 to 5 by using the
harmonic basis reduces the number of operations by 35%. More importantly, when using the Mandel notation,
the Jacobian is a 6 × 6 matrix of rank 5, i.e. singular. Because of numerical imprecision, a naive numerical
inversion attempt might yet succeed, yielding erroneous results; a problem which the harmonic basis avoids
entirely.

The example material considered here is both anisotropic and generally nonlinear, but simple in the sense
of having a small number of internal variables. We expect similar results for materials with hardening, both
isotropic and anisotropic. As evidenced by e.g. the existence of the various Kocks-type bases, the approach of
modelling incompressible problems in an isochoric parameter space is not a new development. The harmonic
basis is useful because transforming to an isochoric parameter space is as simple as dropping the first compo-
nent. Even more generally, the harmonic basis can be of use whenever a continuum-mechanical problem can be
separated into compressive and deviatoric parts.

4. Texture descriptions using the harmonic basis

4.1. Tensorial texture descriptions

The properties of locally anisotropic microstructures generally depend on local orientation, such as grain orien-
tations in a polycrystal. One method of describing such microstructures is the orientation distribution function
(ODF), a one-point probability distribution of orientation, which is defined as a probability density on the
orientation space

f : SO(3) → R≥0, (112)

with the normalization property ∫
SO(3)

f (Q) dV (Q) = 1. (113)

The ODF is directly linked to anisotropy in various material quantities, such as effective stiffnesses (e.g. Böh-
lke and Bertram [28]) and plasticity (e.g. Man and Huang [29]). The calculation of effective material quantities
from the ODF generally requires additional micromechanical assumptions.
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We assume the ODF to be square-integrable. By choosing a basis of the space of square-integrable functions,
the ODF can be described with a series of coefficients relative to this basis, cf. Bunge [9]. A coordinate-
independent series expansion is possible by using tensorial texture coefficients coefficients (Adams et al. [10]).
Lobos Fernández and Böhlke [11] define these tensors as general deviatoric basis tensors H 〈n〉 equivalent to our
�n, but do not choose a specific basis. Building on those results, Man and Du [12] have chosen the complexified
eigentensor bases which we refer to in this work as �n, which leads to complexified texture coefficients. We
instead remain in a real tensor space by using the deviatoric bases�n, and write for arbitrary crystal symmetry
the ith texture coefficient of order n as

�
n
i =

∫
SO(3)

f (Q)Q(�n
i ) dV (Q). (114)

The series description of the ODF follows as

f (Q) =
∞∑

n=0

2n+1∑
i=0

(2n + 1)�n
i · Q(�n

i ). (115)

In micromechanics, a common expression is the expectation value of an orientation-dependent tensor Q(	n),
which may be computed as an SO(3) average weighted by f . Using the harmonic basis,

∫
SO(3)

f (Q)Q(	n) dV (Q)
∫

SO(3)
f (Q)Q �

n∑
k=0

∑
i

2k+1∑
j=1

Ah(k,i,j)P
nk
i [�k

j ] dV (Q). (116)

After rearranging the integral and using the isotropy of the inclusion tensors, equation (114) can be used to
arrive at

∫
SO(3)

f (Q)Q(	n) dV (Q) =
n∑

k=0

a(n,k)∑
i

2k+1∑
j=1

Ah(k,i,j)P
nk
i [�k

j ]. (117)

We note that the harmonic basis components Ah(k,i,j) are directly reflected in the calculation of orientation
averages.

4.2. Application 3: orientation averages of elasticity tensors

As an example, we calculate the orientation average of a major and minor symmetric fourth-order tensor A.
This operation is useful in calculating effective stiffnesses of arbitrarily anisotropic textured polycrystals even
beyond simple averages. For example, Böhlke and Lobos Fernández [30] have calculated Hashin–Shtrikman
bounds for cubic polycrystals in this way, with an extension to bounds of polycrystals of arbitrary material
symmetry in Lobos Fernández and Böhlke [11]. We call the space of major and minor symmetric fourth-order
tensors C. To determine a full harmonic basis of C, we need to calculate the harmonic projectors, or equivalently,
the harmonic decomposition. The harmonic decomposition of A is well-known in the literature as

A =a1P
◦ + a2P

′ + J1[A′
1] + J2[A′

2] + A
′, (118)

with appropriate tensors J1 and J2 as discussed, e.g., by Boehler et al. [16]. Differing from most common
accounts, our J are

