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Abstract. We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato–Lefever equation on R.

Our interest lies in solutions that arise through bifurcations from the phase-shifted bright soliton of the nonlinear Schrödinger
equation. These solutions are highly nonlinear, localized, far-from-equilibrium waves, and are the physical relevant solutions
to model Kerr frequency combs. We show that bifurcating solitary waves are spectrally stable when the phase angle satisfies
θ ∈ (0, π), while unstable waves are found for angles θ ∈ (π, 2π). Furthermore, we establish asymptotic orbital stability
of spectrally stable solitary waves against localized perturbations. Our analysis exploits the Lyapunov–Schmidt reduction
method, the instability index count developed for linear Hamiltonian systems, and resolvent estimates.
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1. Introduction

Kerr frequency combs generated in an externally driven Kerr nonlinear microresonator are very promis-
ing devices in optical communications or frequency metrology, enabling, for instance, high-speed data
transmission of up to 1.44 Tbit/s, cf. [43]. They are optical signals consisting of a multitude of equally
spaced excited modes in frequency space and are modeled by stable highly localized stationary periodic
solutions of the Lugiato–Lefever equation (LLE)

iut = −duxx + (ζ − i)u − |u|2u + if, (x, t) ∈ R
2. (1.1)

Here, u = u(x, t) ∈ C is the field amplitude in the resonator, d �= 0 is the dispersion, ζ ∈ R is the offset
between the external forcing frequency and the resonant frequency in the resonator called detuning, and
f ∈ R describes the pump power inside the resonator of the external forcing. A physical derivation of
(1.1) can be found in [34]. From a mathematical point of view, LLE is a damped and driven nonlinear
Schrödinger equation (NLS). Motivated by the promising applications of Kerr frequency combs, the
existence of stationary solutions of LLE has received considerable attention. A plethora of stationary
solutions have been found in numerical simulations [4,17,38–41] or have been constructed analytically
[5,16,21,33,36,37]. The naturally associated question of their spectral as well as their nonlinear stability
with respect to different types of perturbations has gained interest recently [3,11,12,14,22–26,42,46,
47]. Whereas nonlinear stability can be obtained under general spectral stability assumptions, spectral
stability analyses themselves rely on the specific structure of the solutions and typically employ similar
methods as were used to construct them. So far, spectral stability has been obtained for periodic small
amplitude solutions of (1.1) arising through a Turing bifurcation of a homogeneous rest state [12]. The
only spectral stability result of far-from-equilibrium solutions of (1.1) that the author is aware of is that
in [23], where solutions to (1.1) are constructed by bifurcation from the dnoidal wave solutions solving
NLS equation on the torus. Stability results for explicitly available solitary wave solutions in the forced
NLS equation without damping have been obtained in [2] and also recently in [14]. Here, we present
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the first spectral stability result of far-from-equilibrium soliton solutions of the damped and driven NLS
(1.1). The solutions under consideration are highly nonlinear and arise by bifurcation from bright solitons
in the NLS equation in the anomalous regime d > 0. They satisfy the approximation formula

u(x) ≈ u∞ +
√

2ζ sech

(√
ζ

d
x

)

eiθ0 , x ∈ R, (1.2)

where u∞ ∈ C is a constant background due to the forcing in (1.1) and the angle θ0 is found by solving
the equation cos θ0 = 2

√
2ζ/(πf). Although they are non-periodic solutions of (1.1), their exponential

localization makes them a valid approximation of a frequency comb, cf. Fig. 1. We emphasize that the
approximation (1.2) is frequently used in the physics literature to approximate Kerr frequency combs
[8,27,48], which facilitates (formal) computations.

Contributions of this paper are threefold. In Theorem 1, we prove the existence of solitary wave
solutions of (1.1) that verify the approximation (1.2). Therefore, we consider the LLE with dispersion
rescaled to d = 1 as a perturbation of the focusing NLS in the following sense:

iut = −uxx + ζu − |u|2u + εiΨ(u), (x, t) ∈ R
2, (1.3)

where

Ψ(u) = −u + f,

and ε is the bifurcation parameter. We show that solitary wave solutions u = u(ε) bifurcate at ε = 0
from the rotated NLS soliton

φθ0(x) :=
√

2ζ sech(
√

ζx)eiθ0 .

In Theorem 2, we prove spectral stability of the solitary waves satisfying sin θ0, ε > 0 and spectral
instability for all other sign configurations of ε, sin θ0. This result relies on a detailed analysis of the
spectral problem, where the crucial point is to understand the behavior of small eigenvalues for ε small
in the linearized problem.

Finally, in Theorem 3 we prove nonlinear asymptotic orbital stability of spectrally stable solitary
waves. For the linear estimates, we establish high-frequency resolvent estimates for families of operators
in Hilbert spaces, see Theorem 4, which we then use to prove linear stability. Indeed, the resolvent
estimates are needed to overcome the problem that a spectral mapping theorem for the non-sectorial
operator arising in the linearized equation is a-priori not available. Nonlinear stability then follows as a
corollary of the linear stability result.

Remark 1. Existence of solitary waves bifurcating from the NLS soliton has already been proven in [18]
using the Crandall–Rabinowitz theorem of bifurcation from a simple eigenvalue. Here, we use a different
approach based on a Lyapunov–Schmidt reduction in parameter-dependent spaces. This is advantageous
because it directly yields an expansion of the solution needed in the spectral stability analysis. Further,
we believe that our approach is flexible enough for possible extensions to bifurcation problems with higher
dimensional kernels.

Remark 2. There is a long list of literature on persistence and stability of solitary solutions for other
variants of the perturbed NLS, cf. [1,6,31,44] and the references therein.

1.1. Main results

Solitary wave solutions of the perturbed NLS (1.3) are solutions of the stationary equation

− u′′ + ζu − |u|2u + iε(−u + f) = 0, x ∈ R, (1.4)

which decay to a limit state u∞ ∈ C as |x| → ∞.
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Fig. 1. Approximation of a periodic solution on R/Z by a solitary wave on R

The following theorem provides the first result of the paper on the existence of solitary waves for a
suitable parameter region.

Theorem 1. Let ζ, f > 0 be fixed and suppose that θ0 ∈ R is a simple zero of the function

θ �→ πf cos θ − 2
√

2ζ.

Then, there exist ε∗ > 0 and a branch (−ε∗, ε∗) 	 ε �→ u(ε) ∈ C + H2(R) of solutions to the perturbed
problem (1.4) bifurcating from the rotated soliton

φθ0(x) =
√

2ζ sech
(√

ζx
)
eiθ0 .

