
Fast and Space-Efficient
Perfect Hashing

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Hans-Peter Lehmann, M.Sc.
aus Ulm

Gemäß der Promotionsordnung vom 12. Januar 2017

Tag der mündlichen Prüfung: 24. Oktober 2024

1. Referent: Prof. Dr. Peter Sanders
Karlsruher Institut für Technologie
Deutschland

2. Referent: Prof. Rasmus Pagh, PhD.
Universität Kopenhagen
Dänemark

iii

Abstract
From data analytics to machine learning, large amounts of input data become more and
more important. The volume of collected data grows continuously. Compact data structures
enable efficient access to this data and help with processing. Perfect hashing is a fundamental
basis for many compact data structures and is used for example in databases, hash tables,
retrieval data structures, and approximate membership data structures. A perfect hash
function (PHF) maps a set S of n keys to the first m integers without collisions, and is called
minimal perfect (MPHF) if m = n. It may map keys that are not in S to an arbitrary value.
This makes it possible to store the function without representing the set S itself.

In this dissertation, we present three MPHF construction algorithms. With SIMDRecSplit,
we focus on space efficiency, scratching the space lower bound of representing MPHFs. We
enhance the existing construction RecSplit through parallelism on many levels – bits, vectors,
multicores, and the GPU. As a base case, RecSplit uses brute-force search – here we
achieve impressive speedups by replacing several retries with simple bit operations or even
table lookups. With SicHash, we aim for a good balance between query and construction
performance. SicHash is based on sampling a random graph where the nodes are the output
hash values. Each key, hashed with different ordinary hash functions, gives a hyperedge
connecting candidate output values. The perfect hash function is given by an orientation of
the edges such that the indegree of each node is at most one. SicHash works close to the
orientability threshold – the factor n/m below which such an orientation likely exists. With
ShockHash, we combine the ideas of SIMDRecSplit and SicHash. We try to orient a graph
far above the orientability threshold, which requires retrying with many different graphs.
Compared to plain brute-force, this reduces the number of retries massively, leading to more
than 2n times faster construction asymptotically. At the same time, it still maintains the
asymptotically optimal space consumption.

Monotone minimal perfect hash functions (MMPHFs) retain the natural order of the input
keys. After many years in which tree-based structures were predominant, our LeMonHash
moves into a novel direction. It is based on learning regularities in the input data and is
efficient to query because it uses a flat structure. Finally, as a relaxation of perfect hashing,
we present PaCHash – a static external memory hash table for objects of variable size.
PaCHash can fetch an object using a single contiguous access to the external memory. For
objects of fixed size, this is similar to what is possible using k-perfect hashing, where at most
k collisions are allowed. However, in some way, PaCHash breaks the space lower bounds of
k-perfect hashing at the cost of sometimes fetching one external memory block too much.

The approaches presented in this dissertation are a large step forward from the state of
the art. Our approaches dominate the majority of the space-time trade-off, as shown by our
detailed experimental evaluation, and inspire future research in the area of perfect hashing.

Pre face

v

Acknowledgements
A big thank you to Prof. Dr. Peter Sanders for having me in his research group. I am
impressed how Peter can supervise such a large group and can still find time to go into so
much detail about individual student’s topics. Without Peter’s guidance, this dissertation
would not have been possible.

I am also grateful to my current and former colleagues who created a workspace that I
was happy to go to every day. Even outside work, it was great traveling together, giving
workshops, enjoying board game evenings, and eating barbecues. Thank you, Daniel Funke,
Lars Gottesbüren, Stefan Hermann, Demian Hespe, Tobias Heuer, Lukas Hübner, Lorenz
Hübschle-Schneider, Markus Iser, Forian Kurpicz, Sebastian Lamm, Moritz Laupichler,
Nikolai Maas, Tobias Maier, Matthias Schimek, Dominik Schreiber, Daniel Seemaier, Tim
Niklas Uhl, Stefan Walzer, Marvin Williams, and Sascha Witt.

Thank you to my students over the years: Matthias Becht, Dominik Bez, Stefan Hermann,
Sebastian Kirmayer, Tobias Paweletz, Jan Benedikt Schwarz, Benedikt Waibel, Felix Wedler,
and Jonatan Ziegler. I would like to thank the coauthors of the papers written during my
time in the algorithm engineering group: Dominik Bez, Paolo Ferragina, Stefan Hermann,
Lorenz Hübschle-Schneider, Florian Kurpicz, Giulio Ermanno Pibiri, Peter Sanders, Giorgio
Vinciguerra, and Stefan Walzer.

I also want to thank Niko Wilhelm, Colin Bretl and Liam Wachter, who were convinced
before myself that I would start this journey as a PhD student. Thank you to Stefan
Hermann, Florian Kurpicz, Dominik Schreiber, and Stefan Walzer for the valuable feedback
about early versions of this dissertation. Thank you to my family for their support.

This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 882500).

This work was also supported by funding from the pilot program Core Informatics at KIT
(KiKIT) of the Helmholtz Association (HGF).

Pre face

vi

Table of Contents

1 Introduction 1
1.1 Perfect Hashing . 1
1.2 Contributions . 3
1.3 Outline . 4
1.4 Applications . 5

2 Preliminaries 9
2.1 Rank and Select . 9
2.2 Golomb-Rice Coding . 10
2.3 Elias-Fano Coding . 10
2.4 Retrieval Data Structures . 12
2.5 Cuckoo Hashing . 13
2.6 Perfect Hashing Through Retrieval . 15
2.7 Space Lower Bounds . 15
2.8 Achieving Minimality . 17

3 Contributions 19
3.1 Minimal Perfect Hashing Through Tuned Brute-Force 19
3.2 Small Irregular Cuckoo Tables for Perfect Hashing 21
3.3 Small, Heavily Overloaded Cuckoo Hash Tables for Minimal Perfect Hashing 22
3.4 Practical Comparison of Modern Perfect Hashing 24
3.5 Learned Monotone Minimal Perfect Hashing 26
3.6 Perfect Hashing for Variable Size Objects 27
3.7 Summary . 29

4 A Brief History of Perfect Hashing 31
4.1 The Birth of Perfect Hashing . 31
4.2 Categorization . 33
4.3 Random Hypergraphs . 34
4.4 Brute-Force . 37
4.5 Fingerprinting . 40
4.6 Summary . 42

5 Minimal Perfect Hashing Through Tuned Brute-Force 43
5.1 Rotation Fitting . 44
5.2 SIMD Parallelization . 46
5.3 Multi-Threaded Parallelization . 47
5.4 GPUs . 47
5.5 GPU Parallelization . 48
5.6 Internal Experiments . 49
5.7 Summary . 52

6 Small Irregular Cuckoo Tables for Perfect Hashing 55
6.1 Overloading . 56
6.2 SicHash Perfect Hash Functions . 57
6.3 Enhancements . 59
6.4 Analysis . 60
6.5 Internal Experiments . 61

vii

6.6 Summary . 62

7 Small, Heavily Overloaded Cuckoo Hash Tables for Minimal Perfect Hashing 63
7.1 Pairing Functions . 64
7.2 ShockHash . 65
7.3 Bipartite ShockHash . 66
7.4 Analysis . 69
7.5 Partitioning . 86
7.6 Variants and Refinements . 88
7.7 Internal Experiments . 93
7.8 Summary . 95

8 Practical Comparison of Modern Perfect Hashing 97
8.1 Plotting Three-Dimensional Measurements 97
8.2 Experimental Setup . 98
8.3 Construction Performance . 99
8.4 Query Performance . 101
8.5 Scaling in the Input Size . 103
8.6 Multi-Threaded Construction . 104
8.7 Selected Configurations . 106
8.8 Summary . 108

9 Learned Monotone Minimal Perfect Hashing 111
9.1 Related Work . 112
9.2 LeMonHash . 114
9.3 LeMonHash-VL . 115
9.4 Variants and Refinements . 118
9.5 Analysis . 119
9.6 Experiments . 121
9.7 Summary . 126

10 Perfect Hashing for Variable Size Objects 129
10.1 Related Work . 131
10.2 The PaCHash Data Structure . 133
10.3 Analysis . 135
10.4 Variants and Refinements . 139
10.5 Experiments . 141
10.6 Summary . 144

11 Conclusion 147

Appendix 149
Publications and Supervised Theses . 151

Bibliography 153

Pre face

1

1 Introduction

Summary: Space-efficient data structures are a vital ingredient for dealing with
quickly growing data volumes. One such data structure is a perfect hash function (PHF).
A PHF maps a set S of n keys to the first m integers [m] without collisions. It is a
fundamental building block of other space-efficient data structures and has a wide range
of applications from hash tables with guaranteed constant access time to approximate
membership data structures. Several different variants of this scheme are known, most
importantly minimal perfect hashing where m = n. In this dissertation, we present
new perfect hash functions that significantly outperform existing approaches.

From user metrics to particle accelerators, the amount of data that is collected and stored
grows rapidly. The International Data Corporation estimates that the total amount of data
stored will be about 175 zettabytes by 2025 [RGR20]. This means that for every human on
earth, there will be about 21 terabytes of data. This huge amount of data needs to be stored
and accessed efficiently. Space-efficient data structures provide ways to deal with that data
and save cost by reducing space consumption and network bandwidth.

External memory like SSDs or hard disks are much slower to access than main memory.
Therefore, to process the data, we need to quickly find the location of the relevant content.
Index data structures are a crucial ingredient to handle the amounts of data. They not only
help in external memory, but are also useful in other layers of the memory hierarchy. The
index can be located in the cache, which is smaller but provides faster access.

In this dissertation, we focus on Perfect Hash Functions (PHFs), which are fundamental
space-efficient data structures that can be used as a building block for a wide range of
algorithms. In this chapter, we first explain perfect hashing in Section 1.1. We then briefly
describe our contributions in Section 1.2. Afterwards, we give an introduction to the structure
of this dissertation in Section 1.3. Finally, we describe applications of perfect hashing in
Section 1.4.

1.1 Perfect Hashing

A Perfect Hash Function (PHF) maps a set S of n keys to the first m integers [m] without
collisions. When simply using an ordinary hash function with a very large output domain
m, this property is likely fulfilled. However, in perfect hashing, we usually look for hash
functions where the target domain m is not much larger than the input set. In practice, load
factors α = n/m of α = 0.5 or α = 0.81 are common [BBD09]. A smaller target domain
significantly increases the probability of collisions between input keys, as illustrated by the
birthday paradox. Therefore, a perfect hash function is actually a data structure that stores
enough information to avoid collisions for that particular input set S. Perfect hash functions
do not store S, which would need at least log

(
U
n

)
/n = Ω(log U

n) bits per key, where U is the
universe size. This means that a perfect hash function cannot distinguish between a key
from S and a key that it was not constructed with. Therefore, for any key not in S, a perfect
hash function can give an arbitrary output value.

In t ro duct ion

2 1.1 Perfect Hashing

Anna Mary Dave Lisa John n

1 2 3 4 5 n

MPHF

Figure 1.1 Illustration of a minimal perfect hash function.

In contrast to cryptographic hash functions, perfect hash functions are allowed to be
easily reversible or even non-uniform as long as there are no collisions for the given input
set. In practice, the focus is mostly on fast evaluation of the function, so implementations
often use simple bit shuffling algorithms. To still be resistant against malicious inputs, PHFs
usually initially hash the input using a high quality hash function with large output range.
This also makes the construction largely independent of the input distribution.

Minimal Perfect Hashing. A minimal perfect hash function (MPHF) is a perfect hash
function with α = 1 and therefore provides a bijective mapping between the keys and [n].
Minimality is interesting for space-efficient applications, for example to avoid empty table
cells, even though achieving this needs more space to store the perfect hash function itself.
Figure 1.1 gives an illustration of a minimal perfect hash function with n = 5 input keys. We
show in Section 2.7 that there is a space lower bound of 1.44 bits per key needed to represent
an MPHF.

k-perfect Hashing. A k-perfect hash function is a generalization of a perfect hash function
where each output value allows for at most k collisions. A possible application is exter-
nal memory algorithms where each external memory block can hold k objects. Because
memory access operations load an entire block at a time anyway, knowing the block is
enough. Searching for the object within that block then does not need further memory
accesses [BBD09].

Order-Preserving Perfect Hashing. An order-preserving MPHF retains an arbitrary order
on the keys [Fox+91]. This comes with a space consumption of at least log(n!)/n ∈ Ω(log n)
bits per key because it needs to differentiate between all n! permutations of the set.1 The
space bound can trivially be reached by using a retrieval data structure taking ⌈log n⌉ bits
per key (plus a small overhead). Therefore, given the development of very good retrieval
data structures (see Section 2.4), order-preserving MPHFs are basically a solved problem.

Monotone Perfect Hashing. A monotone MPHF (MMPHF) retains the natural order of
the keys. This makes it much more efficient than an order-preserving minimal perfect hash
function. There are constructions using as few as O(log log log U) bits per key [Bel+09]. This
bound was recently proven to be optimal [AFK23; Kos24]. Another interpretation is that
MMPHFs return the rank of each key in the input set. Monotone MPHFs can be useful for
range queries in databases.

1 Throughout this dissertation, log x stands for log2 x.

3

Simple Brute-Force Construction. Many perfect hash functions have been proposed in
the literature, each with its own advantages and disadvantages. In Chapter 4, we discuss
a wide range of approaches in more detail. As an introduction, we describe a simple
construction [Meh84] that can reach the space lower bound. The idea is to try random hash
functions (identified by different seeds) using brute-force until one happens to be minimal
perfect. Then the data structure simply consists of storing the index of the function in binary
coding. The probability for this going well can be analyzed as follows.

▶ Lemma 1.1 (from [EGV20]). A random function h : S → [n] on a set S of n keys, is
minimal perfect (i.e. is a bijection) with probability e−n

√
2πn · (1 + o(1)).

Proof. Given S, there are nn possible functions from S to [n]. n! of them are permutations
of the bijective mapping. Therefore, the probability that a randomly selected function is
minimal perfect is n!/nn. The claim is obtained by applying Stirling’s approximation to
simplify the factorial. ◀

Given that log is concave, we can use Jensen’s inequality [Jen06] to get an expected space
consumption for storing the seed of ≤ n · log (e) − o(n) ≈ 1.44n bits. This simple brute-force
construction therefore matches the lower bound given in Section 2.7, up to lower order terms.

The simple construction needs to try an exponential number of different hash functions
and is therefore not practical for large n. However, brute-force is still used as a building block
in a range of practical constructions. RecSplit [Bez+23; EGV20] partitions the input set into
many small subsets using brute-force search for a hash function. Within the partitions, it uses
brute-force to find an MPHF. A range of approaches based on bucket assignment [BBD09;
FCH92; Her+24a; PT21] are also based on brute-force. Refer to Chapter 4 for more details.

1.2 Contributions

In this dissertation, we explore a wide variety of perfect hash function constructions. We
develop new approaches that can beat the state of the art in the three main performance pa-
rameters: construction throughput, query throughput, and space consumption. In particular,
we get close to the space lower bound while still keeping practical construction and query
performance. For this, we make use of recent advances in space-efficient data structures such
as retrieval, bit vectors, and index data structures. We also harness the processing power
of modern hardware architectures by using SIMD instructions, multi-threading, and GPUs.
We now give a very brief overview of our contributions. We refer to Chapter 3 for a more
detailed introduction to our contributions.

SIMDRecSplit. RecSplit [EGV20] is a space-efficient minimal perfect hash function. With
SIMDRecSplit, we parallelize the construction of RecSplit on the levels of bits, vectors, and
multicores. We also propose rotation fitting – a new technique to accelerate the brute-force
search, which can derive additional hash function candidates for the entire set using a few
simple bit operations. From a theory point, it enables using small lookup tables to reduce
the construction time by a linear factor. In combination, we get speedups of up to 239 on an
8-core CPU, compared to the original single-threaded implementation. We also give a GPU
implementation that achieves speedups of up to 5438. Compared with approaches from the
literature, SIMDRecSplit is the perfect hash function with the fastest construction for a wide
range of configurations.

In t ro duct ion

4 1.3 Outline

SicHash. In SicHash, each key has a small number of candidate positions, determined by
different hash functions. It derives an assignment using cuckoo hashing and uses a retrieval
data structure to store which of the hash functions was finally used to place each key. For
some configurations, SicHash has up to 4.3 times faster construction than the next best
competitor, and is one of the constructions with the fastest queries. It provides a very good
trade-off between space, construction time, and query time.

ShockHash. ShockHash can be seen as a combination of SicHash and RecSplit. We use
a variant of SicHash with two hash functions for each key and retry construction until we
can completely fill the cuckoo hash table. We prove that storing the seed for retries, as
well as the retrieval data structure indicating which candidate position to use for each key,
is asymptotically space optimal. ShockHash can construct minimal perfect hash functions
with just 1.489 bits per key, which is within 3% of the lower bound of 1.442 bits per key.
At the same space consumption, ShockHash is up to three orders of magnitude faster than
competing approaches.

LeMonHash. Monotone minimal perfect hash functions (MMPHFs) retain the natural order
of the input keys. LeMonHash offers a fresh new perspective on MMPHFs, building upon
recent advances in (learning-based) index data structures and in retrieval data structures.
We call our proposal LeMonHash, because it learns the smoothness of the input data to build
a space-time efficient monotone MPHF. On synthetic random datasets, LeMonHash needs
34% less space than the next competitor, while achieving about 16 times faster queries.

PaCHash. Hash tables or k-perfect hash functions cannot directly be used with objects of
variable size. Approaches usually store references in the table cells or leave a lot of space
unused. PaCHash is a relaxation of perfect hashing that packs variable-size input objects
contiguously in external memory without leaving free space. It can fetch an object using
a single contiguous access to the external memory by using a small internal memory index
data structure. For objects of fixed size, PaCHash in a way breaks the space lower bounds of
k-perfect hashing at the cost of sometimes fetching one external memory block too much.
An implementation for fast SSDs needs about 5 bits of internal memory per block of external
memory and matches or even outperforms competing approaches that only support objects
of fixed size.

1.3 Outline

We now give an outline over the content of this dissertation, including a guide on how to
read it. This dissertation consists of 11 chapters, of which Figure 1.2 gives a visual overview.

Implementation details and proofs

5 6 7 8 9 101 2 3 4 11

Contributions

Related work Evaluation Conclusion

Preliminaries

Introduction

Figure 1.2 Structure of this dissertation.

5

Depending on what the reader is interested in, it is not necessary to read the entire dissertation
from top to bottom. In the following paragraphs, we now give guidelines for different types
of readers. More specifically, we discuss readers interested in the contributions of this
dissertation, interested in a survey of the state of the art in perfect hashing, or interested
in the details of our approaches. This introduction in Chapter 1 and the explanation of
preliminary tools and data structures in Chapter 2 are recommended for all readers.

Contributions. When interested in the new ideas introduced in this dissertation, Chap-
ters 3 and 11 are most relevant. Chapter 3 gives a high-level explanation of the approaches
developed here and is enough to understand the main ideas. It also includes a brief evaluation
comparing the new ideas to the state of the art. Chapter 11 then summarizes our new
approaches and discusses their impact.

Survey. When interested in a survey discussing the state of the art in perfect hashing,
Chapters 4 and 8 can be read independently. In particular, Chapter 4 discusses related work
and repeats short summaries of our new approaches. Chapter 8 then gives a detailed evaluation
of the state of the art in perfect hashing, focusing on the three most important performance
parameters – construction throughput, query throughput, and space consumption.

Proofs and Implementation Details. The remaining chapters give detailed explanations
of our new techniques including proofs and implementation details. They also include evalua-
tions of the effects of different tuning parameters. We explain GPURecSplit / SIMDRecSplit
in Chapter 5, SicHash in Chapter 6, and ShockHash in Chapter 7. We then continue with
LeMonHash in Chapter 9 and PaCHash in Chapter 10.

1.4 Applications

Perfect hashing was originally developed in the 1970s to quickly handle a small number of
reserved keywords in programming languages. Today, perfect hashing can handle millions of
input keys and has a wide range of applications. In the following section, we outline some of
these applications.

Hash Tables and Retrieval. Hash tables are one of the most fundamental data structures
used today. There is a wide range of techniques on how to handle collisions of hash
values. Examples include linear probing [Knu98], hashing with chaining [Knu98], and
cuckoo hashing [PR04]. When the key set is static, a perfect hash function can be used to
directly index the hash table without collision resolution. This guarantees constant access
times [FKS84], efficient access with fewer cache faults than standard hash tables [Bot+08],
and fewer external memory access operations [KLS23].

Similar to a hash table, a retrieval data structure (see Section 2.4) gives a mapping
from keys to values. However, a retrieval data structure is allowed to return an arbitrary
value for keys that are not stored in the data structure. This makes it possible to store the
values without representing the input set. Compared to a hash table, this can significantly
reduce the space consumption. Classically, retrieval data structures are static, meaning that
changing any value or changing the key set requires a full rebuild of the data structure. Using
perfect hashing, it is easy to build a value-dynamic retrieval data structure where the values
can be changed and the key set stays static. This is possible by indexing a hash table with a
perfect hash function and storing only the values in the hash table cells, not the keys.

In t ro duct ion

6 1.4 Applications

AMQ Data Structures. An Approximate Membership Query (AMQ) data structure can
answer membership queries (“is x ∈ S?”) allowing false-positive replies. The most widely
known AMQ data structure is the Bloom filter [Blo70], which needs n(1.44 · log(1/ϵ)) bits
for a false-positive rate of ϵ. Using perfect hashing, n(1.44 + ⌈log(1/ϵ)⌉) bits of space can
be achieved. We give more details on lower bounds for perfect hashing in Section 2.7. The
idea is to store fingerprints of the input keys in the perfect hash table cells [Ben+18; BM03;
Fan+14; GL20]. When a fingerprint collides, the filter then assumes that the key is stored
in the data structure and generates a false-positive. Note that the space lower bound for
AMQ data structures is n log(1/ϵ) bits, which can almost be achieved using a retrieval data
structure (see Section 2.4).

Databases. Perfect Hashing can be used in static (parts of) databases to map stored items
from a large universe (for example strings) to smaller identifiers that can be stored with less
space [BPZ07a; Mü+14]. The COPR database [RKR24] stores log files and enables efficient
search within these logs. Its immutable sketch implements a static, approximate multi-set
membership query data structure. It generates a perfect hash function on tokens extracted
from the log lines. Then the perfect hash function values are used to index a fingerprint
array as an approximate membership filter. Additionally, it uses the same hash function
value to look up the starting position for indexing a variable-length array.

Association rules [AIS93] can be used to analyze a database of transactions. Each
transaction is a set of items, such as products that are bought together in an online shop.
Then an association rule has the form X ⇒ Y , which says that if a transaction contains the
items in set X, it (likely) also contains the items in set Y . Perfect hashing can be used to
speed up finding these rules in a given database [CL05; HTT02]. The idea is to use perfect
hashing to index an array of counters storing the number of occurrences of sets of items.

For synchronizing the content of a distributed database, SNIPS [NM23] divides each file
into chunks. Each storage peer then constructs and exchanges a perfect hash function for
the list of chunks it stores. This allows for determining missing chunks on peers without
communicating the chunks or their IDs. Monotone minimal perfect hash functions keep
the lexicographical order of the input (see Section 1.1). These are useful for range queries
in databases [KLS23; Lim+11], where a range [a, b] in the input universe can directly be
mapped to the range [h(a), h(b)] of hash values. This can also help with cache efficiency.

Bioinformatics. For a given string, a k-mer is a substring of length k. In bioinformatics,
a k-mer represents k consecutive bases of a genome. When looking at all k-mers that can
be formed from a specific string, they share significant overlaps. In genome assembly, these
overlaps are used to align pieces of DNA reads together to longer sequences. One such
technique uses de Bruijn graphs, which use (k − 1)-mers as their nodes. Edges connect the
two (k − 1)-mers that overlap to give a corresponding k-mer [Lia+19]. Figure 1.3a gives an
illustration of a de Bruijn graph. An Eulerian trail in the de Bruijn graph then gives the
assembled genome sequence.

To navigate the de Bruijn graph, Chapman et al. [Cha+11] need to map a k-mer to the
base that follows it. With a hash table, this would mean that the key takes 2k bits, while the
stored value just takes 2 bits. Therefore, the majority of the size of the hash table consists of
storing the key set. Meraculous [Cha+11] uses a perfect hash function instead to query a
hash table that does not store the keys. Perfect hashing can aid de Bruijn graphs in more
areas [Alm+18; CLM16; CSM13], for example to implement union-find data structures on
the k-mers [CLM16]. To efficiently store a set of k-mers supporting membership queries,

7

TGA

GAG

AGA

GAT

ATC

3-mers DeBruijn graph

Assembled sequence: TGAGATC

TG GA

AG
ATTC

(a) DeBruijn graph and genome assembly.

s$

$ a

na

na

s$ nas$

s$ nas$

s$

(b) Suffix tree of the text T = ananas$.

Figure 1.3 Illustrations of applications of perfect hashing.

perfect hashing can be used as well [Pib22; Pib23]. Pibiri et al. [PSL23] introduce a perfect
hash function specifically designed for k-mers. They use the fact that the input keys overlap
to beat the space lower bound that applies to general inputs (see Section 2.7) and to achieve
locality of the hash values of overlapping k-mers.

Text Indexing. A suffix of a text T is a substring T [i..|T |] starting from a specific position
1 ≤ i ≤ |T | and continuing to the end of the string. A suffix tree [Wei73] efficiently stores all
suffixes of a given text. Every leaf node represents one suffix, while every edge is annotated
with a character (sequence) that differentiates between the child nodes. Suffix trees can be
used to efficiently search for all occurrences of a pattern in a text by following the edges of
the tree and stopping when the pattern ends. Figure 1.3b gives an illustration of a suffix tree
of the text T = ananas$. Perfect hashing can be used to index child nodes of a suffix tree in
constant time [BN14]. In general, perfect hashing can be used to store trees, for example in
prefix search [Bel+10]. In a large external memory lexicon, perfect hashing can be used to
ensure that the number of memory accesses is low when accessing specific words [WMB99].
The Burrows-Wheeler Transform (BWT) [Bur94] is a revertible transformation of a text that
is easier to compress than the original text. For directly accessing a position in the original
text given only the BWT, a rank operation on the occurrences of specific characters is needed.
Using monotone minimal perfect hashing, this rank can be computed in constant time and
with low space overhead [BN14]. For reporting the number of occurrences of each character
in a substring, Belazzougui et al. [BNV13] store the rank of each character occurrence using
an MMPHF. From a list of documents, this then enables efficiently finding the k documents
with the most occurrences of a pattern (top-k retrieval) [BNV13; Nav14]. Finally, in pattern
matching [Bel+20; GNP20; GOR10], MMPHFs are applied mostly to integer sequences
representing the occurrences of certain characters in a text.

Machine Learning. N-gram language models are a crucial ingredient of natural language
processing, machine learning, and spell checking [PV17b]. Pibiri et al. [PV17b] introduce a
compressed tree representation of N-gram language models and use perfect hashing to achieve
faster lookups. For real-time speech recognition at Amazon, Strimel et al. [Str+20] introduce
the compressed N-gram data structure DashHashLM, which is particularly focused on fast
lookups. It computes IDs of the N-gram context using a minimal perfect hash function
instead of storing the IDs explicitly and having to perform a lookup.

Further Applications. Perfect hashing can be used in network applications such as the
flow lookup tables in routers [LPB06]. In this application, dynamic perfect hashing becomes
relevant. The paper presents a partially dynamic perfect hash function that only needs to be

In t ro duct ion

8 1.4 Applications

rebuilt if the key set changes too much. Dynamic perfect hashing is also analyzed in more
detail by Dietzfelbinger et al. [Die+94]. LTL (Linear Time Temporal Logic) is a logic used in
formal verification of software. For LTL model checking, Edelkamp et al. [ESS08] generate a
semi-external graph, where some information about the nodes but not the edges can be stored
in internal memory. The approach uses a minimal perfect hash function to store additional
information about the nodes in external memory and achieve efficient access. A further
application is to use monotone MPHFs for efficient queries in encrypted data [BCO11].

9

2 Preliminaries
Summary: Space-efficient data structures are a large field of research. Our perfect
hash functions build on existing space-efficient data structures, which we explain in
this chapter. Starting with operations on bit vectors, rank1(i) determines the number
of 1-bits before position i and select1(i) finds the position of the i-th 1-bit. Elias-Fano
coding builds on these operations to efficiently store a monotone sequence of integers.
For a set S, a retrieval data structure stores a static function S → {0, 1}r in close
to r|S| bits. This small space consumption is possible because it can return arbitrary
values for keys not in S. Finally, cuckoo hashing is a technique to solve collisions in
hash tables. Each object can be located in one of two candidate cells, which need to
be retrieved during queries. Insertion is based on recursively pushing out the object
already stored in a cell and re-inserting it with its other hash function.

Attribution: None of the data structures described in this chapter are new. However,
we give three interpretations of Elias-Fano coded sequences. One of these interpreta-
tions is, to the best of our knowledge, not mentioned in the literature yet and explains
the connection between Elias-Fano and Golomb-Rice codes.

In this chapter, we give an introduction to several space-efficient data structures. These are
building blocks for the perfect hash functions described in this dissertation. Section 2.1 gives
an introduction to rank and select operations on bit vectors. Section 2.3 then explains how
to store sequences of integers using Elias-Fano coding and gives a detailed comparison of
different interpretations of the data structure. Section 2.4 explains retrieval data structures
that can store static functions. Section 2.5 then explains cuckoo hashing, which is a technique
to resolve collisions in hash tables. We explain in Section 2.6 how retrieval data structures
can be combined with ideas from cuckoo hashing to construct perfect hash functions. Finally,
we give space lower bounds for perfect hashing in Section 2.7.

2.1 Rank and Select

The most fundamental data structure in a computer is probably the bit vector – at the
lowest level, every data structure is a bit vector. After the access operation, rank and select
operations are arguably the most fundamental operations on bit vectors. rank1(i) determines
the number of 1-bits before position i. Note that this directly gives the number of 0-bits by
taking rank0(i) = i − rank1(i). The select1(i) operation finds the position of the i-th 1-bit in
the bit vector. Figure 2.1a gives an example of these two operations.

The operations can be performed in constant time with sublinear space overhead [Cla96;
Jac89] and have very fast and space-efficient implementations [Kur22; Vig08]. A common idea
is to divide the bit vector into superblocks of size bs = log2(n). An array of size n/bs stores
log(n) bit values indicating how many bits are set before each superblock. Each superblock
is in turn divided into subblocks of size log(n)/2. An additional array of size n/(log(n)/2)
then stores log(bs) bit values indicating how many bits are set before each subblock within
its superblock. To give ranks for all subblock combinations in constant time, we can use a

Pre l im inar i e s

10 2.3 Elias-Fano Coding

rank1(7) = 4

0 1 1 1 0 10 10 10

select1(5) = 9

(a) Example of rank and select operations.
Rank counts the number of 1-bits up to
a position. Select finds the i-th 1-bit.

0 1 1 1 0 10 10 10 1

Superblock of width log2(n)

...

0 3 7
0 1 3 0 1 2 ...

Subblock of width log(n)/2

(b) Constant time rank data structure with sublinear space.

Figure 2.1 Rank and select on bit vectors.

lookup table using sublinear space. In practice, we can use the popcount machine instruction,
efficiently giving the number of set bits in a word. Figure 2.1b illustrates this structure. Note
that additional data is required to support select operations.

2.2 Golomb-Rice Coding

Golomb coding [Gol66] with parameter k can be used to store integers that have a geometric
distribution. The idea is to store each integer x as a quotient q = ⌊x/k⌋ in unary coding and
a remainder x − qk in truncated binary coding. We do not go into detail about truncated
binary coding here. Golomb-Rice coding [Ric79] is Golomb coding where k is a power of 2.
This makes arithmetics more efficient and simplifies storing the remainder to fixed width
binary coding of the lower bits. Looking at a whole sequence of integers, the lower bits
can simply be stored in an array. The unary coding of the upper bits of all integers can be
concatenated. Integer i can then be accessed in constant time by looking up the remainders
at position i and finding the beginning of the quotient using select1(i) on the upper bit array.

2.3 Elias-Fano Coding

Assume we want to store a monotonically increasing sequence p = ⟨p1, . . . , pn⟩ of n integers
in the range 1..U . In the context of sparse bit vectors with only a few 1-bits, this sequence
could represent the positions of the 1-bits. In the context of perfect hashing, it can be
used to convert a PHF to an MPHF (see Section 2.8). Storing such a sequence in a simple
binary coded array needs n log(U) bits. A more space-efficient, however theoretical, way to
store the integers is Succincter [Pua08]. Using Succincter, about n(1.44 + log(U/n)) + 1 bits
suffice to store the sequence. This makes Succincter almost information theoretically optimal.
However, an implementation seems impractical.

A well-known practical solution for storing monotonically increasing sequences of integers
is Elias-Fano coding [Eli74; Fan71]. In an Elias-Fano coded sequence, each integer pi is split
into two parts. The log(U/n) least significant bits are directly stored in an array L requiring
n log(U/n) bits of space. The log(n) most significant bits form a monotonic sequence of
integers ⟨u1, . . . , un⟩ in the range 0..n. This sequence is stored in a bit vector H of size 2n + 1
where ui is represented as a 1-bit in position i + ui (see Figure 2.2a). Together, the space
usage is n(2 + log(U/n)) + 1 bits, omitting issues due to rounding and assuming U ≥ n.
Partitioned Elias-Fano [OV14] is an extension that uses dynamic programming to partition
the input into multiple independent Elias-Fano sequences to minimize the overall space usage.

There are multiple ways of interpreting the bit vector H in Elias-Fano coding (see
Figure 2.2). In the following paragraphs, we discuss how each interpretation helps to think
about a different operation on the integer sequence. To the best of our knowledge, there is
no work connecting the different interpretations in detail.

11

L

0 1 1 1

1

10 10

101

0 10 0p1

p2

p4

01 0

H

1 1 1

p3

0 0

Set bit 4 + u4 = 7

(a) Indexing bits.

L

0 1 1 1

1

10 10

101

0 10 0p1

p2

p4

01 0

H

1 1 1

p3

0 0

2 occurrences
of 01 (unary: 110)

(b) Counting occurrences.

L

0 1 1 1

1

10 10

101

0 10 0p1

p2

p4

01 0

H

1 1 1

p3

0 0

Difference is 2
(inverted unary: 001)

0

(c) Encoding differences.

Figure 2.2 Interpretations of the same Elias-Fano data structure for the sequence ⟨2, 5, 7, 13⟩.

Indexing Bits. As a first interpretation, we briefly repeat the one described before, where
value ui is represented as a 1-bit in position i + ui (see Figure 2.2a). The interpretation is
described, for example, by Pibiri and Venturini [PV17a] or Okanohara and Sadakane [OS07].
An advantage of this interpretation is that it shows how insertions can happen in arbitrary
order when n, U , and the index of each integer are already known. This can be useful when
constructing an Elias-Fano coded sequence in parallel. Additionally, it shows that the space
to allocate for the bit vector is known in advance given just n and U .

Counting Occurrences. In Figure 2.2b, we illustrate a different interpretation of the same
Elias-Fano coded sequence. This interpretation is described, for example, by Ottaviano and
Venturini [OV14] or Pibiri and Venturini [PV17a]. Take the input keys and split them into the
upper and lower parts like before. Then count the number of occurrences of each combination
of upper bits. Finally, concatenate in unary coding how often each combination occurs. The
intuition for both interpretations leading to the same bit vector is that all occurrences of the
same upper bits generate consecutive bits in the indexing bits interpretation. Still, in contrast
to the interpretation above, the counting occurrences interpretation sounds like insertions
have to happen in order, which is not the case. The counting occurrences interpretation is
useful when thinking about predecessor queries, which we explain later.

Encoding Differences. A third interpretation is that H stores the unary coded differences
of consecutive upper bits. As an intuition why this describes the same bit vector, consider
n Elias-Fano coded integers with the indexing bits interpretation. Assume that we do not
store the trailing zeroes, so the last bit is set to 1. Then the last bit, representing un, has
position un + n. Now let us look at what happens when we append an additional value. This
new value has upper bits un+1, setting a 1-bit in position un+1 + (n + 1). Subtracting the
positions, we get the number of newly added bits: un+1 + (n + 1) − (un + n) = un+1 − un + 1,
which is un+1 − un times a 0-bit and one 1-bit. This matches a unary coding of the difference
between the neighboring upper bits, just with the roles of 0 and 1 inverted. We illustrate this
in Figure 2.2c. The encoded differences interpretation is useful to see that storing a prefix
sum of values with Elias-Fano coding is almost the same as storing the original values with
Golomb-Rice codes. The only difference is that the roles of 0 and 1 in H are inverted and
that Golomb-Rice codes need one less subtraction operation on the lower bits. For storing
perfect hash function seeds, Pibiri and Trani [PT21] encode a prefix sum with Elias-Fano and
Hermann et al. [Her+24a] achieve performance improvements by using Golomb-Rice instead.

Pre l im inar i e s

12 2.4 Retrieval Data Structures

Operations. We now look at the two most important operations on Elias-Fano coded
sequences – access and predecessor queries. The access(i) operation returns the i-th stored
integer. The lower bits can simply be accessed from array L at position i. For the upper
bits, the interpretation of indexing bits is most useful. Because the corresponding 1-bit of
integer i is stored at position i + ui, we can find ui by performing a select1(i) operation and
then subtracting i. Using a constant time select data structure (see Section 2.1), the access
operation takes constant time.

A predecessor query for an integer x returns the (position of the) largest integer in the
sequence that is ≤ x. For performing this operation on an Elias-Fano coded sequence, the
interpretation of counting occurrences is most helpful. A select0 operation in H locates the
start of a cluster of integers that share the same upper bits as x. Another select0 operation
locates the end of the cluster. For the integers inside the cluster we have to check the lower
bits in L. We can do that using binary search in worst-case time O(log n).

2.4 Retrieval Data Structures

A retrieval data structure or static function data structure on a set S of n keys stores a
function f : S → {0, 1}r that returns a specific r-bit value for each key. At first, this might
sound similar to a hash table. In fact, a hash table supports this operation as well. However,
a retrieval data structure cannot answer membership queries (“is x ∈ S?”), which makes it
possible to represent f without representing S. In particular, applying the function on a key
not in S can return an arbitrary value. The space lower bound for arbitrary inputs is rn

bits. In contrast, a hash table needs at least n log(n) bits to differentiate the keys.
MWHC [Maj+96] is one of the first retrieval data structures and is based on assigning an

integer value to each node in a random hypergraph. It needs 1.23rn bits of space and can be
evaluated in constant time by hashing a key to different nodes and summing up the integers
stored for them. A variation is 2-step MWHC [Bel+11], which can have a smaller overhead
than MWHC for some inputs by using two MWHC functions of different widths. A fallback
value then indicates that the second data structure with larger width should be queried. In
the following, we describe a more recent approach, BuRR [Dil+22], in more detail.

Bumped Ribbon Retrieval. The more recently proposed Bumped Ribbon Retrieval (BuRR)
data structure [Dil+22] is the one we use in this dissertation. BuRR basically consists of
a matrix. The query algorithm multiplies a hash of the key with that matrix to get the
output value (see Figure 2.3a). The matrix can be constructed by solving a system of linear
equations assigning all input keys to their desired output value. BuRR uses hash functions
with spatial coupling [Wal21] where all 1-bits are in a local range. This makes the equation
system almost a diagonal matrix and therefore very efficient to solve. Additionally, it is
helpful for the cache locality of the queries. In the case of r = 1, queries are very simple,
basically calculating the AND of the key’s hash and a section of a bit vector, and reporting
the parity of the result. Figure 2.3b illustrates spatial coupling in the equation system.

When some rows of the equation system would prevent successful solving, BuRR bumps
out these rows (and the corresponding keys). It handles these keys recursively by adding an
additional layer of the same data structure. In fact, BuRR achieves space improvements by
intentionally overloading the equation system with more equations than can be solved, and
relying on bumping. In practice, BuRR achieves space overheads well below 1% over the
space lower bound of rn bits. At the same time, it is faster than widely used data structures
with much larger overhead [Dil+22].

13

01 0

h(x)

1 100 0· · · · · ·

M

· =

f(x)

=

Spatial coupling

0 1· · ·

(a) The query operation multiplies a hash of the input key
with the matrix M , which is the main data structure.

0 00 1 11 00 · =? 10
...

...

(b) The equation system to solve during
construction has a small band (rib-
bon) in which there can be 1-bits.

Figure 2.3 Illustrations of Bumped Ribbon Retrieval (BuRR) [Dil+22] with r = 2 bits. Simplified
here to ignore bumping.

2.5 Cuckoo Hashing

Cuckoo hashing [PR04] is a well known approach to handle collisions in hash tables. In a
cuckoo hash table, each object can be placed in one of two candidate cells, determined by two
hash functions. Queries load the two candidate cells and compare the searched key with the
keys of both objects. Insertion applies one of the hash functions and places the new object in
the corresponding cell. If the cell is already occupied, the object previously placed in that cell
is pushed out and is recursively inserted using its other hash function. Figure 2.4a illustrates
this approach. It also illustrates that cuckoo hashing can be interpreted as a bipartite cuckoo
graph where one set of nodes represents the objects and the other set represents the table
cells. Edges connect objects to their candidate cells.

Variants. Just like the load factor of a perfect hash function, the load factor of a cuckoo
hash table is α = n/m, where n is the number of objects inserted and m is the number of
table cells. Higher load factors can be achieved by making the cells larger, so that they hold
more than one object [DW07]. For our application to perfect hashing, we only consider cells
of size 1. Instead of locating each object in one of two cells, the idea can be generalized to d

cells [Fot+05] by using d hash functions. For an external memory hash table, I/O operations
can be reduced by ensuring that most candidate cells are selected on the same memory
page [DMR11]. In irregular cuckoo hash tables, different objects can have a different number
of choices [Die+10]. For example, some percentage of the objects get d1 choices, some d2
choices, and some d3 choices. Averaging over the numbers of choices, the method enables
d-ary cuckoo hashing with non-integer d and higher load factors than a simple interpolation

x y

x yz

h1(x) h0(y)

(a) Inserting object z into a table containing x and
y. Illustrated using the bipartite cuckoo graph.

1

2

3

4

5

6

x

zy

(b) Cuckoo graph showing the 1-orientation.

Figure 2.4 Illustration of different graph interpretations of the same cuckoo hash table.

Pre l im inar i e s

14 2.5 Cuckoo Hashing

between two ordinary cuckoo hash tables [Die+10]. A similar idea can also be found in coding
theory, where each message bit is covered by an irregular number of check bits [Lub+01].
Another related result is the weighted Bloom filter [BGJ06], where objects get a different
number of hash functions (and therefore false positive probability) based on their query
frequency and membership likelihood.

Load Thresholds and Space Usage. The load threshold is the load factor α = n/m such
that the probability of successful construction tends to 1 for smaller load factors and to 0
for larger load factors when taking m → ∞ [FKP16; FP12; Lel12]. Classic cuckoo hashing
with d = 2 hash functions has a load threshold of 0.5. Therefore, for large n, constructing a
cuckoo hash table where 51% of the cells are filled will likely fail. Using d = 4 hash functions
already increases the load threshold to 0.976 [FP12; Wal21].

Dietzfelbinger et al. [Die+10] give load thresholds for irregular cuckoo hashing, depending
on the distribution of how many hash function choices each object has. For any desired
average number of hash functions d′ ∈ R, the best load threshold is achieved by assigning
each object either ⌊d′⌋ or ⌈d′⌉ hash functions [Die+10]. As we will see in Section 6.1, this is
not the case in the context of perfect hashing because we are looking at the storage space
instead of the average value of the hash function indices.

Construction. For binary cuckoo hashing, the construction can simply displace keys to their
other candidate cell, as described above. The variant with d > 2 or irregular cuckoo hashing
make insertions more complex because it is no longer clear which of the alternative cells to
displace objects to. Common ways to perform insertion are to find a shortest move sequence
by performing breadth-first-search (BFS) in a graph defining possible object moves or by
performing a random walk in that graph. Both approaches need constant expected time
when the table is not too highly loaded [FMM09; Fot+05; FPS13; KA19; Kho13; Wal22].

In this dissertation, we are only interested in the static case, where all objects to be stored
are known from the start. In that case, it is also possible to construct the whole hash table at
once instead of using incremental insertions. Looking at the cuckoo hash table as a bipartite
graph again (see Figure 2.4a), a matching of size n gives a collision-free assignment from
objects to table cells. This can be calculated using, for example, the Hopcroft-Karp-Karzanov
algorithm [HK73] in time O(n

√
n) or the LSA algorithm [KA19; Kho13] in linear time with

high probability.

Cuckoo Graph and Pseudoforests. We now switch back to binary cuckoo hashing with
d = 2 hash functions. In the following, it will be useful to model cuckoo hashing as a different
type of graph. In that graph G, each node represents a table cell and each edge represents
one object, connecting its two candidate cells. We illustrate this in Figure 2.4b with the
same hash functions as in Figure 2.4a. It is easy to see that the table can be constructed
successfully if and only if the edges of G can be directed such that the indegree of each node
is ≤ 1. We call this a 1-orientation. A 1-orientation exists if and only if G is a pseudoforest,
i.e., every connected component of G is a pseudotree. A pseudotree is either a tree or a cycle
with trees branching from it. A way to check whether a graph is a pseudoforest is to check
whether each component contains at most as many edges as nodes. This is possible in linear
time using depth first search.

