KIT | KIT-Bibliothek | Impressum | Datenschutz

ChatGPT’s Potential for Quantitative Content Analysis: Categorizing Actors in Public Debates

Hohenwalde, Clarissa Elisabeth ORCID iD icon 1; Leidecker-Sandmann, Melanie ORCID iD icon 1; Promies, Nikolai 1; Lehmkuhl, Markus 1
1 Institut für Technikzukünfte (ITZ), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We assess ChatGPT's ability to identify and categorize actors in news media articles into different societal groups. We conducted three experiments to evaluate different models and prompting strategies. In experiment 1, testing gpt-3.5-turbo, we found that using the original codebooks created for manual content analysis is insufficient. However, combining named entity recognition with an optimized prompt (NERC pipeline) yielded an acceptable macro-averaged F1-score of .79. Experiment 2 compared gpt-3.5-turbo, gpt-4o, and gpt-4-turbo: the latter achieved the highest macro-averaged F1-score of .82 using the NERC pipeline. Challenges remained in classifying nuanced actor categories. Experiment 3 demonstrated high retest reliability for different gpt-4o releases.


Volltext §
DOI: 10.5445/IR/1000176416
Veröffentlicht am 19.11.2024
Originalveröffentlichung
DOI: 10.31219/osf.io/6d95k
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technikzukünfte (ITZ)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000176416
Verlag Center for Open Science (COS)
Umfang 29 S.
Vorab online veröffentlicht am 15.11.2024
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page