More precisely, the branch is of the form

u(ε) = φθ(ε) + u∞(ε) + ϕ(ε), u(0) = φθ0 ,

where
• the map (−ε∗, ε∗) 	 ε �→ θ(ε) ∈ R is real analytic and describes the rotational angle of the soliton,
• the map (−ε∗, ε∗) 	 ε �→ u∞(ε) ∈ C is real analytic and consists of the constant background of the

solution at ±∞,
• the map (−ε∗, ε∗) 	 ε �→ ϕ(ε) ∈ H2(R) is real analytic and describes a small correction term of

order O(|ε|).
Remark 3. In Theorem 1, a necessary and sufficient condition on the parameters ζ, f to find simple
zeros is π2f2 > 8ζ, which yields an existence region in the ζ-f -plane, already obtained analytically or
numerically in [3,16,18,48]. Furthermore, it should be noted that solutions for negative forcing parameters
f < 0 are obtained through the transformation u �→ −u.

Theorems 2 and 3 provide the two main results on the spectral and nonlinear stability of solitary
waves of Theorem 1 against localized perturbations in H1.

Let u = u(ε) ∈ C + H2(R) be a solution of the stationary LLE as in Theorem 1 for sufficiently small
ε �= 0. Expanding the solution as ψ(x, t) = u(x) + v(x, t) results in the perturbation equation

ivt = −vxx + ζv − 2|u|2v − u2v̄ − iεv − 2|v|2u − v2ū − |v|2v.

The evolution of the perturbation v is coupled with the evolution of the complex conjugate v̄ so that we
obtain the system:

{
ivt = −vxx + ζv − 2|u|2v − u2v̄ − iεv − 2|v|2u − v2ū − |v|2v,

−iv̄t = −v̄xx + ζv̄ − 2|u|2v̄ − ū2v + iεv̄ − 2|v|2ū − v̄2u − |v|2v̄,
(1.5)
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for which the mild formulation is locally well-posed1 in (H1(R))2. The linearized equation is then given
by

Vt = (L − ε)V, V = (v1, v2)T ,

for the operator L := JL : (H2(R))2 → (L2(R))2, with

J :=
(−i 0

0 i

)
, L :=

(−∂2
x + ζ − 2|u|2 −u2

−ū2 −∂2
x + ζ − 2|u|2

)
, (1.6)

and the associated eigenvalue problem reads

λV = (L − ε)V, V = (v1, v2)T . (1.7)

Spectral stability is now determined by the location of the spectrum of the linearized operator σ(L−ε) =
σ(L) − ε according to the following definition.

Definition 1. A solution u = u(ε) ∈ C + H2(R) of (1.4) is called spectrally unstable, if there exists
λ ∈ σ(L − ε) such that Re(λ) > 0. Otherwise the solution is called spectrally stable, i.e., if and only if
σ(L) ⊂ {z ∈ C : Re z ≤ ε}.

The following theorem clarifies the spectral stability of the solitary wave solutions found in Theorem 1.

Theorem 2. Suppose that u = u(ε) ∈ C + H2(R) is a solution of (1.4) as in Theorem 1 for ε �= 0
sufficiently small, that bifurcates from the NLS soliton

φθ0(x) =
√

2ζ sech
(√

ζx
)
eiθ0 ,

with sin θ0 �= 0. Then, the spectrum of L − ε is given by the disjoint union of essential and discrete
spectrum σ(L − ε) = σess(L − ε) ∪ σd(L − ε), where the essential spectrum is explicitly computable:

σess(L − ε) = {iω ∈ iR : |ω| ∈ [ζε,∞)} − ε, ζε = ζ + O(ε2).

Moreover,
(i) if ε < 0, then the solution u is spectrally unstable. The same is true if ε,− sin θ0 > 0.
(ii) if ε, sin θ0 > 0, then the solution u(ε) is spectrally stable and the spectrum satisfies

σ(L − ε) ⊂ {−2ε} ∪ {z ∈ C : Re z = −ε} ∪ {0}
with (algebraically) simple eigenvalues λ = 0,−2ε.

The different stability configurations of Theorem 2 are depicted in Fig. 2.

Remark 4. In case (i) of Theorem 2, the instability is triggered by two different mechanism. If ε < 0,
the essential spectrum of L − ε is unstable. If ε > 0 > sin θ0, we find exactly one simple real unstable
eigenvalue λ+ ∈ σd(L) of order O(ε1/2).

Remark 5. A similar spectral stability result for periodic solutions of (1.3) bifurcating from dnoidal
wave solutions of the NLS has been obtained in [46]. Moreover, in [2,14] stability and instability of purely
imaginary soliton solutions of the forced NLS equation is proven. Here, the stable solutions have a strictly
positive imaginary part, which is in agreement with our sign condition on sin θ0.

The next theorem provides the nonlinear stability result for spectrally stable solutions of Therorem 2.

Theorem 3. Suppose that u = u(ε) ∈ C + H2(R) is a spectrally stable solution as in Theorem 2. Then,
the solution u(ε) is asymptotically orbitally stable. More precisely, there exist constants δ, η, C > 0 such
that for all v0 ∈ H1(R) satisfying ‖v0‖H1 < δ there exists the unique global (mild) solution (v, v̄) ∈
C([0,∞), (H1(R))2), (v(0), v̄(0)) = (v0, v̄0) of (1.5) and σ∞ ∈ R such that with ψ = u + v we have

‖ψ(·, t) − u(· − σ∞)‖H1 ≤ Cδe−ηt for t ≥ 0.

1This follows from standard semigroup theory.
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Fig. 2. Stability configurations of Theorem 2. Blue dots = discrete spectrum, red lines = essential spectrum. Top: spectrum
of the unperturbed stable NLS soliton. Left and bottom: spectrum of unstable solitary waves of LLE. Right: spectrum of a
stable solitary wave of LLE (Color figure online)

Remark 6. In [46], asymptotic orbital stability of spectrally stable periodic solutions against co-periodic
perturbations is proven. Theorem 3 can be seen as an analogous version of this result for stability of
solitary wave solutions on R against localized perturbations.

Remark 7. If we restrict perturbations to the class of even functions the asymptotic orbital stability can
be improved to asymptotic stability by exploiting a spectral gap in the linear stability problem.

1.2. Outline of the paper

In Sect. 2, we show that solitary waves for the LLE bifurcate from the NLS soliton as stated in Theorem 1.
The spectral stability problem is analyzed in Sect. 3.1 and the proof of Theorem 2 is presented. The
asymptotic orbital stability result of Theorem 3 is proven in Sect. 3.2. It relies upon uniform resolvent
estimates for the linearized LLE, which we derive from high-frequency resolvent estimates. These estimates
are obtained in an abstract functional analytical setup and can therefore also be applied to other NLS
type equations.