15

y

x y

z

h0(x)

h1(z) h0(z)

h1(x)
h1(y)

h0(y)

x z f(q) =

0 q = x

1 q = y

1 q = z

Stored in retrieval
data structure

Figure 2.5 Perfect hashing through retrieval. Each key has d = 2 candidate output values. Yellow
arrows indicate a mapping that gives unique values for all keys.

2.6 Perfect Hashing Through Retrieval

To the best of our knowledge, perfect hashing through retrieval with cuckoo hashing is only
mentioned briefly before [Dil+22]. In this section, we give a more detailed and intuitive
introduction to the idea. A related idea is the construction of PHFs by solving a matching as
described by, e.g., Botelho et al. [BPZ13] and Navarro [Nav16, Section 4.5.3]. This essentially
solves the same graph theoretic problem but uses a different interpretation.

For perfect hashing through retrieval, every key has a small number d of candidate output
values determined by d hash functions. We then find an assignment of each key to one of
its candidate positions such that each position is taken at most once. We can remember
the assignment using ⌈log(d)⌉ bits per key storing the hash function index. This can be
stored in a retrieval data structure using close to ⌈log(d)⌉ · n bits. A query for a key x

then retrieves the hash function index i(x) and calculates hi(x)(x) to obtain a perfect hash
function. Figure 2.5 illustrates the idea.

Construction through Cuckoo Hashing. One way to find such an assignment is to construct
a cuckoo hash table. Take the input keys of the perfect hash function and use them as
objects to store in the d-ary cuckoo hash table. The final table then implicitly describes
an injective mapping from keys to table cells, because each cell only stores one key. For
perfect hashing, we are not interested in storing the hash table or the keys themselves. We
are only interested in the hash function index that was finally used to place each key. We
store this using a retrieval data structure as described before. In our construction, the load
factor of the perfect hash function equals the load factor of the cuckoo hash table, and the
storage space is determined by the number of hash functions d. By applying results from
cuckoo hashing, we therefore immediately get details on the load factor of the perfect hash
function. A PHF from binary cuckoo hashing using two choices needs about log(2) = 1 bit
per key and can achieve a load factor of α = 0.5. A PHF with a load factor of 0.976 can be
implemented using 4 choices, leading to 2 bits per key. This result can be converted to an
MPHF by investing about 0.14 bits per key in addition, as we will see in Section 2.8.

2.7 Space Lower Bounds

Somewhat surprisingly, the space needed to avoid collisions in a perfect hash function is
constant per input key. Let us first look at space lower bounds of minimal perfect hashing
and then continue with perfect hashing and k-perfect hashing.

Pre l im inar i e s

16 2.7 Space Lower Bounds

1

2

3

4

5

Universe f

f−1(5)

Possible input set
for which h is an
MPHF

Figure 2.6 Preimages of a minimal perfect hash function and a possible input set that the
function is minimal perfect on.

Minimal Perfect Hashing. For minimal perfect hashing, the space lower bound is n · log(e)+
O(log(n)) ≈ 1.44n bits per key [Mai83; Meh82]. This bound is quite simple to explain: Take
a function f that is minimal perfect on some set S. Because f can be evaluated with any
input key from the universe and outputs only values from [n], there must be additional
input sets for which f is minimal perfect. More precisely, f is minimal perfect for all sets
where exactly one input key is in each preimage f−1(1), f−1(2), · · · , f−1(n). We illustrate
this in Figure 2.6. The number of input sets on which f is minimal perfect is therefore
|f−1(1)| · |f−1(2)| · . . . · |f−1(n)|. This expression is maximized if all preimages have the same
size U/n, where U is the size of the key universe. Therefore, a single function can be minimal
perfect for at most (U/n)n different input sets. There are

(
U
n

)
different possible input sets.

Therefore, we need to be able to differentiate between at least
(

U
n

)
/(U/n)n different functions

to be able to cover every possible input set. A minimal perfect hash function then needs
to store which of these functions has to be used on the respective input set. Therefore,
the number of bits needed to represent a minimal perfect hash function can be bounded as
follows. The equation assumes that U is large compared to n and ignores logarithmic terms.

log
((

U
n

)(
U
n

)n

)
≈ log

((
Ue
n

)n(
U
n

)n

)
= log (en) = n log e ≈ 1.44n

Perfect Hashing. Intuitively, giving up on the minimality reduces the probability for
collisions between keys. This makes it possible to represent PHFs with less space, depending
on the load factor α = n/m. Using a similar combinatorial argument like for minimal perfect
hashing, it is possible to determine the space lower bound to represent a PHF with range m.

log
((

U
n

)(
U
m

)n ·
(

m
n

)) [BBD09]
≈ (m − n) log

(
1 − n

m

)
− log(n) − (U − n) log

(
1 − n

U

)
= n

(
1
α

− 1
)

log(1 − α) − log(n) − log
((

1 − n

U

)U
)

+ n log
(

1 − n

U

)
U→∞

≈ n

(
1
α

− 1
)

log(1 − α) − log(n) − log
(
e−n

)
= n

(
log(e) +

(
1
α

− 1
)

log(1 − α)
)

− log(n)

17

Minimal k-perfect Hashing. Extending the proof ideas above once more [BBD09], we get a
space lower bound for minimal k-perfect hashing as follows. Using Stirling’s approximation,
we derive a new space lower bound that is easier to interpret.

log

 (
U
n

)
(

U/(n/k)
k

)n/k

 [BBD09]
≈ n ·

(
log(e) + log

(
k!
kk

)
/k

)

≈ n ·

(
log(e) + log

(√
2πk(k/e)k

kk

)
/k

)
= n ·

(
log(e) + log

(√
2πk(1/ek)

)
/k
)

= n ·

(
log(e) + log(

√
2πk)

k
− log(ek)

k

)
= n ·

(
log(e) +

log
(
(2πk)1/2)

k
− log(e)

)

= n

k
· 1

2 log(2πk)

Mairson [Mai83] gives a slightly tighter space lower bound without a proof. He shows
that n

k · 1
2 log(2πk) − 1

2 log(2πn) + O
(

n
k2 + n2

U + 1
n

)
bits are sufficient, where U is the size of

the key universe. Mairson [Mai92] then considers a variant of non-minimal k-perfect hashing
where we increase the output range of the hash function but require either exactly k collisions
or no collisions on each output value. In this setting, decreasing the load factor does not
improve the space consumption asymptotically, which is different to ordinary perfect hashing.

2.8 Achieving Minimality

Any perfect hash function with output range m can easily be converted to an MPHF with
output range n. Even though it can make the construction more efficient [LSW23b; PT21],
this introduces some space and query time overhead. An additional disadvantage is that it
introduces an additional input parameter. In this dissertation, we follow the practice in the
literature (see Chapter 4) and focus on minimal perfect hash functions. We now describe
two approaches to convert a PHF to an MPHF.

Botelho et al. [BPZ07b] introduce the rank trick where a bit vector of size m indicates
which output positions are taken. A rank operation (see Section 2.1) then gives the MPHF
value. This approach has a space overhead of more than m bits, and also some query time
overhead due to the rank operation. We give an illustration in Figure 2.7a.

n input keys

m

PHF

1 10 0

n

Rank

1 1 0 1

(a) Rank trick. A bit vector indicates taken posi-
tions and a rank operation then gives a minimal
perfect hash value.

n input keys

m

PHF

1 10 0

n

Remap

1 1 0 1

(b) Remapping. Values larger than n get mapped
to free positions in the output range.

Figure 2.7 Techniques to convert a PHF to an MPHF.

Pre l im inar i e s

18 2.8 Achieving Minimality

PTHash [PT21] introduces a new technique for converting PHFs to MPHFs that has less
overhead. The idea is to check if the output value of the hash function is greater than n. If
it is not, the value can directly be returned. If it is greater, PTHash looks up the value to be
returned in a compressed sequence of size (m − n) that stores the free positions in [n]. Given
that the free positions are a monotonic sequence of integers, they can be compressed with
Elias-Fano coding (see Section 2.3). Usually, m is very close to n, so the sequence is short
and needs to be queried rarely. This technique therefore has significantly lower space and
query time overhead than the rank trick. We give an illustration in Figure 2.7b.

19

3 Contributions
Summary: In this chapter, we give an overview over the perfect hash functions
presented in this dissertation. This includes five main results. SicHash orients
random graphs to achieve a good balance between query and construction performance.
GPURecSplit parallelizes an existing brute-force construction and reduces the search
space for significant speedups. Finally, ShockHash achieves exponential speedups by
reducing the search space of the brute-force construction even further. Additionally,
we present LeMonHash as the first learning based monotone MPHF, and PaCHash as
an efficient static hash table using a relaxation of perfect hashing.

Attribution: This section is based on and has text overlaps with the introduction
sections of the corresponding papers [Bez+23; Fer+23a; KLS23; LSW23b; LSW24b].
However, it is reworked to include more algorithmic details and supporting figures.

Following the same order as the overall structure of this dissertation (see Section 1.3), we now
give an introduction to the contributions of this dissertation. We begin with minimal perfect
hash functions in Sections 3.1–3.3 and then demonstrate the performance improvements
through a brief evaluation in Section 3.4, similar to the full evaluation in Chapter 8. We
then continue with our new monotone minimal perfect hash function in Section 3.5 and our
perfect hash function for variable size objects in Section 3.6.

This chapter explains the main ideas behind each approach in enough detail to give a
basic understanding of the algorithms. However, for the full explanation of the approaches
including enhancements, implementation tricks, proofs, as well as the evaluation of tuning
parameters, we refer to the corresponding chapters.

3.1 Minimal Perfect Hashing Through Tuned Brute-Force

Brute-force construction of perfect hash functions can reach the space lower bound (see
Section 1.1). However, it needs to try an exponential number of seeds, which makes it
impractical for larger input sets. RecSplit [EGV20] is an efficient perfect hash function that
uses brute-force in a novel way. It starts with hashing the keys to buckets of expected constant
size to ensure linear construction time. The main idea of RecSplit is now to recursively split
the set of keys in a tree structure until small sets of constant size are left. In each inner
node of the tree, it uses brute-force to search for a hash function that splits up the keys to
subsets of very specific size. In the leaves, RecSplit then performs the simple brute-force
construction explained in Section 1.1 to find a perfect hash function, often called bijection.
Figure 3.1a gives an illustration. In Chapter 4, we describe RecSplit in more detail.

When increasing the leaf size, RecSplit gets closer to the space lower bound. However,
the construction quickly becomes slow because of the large number of brute-force tries. We
introduce two new improvements in the RecSplit framework. First, we describe rotation
fitting, which is a new way to reduce the number of hash function evaluations when searching
for bijections with brute-force. We then continue with a parallelization of the approach
using bit-parallelism, SIMD instructions, multi-threading, and GPUs. We call our resulting
algorithms SIMDRecSplit and GPURecSplit.

Cont r ibut ions

20 3.1 Minimal Perfect Hashing Through Tuned Brute-Force

Bucket 1 Bucket n/b

Input keys

...

(a) RecSplit. Circular nodes of the trees repre-
sent splittings, squares represent bijections.

1-bit hash function

1 0 0 1 1 10 1 10 00a b

Rotate b

OR

hs

1 1 11

0 1 10 10

Anna Mary Dave Lisa John Tom

Anna Dave Lisa Mary John Tom

0

1 1

hs

(b) Rotation fitting. Using hash function hs would cause
collisions but after rotating b, we find a bijection.

Figure 3.1 Illustration of the overall RecSplit data structure and our enhancement to the leaf
nodes, rotation fitting.

Rotation fitting. Rotation fitting makes it possible to test additional hash function seeds
significantly faster than additional brute-force trials. It hashes the keys to two sets A and B

using a static 1-bit hash function. The sets do not necessarily have the same size. During a
brute-force iteration, it then evaluates the hash function on both sets, calculating two bit
vectors a and b that indicate which positions are hit by some key. If there are any collisions
within a set (e.g., popcount(a) ̸= |A|), the construction cannot succeed, so the search retries
with another hash function seed. Otherwise, the logical OR of the bit vectors a OR b could
be used to check the entire set. However, we realize that rotating (cyclically shifting) the
bits of b gives a new chance for finding a bijection. Essentially, we try to fit one set into
the “holes” of the other set by rotating it. Figure 3.1b gives an example of rotation fitting.
There, hashing both sets A and B directly does not lead to a perfect hash function. However,
adding 1 (modulo 6) to all hash values in B results in a perfect hash function. This addition
modulo 6 can happen efficiently in registers for all keys at once through bit shifts of b.

In Chapter 5, we show that the probability of a rotation leading to a bijection is similar to
the probability of a new hash function seed leading to a bijection. Therefore, rotation fitting
can reduce the number of hash function evaluations by almost a factor of n. Given that
evaluating the hash functions is the main bottleneck of the brute-force technique, rotation
fitting enables significant speedups. In practice, rotation fitting makes the overall RecSplit
construction up to 3 times faster. In Chapter 5, we also discuss a variant that can replace
the n rotations by 2 table lookups. However, in practice, simplicity (in the inner loops), and
parallelism wins against any attempt at algorithmic sophistication in this case.

CPU Parallelization. In addition to adding rotation fitting, we parallelize RecSplit. For
this, we use the vector parallelism available with Single Instruction Multiple Data (SIMD)
instructions and the thread parallelism available with multicore CPUs. The parallelization
is rather straightforward. We use SIMD to test multiple hash function seeds at once.
Additionally, different threads construct different buckets independently in parallel. Using
SIMD and rotation fitting, we get a speedup of up to 50, and when additionally using
multi-threading with 16 threads, we get a speedup of up to 239, compared to the original
single-threaded implementation. For a more detailed explanation of our improvements, we
refer to Chapter 5. We compare the performance of SIMDRecSplit to other approaches from
the literature in Section 3.4 after introducing our other perfect hash functions.

21

GPU Parallelization. Utilizing GPUs for evaluating hash functions is known from mining
of cryptocurrencies with proof-of-work approach (e.g., Bitcoin). Given that hash function
construction here is mostly compute bound through using brute-force, the GPU is an ideal
hardware. We therefore also give a GPU parallelization of RecSplit. While Lefebvre and
Hoppe [LH06] describe the GPU evaluation of MPHFs, to the best of our knowledge, our
GPURecSplit is the first technique that constructs MPHFs on the GPU. Similar to the SIMD
implementation, each GPU thread tests one hash function seed independently in parallel. On
the CPU, we parallelize over the buckets. On the GPU, we take a different approach, using
the fact that the shape of the splitting trees only depends on the number of keys hashed
to them. We therefore construct all trees of the same shape together in the same set of
GPU kernel calls, significantly reducing constant overheads. We then use GPU streams to
compute multiple different tree shapes in parallel. Together, we achieve a speedup of up
to 5438, compared to the original single-threaded implementation without rotation fitting.
Because GPUs are so much faster at constructing MPHFs, they also lead to a better energy
efficiency than the CPU, as we show in Chapter 5.

Summary. We harness parallelism at all available levels – bits, vectors, cores, and GPUs.
Additionally, we give a new algorithm for improving the bijection search in the base case.
Together, we dramatically accelerate the construction of highly space-efficient minimal perfect
hash functions using the brute-force RecSplit approach [EGV20].

3.2 Small Irregular Cuckoo Tables for Perfect Hashing

In the previous section, we have looked at a brute-force construction. We now look at the
other end of the spectrum of perfect hashing algorithms. SicHash – small irregular cuckoo
tables for perfect hashing – is based on almost linear time construction of cuckoo hash
tables. In SicHash, we combine and refine several known ideas in a novel way leading to
excellent trade-offs between space and construction time while using very low query time.
SicHash is based on perfect hashing through retrieval (see Section 2.6). There, each key
has a small number of candidate hash values, determined by different hash functions. We
then use a retrieval data structure to store a collision free mapping from each key to one of
its candidate hash functions. We solve the assignment using cuckoo hashing. From cuckoo
hashing, we inherit load thresholds where construction likely does not succeed. We therefore
first construct a non-minimal perfect hash function and repair it later. The two novel ideas
in SicHash are to use irregular cuckoo hashing [Die+10] and to use a number of small tables
that we overload beyond their load threshold. We give details in the following paragraphs.

Irregular Cuckoo Hashing. In irregular cuckoo hashing [Die+10] (see Section 2.5), instead
of having the same number of candidate positions, different keys can get a different number
of candidate positions. We determine the number of candidates to use for each key by
evaluating an additional hash function. Irregular cuckoo hashing was previously considered
for reducing the search time in hash tables. For that application, it was of little help apart
from allowing to interpolate between two integer numbers of hash functions. In contrast, for
perfect hashing by retrieval, it is helpful even when the average number of hash functions
already is an integer. The key difference is that the space consumption per key is logarithmic
in the number of hash functions it can choose from. As an example, a retrieval-based perfect
hash function (see Section 2.6) using 5 choices would need at least log(5) ≈ 2.32 bits per
key. When hashing 50% of the keys with 2 hash functions and the other 50% with 8 hash

Cont r ibut ions

22 3.3 Small, Heavily Overloaded Cuckoo Hash Tables for Minimal Perfect Hashing

... ...

SicHash data structure

Hash

Golomb-RiceElias-Fano

Hash function assignments

Size

Size

Size

Offsets Seeds

Seed

Seed

Seed 1-bit

1-bit

1-bit 2-bit

2-bit

3-bit

3-bit

3-bit2-bit

R1 R2 R3

Retrieval data structures

Construct
cuckoo table

...
Input keys

Bucket 2

Bucket N/b

Bucket 1

Figure 3.2 SicHash construction. We first hash keys to buckets of expected equal size. Within
each bucket, we construct a (possibly overloaded) cuckoo hash table. We then store
the hash function assignments from all small hash tables together.

functions, the average number of hash functions is 5 as well. However, the expected space
usage is just 50% · log(2) + 50% · log(8) = 2 bits per key. At the same time, our analysis
shows that the load threshold (see Section 2.5) is better.

Overloading. We reduce the space consumption further by using the novel idea to overload
the cuckoo hash tables. The idea is to load the tables with more keys than the load threshold
would permit (see Section 2.5). There are two factors that make overloading possible, both
enabled by partitioning the keys to small buckets. First, the small tables lead to a higher
variance in the achievable load factor. Second, we determine experimentally that the point at
which insertions start to fail converges to the load threshold from above as n grows. Therefore,
the construction of small overloaded tables is still likely to succeed. Using small tables also
increases the cache locality during construction. Because we use overloading, we sometimes
need to retry constructing a table, and store a hash function seed. Therefore, overloading is
a small step towards brute-force. In typical configurations, we need just a little more than
one try per bucket in expectation. We illustrate the construction in Figure 3.2.

Summary. The most space-efficient previous algorithms perform brute-force search as a
core step to determine a perfect hash function. SicHash is more directed than this because it
constructs cuckoo hash tables as its base case, which is possible in near linear time. The
directedness is also visible in the experiments, where SicHash can construct PHFs with the
same space requirements up to 4.3 times faster than competitors that have a similar query
time. The novel combination of existing techniques keeps the SicHash queries extremely
simple – basically the cost for a single access to a retrieval data structure. This further
profits from recent advances on fast static retrieval data structures with virtually no space
overhead [Dil+22]. For a more detailed explanation of SicHash, we refer to Chapter 6. We
compare the performance of SicHash to other approaches in Section 3.4 after introducing our
last minimal perfect hash function construction.

3.3 Small, Heavily Overloaded Cuckoo Hash Tables
for Minimal Perfect Hashing

ShockHash – Small, heavily overloaded cuckoo hash tables – can be seen as an extreme
version of SicHash where we use two hash functions for each key and retry construction

23

x hs,0(x) hs,1(x)

John

Lisa

Dave

Mary

Anna

3 4

2 1

2 3

5 3

2 4

Hashed keys Filter Oriented Pseudoforest ShockHash Data Structure

11111 ✓
1

2

3

4

5

Seed s

Retrieval

≈ n log2 e−n
bits

≈ n bits

John
Lisa
Dave
Mary
Anna

0
1
0
0
1

Filter not passed or
cannot be oriented?
Retry with seed s+1

Lisa

Mary

D
ave

Joh
n

A
nn
a

Figure 3.3 Illustration of the ShockHash construction. Functions hs,0 and hs,1 are randomly
sampled hash functions using a seed s. Here, s is a seed value where the resulting
graph is a pseudotree. During construction, many seeds need to be tried.

until we can completely fill the small cuckoo hash table. That way, we achieve an MPHF
without an intermediate non-minimal PHF. In graph terminology, ShockHash repeatedly
generates a graph with n edges and n vertices. Each key corresponds to one edge, connecting
the candidate positions of the key. The table can be filled if and only if the graph is a
pseudoforest – a graph where no component contains more edges than nodes (see Section 2.5).
While the ShockHash idea is straightforward in principle, we can prove that there is only an
insignificant amount of redundancy in the retrieval data structure. We show that ShockHash
approaches the information theoretic space lower bound for large n and has a running time
of (e/2)n · poly(n) ≈ 1.359n (nearly a factor 2n faster than brute-force). Figure 3.3 illustrates
the idea. An efficient bit-parallel filter can skip most of the checks for pseudoforests by
checking if the two hash functions together are surjective.

Bipartite ShockHash. In bipartite ShockHash, further exponential improvements are possi-
ble. Instead of using a pair of fresh hash functions for each construction attempt, we build
a growing pool of hash functions and consider all pairs that can be formed from this pool.
Also, we let the two hash functions hash to disjoint ranges, meaning we effectively sample a
bipartite graph where each edge has one endpoint in both partitions. In this bipartite setting,
the hash functions of both partitions need to be individually surjective. We can therefore
filter the set of candidate hash functions individually – before testing all combinations. This
improves the construction time by an additional exponential factor, to about 1.166n · poly(n).
Figure 3.4 illustrates the pool of hash function candidates.

Partitioning. Still being an exponential time algorithm, we use ShockHash as a building
block after partitioning the input. While plain brute-force is practical for subsets of about
16 keys, bipartite ShockHash works with up to 128 keys. We obtain ShockHash-RS by using
ShockHash instead of brute-force as a base case within the RecSplit framework. While there
is a small penalty in query time due to the additional access to a retrieval data structure,
ShockHash-RS is about two orders of magnitude faster to construct than tuned RecSplit
(see Section 3.1) for space-efficient configurations. Bipartite ShockHash-RS improves this
by a factor of 20 again. We also demonstrate that ShockHash is useful outside the RecSplit
framework. When using a novel k-perfect hash function for partitioning the input, we obtain
ShockHash-Flat, which achieves a space usage similar to the most space-efficient previous
approaches. At the same time, it is faster to construct and reduces the query time by about
30%, which brings it closer to the query time of way less space-efficient approaches.

Cont r ibut ions

24 3.4 Practical Comparison of Modern Perfect Hashing

1

2

345
67

8

7
Final seed

{{hi,0(x), h
′
i,1(x)}
| x ∈ S}

(hi,0, hi,1 : S → [n])
is pseudoforest

Seeds

(a) ShockHash uses the same seed
for both hash functions.

1

2

345
67

8

hi is sur-
jective on S

1
36 5

Pool

(3, 5)
Final seed

{{hi(x), hj(x) +
n
2 }

| x ∈ S}
(hi, hj : S → [n/2])
is pseudoforest

Seeds 3 5

(b) Bipartite ShockHash uses independent seeds for the two hash
functions and tests all combinations of different seeds.

Figure 3.4 Illustration of the filtering involved in ShockHash and bipartite ShockHash. The
construction is complete if we find one final seed that passes all filters.

Summary. ShockHash is a new way to construct minimal perfect hash functions on small
sets. By combining trial-and-error search with cuckoo hashing and retrieval data structures,
ShockHash achieves an exponential speedup over plain brute-force. ShockHash is a major
step away from brute-force while still reaching the space lower bound. Bipartite ShockHash
maintains a pool of candidate hash functions and gives additional exponential improvements.
By filtering out candidate hash functions before combining them, it improves the speedup to
well over 2n compared to plain brute-force.

Constructing with a single thread, ShockHash-RS is even faster than a tuned GPU
implementation of the brute-force technique (see Section 3.1) achieving the same space
consumption. For a more detailed explanation of ShockHash, we refer to Chapter 7.

3.4 Practical Comparison of Modern Perfect Hashing

We now compare the three minimal perfect hash function constructions introduced in the
sections above with approaches from the literature. A difficulty here is that all main
performance parameters – space usage, query time, and construction time – can be equally
important. One approach might have fast construction and queries, but need a lot of space.
Another approach might be space-efficient and fast to construct, but has slow queries. In this
section, we only give a short comparison. To read more about the competitors, we refer to
Chapter 4. For a full discussion, as well as an explanation of the experimental setup, we refer
to Chapter 8. For now, it is enough to know that we perform single-threaded experiments on
a consumer machine. In our figures, we plot the Pareto front containing only measurements
that are not dominated by another configuration of the same competitor.

Construction. In Figure 3.5a, we plot the construction throughput. Even though our
SIMDRecSplit [Bez+23] (see Chapter 5) is designed for space-efficient configurations, it
surprisingly has the fastest construction up to a space consumption of 3 bits per key. For
even larger perfect hash functions, FiPS (see Section 4.5), our simple implementation of
the fingerprinting [Mü+14] approach, becomes most efficient. Directly after SIMDRecSplit,
we have SicHash [LSW23b] (see Chapter 6), which has its best configurations at about

25

BBHash [Lim+17] FMPH [Bel23] RecSplit [EGV20]
BPZ [BPZ13] FMPHGO [Bel23] SIMDRecSplit [Bez+23]
Bip. ShockH-Flat [LSW24a] FiPS (here) ShockHash-RS [LSW24b]
Bip. ShockH-RS [LSW24a] PHOBIC [Her+24a] SicHash [LSW23b]
CHD [BBD09] PTHash [PT21]

1.5 1.6 1.7 2.0 2.5 3

105

106

107

Bits/Key

T
hr

ou
gh

pu
t

(K
ey

s/
s)

(a) Construction performance.

1.5 1.6 1.7 2.0 2.5 3
0

10

20

30

Bits/Key

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(b) Query performance.

1.5 1.6 1.7 2.0 2.5 3

105

106

107

Bits/Key

T
hr

ou
gh

pu
t

(K
ey

s/
s)

(c) Approach with fastest queries for a limit on con-
struction throughput and space consumption.

1.5 1.6 1.7 2.0 2.5 3
0

10

20

Bits/Key

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(d) Approach with fastest construction for a limit
on query throughput and space consumption.

Figure 3.5 Comparison of our perfect hash functions with approaches from the literature using
100 million input keys. Uses logarithmic x-axis (to the space lower bound) and y-axis.
For a full comparison, we refer to Chapter 8.

2–3 bits per key. Most other competitors are significantly slower to construct. Looking
at the more space-efficient approaches, we can see how the approaches presented in this
dissertation move closer and closer to the space lower bound. In particular, bipartite
ShockHash-RS [LSW24a] (see Chapter 7) reduces the gap to the space lower bound from
0.16 bits per key (RecSplit [EGV20]) to just 0.05 bits per key. This is a reduction by more
than 60%, while still maintaining the same construction time.

Queries. Figure 3.5b gives measurements of the query throughput. PTHash [PT21] and
PHOBIC [Her+24a] are the clear winners in this regard, with PHOBIC achieving a better
space consumption. Note that PHOBIC is not described in this dissertation but originates
from a master’s thesis supervised by the author of this dissertation. Compared to PTHash
and PHOBIC, SicHash trades faster construction for slower queries. As shown in Figure 3.5d,
SicHash achieves a good trade-off between the performance parameters. The queries of
the RecSplit based approaches (ShockHash-RS, RecSplit, SIMDRecSplit) are rather slow.
This is because they need to traverse the compressed splitting tree. Bipartite ShockHash-

Cont r ibut ions

26 3.5 Learned Monotone Minimal Perfect Hashing

Flat [LSW24a] (see Chapter 7), which does not need the tree, shines with significantly faster
queries than other approaches with the same space consumption. FiPS dominates the other
implementations of the fingerprinting idea, BBHash [Lim+17] and FMPH [Bel23].

Summary. The approaches presented in this dissertation dominate a wide range of the
space vs construction time trade-off. During the course of just a few years, they bring the
space consumption of practical perfect hashing significantly closer to the lower bound. The
dominance map in Figure 3.5c shows the approach with the fastest queries, given a limit on
space consumption and construction throughput. Similarly, Figure 3.5d shows the fastest
construction for a given limit on space consumption and query throughput. The dominance
maps show that the approaches presented in this dissertation dominate the full trade-off
between the three performance parameters. Of the competitors, only PTHash [PT21] and
PHOBIC [Her+24a] can fill some of the area.

3.5 Learned Monotone Minimal Perfect Hashing

A monotone minimal perfect hash function (MMPHF) is a hash function that retains the
natural order of the keys in S. In other words, the hash function maps keys from S to
their rank, and returns an arbitrary value for keys not in S (see Section 1.1). Despite the
widespread use of MMPHFs and recent advancements on their asymptotic bounds [AFK23;
Kos24], the practical implementations have not made significant progress in terms of new
designs and improved space-time trade-offs since their introduction more than a decade
ago [Bel+11]. Only some exceptions target the query time [GO14]. Existing approaches are
mostly based on building a trie-like data structure on the keys.

LeMonHash. With LeMonHash, we offer a fresh new perspective on MMPHFs. We
build upon recent advances in (learning-based) index data structures, namely the PGM-
index [FLV21; FV20b], and in retrieval data structures, namely BuRR [Dil+22]. The former
learns a piecewise linear approximation mapping keys in S to their rank estimate. The
latter allows associating a small fixed-width integer to each key in S, without storing S.
We combine these two seemingly unrelated data structures in a surprisingly simple and
effective way. First, we use the PGM to monotonically map keys to buckets according to
their rank estimate, and we store the global rank of each bucket’s first key in a compressed
data structure. Second, since the rank estimates of some keys might coincide, we solve such
bucket collisions by storing the local ranks of these keys using BuRR. We call our proposal
LeMonHash, because it learns and leverages the smoothness of the input data to build a
space-time efficient monotone MPHF. We illustrate the data structure in Figure 3.6.

In contrast to MPHFs, where the input distribution usually does not matter, MMPHFs
are strongly influenced by the input. In Figure 3.7 we give measurements with synthetic data
having an exponential distribution. In Section 9.6, we give a full evaluation with different
distributions. The figure shows that LeMonHash is faster to query than the fastest competitor.
Simultaneously, it is more space-efficient than the most space-efficient competitor. We get a
similar view for the construction time (see Section 9.6), making LeMonHash a significant
step forward from the previous state of the art.

LeMonHash-VL. We also extend LeMonHash to support variable-length string keys, and
obtain LeMonHash-VL. The idea is to look at fixed-width prefixes of the keys. Prefixes might
collide, either because many strings share the same prefixes or because the learned mapping

27

0 1 1 3 4 4 5 6 6 9 10 11

0 1 00 01 10

n input keys

n buckets

Retrieval

u

Mapper

Global ranks ∈ [n]

Figure 3.6 Illustration of the LeMonHash data structure. LeMonHash maps input keys to an
approximate rank and solves collisions using retrieval.

5 10
0

1

2

≥
Bits/Key

T
hr

ou
gh

pu
t

(M
K

ey
s/

s)

Centroid HT [GO14] Hollow [GO14]
HTDist [Bel+11] Hollow [Bel+11]
LCP [Bel+11] LeMonHash [Fer+23a]
PaCo [Bel+11] LCP 2-step [Bel+11]
VLLCP [Bel+11] VLPaCo [Bel+11]
ZFast [Bel+11]

Figure 3.7 LeMonHash query performance for synthetic input with exponential distribution.
Competitors with the symbol in the legend are implemented in Java.

is imperfect. If too many prefixes collide, we use the same data structure recursively on the
bucket. Before recursing, we remove the longest common prefixes of the keys in the bucket.
LeMonHash-VL therefore consists of trees, but they are significantly more flat and efficient
to traverse than competitors. This enables extremely fast queries with space consumption
similar to competitors.

Summary. LeMonHash, unlike previous solutions, learns and leverages data smoothness
to obtain a small space usage and significantly faster queries. On most synthetic and real-
world datasets, LeMonHash dominates all competitors – simultaneously – on space usage,
construction throughput and query throughput. Our adaption to variable-length string keys,
LeMonHash-VL, needs space within 13% of the best competitors while being up to 3 times
faster to query. We refer to Chapter 9 for more details, including implementation tricks.

3.6 Perfect Hashing for Variable Size Objects

Using perfect hashing, it is possible to build static hash tables that guarantee access in a
single memory access (see Section 1.4). This is especially interesting for external memory
applications, but is relevant for internal data structures as well to reduce cache faults. In
this section, we focus on the external memory case. Because external memory is organized in
blocks that are loaded as a whole, we often only need to know which block an object is stored
in, not the exact location. The object itself can then be found by loading and searching the
block. This is a typical application of minimal k-perfect hashing, where each of the n/k

output values is hit by exactly k keys (see Section 1.1).

Cont r ibut ions

28 3.6 Perfect Hashing for Variable Size Objects

1 2 3 4 5 6 7 8 9 10 11 12

p11 4 8p2 p3

h

n input objects

am bins

m blocks

Figure 3.8 Example of a PaCHash data structure with a = 4.

Unfortunately, perfect hashing or classical hash tables [ANS10; Ben+23; Fot+05; Knu98;
KPR22; PR04] can only be used with objects of identical size which makes it impossible to
compress the objects with variable bit-length codes. Most hash tables for objects of variable
size store references from table entries to the actual data which entails a significant space
overhead. Alternatively, they make the table cells large enough that most objects fit in,
which leaves a lot of space unused.

Our data structure PaCHash (Packed and Compressed Hash Tables) works similar
to a k-perfect hash function, giving an approximate location of an object. However, in
contrast to a k-perfect hash function, it supports objects of variable size. PaCHash eliminates
fragmentation by packing the objects contiguously in external memory without leaving free
space. It then uses a highly space-efficient search data structure that translates queried
objects to memory locations. More precisely, objects are first hashed to bins. The bins are
stored contiguously in m blocks of size B. For each external memory block i, PaCHash stores
the first bin index pi that intersects the block boundary. It does so using the compressed
Elias-Fano representation (see Section 2.3), which can be searched efficiently. Figure 3.8
illustrates the overall data structure.

Queries. To search for an object, we perform a predecessor query for its bin on the Elias-
Fano coded sequence. PaCHash then yields a near-optimal range of blocks that contain the
object. We show in Chapter 10 that this predecessor query needs constant expected time in
our case. Our analysis basically shows that for a tuning parameter a, the expected number
of block reads to retrieve an object x of size |x| is about 1 + 1/a + |x|/B while the internal
memory data structure needs 2 + log(a) bits per block.

Identical Size Objects. For objects of identical size s, perfect hashing enables finding
the exact block that an object is stored in and requires a constant number of bits per
object. PaCHash approximates this when choosing B = s, also needing a (slightly larger)
constant number of bits per object but lower construction time. The picture changes when
we look at larger block sizes B = ks and the corresponding approach of minimal k-perfect
hashing. Now, PaCHash still needs only a constant number of bits per block, while there
is a lower bound of Ω (log k) bits per block using MkPHs (see Section 2.7). This comes
at the price of sometimes accessing one external memory block too much. Figure 3.9
compares PaCHash with competitors from the literature when using objects of identical
size. PaCHash outperforms approaches that support objects of variable size, and is close
to or even outperforms approaches that only handle objects of identical size. We refer to
Section 10.5 for a more detailed comparison including the experimental setup.

29

0 2 4 6 8 10
0

20

40 No variable size

Internal bits/key

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s) CHD (16-perfect) [BBD09]

LevelDB (Index only) [Goo21]
PTHash [PT21]
RecSplit [EGV20]
SILT (Index only) [Lim+11]
Separator (Index only) [LK84]
PaCHash (Index only) [KLS23]
std::unordered_map

Figure 3.9 Space and query throughput of the PaCHash internal memory index data structure
compared with competitors. Does not contain any I/O. Approaches marked with
gray background only support objects of identical size.

Summary. In contrast to previous approaches, PaCHash is the first construction that
combines single-access retrieval, support for variable size objects, and full external memory
utilization. Our implementation of PaCHash considerably outperforms previous object stores
for variable size objects and even matches or outperforms systems that are purely internal
memory or only handle objects of identical size. For more details, we refer to Chapter 10.

3.7 Summary

In this dissertation, we present three novel minimal perfect hash function constructions.
First, we extend RecSplit to efficiently evaluate additional brute-force trials using rotation
fitting. Together with a highly tuned parallel implementation, our SIMDRecSplit constructs
perfect hash functions very efficiently. On the opposite end of the spectrum we have SicHash,
which uses cuckoo hashing and retrieval to determine perfect hash functions without the need
for brute-force. Even without partitioning, its construction needs almost linear time, but it
does not reach the space lower bound. Finally, ShockHash opens an interesting and novel
middle ground between these two. It still uses brute-force and asymptotically reaches the
space lower bound, but the majority of the stored data does not come from the brute-force
search. Instead, most of the data is stored in a retrieval data structure, whose state can
be determined in near linear time by cuckoo hashing. While developing parallel RecSplit,
well engineered brute-force seemed to be the best way to get close to the space lower bound.
However, ShockHash gives a sophisticated algorithm that significantly prunes the search
space. This changes the view completely and brings algorithm design back into business.

Our new approaches cover different areas of the three main performance parameters.
SIMDRecSplit offers good space consumption and fast construction. SicHash offers fast
construction and fast queries. Finally, ShockHash focuses on small space consumption while
at the same time providing a configuration that is competitive in terms of query time. Our
three algorithms bring the research area of perfect hashing a significant step forward.

As a closely related problem, we also study monotone minimal perfect hashing. The key
ingredient in our LeMonHash is to learn regularities in the input data and to build a data
structure that is significantly more flat than competitors. LeMonHash often outperforms all
competitors with respect to all three performance parameters – space, construction time,
and query time – simultaneously.

Finally, we study perfect hashing for variable size objects. A small internal search data

Cont r ibut ions

30 3.7 Summary

structure can locate the external memory location of each object in expected constant time.
The internal memory search data structure, in a way, breaks the space lower bound of
k-perfect hashing at the cost of sometimes accessing one external memory block too much.
PaCHash matches or even outperforms competitors from the literature that are purely
internal memory or only handle objects of identical size.

31

4 A Brief History of Perfect Hashing
Summary: Perfect hashing is an active field of research with a large number of
publications. Modern approaches can handle millions to billions of input keys and
achieve space close to the lower bound. This chapter starts with explaining the origins
of perfect hashing. It then categorizes modern perfect hash functions from the literature
by their main working principle and provides a comprehensive overview over the
different approaches.

Attribution: In this chapter, we describe existing approaches from the literature.
Some of the descriptions are based on the related work sections of our previous
papers [Bez+23; LSW23b; LSW24b]. However, we enhance them with more details
and figures. The categorization and the analysis of how the approaches influence each
other are new. The description of the origins of perfect hashing is new as well. We
also introduce the new and simple perfect hash function FiPS.

Perfect hashing is an active field of research with a large number of publications. Since the
last comprehensive survey [CHM97], significant progress has been made in the field. This can
make it hard to get an overview over the state of the art when newly getting into the topic
of perfect hashing. In this chapter, we start with a brief insight into the origins of perfect
hashing in Section 4.1. It illustrates the large progress that was made during the last 50 years
of research. We then give a comprehensive survey with a focus on modern approaches. This
can serve as a starting point to get familiar with the topic of perfect hashing. Additionally,
together with the evaluation in Chapter 8, it can serve as a guide to select a perfect hash
function for use in a specific application. In Section 4.2, we first present a categorization of
the approaches into random hypergraphs, brute-force and fingerprinting. We then explain
the approaches in Sections 4.3–4.5. This chapter includes short descriptions of our own
approaches as well. This makes it possible to read this survey in isolation from the remaining
dissertation.

4.1 The Birth of Perfect Hashing

In this section, we give a short overview over the origins of perfect hashing. Most of the
approaches are no longer relevant in practice today, but they illustrate the progress that
was made on the topic during the last 50 years of research. Also, the approaches already
introduce a number of basic principles that are still used in modern constructions. We explain
modern approaches starting with Section 4.2.

In 1963, for identifying reserved words in an assembler, Grenievski and Turski [GT63]
present a function that can convert symbols to integers without collisions. The idea is to use
a linear congruential generator and determine constants experimentally such that it avoids
collisions on the input set. However, the authors do not describe a way to generalize the idea
to arbitrary input sets nor do they call the resulting data structure a perfect hash function.

In the first edition [Knu73] of The Art of Computer Programming, Knuth describes
finding a hash function without collisions as an “amusing puzzle”. Knuth states that the

His tory

32 4.1 The Birth of Perfect Hashing

puzzle can be solved manually in about one day of work if the number of input keys is small
enough and gives an example with n = 31 keys. He uses this as an introduction to a chapter
about hash tables and not as an independent field of research. The second edition of his
book [Knu98] then already describes the first practical perfect hash function constructions.

Sprugnoli [Spr77] introduces the terms perfect hashing and minimal perfect hashing in
1977. He also describes the first algorithm to systematically construct perfect hash functions.
The idea is to find a linear transformation of the input keys, such as x 7→ (x + c1)/c2, where
c1 and c2 are constants determined by the algorithm. This approach is highly dependent
on the distribution of the input keys and works well only for uniform distribution. To deal
with this problem, Sprugnoli then proposes to scramble the input using a modulo operation.
While this does not work for all input sets, it gives a fundamental basis that is still used
in many modern perfect hash functions: An initial master hash code (MHC) is generated
using a high quality non-perfect hash function with large output range. This makes the
construction mostly independent of the input distribution. A second fundamental idea
introduced by Sprugnoli is the idea of bucketing or partitioning. In order to determine a
perfect hash function for a larger key set, it is possible to first divide the input keys into
small subsets of approximately the same size, for example using a non-perfect hash function.
After determining perfect hash functions on all subsets independently, adding a prefix sum
over the subset sizes to the hash values gives a perfect hash function of the overall set.

Sprugnoli already discusses the space usage of his perfect hash functions in terms of
machine code that needs to be written for representing the function. Today, perfect hashing
is mainly measured as the amount of space needed in a corresponding data structure, but
measuring machine code was common for a long time [Sch90].

Cichelli [Cic80] describes a first practical algorithm for determining minimal perfect
hash functions based on brute-force searching for a simple assignment of letters to numbers.
Similar letter-based approaches are presented later, with the main innovations being to look
at letters in different positions in the input string which are less likely to be correlated.
Jaeschke [Jae81] gives an algorithm that can already handle input sets of up to 1000 keys.

Lewis and Cook [LC88] review early letter-based approaches. Czech et al. [CHM97] give
a review of additional approaches until the year 1997. We do not go into detail about these
here because most of the approaches are no longer relevant in practice today.

Theoretical Construction. While our survey is mainly focused on practical approaches, we
also want to mention an important theoretical result. A tempting way to replace expensive
brute-force search is precomputation of solutions with subsequent table lookup – a standard
technique used in many compressed data structures. For a rough idea, suppose for a
subproblem with s keys, we first map them injectively to a range of size U ′ ∈ Ω(s2) using
an intermediate hash function. A smaller range would lead to collisions, as illustrated by
the birthday paradox. Then, using a lookup table of size 2U ′ , we can find precomputed
perfect hash functions in constant time. Polynomial running time limits the subproblem size
to s ∈ O

(√
log n

)
. Hagerup and Tholey [HT01] develop this approach to a comprehensive

theoretical solution of the perfect hashing problem yielding linear construction time, constant
query time, and space 1 + o(1) times the lower bound. However, this approach is merely a
theoretical result and not practical. In fact, it is not even well-defined for n < 2150 [BPZ13]
because it creates buckets that would then have an expected size of less than one key.
Therefore, (minimal) perfect hashing remains an interesting topic for algorithm engineering.
A long sequence of previous work has developed a range of practical approaches with different
space-time trade-offs.

33

Random
Hypergraphs

Brute-Force Fingerprinting

CHM
[CHM92]

MWHC
[Maj+96] BMZ

[BGZ04]

BPZ
[BPZ13]

GOV
[GOV16] SicHash

[LSW23b]

WBPM
[WH20]

ShockHash
[LSW24b]

FCH
[FCH92] CHD

[BBD09]

PTHash
[PT21]

RecSplit
[EGV20]

SIMDRecSplit
[Bez+23]

PHOBIC
[Her+24a]

FMPHGO
[Bel23]

Meraculous
[Cha+11]

FiPHa
[Mü+14]

BBHash
[Lim+17]

FMPH
[Bel23] FiPS

[Section 4.5]

Figure 4.1 Modern perfect hashing approaches and how they influence each other.

4.2 Categorization

After this short introduction to the origins of perfect hashing, we now consider more modern
approaches. Even though there is a wide range of constructions in the literature, many of
them use similar overall techniques to achieve their goal. In Figure 4.1, we categorize the
approaches presented in this survey into the following three techniques: random (hyper)graphs,
brute-force, and fingerprinting. Additionally, there are some techniques that combine ideas
from multiple of these categories. The figure also shows how the approaches influence each
other. In the following, we describe the categories in more detail.