(J1)ijklmn =δijP
′
klmn + P′

ijmnδkl, (119)

(J2)abcdef =P′
abijP

′
cdkl(δikP′

jlef + δjlP
′
ikef + δilP

′
jkef + δjkP′

ilef ), (120)

such that

J[A◦] = 0 (121)
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and

J1[A] · J2[B] = 0 (122)

for all A and B. In the literature, J2 is usually defined as(
J2[A′

2]
)

ijkl
=δikA′

2jl + δjlA
′
2ik + δilA

′
2jk + δjkA′

2il, (123)

in which case J1[A] and J2[B] are not orthogonal if A and B are not deviatoric.
Forte and Vianello [14] state that fourth-order harmonic decompositions are not unique, since tensorial

constants of the same order, such as J1 and J2, may be linearly recombined. By using the Clebsch–Gordan
construction of equation (25), our decomposition nonetheless arises uniquely from the second-order harmonic
decomposition, meaning that it is the canonical harmonic decomposition for major and minor symmetric
tensors which are maps from Sym2 to Sym2, as opposed to other possible interpretations of those tensors,
e.g., as maps from R to R⊗3. We therefore reconstruct this harmonic decomposition by constructing C as
symH

(
Sym2 ⊗ Sym2

)
. First, we recall that

Sym2 = P
20[R] + P

22[D2] (124)

with P20 = c110 = I/
√

3 and P22 = �112 = P′. The inclusions from the various deviatoric subspaces to C follow
from equation (38) as

P
40
1 = symH

((
P

20 00× P
20
)

0· c000
) = P

◦, (125)

P
42
1 = symH

((
P

20 02× P
22
)

2· �112
) = 1

2
√

3
J1, (126)

P
40
2 = symH

((
P

22 22× P
22
)

4· �220
) = 1√

5
P

′, (127)

P
41 = symH

((
P

22 22× P
22
)

4· �221
) = 0, (128)

P
42
2 = symH

((
P

22 22× P
22
)

4· �222
) = −

√
3

28
J2, (129)

P
43 = symH

((
P

22 22× P
22
)

4· �223
) = 0, (130)

P
44 = symH

((
P

22 22× P
22
)

4· �224
) = I

Dev4 , (131)

with the last term being the eighth-order identity on Dev4. We could recover the exact form of equation (118)
by choosing a1, a2, A′

1, A′
2, and A′ to offset the scalar factors. However, the scalar factors ensure that Pnk[�k]

are normed basis tensors. The resulting symmetric harmonic basis tensors are

H
C
1 =P

◦ (132)

H
C
2 = 1√

5
P

′ (133)

H
C
3...7 = 1

2
√

3
J1[D2

1...5] (134)

H
C
8...12 = −

√
3

28
J2[D2

1...5] (135)

H
C
13...21 =D4

1...9. (136)

According to equation (117), the orientation average of A resolves to

∫
SO(3)

f (Q)Q(A) dV (Q) =
4∑

k=0

a(4,k)∑
l=1

2k+1∑
i=1

Ah(k,l,i)P
nk
l [�k

i ], (137)
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with l ∈ [1, 2] for k = 0 and k = 2, l = 1 for k = 4 and vanishing l for odd k. The projectors Pnk and the
enumeration convention h(k, l, i) correspond to the HC-basis. Because that basis is harmonic, the components
Ah of a rotated and averaged A are precisely the HC-components of the unrotated A.

In the general anisotropic case, the Ah(k,l,i) form a 21-dimensional vector, which can be reduced depending
on the material symmetry. For example, the harmonic decomposition of a cubic fourth-order tensor Ac aligned
to the ei-axes is

A
c = Ac

1P
◦ + Ac

2P
′ + Ac

3

(
−
√

25

2
D

4
1 −

√
35

2
D

4
9

)
, (138)

where

Ac
1 =λc

1, (139)

Ac
2 =2

5
λc

2 + 3

5
λc

3, (140)

Ac
3 =1

5
(−λc

2 + λc
3). (141)

As noted by Böhlke and Bertram [28], Ac
3 is a measure of the crystal’s anisotropy, while the other two

parameters represent the expectation values of the isotropic stiffness tensor for a isotropic ODF. As there are
three parameters involved in the description of a cubic single crystal, three texture coefficients are sufficient
to describe the ODF of a cubic polycrystal according to equation (137). Two of these are the same scalar,
and redundant with the normalization condition (equation (113)). Therefore, one fourth-order deviatoric texture
tensor fully describes a cubic ODF, which resolves to nine scalar components in the deviatoric basis, as discussed
by Lobos Fernández and Böhlke [11]. The deviatoric basis is therefore particularly efficient in texture-based
material modeling. Texture evolution models as discussed by, e.g., Böhlke et al. [31] have long used results
from tensor representation theory; the harmonic basis is particularly useful because it incorporates those results
into an orthonormal basis.