2. Existence of solitary wave solutions

The goal of this section is to prove Theorem 1. We work in the Sobolev spaces Hk(R) = Hk(R,C), k ∈ N0

of complex valued functions over the field R. By this choice of function spaces, the map H2(R) 	 u �→
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|u|2u ∈ H2(R) is Fréchet differentiable. Moreover, the L2 scalar product is defined by the R-valued map

∀f, g ∈ L2(R,C) : 〈f, g〉L2 = Re
∫

R

fḡdx.

Let us fix the parameters ζ, f > 0 such that 2
√

2ζ < πf and let θ0 ∈ R be a simple zero of θ �→
πf cos θ − 2

√
2ζ. Recall that φ0(x) =

√
2ζ sech

(√
ζx
)

denotes the soliton solution of the focusing cubic
NLS equation

−φ′′ + ζφ − |φ|2φ = 0,

which decays exponentially to zero as |x| → ∞. Let us introduce the manifold of rotated solitons

M :=
{

φθ = φ0eiθ : θ ∈ R

}
.

By the gauge invariance of NLS every φ ∈ M is a solution of the NLS. In addition, NLS possesses a
translational symmetry, i.e., φ(· − σ) is a solution of NLS for all shifts σ ∈ R. In the Lugiato–Lefever
equation, the gauge symmetry is broken, and only the translational symmetry persists. Consequently, the
continuation for ε �= 0 is expected to be successful only for suitably rotated solitons φ ∈ M. To handle
the translational symmetry, we fix the shift parameter σ = 0 and restrict our analysis to the spaces
H2

ev(R), L2
ev(R) of even functions.

It is now important to note that the presence of the forcing term f in (1.4) prevents solutions from
decaying to zero as |x| → ∞. More precisely, the tails at ±∞ of every localized solution satisfy the
algebraic equation

ζu∞ − |u∞|2u∞ + iε
( − u∞ + f) = 0, u∞ ∈ C. (2.1)

Thus, we adapt an ansatz of the form

u = φθ + u∞ + ϕ,

where φθ ∈ M is a suitably rotated soliton, u∞ ∈ C is the constant background solving the algebraic
equation (2.1), and ϕ ∈ H2

ev(R) is a small correction. For the background, we solve (2.1) to leading order
by

u∞(ε) = − if
ζ

ε + O(ε2), (2.2)

which is the unique solution2 close to 0. Inserting our ansatz into (1.4) yields the equation for the
correction ϕ and rotational angle θ:

Lθϕ = N(ϕ, ε, θ) (2.3)

where

Lθϕ := −ϕ′′ + ζϕ − 2|φθ|2ϕ − φ2
θϕ̄, ϕ ∈ H2

ev(R),

and

N(ϕ, ε, θ) : = 2|u∞(ε) + ϕ|2φθ + (u∞(ε) + ϕ)2φ̄θ + |u∞(ε) + ϕ|2(u∞(ε) + ϕ)

− |u∞(ε)|2u∞(ε) + 2|φθ|2u∞(ε) + φ2
θū∞(ε) + iε(φθ + ϕ).

Note that we have N(ϕ, ε, θ) ∈ H2
ev(R) for ϕ ∈ H2

ev(R). Our goal is to solve (2.3) by means of the
Lyapunov–Schmidt reduction method. Therefore, let us collect relevant properties of the linearized oper-
ator Lθ.

2There are two additional solutions to (2.1) given by u∞(ε) = ±√
ζ + O(ε), which are not considered here.
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Lemma 1. For every θ ∈ R, the R-linear operator Lθ : H2(R) → L2(R) is self-adjoint and Fredholm of
index zero. Moreover, we have

Ker(Lθ) = Span{iφθ, φ
′
θ}.

Proof. The fact that Lθ is Fredholm of index zero follows from 0 �∈ σess(Lθ) = σess(−∂2
x + ζ) = [ζ,∞)

and the first equality is a consequence of Weyl’s theorem. Moreover, the operator −∂2
x : H2(R) → L2(R)

is self-adjoint and hence the same holds for Lθ since it is a symmetric bounded perturbation of −∂2
x :

H2(R) → L2(R). Finally, the identity for the kernel follows from a similarity transformation and explicit
formulas for the kernel of the linearized NLS operator, cf. [30]. �

Since we aim to solve (2.3) in the space of even functions, we note that the restricted operator
Lθ|H2

ev
has a one-dimensional kernel. Indeed, by Lemma 1 the kernel is explicitly given by Ker(Lθ|H2

ev
) =

Span{iφθ}. Lyapunov–Schmidt reduction now relies on the decomposition of L2
ev with the orthogonal

projection onto Ker(Lθ|H2
ev

) defined by

Pθϕ :=
〈iφθ, ϕ〉L2

‖φ0‖2L2

iφθ, ϕ ∈ H2
ev(R).

The operator Pθ allows us to split the equation (2.3) into a singular and non-singular part:

(I − Pθ)Lθ(I − Pθ)ϕ = (I − Pθ)N(ϕ, ε, θ) (2.4)

PθN(ϕ, ε, θ) = 0 (2.5)

where we additionally impose the phase condition:

Pθϕ = 0. (2.6)

Note that the condition (2.6) depends on the free rotational parameter θ which means that our decom-
position of L2

ev is parameter dependent:

L2
ev(R) = Ker(Pθ) ⊕ Ran(Pθ).

In the following lemma, we solve the non-singular equation (2.4) subject to the phase condition (2.6).

Lemma 2. There exist open neighborhoods U ⊂ R
2 of (0, θ0), V ⊂ H2

ev(R) of 0 and an real-analytic map
U 	 (ε, θ) �→ ϕ(ε, θ) ∈ V such that ϕ(ε, θ) solves (2.4) subject to the phase condition (2.6) and ϕ(0, θ) = 0
for all (0, θ) ∈ U .

Proof. Define the function F : H2
ev(R) × R × R → L2

ev(R) given by

F (ϕ, ε, θ) := (I − Pθ)Lθ(I − Pθ)ϕ − (I − Pθ)N(ϕ, ε, θ) + Pθϕ.