Random (hyper)graphs. Some of the first constructions are based on orienting random
(hyper)graphs, and these approaches are still in use today. The idea is that each key is
represented by an edge in the graph. Depending on the approach, nodes can be candidate
output values or can store data that is needed during queries. This usually leads to polynomial
time construction algorithms that are, however, not as space-efficient as other approaches.
We describe perfect hash functions using random hypergraphs in Section 4.3.

Brute-Force. We already described a simple construction that tries many hash function
seeds using brute-force in Section 1.1. While this is not practical for large key sets, the most
space-efficient approaches to construct PHFs still use brute-force search as a base-case. Many
of these approaches can also be shown to approach the space lower bound when selecting
their tuning parameters accordingly. We refer to Section 4.4 for details.

Fingerprinting. Our final category is the use of fingerprinting. This technique hashes
each key to a fingerprint and indicates collisions between the fingerprints using a bit vector.
It handles keys with colliding fingerprints recursively. While its space consumption is higher
than other approaches, it can be very efficient to construct and query. We explain perfect
hashing through fingerprinting in Section 4.5.

His tory

34 4.3 Random Hypergraphs

4.3 Random Hypergraphs

While basically all perfect hashing approaches can be interpreted as a graph G = (V, E) in
some way, the approaches described here do it much more explicitly. Some of the approaches
do not have an explicit name in their paper. In that case, it is common to name them after
the first letters of the authors’ last names. Table 4.1 gives an overview over the properties of
the (hyper)graphs that each approach uses. Looking at the space consumption, the table
shows the steady progress made in each paper.

In the following, some approaches are based on graph peeling. This is the process of
iteratively taking away nodes of degree 1, together with their adjacent edge [BPZ13; Wal21].
We call a graph peelable if it can be peeled to an empty graph.

CHM. Czech et al. [CHM92] construct an undirected graph with |V | = 2.09n nodes.
They generate the edges E = {(h1(x), h2(x)) | x ∈ S} by applying two independent hash
functions on each input key. To query the function with a key x, they consider the edge
e = (u, v) = ((h1(x), h2(x)) ∈ E. The final hash value is given by h(x) = g(u)+g(v) mod |V |.
The construction of CHM determines the function g, which assigns an integer to each node.
For this, CHM enumerates the edges and assigns a desired log n bit output value to each edge.
It starts with an arbitrary node y and assigns g(y) := 0. Then, performing a depth-first-
search, CHM calculates the values of g of the neighbors by simple subtraction. This assumes
that the graph is peelable. If the graph is not peelable, which rarely happens with n edges
and |V | = 2.09n nodes, CHM retries with another set of hash functions. CHM stores 2.09n

integers and therefore needs O(n log(n)) space. It can even store order-preserving perfect
hash functions (see Section 1.1). Note that space near n log n can also be achieved through a
retrieval data structure (see Section 2.4) that stores the output value for each key explicitly.

MWHC. The overall idea of MWHC [Maj+96] is similar to CHM. Instead of a graph,
MWHC now generates a random hypergraph with |V | = cn nodes and n edges. The variable
c is a tuning parameter that influences the construction success probability. Each edge
connects r nodes, determined by r hash functions, where r = 3 for the best space efficiency.
Like CHM, it determines a function g, assigning an integer to each node. The function is
selected such that the sum of all nodes connected to an edge is unique modulo |V |. MWHC
can therefore be seen as a generalization of CHM to edges connecting more than two nodes.

Because MWHC now deals with a hypergraph instead of a graph, assigning the values to
nodes is now no longer possible using depth-first-search. The graph property required for the
construction to succeed is peelability, even though the MWHC paper calls it acyclicity. Let
us take a peelable graph and re-insert all edges in the reverse order of the peeling process.
Then each inserted edge is adjacent to at least one node that no other edge is adjacent to
yet. MWHC uses this reverse peeling order to assign a value to each node. Like CHM,
it can assign an arbitrary number to each edge, which makes MWHC an order-preserving
perfect hash function. Because, in contrast to CHM, it uses r hash functions, the peelability
threshold, i.e., the proportion between |V | and |E| = n at which peeling likely succeeds, is
higher. This makes it possible to reduce the number of nodes to |V | = 1.23n and therefore
store only 1.23n integers. Belazzougui et al. [Bel+14] improve the peeling step of MWHC
through better cache locality. MWHC can also be used as a retrieval data structure (see
Section 2.4). However, used for perfect hashing, it still needs space in O(n log n), far above
the space lower bound.

35

Table 4.1 Overview over properties of approaches based on random graphs.

Approach Nodes per edge Graph Property |V | Space Consumption

CHM [CHM92] 2 Peelable 2.09n 2.09 · n log n

MWHC [Maj+96] 3 Peelable 1.23n 1.23 · n log n

BMZ [BGZ04] 2 |Critical| < n/2 1.15n 1.15 · n log n

BPZ [BPZ13] 3 Peelable 1.23n 1.23 · 2n

GOV [GOV16] 3 Orientable 1.15n 1.15 · 2n

WBPM [WH20] log n Bipartite 2n 1.83n

SicHash [LSW23b] Mix 2, 4, 8 Orientable (1 + ε)n 2n

ShockHash [LSW24b] 2 Orientable n 1.44n

BMZ. BMZ [BGZ04] enhances the idea of CHM into another direction than MWHC. In
contrast, the graph does not need to be peelable. Like CHM, the hash value is given by the
sum of the values stored at the two ends of each edge. When assigning values to nodes, BMZ
first uses the normal peeling process that is known from the previous approaches. When
there are no more nodes of degree 1, we have arrived at the 2-core. If that 2-core consists
of only nodes with degree 2, the remaining edges form loops. BMZ calls them critical and
assigns them first using breadth-first-search. It then assigns the remaining nodes similar to
the algorithms above. At all times, it keeps a list of output values that are not assigned yet
to find a mapping. The fact that BMZ does not require peelability has the advantage that
|V | can be much closer to n. This reduces the amount of space needed to only 1.15n integers.

BPZ. The BPZ algorithm, also called RAM algorithm, is introduced in Ref. [BPZ07b]. In
the cmph library [CR+12], the algorithm is called BDZ. An external memory implementation
(later called HEM) is introduced in Ref. [BZ07]. The journal article [BPZ13] offers a more
complete analysis. In BPZ, each input key is mapped to an edge in a random hypergraph
using r independent hash functions hi, like in MWHC. By peeling the graph, BPZ determines
a 1-orientation, i.e., a unique mapping from edges to nodes. Let i(x) be a function assigning
a number to each edge, indicating which hash function index gives the node it is oriented
towards. Then hi(x)(x) is unique for each key x. General perfect hashing through retrieval
(see Section 2.6) now stores the function i(x) in a retrieval data structure viewed as a black
box. Instead, BPZ describes a concrete construction of a retrieval data structure that uses
the same underlying graph. It solves a linear equation system to determine a function g, such
that i(x) =

∑
0≤i<r g(hi(x)) mod r. In contrast to the previous graph-based approaches

that stored an integer of log n bits for each node, BPZ only needs to store ⌈log r⌉ bits.

GOV. The GOV algorithm [GOV16] is based on BPZ, but uses a higher load factor |E|/|V |
to make the resulting hypergraph likely orientable, but no longer peelable. This reduces the
number of nodes and therefore hash function indices that need to be stored. After peeling
away as many edges as possible, GOV solves the remaining assignments as a linear equation
system. For this, it introduces a range of engineering tricks. For example, it uses broadword
programming by packing multiple values into a single word and running calculations on all of
them at once. Also, it introduces lazy Gaussian elimination, which is a heuristic for reducing
the size of the equation system. Using three hash functions, and therefore two bits per key,
this reduces the space consumption to 1.15 · 2n bits.

His tory

36 4.3 Random Hypergraphs

y

x y

z

h0(x)

h3(z) h0(z)

h1(x)
h1(y)

h0(y)

x z

f1-bit(q) =

{
0 q = x

1 q = y

f2-bit(q) =
{
3 q = z

2 choices in
1-bit retrieval data structure

4 choices in
2-bit retrieval data structure

Figure 4.2 Illustration of SicHash. A classification hash function determines that key z gets 4
choices, while the others get only 2 choices each. The hash function choice is then
stored in the corresponding retrieval data structure.

SicHash. SicHash [LSW23b] uses perfect hashing through retrieval, like BPZ. However,
it separates the two tasks of key placement and storage. It uses a retrieval data structure
as a black-box to store the n hash function indices, one for each input key. In contrast,
BPZ needs to store |V | = 1.15 · 2n integers, one for each node of the graph. An additional
advantage of this idea is that it can use multiple retrieval data structures of different widths.
SicHash’s main innovation is using a careful mix of 1–3 bit retrieval data structures. For
queries, SicHash first hashes the key to determine the number of choices. It then looks up
the key in the retrieval data structure of the appropriate width. Finally, it hashes the key
with the hash function index retrieved from the retrieval data structure. Figure 4.2 gives an
example for a SicHash perfect hash function.

SicHash achieves a favorable space-performance trade-off when being allowed 2–3 bits
of space per key. It also achieves a rather limited gain in space efficiency by overloading
the hypergraph beyond the point where it is likely orientable. For this, it uses small sets
and retries the construction multiple times. SicHash exploits the variance in the number of
keys that can fit, as well as the fact that the load factor at which construction likely fails
converges to the load threshold from above as n grows. For a more detailed explanation of
SicHash, we refer to Chapter 6.

WBPM. Weaver et al. [WH20] describe an algorithm that builds on perfect hashing through
retrieval. However, it uses a significantly larger number of hash function choices and tries to
select small hash function indices. WBPM construction creates a weighted bipartite graph.
The left set of nodes is given by the n input keys and the right set is given by the n possible
hash values. This is similar to the bipartite graph in cuckoo hashing (see Figure 2.4a).
The edges are determined by applying O(log(n)) hash functions to each key, where an edge
determined from the i-th hash function has weight i. WBPM then determines a minimum
weight bipartite perfect matching (WBPM), which can be shown to reach a weight of 1.83n.
This matching indicates which hash function to use for each key, which WBPM stores using
a 1-bit retrieval data structure. The retrieval data structure stores the hash function indices
using unary coding. This is possible by indexing it using tuples of key and bit index. A
minimal matching therefore also minimizes the space consumption of this scheme. The
resulting weight of the matching of 1.83n therefore also equals the space consumption of the
final data structure, except for overheads like prefix sums due to bucketing.

37

SAT Encoding. In addition to WBPM, Weaver et al. [WH20] also describe an MPHF
construction close to the space lower bound based on encoding the construction in SAT. The
data structure is a sequence of bits, and a hash function determines for each key which of
these bits (possibly flipped) should be concatenated to give the final hash function value.
The SAT encoding is based on an all-different constraint and is feasible for n ≤ 40.

4.4 Brute-Force

The fact that brute-force can be useful for constructing perfect hash functions is mentioned
early after the discovery of perfect hashing [Cic80]. Today, most of the approaches achieving
the best space efficiency are based on brute-force techniques in their base case. In the
following, we give an introduction to the modern approaches based on brute-force.

Perfect Hashing Through Bucket Placement. A common approach is perfect hashing
through bucket placement [BBD09; FCH92]. We now describe the overall idea before
continuing with several concrete implementations. The idea is to first hash each key x to
a small bucket b(x). The average size of each bucket is usually about 5–10 keys. For each
bucket b, the approach greedily determines a hash function seed i(b) such that its keys do
not collide with keys of previously placed buckets or with one another. Because it places
the first buckets into an almost empty output domain, these are significantly easier to place.
Additionally, buckets with fewer keys are easier to place. To accelerate the search, it is
therefore useful to sort the buckets by their size and insert the largest ones first while the
output domain is less full. A query for a key x then simply needs to evaluate hi(b(x))(x)
to get the resulting hash value. We illustrate the structure of perfect hashing by bucket
placement in Figure 4.3a.

FCH. FCH [FCH92] is the first perfect hash function construction that uses the bucket
placement idea. It reserves a fixed number of bits per bucket to store the seed. To amplify
the effect that the first buckets are easier to place, it uses an asymmetric bucket assignment:
it hashes 60% of the keys to 30% of the buckets. The hash function that FCH uses is based
on additive displacements. This means that it hashes all keys and then generates additional
candidate positions by linearly shifting all keys in the bucket. If all of the displacements
cause collisions, FCH has one additional bit per bucket that indicates to switch to a fallback
hash function with all its displacements. If both hash functions do not work, the construction
fails. FCH produces MPHFs with about 2–3 bits per key.

CHD. CHD [BBD09] uses perfect hashing through bucket placement as well. While it does
not explicitly build on FCH, it is published later and uses a very similar structure. Instead of
using an asymmetric assignment from keys to buckets, it hashes the keys to buckets uniformly.
Instead of reserving a fixed number of bits for the seeds, it just retries until one seed does
not cause collisions. In each retry, CHD uses a fresh hash function seed instead of using
displacements. CHD then uses the variable bit length code by Fredriksson et al. [FN07] to
store the seeds in a compressed way. With a load factor of 81%, CHD can construct a PHF
using 1.4 bits per key. With a load factor of 99%, it achieves 1.98 bits per key.

PTHash. PTHash [PT21] combines FCH and CHD. It hashes 60% of the keys to 30% of
the buckets like FCH. Like CHD, it stores the seeds in compressed form. PTHash offers
several compression schemes with different trade-offs between space and query time. Using

His tory

38 4.4 Brute-Force

Anna Mary Dave Lisa John Tom

1

Bucket 1 Bucket 2 Bucket 3

Seed s1 Seed s2 Seed s3

2 3 4 5 5 7 8

Data structure

PHF output

(a) Illustration of the construction, hashing keys to buck-
ets and searching for a hash function seed that can
place the entire bucket without collisions.

0 0.5 1
0

1

2

3

4

Bucket (normalized)

R
el

at
iv

e
E

xp
ec

te
d

Si
ze

Uniform [BBD09]
Skewed [FCH92; PT21]
Optimized [Her+24a]

(b) Relative sizes of different buckets
when using the bucket mapping func-
tions of different variations of the
scheme [Her+24a].

Figure 4.3 Perfect hashing through bucket placement.

an appropriate compression scheme, only a single memory access is required to find the hash
value, and the remaining operations use simple arithmetic. To speed up searching for the
hash function in each bucket, it first generates a non-minimal PHF, but it compresses the
output later by remapping values larger than n (see Section 2.8).

As a hash function, PTHash uses so-called XOR displacement, where it calculates the
XOR of a hash of the seed with the input key. During construction, this has the advantage
that it only needs to evaluate the full hash function once and can then hash each key using a
simple XOR operation. However, due to regularities in the output, this approach only works
for large output domains [Her+24a]. PTHash constructs minimal perfect hash functions with
a space consumption of 2–4 bits per key. PTHash-HEM [PT24] is an implementation that
first partitions the input and then constructs each partition independently in parallel.

PHOBIC. PHOBIC [Her+24a] is based on PTHash. It refines the idea originating from
FCH to generate two expected bucket sizes and instead gives a different expected size to
every bucket. PHOBIC introduces an optimal bucket assignment function that ensures
that, asymptotically, each bucket has the same probability to be placed successfully. This
minimizes the construction time. Figure 4.3b plots the relative expected bucket sizes using
different bucket assignment functions. In comparison to FCH, PHOBIC makes the first and
easiest to place bucket much larger.

Because the actual bucket sizes need to be integers, PHOBIC cannot completely reach
the optimal values. Therefore, not all seeds have the exact same distribution. To still store
the seeds efficiently, PHOBIC introduces interleaved coding. It partitions the input set and
calculates an independent MPHF on each partition. By selecting the same number of buckets
in each partition, the i-th bucket of every partition has the same distribution. PHOBIC then
stores one compressed sequence per bucket, holding the seeds of all partitions. Together, we
get Perfect Hashing with Optimized Bucket sizes and Interleaved Coding – PHOBIC.

The rather small partitions also enable a fast GPU implementation. For its hash function,
PHOBIC uses a mix between additive displacements (like FCH) and full retries (like CHD).
It uses the lower bits of its seed to store the additive displacement and the upper bits to
store the actual hash function seed. Compared to PTHash, PHOBIC saves up to 0.17 bits
per key, while still having the same construction and query throughput.

39

RecSplit. As we have seen in Section 1.1, the simple brute-force construction for perfect
hashing is not practical for large n. RecSplit [EGV20] uses brute-force in a novel way to
enable large key sets with space close to the lower bound. Because several of our approaches
build on RecSplit, we describe it in a bit more detail. RecSplit first maps all keys to buckets
of expected size b, where b is a tuning parameter usually in the range 100–2000. In each
bucket, it then constructs an independent splitting tree, as illustrated in Figure 4.4.

Splitting Trees. The splitting tree partitions the keys into smaller and smaller sets until
we arrive at the leaves which have a small configurable size ℓ. It has a well-defined shape,
depending only on the leaf size ℓ and the total number of keys in the bucket. At each inner
node, RecSplit tries random hash functions to find one that distributes the keys to the child
nodes according to the tree structure. The number of child nodes of an inner node is called
fanout. The RecSplit paper gives a fanout such that the expected amount of work to find
the splitting is roughly equal to the amount of work in all children combined. This results in
fanouts of the two bottom-most levels of max{2, ⌈0.35ℓ + 0.55⌉} and max{2, ⌈0.21ℓ + 0.9⌉}.
In the terminology of the RecSplit paper, these levels are called lower aggregation levels. The
levels above, also called upper aggregation levels, simply use a fanout of 2.

Bijections. The lowest level of the splitting tree is called leaf level. Each leaf, except
for possibly the last, contains exactly ℓ keys. Usual values for the leaf size are about 8–16
keys. This is small enough that it is feasible to use the simple brute-force construction (see
Section 1.1). RecSplit implements this construction in a very efficient way. The inner loop
converts the hash value of each key to a bit by taking two to the power of it. It then sets the
corresponding bit in a bit vector of length ℓ using a logical OR operation. RecSplit continues
with all keys without checking for collisions. If the final bit vector has all its bits set to 1, it
means that the hash function is a bijection. This avoids a conditional jump after each key.

Representation. Because the splitting trees have a well-defined shape, it is enough to
store the hash function identifier at each node in preorder. RecSplit stores these numbers
with Golomb-Rice codes (see Section 2.2). It stores all unary parts together and all fixed
length parts together. The optimal Golomb parameter τ is different based on the layer in
the tree, but it can be pre-calculated and stored in a lookup table. To combine all buckets
into a single perfect hash function, RecSplit concatenates the encodings of all splitting trees
from all buckets in a single bit vector. An additional sequence based on Elias-Fano coding
stores both the prefix sums of the number of keys in each bucket and the positions where the
encoding of each bucket starts.

Query. RecSplit can be queried by determining the bucket of a key and locating its
encoding. The splitting tree in the bucket is traversed from the root to a leaf by applying the
splitting hash function, which determines the child to descend into. A lookup table helps to

Bucket 1 Bucket n/b

Input keys

...

Figure 4.4 Illustration of the overall RecSplit data structure. Within each bucket, it constructs
a splitting tree. Circular nodes represent splittings, squares represent bijections.

His tory

40 4.5 Fingerprinting

determine how many Rice coded seeds need to be skipped to navigate to the correct subtree.
During traversal, the number of keys stored in children to the left of the one descended into
are accumulated. The final hash value is then the sum of the value of leaf bijection, the
number of keys to the left in the splitting tree, and the total size of previous buckets.

The combination of brute-force splittings and bijections is highly efficient from an
information-theoretical point of view. Due to metadata and overheads during encoding,
RecSplit loses only about 2–3 bits per node. Consequently, as the leaf size ℓ gets larger,
RecSplit approaches optimal space [EGV20]. There are configurations that need only 1.56
bits per key in practice.

SIMDRecSplit. SIMDRecSplit [Bez+23] enhances RecSplit to use parallelism on multiple
levels to improve the construction throughput. More precisely, it uses multi-threading,
bit-parallelism and SIMD vectors. GPURecSplit [Bez+23] then implements the idea on the
GPU. The paper proposes a new technique for searching for bijections called rotation fitting.
Instead of just applying hash functions on the keys in a leaf directly, rotation fitting splits the
keys into two sets using a 1-bit hash function. It then hashes each of the two sets individually,
forming two words where the bits indicate which hash values are occupied. Then it tries to
cyclically rotate the second word, such that the empty positions left by the first set are filled
by the positions of the second set. The paper shows that each rotation essentially gives a
new chance for a bijection, so it is a way to quickly evaluate additional hash function seeds
in a bit-parallel way. In Chapter 5, we describe this approach in more detail.

ShockHash. ShockHash [LSW24b] can be seen as a combination of RecSplit and SicHash. It
uses a variant of SicHash with two hash functions for each key and a fully loaded cuckoo hash
table (m = n) as a base case within the RecSplit framework. Because constructing a fully
loaded table usually does not succeed, ShockHash needs many retries. In graph terminology,
ShockHash repeatedly generates an n-edge random graph where each key corresponds to one
edge, connecting the two candidate positions of the key. The table can be filled if and only
if the graph is a pseudoforest – a graph where each component contains as many edges as
nodes. ShockHash then stores the choice between the two candidate positions of each key
in a 1-bit retrieval data structure taking n bits. Additionally, it stores the hash function
seed, which can be shown to need about 0.44n bits. This means that the majority of the
data originates from a simple linear time orientation of the graph, while only 0.44n bits need
to be determined by exponential time brute-force. Compared to brute-force, which needs
en tries in expectation, ShockHash needs only (e/2)n tries, while still reaching the space
lower bound. A key idea for making ShockHash practical is the introduction of a simple
bit-parallel filter that checks whether all entries of the cuckoo hash table are hit by some key.

Bipartite ShockHash stores two independent hash function seeds, one for each end of the
edges. During construction, it builds a pool of hash function seeds and tests all combinations
of seed pairs. By hashing each end of an edge to disjoint output ranges, the hash function
pool can be filtered before building the pairs, which enables additional exponential speedups.
Bipartite ShockHash-RS achieves a space consumption of 1.489 bits per key in practice. In
Chapter 7, we describe ShockHash and bipartite ShockHash in detail.

4.5 Fingerprinting

The idea of perfect hashing through fingerprinting is to assign a small fingerprint to each input
key using a hash function. The approach then resolves collisions between the fingerprints using

41

Anna Mary Dave Lisa John

0 γn

Tom n

011000

Anna Dave

011 γn′

n′Lisa Tom

1 1

Layer 1

Layer 2

0

Figure 4.5 Illustration of perfect hashing through fingerprinting.

recursion on the colliding keys. An advantage is the very simple and easily parallelizable
construction. It is originally introduced by Chapman et al. [Cha+11] in the context of
bioinformatics, but not described as a perfect hashing data structure of general interest.
Müller et al. [Mü+14] then enhance and describe the idea from a data structure perspective.

FiPHa. Perfect hashing through fingerprinting [Mü+14] hashes the n keys to γn positions
(fingerprints) using an ordinary hash function, where γ is a tuning parameter. A bit vector
of length γn indicates positions to which exactly one key was mapped. At query time, when
a key is the only one mapping to its location, a rank operation on the bit vector gives
the MPHF value. The bit vector indicates with a 0-bit that the key was not the only one
mapping to that location. In this case, an additional layer of the same data structure needs
to be queried. Figure 4.5 illustrates this idea. The most space-efficient choice γ = 1 leads
to a space consumption of e bits per key [Mü+14], which is quite far from the lower bound
of log e bits per key. However, the approach offers fast construction and queries. Perfect
hashing through fingerprinting provides efficient queries when about 4 or more bits per key
are available (using larger values of γ). FiPHa was developed in cooperation with SAP and
the source code is not publicly available.

BBHash. The first publicly available implementation, BBHash [Lim+17] iterates over all
keys to count the collisions. Then it iterates over the keys again to write the fingerprint bit
vector and to extract colliding keys. Depending on the size of the bit vector and counter
arrays, this causes up to three random memory accesses per key and level. For parallelization,
BBHash uses a large number of atomic operations in the arrays. While FiPHa already
introduces the idea to scale the bit vector of fingerprints, BBHash makes this more explicit
by introducing the γ parameter that we already used in the description of FiPHa. Just like
FiPHa, BBHash gets most efficient for about 4 bits per key.

FMPH. FMPH [Bel23] is a fast implementation of the idea in the Rust programming
language. The approach still uses the construction algorithm with two passes, but its
single-threaded construction is about twice as fast as BBHash. For parallelization, FMPH
distributes the keys to multiple threads and relies on a large number of atomic operations, just
like BBHash. FMPH achieves impressive speedups compared to the previous implementation.
It offers decent performance starting with about 3 bits per key.

His tory

42 4.6 Summary

FiPS. FiPS – Fingerprint Perfect Hashing through Sorting – is a third implementation
of the approach, which we introduce in this dissertation. In contrast to the approaches
above, FiPS focuses on cache locality when filling the bit vector during construction. It
does so by sorting the fingerprints and then determining collisions by a simple scan. Using
integer sorting, the construction takes linear time. This approach through sorting is already
described in the original paper [Mü+14] but without a publicly available implementation.
Using existing sorting libraries, the construction can be parallelized efficiently. A second
advantage of this sorting-based approach is that it can be performed efficiently in external
memory. To improve query performance, FiPS interleaves the select data structures and
the bit vector. More precisely, FiPS stores blocks of size 512 bits. 480 bits store the bit
vector indicating keys that did not collide. The remaining 32 bits store the number of 1-bits
before the block. Therefore, the rank data structure has a space overhead of about 7%,
which is more than the 4% achievable by modern rank data structures [Kur22]. However, it
means that the rank operation does not cause additional cache faults. At query time, FiPS
calculates the rank within the block using popcount instructions and adds it to the stored
32 bit number. There is a large design space. For example, we could encode the number
of 1-bits within sub-blocks to increase query throughput. Alternatively, we could store the
number of bits before each block as the difference to the expected value exploiting that the
bits are uniformly distributed. We could also speed up the rank calculation within the block
using SIMD instructions. However, we only present FiPS to illustrate the efficiency and
simplicity of the fingerprinting approach and leave an exploration of the design space for
future work.

FPHGO. FMPHGO [Bel23] is a new spin on the fingerprinting idea, combining it with a
few brute-force tries. The idea is to hash the keys to buckets like in FCH or CHD. FMPHGO
then tries a (small) number of different hash functions for each bucket. It selects the hash
function that causes the least collisions in the fingerprint array. So, in contrast to CHD,
collisions are allowed. FMPHGO invests additional space to store which hash function should
be used in each bucket, but this reduces the recursion depth. In turn, it reduces the overall
space consumption significantly. Compared to FMPH, FMPHGO reduces the storage space
by up to 0.7 bits per key, while the query performance stays mostly the same.

4.6 Summary

In this chapter, we have seen several perfect hash function constructions. For approaches based
on random (hyper)graphs, we illustrate the gradual process bringing the space consumption
from O(n log n) very close to the lower bound. For perfect hashing through bucket placement,
we have seen significant improvements in the bucket assignment function. Finally, in
fingerprinting, we have seen several implementations improving the construction performance.

Most of the perfect hash function constructions that are relevant in practice were presented
in the last four years. This shows how active and growing the field of research is.

43

5 Minimal Perfect Hashing Through
Tuned Brute-Force

Summary: RecSplit [EGV20] is a very space-efficient practical minimal perfect hash
function. It heavily relies on trying out hash functions using brute-force.
In this chapter, we introduce rotation fitting, a new technique that makes the search
more efficient by drastically reducing the number of tried hash functions. Additionally,
we greatly improve the construction time of RecSplit by harnessing parallelism on the
level of bits, vectors, cores, and GPUs.
In combination, the resulting improvements yield speedups up to 239 on an 8-core CPU
and up to 5438 using a GPU. The original single-threaded RecSplit implementation
needs 1.5 hours to construct an MPHF for 5 million keys with 1.56 bits per key. On
the GPU, we achieve the same space consumption in just 5 seconds. Given that the
speedups are larger than the increase in energy consumption, our implementation is
more energy efficient than the original implementation.

Attribution: This chapter is based on “High Performance Construction of RecSplit
Based Minimal Perfect Hash Functions” [Bez+23]. Large parts of this chapter are
copied verbatim or with minor changes from that publication. The paper is in turn
based on the Master’s thesis of Dominik Bez [Bez22], supervised by Peter Sanders,
Florian Kurpicz, and the author of this dissertation. The author of this dissertation
is the main author of the paper. He contributed to the implementation through
improvements for configurations with small buckets, as well as constructing trees
with the same shape together on the GPU. He also performed the experiments and
wrote most of the manuscript. Florian Kurpicz contributed the analysis of the success
probability of rotation fitting. All authors made significant contributions, to algorithm
design, analysis, design & interpretation of the experiments, and the write-up.

RecSplit [EGV20] is a very space-efficient practical minimal perfect hash function. The
general idea of RecSplit consists of two steps, splittings and bijections. As described in
more detail in Section 4.4, RecSplit uses brute-force to determine hash function seeds that
recursively split the key set in a specific way. This leads to a tree structure that we illustrate
in Figure 5.1a. In the leaf nodes of the tree, RecSplit finds bijections by brute-force as well.

In this chapter, we explain several improvements inside the RecSplit framework. In
Section 5.1, we give an algorithmic improvement for the bijection search that we call rotation
fitting. The idea is to replace hash function evaluations with simple bit-parallel operations.
Additionally, we parallelize the algorithm using SIMD instructions (see Section 5.2), multi-
threading (see Section 5.3) and GPUs (see Section 5.5). We call our algorithms SIMDRecSplit
and GPURecSplit. We conclude with an evaluation of the tuning parameters in Section 5.6.
For a full comparison with competitors from the literature, we refer to Chapter 8.

SIMDRecSp l i t

44 5.1 Rotation Fitting

Bucket 1 Bucket n/b

Input keys

...

(a) Illustration of the overall RecSplit data
structure. Circular nodes of the trees repre-
sent splittings, squares represent bijections.

1-bit hash function

1 0 0 1 1 10 1 10 00a b

Rotate b

OR

hs

1 1 11

0 1 10 10

Anna Mary Dave Lisa John Tom

Anna Dave Lisa Mary John Tom

0

1 1

hs

(b) Rotation fitting. Just using hash function hs would
cause collisions. If we cyclically rotate set B, we can
find a bijection.

Figure 5.1 Illustration of the overall RecSplit data structure and our enhancement to the leaf
nodes, rotation fitting.

5.1 Rotation Fitting

In this section, we introduce a new method for searching for bijections in RecSplit’s leaf
nodes. As a reminder, given n keys in a leaf, we are looking for a way to quickly find a
mapping of the keys to the first n integers without any collisions. Note that n = ℓ except for
possibly the last leaf of each tree, where n ≤ ℓ. The original RecSplit implementation tries
out hash functions using brute-force until one of them is a bijection.

Rotation fitting ensures that we need significantly fewer hash function evaluations. From
the result of one evaluation, we derive additional candidates that are very fast to compute.
Rotation fitting is particularly efficient when n ≤ w, where w is the size of a machine word.
We randomly distribute the keys into two sets A and B by using a 1-bit hash function.
The 1-bit hash function is the same for all leaf nodes and does not ensure that A and B

have the same size. Now we search for a hash function h that gives a bijection on the leaf.
Like in the original RecSplit implementation, we calculate the hash value of all keys in A

and set the respective bits in the word a to 1. The function h may be ruled out as a valid
bijection by calculating the popcount of a. Analogously, the set B is mapped to the word b

using the same hash function h. Let us now rotate (i.e., cyclically shift) the bits in b. If we
can find a rotation value such that the 1-bits in b fit exactly onto the 0-bits in a, we have
found a bijection on the leaf. More formally, this is the case if there is an r ∈ [n], such that
a OR rotr

n(b) has the n least significant bits all set. The function rotr
n(b) rotates the n least

significant bits in the word b by r positions. It can be implemented in a bit-parallel way
using shifting and masking. Figure 5.1b illustrates the idea of rotation fitting. In Section 5.1,
we show that for large n the probability of finding a bijection using rotation fitting is about
n times higher than the probability when using RecSplit’s brute-force approach. Also, the
space overhead per key introduced by rotation fitting tends to 0 for large n (see Section 5.1).

To efficiently store r, we only try hash function identifiers which are multiples of n. This
number plus r is stored for each leaf. We can restore r later by calculating modulo n and
restore the hash function index by rounding down to the next multiple of n. At query time,
a rotation corresponds to an addition modulo n to each key in the set B.

45

10 20
0

10

20

Input size n

E
xp

ec
te

d
fa

ct
or

hi
gh

er
pr

ob
ab

ili
ty

10 20
0

0.1

0.2

0.3

Input size n

E
xp

ec
te

d
sp

ac
e

ov
er

he
ad

(B
its

/K
ey

)

Figure 5.2 Expected factor of higher probability to find a bijection using rotation fitting (left)
and expected space overhead introduced by storing hash function index and rotation
compared to RecSplit’s brute-force approach.

Lookup Tables. It is possible to avoid trying out all n rotations by using a lookup table t.
For all possible values of a, this table contains a rotation parameter t[a] such that rott[a]

n (a)
is minimal. If a value x can be rotated to get the value y, then rott[x]

n (x) = rott[y]
n (y). Let

c = 2n − 1 be the word where the n least significant bits are set. The value b̂ = b ⊕ c is
b with the n least significant bits flipped. Note that b can fill the holes in a if and only
if b̂ can be rotated to match a. Thus, the necessary rotation of b can be calculated as
r = (t[b̂] − t[a]) mod n using two table lookups. Rotation r is valid if a OR rotr

n(b) = c.
Because rotation is a very cheap operation, preliminary experiments show no improvement

by lookup tables. Especially on GPUs, shared memory is a scarce resource and global memory
is too slow. Our implementation therefore does not use lookup tables. Nonetheless, rotation
fitting with lookup tables improves the asymptotic running time by a factor of n.

Success Probability. We now show that rotation fitting improves the construction time
by a factor close to n, while having negligible space overhead. We refer to Figure 5.2 for
numeric evaluations of the formula in the proof below.

▶ Lemma 5.1. Let |A| = a, |B| = b, and Pr(R) be the probability of finding a bijection
using rotation fitting. Furthermore, let Pr(B) denote the probability of finding a bijection
using RecSplit’s brute-force strategy. If a and b are relatively prime, then Pr(R) ≥ n Pr(B).
Otherwise, Pr(R) → n Pr(B) for n → ∞.

Proof. First, we consider the number of different injective functions under cyclic shifts,
i.e., equivalence classes under rotation. We have a bit vector of length m with b set
bits (and a unset bits). Then, the total number of equivalence classes under rotation is
1
n

∑
d divides gcd(a,b) ϕ(d)

(
n/d
b/d

)
, where gcd gives the greatest common divisor [Ada+21]. Let I

be the event that there is an r such that a OR rotr
n(b) has the n least significant bits set.

Then

Pr(I) ≥ n
1∑

d divides gcd(a,b) ϕ(d)
(

n/d
b/d

) ,

where ϕ(i) = |{j ≤ i : gcd(i, j) = 1}| is Euler’s totient function. Now, we determine the
probability Pr(R) using the events A: popcount(a)=a and B: popcount(b)=b.

Pr(R) = Pr(A) Pr(B) Pr(I)

≥ n!
(n − a)!na

· n!
(n − b)!nb

· Pr(I) = n!
nn

· n!
a!b! · Pr(I) = Pr(B) · n!

a!b! · Pr(I)

SIMDRecSp l i t

46 5.2 SIMD Parallelization

≥ Pr(B) · n!
a!b! · n

1∑
d divides gcd(a,b) ϕ(d)

(
n/d
b/d

)
= Pr(B) · n · n!

n! + (a!b!)
∑

d divides gcd(a,b),d̸=1 ϕ(d)
(

n/d
b/d

)
= Pr(B) · n · 1

1 +
∑

d divides gcd(a,b),d̸=1 ϕ(d) (n/d)!a!b!
n!(a/d)!(b/d)!

∼ Pr(B) · n · 1
1 +

∑
d divides gcd(a,b),d̸=1 ϕ(d)

√
d aa−a/dbb−b/d

nn−n/d

→ Pr(B) · n for n → ∞

Note that if a and b are relatively prime the sum is zero, as gcd(a, b) = 1. ◀

5.2 SIMD Parallelization

For the SIMD parallelization, we focus on the description of bijections and splittings, which
(in most configurations) take most time of the construction. While we additionally accelerate
the construction of the Elias-Fano data structure, the ideas are less interesting algorithmically.

SIMD Instructions. It is common, especially in perfect hashing, that the same operation
needs to be executed on different data. This can be achieved with a simple loop, which means
that the corresponding instructions must be decoded by the hardware several times. This can
be improved by using Single Instruction, Multiple Data (SIMD) [Fly72]. A single instruction
is used to apply the same operation on a vector of several elements. We refer to a single
element within a SIMD vector as a lane. For example, a vector may contain 16 lanes with
32 bits each, i.e., the vector contains 512 bits overall. The exact set of operations depends
on the concrete implementation of the SIMD model. On many Intel and AMD processors,
SIMD operations are available through the Advanced Vector Extensions (AVX) [Int11].
AVX-512 [Int13] extends these operations to 512-bit vectors and is divided into many smaller
subsets that offer additional operations. A subset that is useful for our implementation is
AVX512VPOPCNTDQ, which provides popcount on 512-bit vectors with lanes of size 32
and 64 bits. The roti

k function that cyclically shifts bits can be implemented in parallel using
SIMD as well.

The main idea of our SIMD parallelization is to try multiple hash function seeds simulta-
neously. Depending on the operation, we use SIMD lanes with a width of either 32 bits or 64
bits. In the following, we explain bijections and splittings separately.

Bijections. For the bijections, each SIMD lane is responsible for trying one hash function.
For this, we load consecutive hash function identifiers and the same input key to each lane
of a SIMD vector, and evaluate the hash function. The resulting hash value in each lane is
converted to a single bit by taking two to the power of it. After calculating the logical OR
of these bits for all keys in the set, we check for a bijection by comparing each lane with a
constant that has all n lower bits set to 1. For rotation fitting, remember that the number
we store as a seed is the hash function identification plus the rotation. This number should
be as small as possible to avoid wasting space, so caution must be taken when trying out the
rotations. If one lane finds a bijection, it might be possible that a higher rotation leads to a
bijection on a lane with a smaller hash function index. Because this gives a smaller overall
number to store, we always try all rotation values, even if a bijection is found.

47

Splittings. For the splittings, the original implementation uses small arrays of counters.
Each counter contains the number of keys hashed to the respective split section. Instead, we
use two different methods. For the upper aggregation levels with fanout 2, we use a single
counter for the number of keys hashed to the left child. The number of keys in the right child
can then be determined by subtraction. For all practical leaf sizes (ℓ ≤ 24), each counter of a
valid lower level splitting fits into a single byte. Because an overflowing counter for one child
would then just add 1 to the next counter, such overflows cannot make an invalid splitting
look valid. When a seed for a valid splitting is found, we need to redistribute the keys. Here
we use SIMD to apply the same hash function to several keys at once, and store the results
in an array. We then redistribute the keys without SIMD parallelism.

5.3 Multi-Threaded Parallelization

The original RecSplit implementation only uses a single thread. This leaves a lot of processing
power unused since most modern processors contain multiple processing cores. As stated in
its paper [EGV20], parallelizing RecSplit is fairly easy because the buckets are completely
independent of each other. First, we sort the input keys by their bucket index in parallel, and
then determine the bucket borders. We then start several threads and assign a consecutive
portion of the buckets to each thread. Because the number of buckets is large and the input
keys are hashed to buckets uniformly, the load of all threads is reasonably balanced.

After a splitting or bijection is found, it must be stored in the Golomb-Rice coded
sequence. To avoid synchronization, each thread uses its own local sequence and treats its
input as if it was the complete input. This means it also stores the pointers to the start of
each bucket encoding locally. After all threads are done, we sequentially concatenate the
Golomb-Rice sequences and build the combined Elias-Fano data structure holding the prefix
sum of bucket sizes and pointers to the bucket encodings.

5.4 GPUs

Graphics Processing Units (GPUs) are specialized processors initially designed for computer
graphics applications. Over the last decades, GPUs evolved to general purpose processors
for highly parallelizable tasks. We now describe the hardware and programming interface
of GPUs. To provide a grasp of the dimensions of a current GPU, we give metrics of the
NVIDIA RTX 3090 [Nvi20], which is also used for our experiments (see Section 5.6).

Compute Hardware. A GPU consists of several streaming multiprocessors (SMs) (RTX
3090: 82). Each SM contains many arithmetic logic units (ALUs) to perform computations
(RTX 3090: 64 integer ALUs). Several threads (RTX 3090: 32) operate in lock-step, i.e.,
they execute the same instruction at the same time. Such a bundle of threads is called warp.
Threads are masked out for instructions they should not execute. This means that in loops,
each thread in a warp has to iterate as many times as the thread with the largest number
of iterations. To hide latencies, e.g., for memory access, each SM is oversubscribed with
more threads than ALUs, and the GPU schedules the threads efficiently. Multiple warps of
threads form a thread block. Thread blocks are guaranteed to reside on the same SM, which
enables them to cooperate.

Memory. The global memory is the largest and slowest memory on the GPU (RTX 3090:
24 GB). When multiple threads of a warp access the memory simultaneously, the hardware

SIMDRecSp l i t

48 5.5 GPU Parallelization

serves the requests with as few memory transactions as possible. Shared memory is a fast
memory placed on each SM. It is shared between the threads of the same thread block.
On the RTX 3090, shared memory and L1 cache are allocated on the same memory areas.
The data in shared memory is partitioned into 32 memory banks, and the i-th 32-bit word
is stored in bank i mod 32. When multiple threads simultaneously access different words
within the same bank, the access operations have to be serialized.

CUDA. An efficient way to develop applications on NVIDIA GPUs is CUDA [Nvi22].
Functions to be executed on the GPU are called kernels. Each kernel is executed on a grid
of thread blocks. The grid size and the number of threads per block can be selected by the
user. The user can create several streams. Kernels and data transfers launched into the same
stream are executed in order, but operations in different streams can arbitrarily overlap.

5.5 GPU Parallelization

In the GPU implementation, we first partition the keys to their buckets and partition the
buckets by their respective size. We then use the GPU to determine the splittings and
bijections within the buckets. Buckets with the same size have splitting trees with the same
shape and can therefore be handled within the same set of kernel calls. While this means that
we need to perform additional work on the CPU to partition buckets by size, it significantly
reduces constant overheads due to GPU kernel calls. Especially for configurations with small
expected bucket sizes b, we get a large number of buckets but only a few distinct sizes. This
is where the optimization shines most. Preliminary experiments show a speedup of about 2
compared to constructing the buckets individually.

Using CUDA’s streams, we additionally construct different bucket shapes concurrently.
This is most interesting for large b where sometimes the number of buckets having a specific
shape is small. The streams enable better utilization of the GPU in that case. For an
overview of the GPU construction, see Figure 5.3.

Bijections. All leaf nodes1 of all trees with the same shape are constructed with a single
kernel call. For each leaf node, we start one block of threads. First, the threads in each block
cooperate to load all keys relevant for that leaf node into the shared memory. Similar to the
SIMD implementation, where each lane tried a different hash function, now each GPU thread
tries a different hash function. After each hash function, the threads synchronize, and check
if a bijection was found. If it was, we store the hash function index into global memory.

Splittings. Like for the bijections, each splitting is handled by a thread block. The threads
cooperate to load the keys into the shared memory and then each thread tries a different
hash function index. For the two lowest aggregation levels, the thread blocks of all nodes
in that level are started together using one kernel call (see Figure 5.3). Note that on these
levels, the size of a node and the starting seed is constant. Therefore, the levels are very
homogeneous. Conversely, the higher levels with fanout s = 2 are more heterogeneous. In
particular, the number of keys on a specific level may be different for different nodes on the
same level. Therefore, we launch individual kernels for each of those splittings, which contain
the thread block for all trees with the same shape. We use multiplication and shifts to

1 All leaf nodes except possibly the last of each tree, which might have fewer keys.

49

Kernel

Kernel

Kernel

Kernel

Kernel

Threads
parallelize
over seeds

Groups
parallelize
over tree
nodes

2D grid of groups
parallelizes over trees
with same shape

Streams parallelize
over tree shapes

8888888888 8

24 24 24 16

72

88

Figure 5.3 Illustration of how all equally-shaped splitting trees are handled together on the GPU.
Here we use a leaf size of ℓ = 8 with n = 88 input keys in the tree.

increment the counters of how many keys ended up in each lane. An alternative variant that
stores counters in shared memory is slower in preliminary experiments, even when padding
the counters to reduce the probability of bank conflicts. After a valid splitting is found, the
threads in a block cooperate to reorder the keys in that node accordingly.

Assembly. Because the kernels are launched per level, the results are stored in BFS order.
For the final data structure, we need to store them in preorder. The CPU unpacks the
resulting seeds recursively and writes them to an encoded sequence.

5.6 Internal Experiments

In this section, we give an internal evaluation of our implementation. It compares tuning
parameters, and the GPU implementation with the CPU implementation. For a comparison
with competitors, and an explanation of the experimental setup, we refer to Chapter 8. For
now, it is enough to know that we use an 8-core (16 hardware threads) consumer machine
equipped with an NVIDIA RTX 3090 GPU. The code and scripts needed to reproduce our
experiments are available on GitHub under the General Public License [Leh23a].