4.3. Application 4: fiber orientation distributions

The results found here are equivalently true for fiber orientation modeling. In the fiber orientation community,
textures are modeled over the sphere S(2) instead of SO(3) as fibers are often assumed to be geometrically
and materially transversal-isotropic. We focus on two kinds of fiber orientation distribution tensors defined by
Kanatani [32]. The orientation tensors of first kind are defined as



n =

∫
S(2)

f (n)n⊗n dV (n). (142)

To use our results, we transform the integration domain to SO(3), leading to



n =

∫
SO(3)

f (Q)Q(en
3) dV (Q). (143)

Because e⊗n
3 is fully index-symmetric, there is only one inclusion Pnk for each n. In addition, e⊗n

3 is transversally
isotropic and aligned with the harmonic basis convention axis. Since only the last basis tensor �k

2k+1 of each
deviatoric basis is transversally isotropic, the harmonic decomposition of e⊗n

3 reads

e⊗n
3 =

n/2∑
k=0

Hn
k P

n2k[�2k
4k+1]. (144)

The basis tensors are given by

�
n
k =P

nk[�k
2k+1] = sym

(
I⊗(n/2−k) ⊗�k

2k+1

)
‖ sym

(
I⊗(n/2−k) ⊗�k

2k+1

) ‖ , (145)
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where the norm resolves to

‖ sym
(
I⊗(n/2−k) ⊗�k

2k+1

) ‖ = 1√(2n−2k
2k

) . (146)

The harmonic components Hn
k are given by

Hn
k =

√
(2n − 4k)!

(2n − 2k)!

n! 2k

(n − 2k)!
. (147)

Applying a rotation integral weighted with the ODF f (Q) over equation (144) leads to



n =

n/2∑
k=0

Hn
k P

n2k[�2k
4k+1] (148)

=
n/2∑
k=0

n!2k sym
(
I⊗(n/2−k) ⊗�k

2k+1

)
(n − 2k)!

√
(2k)!

(149)

The constants Hn
k and Pn2k provide an explicit link between texture coefficients �2k

4k+1 and the first-kind orien-
tation tensor 
n. The texture coefficients �2k

4k+1 are normalized versions of the orientation tensors of third kind
introduced by Kanatani [30], such that

‖�2k
4k+1‖ ≤ 1. (150)

Due to the normalization condition equation (113), the zeroth-order third-kind orientation tensor is always
1. A suitably minimal basis of the other third-kind tensors is given by the deviatoric bases �k . The harmonic
decomposition shows that a texture is equivalently characterized by either the single first-kind orientation tensor
of order n or the third-kind orientation tensors of order up to and including n, where the latter choice requires
one fewer parameter due to the normalization condition. In the harmonic basis, this relationship is made explicit.

4.4. Computational effort of tensor rotations

In practice, texture analysis involves large numbers of rotations of high-order tensors. We therefore investigate
the computational efficiency of rotations. Given a generally anisotropic nth-order tensor	n, calculating Q �	n

via the definition of the Rayleigh product in equation (2) requires n multiplications of a 3 × 3 matrix with a 3×n

component array. This resolves to 3n−1n matrix-vector products with nine floating-point multiplications each, or
3n+1n floating-point multiplications. If we instead use the nth-order harmonic basis, we write Q�n as a 3n × 3n

matrix. Crucially, this matrix is sparse, comprising copies of dk
ZXZ-matrices up to order k = n, where each

matrix has size (2k + 1) × (2k + 1). We may ignore d-matrices of order 0. The total number of floating-point
multiplications resolves to

n∑
k=1

a(n, k)(2k + 1)2, (151)

where a(n, k) is the number of 2k + 1-dimensional harmonic subspaces of order n. Because the dimensions of
all harmonic subspaces must add up to the dimension of the original tensor space,

n∑
k=0

a(n, k)(2k + 1) = 3n. (152)

Therefore, an upper bound for the total number of floating-point multiplications is

n∑
k=1

a(n, k)(2k + 1)2 ≤
n∑

k=1

a(n, k)(2k + 1)(2n + 1)

=(2n + 1)3n. (153)
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Figure 4. Number of additions and multiplications involved in rotations of nth order tensors by using the tensorial Rayleigh product
or using a harmonic basis for the spaces Rn, Symn and C.