Then, F is real analytic in (ϕ, ε, θ) as a composition of real-analytic functions (cf. [9] Theorem 4.5.7),
F (0, 0, θ0) = 0 and

∂ϕF (0, 0, θ0) = (I − Pθ0)Lθ(I − Pθ0) + Pθ0 : H2
ev(R) → L2

ev(R)

is a homeomorphism by construction. The implicit function theorem for analytic functions ( [9] The-
orem 4.5.4) yields the existence of open neighborhoods U ⊂ R

2 of (0, θ0), V ⊂ H2
ev(R) of 0 and a

real-analytic map U 	 (ε, θ) �→ ϕ(ε, θ) ∈ V such that the unique solution of F (ϕ, ε, θ) = 0 in V × U is
given by (ϕ, ε, θ) = (ϕ(ε, θ), ε, θ). Finally, since F (0, 0, θ) = 0, we find ϕ(0, θ) = 0 by the local uniqueness
of the solution. �

Substitution of the solution obtained in Lemma 2 into (2.5) amounts to

PθN(ϕ(ε, θ), ε, θ) = 0 ⇐⇒ f(ε, θ) := 〈N(ϕ(ε, θ), ε, θ), iφθ〉L2 = 0,

where f : U ⊂ R
2 → R is again real analytic as a composition of real-analytic functions and admits the

expansion

f(ε, θ) = 〈εiφθ + 2|φθ|2u∞(ε) + φ2
θū∞(ε), iφθ〉L2 + O(ε2).
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Clearly, f(0, θ) = 0 for all (0, θ) ∈ U and thus we find a real-analytic function f̃ with f(ε, θ) = εf̃(ε, θ).
Nontrivial solutions of f(ε, θ) = 0 then satisfy f̃(ε, θ) = 0 and the equation is again solved by the implicit
function theorem. Indeed, in the subsequent Lemma 3 we show f̃(0, θ0) = 0 and ∂θf̃(0, θ0) �= 0 and thus
there exist open intervals (−ε∗, ε∗), Θ ⊂ R, θ0 ∈ Θ and a real-analytic branch (−ε∗, ε∗) 	 ε �→ θ(ε) ∈ Θ
such that f̃(ε, θ) = 0 in (−ε∗, ε∗) × Θ is uniquely solved by (ε, θ(ε)) = (ε, θ). In summary, we have
constructed a solitary wave solution

u(ε) = φθ(ε) + u∞(ε) + ϕ(ε, θ(ε)) ∈ C + H2(R), ε ∈ (−ε∗, ε∗)

of the Lugiato–Lefever equation (1.4). It remains to prove Lemma 3.

Lemma 3. Let θ0 ∈ R be a simple zero of θ �→ πf cos θ − 2
√

2ζ. Then, f̃(0, θ0) = 0 and ∂θf̃(0, θ0) �= 0.

Proof. By definition of f̃ , formula (2.2), and since πf cos θ0 = 2
√

2ζ, we have

f̃(0, θ0) = 〈iφθ0 + 2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0), iφθ0〉L2

= Re
∫

R

|φ0|2 − 2i|φ0|2φ̄θ0∂εu∞(0) − i|φ0|2φθ0∂εū∞(0)dx

= 4
√

ζ − f

ζ
Re

∫

R

2|φ0|2φ̄θ0 − |φ0|2φθ0dx

= 4
√

ζ − f

ζ
cos θ0

∫

R

φ3
0dx

= 4
√

ζ −
√

2πf cos θ0 = 0

and similar computations lead to

∂θf̃(0, θ0) =
√

2πf sin θ0 �= 0,

where sin θ0 �= 0 by simplicity of the root θ0, which proves the statement. �

Corollary 1. The solutions u(ε) ∈ C + H2(R) of Theorem 1 decay exponentially fast to their limit states
u∞(ε) ∈ C as |x| → ∞.

Proof. Re-writing (1.4) in its dynamical system formulation

∂xU =

⎛

⎜
⎜
⎝

U3

U4

ζU1 − (U2
1 + U2

2 )U1 + εU2

ζU2 − (U2
1 + U2

2 )U2 + ε(−U1 + f)

⎞

⎟
⎟
⎠ , U =

⎛

⎜
⎜
⎝

u1(ε)
u2(ε)

∂xu1(ε)
∂xu2(ε)

⎞

⎟
⎟
⎠

for u1(ε) = Re(u(ε)), u2(ε) = Im(u(ε)) we easily see that U is homoclinic to a hyperbolic equilibrium and
thus converges exponentially fast to its limit state U∞ = (Re(u∞(ε)), Im(u∞(ε)), 0, 0)T . �

3. Stability analysis

In this section, we prove the stability results of Theorem 2 and Theorem 3. From now on Hk(R) =
Hk(R,C), k ∈ N0 denotes the Sobolev spaces over the field C. In particular, the L2-scalar product is now
given by the C-valued map

∀f, g ∈ L2(R,C) : 〈f, g〉L2 =
∫

R

fḡdx.

Let us start with the proof of the spectral stability result of Theorem 2.
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3.1. Proof of Theorem 2

Suppose that u = u(ε) ∈ C + H2(R) is a solution of (1.4) as in Theorem 2 for ε �= 0 sufficiently small.
We determine the location of the spectrum of the operator L = JL defined in (1.6).

It is well known [30] that we have a decomposition into essential and discrete spectrum

σ(L) = σess(L) ∪ σd(L). (3.1)

Essential spectrum of L. The essential spectrum can be computed explicitly.

Lemma 4. Let ε be sufficiently small. The essential spectrum is given by

σess(L) = {iω ∈ iR : |ω| ∈ [ζε,∞)},

where ζε = ζ + O(ε2).

Proof. Since u(x) → u∞ as |x| → ∞ exponentially fast, cf. Corollary 1, we can use Weyl’s theorem [30]
to find

σess(L) = σess(L∞)

where the asymptotic constant coefficient operator is given by

L∞ =
(−i 0

0 i

)(−∂2
x + ζ − 2|u∞|2 −u2

∞
−ū2

∞ −∂2
x + ζ − 2|u∞|2

)
.

We calculate the essential spectrum of L∞. Therefore, we write the spectral problem for L∞ in its
first-order reformulation ∂xV = A(λ)V with

A(λ) =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 1

ζ − 2|u∞|2 − iλ u2
∞ 0 0

ū2
∞ ζ − 2|u∞|2 + iλ 0 0

⎞

⎟⎟
⎠ , V =

⎛

⎜⎜
⎝

v1
v2

∂xv1
∂xv2

⎞

⎟⎟
⎠ .

Then, the essential spectrum is characterized as follows (see for instance [30]):

λ ∈ σess(L∞) ⇐⇒ σ(A(λ)) ∩ iR �= ∅.