The SIMD implementation only supports x86 CPUs and is optimized towards AVX-512
using the Vector Class Library [Fog13]. The GPU implementation uses CUDA 11. As a
reminder, only the construction is using SIMD, multi-threading, and/or the GPU. The query
implementation is identical for the SIMD and GPU implementation and almost equal to the
original implementation [EGV20]. We therefore do not compare the query performance of
SIMD and GPU implementation.

While the original implementation [EGV20] uses std::sort to partition keys into buckets, we
use IPS2Ra [Axt+22]. For the less space-efficient configurations (ℓ < 5, b < 100), constructing
the buckets is fast, so significant time is spent on sorting. In that case, IPS2Ra both speeds up
the sequential case and also enables sorting in parallel. For more space-efficient configurations
(ℓ > 8), the partitioning step needs less than 1% of the total construction time, both in the

SIMDRecSp l i t

50 5.6 Internal Experiments

1.6 1.7 1.8

104

106

Bits/Key

T
hr

ou
gh

pu
t

(K
ey

s/
s)

1.6 1.7 1.8
1

2

3

Bits/Key

Sp
ee

du
p

Brute-force
Rotation fitting

Figure 5.4 Pareto front over the construction throughput of different variants of searching
for bijections in the leaves. Single-threaded, non-vectorized measurements with
n = 5 million keys. The plot on the right gives speedups relative to brute-force.3

5 10 15104

105

106

107

Leaf size ℓ

T
hr

ou
gh

pu
t

(K
ey

s/
s)

b = 5

5 10 15
Leaf size ℓ

b = 50

5 10 15
Leaf size ℓ

b = 500

5 10 15
Leaf size ℓ

b = 2000

Plain CPU
GPU
SIMD

Figure 5.5 Construction throughput with different hardware architectures based on different
input parameters. n = 5 million keys, 1 CPU thread.

parallel and the sequential case. In this section, we compare against a slight adaption of the
original implementation, using IPS2Ra and supporting parallel construction.

Rotation Fitting. In order to compare rotation fitting with the brute-force variant, we give
a Pareto front2 of space usage versus construction time in Figure 5.4. The construction time
refers to the entire MPHF construction, including the time used for splittings. Rotation
fitting is consistently faster, making the entire MPHF construction up to 3 times faster. The
space overhead of rotation fitting becomes negligible for moderately large ℓ (see Section 5.1).
Unless otherwise noted, all following experiments use rotation fitting.

Dependence on Input Parameters. In Figure 5.5, we plot the throughput of the SIMD,
GPU and non-vectorized versions for different leaf sizes ℓ and bucket sizes b. For better
comparability with the original paper [EGV20], we include a wide range of configurations,
even ones that are not very competitive. The SIMD version is consistently up to 4.5 times

2 A configuration is on the Pareto front if it is not dominated by any other configuration with respect to
both construction time and space consumption.

3 Note that giving speedups is non-trivial here because there might not be a configuration that achieves
the same space usage that we could compare with. We therefore calculate the speedup relative to an
interpolation of the next larger and next smaller data points. This is reasonable since RecSplit instances
can be interpolated as well by hashing a certain fraction of keys into data structures with different
configurations.

51

5 10 15
1

2

3

4

5 HT

Threads

Sp
ee

du
p

(a) 8-core Intel Machine.

0 50 100
0

10
20
30
40
50 HT

Threads

ℓ = 5, b = 5 (n = 2·109)
ℓ = 8, b = 100 (n = 5·108)
ℓ = 12, b = 9 (n = 2·108)
ℓ = 16, b = 2000 (n = 5·105)

(b) 64-core AMD Machine.

Figure 5.6 Construction self-speedup by number of threads used, for different configurations.
The number of input keys n is selected such that construction takes a similar amount
of time on all configurations. Configurations are the examples that are highlighted in
the RecSplit paper [EGV20].

faster than the non-vectorized version and shows the same scaling behavior in ℓ. The plot
indicates that there is no configuration where one would prefer the non-vectorized version.
While the GPU offers significant speedups for space-efficient configurations, it helps less for
the space inefficient configurations. A reason for this is data transfers to and from the GPU.

Multi-Threading. Table 5.1 shows that the parallel construction is up to 5 times faster
on an 8-core machine than the single-threaded version. Figure 5.6 shows how the SIMD
version scales when selecting a different number of CPU threads. The configurations are
adopted from the RecSplit paper [EGV20]. On the Intel machine, we can see that the
most space-efficient configuration scales best, closely followed by the other configurations.
Only a variant with tiny buckets (b = 5) does not scale as well. In this case, the entire
construction is dominated by partitioning the keys to buckets. Given that we already use
the highly optimized sorter IPS2Ra [Axt+22] and that this is a rather unusual RecSplit
configuration with a lot of space overhead, having non-optimal speedups here is acceptable.
On an additional AMD machine with 64 cores (128 hardware threads), the difference between
the different configurations is slightly more pronounced.

Overall Speedup. Our rotation fitting technique leads to a speedup of up to 3 (see Figure 5.4)
and SIMD parallelism improves the construction speed by up to a factor of 4.5 (see Figure 5.5).
Multi-threading for highly space-efficient configurations shows a speedup of close to 5.
Table 5.1 shows the overall improvement of our implementation on CPU and GPU when
compared to the original RecSplit implementation. The original RecSplit paper says that
MPHF construction at 1.56 bits per key is possible. This configuration with 5 million keys
takes about 1.5 hours using the original implementation. Our SIMD implementation achieves
the same space usage in just 2 minutes on the CPU and 5 seconds on the GPU. Investing
about 40 minutes of GPU time, our implementation achieves a space usage of only 1.495 bits
per key. This is about 40% closer to the lower bound [BBD09] of 1.44 bits, and simultaneously
more than twice as fast as the original implementation.

Energy Consumption. Of course, directly comparing CPU and GPU implementations is
unfair. A sensible metric to compare them is the energy consumption, which can be a major
cost factor. Additionally, the energy consumption is not influenced by the market prices of
GPUs. Table 5.2 gives energy consumption measurements for different configurations and

SIMDRecSp l i t

52 5.7 Summary

hardware architectures. The energy consumption is homogeneous throughout most of the
execution time, except for a short ramp-up in the beginning. We do not count the ramp-up
to the energy consumption. Measurements are performed using a Voltcraft 870 Multimeter.

Even though SIMD instructions need slightly more power, the total energy consumption
of constructing one MPHF is lower. The GPU, even though it needs significantly more power,
is so much faster that the resulting energy usage is about 1000 times lower than the original
single-threaded CPU implementation. For basic RecSplit, the AMD machine needs about
1.5 times more time than the Intel machine. This can be readily explained by a lower clock
frequency. This performance gap grows to a factor 4.6 for sequential SIMDRecSplit. The
likely main reason is that the AMD machines lacks the AVX-512 vector units of the Intel
machine. Still, since both processors have two 256-bit AVX2 units per core, it seems that
better performance might be achievable with careful tuning for the AMD architecture. On
the contrary, the AMD machine shows good scalability so that the energy consumption when
using the entire machine is only a factor 1.3 larger than on the Intel machine – despite the
fact that our implementation was tuned for the Intel architecture.

5.7 Summary

We have shown that by harnessing parallelism at all available levels – bits, vectors, cores, and
GPUs – one can dramatically accelerate the construction of highly space-efficient minimal
perfect hash functions (MPHFs) using the brute-force RecSplit approach [EGV20]. This
leads to speedups of up to 239 on SIMD and 5438 on the GPU and also dramatically reduces
the energy consumption. Our new technique rotation fitting reduces the work needed per
tried hash function while adding a tiny bit of space requirement. We refer to Chapter 8 for a
comparison with other approaches from the literature.

53

Table 5.1 Construction time of the GPU implementation compared to our multi-threaded
adaption of the original RecSplit implementation. n = 5 million keys (strong scaling).
Construction times are given in µs/key. We do not report speedups for ℓ = 24 because
the CPU baseline takes too long for this configuration.

Configuration Method Bijections Threads B/Key Constr. Speedup

ℓ = 16, b = 2000 RecSplit [EGV20] Brute-force 1 1.560 1175.4 1
RecSplit Brute-force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1.560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute-force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173

ℓ = 18, b = 50 RecSplit [EGV20] Brute-force 1 1.707 2942.9 1
RecSplit Brute-force 16 1.713 504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute-force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438

ℓ = 24, b = 2000 GPURecSplit Brute-force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —

Table 5.2 Energy consumption with ℓ = 18, b = 50 and n = 5 million keys. Energy consumption
is both given as difference to the idle power, as well as total energy consumption of the
whole system. For CPU-only measurements of the 8-core Intel machine, we dismount
the GPU.

Total system ∆ to idle

Machine Method Threads Constr. Power Energy Power Energy
Seconds Watt Joule Watt Joule

8-core Intel RecSplit [EGV20] 1 14 714.5 78 1 147 731 37 544 436
SIMDRecSplit 1 291.5 87 25 360 46 13 409
SIMDRecSplit 16 61.5 104 6 396 63 3 874
GPURecSplit — 2.5 457 1 142 380 950

64-core AMD RecSplit [EGV20] 1 21 620.8 223 4 821 438 91 1 967 492
SIMDRecSplit 1 1 328.7 224 297 629 92 122 240
SIMDRecSplit 128 23.6 364 8 590 232 5 475

SIMDRecSp l i t

55

6 Small Irregular Cuckoo Tables for
Perfect Hashing

Summary: In this chapter, we present SicHash – Small irregular cuckoo tables
for perfect hashing. At its core, SicHash uses a known technique: it places keys in
a cuckoo hash table and then stores the final hash function choice of each key in a
retrieval data structure. We combine the idea with irregular cuckoo hashing, where
different keys can have a different number of hash functions. Additionally, we use
many small tables that we overload beyond their asymptotic maximum load factor.
The most space-efficient competitors often use brute-force methods to determine the
PHFs. SicHash provides a more direct construction algorithm that only rarely needs
to re-compute parts. Our implementation improves the state of the art in terms of
space usage versus construction time for a wide range of configurations.

Attribution: This chapter is based on “SicHash – Small Irregular Cuckoo Tables
for Perfect Hashing” [LSW23b]. Large parts of this chapter are copied verbatim or
with minor changes from that publication. We do not include the analysis of the load
thresholds by Stefan Walzer. The author of this dissertation is the main author of the
paper. He implemented the algorithm, performed the experiments and wrote most
of the manuscript. All authors made significant contributions, to algorithm design,
analysis, design & interpretation of the experiments, and the write-up. The authors
would like to thank Martin Dietzfelbinger for early discussions leading to the paper.

In perfect hashing through retrieval (see Section 2.6), each key has a small number of
candidate hash values, determined by different hash functions. Using cuckoo hashing, one
can determine an assignment from keys to one of their candidates such all the hash values are
different. The choices can be stored efficiently in a retrieval data structure (see Section 2.4).
SicHash – Small irregular cuckoo tables for perfect hashing – extends this approach through
overloading and irregular cuckoo hashing.

In Section 6.1, we describe our new technique overloading. The idea is to fill the cuckoo
hash tables beyond their asymptotic load threshold. This is possible when making the tables
small and retrying construction with a new seed if insertion fails. Overloading mainly relies
on the variance in the achievable load factor. Additionally, we find experimentally that the
point at which insertions start to fail converges to the load threshold from above as n grows.

In irregular cuckoo hashing, different keys get a different number of candidate positions
based on a hash function. Irregular cuckoo hashing was previously considered for reducing
search time in hash tables. For that application, it was of little help apart from allowing to
interpolate between two integer numbers of hash functions. In contrast, for our application to
reduce space in perfect hashing, it is helpful even when the average number of hash functions
already is an integer. We describe how we apply this to SicHash in Section 6.2.

In Section 6.3, we describe possible enhancements of the approach and give an analysis
in Section 6.4. We conclude the chapter by evaluating tuning parameters in Section 6.5. We
give a full evaluation comparing SicHash to competitors from the literature in Chapter 8.

S icHash

56 6.1 Overloading

A B C D
m = 500

A B C D
m = 5 000

A B C D
m = 50 000

A B C D
m = 500 000

97%

98%

99%

100%

Median

Q1

Q3

IQR

Largest value
≤ Q3+1.5 IQR

Smallest value
≥ Q1-1.5 IQR

A: 0/100/0
B: 10/80/10
C: 33/34/33
D: 50/0/50

Figure 6.1 Achieved load factors when running different irregular cuckoo hashing configurations,
which all need the same storage space (2 bits). The labels describe the percentages
of keys with 2/4/8 choices, having a space usage of 1/2/3 bits, respectively. The
configuration 0/100/0 refers to ordinary 4-ary cuckoo hashing. Horizontal lines
indicate numerically calculated load thresholds [LSW23b, Section 7].

6.1 Overloading

In cuckoo hashing, the load threshold of a table is a widely studied subject (see Section 2.5).
For example, it is well known that a table with d = 2 hash functions has a load threshold of
50%. For n → ∞, the probability of successful table construction with load factor > 50%
approaches 0, while it approaches 1 for load factors < 50%. Let us now look at a very small
table of size m = 3 storing n = 2 keys. This table has a load factor of ≈ 66%, which is more
than the load threshold. Still, the probability of successful construction, i.e., not all four
hash function values being the same, is 1 − 3 · (1/3)4 ≈ 88%. This shows that the load factors
can be considerably higher than the asymptotic limits when using small tables. We call a
table that contains more keys than the asymptotic limit overloaded.

To experimentally illustrate the achievable load factors, we incrementally construct cuckoo
hash tables and record the load factors at which the insertion finally fails. Figure 6.1 gives a
box plot of the achieved load factors. It shows three fundamental observations that we use
in SicHash to increase the load factor while decreasing the amount of memory needed.

(1) Variance. Unsurprisingly, small tables have a higher variance in their achieved load
factors. Therefore, improved load by the standard deviation is possible by just retrying a
constant number of times in expectation.

(2) Median. For some configurations, small tables not only enable higher load factors
because of the variance, but also because their median is higher than the load threshold.
The effect is even more pronounced for ordinary binary cuckoo hashing, where a table with
m = 500 has a median load factor of 56% (see Figure 6.2). This is significantly more than the
asymptotic load threshold of 50%. A similar observation can be found in perfect hashing: The
space lower bound to store an MPHF with small n is significantly lower than the asymptotic
value for n → ∞ [WH20].

(3) Space Usage. A metric for the lookup efficiency in irregular cuckoo hash tables is the
average number of hash functions. For any desired average number of hash functions d′ ∈ R,
the best load thresholds are given by a combination of ⌊d′⌋ and ⌈d′⌉ hash functions [Die+10].

57

1061055·1041045·1031035·102
40%

50%

60%

70%

Asymptotic
load threshold

Table size m

A
ch

ie
ve

d
lo

ad
fa

ct
or

Figure 6.2 Achieved load factors when constructing binary cuckoo hash tables of different sizes.
The median of small tables is higher than the asymptotic load threshold (50%).

This picture changes fundamentally in the context of PHFs because the choice of hash
functions is stored in binary coding. While, for example, an irregular cuckoo hash table
with 50% 2-choice and 50% 4-choice has 3 choices on average, the storage space of the
corresponding PHF is only 0.5 log(2) + 0.5 log(4) = 1.5 < log(3). The configurations in
Figure 6.1 all need the same storage space, but the load threshold increases the farther we
are from the optimal configuration derived in Ref. [Die+10].

Conclusion. Smaller cuckoo hash tables enable higher load factors than larger tables.
Equivalently, by making the tables smaller, we can achieve the same load factor using a hash
function mixture that needs less space. Even though we have to store a seed because the
variance in the load factors is higher, we can use the described effects to save overall space.

6.2 SicHash Perfect Hash Functions

We are now ready to introduce the main result of this chapter: SicHash perfect hash functions.
SicHash combines irregular cuckoo hashing with overloading. Additionally, it builds on recent
advances in fast and space-efficient retrieval.

6.2.1 Construction
Building a SicHash function consists of the main steps partitioning, cuckoo hashing, storing
bucket metadata, and constructing the retrieval data structures. Figure 6.3 gives an overview.

Partitioning. First, we hash the keys to a number of buckets that all have the same expected
size b, for example b = 5000. The rather small size enables overloading and also keeps the
storage space during construction small enough that the whole table fits into the cache.

Cuckoo Hashing. Within each bucket, we generate an irregular cuckoo hash table, using
the same load factor as the overall perfect hash function. The number of cells in each of the
small cuckoo hash tables is determined by the number of keys hashed to it, so the small
tables have different sizes. However, the probability of a successful construction is similar for
all of them. To determine how many hash functions (and therefore candidate cells) should be
used for each key, we hash each key to a class. A certain percentage p1 of keys is placed with
d = 2 choices, a percentage p2 with d = 4 choices, and the remaining keys with d = 8 choices.

S icHash

58 6.2 SicHash Perfect Hash Functions

... ...

SicHash data structure

Hash

Golomb-RiceElias-Fano

Hash function assignments

Size

Size

Size

Offsets Seeds

Seed

Seed

Seed 1-bit

1-bit

1-bit 2-bit

2-bit

3-bit

3-bit

3-bit2-bit

R1 R2 R3

Retrieval data structures

Construct
cuckoo table

...
Input keys

Bucket 2

Bucket N/b

Bucket 1

Figure 6.3 Data flow during construction. Keys are hashed to buckets of expected equal size.
Within each bucket, a cuckoo hash table is constructed. The resulting hash function
assignments from all small hash tables are stored together in three large retrieval
data structures.

To insert keys into the hash tables, we use rattle kicking [Kus16] instead of the classical
random walk. Rattle kicking maintains a counter for each key, indicating how often it was
moved to a new cell. A key is then only evicted from its cell when its rattle counter is lower
than the counter of the key to be inserted into the same cell. The next hash function index
to use for inserting is the rattle counter modulo d. With rattle kicking, we can avoid the
cost of random number generation and empirically need a lower number of steps during
the insertion. For normal cuckoo hash tables, storing the counter would decrease the space
efficiency. In our case, we only store the hash table temporarily, and also need the hash
function index to construct the PHF later. This makes SicHash an attractive application
for rattle kicking. Constructing a bucket may fail, in particular, when we configure a high
degree of overloading. In this case, we retry construction while incrementing a seed value
determining the used hash functions.

Storing Bucket Metadata. The result is a number of small hash tables, each with a seed
leading to successful construction. In order to determine a global PHF, we need to offset
each small table. We can do that by storing the exclusive prefix sum of table sizes. When
trying out seeds, we can simply count up, starting with 0. One could encode the prefix sum
using Elias-Fano coding [Eli74; Fan71] (see Section 2.3) and the seed using Golomb-Rice
coding [Gol66; Ric79] (see Section 2.2). However, in practice, storing the two sequences in
arrays offers better query time and negligible space overhead.

Retrieval. Now we only need to store the assignment from keys to cells within the small
hash tables by storing which of the hash functions finally placed each key. Because the
hash tables are irregular, we get indices of 1, 2, and 3 bits. While small hash tables enable
overloading, retrieval data structures in contrast profit from handling many keys and can
achieve overheads as low as 1% [Dil+22]. We therefore build 3 large retrieval data structures
that hold the 1, 2, and 3-bit values from all the small hash tables. The space usage of the
final PHF is dominated by the retrieval data structures.

Parameters. A SicHash PHF has three main tuning parameters: The load factor α = n/m

to try construction for, and the class sizes for irregular cuckoo hashing, p1 and p2. Ignoring
overloading, it is then possible to numerically determine a configuration that maximizes the

6.2.2 Queries 59

Hash

Retrieval
Hash

Addition

Independent
memory accesses

Key

Class

Bucket

HF index

Seed

Offset

Local PHF

Global PHFGlobal PHFSequence
lookup

Figure 6.4 Data flow during a query. From the class of a key, we get the retrieval data structure
to query. From the bucket index, we get the bucket’s seed and offset. Combining this,
we get a global hash function value.

load factor (see [LSW23b, Section 7]). Calculating efficient configurations with overloading
remains an open problem. When a specific space budget of β bits per key for the retrieval
data structures is given, we get p2 = 3 − β − 2p1. The only remaining parameter p1 can then
be selected from the interval [max(0, 2 − β), (3 − β)/2].

6.2.2 Queries
A query for a key first hashes it to find its class, e.g., its number of candidate cells in the
small hash table. This determines which retrieval data structure needs to be queried for the
hash function index. Additionally, the key is hashed to find its bucket, and therefore the
seed and offset. The value of the PHF is then given by hashing the key with the retrieved
hash function index and the bucket’s seed, and by adding the bucket’s offset. Figure 6.4
gives an illustration for the data flow during a query, showing that all three memory access
operations are independent of each other, so they can be prefetched or performed in parallel.

6.3 Enhancements

SicHash lends itself to numerous enhancements, which we outline below.

Minimal Perfect Hashing. SicHash can be converted to an MPHF by applying the same
technique as in PTHash [PT21]. The idea is to re-map keys with hash function values > n to
smaller values by using an Elias-Fano coded sequence of size m − n. We refer to Section 2.8
for details. Note that the number of lower bits of the Elias-Fano coded sequence only depends
on the load factor that was used before re-mapping. In practice, we can therefore use a
compile-time parameter for faster bit operations in the Elias-Fano sequence.

Parallel Construction. Perfect hash functions can always be parallelized trivially by intro-
ducing a new layer on top of the data structure. SicHash can be parallelized more directly
and without effect on the query speed. The small cuckoo hash tables of each bucket can be
constructed independently. Retrieval data structures can also be computed in parallel at some
small space overhead linear in the number of processors and without query overhead [Dil+22].

External Memory Construction. SicHash can be adapted to very large inputs: First use
external sorting to partition the keys into buckets. Then, for each bucket, construct the
cuckoo hash table – outputting sequences of seeds, offsets, and key-value pairs for the retrieval

S icHash

60 6.4 Analysis

data structures. The latter can be fed into an external memory construction of the retrieval
data structures [Dil+22].1

6.4 Analysis

In this section, we discuss the space consumption, construction time, and query time of
the SicHash data structure. We omit the proof outline showing load thresholds [LSW23b,
Section 7], which is far from self-contained and does not give any intuition.

Let N be the number of input keys before bucketing and let M be the overall output
range of all buckets combined. We look at the case of constant expected bucket size and a
bucket load factor α = N/M that ensures constant success probability of cuckoo hash table
construction. We construct the tables using BFS. For the analysis, we use space-efficient
encoding of offsets using Elias-Fano coding and Golomb-Rice coding of seeds. We also assume
that we use a retrieval data structure that needs space (1 + o(1)) times the lower bound, can
be constructed in linear time, and supports queries in constant time [Dil+22]. Afterwards,
we informally discuss what changes for the simple implementation used in our experiments.

▶ Theorem 6.1. A SicHash data structure can be queried in constant time.

Proof. A query evaluates a constant number of hash functions which takes constant time
and performs one access to a retrieval data structure, which takes constant time as assumed
above. Additionally, it decodes a number each in an Elias-Fano coded and a Golomb-Rice
coded sequence. Decoding the numbers boils down to constant time select1-operations in a
bit vector (see Section 2.3). ◀

▶ Theorem 6.2. The expected space consumption of a non-minimal SicHash data structure
is N(3 − 2p1 − p2 + o(1) + O(1/b)) bits. Minimal perfect hashing needs an additional
N(1

α − 1)(2 + log α
1−α + o(1)) bits.

Proof. With average bucket size b, the Elias-Fano data structure takes
(
2 + log Mb

N + o(1)
)

N
b

bits, including the select data structure. For constant success probability of construction,
the seed has a geometric distribution and constant expected length, i.e., the expected
space consumption is O(N/b) bits. The 1-, 2-, and 3-bit retrieval data structures need
N(1 · p1 + 2 · p2 + 3 · p3)(1 + o(1)) = N(3 − 2p1 − p2 + o(1)) bits by our assumption.
Together, this gives N(3 − 2p1 − p2 + o(1) + O(1/b)) bits. For minimal perfect hash functions,
we need to re-map values into the range [N]. For a load factor α close to 1, this takes
(M − N)(2 + log N

M−N + o(1)) = N(1
α − 1)(2 + log α

1−α + o(1)) additional bits, ignoring issues
due to rounding (see Sections 2.3 and 2.8). ◀

To get a feeling for this space consumption, we give the idealized space consumption
of different SicHash configurations in Table 6.1. All configurations need 2 bits per key in
the retrieval data structures. However, the mixes that are less balanced have a higher load
threshold (see [LSW23b, Section 7]). We can therefore construct them at higher load factors,
which in turn saves space when re-mapping (see Section 2.8) to a minimal perfect hash
function. Compared to ordinary cuckoo hashing with d = 4 hash functions, irregular cuckoo
hashing can save about 0.1 bits per key. This is about 10% of the distance to the space lower
bound.

1 BuRR [Dil+22] sorts elements by a hashed starting position in an equation system. By making this
position monotonic in the bucket index one could save that sorting step.

61

Table 6.1 Idealized space consumption for different SicHash configurations.

p1 p2 p3 Load threshold Space (Bits/Key)
Retrieval Elias-Fano

0% 100% 0% 0.9767 2.0 0.176
10% 80% 10% 0.9811 2.0 0.148
33% 34% 33% 0.9885 2.0 0.098
50% 0% 50% 0.9921 2.0 0.071

▶ Theorem 6.3. A SicHash data structure can be constructed in expected time O(N).

Proof. Constructing the retrieval data structures takes linear time by assumption. Build-
ing the data structures for seeds and offsets is obviously possible in linear time as well.
Construction time for a bucket is at most quadratic in the bucket size (and, with constant
success probability, retries contribute only a constant factor in expectation). With constant
expected bucket size, we get the same execution time as a bucket sorting algorithm that uses
a quadratic algorithm per bucket, which is expected linear [San+19, Theorem 5.9]. A similar
argument can also be found in RecSplit [EGV20]. ◀

Our implementation gains simplicity and query speed by storing offsets and seeds di-
rectly using log M bits. For this to be space-efficient, we would need average bucket size
b = Ω (log N). At least with our simple estimation of construction time, this would result in
superlinear construction time of Ω (N log N). This can be improved using faster construc-
tion algorithms. For example, using the Hopcroft-Karp-Karzanov [HK73] algorithm, time
O
(
N

√
log N

)
can be proven. Assuming a result for random graph matching [Bas+06] also

transfers to our case, we would even get O(N log log N). At least when we are sufficiently far
from the load threshold, various previous results indicate that linear construction time is pos-
sible [FMM09; Fot+05; FPS13; KA19; Kho13; Wal22]. With overloading, tight construction
time bounds remain an open problem.

6.5 Internal Experiments

In this section, we give internal experiments of SicHash. For a comparison with competitors,
as well as an explanation of the experimental setup, we refer to Chapter 8. For now, it is
enough to know that we use a consumer machine and run single-threaded experiments. The
code and scripts needed to reproduce our experiments are available on GitHub under the
General Public License [Leh23f].

As a retrieval data structure, we use Bumped Ribbon Retrieval [Dil+22] with two
alternative configurations: w = 64 with 2-bit bumping info, and w = 32 with 1-bit bumping
info. Instead of encoding the per-bucket metadata using Elias-Fano coding and Golomb-Rice
coding, we use a plain array, which is faster to access and causes only a small space overhead
for sufficiently large buckets. The extension to minimal perfect hashing stores the re-mapping
with Elias-Fano coding, which is based on sdsl’s [Gog+14] arrays of flexible bit width and
the select data structures by Kurpicz [Kur22].

It is possible to construct the cuckoo hash table with random walk insertion, as well as
matching based methods. In our experiments, the random walk variant rattle kicking [Kus16]
is usually faster than a construction based on Hopcroft-Karp-Karzanov [HK73].

S icHash

62 6.6 Summary

2.2 2.4 2.6 2.8 3 3.2

2

4

6

8

Bits/Key

T
hr

ou
gh

pu
t

(M
K

ey
s/

s)

(a) Space consumption by bucket size.

2.2 2.4 2.6

2

4

6

8

Bits/Key

b = 100
b = 200
b = 500
b = 5000
b = 20000
b = 100000

(b) Hypothetical space consumption, assuming that bucket
metadata is encoded with Elias-Fano and Golomb-Rice.

Figure 6.5 Pareto plot over the construction throughput of different SicHash configurations by
bucket size. 10 million keys, load factor before making minimal: α = 0.9.

Bucket Size. For larger buckets, the relative overhead of encoding the metadata is reduced,
but they can be overloaded less. This leads to a trade-off that we illustrate in Figure 6.5.
Figure 6.5a shows a Pareto front2 of SicHash configurations using different bucket sizes and
indicates that a bucket size of b = 5000 is optimal, which is why we choose that parameter
in all other measurements. Figure 6.5b shows hypothetical values for the space usage when
assuming that the per-bucket metadata is encoded with Elias-Fano and Golomb-Rice coding
instead of arrays (see Section 6.2).

6.6 Summary

With SicHash, we present a new perfect hash function which places keys in a number of small,
irregular cuckoo hash tables. Making the tables small enables overloading, which achieves
higher load factors than the asymptotic bound. Using irregular cuckoo hashing enables
fine-grained control over the load factors and lower space usage. We then use space-efficient
retrieval data structures to store the final placement. Our implementation improves the
state of the art in perfect hash functions for a wide range of load factors and space usage
configurations. It profits from the fact that building cuckoo hash tables is a more directed
approach for finding bijections than the brute-force methods used at the core of many
competitors.

2 A configuration is on the Pareto front if it is not dominated by any other configuration with respect to
both construction time and space consumption.

63

7 Small, Heavily Overloaded Cuckoo
Hash Tables for Minimal Perfect
Hashing

Summary: In this chapter, we introduce ShockHash – Small, heavily overloaded
cuckoo hash tables for minimal perfect hashing. ShockHash uses perfect hashing
through retrieval, but works far above the load threshold, relying on retries. In
graph terminology, ShockHash samples n-edge random graphs until stumbling on a
pseudoforest – a graph where each component contains as many edges as nodes. Using
cuckoo hashing, ShockHash then derives an MPHF from the pseudoforest in linear time.
We show that ShockHash needs to try only about (e/2)n ≈ 1.359n seeds in expectation.
Compared to brute-force, this reduces the space for storing the seed by roughly n bits
and speeds up construction by almost a factor of 2n. Together with a 1-bit retrieval
data structure storing the choice for n keys, ShockHash maintains the asymptotically
optimal space consumption. Bipartite ShockHash reduces the expected construction
time again to about 1.166n by maintaining a pool of candidate hash functions and
checking all possible pairs.
Using ShockHash as a building block within the RecSplit framework we obtain Shock-
Hash-RS, which can be constructed up to 3 orders of magnitude faster than competing
approaches. ShockHash-RS can build an MPHF for 10 million keys with 1.489 bits per
key in about half an hour. When instead using ShockHash after an efficient k-perfect
hash function, it achieves space usage similar to the best competitors, while being
significantly faster to construct and query.

Attribution: This chapter is based on “ShockHash: Near Optimal-Space Minimal
Perfect Hashing Beyond Brute-Force” [LSW24a; LSW24b]. Large parts of this chapter
are copied verbatim or with minor changes from that publication. The author of
this dissertation is the main author of the paper. He implemented the algorithm,
performed the experiments and wrote most of the manuscript. Most ideas for the
analysis by Stefan Walzer, with write-up by the author of this dissertation. All authors
made significant contributions, to algorithm design, analysis, design & interpretation
of the experiments, and the write-up. Peter Sanders more on the side of design and
experiments and Stefan Walzer more on the side of the analysis.

In this chapter, we introduce ShockHash – Small, heavily overloaded cuckoo hash tables,
which can be seen as an extreme version of SicHash [LSW23b] (see Chapter 6). Here we
use two hash functions for each key and retry construction until we can completely fill the
cuckoo hash table. That way, we achieve an MPHF without an intermediate non-minimal
PHF. We describe ShockHash in detail in Section 7.2. In graph terminology, ShockHash
repeatedly samples a graph with n edges and n vertices. Each key corresponds to one edge,
connecting the candidate positions of the key. The table can be filled if and only if the graph
is a pseudoforest – a graph where no component contains more edges than nodes. While the

Sho ckHash

64 7.1 Pairing Functions

ShockHash idea is straightforward in principle, we can prove that when using binary cuckoo
hashing with two choices (and thus 1-bit retrieval) there is only an insignificant amount of
redundancy. We show that ShockHash approaches the information theoretic lower bound
of n log e − O(log n) ≈ 1.44n for large n. At the same time, ShockHash has running time
(e/2)n · poly(n) ≈ 1.359n, which is nearly a factor 2n faster than brute-force.

In bipartite ShockHash (see Section 7.3), further exponential improvements are possible.
Instead of using a pair of fresh hash functions for each construction attempt, we build a
growing pool of hash functions and consider all pairs that can be formed from this pool.
Also, we let the two hash functions hash to disjoint ranges, meaning we effectively sample a
bipartite graph where each edge has one endpoint in both partitions. In this bipartite setting,
the hash functions of both partitions need to be individually surjective. We can therefore
filter the set of candidate hash functions in each partition individually – before testing all
combinations. This improves the construction time by an additional exponential factor, to
about 1.166n · poly(n).

In Section 7.4, we analyze ShockHash and bipartite ShockHash. Still being exponential
time algorithms, we use them as a building block after partitioning the input. We describe this
in Section 7.5. By using ShockHash instead of brute-force as a base case within the RecSplit
framework we obtain ShockHash-RS. We also demonstrate that ShockHash is useful outside
the RecSplit framework. When using k-perfect hashing for partitioning the input, we obtain
ShockHash-Flat, which achieves a space usage similar to the most space-efficient competitors.
At the same time, it is a lot faster to query. In Section 7.6, we give additional variants and
refinements that improve the construction in practice. We conclude with an evaluation of
the tuning parameters in Section 7.7 before summarizing the results in Section 7.8. For a
full comparison with competitors from the literature, we refer to Chapter 8.

7.1 Pairing Functions

A pairing function encodes two natural numbers in a single natural number. More precisely,
a pairing function is a bijection between the grid N2

0 and N0. We are interested in pairing
functions that can be inverted efficiently. The most popular pairing function is the Cantor
pairing function, which enumerates the 2D grid diagonally (see Figure 7.1a). It can be
calculated by pairc(x, y) = (x + y)(x + y + 1)/2 + y. Another pairing function is the one
by Szudzik [Szu06], which enumerates the 2D grid following the edges of a square (see
Figure 7.1b). The pairing function can be calculated by pairs(x, y) = y2 + x if x ≤ y and
pairs(x, y) = x2 + x + y otherwise.

In this chapter, we require a function that enumerates only those coordinates of the 2D grid
with x > y. We will still call it a pairing function in slight abuse of traditional terminology.
Our triangular pairing function (see Figure 7.1c) can be calculated by pairt(x, y) = x(x −
1)/2 + y with the intuition stemming from the Little Gauss formula. The basic idea for
inverting our function (x′, y′) = pair−1

t (z) is to set y = 0 in the definition and solve for x.
This gives x′ = ⌊1/2 +

√
1/4 + 2z⌋ and y′ = z − pairt(x′, 0). In our bipartite implementation,

we use both our triangular pairing function and Szudzik’s pairing function, depending on the
distribution of the numbers we want to encode.

While pairing uses only integer operations, all three pairing functions rely on the square
root operation and rounding for inverting. This means that inverting the functions in practice
can lead to problems due to floating point inaccuracies. Whether inverting z succeeded
can easily be checked by verifying that pair(x′, y′) = z. In our implementation, we check
invertibility at construction time, so we do not get a run-time overhead during queries.

65

0 1 2 3
x

y

3

2

1

0
0 1

2

3

4

5

6

7

8

9

11

12

13

17

18 24

(a) Cantor pairing function
0 1 2 3

x

y

3

2

1

0
0 3

1

7

2

4

13

8

5

9

14

6

10

15

11 12

(b) Szudzik’s pairing function
321

x

y

4

3

2

1

0
0 1

2

3

4

6

5

7

8

9

(c) Triangular pairing function

Figure 7.1 Illustrations of different pairing functions.

7.2 ShockHash

We now introduce the main idea of this chapter, ShockHash. The asymptotic load threshold
of a binary cuckoo hash table is c = 0.5 (see Section 2.5), so the success probability of
constructing a table with n cells and more than n/2 keys tends to zero. ShockHash overloads
a cuckoo hash table far beyond its asymptotic load threshold – it inserts n keys into a binary
cuckoo hash table of size n. As we will see in Theorem 7.7, the construction succeeds after
(e/2)npoly(n) tries in expectation. We then record the successful seed

s = min{s ∈ N | ∃f ∈ {0, 1}S : x 7→hs,f(x)(x) is MPHF} (hi,0)i∈N, (hi,1)i∈N : S → [n]

and a successful choice f between the two candidate positions of each key. The seed needs
n · log(e/2) + o(n) ≈ 0.44n + o(n) bits in expectation using Golomb-Rice codes [Gol66; Ric79]
(see Section 2.2). The choices are stored in a 1-bit retrieval data structure, requiring n + o(n)
bits. This means that the majority of the MPHF description is not stored in the seed, like
with the brute-force construction, but in the retrieval data structure. A query for key x

retrieves f(x) from the retrieval data structure and returns hs,f(x)(x). Figure 7.2 gives an
illustration of the ShockHash construction.

The beauty of ShockHash is that it can check 2n different possible hash functions
(determined by the 2n different functions representable by the retrieval data structure)
in O(n) time. This enables significantly faster construction than brute-force while still
consuming the same amount of space up to lower order terms. As discussed in Section 2.5,
a seed leads to a successful cuckoo hash table construction if and only if the corresponding
random (multi)graph with edges {{hs,0(x), hs,1(x)} | x ∈ S} forms a pseudoforest. Each
component of size c is a pseudotree if and only if it contains no more than c edges. This can
be checked in linear time using connected components algorithms, or in close to linear time
using an incremental construction of a cuckoo hash table. However, compared to the simple
bit-parallel perfectness test of brute-force [EGV20], each individual check is slower by a large
constant factor. In the following paragraph, we discuss a way to address this bottleneck.

Filter by Bit Mask. To reduce the time spent checking if a graph is a pseudoforest, we use
a filter to quickly reject most seeds. More specifically, we reject seeds for which some table
cell is not a candidate position of any of the keys. If there is such a cell, we already know
that cuckoo hashing cannot succeed, so we can skip the full test. Otherwise, cuckoo hashing
might succeed. The filter can be implemented using simple shift and comparison operations.
Also, the filter can use registers, in contrast to the more complex full construction. It is one
of the main ingredients making ShockHash practical and is easily proven to be very effective:

Sho ckHash

66 7.3 Bipartite ShockHash

x hs,0(x) hs,1(x)

John

Lisa

Dave

Mary

Anna

3 4

2 1

2 3

5 3

2 4

Hashed keys Filter Oriented Pseudoforest ShockHash Data Structure

11111 ✓
1

2

3

4

5

Seed s

Retrieval

≈ n log2 e−n
bits

≈ n bits

John
Lisa
Dave
Mary
Anna

0
1
0
0
1

Filter not passed or
cannot be oriented?
Retry with seed s+1

Lisa

Mary

D
ave

Joh
n

A
nn
a

Figure 7.2 Illustration of the ShockHash construction. Functions hs,0 and hs,1 are randomly
sampled hash functions using a seed s. Here, s is a seed value where the resulting
graph is a pseudotree. During construction, many seeds need to be tried.

▶ Lemma 7.1. The probability for a seed to pass the filter, i.e. for every table cell to be hit
by at least one key, is at most (1 − e−2 + o(1))n ≈ 0.864n.

Proof. Let Xi denote the number of times that cell i ∈ [n] is hit. Then (X1, . . . , Xn) follows
a multinomial distribution. The variables X1, . . . , Xn are negatively associated in the sense
introduced in [JDP83] and satisfy

Pr(∀i ∈ [n] : Xi ≥ 1) ≤
n∏

i=1
Pr(Xi ≥ 1),

the intuition being that since the sum X1 + · · · + Xn = 2n is fixed, the events {Xi ≥ 1}
for i ∈ [n] are less likely to co-occur compared to corresponding independent events. Since
Xi ∼ Bin(2n, 1

n) for all i ∈ [n] we have

Pr(Xi ≥ 1) = 1 − (1 − 1
n)2n = 1 − e−2 + o(1) ≈ 0.864

and the claim follows. ◀

A more careful analysis [Wal24] reveals that the probability to pass the filter is around bn

where b = 2eλ/(λe2) ≈ 0.836 and where λ ≈ 1.597 is the solution to 2 = λ/(1 − e−λ).

Enhancements. In Section 7.6, we explain additional enhancements that improve the con-
struction performance in practice. This includes applying the idea of rotation fitting [Bez+23]
(see Chapter 5) to ShockHash, as well as faster orientability checks.

7.3 Bipartite ShockHash

Bipartite ShockHash is an extension of the ShockHash idea. It enables significantly faster
construction compared to plain ShockHash. In turn, this enables more aggressive parameter
choices, thereby leading to improved space-efficiency. While ShockHash samples random
graphs, bipartite ShockHash now samples bipartite random graphs. Figure 7.3 gives an
illustration and very simple pseudocode. In plain ShockHash, each edge is connected to two
nodes using two independent hash functions. In bipartite ShockHash, the hash functions
have a range of [n/2], but we shift the hashes of one of the hash functions by n/2, meaning
each edge gets one endpoint in [n/2] and one in n/2 + [n/2]. This is similar to the original
implementation of cuckoo hashing using two independent hash tables [PR04]. The idea might

67

ShockHash

......

......

z

Bipartite
ShockHash

x y

x
y
z

repeat
sample h0, h1 : S → [n]
if {{h0(x), h1(x)} | x ∈ S} is pseudoforest

return

repeat
sample h0, h1 : S → [n/2]
if h0 surjective and h1 surjective

if {{h0(x), h1(x) + n
2 } | x ∈ S} is pseudoforest

return

Figure 7.3 ShockHash and bipartite ShockHash. The pseudocode illustrates the overall idea but
does not lead to any performance improvements yet.

Algorithm 7.1 Pseudocode of bipartite ShockHash.
Function construct(S)

surjectiveCandidates ← ∅
for s0 = 0 to ∞

if hs0 is surjective on S

for s1 ∈ surjectiveCandidates
if ∃f ∈ {0, 1}S : x 7→ n

2 · f(x) + hsf(x)(x) is a bijection
return f as retrieval data structure, s0, s1

surjectiveCandidates ← surjectiveCandidates ∪ {s0}

Function evaluate(x)
if f(x) = 0 // Retrieval

return hs0 (x)
else

return n
2 + hs1 (x)

sound not very helpful at first, but opens up several ways of pruning the search space. In the
following, we assume that n is an even number. We give an extension to uneven numbers in
Section 7.6.4.

Filtering Seed Candidates. We show in Section 7.4 that testing about (e/2)n ≈ 1.359n

pairs of hash functions is sufficient for plain ShockHash. The idea of bipartite ShockHash is
that it is almost as good to consider roughly

√
(e/2)n = (e/2)n/2 hash functions and all pairs

that can be formed from them. This already improves the practical running time because
fewer hash functions need to be evaluated. However, the asymptotic construction time is not
improved much because we still need to test all combinations. A key realization is that in
the bipartite case, a pair (h0, h1) of hash functions can only work if both h0 and h1 (both
with range [n/2]) are individually surjective. In the non-bipartite case, in contrast, the check
was that h0 and h1 (both with range [n]) together hit each position in [n] at least once. This
means that we can filter the list of hash functions before pairing them up.

In each of the partitions, we look at n keys mapping to n/2 positions. Similar to
Lemma 7.1, the probability of passing the filter is 0.836n/2 [Wal24]. This suggests that if
we pair up only the hash functions passing the filter then we will be considering at most
((e/2)n/2 · 0.836n/2)2 ≈ 1.136n pairs. We refer to Section 7.4 for details.

Sho ckHash

68 7.3 Bipartite ShockHash

1

2

345
67

8

7
Final seed

{{hi,0(x), h
′
i,1(x)}
| x ∈ S}

(hi,0, hi,1 : S → [n])
is pseudoforest

Seeds

(a) ShockHash uses the same seed
for both hash functions.

1

2

345
67

8

hi is sur-
jective on S

1
36 5

Pool

(3, 5)
Final seed

{{hi(x), hj(x) +
n
2 }

| x ∈ S}
(hi, hj : S → [n/2])
is pseudoforest

Seeds 3 5

(b) Bipartite ShockHash uses independent seeds for the two hash
functions and tests all combinations of different seeds.

Figure 7.4 Illustration of the filtering involved in ShockHash and bipartite ShockHash. The
construction is complete if we find one final seed that passes all filters.

The Bipartite ShockHash Algorithm. The following paragraph describes our new bipartite
ShockHash algorithm. We maintain a pool of seed candidates that are surjective on [n/2]. To
find a new candidate, we linearly check hash function seeds until we find a seed s0 that gives
a surjective hash function. Given that new candidate, we try to combine it with all previous
candidates s1 from the pool. More precisely, we check if the graph defined by the nodes [n]
and the edges {{hs0(x), hs1(x) + n/2} | x ∈ S} is a pseudoforest. If it is a pseudoforest, we
have found a perfect hash function. We only need to store the assignment from keys to their
candidate hash function (hs0 or hs1) in a retrieval data structure, as well as the two seeds s0
and s1. If the combination with none of the previous seed candidates leads to a pseudoforest,
we add the new candidate s0 to the set of surjective candidates and search for the next one.
Algorithm 7.1 gives a pseudocode for this algorithm and Figure 7.4 illustrates the idea of
filtering hash functions before putting them in the pool.