Notably, these are fewer than 3n+1n for n > 1. When considering total computational effort, floating point
additions are roughly as expensive as floating point multiplications. While the number of floating point additions
increases with matrix size and is therefore potentially higher when using the harmonic approach, the harmonic
approach is still less expensive in total. When the tensor to be rotated has index symmetries, the computational
expense of a harmonic rotation can be reduced further, as fewer harmonic subspaces are involved, whereas
index symmetries are generally difficult to incorporate into the standard definition of the Rayleigh product. A
visualization of exact values is given in Figure 4. While the harmonic basis rotation is generally faster than a
naive Rayleigh product, it requires more space, as n matrices of size (2k + 1) × (2k + 1) need to be stored as
opposed to one 3 × 3 matrix. Non-harmonic tensorial bases generally require fully occupied 3n × 3n rotation
matrices, greatly increasing the computational cost compared to even the Rayleigh product.

If the rotations in question are always applied to a given reference state, as is common for orientations of sin-
gle crystals in a polycrystal, it is also possible to implement material symmetries to reduce the computational
effort further. As is well known in the texture analysis community, material symmetries reduce the number
of tensorial texture coefficients involved in a texture description [11]. Equivalently, one might say that mate-
rial symmetries reduce the 2n + 1-dimensional deviatoric space Dn to a k-dimensional symmetric subspace.
This subspace is however not invariant under arbitrary rotations; for example, the one-dimensional transversal
isotropic subspace may change its axis of symmetry under rotations which are not aligned to that axis. Let �n

j

with j = [1, k] denote the n-th order texture coefficient of a materially symmetric single crystal in a reference
orientation. Using equation (103), the rotation tensor may be implemented as a (2n + 1) × k matrix given by

Qij = Q�n ·
(
�

n
i ⊗�n

j

)
= dn

ZXZil�
n
l ·�n

j . (154)

Applying Qij to orient a Dn tensor given in the reference orientation involves (2n + 1)k multiplications and
(2n + 1)(k − 1) additions.

For example, fiber orientation tensors are both fully index symmetric and transversal isotropic. In the refer-
ence orientation aligned with e3, the only transversally isotropic tensor of the nth-order deviatoric subspace is
given by

�
n
0 = �n

2n+1. (155)

Correspondingly, rotating a transversally isotropic nth-order tensor such as a fiber material property from a
reference configuration by individually rotating all third-kind orientation tensors up to nth order requires no
additions and only

n∑
l=1

2l + 1 = n2 + 2n (156)
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multiplications. We summarize that rotating high-order tensors in the harmonic basis is computationally efficient
compared to a naive Rayleigh product implementation in the general case, and increasingly specialized rotation
implementations can be found for both index- and material symmetries, further increasing the efficiency.

5. Conclusion
This work proposes a novel convention and calculation scheme for harmonic bases which expands and unifies
existing schemes in material modelling and texture quantification. The new convention

• simplifies theoretical approaches in crystallography and micromechanics by being aligned to the eigende-
compositions of common material symmetries

• reduces computational effort in numerical approaches by allowing a problem-specific choice of basis
which, compared to commonly used basis conventions, exploits material symmetry of tensorial quantities
to reduce the dimension of equation systems and exploit sparsity of various matrices.

These improvements are accomplished by defining a basis scheme which decomposes tensor spaces into
harmonic subspaces. Mathematically, the representation theory of SO(3) led us to the deviatoric basis consisting
of deviatoric tensors, which was then extended to harmonic bases of arbitrary tensor spaces by using inclusion
tensors based on Clebsch-Gordan coefficients. In using these mathematical constructs, our convention builds
on group representation theory results well-known in quantum mechanics.

For small deformation material modeling, we derived a harmonic basis of symmetric second-order tensors,
which is equivalent to orthonormalized Kocks-type bases. We showed that the basis tensors correspond to ele-
mentary strain modes. In linear elasticity theory, stiffness tensors of different material symmetry are efficiently
represented in the harmonic basis (Application 1). In addition, we show that for a large set of phenomenological
incompressible plasticity models, the time integration problem can also be efficiently formulated and solved in
a harmonic basis (Application 2).