Computing

p(k, λ) := det(A(λ) − ik) = k4 + 2(ζ − 2|u∞|2)k2 + (ζ − 2|u∞|2)2 − |u∞|4 + λ2

we find that A(λ) is nonhyperbolic if and only if

∃k ∈ R : p(k, λ) = 0

which is equivalent to

λ ∈ {iω ∈ iR : |ω| ∈ [ζε,∞)},

with ζε = ζ + O(ε2) since u∞ = O(ε) and thus the claim follows. �

An immediate consequence of Lemma 4 is the spectral instability of the wave u if ε < 0. However, if
ε > 0, the essential spectrum is stable and spectral stability is solely determined by the location of the
discrete spectrum. From now on we focus on the case ε > 0.
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Discrete spectrum of L. Recall that the discrete spectrum can be determined from the eigenvalue problem
(1.7) which can be written as

{
iλv1 = −v1xx + ζv1 − 2|u|2v1 − u2v2 − iεv1,

−iλv2 = −v2xx + ζv2 − 2|u|2v2 − ū2v1 + iεv2.

For ε = 0, we recover the spectral stability problem for the rotated soliton φθ0 of NLS and λ = 0 is an
isolated eigenvalue of geometric multiplicity two and algebraic multiplicity four. More precisely, we find
two Jordan chains of length two and by Lemma 1 we have that the corresponding eigenspace is spanned
by the vectors (iφθ0 ,−iφ̄θ0) and (φ′

θ0
, φ̄′

θ0
). Consequently, it follows from standard perturbation theory

[32], that for small values of ε the total multiplicity of all eigenvalues in a small neighborhood of zero
is also four. We now focus on the bifurcations of these eigenvalues which in the end will determine the
spectral stability.

Eigenvalues close to the origin. We compute expansions in ε of all eigenvalues of L = JL close to
zero. Observe that we always find 0 ∈ σ(L − ε) due to the translational invariance of (1.4). This yields
ε ∈ σ(JL) and the corresponding eigenfunction is given by (∂xu, ∂xū). Since the spectrum of JL is
symmetric w.r.t. the imaginary axis we also find −ε ∈ σ(JL). Note that the symmetry is an immediate
consequence of the structure of JL, a composition of a skew-adjoint and self-adjoint operator. Thus, in
the neighborhood of λ = 0 only two unknown eigenvalues remain and they correspond to the broken
gauge symmetry in the LLE.

To compute the expansions of the perturbed rotational eigenvalues, we restrict to spaces of even func-
tions. Following [32], we expand both remaining eigenvalues along with their corresponding eigenfunctions
in a Puiseux series:

λ =
√

ελ1 + ελ2 + O(ε3/2), V = V0 +
√

εV1 + εV2 + O(ε3/2), V0 =
(

iφθ0

−iφ̄θ0

)
,

and the expansions are in powers of ε1/2 since we consider the splitting of a Jordan chain of length two.
Moreover, we expand the operator L in powers of ε which relies on expansions of the solution u:

L = L0 + εL1 + O(ε2)

L0 =
(−∂2

x + ζ − 2|u0|2 −u2
0

−ū2
0 −∂2

x + ζ − 2|u0|2
)

, L1 =
(−2(u0ū1 + ū0u1) −2u0u1

−2ū0ū1 −2(u0ū1 + ū0u1)

)
,

u = u0 + εu1 + O(ε2), u0 = φθ0 , u1 = i∂εθ(0)φθ0 − i
f

ζ
+ ϕ1,

and the equation for ϕ1 is found from differentiating (2.3) w.r.t. ε at ε = 0 (see also part two of the proof
of Lemma 2),

Lθ0ϕ1 = 2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0) + iφθ0 , ϕ1 ⊥ iφθ0 .

Substituting the expansions into the spectral problem JLV = λV yields equations at order ε1/2 and ε,

L0V1 = λ1J
−1V0, L0V2 + L1V0 = λ1J

−1V1 + λ2J
−1V0.

Since J−1V0 ⊥ Ker(L0), we find V1 = λ1L
−1
0 J−1V0 + αV0, α ∈ C. Inserting this into the second equation

amounts to

L0V2 = −L1V0 + λ2
1J

−1L−1
0 J−1V0 + αλ1J

−1V0 + λ2J
−1V0 (3.2)

and by the Fredholm alternative, (3.2) is solvable if and only if

−L1V0 + λ2
1J

−1L−1
0 J−1V0 + αλ1J

−1V0 + λ2J
−1V0 ⊥ Ker(L0).

Since J−1V0 ⊥ Ker(L0), this yields

λ2
1〈J−1L−1

0 J−1V0, V0〉L2 = 〈L1V0, V0〉L2 . (3.3)
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Lemma 5. Let ε, δ > 0 be sufficiently small and Bδ(0) ⊂ C be the ball of radius δ centered at λ = 0. Then,
Bδ(0) ∩ σd(L) consists of four distinct simple eigenvalues, given by

±ε,±√
ε

√
−πf

√
2ζ sin θ0 + O(ε) ∈ σd(L).

In particular, if sin θ0 > 0, we have one unstable eigenvalue λ = ε of L, which corresponds to a simple
zero eigenvalue of L − ε, and two purely imaginary eigenvalues of L:

λ± = ±i
(√

ε

√
πf

√
2ζ sin θ0 + O(ε)

)
.

If sin θ0 < 0, we have two real unstable eigenvalues of L:

λ = ε and λ+ =
√

ε

√
πf

√
2ζ| sin θ0| + O(ε),

where λ+ is also an unstable eigenvalue of the operator L − ε since it is of order O(ε1/2).

Proof. From the preceding discussion, it remains to calculate the scalar products in (3.3). Let us start
with 〈J−1L−1

0 J−1V0, V0〉L2 . Consider the NLS

−φ′′
θ0

+ ζφθ0 − |φθ0 |2φθ0 = 0.

Taking derivative w.r.t. ζ yields

L0

(
∂ζφθ0

∂ζ φ̄θ0

)
= −

(
φθ0

φ̄θ0

)
= J−1V0.

The function ∂ζφθ0 is found from differentiating the formula of the NLS soliton and a straight forward
calculation gives

〈
J−1L−1

0 J−1V0, V0

〉
L2 =

∫

R

∂ζφθ0 φ̄θ0 + ∂ζ φ̄θ0φθ0dx = 2ζ−1/2.

Next, we calculate the scalar product 〈L1V0, V0〉L2 . We have

〈L1V0, V0〉L2 = 2
∫

R

(−iu2
0ū1

iū2
0u1

)
·
(

iu0

−iū0

)
dx = −4Re

∫

R

|u0|2u0ū1dx.

Inserting the formula for u1 into the integral yields

Re
∫

R

|u0|2u0ū1dx = −f

ζ
‖φ0‖3L3 sin θ0 + Re

∫

R

|φθ0 |2φθ0 ϕ̄1dx

= −f

ζ
‖φ0‖3L3 sin θ0 + Re

∫

R

|φθ0 |2φθ0L
−1
θ0

(2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0) + iφθ0)dx

= −f

ζ
‖φ0‖3L3 sin θ0 + Re

∫

R

L−1
θ0

(|φθ0 |2φθ0)(2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0) + iφθ0)dx.