Note that it does not matter which of the two hash functions we use for which partition
of the graph. Switching the partitions just gives an isomorphic graph and does not influence
orientability. We therefore always use the newly determined candidate directly and shift the
old candidate by n/2 to be in the second partition. Also, we neglect the possibility that a
hash function combined with itself on both partitions leads to successful construction.1 This
allows us to store the two seeds s0 and s1, knowing that s1 < s0. We do so in one integer
using our triangular pairing function that we explain in Section 7.1. Note that the pairing
function enumerates the seed pairs in exactly the same order that we test them in. Compared
to storing two variable-length integers, pairing reduces constant overheads in the encoding.

Enhancements. In Section 7.6, we give additional enhancements that improve the construc-
tion performance significantly in practice. This includes other ways of coming up with a
stream of hash function candidates, bit-parallel filtering, and support for uneven input sizes.

1 The function would have to map exactly two keys to each of the n/2 positions, which happens with
probability

(
n

2 2 ··· 2

)
(n

2)−n = e−n2n/2poly(n).

69

7.4 Analysis

In this section, we analyze the space usage and construction time of ShockHash. The main
challenge is to lower bound the probability that a hash function seed enables successful
construction of the heavily overloaded cuckoo hash table. First, in Section 7.4.1, we give a
very simple analysis of the success probability of plain ShockHash. It is less tight than our
more complex proof, but it is significantly shorter. In Section 7.4.2, we explain tools used in
the analysis and prove small building blocks of the full proof. In Sections 7.4.3 and 7.4.4,
we then analyze the success probability of plain and bipartite ShockHash, respectively. We
then show in Section 7.4.5 that a pool containing about (

√
e/2)n hash function candidates is

usually sufficient. Finally, we give the construction time and space consumption of ShockHash
and bipartite ShockHash in Section 7.4.6. In the following we assume that a seed is given.
We suppress it in notation.

It will be useful to consider the graph G = ([n], {{h0(x), h1(x)} | x ∈ S}). While similar
to an Erdős-Renyi random graph, G may have self-loops2 and multi-edges. Our model
matches Model A in [FK16].

7.4.1 A Simple Proof
First, in Theorem 7.2, we give a simple combinatorial argument showing that the probability
for G to be a pseudotree is at least (e/2)−n

√
π/(2n). This lower bounds the probability of

G being a pseudoforest consisting of potentially more than one tree. Section 7.4.3 then shows
that the probability is at least (e/2)−nπ/e. Therefore, the simple argument is only a factor
of O(

√
n) less tight than the much more complex proof.

▶ Theorem 7.2. Let G be a multigraph with n nodes and n edges. The probability space
underlying G is that of sampling 2n nodes (with replacement) and creating an edge from the
samples 2i − 1 and 2i for each i ∈ [n]. Then the probability that G is a pseudotree is at least
(e/2)−n

√
π/(2n).

Proof. For G to be a pseudotree it is sufficient (though not necessary) that the first n − 1
created edges form a tree. There are nn−2 labeled n-node trees (Cayley’s Formula [Cay78]).
Since the ordering of the edges and the order of the two samples forming an edge does not
matter, each of the trees can be generated in 2n−1(n − 1)! ways. The last two samples can
be anything, giving us n2 choices. By applying Stirling’s approximation, namely

n! ∈
[(

n
e

)n√
2πn · e1/(12n+1),

(
n
e

)n√
2πn · e1/(12n)

]
,

we can show that the total probability to draw a pseudotree is at least

nn−22n−1(n − 1)!n2

n2n
≥
(e

2

)−n√
π/(2n). ◀

7.4.2 Tools
In this section, we explain tools that are needed later in the analysis, such as the configuration
model and graph peeling. We start with proving two small lemmas that we use in the
remaining analysis but are very generic in nature.

2 Graphs with self-loops are easier to analyze here but we avoid them in practice for better performance.

Sho ckHash

70 7.4 Analysis

▶ Lemma 7.3. Let X ∈ N0 be a random variable. Then the probability that X is at least 1 is

Pr(X > 0) = E(X)
E(X | X > 0).

Proof. For any non-negative random variable X we can apply the law of total expectation to
get E(X) = Pr(X = 0)·E(X | X = 0)+Pr(X > 0)·E(X | X > 0) = Pr(X > 0)·E(X | X > 0).
Rearranging this for Pr(X > 0) yields the desired result. ◀

▶ Lemma 7.4. For n, c ∈ N, it holds that
(

cn
n

)
≤ (ec)n

Proof. We first upper bound all factors (cn−k) by cn and then apply Stirling’s approximation.(
cn

n

)
= (cn)(cn − 1)(cn − 2) . . . (cn − n + 1)

n! ≤ (cn)n

n! ≤ (cn)n

√
2πn (n/e)n ≤ (ec)n ◀

Configuration Model. The configuration model [New10] is a way to describe distributions
of random graphs. In the model, we can fix the exact degree of every node in the graph
by giving each node a number of stubs (half-edges). The graph is obtained by repeatedly
sampling, uniformly at random, two unconnected stubs and connecting them. In other words,
if we take one stub and look at its partner, all other stubs are equally likely.

Graph Peeling. In several sections of this chapter, we are interested in peeling [JL07; Mol05;
Wal21] graphs. For this, we iteratively take any node of degree 1 and remove it together with
its corresponding edge. The process continues until all nodes have degree > 1. A graph is
1-orientable or a pseudoforest, if all nodes in the remaining graph have degree 2, meaning
that the graph consists of only cycles.

Graph Peeling in the Configuration Model. To analyze the peeling process, it will be useful
to reveal G in two steps. First the degree of each node is revealed by randomly distributing
2n stubs among the n nodes. This yields a configuration model from which the edges are
then obtained by randomly matching the stubs. The following lemma should clarify what
exactly we need.

▶ Lemma 7.5. Let x1, . . . , x2n ∈ [n] be independent and uniformly random. The graphs
G1, G2, G3 defined in the following have the same distribution as G.

1. G1 = ([n], {{x2i−1, x2i} | i ∈ [n]}).
2. G2 = ([n], {{xi, xj}|{i, j} ∈ M}) where M is a uniformly random perfect matching of

[2n], i.e. a partition of [2n] into n sets of size 2.
3. G3 is defined like G2, except that M is obtained in a sequence of n rounds. In each round

an unmatched number i ∈ [2n] is chosen arbitrarily and matched to a distinct unmatched
number j, chosen uniformly at random. The choice of i may depend on x1, . . . , x2n and
on the set of numbers matched previously.

The reason for considering these alternative probability spaces for G is that they permit con-
ditioning on partial information about G (such as its degree sequence implicit in x1, . . . , x2n)
but retaining a clean probability space for the remaining randomness.

7.4.3 Success Probability in Plain ShockHash 71

Proof. Compared to G, the definition of G1 simply collects the 2n relevant hash values in
a single list.3 Concerning G2, imagine that M is revealed first. Conditioned on M , G2 is
composed of n uniformly random edges like G1. Concerning G3, the key observation is that
M is a uniformly random matching even if the number to be randomly matched in every
round is chosen by an adversary. A formal proof could consider any arbitrary adversarial
strategy and use induction. ◀

Therefore, when peeling in the configuration model, we can interleave the peeling process
and the process of uncovering the sampled graph. To peel, we take a node with degree 1 and
look at the other endpoint of its adjacent edge, which is uniformly distributed between all
other stubs. If the node connected to it has degree 2, removing the edge gives a new degree-1
node that we can directly continue peeling. Otherwise, we have to start with a new node of
degree 1 in a next iteration.

7.4.3 Success Probability in Plain ShockHash
In this section, we give the tighter analysis of the success probability of ShockHash. Given
two hash functions h0, h1 : S → [n] and a function f : S → {0, 1}, let ori(f) be the event that
x 7→ hf(x)(x) is bijective. We are now interested in the probability that there exists such a
function f that leads to a bijective function, namely Pr(∃f : ori(f)). There is a one-to-one
correspondence between functions f with ori(f) and 1-orientations of G, i.e. ways of directing
G such that each node has indegree at most 1.4

We write PF(G) for the event that G is a pseudoforest. As pointed out in Section 2.5:

PF(G) ⇔ ∃f : ori(f). (7.1)

In our case with n nodes and n edges, PF(G) implies that G is a maximal pseudoforest,
where every component is a pseudotree and not a tree. Note that a pseudotree that is not a
tree admits precisely two 1-orientations because the unique cycle can be directed in two ways
and all other edges must be directed away from the cycle. A useful observation is therefore

PF(G) ⇒ #{f : ori(f)} = 2c(G) (7.2)

where c(G) is the number of connected components of G.
The basic idea of our proof is as follows. The probability that a random function is

minimal perfect is e−npoly(n) (see Lemma 1.1). Each of the 2n functions f : S → {0, 1}
has that chance of satisfying ori(f) and yielding an MPHF. However, simply multiplying
e−npoly(n) by 2n does not necessarily yield an approximation for the probability that such
an f exists. The key point here is that the 2n functions (x 7→ hf(x)(x))f∈{0,1}S determined
by the 2n different options for f are correlated. If there are some graphs that permit many
different 1-orientations, we may find many MPHFs at once and the probability that there is
at least one 1-orientation is reduced. This intuition is stated more formally in Lemma 7.3
using X = #{f : ori(f)}:

Pr(∃f : ori(f)) = E(#{f : ori(f)})
E(#{f : ori(f)} | ∃f : ori(f)).

3 Here, we assume that h0 and h1 are fully random hash functions and given for free, which is common in
previous papers (Simple Uniform Hashing Assumption) [DH90; DR09; PP08; PPR07].

4 Note that in our model, there are two ways of directing a self-loop.

Sho ckHash

72 7.4 Analysis

Configuration model
with n nodes

Configuration model
with (n− 1) nodes

Connect two
random stubs

Found one
component

Number of
components
unaffected by
merging

Figure 7.5 Number of components in the configuration model.

As discussed above, a key step in the analysis is to show that we usually find only a few
MPHFs at once. This amounts to analyzing the distribution of the number of components in
random maximal pseudoforests, which we do in Lemma 7.6. The main proof in Theorem 7.7
then formally bounds the probability that a random graph is a pseudoforest, juggling different
probability spaces.

▶ Lemma 7.6. Let Gn be the random graph sampled from the configuration model with n

nodes of degree 2, i.e. the 2-regular graph obtained by randomly joining 2n stubs that are
evenly distributed among n nodes. Then the number c(Gn) of components of G satisfies
E(2c(Gn)) ≤ e ·

√
2n.

We remark that a similar proof shows that E(c(Gn)) ∈ O(log n). Note also the similarity to the
locker puzzle, which analyzes the length of the largest cycle in a random permutation [Sta11].

Proof. We will find a recurrence for dn := E(2c(Gn)). Consider an arbitrary node v of Gn

and one of the stubs at v. This stub forms an edge with some other stub. We have n − 1
other nodes, each with 2 stubs, and we have the second stub at v. Each of these 2n − 1 stubs
is matched with v with equal probability. Therefore, the probability that v has a self-loop is

1
2n−1 .

(1) Conditioned on v having a self-loop, we have found an isolated node. The distribution
of the remaining graph is that of Gn−1 and the conditional expectation of 2c(G) is therefore
E(21+c(Gn−1)) = 2dn−1.

(2) Now condition on the formed edge connecting v to w ̸= v. We can now merge the
nodes to a single one without affecting the number of components. The merged node inherits
two unused stubs, one from v and one from w. The distribution of the remaining graph is
that of Gn−1. Therefore, in this case, the conditional expectation of 2c(G) is simply dn−1.

These two cases are illustrated in Figure 7.5 and lead us to the following recurrence:

dn = 1
2n−1 2dn−1 +

(
1 − 1

2n−1
)
dn−1 =

(
1 + 1

2n−1
)
dn−1.

With the base case d0 = 1, we can solve the recurrence and bound its value as follows, using
that ln(1 + x) ≤ x for x ≥ 0 as well as Hn :=

∑n
i=1

1
i ≤ 1 + ln n:

7.4.3 Success Probability in Plain ShockHash 73

dn =
n∏

i=1

(
1 + 1

2i − 1

)
= exp

(
n∑

i=1
ln
(

1 + 1
2i − 1

))
≤ exp

(
n∑

i=1

1
2i − 1

)

= exp
(

1 +
n∑

i=2

1
2i − 1

)
= exp

(
1 + 1

2

n∑
i=2

(
1

2i − 1 + 1
2i − 1

))

≤ exp
(

1 + 1
2

n∑
i=2

(
1

2i − 1 + 1
2i − 2

))
= exp

(
1 + 1

2

2n−1∑
i=2

1
i

)
= exp ((1 + H2n−1)/2) ≤ exp (1 + ln(2n)/2) ≤ e ·

√
2n. ◀

Finally, we can derive the success probability of the ShockHash search as follows.

▶ Theorem 7.7. Let h0, h1 : S → [n] be uniformly random functions. The probability that
there exists f : S → {0, 1} such that x 7→ hf(x)(x) is bijective is at least (e/2)−ne−1√

π.

Proof. Recall our shorthand ori(f) for the event that x 7→ hf(x)(x) is bijective. As given in
Lemma 7.3, we can calculate the success probability as follows.

Pr(∃f : ori(f)) = E(#{f : ori(f)})
E(#{f : ori(f)} | ∃f : ori(f)).

We will consider the numerator and denominator in turn.

Numerator: Expectation. Linearity of expectation (holding even for dependent variables)
yields

E(#{f : ori(f)}) =
∑

f

Pr(ori(f)) =
∑

f

Pr(x 7→ hf(x)(x) is bijective on S).

For any fixed f , the function x 7→ hf(x)(x) assigns independent random numbers to each
x ∈ S, i.e. is a random function as considered in Lemma 1.1 and hence bijective with
probability e−n

√
2πn · (1 + o(1)). We therefore get

E (#{f : ori(f)}) ≥ 2n · e−n
√

2πn. (7.3)

Denominator: Conditional Expectation. Using observations (7.1) and (7.2) we can shift
our attention to the graph G:

E(#{f : ori(f)} | ∃f : ori(f)) = E(2c(G) | PF(G)).

By virtue of Lemma 7.5 we can moreover move to a configuration model à la G3. We
first reveal the locations x1, . . . , x2n of the 2n stubs (hence the degree sequence of G3) and
then consider the following peeling process (see Section 7.4.2) that reveals edges of G3 and
simplifies G3 in a step-by-step fashion.

As long as there exists a node v with only one stub, firstly, match it to a random stub to
form a corresponding edge {v, w} (consuming the two stubs) and, secondly, remove the node
v and the newly formed edge {v, w}. These removals do not affect the number of components
of the resulting graph (since v was connected to w), nor whether the resulting graph is a
pseudoforest (since the component of w lost one node and one edge).

Let n′ be the number of nodes that remain after peeling and let G′ be the graph obtained
by matching the remaining stubs. As discussed we have PF(G3) ⇔ PF(G′) and c(G′) = c(G3).

Sho ckHash

74 7.4 Analysis

Since the average degree of G3 is 2 and since we removed one node and one edge in every
round, the average degree of G′ is also 2. There are two cases.

(1) Some node of G′ has degree 0. Then ¬PF(G′) because some component of G′ must
have average degree > 2.

(2) No node of G′ has degree 0. Since we ran the peeling process, there is also no node
of G′ with degree 1. Hence, every node of G′ has degree 2. This makes G′ a collection of
cycles. In particular PF(G′) holds. Moreover, the generation of G′ is precisely the situation
discussed in Lemma 7.6.

Because the two cases imply opposite results on G′ being a pseudoforest, we know that
PF(G′) holds if and only if we arrive in Case 2. While we have no understanding of the
distribution of n′, we can nevertheless compute:

E(2c(G) | PF(G)) = E(2c(G3) | PF(G3)) = E(2c(G′) | PF(G′)) = E(2c(G′) | Case 2)

≤ max
1≤i≤n

E(2c(G′) | Case 2 with n′ = i) ≤ max
1≤i≤n

e
√

2i = e
√

2n. (7.4)

Putting the Observations Together. Combining our bounds on the numerator (7.3) and
the denominator (7.4) gives the final result

Pr(∃f : ori(f)) ≥ 2ne−n
√

2πn/(e
√

2n) = (e/2)−ne−1√
π. ◀

7.4.4 Success Probability in Bipartite ShockHash
In the bipartite case, we can basically perform the same steps as in the non-bipartite version.
For simplicity, we restrict ourselves to even n in the analysis. While our implementation does
support uneven n (see Section 7.6.4), this complicates the analysis and can be largely avoided
when ShockHash is integrated into a partitioning framework like RecSplit (see Section 7.5).
In this section, we again suppress the seed of the hash functions. Let h0, h1 : S → [n/2] be
hash functions and f : S → {0, 1} be a function that selects between the two hash functions.

We now look at the effect of testing all correlated choices of the function f . As argued
in Section 7.4.3, we start with peeling the corresponding graph until there are no nodes
with degree 1 left. Conditioned on the graph being a pseudoforest, this leaves us with a
graph where each node has degree 2. The distribution of this graph is captured again by a
configuration model (see Section 7.4.2), namely giving a random bipartite matching between
the stubs. Additionally, remember that we started with a bipartite graph, so both partitions
have the same size. Similar to Lemma 7.6, we can now show in Lemma 7.8 that the number
of components c in the remaining graph satisfies E(2c) ≤ e ·

√
n. Because the peeling process

does not change the number of components, the same applies also to the original bipartite
graph. This gives us a bound for the expected number of orientations of the graph, e.g., the
number of different functions f that all make the hash function pair (h0, h1) minimal perfect.

▶ Lemma 7.8. Let n be an even number, and let Gn be a random bipartite graph with
n/2 nodes in each partition, where all nodes have degree 2, sampled from the corresponding
bipartite configuration model. Hence, the stubs from one partition are matched to the stubs
of the other partition uniformly at random. Then the number c(Gn) of components of Gn

satisfies E(2c(Gn)) ≤ e ·
√

n.

Proof. We will find a recurrence for dn := E(2c(Gn)). Consider an arbitrary node v from
the first partition of Gn and one of the stubs at v. Because the graph is bipartite, this stub
forms an edge to a node r from the other partition of the graph. The node r has a second

7.4.4 Success Probability in Bipartite ShockHash 75

stub that is connected back to the first partition. We now have n/2 − 1 other nodes in the
first partition, each with 2 stubs, and we have the second stub at v. Each of these n − 1
stubs is matched with equal probability. Therefore, the probability that this edge closes a
cycle is 1

n−1 .
(1) Conditioned on closing the cycle, the distribution of the remaining graph is that of

Gn−2 and the conditional expectation of 2c(Gn) is therefore E(21+c(Gn−2)) = 2dn−2.
(2) Now condition on the edge not closing a cycle. We can now merge the three considered

nodes to a single one without affecting the number of components. The merged node inherits
two unused stubs, and the graph is now bipartite with n/2 − 1 nodes in each partition. The
distribution of the remaining graph therefore is that of Gn−2. Therefore, the conditional
expectation of 2c(G) is simply dn−2.

These two cases are similar to the non-bipartite case illustrated in Figure 7.5 and lead us
to the following recurrence:

dn = 1
n−1 2dn−2 +

(
1 − 1

n−1
)
dn−2 =

(
1 + 1

n−1
)
dn−2.

With the base case d0 = 1, we can solve the recurrence and bound its value as follows, using
that ln(1 + x) ≤ x for x ≥ 0 as well as Hn :=

∑n
i=1

1
i ≤ 1 + ln n:

dn =
n/2∏
i=1

(
1 + 1

2i − 1

)
= exp

n/2∑
i=1

ln
(

1 + 1
2i − 1

) ≤ exp

n/2∑
i=1

1
2i − 1

= exp

1 +
n/2∑
i=2

1
2i − 1

 = exp

1 + 1
2

n/2∑
i=2

(
1

2i − 1 + 1
2i − 1

)
≤ exp

1 + 1
2

n/2∑
i=2

(
1

2i − 1 + 1
2i − 2

) = exp
(

1 + 1
2

n−1∑
i=2

1
i

)
= exp ((1 + Hn−1)/2) ≤ exp (1 + ln(n)/2) ≤ e ·

√
n. ◀

We can lower bound the success probability by applying Lemma 7.3 similarly as in
Theorem 7.7. In contrast to Theorem 7.7, we now use ori(f) adapted for the bipartite case.
Given two hash functions h0, h1 : S → [n/2] and a function f : S → {0, 1}, let ori(f) be
the event that x 7→ hf(x)(x) + f(x) · n

2 is bijective. We write PF(h0, h1) for the event that
the graph defined by the two hash functions h0 and h1 is a pseudoforest, and again get
PF(h0, h1) ⇔ ∃f : ori(f).

▶ Theorem 7.9. Let h0, h1 : S → [n/2] be uniformly random functions. The probability
that there exists f : S → {0, 1} such that x 7→ hf(x)(x) + f(x) · n

2 is bijective is at least
(e/2)−n

√
n/e.

Proof. All bipartite ShockHash functions have the form (x 7→ hf(x)(x) + f(x) · (n/2)). While
it is clear that the results of different x are independent, let us first justify why the function
is uniform. For this, let c ∈ [n] be a constant, x an input value, and g : S → {0, 1} a uniform
random function. Then we get

Pr(hg(x)(x) + g(x) · n
2 = c) =

{
Pr(h0(x) = c ∧ g(x) = 0), c < n

2
Pr(h1(x) = c − n

2 ∧ g(x) = 1) c ≥ n
2

}
= 1

n/2 · 1
2 = 1

n
.

For uniform random functions g it holds that E(#{f : ori(f)}) = 2n · Pr(ori(g)). Because
we now also know that bipartite ShockHash with random g gives a uniform random function,

Sho ckHash

76 7.4 Analysis

we know that Pr(ori(g)) matches the probability that a random function is a bijection.
Applying Lemma 1.1, this gives E(#{f : ori(f)}) ≥ 2n · e−n

√
2πn.

To determine the overall success probability, we can now continue similar to Theorem 7.7.
Therefore, a random pair of hash functions h0, h1 permits at least one valid placement f

with at least the following probability.

Pr(∃f : ori(f))Lem. 7.3= E(#{f : ori(f)})
E(#{f : ori(f)} | ∃f : ori(f)) ≥ 2n · e−n

√
2πn

E(#{f : ori(f)} | ∃f : ori(f))
Lem. 7.8

≥ e−n
√

2πn · 2n/(e ·
√

n) = (e/2)−n
√

n/e ◀

Our bound is a factor of
√

2 better than with plain ShockHash, which reduces our bound
on the expected space consumption by log(

√
2) = 0.5 bits. It might be possible to save a few

additional bits in the retrieval data structure because f is known to map exactly half of the
keys to 1, i.e., only a 1/Θ(

√
n) fraction of all functions can occur as f . However, we do not

consider this in more detail here.

7.4.5 Hash Function Pools
An important ingredient for making bipartite ShockHash so much more efficient than the
plain version is the fact that we can combine hash functions from a pool of candidates. This
makes it possible to filter the candidates before combining them. In the following section,
we show why testing all combinations of two hash functions from a pool of candidates has
a similar success probability as always sampling two fresh functions. For this analysis, let
us form two pools of hash functions of size k = (e/2)n/2. Note that this is slightly different
to the construction explained before, which uses a single, growing pool. However, this does
not influence the asymptotic construction time.5 The first pool (li)i∈[k] contains uniformly
drawn hash functions l1, . . . , lk and the second pool (ri)i∈[k] contains uniformly drawn hash
functions r1, . . . , rk. Our algorithm tests all combinations between two hash functions li
and rj (i, j ∈ [k]) from the pools. We are therefore interested in the probability that the
pools contain two hash functions that are compatible, meaning that their combined graph is
a pseudoforest. For easier presentation, we suppress polynomial factors in this section and
assume large n.

7.4.5.1 Notation and Overview
Let H := [n/2]S be the set of all (hash) functions from S to [n/2]. Sampling two hash
functions l, r ∼ U(H) uniformly at random gives Pr(PF(l, r)) = (e/2)−n, as shown in
Theorem 7.9 (ignoring polynomial factors). In the following, it will be useful to also consider
Hpromisc containing promiscuous functions. The intuition is that a promiscuous function
has a very large number of compatible partners, which is very unlikely. For reasons we will
discuss later, we define Hpromisc as the set of functions that hit more than 90% of the hash
values exactly two times:

Hpromisc :=
{

f ∈ H
∣∣∣ ∣∣{i ∈ [n/2]

∣∣ |f−1(i)| = 2
}∣∣ ≥ 0.9n/2

}
.

5 One could view the two pools as one single pool of twice the size, where we only test a subset of the
combinations. The time for testing more seed combinations would then be a constant factor larger. In
practice, however, we test all combinations within the single pool, so it does not actually need to be
twice as large.

7.4.5 Hash Function Pools 77

Section 7.4.5.3:
Bipartite Peeling

Lemma 7.13:
p(d1, . . . , dn−1, 2) = p(d1, . . . , dn−1)

Lemma 7.14:
p(1, . . . , 1︸ ︷︷ ︸

b

, db+1, . . . , dn) ≤ (7/8)b−1

Lemma 7.15: l ∈ H \ Hpromisc:
p(d1, . . . , dn/2) ≤ (c1)n/2

Lemma 7.16: Success
probabilities can be separated

Lemma 7.17: l ∈ H \ Hpromisc

satisfies ∥C(l)∥ ≪ (e/2)−n/2

Section 7.4.5.4:
Concentration Bounds

Observation 7.19:
Ẑ −D ≤ Z∗ ≤ Ẑ

Lemma 7.20:
E(D)≪ E(Ẑ)

Lemma 7.21: whp,
Ẑ ≥ E(Ẑ)/2

Lemma 7.22: whp,
Z∗ ≥ E(Ẑ)/4

Lemma 7.18:
E(Ẑ) ≥ 4/5 · (e/2)−n/2

Section 7.4.5.5: Combining
with Pool (ri)i∈[k]

Lemma 7.23:
Pr (success | Z = z) > 1− (1− z)k

Theorem 7.24:
Pr (success) constant

Section 7.4.5.2:
Promiscuous HF

Lemma 7.10: 2n balls.
Pr(n bins get 2 balls each)

Lemma 7.11: whp, < 90% of
bins get 2 balls each

Lemma 7.12: whp,
(li)i∈[k] ∩Hpromisc = ∅

Figure 7.6 Illustration of the proof structure showing the success probability of sampling from
hash function pools instead of independent hash functions. Variables Ẑ, D and Z∗

are defined in Section 7.4.5.4. Functions p and q are defined in Section 7.4.5.3.

For a specific function l, we define the set C(l) as all hash functions that are compatible
with l. We also define C∗(l) as only those compatible functions that are not promiscuous:

C(l) := {r ∈ H | PF(l, r)}, C∗(l) := C(l) \ Hpromisc.

For a set X ⊆ H of hash functions, let ∥X∥ := |X|/|H|. This is the probability that a
randomly sampled hash function is one of the hash functions in X. Then ∥C(l)∥ is the
probability that a randomly sampled hash function is compatible with l. If l is a random
variable, this probability is a random variable as well. The expected value for uniform random
l is El∼U(H)(∥C(l)∥) = Prl,r∼U(H)(PF(l, r)) = (e/2)−n (ignoring polynomial factors).

The main random variable we are interested in is Z := ∥
⋃

i∈[k] C(li)∥. It depends on the
hash functions that we sampled for the pool. Z is the probability that a randomly sampled
hash function is compatible with at least one function from our pool (li)i∈[k].

If Z was small, it would mean that the hash functions in our pool need a very specific
set of partners. Therefore, in this case, it would be unlikely that one of the compatible
partners was drawn for the pool (ri)i∈[k]. However, we will show that Z is large enough that
(ri)i∈[k] likely contains a compatible partner. More specifically, we will show that Z is closely
concentrated around (e/2)−n/2. Since we have k = (e/2)n/2 hash functions in each pool, we
get a constant probability that a compatible function is in (ri)i∈[k].

Figure 7.6 gives an overview over the proof structure. We start our proof in Section 7.4.5.2,
showing that it is unlikely that a hash function is promiscuous. We then show in Section 7.4.5.3

Sho ckHash

78 7.4 Analysis

that functions ̸∈ Hpromisc do not have too many compatible partners. This is a key ingredient
for providing concentration bounds on Z in Section 7.4.5.4. Finally, we combine this with
the pool (ri)i∈[k] in Section 7.4.5.5.

7.4.5.2 Promiscuous Hash Functions
Before being able to give concentration bounds, we have to rule out a special case of hash
functions with too many compatible partners. As stated before, we call these promiscuous.
In this section, we show that these functions are very rare. To show this, we interpret the
output values of our hash functions as a balls-into-bins process. In the following, we show a
general property of balls-into-bins processes that we then later apply to our hash functions.

▶ Lemma 7.10. When throwing 2n balls into n bins independently and uniformly at random,
the probability that each bin receives exactly two balls is pn ≤ 5

√
n(2e−2)n.

Proof. To assign the balls to the bins such that each bin receives exactly two balls, we choose
n subsets of size 2 from the set of 2n balls. The number of ways we can do this is given by
the multinomial coefficient

(2n
2,2,...,2

)
. Each of these combinations has a probability of n−2n.

Using Stirling’s approximation in the step annotated with ∗, this gives

pn =
(

2n

2, 2, . . . , 2︸ ︷︷ ︸
n times

)
· n−2n = (2n)!

2 · 2 · . . . · 2︸ ︷︷ ︸
n times

n−2n
∗
≤

√
2π2n

(
2n

e

)2n

e
1

24n · 2−n · n−2n

=
√

4πn · (2e−2)n · e
1

24n ≤ 5
√

n(2e−2)n. ◀

▶ Lemma 7.11. When throwing n balls into n/2 bins independently and uniformly at random,
the probability p90% that more than 90% of the bins receive exactly 2 balls is p90% ≤ 0.66n.

Proof. Let us consider a set A of 0.9 ·n/2 bins that will each receive exactly 2 balls each. We
do not care which bins receive exactly 2 balls, so there are

(
n/2

0.9·n/2
)

=
(

n/2
0.1·n/2

)
ways of selecting

the set A. The probability that exactly 2|A| balls land in a bin in A is
(

n
0.1n

)
0.10.1n0.90.9n.

Conditioned on this, the probability that these 2|A| balls are evenly distributed among the
|A| bins is p|A| ≤ 5

√
0.9 · n/2

(
2e−2)0.9·n/2 by Lemma 7.10. Bringing this together we can

bound p90% as follows, applying Lemma 7.4.

p90% ≤
(

n

0.1n

)
0.10.1n0.90.9n ·

(
n/2

0.1 · n/2

)
·
(
2e−2)0.9·n/2 5

√
0.9 · n/2

≤ (10e)0.1n · 0.10.1n0.90.9n · (10e)0.1·n/2 ·
(
2e−2)0.9·n/2 5

√
0.45n

=
(

(10e)0.1 · 0.10.10.90.9 · (10e)0.05 ·
(
2e−2)0.45

)n

5
√

0.45n

< 0.66n for n large enough. ◀

▶ Lemma 7.12. With a probability of 1 − 0.77n, none of the hash functions in the pool
(li)i∈[k] is promiscuous.

Proof. Each of our hash functions maps the n keys to n/2 nodes in the graph. Because
the hash functions are sampled at random, this can be modeled as a balls-into-bins process.
We can apply Lemma 7.11, telling us that the probability that a function is promiscuous is
p90% ≤ 0.66n. We sample a pool of k = (e/2)n/2 hash functions. Therefore, the probability

7.4.5 Hash Function Pools 79

that at least one of our hash functions is promiscuous can be upper bounded as follows using
a union bound.

Pr

 ∨
i∈[k]

li ∈ Hpromisc

 ≤ k · p90% = ((e/2)1/2 · 0.66)n < 0.77n ◀

7.4.5.3 Peeling Bipartite Graphs
For plain ShockHash, we have looked at the event PF(G) that the resulting graph G is a
pseudoforest, and have given bounds for Pr(PF(G)). In Section 7.4.2, we have shown that we
can uncover the graph in two steps: we first reveal the degree of each node and then match
these stubs at random. Staying with plain ShockHash for the moment, we now condition
on the degrees of the nodes. For this, let (d1, . . . , dn) be the degrees of each node, and let
p(d1, . . . , dn) := Pr(PF(G) | nodes of G have degrees d1, . . . , dn) be the conditioned success
probability. Note that the order of the function arguments does not matter to the success
probability because the stubs are matched randomly. Let Bn be the distribution of balls in
the balls-into-bins process with n balls and n/2 bins. Before we give additional properties of
p(d1, . . . , dn) in the following lemmas, let us look at a simple observation about the function:

E(d1,...,dn)∼B2n
(p(d1, . . . , dn)) = Pr(PF(G))Lem. 7.7= (e/2)−n. (7.5)

The graph G is a pseudoforest if we can repeatedly peel away nodes of degree 1 and end
up with a graph that consists of only nodes of degree 2 (forming cycles). When peeling, we
repeatedly take a node of degree 1 and follow its edge to a random stub. There are now
three possible outcomes.

(1) The edge leads to a node with degree 1. Then we have found a component with more
nodes than edges, meaning that the remaining graph cannot be a pseudoforest.

(2) The edge leads to a node with degree ≥ 3. Then we have peeled away a subtree of a
component that is potentially still a pseudotree. We now have one less node of degree 1 in
our graph. In that case, we continue the peeling process with another node of degree 1.

(3) The edge leads to a node with degree 2. Then it generates a new node with degree 1,
and we can continue the peeling process with that same node.

▶ Lemma 7.13. Nodes of degree 2 do not influence the success probability. More formally,
p(d1, . . . , di, 2) = p(d1, . . . , di).

Proof. If the peeling process arrives in case (3) where it connects to a node of degree 2, we
can immediately continue peeling with that node. This always succeeds and does not cause
an abort of the peeling process. Afterwards, we have one less node but did not influence the
degrees of all other nodes. Therefore, the probabilities to arrive in the more interesting cases
(1) and (2) stay the same, relative to each other. ◀

▶ Lemma 7.14. If the graph corresponding to our hash function has b nodes of degree 1, p

is exponentially small in b. More formally, p(1, . . . , 1︸ ︷︷ ︸
b

, db+1, . . . , dn) ≤ (7/8)b−1.

Proof. During the peeling process, we can ignore all nodes of degree 2 because they do
not influence the success probability (see Lemma 7.13). Let us therefore now look at the
remaining nodes. If we connect to one of the nodes of degree 1, we have found a tree. This
means that the construction fails because we need each component to be a pseudotree and
not a tree. Because the average degree is 2, we have at most 3b stubs at nodes with degree

Sho ckHash

80 7.4 Analysis

≥ 3. Therefore, the probability that we connect to a node of degree 1 (possibly indirectly
through nodes of degree 2) is at most (b − 1)/(4b). We can now apply this iteratively until
all nodes of degree 1 are peeled away. This gives the following probability that we never
connect to a node of degree 1 (and therefore fail):

p(1, . . . , 1︸ ︷︷ ︸
b

, db+1, . . . , dn) ≤
b∏

j=1

(
1 − j − 1

4j

)
=

b∏
j=1

(
3
4 + 1

4j

)

=
b∏

j=2

(
3
4 + 1

4j

)
≤

b∏
j=2

(
7
8

)
=
(

7
8

)b−1
. ◀

We call a hash function promiscuous if more than 90% of the nodes in its corresponding
(stub) graph have degree 2. This means that it cannot have too many nodes of degree 1.
Promiscuous hash functions are rare, as we have seen in Section 7.4.5.2. In the following, we
bound the number of compatible hash functions when our function is not promiscuous.

▶ Lemma 7.15. Let l be a hash function from H \ Hpromisc and (d1, . . . , dn/2) be the
corresponding degree sequence. Then p(d1, . . . , dn/2) ≤ (c1)n/2 where c1 is a constant ∈ (0, 1)
and n large enough.

Proof. Let X̸=2 be the set of nodes with degree ̸= 2. Because the functions considered here
are not promiscuous, we have |X̸=2| ≥ 0.1 · n/2. Because there are two times more stubs than
nodes, the nodes in X̸=2 receive 2 stubs on average. If one of the nodes receives 0 stubs, the
success probability is 0. Otherwise, at least half of the nodes in X̸=2 have to receive exactly
1 stub to satisfy the average. Therefore, l has at least b = 0.05n/2 nodes with degree 1.
Applying Lemma 7.14 and selecting c1 > (7/8)0.05 ∈ (0, 1) then concludes the proof. ◀

Now let us turn back to bipartite ShockHash. Here we have two random hash functions l

and r that give us a bipartite graph G. Let (d1, . . . , dn/2) and (d′
1, . . . , d′

n/2) be the degrees
of the nodes in the two partitions and remember that Bn is the distribution of balls in the
balls-into-bins process with n balls and n/2 bins. Then we can define q as the following
probability conditioned on the degree sequence of G:

q((d1, . . . , dn/2), (d′
1, . . . , d′

n/2))

:= Pr
(

PF(G)
∣∣∣G has degree sequence (d1, . . . , dn/2), (d′

1, . . . , d′
n/2)

)
= Pr

(
PF(l, r)

∣∣∣ l, r give degree sequence (d1, . . . , dn/2), (d′
1, . . . , d′

n/2)
)

▶ Lemma 7.16. For any d1, . . . , dn/2, d′
1, . . . , d′

n/2 we have q((d1, . . . , dn/2), (d′
1, . . . , d′

n/2)) ≤
p(d1, . . . , dn/2) · p(d′

1, . . . , d′
n/2).

Proof. Recall that the peeling process in the configuration model iteratively matches stubs
that are the only remaining stub of their node. It can therefore be understood as the process
of alternately removing a lonely stub and a random stub (and emitting a corresponding
edge). Failure means that a randomly removed stub was lonely. If in the bipartite case
we alternate between picking the lonely stubs on the left and on the right, then within
each of the two partitions we are alternating between removing a lonely stub and a random
stub. Therefore, we are basically running the peeling process within the two partitions
separately. This suggests that the probability q((d1, . . . , dn/2), (d′

1, . . . , d′
n/2)) that a bipartite

graph is a pseudoforest when sampled from the configuration model with degree sequence

7.4.5 Hash Function Pools 81

((d1, . . . , dn/2), (d′
1, . . . , d′

n/2)) is equal to the product of the probabilities p(d1, . . . , dn/2)
and p(d′

1, . . . , d′
n/2) that two graphs are pseudoforests, namely those sampled from the

configuration model with degree sequences (d1, . . . , dn/2) and (d′
1, . . . , d′

n/2), respectively.
However, there is no strict equality due to a slight asymmetry: In the first partition we

begin with removing a lonely stub while in the second partition we begin with removing a
random stub. This slightly increases the failure probability for the second partition because
there is always one lonely stub more when selecting a random stub than there would otherwise
be. Note also that the first partition may run out of lonely stubs while the second partition
has at least one lonely stub remaining. In that case we would remove a lonely stub from the
second partition twice in a row, putting things back on track for the second partition.

Overall, the increase in failure probability for the second partition during (parts of) the
process is accounted for by the “≤” in our statement. ◀

Both p(d1, . . . , dn/2) and ∥C(l)∥ provide a way to rate the quality of a hash function
candidate. However, there is a subtle but important difference between the two. While
∥C(l)∥ looks at the compatible partners in the bipartite case, p(d1, . . . , dn/2) looks at the
graph when connected to itself. For example, a hash function candidate that leads to only
nodes of degree 2 has p(2, . . . , 2) = 1. However, we get ∥C(l)∥ < 1 because l is not compatible
with partners that do not hit all output values.

We now formally connect the two probabilities p(d1, . . . , dn/2) and ∥C(l)∥. This gives a
bound for the probability of drawing a compatible partner for a function in H \ Hpromisc.

▶ Lemma 7.17. Each l ∈ H \ Hpromisc satisfies ∥C(l)∥ < (e/2)−n/2 · (c1)n/2 where c1 is a
constant ∈ (0, 1) and n large enough.

Proof. Take any hash function l ∈ H \ Hpromisc and its corresponding degree sequence
(d1, . . . , dn/2). As a reminder, Bn is the distribution of balls in the balls-into-bins process
with n balls and n/2 bins. Then

∥C(l)∥ = Pr(PF(l, r))

= E(d′
1,...,d′

n/2)∼Bn

(
Pr
(

PF(l, r)
∣∣∣ r has degree sequence (d′

1, . . . , d′
n/2)

))
= E(d′

1,...,d′
n/2)∼Bn

(
q((d1, . . . , dn/2), (d′

1, . . . , d′
n/2))

)
Lem. 7.16

≤ E(d′
1,...,d′

n/2)∼Bn

(
p(d1, . . . , dn/2) · p(d′

1, . . . , d′
n/2)

)
= p(d1, . . . , dn/2) · E(d′

1,...,d′
n/2)∼Bn

(
p(d′

1, . . . , d′
n/2)

)
(7.5)= p(d1, . . . , dn/2) · (e/2)−n/2Lem. 7.15

≤ c
n/2
1 · (e/2)−n/2. ◀

7.4.5.4 Concentration Bounds
Remember variable Z = ∥

⋃
i∈[k] C(li)∥, which is the probability that a randomly selected

function is compatible with a function in our pool. Also remember C∗(l) = C(l) \ Hpromisc
Unfortunately, we cannot directly give concentration bounds on Z or even calculate E(Z)
because we do not know how using a pool of hash functions influences the probabilities. We
therefore look at three additional random variables, defined as follows:

Z∗ := ∥
⋃

i∈[k]

C∗(li)∥, Ẑ :=
∑
i∈[k]

∥C∗(li)∥, D :=
∑

1≤i<j≤k

∥C∗(li) ∩ C∗(lj)∥

Sho ckHash

82 7.4 Analysis

Z∗ considers only partners in H \ Hpromisc. Ẑ is easier to calculate because it looks at
each set separately. In the remainder of this section, we then determine bounds on Z∗, Ẑ,
and D, which we can later use to bound Z.

▶ Lemma 7.18. Let Z∗, Ẑ and D be as defined above. Then E(Ẑ) > 4/5 · (e/2)−n/2.

Proof.

E(Ẑ) =
∑
i∈[k]

E(∥C∗(li)∥) ≥
∑
i∈[k]

(E(∥C(li)∥) − ∥Hpromisc∥)

= k ·
(
(e/2)−n − ∥Hpromisc∥

)Lem. 7.11
≥ k ·

(
(e/2)−n − 0.66n · |H|

|H|

)
= (e/2)−n/2 − 0.66n(e/2)n/2 = (1 − (0.66 · e/2)n) · (e/2)−n/2

≥ (1 − 0.9n) · (e/2)−n/2 ≥ 4/5 · (e/2)−n/2 for n large enough. ◀

▶ Observation 7.19. For Ẑ, D and Z∗ defined as above, it holds that Ẑ − D ≤ Z∗ ≤ Ẑ.

Proof. To show the bounds, we use the inclusion-exclusion principle, namely that for sets
A and B, |A ∪ B| = |A| + |B| − |A ∩ B| ≤ |A| + |B|. We can give an upper bound for the
variable Z∗ by applying the inequality repeatedly using associativity of the union operation.

If we take Ẑ and subtract the sizes of all pairwise intersections, we get a lower bound. If
all partners were compatible with at most two hash functions in our pool, subtracting the
pairwise intersections would give Z∗. However, if a partner is compatible with more than
two functions, this subtracts too much, therefore giving the lower bound Ẑ − D ≤ Z∗. ◀

We can now show that E(D) is exponentially smaller than E(Ẑ). Intuitively, this means
that E(Ẑ) ≈ E(Z∗) by Observation 7.19. Our proof idea is to bound the intersections using
the bound on ∥C(li)∥ shown in Lemma 7.17.

▶ Lemma 7.20. Let D and Ẑ be as defined above. Then E(D) ≤ (c2)n/2 · E(Ẑ).

Proof.

E(D) = E

 ∑
1≤i<j≤k

∥C∗(li) ∩ C∗(lj)∥

 =
(

k

2

)
El1,l2∼U(H)(∥C∗(l1) ∩ C∗(l2)∥)

=
(

k

2

)
1

|H|
El1,l2∼U(H) (|C∗(l1) ∩ C∗(l2)|)

=
(

k

2

)
1

|H|
El1∼U(H)

(
El2∼U(H)(|C∗(l1) ∩ C∗(l2)|)

)
=

(
k

2

)
1

|H|
El1∼U(H)

 ∑
r∈C∗(l1)

Pr
l2∼U(H)

(r ∈ C∗(l2))

≤

(
k

2

)
1

|H|
El1∼U(H)

 ∑
r∈C∗(l1)

Pr
l2∼U(H)

(l2 ∈ C(r))

=

(
k

2

)
1

|H|
El1∼U(H)

 ∑
r∈C∗(l1)

∥C(r)∥

Lem. 7.17

≤
(

k

2

)
1

|H|
El1∼U(H)

(
|C∗(l1)| · (e/2)−n/2 · (c1)n/2

)

7.4.5 Hash Function Pools 83

≤ (e/2)nEl1∼U(H)(∥C(l1)∥) · (e/2)−n/2 · (c1)n/2 = (c1)n/2 · (e/2)−n/2

Lem. 7.18
≤ (c2)n/2 · E(Ẑ) for some c2 ∈ (0, 1) and n large enough. ◀

Let us now show that Ẑ does not get much smaller than its expected value.

