Key Features and Comparative Advantage of Sodium cooled Fast SMRs

Sara Perez-Martin Senior Researcher

Institute for Neutron Physics and Reactor Technology (INR) Karlsruhe Institute of Technology (KIT), Germany

Sodium-cooled Fast Reactors

- Fast Spectrum: fuel breeding, less production of minor actinides and the possibility to transmute LWR-spent fuel.
- Core layout: cake-shape for enhancing neutron leakage in case of boiling. In SMR-size, it is an inherent safety feature against prompt criticality. (e.g. EBR-II tests)
- Sodium physical properties: large margin to boiling, temperatures (350-500/550°C), greater thermal efficiency than LWRs. Metal fluid: EM pumps
- Heat transfer: excellent heat transfer properties, high-power density, compact core designs,
- Reactor layout: loop or pool designs able to provide safety features depending on the power level (e.g. pool: pumps immersed, no LOCA, high thermal inertia).

Sara Perez-Martin KIT

Sodium-cooled Fast Reactors

- Safety reactivity features: Sodium void and density reactivity. In case of voiding:
 - less neutron capture (positive reactivity)
 - neutron spectrum hardening (positive reactivity)
 - Iarger mean free path due to neutron leakage increase (negative reactivity)

Safety measures:

- Fuel: axially heterogeneous fuel (central fertile layer increasing neutron flux in upper fissile layer, or shorter fissile zone). Oxide and metal options.
- Core: large sodium plenum at core top (neutron leakages increased); absorbing zone in upper shielding (reducing neutron reflection back to fissile core)
- Passive systems: natural circulation to remove decay heat.
- **Low-pressure primary system:** near atmospheric.
- Na-water interaction: Intermediate Sodium Loop (primary power conversion system.)
- Commercial readiness: Extensive operational experience world-wide, over 400 reactor-years, 20 reactors. Current projects in China (CEFR), Russia (BN-800) and India (PFBR)
- Load-following: temperatures compatible with reasonable-sized intermediate thermal storage systems

Reflector		
Sodium plenum	_	
Upper FG plenum	Rac	
Inner core	~ 0	dial
Central fertile zone)ut(Re
Inner core	e er	flec
Lower fertile zone		to
Fission Gas Plenum		

SFR reactor designs in EU projects

	CP-ESFR	ESNII+	ESFR-SMART	ESFR-SIMPLE
Time	2009-2012	2013-2017	2018-2022	2023-2027
Target	SFR	Gen-IV (SFR, LFR, GFR)	SFR	SFR
Reactor power (MWth)	3600	1500	3600	3600 & SMR
Reactor performance	Minor Actinides transmutation	ASTRID	Improved CP-ESFR reactor	SMR design (oxide) Metal fuel (SFR)
Safety measures	decrease sodium void worth	negative sodium void worth	corium discharge tubes passive SR (Curie-point triggered)	

Comparative Advantage of SFR-SMR

- Fast Spectrum: less production of minor actinides compared to thermal spectrum.
- High coolant temperatures 350-500/550°C: greater thermal efficiency than LWRs
- Low pressure cooling circuits.
- Extensive experience in reactors from small facilities to large reactors (FFTF, EBR, ..., Joyo, ... PHENIX, Monju, ... SUPERPHENIX, BN-800, PFBR ...).
- Extensive R&D activities: test reactors, in-pile fuel tests (pin and SA level), two-phase flow, source term, ... needed for code validation.

	Sodium	Lead
Heat Transfer	+	-
Natural circulacion	-	+
Neutron activation	+	-
Corrosion in structural materials	+	-
Chemical activation (H2O, O2)	-	+
Intermedate loop needed	-	+
Void reactivity	-	+
Operational experience	+	-

Conclusions

- SFRs and SFR-SMR have great characteristics with respect to fuel performance, core size, thermal cycle efficiency and safety behaviour. The later being the focus of several R&D programmes.
- Medium-size SFR enhancing neutron leakage in case of boiling (inserting negative reactivity) presents even better safety performance.
- Integration of Thermal Energy Storage for providing load-following capability without affecting reactor operation. Coolant temperatures (350-500°C) allow reasonable TES size.
- Further R&D under collaborative projects are required to continue the enhancement of SMR-SFRs:
 - Experimental tests reflecting the current trends in core designs.
 - Passive systems for Decay Heat Removal
 - Integration of Molten Salts Loops (Na-MS HX)