Using that Lθ0φθ0 = −2|φθ0 |2φθ0 gives

Re
∫

R

L−1
θ0

(|φθ0 |2φθ0)(2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0) + iφθ0)dx

= −1
2

Re
∫

R

φθ0(2|φθ0 |2∂εu∞(0) + φ2
θ0

∂εū∞(0) + iφθ0)dx

=
3f

2ζ
‖φ0‖3L3 sin θ0.
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Finally, since ‖φ0‖3L3 =
√

2ζπ, we have

〈L1V0, V0〉L2 = −2
f

ζ
‖φ0‖3L3 sin θ0 = −2

√
2fπ sin θ0

and thus from (3.3) we obtain the desired formula for the simple eigenvalues

λ± = ±√
ε

√
−πf

√
2ζ sin θ0 + O(ε),

where in the case sin θ0 > 0 the O(ε) remainder is purely imaginary because of the Hamiltonian symmetry
of the spectrum. �

Lemma 5 proves the spectral instability of the wave u if sin θ0 < 0. However, if sin θ0 > 0, no unstable
eigenvalues of L − ε occur from the splitting of the zero eigenvalue. Instead, we find a pair of purely
imaginary eigenvalues λ± ∈ iR of L. Hence, we now focus on the case sin θ0 > 0 and show that the only
unstable eigenvalue of L is given by λ = ε, which then proves the spectral stability of the wave u. For
this purpose, we employ the instability index count developed in [28,29] and also in [10]. To apply the
instability count, we need to transform the spectral stability problem (1.7) into a problem with real-valued
coefficients. Using similarity transformations with the matrices

T1 =
1
2

(
1 1
−i i

)
, T2 =

(
cos θ0 sin θ0

− sin θ0 cos θ0

)

such that J̃ = T2T1JT−1
1 T−1

2 , L̃ = T2T1LT−1
1 T−1

2 we obtain the equivalent problem

λṼ = (J̃ L̃ − ε)Ṽ ,

and the eigenfunctions are related by Ṽ = T2T1V . The real-valued operators J̃ , L̃ are then of the form

J̃ =
(

0 1
−1 0

)
, L̃ =

(−∂2
x + ζ − 3φ2

0 0
0 −∂2

x + ζ − φ2
0

)
+ O(ε).

We recall necessary notation from [30]:

• n(A) denotes the number of negative eigenvalues (counting multiplicities) of a linear operator A.
• Let λ ∈ σd(J̃ L̃) ∩ (iR\{0}) be an eigenvalue with algebraic multiplicity ma(λ) and Ker(

⋃
n∈N

(J̃ L̃ −
λ)n) = Span{v1, . . . , vma(λ)} be the generalized eigenspace. Then, the negative Krein index of λ is
defined by

k−
i (λ) := n(H), with Hij := 〈L̃vi, vj〉,

and the total negative index is defined by k−
i :=

∑
λ∈σd(J̃L̃)∩iR\{0} k−

i (λ).
• The real Krein index is defined by kr :=

∑
λ∈σd(J̃L̃)∩(0,∞) ma(λ).

• The complex Krein index is defined by kc :=
∑

λ∈σd(J̃L̃),Re(λ)>0,Im(λ) �=0 ma(λ).

Applying the instability index counting theory from [10,28,29] yields for ε > 0 sufficiently small the
formula

kr + k−
i + kc = n(L̃). (3.4)

Remark 8. In [28,29], there appears an additional number n(D) in formula (3.4), which accounts for a
nontrivial kernel generated by various symmetries of the problem. However, in Lemma 5 we proved that
Ker(L̃) = {0} provided ε > 0 is sufficiently small explaining the absence of this number in our situation
(see also [10]).

In the next lemma, we use (3.4) to show that ε ∈ σ(L) is the only unstable eigenvalue of L proving
that σd(L − ε) ⊂ {−2ε} ∪ {Re = −ε} ∪ {0} with simple eigenvalues λ = 0,−2ε.
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Lemma 6. Let ε > 0 be sufficiently small and sin θ0 > 0. Then, n(L̃) = 3, kr = 1, and k−
i = 2.

Proof. kr ≥ 1 is clear since ε ∈ σd(J̃ L̃) due to the translational symmetry. Now consider the Sturm–
Liouville operators on the line R,

L+ := −∂2
x + ζ − 3φ3

0, L− := −∂2
x + ζ − φ3

0.

We have Ker(L+) = Span{φ′
0}, Ker(L−) = Span{φ0} and since φ′

0 has one zero and φ0 > 0 on R we find
n(L+) = 1, n(L−) = 0 by the standard theory for Sturm–Liouville operators. In particular, we obtain

n

((
L+ 0
0 L−

))
= 1, 0 ∈ σd

((
L+ 0
0 L−

))
, ma(0) = 2,

and by means of perturbation theory for eigenvalues we conclude that there are at most three negative
eigenvalues of L̃ for ε sufficiently small, which proves n(L̃) ≤ 3. Moreover, by Lemma 5 we find purely
imaginary simple eigenvalues λ± ∈ iR with λ̄+ = λ− by the symmetry of the spectrum and we show
that k−

i (λ±) = 1. Indeed, from Lemma 5 and the discussion before, we have Puiseux expansions for the
eigenvalue and corresponding eigenfunction

λ+ =
√

ελ1 + O(ε), Ṽ =
(

0
φ0

)
− √

ε

[
λ1

(
L−1
+ φ0

0

)
+ α

(
0
φ0

)]
+ O(ε)

where the eigenfunction is found from the relation Ṽ = T2T1V . Hence, direct calculations yield

〈L̃Ṽ , Ṽ 〉L2 = −λ1〈J̃ Ṽ , Ṽ 〉L2 = ε2|λ1|2〈L−1
+ φ0, φ0〉L2 + O(ε3/2).

Since 〈L−1
+ φ0, φ0〉L2 = −〈∂ζφ0, φ0〉L2 < 0, cf. the proof of Lemma 5, we find k−

i (λ+) = 1 and from
k−

i (λ+) = k−
i (λ̄+) and λ̄+ = λ− it follows that k−

i ≥ 2. Thus, using (3.4) we infer n(L) = 3, kr = 1, and
k−

i = 2, which finishes the proof. �

Combining our results on the discrete and essential spectrum, we finally obtain

σ(L − ε) ⊂ {−2ε} ∪ {z ∈ C : Re z = −ε} ∪ {0}
with simple eigenvalues λ = −2ε, 0. Thus, the wave is spectrally stable, provided that ε, sin θ0 > 0 as
claimed.