▶ Lemma 7.21. Let Z∗, Ẑ and D be as defined above. Then Pr(Ẑ ≥ E(Ẑ)/2) > 1 − (c3)n

where c3 is a constant ∈ (0, 1) and n large enough.

Proof. The Bernstein inequality [Ber24] states that for independent and zero-mean random
variables Vi with |Vi| ≤ M , it holds that:

Pr
(

n∑
i=1

Vi ≥ t

)
≤ exp

(
−

1
2 t2∑n

i=1 E (V 2
i) + 1

3 Mt

)
To apply the inequality, we now center our variables ∥C∗(li)∥ and mirror them around

the value 0, giving us Vi = E(∥C∗(li)∥) − ∥C∗(li)∥. Centering only makes the maximum
smaller. Through Lemma 7.12, we can assume that none of our functions li is promiscuous.
This can be formalized by increasing c3 accordingly. Therefore, we get maxi∈[k](Vi) ≤
max(∥C∗(li)∥) ≤ max(∥C(li)∥) ≤ (c1)n/2 · (e/2)−n/2 =: M through Lemma 7.17. Before we
can get to the Bernstein inequality, we need another ingredient. Let us upper bound the
value of E

(
(Vi)2) as follows:

E
(
(Vi)2) = E

(
(∥C∗(li)∥ − E (∥C∗(li)∥))2

)
= E

(
∥C∗(li)∥2)− E (∥C∗(li)∥)2

≤ E
(
∥C∗(li)∥2) ≤ E

(
max
j∈[k]

∥C∗(lj)∥ · ∥C∗(li)∥
)

= max
j∈[k]

∥C∗(lj)∥ · E (∥C∗(li)∥)

Lem. 7.17
≤ c

n/2
1 · (e/2)−n/2 · (e/2)−n = c

n/2
1 · (e/2)−n/2−n

Setting t = 4/10 · (e/2)−n/2 and applying the Bernstein inequality in the step annotated
with ∗, we get:

Pr
(

Ẑ ≤ E(Ẑ)/2
)

= Pr

∑
i∈[k]

∥C∗(li)∥ ≤ E(Ẑ)/2

= Pr

∑
i∈[k]

E(∥C∗(li)∥) −
∑
i∈[k]

Vi ≤ E(Ẑ)/2

= Pr

E(Ẑ) −
∑
i∈[k]

Vi ≤ E(Ẑ)/2

 = Pr
(

k∑
i=1

Vi ≥ E(Ẑ)/2
)

Lem. 7.18
≤ Pr

(
k∑

i=1
Vi ≥ 4/10 · (e/2)−n/2

)
∗
≤ exp

(
−

1
2
(
4/10 · (e/2)−n/2)2

k · c
n/2
1 · (e/2)−n/2−n + 1

3 · (cn/2
1 · (e/2)−n/2) · ((e/2)−n/2/2)

)

= exp
(

−
2

25 (e/2)−n

c
n/2
1 · (e/2)−n + 1

6 · c
n/2
1 · (e/2)−n

)

= exp
(

−12/175 · c
−n/2
1

)
=
(

e−12/175
)((c

−1/2
1

)n)
≤ (c3)n

for some c3 ∈ (0, 1) and n large enough. ◀

Sho ckHash

84 7.4 Analysis

Lemma 7.20 gives a bound on E(D) and Lemma 7.21 gives a concentration bound on Ẑ.
With these insights, we now give a bound on Z∗ in terms of E(Ẑ).

▶ Lemma 7.22. Let Z∗, Ẑ and D be as defined above. Then Pr
(

Z∗ < E(Ẑ)/4
)

≤ (c4)n

where c4 is a constant ∈ (0, 1) and n large enough.

Proof. We can bound the probability that Z∗ deviates too much from E(Ẑ)/4 as follows. In
the step annotated with ∗, we use the Markov inequality (Pr(D ≥ a) ≤ E(D)/a).

Pr
(

Z∗ < E(Ẑ)/4
)Obs. 7.19

≤ Pr
(

Ẑ − D < E(Ẑ)/4
)

≤ Pr
(

Ẑ < E(Ẑ)/2 ∨ D ≥ E(Ẑ)/4
)

≤ Pr
(

Ẑ < E(Ẑ)/2
)

+ Pr
(

D ≥ E(Ẑ)/4
)

Lem. 7.21
≤ (c3)n + Pr

(
D ≥ E(Ẑ)/4

) ∗
≤ (c3)n + E(D)

E(Ẑ)/4
Lem. 7.20

≤ (c3)n + (c2)n/2/4 ≤ (c4)n for some c4 ∈ (0, 1) and n large enough. ◀

7.4.5.5 Combining with Pool (ri)i∈[k]

We can now plug together the previous results, giving us the success probability of bipartite
ShockHash when using a pool of size k. With Pr (success), we denote the probability that
there is a pair of compatible hash functions li and rj , i, j ∈ [n/2] in our pools.

▶ Lemma 7.23. Let Z be defined as above. Then Pr (success | Z = z) = 1 − (1 − z)k.

Proof.

Pr (success | Z = z) = Pr

∃i ∈ [k] : ri ∈
⋃

j∈[k]

C(lj)

∣∣∣∣∣∣ ∥
⋃

j∈[k]

C(lj)∥ = z

= Pr

p1,...,pk∼Ber(z)
(∃i ∈ [k] : pi = 1) = 1 − (1 − z)k. ◀

We already have most of the proof done. We just need to factor in the probability that
the precondition of the previous lemma holds.

▶ Theorem 7.24. Let us take two pools (li)i∈[k] and (ri)i∈[k] of size k = (e/2)n/2 containing
randomly sampled hash functions. Then the probability that there are two hash functions li
and rj (i, j ∈ [k]) in the pools such that PF(li, rj) is > 0.17 for n large enough.

Proof.

Pr(success) ≥ Pr
(

success ∧ Z ≥ E(Ẑ)/4
)

= Pr
(

success
∣∣∣ Z ≥ E(Ẑ)/4

)
· Pr(Z ≥ E(Ẑ)/4)

≥ Pr
(

success
∣∣∣ Z ≥ E(Ẑ)/4

)
· Pr(Z∗ ≥ E(Ẑ)/4)

=
∞∑

z=E(Ẑ)/4

(
Pr (success | Z = z) · Pr(Z = z | Z ≥ E(Ẑ)/4)

)
· Pr(Z∗ ≥ E(Ẑ)/4)

7.4.6 ShockHash Construction 85

Lem. 7.23=
∞∑

z=E(Ẑ)/4

((
1 − (1 − z)k

)
· Pr(Z = z | Z ≥ E(Ẑ)/4)

)
· Pr(Z∗ ≥ E(Ẑ)/4)

≥
∞∑

z=E(Ẑ)/4

((
1 − (1 − E(Ẑ)/4)k

)
· Pr(Z = z | Z ≥ E(Ẑ)/4)

)
· Pr(Z∗ ≥ E(Ẑ)/4)

=
(

1 − (1 − E(Ẑ)/4)k
)

·
∞∑

z=E(Ẑ)/4

(
Pr(Z = z | Z ≥ E(Ẑ)/4)

)
︸ ︷︷ ︸

=1

· Pr(Z∗ ≥ E(Ẑ)/4)

Lem. 7.22,7.18
>

(
1 −

(
1 − (e/2)−n/2

5

)k
)

· (1 − (c4)n) =
(

1 −
(

1 − 1
5k

)k
)

· (1 − (c4)n)

≥
(

1 − e−1/5
)

· (1 − (c4)n) > 0.18 for n large enough. ◀

This concludes the proof of combining hash functions from a pool of candidates. We
have seen that taking the pools of size k = (e/2)n/2 gives us a constant probability that
there are two compatible functions in the pools. Note again that our actual implementation
uses one single, growing pool, not two fixed size pools. Therefore, we do not need to retry
the construction if the initial pool size is not enough, but can just continue adding more
functions to the pool.

7.4.6 ShockHash Construction
ShockHash tries different hash function seeds, which is equivalent to generating random
graphs. Given the probability that a random graph is a pseudoforest, it is easy to determine
the expected number of graphs ShockHash needs to try in order to find an MPHF. This
leads directly to the space usage and construction time of ShockHash, which we state in the
following theorem.

▶ Theorem 7.25. A ShockHash minimal perfect hash function mapping n keys to [n] needs
log(e)n + O(log n) bits of space in expectation and can be constructed in expected time
O((e/2)n · n).

Proof. From Theorem 7.7, we know that the probability of the graph being a pseudoforest is
≥ (e/2)−ne−1√

π. We construct these graphs uniformly at random, so the expected number
of seeds to try is ≤ (e/2)ne/

√
π. The space usage is given by the n+o(n) bits for the retrieval

data structure, plus the bits to store the hash function index. In the step annotated with ∗,
we use Jensen’s inequality [Jen06] and the fact that log is concave.

E(log(seed value))
∗
≤ log(E(seed value)) ≤ log

(
(e/2)ne/

√
π
)

= log(e)n − n + O(1) .

For determining if at least one of the 2n functions corresponding to such a seed is valid, we
can use an algorithm for finding connected components, as described in Section 7.2. This takes
linear time for each of the seeds, resulting in an overall construction time of O((e/2)n · n).
Constructing the retrieval data structure is then possible in linear time [Dil+22] and happens
only once, so it is irrelevant for the asymptotic time here. ◀

Looking back at the simple brute-force approach, each of its en/
√

2πn expected trials
needs n hash function evaluations, leading to a construction time of O(en

√
n). Now, as

shown in Theorem 7.25, ShockHash needs time O((e/2)n · n). This makes ShockHash almost

Sho ckHash

86 7.5 Partitioning

2n times faster than the previous state of the art. Given the observations in Ref. [Bez+23],
we conjecture that ShockHash with rotation fitting reduces the number of hash function
evaluations by an additional factor of n, while the space overhead tends to zero. In the
following Theorem, we now give the resulting construction time and space consumption of
the bipartite version.

▶ Theorem 7.26. A bipartite ShockHash minimal perfect hash function needs log(e)n +
O(log n) bits of space in expectation and can be constructed in expected time O(1.166n).

Proof. We know that we need to test (e/2)ne/
√

n candidate pairs (h0, h1) in expectation
before we find a perfect hash function. As described in Section 7.3, instead of sampling two
hash functions independently, we use a pool of hash functions and test all combinations
of them. Theorem 7.24 shows that if we use a pool size of k = (e/2)n/2 ≈ 1.166n, we get
a constant success probability. Until here, this does not improve the construction time
asymptotically because all k2 combinations need to be tested. However, instead of combining
all of the candidates, we can filter them directly while building the candidate pool. The
filter, as with plain ShockHash, is very effective: The probability that the n hash values in a
partition of size n/2 hit all output positions is Θ(0.836n/2) [Wal24]. This means that we are
only considering about ((e/2)n/2 · 0.836n/2)2 = (e/2 · 0.836)n ≈ 1.136n pairs of hash functions
in expectation. The construction time is therefore bounded by max{1.166n, 1.136n}. Note
that both of these values were rounded up anyway, so polynomial factors are dominated.

Looking at the space consumption of bipartite ShockHash, we need to encode two seeds of
expected value ≤ k each. Using Jensen’s inequality and the retrieval data structure just like
in Theorem 7.25, we get the resulting space usage. The fact that we suppressed polynomial
factors in the analysis disappears in the O(log n) term. ◀

7.5 Partitioning

Even though ShockHash demonstrates significant speedups, by itself, it still needs exponential
running time. As mentioned in the introduction, real world MPHF constructions usually do
not search for a function for the entire input set directly. Instead, they partition the input of
size N and then search on smaller subproblems of size n. In this section, we now give details
on how to partition the input set efficiently before using ShockHash as a building block.

7.5.1 ShockHash-RS = ShockHash + RecSplit
A first option is to integrate ShockHash as a base case into the highly space-efficient RecSplit
framework (see Section 4.4) and obtain ShockHash-RS. We keep the general structure of
RecSplit intact. Only in the leaves, we use ShockHash instead of brute-force. We store the
mapping from its keys to their hash function indices in one large retrieval data structure.
Finally, after all leaves are processed, we construct the 1-bit retrieval data structure with all
the N entries together.

Fanouts. RecSplit tries to balance the difficulty between the splittings and the bijections.
ShockHash improves the performance of the bijections significantly but does not modify the
way that the splittings are calculated. In this chapter, we focus only on the bijections. To
balance the amount of work done between splittings and bijections, we need to adapt the
splitting parameters using the same techniques as the RecSplit paper. The RecSplit paper
proves and uses optimal fanouts ⌈0.35n + 0.5⌉ and ⌈0.21n + 0.9⌉ for the two last splitting

7.5.2 ShockHash-Flat = ShockHash + k-Perfect Hashing 87

levels (see [EGV20, Section 5.4]). For ShockHash-RS, we can adapt their formulas accordingly
and get fanouts of ⌊0.10n + 0.5⌋ and ⌊0.073n + 0.9⌋. However, preliminary experiments show
that this is not optimal in practice. ShockHash is so much faster that the additional time
invested into the splittings does not pay off. We find experimentally that setting the lowest
splitting level to 4 and the second lowest to 3 achieves much better results in practice. To
also provide faster and space-inefficient configurations, we set all fanouts to 2 when selecting
leaf size n ≤ 24.

7.5.2 ShockHash-Flat = ShockHash + k-Perfect Hashing
An additional way to partition the input keys is to use k-perfect hashing. A minimal
k-perfect hash function maps N keys to N/k output values, where each output value is hit
exactly k times (assuming N divides k). This has applications in external memory data
structures [KLS23; LR85] and there are existing constructions [BBD09]. The idea how to
integrate ShockHash with k-perfect hashing is straightforward and similar to what we do in
ShockHash-RS (see Section 7.5.1). We simply run a two-step process of first determining a
k-perfect hash function, and then we construct small ShockHash data structures for the k

keys hitting each output value. In contrast to ShockHash-RS (see Section 7.5.1), where some
base cases could be smaller than n, here all of them have the same size.

Bumped k-Perfect Hashing. We now briefly describe a new k-perfect hash function. This
function is focused on fast queries while still having rather small space consumption. Let us
take N keys and hash them uniformly at random to a set of γN/k buckets, γ ∈ (0, 1]. By
choosing γ < 1, we can overload the buckets to ensure that most buckets receive at least k

keys. In the experiments, we use γ = 0.9. We handle overflowing buckets by determining
a fingerprint of each key. Each bucket then stores a threshold value using log(k) bits that
indicates which of the keys to bump from the bucket. This idea of bumping keys based on a
threshold is inspired by bumped ribbon retrieval (BuRR) [Dil+22]. Separator hashing [GL88]
uses a similar idea, however, without bumping keys completely and only supporting non-
minimal perfect hash functions. Figure 7.7 gives an illustration of the idea. We use a second
level of the same data structure for the bumped keys, mapping them to the remaining
(1 − γ)N/k buckets. Finally, we have a small number of keys that still get bumped in the
second level. We first enumerate them by constructing a minimal perfect hash function. In

k = 3 keys
per bucket

γN/k buckets

N keys

Bumped
keys

Hash

Fingerprint
collision

Second layer on
(1− γ)N/k
buckets

Bumped
keys

MPHF

Empty slots

4

4

6

...

...

1 2 3 4 5 6

Figure 7.7 Illustration of our bumped k-perfect hash function.

Sho ckHash

88 7.6 Variants and Refinements

our implementation, we use ShockHash-RS. With this, we then index an Elias-Fano coded
sequence [Eli74; Fan71] (see Section 2.3) storing all empty slots in the output range.

The advantage of this technique is that the majority of queries need a single access to
the array of thresholds and a comparison with the key’s threshold. Few need to evaluate the
second level, and only a tiny fraction of the queries needs to evaluate the explicit re-mapping.

ShockHash-Flat. From the bumped k-perfect hash function, we derive an MPHF that has
a significantly more flat structure than ShockHash-RS. Instead of traversing a tree structure,
it can perform a simple comparison with the threshold value for a majority of the input
keys. Because we need to access both the threshold and then (usually) the seed of that same
bucket, ShockHash-Flat stores thresholds and ShockHash seeds in an interleaved way.

7.6 Variants and Refinements

In the following section, we describe variants and implementation details of ShockHash. In
Section 7.6.1, we first explain how to achieve significant improvements in practice by using a
bit-parallel filter. We then describe two techniques to come up with hash function candidates
more efficiently, rotation fitting [Bez+23] (see Chapter 5) and quad split, in Sections 7.6.2
and 7.6.3. To use bipartite ShockHash with uneven input sizes n, only small tweaks are
necessary, which we describe in Section 7.6.4. We then continue with practical implementation
tricks in Section 7.6.5. Finally, we describe ideas for parallelization in Section 7.6.6.

7.6.1 Isolated Keys Filter
In Section 7.3, we have already described how making the graph bipartite enables efficient
filtering of hash function candidates. In the following section, we describe an additional way
of filtering seeds. Bipartite ShockHash generates a set of surjective hash function candidates
and then tests all combinations for orientability. By using an additional filter, we can speed
up this test for orientability. The idea is to look at the case that a key is the only one
mapping to a position. We refer to this key as isolated for that hash function seed. More
formally, a key x is isolated using a hash function candidate h, if {y ∈ S | h(x) = h(y)} = {x}.
If a key is isolated in both of the candidate hash functions, then in graph terminology this
corresponds to a connected component with two nodes and one edge. Since each connected
component of the final graph must have the same number of nodes and edges, there is then
no need to perform the full test for orientability. We can determine bit patterns for each
seed, indicating which of the keys are isolated. Then seed combinations can be ruled out
using a simple bit-parallel AND operation checking if a key is isolated in both candidates.
Note that the bit patterns used here refer not to the output positions but to the input keys
(and therefore have size n). Figure 7.8 illustrates the process.

A key is isolated in a partition if none of the other keys hash to its position, which
happens with probability (1 − 1/(n/2))n−1 → e−2. A seed combination passes the filter if it
has no key that is isolated in both partitions. This is approximately (1 − e−4)n ≈ 0.98n, so
the filter makes it possible to avoid the full check for a vast majority of seed combinations.
Note that we apply the filter conditioned on the case that both functions are surjective,
which should only make the filter more effective.

What makes this method interesting from a theoretical point of view is that we can be
even smarter about filtering here. As stated before, if one of the hash functions has an
isolated key at a position, we can skip testing it with all other hash functions that have an
isolated key at the same position. We can organize all candidate hash functions in a binary

7.6.2 Rotation Fitting 89

1

2

345
67

8

hi is surjec-
tive on S

1

3
6

5

Pool

(3, 5)
Final seed

{{hi(x), hj(x) +
n
2 } | x ∈ S}

is pseudoforest

Seeds

No key isolated
in both ⇐⇒
Isi∩ Isj = ∅

Is6

Is1

Is3

Is5

3 5

Is3 Is5 3 5

Isi = {x ∈ S | ∄y ∈ S \ {x} : hi(y) = hi(x)}

Figure 7.8 Filtering for isolated keys. Each seed in the pool stores a bit vector of isolated keys,
here annotated with Isi. A seed combination can only work if no key is isolated in
both partitions, which can be efficiently checked using bit operations. Only if the
filter is passed, we need to do the full orientability check.

trie data structure based on the isolated keys. Testing a new candidate hash function now
boils down to traversing the trie. In theory, this gives additional exponential improvements
in the construction time. However, preliminary experiments show that it is not helpful for
the values of n we use in practice.

7.6.2 Rotation Fitting
A technique to speed up brute-force search for perfect hash functions is rotation fit-
ting [Bez+23] (see Chapter 5). The same idea can be used in ShockHash to accelerate
the search. We distribute the keys to two sets using an unseeded 1-bit hash function. We
then determine the bit mask of output values that are hit in both of the sets. Like in the bit
mask filter, which we use before checking for orientability (see Section 7.2), only if the logical
OR of both masks has all bits set, it is worth testing the seed more closely. If we now cyclically
rotate one of the bit masks and try again, we basically get a new chance of all output values
being hit, without having to hash each key again. We then consider the distance to rotate
the keys as part of the hash function seed. This corresponds to an addition modulo n to all
hash values of the second set. We conjecture that – as in Ref. [Bez+23] – this reduces the
number of hash function evaluations by a factor of n, while the space overhead tends to zero.

For bipartite ShockHash, rotation fitting can be applied as well, though in a slightly
different way. Rotating one of the partitions of the bipartite graph within itself is not useful
because it generates isomorphic graphs. Rotating the two partitions into each other would
violate the bipartite condition, thus preventing to use the hash function pools. Instead,
we can use rotation fitting to find seed candidates within each partition. More specifically,
when looking for seed candidates for one partition, we distribute the keys to two subsets
using an unseeded 1-bit hash function. We can then rotate one of the sets (modulo n/2) to
get additional hash function candidates. Each rotation can be tested for surjectivity using
simple bit shifts that can happen in registers. In practice, this significantly improves the
construction time because fewer hash functions need to be evaluated. However, the quad
split technique described in the following section even enables exponential speedups.

Sho ckHash

90 7.6 Variants and Refinements

1

2

345
67

8

3

Pool

Final seed

Seeds

(3, 5)

(1, 6)
(1, 3)

Pool

((1, 6), (3, 5))

{{h(i,j)(x), h(k,l)(x) +
n
2 } | x ∈ S}

is pseudoforest

(1, 6) (3, 5)

h3(SA)

h(i,j) surjective ⇐⇒
hi(SA) ∪ hj(SB) = [n/2]

h3(SB)
1

h1(SA)

h1(SB)

2
h2(SA)

h2(SB)

3
h3(SA)

h3(SB)

6
h6(SA)

h6(SB)
Filtering isolated
keys can addition-
ally happen here

h(i,j)(x) =

{
hi(x) x ∈ SA

hj(x) x ∈ SB

Figure 7.9 Additional filtering opportunities in quad split. We create a pool of all seeds without
filtering but annotate each seed a bit vector containing hash function output values.
Then we combine two seeds to form a seed for one partition. Surjectivity can be
checked efficiently using bit operations. Therefore, the resulting seed is a tuple of
four seeds – one for each half of the keys and each partition. In our implementation,
we also add the filter for isolated keys on top (see Section 7.6.1 and Figure 7.8).

7.6.3 Quad Split
The construction is dominated by the time spent evaluating hash function candidates
(see Theorem 7.26), so it is natural to look at this step for improvements. For bipartite
ShockHash, the quad split technique reduces the amount of time spent on finding surjective
seed candidates. It basically applies the idea of bipartite ShockHash on another level of the
same data structure. Like in rotation fitting, we split the input set into two sets SA and SB

using a constant 1-bit hash function. Now we can hash each of the two sets using independent
hash functions. In particular, we can test all combinations of assigning some hash function
to each of the two sets. This reduces the number of hash function evaluations significantly.

For a seed i, let hi(SA) and hi(SB) indicate the sets of hash function output values of
the two subsets SA and SB. A seed i for SA can be used together with a seed j for SB if
hi(SA) ∪ hi(SB) = [n/2]. By storing hi(SA) and hi(SB) as bit vectors indicating the output
values, this compatibility check is a simple and efficient OR operation. In the quad split
technique, we therefore annotate each hash function seed with this bit vector to enable fast
search for a possible combination of seeds that is surjective. This process is illustrated in
Figure 7.9.

Like with the isolated keys filter described in Section 7.6.1, we can again use a trie structure
to avoid testing all combinations. We believe that this enables exponential improvements in
the construction time, which could be implemented in future work. Quad split is orthogonal
to the isolated keys filter, so we can actually combine both optimizations.

To encode the combined seed, we use a pairing function again. In contrast to the bipartite

7.6.4 Supporting Uneven n 91

Pool

l

r

Half probability

Mirror

Figure 7.10 Illustration of how we support uneven n by giving one position half the probability.

tries in ShockHash, the hash functions cannot be exchanged, so we cannot assume that one
seed is larger than the other. We therefore need a more general pairing function. The most
fitting pairing function here is Szudzik’s pairing function (see Section 7.1), which enumerates,
for all k ∈ N, all pairs in [k] × [k] before moving on to pairs involving numbers bigger
than k. This means that we can test all combinations of previous hash functions before
having to evaluate the next one. In our implementation, we make sure to try hash function
combinations in linear order in the value of the pairing function.

7.6.4 Supporting Uneven n

To support uneven numbers n of input keys, we can relax the bipartite property. The idea
is that the output value ⌈n/2⌉ can be hit by both hash functions, but each with half the
probability. When combining the two halves, the value then gets the same probability as all
other output values. For filtering candidate hash functions for surjectivity, the corresponding
bit needs to be ignored – a seed candidate can be valid both if the bit is set or not set. Now,
in order to use hash functions from a single pool for both the left and the right part, we have
to mirror the functions used for the right part.6 Refer for Figure 7.10 for an illustration.

7.6.5 Engineering

In the following section, we explain implementation tricks that we add to make our construc-
tion even faster in practice.

Orientability Check. Determining whether a given graph is a pseudoforest can be achieved
in linear time using a connected components algorithm. However, this incurs significant
overheads for building a graph data structure. To avoid this, our implementation therefore
uses incremental cuckoo hash table construction with near linear time. For this, we keep an
array representing the graph nodes. In order to avoid re-calculating a hash every time we
evict a key, and to avoid case distinctions between first and second candidate cell, we use
the known XOR trick. We annotate each key with the XOR of both its candidate cells. When
evicting a key, we can calculate its other candidate cell efficiently by XORing the current cell
with the stored value. This uses that XOR is commutative. We abort the insertion as soon as
we detect a cycle.

6 For simplicity, our current implementation uses plain shifting, accepting a doubled probability for the
middle bit. Supporting uneven n then just boils down to rounding compile time constants to the right
direction. When integrated into RecSplit, we expect uneven n to happen only once in every two buckets,
so it has a negligible overhead of about 1/2b bits per key.

Sho ckHash

92 7.6 Variants and Refinements

Partial Hash Calculation. As described in Section 7.6.2, we can use rotation fitting in
plain ShockHash. There we make the observation that hashing the first set of keys almost
always yields a graph that, by itself, is a pseudoforest. This is not surprising because the
load factor is usually close to the load threshold c = 0.5 and n is small (which enables higher
load [LSW23b], see Chapter 6). We make use of this fact and reduce the number of hash
function evaluations by keeping the hashes for the first set the same and just retrying hash
functions for the second set. More precisely, if x is the hash function seed, we hash each key
in the first set with seed x − (x mod k), where k is a tuning parameter, and the keys of the
second set with seed x. Therefore, the hash values of the first set can be cached over multiple
iterations. In preliminary experiments, we find a value of k = 8 to be a good fit – values
much larger than that have diminishing returns in performance improvement and start to
influence the space consumption. At k = 8, however, the influence on the space consumption
is negligible when n is large. Given that hashing the keys is a bottleneck during construction,
this reduces the number of keys that need to be hashed by a factor of close to 2. We only
apply this optimization for large n > 32.

Hash Cache. In bipartite ShockHash, we regularly combine two hash function candidates
from our pool to see if the resulting graph is a pseudoforest. While we skip that test for
many of the candidates using the simple bit-parallel filter described in Section 7.6.1, there is
still a large number of candidates to compare. Re-evaluating the hash functions for these
candidates can be a bottleneck depending on the input size n. An obvious idea is to cache
the hash function output values of the seed candidates. Because the input sets and therefore
the hash values are very small, we can store each hash value in a single byte. This makes the
amount of space needed for each seed candidate relatively small.

Sentinels. For large n, the quad split technique spends most of its construction time
calculating the logical OR of bit patterns looking for a result that has all bits set. This
inner loop consists of only a very small number of assembly instructions. We can achieve
considerable speedups here by adding a sentinel element to the end of the array that already
has all bits set. Then we no longer need the repeated bounds check for the array. When
using SIMD parallelization (see Section 7.6.6), we use multiple sentinels depending on the
number of SIMD lanes.

7.6.6 Parallelization
The main computational load behind ShockHash looks for seeds yielding pseudoforests and
can be parallelized on multiple levels: Over buckets when using RecSplit for partitioning,
ShockHash building blocks, seeds, hash-function evaluations, and bit-parallel filters. The
remaining operations are also well parallelizable: Hashing of keys to buckets can be split
between processors. Parallel construction of the retrieval data structure can be done
similarly [Dil+22]. In the following we explain one possible parallelization with respect to
SIMD instructions and multi-threading. We also outline a hybrid CPU/GPU implementation.

SIMD. In plain ShockHash, we use SIMD parallelism in two locations. First, we use SIMD
to determine the two candidate positions of all keys and to determine the bit mask for
filtering. A key point here is to collect the bitwise OR of individual lanes and to only add the
lanes together after all keys are done. Second, we use SIMD to evaluate the bit mask filter
(see Section 7.2) with different rotations in parallel. Our implementation uses AVX-512 (8
64-bit values) if available and AVX2 (4 64-bit values) otherwise.

93

Bipartite ShockHash can also be parallelized using SIMD instructions. When using
the quad split technique, we parallelize the test for candidate functions, which involves
iterating over long lists of bit patterns, calculating the logical OR with each, and looking for
a result that has all bits set. However, the other more involved data structures are harder to
parallelize using SIMD because of more complex control flows. Therefore, we use SIMD only
for checking lists of bit patterns, which is the main bottleneck for large n.

Multi-Threading. Because ShockHash is intended to be integrated into a partitioning
framework, we can naively parallelize over the different ShockHash base cases. A simple
coarse-grained source of parallelism are the RecSplit buckets. We can use any kind of load
balancing to split them between threads. Even static load balancing may work because
variances in construction time will average out. However, some kind of dynamic load
balancing is likely to be more efficient and also works with cores of different speed that are
now becoming standard in many multi-core processors. The retrieval data structure we use,
BuRR [Dil+22], can be parallelized as well.

GPUs. A full GPU parallelization might be difficult and inefficient for cuckoo hashing as it
has irregular control flow and memory access. Since filtering asymptotically dominates the
computations for highly space-efficient variants, one might look at a hybrid implementation
where a GPU produces a stream of seeds defining random graphs that cover all nodes and
where a multicore CPU performs further stages of computation. For bipartite ShockHash
with quad split, for example, the majority of the construction time is spent on comparing
bit patterns to check if two hash function candidates are compatible. Here we can use the
massive parallelism of GPUs to compare many patterns in parallel. Then the CPU can
perform the less frequent and more complex checks for orientability.

7.7 Internal Experiments

In this section, we give an internal evaluation of our implementation, comparing tuning
parameters and variants. For a comparison with competitors, as well as an explanation of
the experimental setup, we refer to Chapter 8. For now, it is enough to know that we use a
consumer machine and perform our experiments with a single thread. The code and scripts
needed to reproduce our experiments are available on GitHub under the GNU General Public
License [Leh23c; Leh24].

Our implementation of ShockHash uses the BuRR retrieval data structure [Dil+22] with
128-bit ribbon width and 2-bit bumping information. For ShockHash-RS, we use partitioning
based on RecSplit [EGV20], in particular the SIMD-parallel implementation [Bez+23]. For
partitioning keys in ShockHash-Flat, we sort them using IPS2Ra [Axt+22].

7.7.1 Number of Trials in Theory and Practice
In Figure 7.11a, we compare the average number of hash function trials for each bijection
search technique. From the different slopes of the curves, it is clearly visible that rotation
fitting [Bez+23] saves a polynomial factor compared to plain brute-force, while ShockHash
saves an exponential factor. Additionally, we plot the shown upper bounds for the number
of trials of brute-force and ShockHash. For the rotation fitting variants, we plot the base
variants divided by n, which is not formally shown to be a theoretical bound, but is an
obvious conjecture. The plot shows that brute-force and rotation fitting are close to the
given functions. For plain ShockHash, the measurements are even better than the theory,

Sho ckHash

94 7.7 Internal Experiments

Brute-Force [EGV20] en/
√

2πn

Rotation Fitting [Bez+23] en/
√

2πn/n

ShockHash (e/2)ne/
√

π

ShockHash + RF (e/2)ne/(n
√

π)
Bip. ShockHash 1.166n

Bip. ShockHash + Quad Split

20 40 60

100

103

106

109

n

Av
g.

su
cc

es
sf

ul
se

ed

(a) Average successful seed. For bipartite Shock-
Hash, we plot the average of the largest seed
that was evaluated before pairing up seeds. Be-
cause a similar approach would be misleading
for quad split due to additional pairing and
testing of combinations, we omit it here.

20 40 60

0

1

2

3

4

n
B

its
sp

ac
e

ov
er

he
ad

(b) Idealized space overhead over the lower bound
log(nn/n!) in bits. If the average seed is s we
charge log(s) bits, plus n bits for retrieval (if
applicable).

Figure 7.11 Hash function evaluations and space overhead of ShockHash compared with more
simple brute-force techniques. The dotted functions are upper bounds. Note that for
bipartite ShockHash, we only know an upper bound of O(1.166n) and not 1.166n.

which suggests that our proof in Theorem 7.7 is not tight. Surprisingly, ShockHash seems
to match the function we get when dividing our analysis by

√
n. We conjecture that the

expected number of 1-orientations of a random pseudoforest might actually not be e ·
√

2n,
but close to constant. This makes ShockHash an even better replacement for the brute-force
technique. Bipartite ShockHash matches the slope of our analysis as well, but note that our
analysis only shows an upper bound of O(1.166n), not an exact value.

Figure 7.11b gives the difference between the idealized space consumption and the space
lower bound log(nn/n!). It indicates that ShockHash loses space close to constant, which
becomes negligible for larger n. This explains why we need to select larger n in ShockHash-RS
compared to RecSplit with brute-force to achieve the same space consumption per key. Even
with these larger n, ShockHash construction is significantly faster than brute-force. Bipartite
ShockHash appears to have only a small constant space overhead over plain ShockHash.

7.7.2 Seed Candidate Generation

Figure 7.12 shows different methods to generate seed candidates. For comparison, the plot
also includes brute-force search. It is clearly visible that ShockHash is significantly faster
than brute-force. Also, the bipartite version shows clear speedups compared to the plain
version. Filtering based on isolated keys (see Section 7.6.1) makes the construction about
two times faster. While rotation fitting already gives impressive speedups, our quad split
technique (see Section 7.6.3) is even faster for large n. Starting with about n = 60, the quad

7.7.3 Partitioning 95

20 40 60 80 100104

105

106

107

Input size n

T
hr

ou
gh

pu
t

(K
ey

s/
s)

Brute-Force [EGV20]
ShockHash
ShockHash + RF
Bipartite
Bipartite + Filter
Bipartite + Filter + RF
Bipartite + Filter + Quad Split

Figure 7.12 Construction throughput using different methods to come up with seed candidates.
For comparison, the plot also includes brute-force search. Variants annotated with
RF use rotation fitting. The filtered variants of bipartite ShockHash use the filter
for isolated keys.

split technique is up to one order of magnitude faster than the basic bipartite ShockHash
implementation. Note that the comparison here needs to be taken with a grain of salt because
different methods have different space overheads based on n. However, for larger n, the
methods have almost the same space usage. For a plot that takes space consumption into
account, we refer to the overall evaluation in Chapter 8.

7.7.3 Partitioning
In Figure 7.13, we give the construction time, query time, and space consumption for the
two different partitioning schemes, ShockHash-RS and ShockHash-Flat. For small n, the
ShockHash-RS construction time is dominated by the splittings, which can be seen by the gap
between ShockHash-RS and ShockHash-Flat. For large n, the base case dominates and both
techniques have a similar throughput. Looking at the query performance, ShockHash-Flat
is faster for n > 48, which is the most interesting range for good space consumption. The
query throughput increases for larger base cases because we need to spend less time in the
partitioning step. The jumps in the query throughput in ShockHash-Flat are caused by the
fixed-width coding of ShockHash seeds, which needs a fallback data structure when a seed
does not fit. For the same base case size, the space consumption of the flat partitioning
scheme is higher than with RecSplit. Compared to ShockHash-RS, ShockHash-Flat trades
space consumption for faster queries.

7.8 Summary

ShockHash is a new way to compute minimal perfect hash functions on small sets. By
combining trial-and-error search with cuckoo hashing and retrieval data structures, ShockHash
achieves an exponential speedup over plain brute-force (almost a factor 2n). While the plain
brute-force technique samples functions and hopes for one to be an MPHF, ShockHash
samples graphs and hopes for one to be a pseudoforest. With bipartite ShockHash, we
present an extension that samples bipartite graphs and performs aggressive filtering to
achieve additional exponential speedups. These improvements enable the currently fastest
way to achieve near space-optimal minimal perfect hash functions and breaks the dominance
of the previous best methods that relied on pure brute-force for their base-case subproblems.

Sho ckHash

96 7.8 Summary

0 50 100

105

106

Base case size n

C
on

st
ru

ct
io

n
(K

ey
s/

s)

0 50 100
0

5

10

Base case size n

Q
ue

rie
s

(M
Q

ue
rie

s/
s)

0 50 100

1.5

2

2.5

Base case size n

Sp
ac

e
us

ag
e

(B
its

/k
ey

)

Bip. ShockHash-RS Bip. ShockHash-Flat

Figure 7.13 Space usage, construction performance and query performance for different parti-
tioning schemes and base case sizes n. The total number of input keys is N = 100
million. As a base case we use bipartite ShockHash with quad split.

We integrate ShockHash as a base case into different partitioning frameworks. When
using ShockHash inside RecSplit, we get ShockHash-RS, which can be constructed up to
three orders of magnitude faster than the previous state of the art when comparing sequential
codes. Constructing with a single thread, ShockHash-RS is even faster than our tuned GPU
implementation of the brute-force technique (see Chapter 5). Using ShockHash inside a newly
developed k-perfect hash function, we get ShockHash-Flat, which can be constructed about
32 times faster than SIMDRecSplit. At the same time, it has 30% faster queries. This starts
to close the gap to constructions that are way less space-efficient and brings space-efficient
perfect hash functions closer to practical applications.

97

8 Practical Comparison
of Modern Perfect Hashing

Summary: In this chapter, we compare different state-of-the-art perfect hash function
constructions. The most important properties for their evaluation are construction
performance, query performance, and space consumption. Papers about perfect hashing
naturally give a focus on their own approach. In this chapter, we explicitly aim at
a balanced comparison to provide a thorough overview over the landscape of modern
perfect hashing.

Attribution: The majority of the content featured in this chapter is new. It is
inspired by the evaluations of our previous papers [Bez+23; Her+24a; LSW23b;
LSW24b] but gives a much more balanced comparison. Also, it uses a new way to
plot the three-dimensional measurements.

In this chapter, we compare the performance of state-of-the-art perfect hash function con-
structions. We give a detailed evaluation that can help to pick the most fitting perfect hash
function for any given application. For this comparison, we look at the three most important
parameters for perfect hash function construction – space consumption, construction per-
formance, and query performance. The evaluations in papers often naturally give a focus
on their own approach or on a subset of these properties. In this chapter, we explicitly aim
at a balanced comparison. It can be used to get a thorough overview over the performance
of modern perfect hashing. We do not evaluate k-perfect hash functions or perfect hash
functions that are not minimal in order to keep the comparison more focused.

While almost all papers about perfect hashing evaluate the parameters we mention above,
they often do so in tabular form. Especially if approaches have a wide range of configurations,
this makes it hard to discern the trade-offs that each algorithm offers. We therefore use
a visual plot in our papers that shows a large number of configurations at once [Bez+23;
Her+24a; LSW23b; LSW24b]. We start this chapter in Section 8.1 with discussing problems
with these visualizations and propose a new type of plot. In Section 8.2, we explain our
experimental setup. We then present and discuss our actual measurements, focusing on
construction performance (in Section 8.3) and query performance (in Section 8.4). Afterwards,
we measure how the approaches scale in the input size in Section 8.5 and how they scale in
a multi-threaded construction in Section 8.6. We then combine our findings in Section 8.7,
discussing representative configurations of each approach.

8.1 Plotting Three-Dimensional Measurements

Each perfect hash function construction provides a range of configurations, leading to different
trade-offs. Evaluating multiple configurations for each competitor gives a 3-dimensional point
cloud of space consumption, construction performance, and query performance. Because we
cannot print a 3D point cloud onto a 2D piece of paper, we need to look at only a subset of
the data. In the following, we discuss several ways of making the data readable.

Eva luat ion

98 8.2 Experimental Setup

Pareto Fronts. A point is Pareto optimal if there is no other point that dominates it with
respect to all three parameters simultaneously. In perfect hashing, it is meaningful to connect
these points. The reason is that we can essentially interpolate between different hash function
constructions. This works by hashing a certain percentage of the keys to independent perfect
hash functions with different configurations. Pareto fronts of three-dimensional data are
still three-dimensional. Before we can calculate the Pareto front, we therefore have to apply
transformations to the data in order to print them on paper. In the following, we describe
several ideas together with advantages and disadvantages.

Projecting to two Dimensions. One way to reduce the data to two dimensions is to project
the points onto one of the axis aligned planes. For example, we might want to look at
the trade-off between space consumption and query time, while ignoring the construction
performance. This approach is easy to understand and already forms an intuition for the
data. We use this projection in our papers on perfect hashing [Bez+23; Her+24a; LSW23b;
LSW24b]. However, because it ignores one dimension, this approach does not rule out
degenerate cases. For example, when ignoring the construction time, the naive brute-force
approach would look good in the plot while being entirely unpractical. A second problem
emerges when looking at multiple plots with different projections. Next to each other, it looks
like there is a correspondence between the points in both plots. However, one point that is
Pareto optimal in terms of space consumption and query performance might be dominated
when projecting along a different axis. Therefore, the projection might give readers a wrong
impression of the performance of an algorithm.

Mixing two Dimensions. An approach that rules out the degenerate cases is to plot a mix
of two dimensions. As an example, one could look at the construction time plus the time for
10n queries. This can then be a better indicator of the performance in practical applications
and is used in some plots in the paper presenting BuRR [Dil+22]. However, the number of
queries to perform is quite arbitrary when not considering real applications. Additionally,
when construction and query time are very different, one dimension gets much more weight.
This happens, for example, when constructing on the GPU and querying on the CPU.

Slicing Along a Dimension. Another approach is to look at a slice of the 3D space. This
approach is used in a master’s thesis supervised by the author of this dissertation [Her23]. A
problem with this is that it is quite arbitrary which plane should be looked at. Also, it makes
it hard to get a feeling for the overall trade-off without plotting a larger number of slices.

Dominance Maps. Finally, we describe a plot that provides a thorough overview over the
best perfect hash function constructions. We start similar to the 2D projection and then
rasterize the plane into rectangles. We then color each rectangle based on the best competitor
along the third dimension. In a way, this therefore provides a “front view” of the Pareto
space. BuRR [Dil+22] and SicHash [LSW23b] use a similar type of plot for another purpose.
This plot results in a very clean image with fewer data points because it does not print data
points for dominated approaches.

8.2 Experimental Setup

We run most of our experiments on an Intel i7 11700 processor with 8 cores (16 hardware
threads) and a base clock speed of 2.5 GHz, supporting AVX-512. The machine runs Ubuntu

99

22.04 with Linux 5.15.0. The L1, L2, and L3 caches have a size of 768 KiB, 3 MiB, and
30 MiB, respectively. We use the GNU C++ compiler version 11.2.0 with optimization
flags -O3 -march=native. For the competitors written in Rust, we compile in release mode
with target-cpu=native. The code and scripts needed to reproduce our experiments are
available on GitHub under the General Public License [Leh23c]. The repository also contains
a Docker image that can be used to reproduce our experiments with low setup time. In total,
we measure 3648 data points with a cumulative duration of more than 280 hours.

As input data, we use strings of uniform random length ∈ [10, 50] containing random
characters except for the zero byte. Note that, as a first step, almost all competitors generate
a master hash code of each key using a high quality hash function. This makes the remaining
computation largely independent of the input distribution. Arguably, integer inputs would
give more consistent measurements because they then do not include the time for running
the initial hash function. However, many of the approaches do not directly take a list of
integers. They need to be given their own internal data structures to work with hash codes,
which could give them an unfair advantage. Because essentially all approaches support string
inputs, we use that instead.

Competitors. In our comparison, we include a wide range of perfect hash function con-
structions. From our own approaches, we include SIMDRecSplit [Bez+23] (see Chapter 5),
SicHash [LSW23b] (see Chapter 6), and ShockHash [LSW24a; LSW24b] (see Chapter 7).
Additionally, we include PHOBIC [Her+24a], which is based on a master’s thesis super-
vised by the author of this dissertation. From the literature, we include RecSplit [EGV20],
PTHash [PT21], PTHash-HEM [PT24], BPZ [BPZ13] (called BDZ in the cmph library),
and CHD [BBD09]. Finally, we include different implementations of the fingerprinting idea,
namely BBHash [Lim+17], FMPH [Bel23], FMPHGO [Bel23], and our own implementation,
FiPS (see Section 4.5). We do not include BMZ [BGZ04] because it needs more than 30 bits
per key. We also do not include FCH [FCH92] because the implementation only supports
non-minimal perfect hashing. We give more details about the competitors in Chapter 4.