In the context of texture analysis, the harmonic basis derived here is a fully real version of the basis
recently proposed by Man and Du [12], removing the need for complexified tensor algebra. The deviatoric
bases parametrize tensorial texture coefficients in an efficient manner. In addition, the harmonic extension of
arbitrary tensor spaces clarifies the relationship between texture coefficients and orientation averages (Applica-
tion 3). For example, specifying stiffness tensors in a 21-dimensional harmonic basis considerably simplifies
the computation of orientation averages if texture coefficients are known. For the description of fiber orientation
distributions, e.g., in fiber-reinforced polymers, the harmonic basis tensors are closely related to established
fabric or fiber tensors of third kind, and therefore help in describing the orientation distribution (Application 4).
Finally, we show how the numerical effort of rotating tensors can be reduced by proper subspace-representations
using the harmonic basis.

The harmonic basis formalism described in this paper can be applied to tensors of arbitrary order and sym-
metry. Correspondingly, harmonic bases can be used in every tensor-based theory to find tensorial bases which
are tailored to specific theories and applications.

A Python implementation of the harmonic basis convention defined in this work is available at
www.itm.kit.edu/harmonic-bases.
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Appendix 1

Properties of Clebsch–Gordan tensors

Essential to the construction of non-deviatoric harmonic basis tensors are the Clebsch–Gordan tensors �mnl

defined in equation (28) and equation (29). We note that all Clebsch–Gordan tensors are isotropic,

Q � �mnl = �mnl ∀Q ∈ SO(3). (157)

Furthermore, the Clebsch–Gordan tensors alternate in the symmetry of the first two tensor orders, such that

cmnl
ijk = (−1)l−m−ncnml

jik . (158)

The orthogonality relations state that

cmnl
ijk cmnl

ijq �
l
k ⊗�l

q = δkq�
l
k ⊗�l

q = I
Dl

(159)

and

cmnl
ijk cmnl

opk�
m
i ⊗�n

j ⊗�m
o ⊗�n

p = δioδjp�
m
i ⊗�n

j ⊗�m
o ⊗�n

p

= I
Dm mn× I

Dn
. (160)

Using equation (159), a total contraction of Clebsch–Gordan tensors can be rearranged to yield

‖�mnl‖ =
√
�mnl · �mnl =

√
IDl · IDl =

√
l. (161)

Because the 2nth-order deviatoric subspace D2n is a harmonic subspace of Dn ⊗ Dn, the Clebsch–Gordan tensor
�nn(2n) is the identity on the deviatoric subspace D2n,

�
nn(2n) =I

D2n
. (162)

Some results involving Clebsch–Gordan tensors may also be familiar from [33], who derive various similar
tensors including

c(2,0) =P
20
0 , (163)

�(l) =�l0l, (164)

�(l) =�l1l. (165)

Appendix 2

Further stiffness tensor symmetries

To complete the material symmetries, we quickly show stiffness tensors for trigonal, tetragonal, monoclinic,
and orthotropic stiffnesses in the harmonic basis. Both tetragonal and trigonal symmetries are related to the
hexagonal symmetry, and we use the same abbreviations,

CH
H11 =1

3
(2C1111 + 2C1122 + 4C1133 + C3333) , (166)

CH
H22 =C1111 − C1122 (167)

CH
H16 =

√
2

3
(−C1111 − C1122 + C1133 + C3333) , (168)

CH
H66 =1

3
(C1111 + C1122 − 4C1133 + 2C3333) . (169)



24 Mathematics and Mechanics of Solids 00(0)

The tetragonal stiffness reads

Ctetr
H

=

⎛
⎜⎜⎜⎜⎜⎝

CH
H11 0 0 0 0 CH

H16
0 CH

H22 0 0 0 0
0 0 2C1212 0 0 0
0 0 0 2C2323 0 0
0 0 0 0 2C2323 0

CH
H16 0 0 0 0 CH

H66

⎞
⎟⎟⎟⎟⎟⎠ (170)

and the trigonal stiffness

Ctrig
H

=

⎛
⎜⎜⎜⎜⎜⎝

CH
H11 0 0 0 0 CH

H16
0 CH

H22 0 0 2C1123 0
0 0 CH

H22 2C1123 0 0
0 0 2C1123 2C2323 0 0
0 2C1123 0 0 2C2323 0

CH
H16 0 0 0 0 CH

H66

⎞
⎟⎟⎟⎟⎟⎠ . (171)