3.2. Proof of Theorem 3

We prove the asymptotic orbital stability in H1 of the spectrally stable solitary waves of Theorem 2. The
strategy of the proof follows the work in [46] where asymptotic orbital stability is obtained for periodic
spectrally stable solutions of LLE. Our method deviates from [46] when establishing uniform resolvent
bounds. Indeed, high-frequency resolvent estimates in [46] are only proven for the linearization operator
with periodic coefficients. Using an abstract functional analytic approach, we extend this result to the
case of localized perturbations.

Linearized stability. Let u ∈ C+H2(R) be a spectrally stable solution of (1.4) for ε > 0 sufficiently small
and denote by L−ε the linearization about u. In a first step, we prove linearized stability. Note that decay
of the semigroup

(
e(L−ε)t

)
t≥0

cannot be concluded immediately from the spectral stability of L− ε, since
the spectrum of the operator is not confined to a sector of C and therefore the spectral mapping theorem
is a-priori not available. However, we can use the following characterization of exponential stability of
semigroups in Hilbert spaces called the Prüss Theorem, cf. [45] Corollary 4.

Theorem. (Prüss, [45], Corollary 4) Let A be the generator of a C0-semigroup (eAt)t≥0 in a Hilbert space
H. Then, (eAt)t≥0 is exponentially stable if and only if

{λ ∈ C : Re(λ) ≥ 0} ⊂ ρ(A) and sup
{‖(A − λ)−1‖H→H : λ ∈ C,Re(λ) ≥ 0

}
< ∞.
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Recall that by the presence of the translational symmetry, 0 ∈ σ(L − ε), which violates the spectral
condition in Prüss Theorem. To overcome this problem, we introduce the spectral projection P0 onto
Ker(L − ε) and show that the restricted operator (L − ε)|E satisfies the conditions in Prüss Theorem,
where E := Ker(P0). This then leads to decay of the semigroup restricted to the subspace E, which is
enough to establish the orbital stability result (cf. Theorem 4.3.2 in [30]).

Recall the basic properties of the spectral projection: (L − ε)P0 = P0(L − ε) = 0 and

σ((L − ε)|E) = σ(L − ε) \ {0} ⊂ {λ ∈ C : Re(λ) ≤ −ε}. (3.5)

Lemma 7. There exist constants η > 0, C ≥ 1 such that

‖e(L−ε)t|E‖H1→H1 ≤ Ce−ηt for t ≥ 0.

Proof. It follows from the Lumer–Phillips theorem (Theorem II.3.15 in [13]) and the bounded perturbation
theorem (Theorem III.1.3 in [13]) that L − ε is the generator a C0-semigroup on (H1(R))2 and the same
holds after restricting the operator to E = Ker(P0). According to the Prüss Theorem and (3.5), the claim
of the lemma follows if we show the uniform resolvent bound

∃C > 0 : sup
Re(λ)≥0

‖(L − ε − λ)−1(I − P0)‖H1→H1 ≤ C.

This estimate is obtained in two steps.
Step 1 (Uniform bound in L2): We show uniform resolvent estimates for the operator (L−ε−λ)−1(I −

P0) : L2 → L2. First note that the Hille–Yosida Theorem ( [13] Theorem 3.8) ensures existence of
constants γ1, C

′ > 0 such that

sup
Re(λ)≥γ1

‖(L − ε − λ)−1‖L2→L2 ≤ C ′.

Moreover, using Theorem 4 and Remark 9 with H = L2(R), A± = −∂2
x + ζ − 2|u|2, B = −u2 we find

constants γ2, C
′′ > 0 such that

sup
Re(λ)≥0,| Im(λ)|≥γ2

‖(L − ε − λ)−1‖L2→L2 ≤ C ′′.

Finally, observe that λ �→ (L − ε − λ)−1(I − P0) is an analytic function on {λ ∈ C : Re(λ) ≥ 0} and
hence uniformly bounded on the compact set {λ ∈ C : 0 ≤ Re(λ) ≤ γ1, | Im(λ)| ≤ γ2} with a bound
C ′′′ ≥ 0. Thus for C := max{C ′, C ′′, C ′′′} we have

sup
Re(λ)≥0

‖(L − ε − λ)−1(I − P0)‖L2→L2 ≤ C.

Step 2 (Uniform bound in H1): First, we establish a uniform bound in H2 and then use an interpolation
argument to find the desired H1 bound. Note that there exist constants c, γ � 1 such that

∀V = (v1, v2)T ∈ (H2(R))2 : ‖V ‖H2 ≤ c‖(L + Jε + γ)V ‖L2 , ‖(JL − ε)V ‖L2 ≤ c‖V ‖H2 ,

where we recall the decomposition L = JL from (1.6). Hence, we find for Re(λ) ≥ 0, V ∈ H2,

‖(JL − ε − λ)−1(I − P0)V ‖H2

≤ c‖(L + Jε + γ)(JL − ε − λ)−1(I − P0)V ‖L2

≤ c‖(JL − ε)(JL − ε − λ)−1(I − P0)V ‖L2

+ cγ‖(JL − ε − λ)−1(I − P0)V ‖L2

≤ c‖(JL − ε − λ)−1(I − P0)(JL − ε)V ‖L2 + cγC‖V ‖H2

≤ cC(c + γ)‖V ‖H2 ,

by step 1, which implies the uniform bound

sup
Re(λ)≥0

‖(JL − ε − λ)−1(I − P0)‖H2→H2 ≤ cC(c + γ).
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Interpolation of both estimates according to [35] Theorem 2.6 yields

sup
Re(λ)≥0

‖(JL − ε − λ)−1(I − P0)‖H1→H1 ≤ C

for some constant C > 0 and thus the claim follows. �

We still need to prove the uniform resolvent estimate for λ ∈ C with Reλ ≥ 0, | Im λ| � 1 and
conclude the nonlinear stability.

High-frequency resolvent estimates. We establish uniform resolvent estimates for a family of operators
in Hilbert spaces which generalizes the linearization operator L − ε. Our proof relies on techniques from
[15] Section 3 where uniform resolvent estimates for NLS are considered. Similar resolvent estimates can
also be found in [7,44,46].

Let H be a complex Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖ =
√〈·, ·〉. On H × H, we

consider the spectral problem
[(−i 0

0 i

)(
A+ B
B∗ A−

)
− λ

(
I 0
0 I

)](
φ1

φ2

)
=
(

ψ1

ψ2

)
, (3.6)

where λ = λr + iλi ∈ C is a spectral parameter, A± : D ⊂ H → H are closed self-adjoint linear operators
with common domains D = Dom(A±) which are either both bounded from below or from above by
the bound γ ∈ R, B : H → H is a bounded linear operator, I : H → H is the identity, φ1, φ2 ∈ D
and ψ1, ψ2 ∈ H. Under these assumptions, the following theorem on uniform high-frequency resolvent
estimates holds.