Hash Functions. From the master hash codes we explain above, many competitors derive
additional hash values using simpler hash functions. The approaches RecSplit, SIMDRecSplit,
ShockHash, and PHOBIC all perform brute-force search over different seeds of the Mur-
murHash3 finalizer function [App10]. For sufficiently random inputs, the function achieves
good pseudo-randomness while still being fast to evaluate. More formally, if we assume that
we generate our master hash codes using a random function, each hash code has Θ(log n)
bits of entropy. Each brute-force trial has a very small success probability. Therefore, even
if we condition on previous trials being unsuccessful, this does not reduce the entropy too
much. The finalizer function is similar to multiply-shift [Die+97], which can be shown to be
2-universal [Tho15]. Refs. [CMV20; MV08] show that 2-universal hash functions are almost
indistinguishable from random functions if each new input item has an entropy of Θ(log n)
bits. This suggests that the use of a simple hash function not only works well in practice,
but can also be justified in theory.

8.3 Construction Performance

We now start with the actual comparison, first looking at the single-threaded construction
time. Figure 8.1 gives both a Pareto front showing all approaches, and the dominance
map described above. We do not explicitly state competitor configurations here because

Eva luat ion

100 8.3 Construction Performance

BBHash [Lim+17] FMPH [Bel23] RecSplit [EGV20]
BPZ [BPZ13] FMPHGO [Bel23] SIMDRecSplit [Bez+23]
Bip. ShockH-Flat [LSW24a] FiPS (here) ShockHash-RS [LSW24b]
Bip. ShockH-RS [LSW24a] PHOBIC [Her+24a] SicHash [LSW23b]
CHD [BBD09] PTHash [PT21]

1.5 2 2.5 3 3.5
0

10

20

Bits/Key

T
hr

ou
gh

pu
t

(M
K

ey
s/

s)

(a) Pareto front with linear axes.

1.5 1.6 1.7 2.0 2.5 3

10−1

100

101

Bits/Key

(b) Pareto front with both logarithmic x-axis (to
the space lower bound) and y-axis.

2 2.5 3 3.5
0

10

20

Bits/Key

T
hr

ou
gh

pu
t

(M
K

ey
s/

s)

(c) Dominance map with fastest queries by construc-
tion throughput and space consumption.

1.5 1.6 1.7 2.0 2.5 3

10−1

100

101

Bits/Key

(d) Dominance map with logarithmic x- and y-
axes.

Figure 8.1 Trade-off of construction time vs space consumption. Single-threaded measurements
with n = 100 million keys. For some approaches, we only show markers for every
fourth point to increase readability.

our experiments include a wide range of configurations of every competitor. However, in
Section 8.7, we later give a selection of representative configurations of the competitors. The
dominance map plots the space consumption and the construction throughput on the axes,
and colors each box with the approach that has the fastest queries. Additionally, because
some approaches are focused on very small space consumption, we give a plot that uses
logarithmic x- and y-axes. The x-axis is logarithmic to the space lower bound, so 1.44
bits per key would be plotted as −∞. Approaches close to the space lower bound achieve
improvements that are large relative to the distance to the bound. The logarithmic axis helps
to make this more visible. In the following, we look at the different perfect hash function
constructions in more detail. We focus on the construction time but also briefly mention the
query time from the dominance maps. For details on query time, we refer to Section 8.4.

RecSplit/SIMDRecSplit. RecSplit [EGV20] is a construction that achieved a significant
step towards the space lower bound at the time of its publication. Today, it is mostly
dominated by the SIMD-parallel implementation of the same approach. Just like RecSplit,

101

SIMDRecSplit [Bez+23] is originally designed for small space consumption. We make
the surprising observation that SIMDRecSplit not only wins for the most space-efficient
configurations, but dominates all the other approaches also for less space-efficient cases.
However, being based on the splitting tree of RecSplit, it has quite slow queries, so in the
dominance map, it only appears in areas that no other approaches can reach.

ShockHash. Looking at even more space-efficient approaches, only variants of Shock-
Hash [LSW24b] achieve below 1.55 bits per key. Especially the logarithmic plot shows how
ShockHash and bipartite ShockHash improve the space consumption significantly.

Bipartite ShockHash-Flat [LSW24a] trades larger space consumption for better query
speed. Its construction is slightly slower than ShockHash-RS. However, we will see later that
it has much faster queries. Arguably, a perfect hash function will be queried more often than
it is constructed. We therefore now look at approaches achieving even faster queries.

SicHash. SicHash [LSW23b] has a fast construction up to a space consumption of about 2
bits per key. Like most other approaches, its construction throughput stays quite far below
SIMDRecSplit. Compared to PTHash and PHOBIC, SicHash is up to two times faster to
construct. In essence, SicHash gives a good balance between space consumption, construction
performance, and query performance.

Perfect Hashing Through Bucket Placement. We now look at perfect hashing through
bucket placement. The construction of PHOBIC [Her+24a], an extension of PTHash [PT21],
is consistently faster than the other approaches based on bucket placement. Additionally,
the dominance map shows that it has very fast queries. PTHash and CHD [BBD09] have a
similar trade-off between construction time and space consumption.

Perfect Hashing Through Fingerprinting. The goal of perfect hashing through fingerprint-
ing [Mü+14] is to offer efficient queries and fast construction at the cost of larger space
consumption. BBHash [Lim+17] is the first publicly available implementation. However,
it is dominated by more recent implementations of the same approach. FMPH [Bel23]
achieves almost twice the construction throughput and lower minimal space consumption.
FMPH is written in Rust and opens up perfect hashing to a rather new ecosystem. However,
FMPH does not seem to reach the performance of SIMDRecSplit even for fairly large space
consumptions. FMPHGO [Bel23] reduces the space consumption of FMPH but also has
a much slower construction. Its construction performance is similar to SicHash but has
slower queries. Finally, FiPS (see Section 4.5) is our fast implementation of the fingerprinting
approach. It achieves a similar space consumption as FMPH but is much faster to construct.
FiPS outperforms SIMDRecSplit for space consumptions above 3 bits per key.

8.4 Query Performance

After having focused on the construction time, we now discuss the approaches again, focusing
on the query time. Figure 8.2 again includes both a Pareto front and a dominance map. The
dominance map plots the space consumption and the query throughput on the axes, and
colors each box with the approach that has the fastest construction. The figure also gives a
variant with a logarithmic x-axis, but in contrast to Figure 8.1, the y-axis stays linear.

Eva luat ion

102 8.4 Query Performance

BBHash [Lim+17] FMPH [Bel23] RecSplit [EGV20]
BPZ [BPZ13] FMPHGO [Bel23] SIMDRecSplit [Bez+23]
Bip. ShockH-Flat [LSW24a] FiPS (here) ShockHash-RS [LSW24b]
Bip. ShockH-RS [LSW24a] PHOBIC [Her+24a] SicHash [LSW23b]
CHD [BBD09] PTHash [PT21]

1.5 2 2.5 3 3.5
0

10

20

30

Bits/Key

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(a) Pareto front with linear axes.

1.5 1.6 1.7 2.0 2.5 3
0

10

20

30

Bits/Key

(b) Pareto front with logarithmic x-axis (to the
space lower bound).

1.5 2 2.5 3 3.5
0

10

20

Bits/Key

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(c) Dominance map with fastest construction by
query throughput and space consumption.

1.5 1.6 1.7 2.0 2.5 3
0

10

20

Bits/Key

(d) Dominance map with logarithmic x-axis.

Figure 8.2 Space consumption versus query time of different competitors. n = 100 million keys
with random single-threaded queries. For some competitors, we only show markers
for every fourth point to increase readability.

Perfect Hashing Through Bucket Placement. PTHash [PT21] and PHOBIC [Her+24a]
are clear winners in terms of query performance, being more than two times faster than most
other competitors. At the same time, they achieve a solid space consumption. PHOBIC
improves the space consumption of PTHash without sacrificing query performance. Given
that it is also faster to construct, it is almost always the preferred approach over PTHash.
This is illustrated by the fact that the dominance map mainly shows PHOBIC. CHD [BBD09]
is much slower in terms of queries, mostly due to decoding variable-length seeds.

Perfect Hashing Through Fingerprinting. Perfect hashing through fingerprinting [Mü+14]
is originally designed to offer fast queries. Of the different implementations, FiPS offers the
best query throughput, being faster than BBHash [Lim+17] and FMPH [Bel23]. However,
it is still far away from PTHash and PHOBIC. This holds even for a rather large space
consumption of 3.5 bits per key (γ = 2), where about 73% of the keys can be handled in
the first recursion layer. This indicates that the rank operation is rather costly, even when

103

the rank data structure is interleaved with the bit vector. FMPHGO [Bel23] achieves a
smaller space consumption than the other fingerprinting approaches through a small number
of brute-force retries. However, it is slower to construct and query than SicHash.

RecSplit/SIMDRecSplit. RecSplit [EGV20] and SIMDRecSplit [Bez+23] are rather slow
to query because they have to traverse the splitting tree, decoding variable-bitlength data in
each step. However, even though the operations are much more complex, the performance
is still solid and not too far away from BBHash and FMPH. When caring less about query
performance, SIMDRecSplit is a good choice because of its very fast construction. This is
why it fills the base of the dominance map.

ShockHash. ShockHash-RS [LSW24b] and bipartite ShockHash-RS [LSW24a] use the
RecSplit splitting tree as well but need an additional access to a retrieval data structure.
However, their query performance is still very close to RecSplit. This shows that the overhead
of the retrieval operation is small compared to the work for traversing the heavily compressed
tree. Also, the larger leaves mean that the splitting tree has fewer layers to traverse.

Bipartite ShockHash-Flat [LSW24a] is a variant focused on faster queries. For this, it
sacrifices some of the space consumption of bipartite ShockHash-RS. It can be constructed
about 32 times faster than SIMDRecSplit for the same space consumption. Simultaneously,
it achieves 30% faster queries, which brings the query performance of very space-efficient
MPHFs much closer to competitors that are not focused on space consumption.

SicHash. SicHash [LSW23b] provides a good middle ground between construction and
query performance. As such, it sits in the center of the dominance map. Compared to
SIMDRecSplit, it has much faster queries. Compared to PTHash and PHOBIC, SicHash
focuses a bit more on construction performance.

8.5 Scaling in the Input Size

We now look at the construction and query performance of different perfect hash functions,
depending on the number of input keys n. The goal is usually to have linear construction
time. To achieve this, it is always possible to partition the input to smaller hash functions.
However, partitioning comes with a performance penalty, both during construction and query.
Figure 8.3 starts at rather small input sets of 1 million keys and goes all the way up to 200
million. In case partitions have to be used (e.g., for a parallel implementation), the plot
can be used to decide on a partition size. For each approach, we use a configuration that is
typical for it. Therefore, all competitors have a different space consumption and construction
time. This is to avoid using unfair configurations that approaches are not designed for. Refer
to Section 8.7 to see the exact configurations we use.

Construction. Figure 8.3a shows how the construction throughput scales in the number of
input keys n. To be more fair about the fact that competitors are tuned for different space
consumption, we give the construction throughput relative to each competitor’s maximum
throughput. For most approaches, the throughput stays almost the same. This can be
explained by the fact that many of them perform partitioning internally anyway.

PTHash [PT21], CHD [BBD09], BBHash [Lim+17], BPZ [BPZ13], FMPH [Bel23], and
FMPHGO [Bel23] are influenced more strongly by the input size. For PTHash and CHD,
which are both based on bucket placement, this can be explained by the fact that the

Eva luat ion

104 8.6 Multi-Threaded Construction

BBHash [Lim+17] FMPH [Bel23] RecSplit [EGV20]
BPZ [BPZ13] FMPHGO [Bel23] SIMDRecSplit [Bez+23]
Bip. ShockH-Flat [LSW24a] FiPS (here) ShockHash-RS [LSW24b]
Bip. ShockH-RS [LSW24a] PHOBIC [Her+24a] SicHash [LSW23b]
CHD [BBD09] PTHash [PT21]

106 107 108
60%

70%

80%

90%

100%

Input keys

T
hr

ou
gh

pu
t

(%
of

m
ax

)

(a) Construction throughput relative to the maxi-
mum of each approach.

106 107 108

10

20

30

Input keys

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(b) Query throughput.

Figure 8.3 Comparison of construction and query performance by number of input keys n.
Comparing parameters where each approach has the same space consumption would
be unfair because of the vastly different focus of each approach. We therefore use
typical parameters of each competitor, and do not directly compare the absolute
values of the construction throughput.

bucket placement idea without optimized bucket sizes [Her+24a] inherently has a non-linear
construction time. Additionally, the larger bit vectors to detect collisions cause more cache
faults. PHOBIC [Her+24a] uses partitioning internally and optimizes the bucket sizes, so it
has linear scaling in n. For the approaches based on fingerprinting, namely BBHash, FMPH,
and FMPHGO, the slowdown can be explained by the random accesses to the large bit vector.
FiPS avoids these cache inefficient access patterns through the use of sorting. Even though it
uses perfect hashing through fingerprinting as well, it scales a lot more close to linear. The
initial increase of BBHash’s construction throughput can be explained by a constant startup
overhead, including it launching a dedicated thread even in single-threaded mode.

Queries. The query throughput of all approaches in Figure 8.3b drops when increasing the
input size n. This is expected because the data structures get larger and can be cached less.
In general, all approaches perform pretty well regarding their query time. PTHash [PT21]
and PHOBIC [Her+24a] remain the approaches with the fastest queries for the entire range
of input sizes. However, SicHash [LSW23b] comes close to them for large n, while having a
more favorable trade-off between space consumption and construction throughput. RecSplit
based approaches (RecSplit [EGV20], SIMDRecSplit [Bez+23], ShockHash-RS [LSW24a;
LSW24b]) have much slower queries for the entire range of input sizes. They have a smaller
slope, indicating that they are more limited by the computation than memory access.

8.6 Multi-Threaded Construction

Modern processors have many cores available, and testing single-threaded code leaves a lot
of processing power unused. Additionally, most data structures like perfect hash functions

105

BBHash [Lim+17] FMPHGO [Bel23] PTHash-HEM [PT24]
Bip. ShockH-RS [LSW24a] PHOBIC [Her+24a] SIMDRecSplit [Bez+23]
FMPH [Bel23] PTHash [PT21] SicHash [LSW23b]

4 8 12 16

2

4

6

8 HT

Threads

Sp
ee

du
p

(a) Strong scaling on the 8-core Intel machine.

4 8 12 16
0

2

4

6
HT

Threads

Sp
ee

du
p

(b) Weak scaling on the 8-core Intel machine.

0 16 32 48 64 80 96 112 128
0

20

40

60 HT

Threads

Sp
ee

du
p

(c) Strong scaling on the 64-core AMD machine.

0 16 32 48 64 80 96 112 128
0

20

40

60 HT

Threads

Sp
ee

du
p

(d) Weak scaling on the 64-core AMD machine.

Figure 8.4 Comparison of the multi-threaded construction by number of threads. Weak scaling
with 10 million keys per thread, strong scaling with 100 million keys. We give self-
speedups because each approach has a different focus.

are not used in isolation in actual applications. There are always other processes running on
the machines. Performing multi-threaded measurements can, to a certain extent, account for
this. We perform most of our experiments on an Intel processor with 8 cores (16 hardware
threads (HT)), supporting AVX512 as mentioned above. For additional experiments in this
section, we use a machine with an AMD EPYC 7702P processor with 64 cores (128 hardware
threads) and a base clock speed of 2.0 GHz. The machine runs Ubuntu 20.04 with Linux
5.4.0 and supports AVX2. In Figure 8.4, we give parallel measurements on the two machines
using both weak scaling with 10 million keys per thread, and strong scaling with 100 million
keys. A problem of strong scaling is that with a very large number of threads, the total
construction time is very short. Therefore, constant overheads have a significant impact on
the construction time. Like in the previous section, we use a typical configuration for each
competitor, listed in Section 8.7. As such, the absolute construction times are very different,
so we only plot self-speedups.

Note that perfect hashing can be parallelized trivially by partitioning, which many
approaches use. For these approaches, a major factor to their multi-threaded scaling is how
efficiently they implement their partitioning step. This makes it less interesting algorithmically
and causes a bias in the measurements. We still give multi-threaded measurements because
they are very relevant in applications. Additionally, because there are fewer memory channels
than threads, the cache locality of approaches is important in parallel measurements. Our

Eva luat ion

106 8.7 Selected Configurations

8-core Intel machine has 2 memory channels and our 64-core AMD machine has 8 memory
channels. In the following, we first describe approaches with a direct parallelization before
looking at the approaches using partitioning.

Direct Parallelization. Some approaches use a parallel implementation of their internal
data structures. An advantage of this technique compared to an external layer of partitioning
is that it is transparent to the queries. Unfortunately, this generally does not seem to work
well for the approaches that do it. We see that BBHash [Lim+17] and PTHash [PT21] only
achieve a speedup of around 2 when running on 16 threads. We will later see that PTHash
works better with partitioning. Interestingly, even though FMPH [Bel23] also performs a
direct parallelization with atomic operations, it scales quite well. FMPHGO [Bel23] uses
a direct parallelization as well, even though it could use internal partitioning [Bel23]. Its
authors find that the small performance gain is not worth the complexity.

Internal Partitioning. Some of the approaches internally partition the input anyway, so in
essence they get their parallelization for free. SIMDRecSplit scales better than PTHash-HEM
on the 64-core AMD machine. Note that the scaling behavior of SIMDRecSplit varies strongly
depending on the configuration parameters. The less space-efficient configurations that it is
not actually designed for scale less well because more time is spent partitioning keys to a
large number of buckets (see Section 5.6). The speedups of FMPH and SIMDRecSplit remain
close to constant for more than 8 threads. PHOBIC [Her+24a] needs internal partitioning for
its interleaved coding. It scales well with strong scaling and weak scaling, which we attribute
to a well implemented partitioning step.

External Partitioning. Most other approaches implement their parallelization by adding
an additional layer of partitioning, which introduces small query and construction time
overheads. PTHash-HEM [PT24] scales well on the 8-core Intel machine. SicHash [LSW23b]
could theoretically use internal parallelization, so building the hash tables would be possible
in parallel. However, the majority of its construction time is spent constructing BuRR
retrieval data structures, which does not have a parallel implementation yet. It therefore
uses an external partitioning step. On the 8 core machine, PTHash-HEM and SicHash profit
from hardware threads during strong scaling. On the 64-core machine, however, they both
do not scale well.

GPU Parallelization. Even though this is not the focus of this evaluation, we want to
quickly mention two GPU parallel constructions. PHOBIC-GPU [Her+24a] and GPURec-
Split [Bez+23] are, to our knowledge, the only perfect hash functions with a GPU construction.
Both approaches achieve a similar peak construction throughput of about 70 million keys
per second on an Nvidia RTX 3090 GPU. In a reasonable construction time, PHOBIC-GPU
can achieve a space consumption of about 1.7 bits per key, while GPURecSplit can achieve
about 1.5 bits per key. The respective query implementations are identical to the CPU
versions and can only be used on the CPU, so our measurements from Section 8.4 show that
PHOBIC-GPU is faster to query. Refer to the PHOBIC paper [Her+24a] for details.

8.7 Selected Configurations

While the Pareto fronts give a good overall picture, they do not provide a guide on how
to select the configuration parameters. In Table 8.1, we take the two most promising

107

Table 8.1 Selected configurations of all competitors. Single-threaded, 100 million keys. We use
approaches marked with ∗ in Sections 8.5 and 8.6.

Approach Configuration Space Construction Query
bits/key ns/key ns/query

B
ru

te
-fo

rc
e

RecSplit n=8, b=100 1.793 734 118
n=14, b=2000∗ 1.584 126 020 135

SIMDRecSplit n=8, b=100 1.810 110 124
n=16, b=2000∗ 1.560 126 465 131

ShockHash-RS n=40, b=2000∗ 1.551 1 860 150
n=55, b=2000 1.526 49 481 147

Bip. ShockHash-RS n=64, b=2000∗ 1.525 5 766 157
n=128, b=2000 1.489 188 661 136

Bip. ShockHash-Flat n=64∗ 1.618 1 023 93
n=100 1.547 9 684 90

B
uc

ke
t

pl
ac

em
en

t CHD λ=3 2.266 353 224
λ=5∗ 2.066 2 222 206

PTHash λ=4.0, α=0.99, C-C 3.189 291 35
λ=4.0, α=0.95, EF∗ 2.294 268 60

PTHash-HEM λ=4.0, α=0.99, C-C 3.189 292 39
λ=4.0, α=0.95, EF∗ 2.294 267 64

PHOBIC λ=6.5, α=1.0, IC, C 2.338 990 37
λ=6.5, α=1.0, IC, Rice∗ 1.847 992 53

Fi
ng

er
pr

in
tin

g

BBHash γ=2.0 3.710 135 85
γ=1.5∗ 3.288 172 93

FMPH γ=2.0 3.401 69 95
γ=1.5∗ 3.013 79 107

FMPHGO γ=2.0, s=4, b=16 2.859 271 81
γ=1.5, s=4, b=16∗ 2.435 272 95

FiPS γ=2.0 3.517 45 69
γ=1.5∗ 3.117 51 75

G
ra

ph
s BPZ c=1.25, b=3∗ 7.500 451 151
c=1.25, b=6 3.125 450 156

SicHash α=0.95, p1=37, p2=44∗ 2.197 148 66
α=0.97, p1=45, p2=31 2.080 180 64

Eva luat ion

108 8.8 Summary

configurations of each competitor from the Pareto fronts. We give their construction time,
query time, and space consumption. The table therefore suggests configurations that we
recommend for use in an application. We use the configurations marked with the ∗ symbol
for our evaluations in Sections 8.5 and 8.6.

We first give a selection of configurations using the brute-force approach. Comparing
different approaches where each is given about half an hour of construction time, RecSplit is
able to produce a perfect hash function with 1.58 bits per key. During the course of three
years, SIMDRecSplit started a chain of work, first improving the space consumption to 1.56
bits per key. ShockHash-RS is then able to achieve 1.52 bits per key, reducing the gap to the
space lower bound of ≈ 1.442 bits per key by about 30%. Finally, bipartite ShockHash-RS
reduces the space consumption to just 1.489 bits per key, which is within 3.3% of the lower
bound with practically feasible construction time. Using a single CPU thread, bipartite
ShockHash-RS achieves a space consumption better than what was previously only achieved
using thousands of threads on a GPU [Bez+23].

We now look at the approaches based on bucket placement. The partitioned implementa-
tion of PTHash, PTHash-HEM, has the same construction time and space consumption when
run on a single thread. However, its queries are about 10% slower. Even though PHOBIC
uses partitioning as well, with compact coding it loses less query time compared to PTHash.
By using Golomb-Rice coding instead of Elias-Fano coding, PHOBIC improves the query
times of PTHash. In Section 2.3 we explain why Golomb-Rice coding is a better choice here.

For perfect hashing through fingerprinting, we give γ = 1.5 and γ = 2.0 for all competitors.
FMPH achieves the best space consumption. FiPS, with its interleaved rank data structure,
needs about 0.1 bits per key more space. BBHash needs an additional 0.17 bits per key.
Looking at the construction time and query time, the same configuration with FiPS is
consistently faster. Through a small number of retries, FMPHGO achieves much lower space
consumption but also much slower construction compared to FiPS.

Finally, we look at two approaches based on orienting random hypergraphs. SicHash is
faster than BPZ in construction and queries, while also achieving better space consumption.

8.8 Summary

In this chapter, we perform a wide range of benchmarks of modern perfect hash function
constructions. We give plots illustrating the Pareto front of the entire trade-off between
construction throughput, query throughput, and space consumption. Different approaches
focus on different areas of these parameters. In essence, hash function construction through
fingerprinting focuses on fast construction and queries, at the cost of less space-efficient

Space efficiency

Constr. Query

FiPS
[Section 4.5]

Space efficiency

Constr. Query

RecSplit [EGV20],
ShockHash [LSW24b]

Space efficiency

Constr. Query

SIMDRecSplit
[Bez+23]

Space efficiency

Constr. Query

SicHash
[LSW23b]

Space efficiency

Constr. Query

PHOBIC [Her+24a],
PTHash [PT21]

Figure 8.5 Focus of different perfect hashing approaches. Shows only qualitative idea of typical
configurations of approaches, not actual measurements.

109

representation. FiPS is a fast implementation of the approach. The brute-force approaches
focus on showing what is possible in terms of storage space, but sacrifice on construction and
query performance. The most space-efficient method is bipartite ShockHash-RS [LSW24a],
which massively reduces the brute-force search space. SIMDRecSplit [Bez+23] is an exception
because it achieves good construction performance, even though it is tuned for small space
consumption. SicHash [LSW23b] gives a good balance between all three parameters with a
slight focus on construction performance. Regarding query time, PHOBIC [Her+24a] offers
the best performance. In Figure 8.5, we give a qualitative idea of the trade-off of the most
promising approaches.

Overall, the evaluation shows the progress of modern perfect hashing. While we include
many of the classical results, they cannot keep up with the more recent implementations.
The approaches presented in this dissertation cover the vast majority of the Pareto front,
which confirms the success of the techniques presented here and, more generally, the merits
of the Algorithm Engineering methodology.

Eva luat ion

111

9 Learned Monotone Minimal Perfect
Hashing

Summary: A Monotone Minimal Perfect Hash Function (MMPHF) constructed on
a set S of keys is a data structure that maps each key in S to its rank. On keys not
in S, it returns an arbitrary value. Applications range from databases, search engines,
data encryption, to pattern-matching algorithms.
In this chapter, we describe LeMonHash, a new technique for constructing MMPHFs
for integers. The core idea of LeMonHash is surprisingly simple and effective: we
learn a monotone mapping from keys to their rank via an error-bounded piecewise
linear model (the PGM-index), and then we solve the collisions that might arise among
keys mapping to the same rank estimate by associating small integers with them in a
retrieval data structure (BuRR). On synthetic random datasets, LeMonHash needs
34% less space than the best competitor, while achieving about 16 times faster queries.
On real-world datasets, the space consumption is very close to or much better than
the best competitors, while achieving up to 19 times faster queries than the next
larger competitor. As far as the construction of LeMonHash is concerned, we get an
improvement by a factor of up to 2, compared to the competitor with the next best
space consumption.
We also investigate the case of keys being variable-length strings, introducing the
so-called LeMonHash-VL: it needs space within 13% of the best competitors while
achieving up to 3 times faster queries than the next larger competitor.

Attribution: This chapter is based on “Learned Monotone Minimal Perfect Hash-
ing” [Fer+23a]. Large parts of this chapter are copied verbatim or with minor
changes from that publication. Giorgio Vinciguerra and the author of this dissertation
implemented the algorithm together with equal contributions. The author of this
dissertation wrote the initial implementation, initial manuscript and performed the
experiments. All authors made significant contributions, to algorithm design, analysis,
design & interpretation of the experiments, and the write-up. We thank Stefan Walzer
for early discussions leading to the paper.

Given a set S of n keys drawn from a universe [U], a Monotone Minimal Perfect Hash
Function (MMPHF) is a data structure that maps keys from S to their rank, and returns
an arbitrary value for keys not in S. We refer to Section 1.1 for details. With LeMonHash,
we offer a fresh new perspective on MMPHFs that departs from existing approaches, which
are mostly based on a trie-like data structure on the keys. We build upon recent advances
in (learning-based) indexing data structures, namely the PGM-index [FLV21; FV20b], and
in retrieval data structures, namely BuRR [Dil+22] (see Section 2.4). The former learns a
piecewise linear approximation mapping keys in S to their rank estimate. The latter allows
associating a small fixed-width integer to each key in S, without storing S. We combine these
two seemingly unrelated data structures in a surprisingly simple and effective way. First, we
use the PGM to monotonically map keys to buckets according to their rank estimate, and we

LeMonHash

112 9.1 Related Work

u

Actual rank(xi) = i

Rank estimate
≤ ε

xi

rank

Figure 9.1 Illustration of the PGM-index. Here, it gives a wrong rank estimate for xi.

store the global rank of each bucket’s first key in a compressed way. Second, since the rank
estimate of some keys might coincide, we solve such bucket collisions by storing the local
ranks of these keys using BuRR. We call our proposal LeMonHash, because it learns and
leverages the smoothness of the input data to build a space-time efficient monotone MPHF.

In this chapter, we first discuss related work on MMPHFs in Section 9.1. In Section 9.2,
we describe LeMonHash for integers and extend it to support variable-length string keys in
Section 9.3. In Section 9.4, we discuss variants and refinements, before proving the space-time
guarantees of LeMonHash in Section 9.5. In Section 9.6, we present a detailed evaluation.

PGM-index. The PGM-index [FLV21; FV20b] (Piecewise Geometric Model) is a space-
efficient data structure for predecessor and rank queries on a sorted set of n keys from an
integer universe [U]. Given a query q ∈ [U], it computes a rank estimate that is guaranteed
to be close to the correct rank by a given integer parameter ε. If one stores the input
keys, then the correct rank can be recovered via an O(log ε)-time binary search on 2ε + 1
keys around the rank estimate. The PGM is constructed in O(n) time by first mapping
the sorted integers x1, . . . , xn in S to points (x1, 1), . . . , (xn, n) in a key-position Cartesian
plane, and then learning a piecewise linear ε-approximation of these points, i.e. a sequence
of m linear models each approximating the rank of the keys in a certain sub-range of [U]
with a maximum absolute error ε. Figure 9.1 illustrates the idea. The value m, which
impacts on the space of the PGM, can range between 1 and m ≤ n/(2ε) [FV20b, Lemma 2]
depending on the “approximate linearity” of the points. In practice, it is very low and can be
proven to be m = O

(
n/ε2) when the gaps between keys are random variables from a proper

distribution [FLV21]. The time complexity to compute the rank estimate with a PGM is
given by the time to search for the linear model that contains the searched key q, which boils
down to a predecessor search on m integers from a universe of size U . For this, there exist
many trade-offs in various models of computations [FV20b; NR21].

9.1 Related Work

In the following, we look at related work on monotone minimal perfect hash functions, first
describing the idea of bucketing before then continuing with specific MMPHF constructions.
For non-monotone perfect hash functions, we refer to Chapter 4. We do not review order-
preserving minimal perfect hash functions (see Section 1.1) because their theoretical lower
bound can trivially be reached by using a retrieval data structure taking log n bits per key
(plus a small overhead). A loosely related result is using learned models as a replacement for
hash functions in traditional hash tables [Kra+18; Sab+22], but it generally has a negative
impact on the probe/insert throughput (and most likely on the space too, due to the storage
of the models’ parameters, which these studies do not evaluate).

113

Bucketing. Bucketing [Bel+11] is a general technique to break down MMPHF construction
into smaller sub-problems. The idea is to store a simple monotone, but not necessarily
minimal or perfect distributor function that maps input keys to buckets. Each bucket receives
a smaller number of keys that can then be handled using some (smaller) MMPHF data
structure. To determine the global rank of a key, we need the prefix sum of the bucket
sizes. For equally-sized buckets, this is trivial. Otherwise, this sequence can be stored with
Elias-Fano coding (see Section 2.3). In the paper by Belazzougui et al. [Bel+11], where many
of the following techniques are described, the authors use MWHC [Maj+96] to explicitly
store the ranks within each bucket. LeMonHash uses a learned distributor and buckets of
expected size 1 (see Section 9.2).

Longest Common Prefix. Bucketing with Longest Common Prefixes (LCP) [Bel+09] maps
keys to equally sized buckets. A first retrieval data structure maps all keys to the length of
the LCP among all keys in its bucket. A second one then maps the value of the LCP to the
bucket index. Overall, it uses O(log log U) bits per key and query time O((log U)/w), and in
practice it has been shown to be the fastest but the most space-inefficient MMPHF [Bel+11].

Partial Compacted Trie. First map the keys to equally sized buckets and consider the last
key of each bucket as a router indexed by a compacted trie, e.g., a binary tree where every
node contains a bit string denoting the common prefix of its descending keys. During queries,
the trie is traversed by comparing the bit string of the traversed nodes with the key to decide
whether to stop the search operation at some node (if the prefix does not match), or descend
into the left or right subtree based on the next bit of the key. A Partial Compacted Trie
(PaCo Trie) [Bel+11] compresses the compacted trie above by 30–50% by exploiting the fact
that, in an MMPHF, the trie needs to correctly rank only the input keys. Therefore, each
node can store a shorter bit string just long enough to correctly route all input keys.

Hollow Trie. A Hollow Trie [Bel+11] only stores the position of the next bit to look at.
Hollow tries can be represented succinctly using balanced parentheses [MR01]. To use hollow
tries for bucketing, and thus allow the routing of not-indexed keys, we need a modification
to the data structure. The Hollow Trie Distributor [Bel+11] uses a retrieval data structure
that maps the compacted substrings of each key in each tree node to the behaviour of that
key in the node (stopping at the left or right of the node, or following the trie using the next
bit of the key). Overall, it uses O(log log log U) bits per key and query time O(log U).

ZFast Trie. To construct a ZFast Trie [Bel+09], we first generate a path-compacted trie.
Then, for prefixes of a specific length (2-fattest number) of all input keys, a dictionary stores
the trie node that represents that prefix. A query can then perform a binary search over the
length of the queried key. If there is no node in the dictionary for a given prefix, the search can
continue with the pivot as its upper bound. If there is a node, the lower bound of the search
can be set to the length of the longest common prefix of all keys represented by that node.
The ZFast trie uses O(log log log U) bits per key and query time O((log U)/w + log log U).

Path Decomposed Trie. In the previous paragraphs, we described binary tries with a rather
high height. However, those tries are inefficient to query because of the pointer chasing to
non-local memory areas. The main idea behind Path Decomposed Tries [Fer+08], which can
be used as an MMPHF [GO14], is to reduce the height of the tries. We first select one path
all the way from the root node to a leaf. This path is now contracted to a single node, which

LeMonHash

114 9.2 LeMonHash

becomes the root node in our new path decomposed trie. The remaining nodes in the original
trie form subtries branching from every node in that path. We take all of these subtries,
make them children of the root node, and annotate them by their branching character with
respect to the selected path. The subtries are then converted to path decomposed tries
recursively. In centroid path decomposition, the path to be contracted is always the one that
descends to the node with the most leaves in its subtree.

9.2 LeMonHash

We now introduce the main contribution of this chapter – the MMPHF LeMonHash. The
core idea of LeMonHash is surprisingly simple. We take all the n input integers and map
them to n buckets using some monotone mapping function, that we will describe later. We
store an Elias-Fano coded sequence with the global ranks of the first key in each bucket using
2n + o(n) bits (see Section 2.3). Given a bucket of size b, we use a ⌈log b⌉-bit retrieval data
structure (see Section 2.4) to store the local ranks of all its keys. Note that we do not need
to store local ranks if the bucket has only 0 or 1 keys. For squeezing space, instead of storing
one retrieval data structure per bucket, we store a collection of retrieval data structures so
that the ith one stores the local ranks of all keys mapped to buckets whose size b is such
that i = ⌈log b⌉. We give an illustration of the overall data structure in Figure 9.2.

Bucket Mapping Function. The space efficiency of LeMonHash is directly related to the
quality of the monotone mapping function. For uniform random integers, a linear mapping
from input keys to n buckets, i.e. a mapping from a key x to the bucket number ⌊xn/U⌋,
leads to an MMPHF with a space consumption of just 2.915 bits per key (see Theorem 9.1).
Intuitively, such a linear mapping returns a rank estimate in [n] for a given key. However,
for skewed distributions, the rank estimate can be far away which can create large buckets
whose local ranks are expensive to store. For example, if the majority of the keys are such
that x < U/n, then the first bucket will be large enough to require Θ(log n) bits per key, i.e.
our MMPHF degenerates to a trivial OPMPHF. To tackle this problem, we implement the
mapping function with a PGM-index [FV20b]. As we mention in the introduction of this
chapter, the PGM is originally designed as a predecessor-search data structure. Here, we use
the PGM as a rank estimator that, for a given key, returns an ε-bounded estimate of its rank.
To achieve this result in LeMonHash, we do not store the list of indexed keys and simply
use the PGM’s rank estimate as the bucket index. The PGM internally adapts to the input
data by learning the smoothness in the distribution via a piecewise linear ε-approximation
model, thus it can be thought of as a “local” approximation of the linear mapping above.
Real-world data sets can often be approximated using piecewise linear models, as discussed in
the literature [FLV21] and also demonstrated by the good space efficiency of our experiments
(see Section 9.6). There is a trade-off between the amount of space needed to represent the
PGM and the quality of the mapping, which depends on both the input data distribution and
the given integer parameter ε. In Section 9.6, we test both a version with a constant ε value
and a version that auto-tunes its value by constructing multiple PGMs and then selecting
the optimal ε. Finally, we observe that with the PGM mapper, unlike for the linear mapping
and other non error-bounded learning-based approaches [FV20a; KRT22], the number of
retrieval data structures we need to keep is bounded by O(log ε) regardless of the input key
distribution (see Theorem 9.2).

115

0 1 1 3 4 4 5 6 6 9 10 11

0 1 00 01 10

n input keys

n buckets

Retrieval

u

Mapper

Global ranks ∈ [n]

Figure 9.2 Illustration of the LeMonHash data structure. Keys are mapped to buckets. Ranks
within buckets are stored in (a collection of) retrieval data structures.

Queries. Given a key q, we obtain its bucket i using the mapping function. The global rank
of the (first key in the) bucket is the ith integer in the Elias-Fano coded sequence of global
ranks, which can be accessed in constant time, and the bucket size is computed by subtraction
from the next integer in that sequence. The bucket size b directly tells us which retrieval data
structure to query, i.e. the ⌈log b⌉th one. Evaluating the retrieval data structure with q gives
us its local rank in the bucket. Adding this to the global rank of the bucket gives us the rank of
q. As we show in Section 9.5, for uniform data, the linear bucket mapper gives constant time
queries, while for other inputs we use the PGM mapper and the query time is O(log log U).

Comparison to Known Solutions. Known MMPHFs in the literature typically divide
the keys into equal-size buckets and build a compact trie-based distributor. Unlike them,
LeMonHash learns the data linearities and leverages them to distribute keys to buckets close
to their rank. Whenever some keys collide into a bucket, LeMonHash handles these keys via
a (small) collection of succinct retrieval structures. In contrast to known solutions, whenever
a key is the only one mapped to its bucket, no information needs to be stored in (and no
query is issued on) a retrieval data structure. These features allow LeMonHash to possibly
achieve reduced space occupancy compared to classic MMPHFs, which are oblivious to data
linearities. Also, LeMonHash can reduce the query time by replacing the cache-inefficient
traversal of a trie with the PGM mapper, which in practice is fast to evaluate.

9.3 LeMonHash-VL

Of course, the idea of LeMonHash can be immediately applied to string keys whose maximum
longest common prefix (LCP) is less than w bits. In this case, each string prefix and the
following bit (which are sufficient to distinguish every string from each other) fit into one
machine word and thus can be handled efficiently in time and in space by the PGM mapper.
For strings with longer LCPs, we introduce a tree data structure that we call LeMonHash-VL
(since it handles Variable-Length strings). The main idea is to simply compute the bucket
mapping on a length-w substring of each string, which we call a chunk. Buckets that receive
many keys using this procedure are then handled recursively. Details follow.

Overview. We start with a root node representing all the string keys in S and consider the
set of chunks extracted from each key starting from position |p| (which we store), where p is
the LCP among the keys in S. Given these c distinct chunks, we construct a PGM mapper
to distribute the keys to buckets in [c], and we store an Elias-Fano coded sequence with the

LeMonHash

116 9.3 LeMonHash-VL

0 3 7 20 23 23 25 35 35

First chunks of all n input keys

Few keys
with these
chunks,

store local
ranks

Next chunks Next chunks

3 11 11 20 23 29 29 35

2w

c buckets

Global ranks ∈ [n]

Mapper

Figure 9.3 Illustration of the LeMonHash-VL data structure. Global ranks in each level are
stored together. Buckets that are not handled recursively use retrieval data structures
like before.

global ranks of the first key in each bucket. Clearly, different keys can be mapped to the
same bucket because the PGM mapper is not perfect (as in the integer case) and because
they share the same chunk value (unlike in the integer case). For example, for the strings
S = {cherry, cocoa, coconut} with p = c and chunks composed of 3 characters, the keys
cocoa and coconut share the chunk value oco and will be mapped to the same bucket.

If a bucket of size b contains fewer input strings than a specific threshold t, we store the
local ranks of the strings in the bucket in a ⌈log b⌉-bit retrieval data structure. Once again,
we do not need to store local ranks if the bucket has only 0 or 1 keys. If instead the bucket is
large (i.e. b ≥ t), we create a child node in the tree data structure by applying the same idea
recursively on the strings S′ of that bucket. This means that we compute a PGM mapper on
the chunks extracted from each string in S′ starting from position |p′|, where p′ is the LCP
among the bucket strings S′. Notice that |p′| ≥ |p| but we always guarantee that S′ ⊊ S, so
the recursion is bounded. In practice, we set the threshold t = 128 (see Section 9.6.1).

At query time, we can use the sequence of global ranks to calculate the bucket size b,
which allows determining whether we need to continue recursively on a child (because b ≥ t)
or directly return the global rank of the bucket plus the local rank stored in the ⌈log b⌉-bit
retrieval data structure. Figure 9.3 gives an overview of the data structure.

We observe that the global ranks of each node increase monotonically from left to right
in each level of the overall tree. Therefore, we merge all these global ranks in a level into one
Elias-Fano sequence, thereby avoiding the space overhead of storing many small sequences.

Of course, each inner node of the tree needs some extra metadata, like the encoding of its
bucket mapper, the value of |p|, and an offset to its first global rank in the per-level Elias-Fano
sequence. We associate a node to its metadata via a minimal perfect hash function, where
the identifier of a node is given by the path of the buckets’ indices leading to it.

Given the overall idea, there is a wide range of optimizations that we use. In the
following, we outline the main algorithmic ones and refer the interested reader to our
implementation [LV23] and Section 9.4 for the many other optimizations, such as the use of
specialized instructions like popcount and bextr, or lookup tables.

Alphabet Reduction. The number of nodes and the depth of LeMonHash-VL depend on
both the length and distribution of the input strings, and on how well the PGM mapper
at each node can map strings to distinct buckets given their w-bit chunks. Therefore, we

117

should aim to fit as much information as possible in the w-bit chunks. We do so by exploiting
the fact that, in real-world data sets, often only a very small alphabet Σ of branching
characters distinguish the strings in each bucket, and that we do not care about the other
characters. We extract chunks from the suffix of each string starting from the position
following the LCP p, as before, but interpret the suffix as a number in radix σ = |Σ| where
each character is replaced by its 0-based index in Σ if present, or by 0 if not present. For
example, for a node on the strings {shoppers, shopping, shops} whose LCP is p = shop,
we would store the alphabet Σ = {e, i, p, s} and map the suffix “pers” of “shoppers” to
index(p)σ3 + index(e)σ2 + index(r)σ1 + index(s)σ0 = 2σ3 + 0σ2 + 0σ1 + 3σ0. Observe that
the chunks computed in this way still preserve the lexicographic order of the strings. The
number of characters we extract is computed to fit as many characters as possible in a w-bit
word, i.e. ⌊w/ log σ⌋ characters. In our implementation over bytes, we store Σ via a bitmap
of size 128 or 256, depending on whether its characters are a subset of ASCII or not. Finally,
we mention that a mapping from strings to numbers in radix σ has also been used to build
compressed string dictionaries [Bof+22], but the twist here is that we are considering only
the alphabet of the branching characters since we do not need to store the keys.

Elias-Fano Sequences. The large per-level Elias-Fano sequences of global ranks have a very
irregular structure. For example, if many of the strings in a node share the same chunks,
there is a large gap between two of the stored ranks. We can deal with these irregularities and
reduce the overall space consumption by using partitioned Elias-Fano [OV14]. Furthermore,
the PGM mappers do not always provide a very uniform mapping, which thus results in
empty buckets. An empty bucket corresponds to a duplicate offset value being stored in
the Elias-Fano sequences (see e.g. the duplicate offset 23 in Figure 9.3). To optimize the
space consumption of such duplicates, we filter them out before constructing the partitioned
Elias-Fano sequence. We do this by grouping the stored numbers in groups of 3 numbers. If
all 3 numbers are duplicates of the number before that group, we do not need to store the
group. A bit vector with rank support indicates which groups were removed.

Perfect Chunk Mapping. In many datasets, there might be only a small number of different
chunks, even if the number of strings they represent is large. For instance, chunks computed
on the first bytes of a set of URLs might be a few due to the scarcity of hostnames, but
each host may contain many distinct pages. In these cases, instead of a PGM, it might be
more space-efficient to build a (perfect) map from chunks to buckets in [c] via a retrieval
data structure taking c⌈log c⌉ bits overall (plus a small overhead), where c is the number of
distinct chunks. In practice, we apply this optimization whenever c < 128 (see Section 9.6.1).