The following stiffnesses are increasingly complicated to write down in terms of scalar components Cijkl

respective to the symmetry-aligned e-basis. This should not be taken to mean that the harmonic basis depiction
is complicated. Its scalar components have immediate physical meaning as coupling terms of elementary stress
and strain modes, unlike the components respective to the e-basis which does not separate stresses and strains
into elementary modes. One might instead say that from the point of view of stress and strain modes, the
depiction using the e-basis is complicated. We write the orthotropic stiffness as

Corth
H

=

⎛
⎜⎜⎜⎜⎜⎝

Corth
H11 Corth

H12 0 0 0 Corth
H16

Corth
H12 Corth

H22 0 0 0 Corth
h26

0 0 2C1212 0 0 0
0 0 0 2C1313 0 0
0 0 0 0 2C2323 0

Corth
H16 Corth

H26 0 0 0 Corth
H66

⎞
⎟⎟⎟⎟⎟⎠ , (172)

with the abbreviations

Corth
H11 =1

3
(C1111 + C2222 + C3333) + 2

3
(C1122 + 2C1133 + 2C2233), (173)

Corth
H12 = 1√

6
(C1111 + C1133 − C2222 − C2233) , (174)

Corth
H22 =C1111

2
− C1122 + C2222

2
(175)

Corth
H16 = 1

3
√

2
(2C3333 − C1111 − C2222 − 2C1122 + C1133 + C2233), (176)

Corth
H26 = 1

2
√

3
(−C1111 + 2C1133 + C2222 − 2C2233) , (177)

Corth
H66 =1

6
(C1111 + C2222 + 4C3333) + 1

6

(
C1122

3
− 4C1133 − 4C2233

)
. (178)

Because the orthotropic symmetry is defined in terms of the original basis tensors ei, the harmonic com-
ponents of Corth are not appreciably simplified compared to the Mandel form. The same is true for the related
monoclinic symmetry,

Cmono
H

=

⎛
⎜⎜⎜⎜⎜⎝

Corth
H11 Corth

H12 0 0 Cmono
H15 Corth

H16
Corth

H12 Corth
H22 0 0 Cmono

H15 Corth
H26

0 0 2C1212 2C1312 0 0
0 0 2C1312 2C1313 0 0

Cmono
H15 Cmono

H25 0 0 2C2323 Cmono
H56

Corth
H16 Corth

H26 0 0 Cmono
H56 Corth

H66

⎞
⎟⎟⎟⎟⎟⎠ , (179)
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with

Cmono
H15 =

√
6 (C1123 + C2223 + C3323)

3
, (180)

Cmono
H15 =C1123 − C2223 (181)

Cmono
H56 =

√
3 (−C1123 − C2223 + 2C3323)

3
. (182)

For fully anisotropic stiffnesses, the harmonic basis component matrix is fully occupied and its relation to
Cijkl components complicated. We use the general expression

CHij = C ·
(

H2
i ⊗ H2

j

)
. (183)

Appendix 3

Deviatoric axis rotation matrices

The action of SO(3) on D2 is given in Equations (184)–(186) as 5 × 5 rotation matrices around the X, Y, and Z
axes.

d2
ZD2 =

⎛
⎜⎜⎜⎝

cos (2α) sin (2α) 0 0 0
− sin (2α) cos (2α) 0 0 0

0 0 cos (α) sin (α) 0
0 0 − sin (α) cos (α) 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ (184)

d2
YD2 =

⎛
⎜⎜⎜⎜⎜⎝

cos (α) 0 0 − sin (α) 0

0 cos (2α)
4 + 3

4
sin (2α)

2 0 −
√

3 sin2 (α)
2

0 − sin (2α)
2 cos (2α) 0 −

√
3 sin (2α)

2
sin (α) 0 0 cos (α) 0

0 −
√

3 sin2 (α)
2

√
3 sin (2α)

2 0 3 cos (2α)
4 + 1

4

⎞
⎟⎟⎟⎟⎟⎠ (185)

d2
XD2 =

⎛
⎜⎜⎜⎜⎜⎝

cos (α) 0 − sin (α) 0 0

0 cos2 (α)
2 + 1

2 0 − sin (2α)
2

√
3(1−cos (2α))

4
sin (α) 0 cos (α) 0 0

0 sin (2α)
2 0 cos2 (α)

2 + 3 cos (2α)
4 − 1

4 −
√

3 sin (2α)
2

0
√

3(1−cos (2α))
4 0

√
3 sin (2α)

2
cos2 (α)

2 + cos (2α)
2

⎞
⎟⎟⎟⎟⎟⎠ (186)