Theorem 4. There exists ρ = ρ(γ, ‖B‖H→H) > 0 such that for all λ = λr + iλi ∈ C with |λi| ≥ ρ and
λr �= 0 we have that for every given (ψ1, ψ2) ∈ H × H the spectral problem (3.6) has a unique solution
(φ1, φ2) ∈ D × D such that

‖φ1‖ + ‖φ2‖ � |λr|−1(‖ψ1‖ + ‖ψ2‖).

Remark 9. Theorem 4 gives a uniform resolvent estimate for the linear operator
(−i 0

0 i

)(
A+ B
B∗ A−

)
: D × D → H × H

for high frequencies λ ∈ C such that | Im(λ)| � 1, Re(λ) �= 0. For Re(λ) = 0, we cannot expect such an
estimate to be true, since the intersection of the spectrum and the imaginary axis is typically non-empty.

Remark 10. Theorem 4 can be applied to different variants of LLE. Indeed, consider the extended LLE

iut =
2n∑

k=1

dk (i∂x)k
u + (ζ(x) − iμ)u − |u|2u + if(x), (x, t) ∈ Ω × R,

where Ω ∈ {R,R/Z}, n ∈ N, d2n �= 0, d2n−1, . . . , d1 ∈ R, ζ ∈ L∞(Ω,R), f ∈ H2(Ω,C), and μ ≥ 0.
A similar equation is studied in [7,19,20]. Then, the linearization L : (H2n(Ω))2 → (L2(Ω))2 about a
stationary solution u = u(x) reads

L :=
(−i 0

0 i

)(∑2n
k=1 dk (i∂x)k + ζ(x) − 2|u|2 −u2

−ū2
∑2n

k=1 dk (−i∂x)k + ζ(x) − 2|u|2
)

− μ.

If we set A± =
∑2n

k=1 dk (±i∂x)k +ζ(x)−2|u|2, B = −u2, and replaced λ by λ+μ, the associated spectral
problem fits into the framework of Theorem 4. In particular, the uniform resolvent estimates can be used
to study the dynamics of the extended LLE close to stationary waves.

We need the following property of self-adjoint operators.
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Lemma. ([32], Chapter 5, Section 5) Let A : Dom(A) ⊂ H → H be a self-adjoint operator and λ ∈ ρ(A)
be in the resolvent set of A. Then,

‖(A − λ)−1‖H→H =
1

dist(σ(A), λ)
.

Proof of Theorem 4. We follow the strategy in [15] Section 3. Let us assume that A± are both bounded
from below, i.e., A± ≥ −γ for γ > 0. The proof for the case that A± is bounded from above is similar.
We write the spectral problem (3.6) as the system

{
(A+ + λi − iλr)φ1 + Bφ2 = ψ1,
(A− − λi + iλr)φ2 + B∗φ1 = ψ2,

(3.7)

where we have replaced iψ1 by ψ1 and −iψ2 by ψ2. Now, consider the case λi > 0. By the previous lemma,
we infer that for all λi ≥ 2γ we find −λi,−λi + iλr ∈ ρ(A+) and

‖(A+ + λi)−1‖H→H , ‖(A+ + λi − iλr)−1‖H→H ≤ 2
λi

, ‖(A+ + λi − iλr)−1‖H→H ≤ 1
|λr| .

In particular, we can solve the first equation in (3.7) for φ1:

φ1 = −(A+ + λi − iλr)−1Bφ2 + (A+ + λi − iλr)−1ψ1

and substituting the expression for φ1 into the second equation amounts to

(A− − λi + iλr)φ2 − B∗(A+ + λi − iλr)−1Bφ2 = −B∗(A+ + λi − iλr)−1ψ1 + ψ2.

By the resolvent identity, we find

(A+ + λi − iλr)−1 − (A+ + λi)−1 = iλr(A+ + λi − iλr)−1(A+ + λi)−1

and consequently
(
A− − B∗(A+ + λi)−1B − λi + iλr

)
φ2 − iλrB

∗(A+ + λi − iλr)−1(A+ + λi)−1Bφ2

= −B∗(A+ + λi − iλr)−1ψ1 + ψ2.

The operator B∗(A+ + λi)−1B : H → H is bounded and symmetric and thus

A := A− − B∗(A+ + λi)−1B : D → H

is self-adjoint. From the previous lemma on resolvent bounds of self-adjoint operators, we have ‖(A −
λi + iλr)−1‖H→H ≤ |λr|−1. Hence, we infer

[
I − iλr(A − λi + iλr)−1B∗(A+ + λi − iλr)−1(A+ + λi)−1B

]
φ2

= −(A − λi + iλr)−1B∗(A+ + λi − iλr)−1ψ1 + (A − λi + iλr)−1ψ2.

Now observe that

‖iλr(A − λi + iλr)−1B∗(A+ + λi − iλr)−1(A+ + λi)−1B‖H→H � λ−2
i .

Thus for λi > 0 sufficiently large, the operator

I − iλr(A − λi + iλr)−1B∗(A+ + λi − iλr)−1(A+ + λi)−1B : H → H

is invertible as a small perturbation of the identity and
∥∥∥
[
I − iλr(A − λi + iλr)−1B∗(A+ + λi − iλr)−1(A+ + λi)−1B

]−1
∥∥∥

H→H
≤ 1

2
uniformly in λi � 1. For this reason and using ‖(A − λi + iλr)−1‖H→H ≤ |λr|−1, we find

‖φ2‖ � |λr|−1(‖ψ1‖ + ‖ψ2‖)

as well as

‖φ1‖ � |λr|−1(‖ψ1‖ + ‖ψ2‖)
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and both estimates are independent of λi provided λi � 1. In summary for λ = λr + iλi ∈ C with λr �= 0
and λi � 1, the resolvent in (3.6) exists and is uniformly bounded in λi. In the same way, one can show
the existence and boundedness of the resolvent for λi � −1 and the claim follows. �

Asymptotic orbital stability. The proof of the nonlinear stability follows as a direct consequence of the
exponential decay estimate in Lemma 7 and Theorem 4.3.5 in [30] applied to (1.5). Notice that the
nonlinearity in (1.5) is locally Lipschitz, so that all assumptions of the theorem in [30] are satisfied.
In conclusion, the solitary wave bifurcating from φθ0 with sin θ0 > 0 is asymptotically orbitally stable
against localized perturbations in H1(R) and the proof of Theorem 3 is completed.
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