Comparison to Known Solutions. In essence, LeMonHash-VL applies the idea of LeMon-
Hash recursively to handle variable-length strings. Therefore, unlike known solutions, it
can leverage data linearities to distribute w-bit chunks from the input strings to buckets
using small space, and use additional child nodes only whenever a bucket contains many
strings that thus require inspecting the following chunks to be distinguished. Additionally, it
performs an adaptive alphabet reduction within the buckets to fit more information in the
w-bit chunks, thus leveraging the presence of more regularities in the input data. Overall,
these features result in a data structure that has a small height and is efficient to be traversed.

LeMonHash

118 9.4 Variants and Refinements

9.4 Variants and Refinements

LeMonHash can be refined in numerous ways. Looking at a possible external memory
implementation, LeMonHash can be constructed trivially by a linear sweep and queries are
possible using a suitable representation of the predecessor and bucket-size data structures.
LeMonHash can also be constructed in parallel without affecting the queries, in contrast to
the trivial parallelization by partitioning the input. In LeMonHash-VL, extracting chunks
from non-contiguous bytes reduces the height of the trees but has worse trade-offs in practice.
Finally, we present an alternative to storing the local ranks explicitly. The idea is to
recursively split the universe size of that bucket and record the number of keys smaller than
that midpoint. Despite its query overhead, this technique might be of general interest for
MMPHFs. In the following, we describe these variants in more detail.

External Memory Construction. To construct the PGM-index with a specific ε value, a
single scan over the input data is sufficient. As soon as one of the segments is constructed, the
corresponding keys can be mapped to buckets and the input for the retrieval data structures
can be generated. The retrieval data structures can be constructed in external memory
as well [Dil+22]. The construction of LeMonHash can therefore be performed entirely in
external memory. External memory queries are possible by selecting a suitable data structure
for predecessor queries inside the PGM-index (such as the recursive structure in [FV20b]), as
well as an external-memory encoding of the bucket sizes. LeMonHash-VL can be constructed
and queried in external memory using similar considerations. While the recursion needs
additional passes over the input data, note that the construction is performed in depth-first
order, so it can profit from the locality between different levels.

Parallel Construction. As described in [Bel+11], it is easy to divide any MMPHF into
multiple buckets (see Section 9.1). The buckets can then be constructed independently in
parallel, but this naive construction introduces some query overhead due to adding another
layer on top of the data structure. Instead, the LeMonHash construction can be parallelized
transparently to the queries. We can divide the input data into ranges and construct
independent PGM-indexes on each range. When concatenating the linear models of all
ranges, we get a PGM-index for the whole input set. An advantage of this approach is that it
is transparent to the queries. With the naive division, this index stores a negligible number
of additional segments linear in the number of processors, but these cut-points can likely
be “repaired” locally, so that we do not get a space overhead for most inputs. Mapping
all keys to buckets by evaluating the PGM and therefore determining the input for the
retrieval data structures is possible in parallel as well. Finally, the retrieval data structures
can be constructed in parallel. This is again transparent to the queries and introduces only
a negligible space overhead linear in the number of processors [Dil+22]. For variable-length
strings, each node of the LeMonHash-VL construction can be parallelized just like described
above. On top of that, different child nodes can be constructed independently in parallel.

Recursive Bucket Splitting. Inside a bucket, our implementation explicitly stores the ranks
of all keys. Let us call this strategy Direct Rank Storing (DRS). An alternative method to
determine the ranks within a bucket is Recursive Bucket Splitting (RBS). Take a bucket of
size b that can contain keys from the range (L, R). We can now split this bucket in half by
storing how many of the keys are smaller than M = (L + R)/2. This takes ⌈log(b + 1)⌉ bits
and splits the bucket into two sub-buckets of average size b/2. The two sub-buckets can be

119

handled recursively. For uniform random inputs with an average bucket size of b ≥ 3, RBS
needs less space than DRS. This reduction in space consumption comes at the cost of more
expensive query operations. In particular, we need to query the retrieval data structures for
every level in that bucket-internal tree. An additional problem with this variant is that it
depends on the distribution of keys. In the worst case, when all key values are very close to
L, the approach repeatedly needs to store the fact that b keys are smaller than the midpoint.
This can lead to a space consumption close to log(b) log(R − L), which can be arbitrarily
large depending on the universe size. We therefore did not implement this construction for
LeMonHash. Whether the RBS technique still works well with real-world data sets remains
an open question. Given that many MMPHF construction algorithms use the bucketing
technique (see Section 9.1), the RBS technique might still be of general interest for MMPHFs.

Indexed Chunk Extraction. As described in Section 9.3, the chunks in LeMonHash-VL
are generated from consecutive characters. Now consider an input where the positions of
branching characters of the keys are very far. Then the chunks encode a lot of data that is not
necessary to differentiate the keys. Instead, it is possible to determine the distinct minima of
the LCP values of strings in the corresponding node. Then chunks can be generated from
the positions at these minima, which reduces the height of the tree. In practice, however, we
find that the plain version is faster and more space-efficient (see Section 9.6.1).

Low-Level Optimizations In addition to the main algorithmic optimizations described in
the main part, we here detail some more low-level optimizations of our implementation.

We encode the alphabet reduction as a bitmap and use the popcount instruction to
determine a character’s index. For determining how many characters fit into a chunk with
a given alphabet, we use a lookup table of size 256 because that is more efficient than a
(floating point) logarithm and division. Depending on the dataset, multiple nodes of the
tree might use alphabet reduction with a similar alphabet. When constructing a node, we
therefore look if another node stores a superset of the alphabet that still leads to the same
number of characters fitting into a chunk, and possibly re-use the alphabet. If no alphabet
reduction is used, we use the bswap instruction to immediately convert the next 8 characters
to a chunk.

To speed up access in Elias-Fano coded sequences, we use the clz instruction, which
counts the number of leading zeroes in a word. When calculating the LCP of strings, we
do so for multiple bytes at once using 64-bit comparisons. This general idea was already
evaluated in Ref. [Din+20]. To avoid accessing the strings during alphabet map creation
(which would lead to cache faults), we annotate the LCP array with the branching characters.

To decode the PGM metadata, which is stored as integers of small width, we use the
bextr instruction to extract specific bits from a word. To evaluate the PGM, we use a 64-bit
division with overflow detection instead of a 128-bit division because in practice, 64 bits are
often enough to store the operands. For the PGM that auto-tunes its ε value, we abort early
when we detect that the PGM itself is already larger than the optimal cost. This way, very
small ε values can often be ruled out earlier.

9.5 Analysis

We now prove some properties of our LeMonHash data structure for integers. In our analysis,
we use succinct retrieval data structures taking rn + o(n) bits per stored value and answering
queries in constant time (see Section 2.4 and [Dil+22]). Furthermore, since our bucket

LeMonHash

120 9.5 Analysis

mappers need multiplications and divisions, we make the simplifying assumption U = 2w to
avoid dealing with the increased complexity of these arithmetic operations over large integers.

▶ Theorem 9.1. A LeMonHash data structure with a bucket mapper that simply performs a
linear interpolation of the universe on a list of n uniform random keys needs ≈ n(2.91536 +
o(1)) bits on average1 and answers queries in constant time.

Proof. For n uniform random integers mapped to n buckets, the number of keys per bucket
follows a binomial distribution with p = 1/n. For large n, we can approximate this by the
Poisson distribution with λ = n · 1/n = 1. Therefore, the probability that a bucket has size
k is λke−λ

k! = 1
k! e . Storing a bucket of size k requires k entries in the corresponding retrieval

data structure, and each needs ⌈log k⌉ bits. Note that buckets of size 0 and 1 do not need to
store ranks. Using the linearity of expectation, the average total number of bits to store in
retrieval data structures is:

E(space) = n · E(space per bucket) = n ·
∞∑

k=2
k⌈log k⌉ · 1

k! e
≈ 0.91536n.

A succinct retrieval data structure can then store this using ≈ 0.91536n + o(n) bits of
space. The Elias-Fano coded sequence of global ranks takes 2n + o(n) bits. Overall, we get a
space consumption of ≈ n(2.91536 + o(1)) bits.

For queries, the evaluation of the linear function and rounding can be executed in constant
time. Now that we have the bucket index, we retrieve its offset and size from that binary
sequence using two constant time select1 queries. From that, we know which retrieval data
structure to query, and the actual query works in constant time [Dil+22]. ◀

While this result is formally only valid for a global uniform distribution, for use in
LeMonHash it suffices if each segment computed by the PGM-index is sufficiently smooth.
It need not even be uniformly random as long as each local bucket has a constant average
size. As long as the space for encoding the segments is in O(n) bits, we retain the linear
space bound of Theorem 9.1. Moreover, the following worst-case analysis gives us a fallback
position that holds regardless of any assumptions.

▶ Theorem 9.2. A LeMonHash data structure with the PGM mapper takes n(⌈log(2ε+1)⌉+2+
o(1))+O

(
m log U

m

)
bits of space in the worst case and answers queries in O

(
log logw

U
m

)
time,

where m is the number of linear models in a PGM with an integer parameter ε ≥ 0 constructed
on the n input keys.

Proof. The rank estimate returned by the PGM is guaranteed to be far from the correct
rank by ε. In other words, given a bucket number i ∈ [n], any of the input keys with rank
between max{1, i − ε} and min{i + ε, n} can be mapped to it, thus yielding a bucket of size
at most b = 2ε + 1. In the worst case, there are n/(2ε + 1) of such size-b buckets, which
overall require storing n local ranks in a ⌈log b⌉-bit retrieval data structure. Additional
2n + o(n) bits are needed for the Elias-Fano coded sequence of global ranks.

The remaining term of the space bound is given by the PGM, that we encode with an
Elias-Fano representation of linear models’ (x, y)-endpoints in m(log U

m + log n
m + 2 log(2ε +

1)) + O(m) bits [FMV22]. This can be bounded by O
(
m log U

m

)
bits, since from [FV20b,

1 Numerically, we find that a better space consumption of ≈ 2.902n bits can be achieved by mapping the
n keys to only ≈ 0.909n buckets, but this difference is irrelevant in practice. It is also interesting to note
that this is close to the space requirements of many practical non-monotone MPHFs (see Chapter 8).

121

Lemma 2] it holds 2ε ≤ n/m ≤ u/m. Finally, we build the predecessor structure of [BN15,
Theorem A.1] on the linear models’ keys, which takes O

(
m log U

m

)
bits and yields a query

time of O
(
log logw

U
m

)
. ◀

The worst-case bounds obtained in Theorem 9.2 are hard to compare with the ones
of classic MMPHF (see Section 9.1) due to the presence of m (and ε), which depends on
(and must be tuned according to) the approximate linearity of the input data, which classic
MMPHFs are oblivious to.2 We refer to Chapter 9 for bounds on m. Our experiments
show that we obtain better space or space close to the best classic MMPHFs, while being
much faster (we use a weaker but practical predecessor search structure than the one in
Theorem 9.2). We refer to Section 9.6 for details.

9.6 Experiments

In the following section, we first compare different configurations of LeMonHash and
LeMonHash-VL before comparing them with competitors from the literature.

Experimental Setup. We perform our experiments on an Intel Xeon E5-2670 v3 with
a base clock speed of 2.3 GHz running Ubuntu 20.04 with Linux 5.10.0. We use the
GNU C++ compiler version 11.1.0 with optimization flags -O3 -march=native. As a
retrieval data structure, we use BuRR [Dil+22] (see Section 2.4) with 64-bit ribbon width
and 2-bit bumping info. To store the bucket sizes, we use the select data structure by
Kurpicz [Kur22] in LeMonHash and Partitioned Elias-Fano [OV14] in LeMonHash-VL. To
map tree paths to the node metadata, we use the MPHF PTHash [PT21] because it has
very fast queries (see Chapter 8). For the PGM implementation in LeMonHash, we use the
encoding from Theorem 9.2 and use a predecessor search on the Elias-Fano sequence (see
Section 2.3). In LeMonHash-VL, since the number of linear models in a node is typically
small, we encode them explicitly as fixed-width triples (key, slope, intercept) and find the
predecessor via a binary search on the keys. All our experiments are executed on a single
thread. Because the variation is very small, we run each experiment only twice and report
the average. We run the Java competitors on OpenJDK 17.0.4 and perform one warm-up
run for the just-in-time compiler that is not measured. With this, the Java performance
is expected to be close to C++ [Bel+11]. Because Java does not have an unsigned 64-bit
integer type, we subtract 263 from each input key to keep their relative order.

The code and scripts needed to reproduce our experiments are available on GitHub under
the General Public License [Leh23b; LV23].

Datasets. In ordinary minimal perfect hashing, construction is mostly independent of the
input data set (see Section 1.1). Because it is, in contrast, relevant for monotone minimal
perfect hashing, we evaluate LeMonHash with several input sets. Our datasets, as in previous
evaluations [Bel+11; GO14], are a text dataset that contains terms appearing in the text
of web pages [Bel+11] and urls crawled from .uk domains in 2007 [BSV08]. Additionally,
we also test with dna sequences consisting of 32-mers [FN]. Regarding real-world integer
datasets, 5gram contains positions of the most frequent letter in the BWT of a text file
containing 5-grams found in books indexed by Google [BFV22; Goo]. The fb dataset contains
Facebook user IDs [Kip+19] and osm contains OpenStreetMap locations [Kip+19]. We plot

2 This happens also in other problems in which data is encoded with linear models [BFV22; FMV22].

LeMonHash

122 9.6 Experiments

Table 9.1 Datasets we use, together with their length or average (ø) length. Top: real-world string
datasets. Middle: real-world integer datasets. Bottom: synthetic integer datasets.

Dataset n Length Description

text 35M ø 11 bytes Terms appearing on web pages, GOV2 corpus [Bel+11]
dna 367M 32 bytes 32-mer from a DNA sequence, Pizza&Chili corpus [FN]
urls 106M ø 105 bytes Web URLs crawled from .uk domains in 2007 [BSV08]

5gram 145M 32 bits Positions of the most frequent letter in the BWT of a text file
containing 5-grams found in Google Books [BFV22; Goo]

fb 200M 64 bits Facebook user IDs [Kip+19]
osm 800M 64 bits OpenStreetMap locations [Kip+19]

uniform 100M 64 bits Uniform random
normal 100M 64 bits Normal distribution (µ = 1015, σ2 = 1010)
exponential 100M 64 bits Exponential distribution (λ = 1, scaled with 1015)

Rank

Va
lu

e

5gram

Rank

Va
lu

e

fb

Rank

Va
lu

e

osm

Figure 9.4 Distribution of keys in integer datasets.

the distribution of these integer datasets in Figure 9.4. Note that the last 20 keys of the fb
dataset contain very large special values. We deliberately keep those to evaluate the resilience
to outliers. As synthetic integer datasets, we use 64-bit uniform, normal, and exponential
distributions. We refer to Table 9.1 for details.

9.6.1 Tuning Parameters
In the following section, we compare several configuration parameters of LeMonHash and
show how they provide a trade-off between space consumption and performance.

LeMonHash. Different ways of mapping the keys to buckets have their own advantages
and disadvantages. Table 9.2 gives measurements of the construction and query throughput,
as well as the space consumption of different bucket mappers. Our implementation of
LeMonHash with a linear bucket mapper achieves a space consumption of 2.94n bits, which
is remarkably close to the theoretical space consumption of 2.91n bits (see Theorem 9.1).
Of course, a global, linear mapping does not work for all datasets. A bucket mapper that
creates equal-width segments by interpolating between sampled keys (denoted as “Segmented”
in the table) is fast to construct and query, and it achieves good space consumption. But,
as for the global linear mapping, this approach is not robust enough to manage arbitrary
input distributions. In particular, for this heuristic mapper, it is easy to come up with a
worst-case input that degenerates the space consumption. Conversely, with the PGM mapper,
LeMonHash still achieves 2.96n and 2.98n bits on uniform random integers, but it is more
performant and robust on other datasets (except on osm, where the heuristic mapper obtains
a good enough mapping with only its equal-width segments, which are inexpensive to store).
In fact, we explicitly avoided heuristic design choices in our PGM mapper (such as sampling

9.6.1 Tuning Parameters 123

Table 9.2 Comparison of different bucket mappers. The space consumption is given in bits per
key, the query throughput in kQueries/second, and the construction throughput (c.t.)
in MKeys/second.

Dataset Linear mapper PGM ε = auto PGM ε = 31 Segmented

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

5gram 5.60 1833.5 6.2 2.62 1747.0 3.8 2.63 1779.4 8.5 2.64 2145.9 14.5
fb 34.35 0.8 5.1 4.91 1156.1 2.8 4.91 1150.7 5.1 4.93 1441.3 7.2
osm 12.92 1525.3 5.5 4.42 999.6 2.8 4.42 998.6 5.0 4.33 1272.9 6.8

uniform 2.94 3244.6 8.7 2.96 1903.3 3.5 2.98 1850.5 6.5 3.03 2192.0 8.7
normal 34.27 105.3 4.8 2.95 1935.0 3.6 2.97 1858.0 6.6 3.00 1727.7 8.7
exponential 5.42 2715.9 6.0 2.95 1876.9 3.6 2.98 1791.5 6.6 3.01 2085.1 8.8

Table 9.3 Comparison of different variants of LeMonHash-VL. The space consumption is given
in bits per key, the query throughput in kQueries/second, and the construction
throughput (c.t.) in MKeys/second. Variants with and without alphabet reduction
(AR), a special indexed variant (Idx, see Section 9.4), and a variant with fixed instead
of auto-tuned parameter ε for the bucket mapper.

Dataset ε = auto, no AR ε = auto, AR ε = 63, AR Idx, ε = auto, AR

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

text 6.52 1062.9 1.7 6.03 1005.8 1.6 6.08 1001.8 2.5 6.10 933.2 2.3
dna 7.66 452.8 2.0 6.32 631.3 1.7 6.25 644.8 2.7 6.27 601.1 2.4
urls 7.14 282.7 2.3 6.37 298.8 1.8 6.46 295.1 2.3 6.63 298.1 1.6

input keys, removing outliers, or using linear regression) to not inflate our performance on
the tested datasets at the expense of robustness on unknown ones (see Ref. [KRT22]). Finally,
on most input distributions, auto-tuning the value of ε ∈ {15, 31, 63} does not have a large
effect on the space consumption.

LeMonHash-VL. Table 9.3 lists the effect of alphabet reduction on the query and construc-
tion performance. In general, alphabet reduction enables noticeable space improvements
with only a small impact on the construction time. For the dna dataset, which uses only
15 different characters, the alphabet reduction has the largest effect, saving 1.3 bits per key
and simultaneously making the queries 40% faster. The faster queries can be explained by
the reduced tree height. Note that alphabet reduction makes the queries slightly slower for
the other datasets. The reason is that instead of one single bswap instruction for chunk
extraction, it needs multiple arithmetic operations (including popcount) for each input
character. The indexed variant that builds chunks from the distinguishing bytes instead of a
contiguous byte range (see Section 9.4) is slower to construct but does not show clear space
savings, which can be explained by larger per-node metadata. We also experimented with
different thresholds for when to stop recursion, as well as the perfect chunk mapping (see
Section 9.3). Given that the space overhead from each bucket mapper is the same for all
data sets, it is not surprising that the same threshold (128 keys) works well for all datasets
(see Figure 9.5). While we have not plotted the query performance here, note that queries
get slightly faster when increasing the recursion threshold because that reduces the height of

LeMonHash

124 9.6 Experiments

64 128 256 512

6

6.5

7

Recursion threshold

B
its

/K
ey

text

64 128 256 512
Recursion threshold

dna

64 128 256 512
Recursion threshold

urls

Perfect Chunk Mapping threshold: 32 64 128 256

Figure 9.5 Different thresholds for when to store ranks (of keys and chunks) explicitly.

the tree. Finally, making the ε value of the PGM mapper constant instead of auto-tuned, we
naturally get faster construction. As in the integer case, one would expect a fixed ε value to
always produce results that are the same or worse than the auto-tuned version. This is not
the case because, in the recursive setting, it is hard to estimate the effect of a mapper on the
overall space consumption. Therefore, an ε value that needs more space locally can lead to a
mapping that proves useful on a later level of the tree. This is why ε = 63 can achieve better
space consumption than the auto-tuned version on the dna dataset.

9.6.2 Comparison with Competitors
We now compare the performance of LeMonHash and LeMonHash-VL with competitors
from the literature. Competitors include the C++ implementation by Grossi and Otta-
viano [GO14] of the Centroid Hollow Trie, Hollow Trie, and Path Decomposed Trie. Because
that implementation only supports string inputs, we convert the integers to a list of fixed-
length strings. We point out that the Path Decomposed Trie crashes at an internal assertion
when being run on integer datasets. For the Hollow Trie, we encode the skips with either
Gamma or Elias-Fano coding, whatever is better on the dataset. We also include the Java
implementations by Belazzougui et al. [Bel+11] of a range of techniques (see Section 9.1).
We use either the FixedLong or PrefixFreeUtf16 transformation, depending on the data type
of the input. For LeMonHash, we use the PGM mapper with ε = 31. For LeMonHash-VL,
we use the PGM mapper with ε = 63, alphabet reduction and a recursion threshold t = 128.

Queries. Figure 9.6 plots the query throughput against the achieved storage space. In
Table 9.4, we additionally detail the numbers in tabular format. The LCP-based methods
(see Section 9.1) have very fast queries but also need the most space (in fact, they appear to
the top-right of the plots). At the same time, LeMonHash matches or even outperforms the
query throughput of LCP-based methods, while being significantly more space-efficient (in
fact, it appears towards the top-left of the plots). Compared to competitors with similar
space consumption, LeMonHash offers significantly higher query throughput.

Construction. Figure 9.7 plots the construction throughput against the space needed.
On most synthetic integer datasets, LeMonHash shows significant improvements to the
state of the art, whereas it matches or outperforms the competitors on real-world datasets.
LeMonHash improves the construction throughput by up to a factor of 2, compared to the
competitor with the next best space consumption (typically, variants of the Hollow Trie).
While LeMonHash-VL only has the second best space consumption after the Hollow Trie
Distributor, its construction is significantly faster.

9.6.2 Comparison with Competitors 125

Centroid HT [GO14] HTDist [Bel+11] Hollow [GO14]
Hollow [Bel+11] LCP 2-step [Bel+11] LCP [Bel+11]
LeMonHash-VL [Fer+23a] LeMonHash [Fer+23a] PaCo [Bel+11]
Path Decomp. [GO14] VLLCP [Bel+11] VLPaCo [Bel+11]
ZFast [Bel+11]

0

0.5

1

M
Q

ue
rie

s/
s

text dna urls

0

1

2

M
Q

ue
rie

s/
s

5gram fb osm

5 10
0

1

2

≥
Bits/Key

M
Q

ue
rie

s/
s

uniform

5 10 ≥
Bits/Key

normal

5 10 ≥
Bits/Key

exponential

Figure 9.6 Query throughput for string, integer, and synthetic integer datasets vs space con-
sumption. Competitors with the symbol in the legend are implemented in Java.

0

1

2

3

M
K

ey
s/

s

text dna urls

0
2
4
6
8

M
K

ey
s/

s

5gram fb osm

5 10
0
2
4
6
8

≥
Bits/Key

M
K

ey
s/

s

uniform

5 10 ≥
Bits/Key

normal

5 10 ≥
Bits/Key

exponential

Figure 9.7 Construction throughput for string, integer, and synthetic integer datasets.

LeMonHash

126 9.7 Summary

9.7 Summary

In this chapter, we have introduced the monotone minimal perfect hash function LeMonHash.
LeMonHash, unlike previous solutions, learns and leverages data smoothness to obtain a
small space consumption and significantly faster queries. On most synthetic and real-world
datasets, LeMonHash dominates all competitors – simultaneously – on space consumption,
construction and query throughput. Our extension to variable-length strings, LeMonHash-VL,
consists of trees that are significantly more flat and efficient to traverse than competitors.
This enables extremely fast queries with space consumption similar to competitors.

127

Ta
bl

e
9.

4
C

om
pa

ri
so

n
of

st
ri

ng
an

d
in

te
ge

r
da

ta
se

ts
.

M
ea

su
re

m
en

ts
fr

om
Fi

gu
re

s
9.

6
an

d
9.

7
in

ta
bu

la
r

fo
rm

.
Q

ue
ry

th
ro

ug
hp

ut
is

gi
ve

n
in

kQ
ue

ri
es

/s
an

d
sp

ac
e

co
ns

um
pt

io
n

is
gi

ve
n

in
bi

ts
/k

ey
(b

pk
).

M
et

ho
d

te
xt

dn
a

ur
ls

5g
ra

m
fb

os
m

un
ifo

rm
no

rm
al

ex
po

ne
nt

ia
l

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

C
en

tr
oi

d
H

T
[G

O
14

]
56

0
6.

78
29

4
9.

05
39

9
8.

36
39

8
5.

09
36

3
5.

47
29

5
5.

95
41

3
5.

55
40

0
5.

54
37

5
5.

55
H

ol
lo

w
[G

O
14

]
34

5
5.

84
25

2
7.

87
15

3
7.

42
30

0
4.

15
27

6
4.

53
18

7
5.

01
35

1
4.

61
33

9
4.

60
35

6
4.

61
Pa

th
D

ec
om

p.
[G

O
14

]
57

9
54

.4
4

18
5

14
8.

27
22

4
22

8.
88

cr
as

he
s

on
in

te
ge

rs
H

T
D

is
t

[B
el

+
11

]
92

5.
40

80
5.

67
52

5.
70

11
5

4.
67

97
4.

84
73

4.
81

13
3

4.
69

12
2

4.
69

12
7

4.
69

H
ol

lo
w

[B
el

+
11

]
14

8
6.

90
12

4
9.

26
73

8.
41

16
2

4.
07

15
0

4.
50

11
0

4.
96

17
9

4.
54

16
9

4.
53

18
8

4.
54

LC
P

2-
st

ep
[B

el
+

11
]

11
76

13
.1

2
83

4
11

.6
2

39
4

17
.8

1
92

6
9.

98
93

8
10

.7
9

90
3

11
.0

0
11

93
9.

46
10

96
9.

87
10

93
9.

97
LC

P
[B

el
+

11
]

12
91

21
.6

1
11

61
16

.2
3

43
0

22
.7

4
14

29
12

.9
0

12
69

12
.9

0
13

64
12

.9
7

15
35

11
.7

7
17

11
12

.8
7

16
60

12
.8

7
Pa

C
o

[B
el

+
11

]
33

9
7.

88
35

0
8.

77
18

1
11

.0
9

42
9

6.
13

39
7

6.
44

34
0

6.
69

52
2

6.
50

46
3

6.
30

47
1

6.
42

V
LL

C
P

[B
el

+
11

]
81

6
18

.4
3

61
1

20
.1

3
31

5
22

.5
9

72
3

16
.3

0
69

0
17

.5
6

69
2

16
.8

6
82

3
16

.2
6

78
0

16
.2

7
86

8
16

.2
7

V
LP

aC
o

[B
el

+
11

]
33

7
8.

19
36

0
9.

86
17

7
11

.0
6

42
3

7.
25

40
4

7.
56

32
0

7.
81

50
0

7.
61

44
9

7.
41

46
5

7.
53

ZF
as

t
[B

el
+

11
]

53
0

8.
88

26
9

8.
71

19
8

8.
77

48
7

7.
59

44
1

7.
73

34
5

7.
87

59
1

7.
63

58
1

7.
64

61
1

7.
78

L
eM

on
H

as
h-

V
L

[F
er

+
23

a]
12

78
6.

08
79

0
6.

25
33

8
6.

46
14

58
2.

98
11

11
4.

91
85

7
4.

39
15

72
3.

33
16

47
3.

32
16

35
3.

33
L

eM
on

H
as

h
[F

er
+

23
a]

on
ly

su
pp

or
ts

in
te

ge
rs

24
21

2.
63

14
63

4.
91

13
38

4.
42

27
18

2.
98

26
57

2.
97

24
93

2.
98

LeMonHash

129

10 Perfect Hashing
for Variable Size Objects

Summary: Perfect hashing can be used to build hash tables that can retrieve
objects with a single probe. However, this only works for objects of fixed size or with
large space overhead. PaCHash stores its objects contiguously in an array without
intervening space, even if the objects have variable size. In particular, each object can
be compressed using standard compression techniques. A small search data structure
allows locating the objects in constant expected time.
PaCHash is most naturally described as a static external hash table where it needs
a constant number of bits of internal memory per block of external memory. In
some sense, it beats a lower bound on the space consumption of k-perfect hashing.
An implementation for fast SSDs needs about 5 bits of internal memory per block
of external memory, requires only one disk access (of variable length) per search
operation, and has small internal search overhead compared to the disk access cost.
Our experiments show that it has lower space consumption than all previous approaches
even when considering objects of identical size.

Attribution: This chapter is based on “PaCHash: Packed and Compressed Hash
Tables” [KLS23]. Large parts of this chapter are copied verbatim or with minor
changes from that publication. In the evaluation, we rework the main figures. The
author of this dissertation is the main author of the paper. He implemented the
algorithm, performed the experiments and wrote most of the manuscript. The analysis
of the space consumption when using Succincter is due to Florian Kurpicz. All authors
made significant contributions, to algorithm design, analysis, design & interpretation
of the experiments, and the write-up. The authors would like to thank Peter Dillinger
and Stefan Walzer for early discussions leading to the paper.

Hash tables support constant time key-based retrieval of objects and are one of the most
widely used data structures. There is a lot of work on hash tables which need little more
space than just the stored objects themselves [ANS10; Ben+23; Fot+05; Knu98; KPR22;
PR04]. Using perfect hashing, it is possible to build a static hash table that can retrieve
objects with a single probe. However, all these approaches are only space-efficient for objects
of identical size which makes it impossible to compress the objects with variable bit-length
codes. Compressed data structures store data in a space-efficient way, preferably approaching
the information theoretical limit, and support various kinds of operations without the need
to decompress the entire data structure first [AKS15; FM05; Gog+14; Zha+18]. There has
been intensive previous work on hash tables and compressed data structures but, surprisingly,
the intersection leaves big gaps. Currently, most hash tables for objects of variable size store
references from table entries to the data which entails a space overhead of at least log N bits
per object, where N is the total size of all objects in the table.

In this chapter, we introduce PaCHash, an external memory hash table that supports
objects of variable size. PaCHash eliminates fragmentation by packing the objects contiguously

PaCHash

130 10 Perfect Hashing for Variable Size Objects

Table 10.1 Symbols used in this chapter.

S Set of objects
n Number of objects
N Total size of objects (bits)
p Internal index data structure
a Tuning parameter: Bins per block
m = N/B̄ Number of blocks
B Block size (bits)
B̄ = B− d Payload data per block
d ∈ 0.. log B Encoding-dependent number of bits to store position of first bin of block

in memory without leaving free space. Like a perfect hash function, PaCHash then uses a
highly space-efficient search data structure to translate input objects to memory locations.
We deliberately use the word object for the stored data because that highlights the flexibility
of PaCHash. Naturally, an object stores a key-value-pair, but we will look at other uses as
well. During construction, objects are first hashed to bins. The bins are stored contiguously
in m blocks of size B. PaCHash essentially stores one bin index per block using a searchable
compressed representation which enables finding the block(s) where a bin is stored.

Even though hash tables like PaCHash have applications in object stores, there is little
previous work on space-efficient hash tables for objects of variable size (see Section 10.1).
For objects of identical size s, minimal perfect hashing requires a constant number of bits
per object. PaCHash approximates this when choosing B = s, also needing a (slightly larger)
constant number of bits per object. The picture changes when we look at larger block sizes
B = ks and the corresponding approach of minimal k-perfect hashing (MkPH) [BBD09].
Now, PaCHash still needs only a constant number of bits per block, while there is a lower
bound of Ω (log k) bits per block using MkPH (see Section 2.7).

In Section 10.2 we describe PaCHash in detail. Section 10.4 describes different implemen-
tation variants including fully internal and fully external versions as well as a variant that is
usable as variable-bit-length array (VLA) [Nav16]. We analyze PaCHash in Section 10.3.
Finally, in Section 10.5, we describe experiments for an external memory implementation.
As close contenders, we also implement Separator Hashing [GL88; LK84] and Cuckoo Hash-
ing [Aza+94; PR04] with adaptions that partially allow variable size objects. We summarize
the results in Section 10.6.

Model of Computation. We describe our results in a variant of the external memory
model [VS94] adapted to a situation where objects are compressed to variable length
sequences of bits. We have a fast memory of size M bits. Accesses to a large external memory
are I/Os to blocks of B consecutive bits. In contrast to the original model, we analyze both
I/Os and internal work. scan(N) denotes the cost (I/Os and internal work) of scanning N

bits of data.1 sort(N) denotes the cost of sorting N bits.2 In particular, we are interested in
a high load factor, which is N divided by the total external space consumption.

1 The internal work may depend on the encoding of the data. For example, we may need Θ(N) machine
instructions, or, a faster encoding may enable bit-parallel processing in O(N/ log n).

2 This entails (N/B)(1 + ⌈logM/B(N/M)⌉) I/Os. In this chapter, algorithms with linear internal work
are possible exploiting random integer keys. The cost also includes (de)coding overhead as in scan
operations.

131

10.1 Related Work

The following section introduces related data structures from the literature. Table 10.2
provides an overview over the most important parameters. There are close contenders in
the form of object stores from the database literature. BerkeleyDB [OBS99] uses a B+-
Tree [Com79] of order d, where each node branches between d and 2d times. LevelDB [Goo21]
and RocksDB [Fac21] use a Log-Structured Merge tree [O’N+96], which stores multiple levels
of a static data structure with increasing size. Insertions go into the first level and when
a level gets too full, it is merged into the next level. SILT’s LogStore [Lim+11], Facebook
Haystack [Bea+10] and FAWN [And+09] simply store a pointer of size Ω(log N) to each
object. Real world instances often store very small objects [Nis+13], so the pointers add a
considerable amount of overhead.

Sorted Objects. LevelDB’s static part [Goo21] stores objects in key order, enabling range
searches and common-prefix-compression. SortedStore in SILT [Lim+11] sorts the objects by
their hashed key and uses entropy coded tries as an index. Pagh [Pag03] proposes to sort
the n objects by a hash function with range ≥ n3. The internal memory stores the first hash
function value mapped to each block. This data structure can be queried using a predecessor
data structure in time O(log log n). A novel idea in PaCHash is that it uses a hash function
range based on the total space N instead of the number of objects n, which enables efficient
queries and compact representation.

External Hash Tables. In external hash tables, each table cell corresponds to a fixed size
block. A common technique to support variable size objects is using indirection by internally
storing a pointer to the object contents, possibly inlining parts of the objects [Lim+11,
Section 4]. NVMKV [Már+15] and KallaxDB [Che+21] use an SSD as one large hash table
and rely on SSD internals to handle empty blocks in a space-efficient way. Overflowing blocks
due to hash collisions can be handled with perfect hashing [LR85; RT89] or using one of the
following techniques.

With Hashing with Chaining, objects of overflowing blocks are stored in linked lists.
SkimpyStash [DSL11] chains objects using an external successor pointer for each object. This
trades internal memory space for latency because of multiple dependent I/Os. Jensen and
Pagh’s [JP08] data structure reserves parts of the external memory as a buffer to reduce the
need for chaining. Extendible Hashing [Fag+79] keeps a balanced tree of blocks. Overflowing
blocks are split into two children indexing one more bit of the hashed key.

Another method for resolving collisions is open addressing, where each object could be
located in multiple blocks. Cuckoo Hashing [DW07; PR04] (see Section 2.5) locates each
object in one of two (or more [Fot+05]) independently hashed blocks. Queries can load both
blocks in parallel to reduce latency. With Separator Hashing [GL88; LK84], each object has
a sequence of blocks it could be stored in and a corresponding sequence of signatures. When
a block overflows, the objects with the highest signature values are pushed out to the next
block in their respective sequences. The internal memory stores the highest signature value
of the objects placed in each block. A query follows the object’s sequence of blocks and stops
when it finds a separator that is larger than the corresponding signature. Linear hashing
with separators [Lar88] is a dynamic variant with a linear probe sequence. External Robin
Hood Hashing [Cel88] is similar to linear separator hashing, but it instead pushes out objects
that are closest to their respective home address. For each block, the internal memory stores
the smallest distance of its objects to their respective home address.

PaCHash

132 10.1 Related Work

Table 10.2 Space-efficient object stores from the literature. To unify the notation, we convert all
values so that they refer to objects of size s = 256 bytes stored in blocks of B = 4096
bytes. Each block contains B/s = 16 objects. Top: Stores for objects of identical size.
Can be used for objects of variable size by using indirection or for some methods by
accepting significantly lower load factors. Bottom: Dedicated variable size object
stores. This table also contains VLAs, even though those are a slightly different field.

Method Internal memory Load Factor I/Os

Fi
xe

d
si

ze

Extendible Hashing [Fag+79] log m bits/block 90% 1
Larson et al. [LR85] 96 bits/block <96% 1
SILT SortedStore [Lim+11] 51 bits/block 100% 1
Linear Separator [Lar88] 8 bits/block 85% 1
Separator [GL88; LK84] 6 bits/block 98% 1
Robin Hood [Cel88] 3 bits/block 99% 1.3
Ramakrishna et al. [RT89] 4 bits/block 80% 1
Jensen, Pagh [JP08] 0 bits/block 80% 1.25
Cuckoo [Aza+94; PR04] 0 bits/block <100% 2
PaCHash, a = 1 2 bits/block 100% 23

PaCHash, a = 8 5 bits/block 100% 1.133

Va
ria

bl
e

si
ze

SILT LogStore [Lim+11] 832 bits/block 100% 1
Külekci [Kü14] (VLA) 176 bits/block <100% 0–114

SkimpyStash [DSL11] 32 bits/block ≤98% 8
Blandford, Blelloch [BB08] (VLA) 16 bits/block ≤50% 1
PaCHash, a = 1 2 bits/block 99.95% 2.063

PaCHash, a = 8 5 bits/block 99.95% 1.193

Variable-Bit-Length Arrays. Variable-bit-length arrays (VLAs) are arrays containing objects
of variable size. Oftentimes, VLAs are used to efficiently access variable-length codes, e.g.,
Elias-γ and -δ codes [Eli74] or Golomb codes [Gol66]. VLAs are closely related to PaCHash,
which can be used also as VLA by using the array index instead of the hash function, see
Section 10.4. Conversely, PaCHash can be seen as a VLA where each entry stores a PaCHash
bin. However, most VLAs have some limitations that rule out storing the PaCHash bins
efficiently. A major difference to all VLAs described below is PaCHash allowing objects to
span over multiple blocks of fixed size.

Navarro [Nav16, Section 3.2] describes several techniques for implementing VLAs. How-
ever, none of them achieves the same favorable space-time trade-off as the PaCHash VLA.
The closest one – sampled pointers – needs N + n log(N)/k bits of space with access cost
bounded by the time needed to skip k objects. Note that this time can be large when large
objects need to be skipped.5 All the other described VLAs need several bits of space overhead
per object (multiplied with a factor that depends on the maximum or average object size).
The VLA introduced by Külekci [Kü14] uses wavelet trees [FM00] to partition the universe.
This makes the query time depend double logarithmically on the largest object stored in

3 PaCHash performs one I/O of variable size which is faster than the competitors’ multiple I/Os.
4 Using 256 byte objects, we have an alphabet size of 28·256, and log log 28·256 = 11.
5 Space could be reduced to N + n

k (2 + log kN
n) bit using Elias-Fano coding of the pointers – resulting in

similar space as the PaCHash VLA with B = kN/n but with worse access costs.

133

1 2 3 4 5 6 7 8 9 10 11 12

p11 4 8p2 p3

h

n input objects

am bins

m blocks

Figure 10.1 Example of PaCHash with n = 9 objects. The hash function h maps the objects to 12
bins, i.e., a = 4. The bin content is then contiguously written to the m = 3 external
memory blocks. The internal memory index p stores the first bin intersecting with
each block. Note that locating bin 8 will return the range 2..3, i.e., block 2 is loaded
superfluously because there is no preceding empty bin that can encode whether it
overlaps into the previous block. All other bins are located optimally.

the VLA, a limitation not existing in PaCHash. Blandford and Blelloch [BB08] describe
dynamic VLAs and hash tables for variable sized objects. However, their technique incurs a
constant factor of space overhead and is limited to objects of bounded size. They partition
the objects into blocks, but the blocks are generally only partially filled and do not allow
objects crossing block boundaries as in PaCHash.

10.2 The PaCHash Data Structure

We now present PaCHash in detail – a hash table which considerably improves on the data
structures from the literature. It natively supports variable size objects without the need
for indirection or empty cells. It needs only a few bits of internal memory per block and
still needs only one single I/O operation (of variable length) per query. PaCHash consists
of an external part subdivided into m blocks of exactly B bits each that store the actual
objects and an internal part that allows finding the blocks storing an object. Figure 10.1
gives an example for the external and internal memory data structures. We deliberately
use the word object for the stored data because that highlights the flexibility of PaCHash.
Naturally, an object stores a key-value-pair, but it can also store only a value to obtain an
external dictionary data structure. It is even possible to use quotienting by storing the bin
index inside the first object of each bin.

10.2.1 External Object Representation
PaCHash stores the objects sorted by a hash function h with a rather small domain, namely
h : K → 1..am, where K is the set of possible keys, m is the number of blocks and a is a
tuning parameter that we assume to be a power of two. The hashes can collide and therefore
group the objects into am bins. The objects are now basically stored contiguously. “Basically”
means that blocks may also contain information needed to find the first object or bin stored in
them. Refer to Section 10.4 for a discussion of alternative encodings. Our default assumption
is as follows: Each external block stores an offset of size d = log B bits indicating the bit
where the first bin in the block starts. The remaining space stores the objects contiguously
where an object may have an arbitrary size in bits. No space is left between subsequent
objects. In particular, object representations may overlap block boundaries. We assume

PaCHash

134 10.2 The PaCHash Data Structure

Algorithm 10.1 A query for an object x calls locate(x), loads the returned block range, and
scans the blocks to find the object content. Determining the range boils down
to predecessor queries on p.

Function locate(x)
b := h(x)
find i such that pi−1 < b ≤ pi // predecessor query
if pi = b then i := i− 1 // b may start in previous block
find first j such that pj > b // predecessor query or scan
return i..(j − 1)

that objects are encoded in a self-delimiting way, i.e., when we know where an object starts,
we can also find its end. For example, we could have a prefix-free code for the objects.
Construction first sorts the objects by their hash function value. Then it scans the sorted
objects, constructing both the external and the internal data structure along the way. Refer
to Section 10.3 for more details. If the internal data structure gets lost, for example due to a
power outage, it can be re-generated using a single scan over the external memory data.

10.2.2 Internal Memory Data Structure
Given a bin b, the internal memory data structure p can be used to determine a (near-)minimal
range i..j of block indices such that b is stored in that range. When performing a query, that
block range can then be loaded from external memory and scanned for the sought key. In
practice, the resulting latency is often close to that of loading a single block. Conceptually, p

stores a sequence ⟨p1, . . . , pm⟩ where pi specifies the first bin whose data is at least partially
contained in block i.6 We can use a predecessor query on p to determine i. When the
predecessor is b itself, we also need to load the previous block. Another predecessor query or
scanning then determines j, as illustrated by the pseudocode in Algorithm 10.1. To get the
most out of this specification, we take empty bins into account: When a bin starts exactly at
a block boundary and has an empty predecessor, we store that predecessor. This implies that
if (and only if) a bin b starts at a block boundary and the previous bin b − 1 is nonempty,
retrieving bin b will load one block too much. Note that p is a monotonically increasing
sequence of integers which can be represented with different methods and trade-offs.

Elias-Fano Coding. A standard technique for storing monotonic sequences is Elias-Fano
coding, where predecessor queries generally take logarithmic time (see Section 2.3). However,
we will prove in Lemma 10.7 that they take constant expected time in the case of PaCHash.
The internal memory usage is m(2 + log(a) + o(1)) bits (see Lemma 10.2).

Bit Vector with Succincter. It is also possible to store p as a bit vector with rank and
select support. An item pi at position i is then represented as a 1-bit in position i + pi.
The position of the predecessor of a bin b can be found in constant time by calculating
select0(b)−b. The actual value can be calculated using a select1 query. Because the bit vector
is sparse, we can use Succincter [Pua08] to compress it and its rank and select structures
down to about m(1.44 + log(a + 1) + o(1)) bits (see Lemma 10.4).

6 An alternative would be to store the first bin that starts in each block. This introduces a special case
when a block is fully overlapped by a bin and needs slightly more work when performing queries.

135

Entropy Coding. We observed that in practice, the bit vector is considerably more regular
than a truly random one and thus allows additional compression. This can be made fast by
splitting it into ranges that are compressed individually, e.g., using dictionary compression.
In our experimental evaluation in Section 10.5.2, we see a space-time trade-off, where we
can achieve internal memory space consumption less than the best generic results described
above in Section 10.2.2.

10.3 Analysis

We now formalize the properties of PaCHash in Theorem 10.1 which basically says the
following: External space is just the space needed to store the variable sized objects plus
possibly a few bits per block to know where the first object in the block starts. Internal
space is about 2 + log a bits per block where a is a tuning parameter that also shows up in a
term adding 1/a expected I/Os to the retrieval cost.

While proving the theorem, we discuss some variants and implications. Section 10.3.1
considers construction cost and final space consumption, while Section 10.3.2 looks at I/Os
and internal work of queries.

▶ Theorem 10.1. Consider n objects of total size N bits which are stored in m blocks of
size B. Let d ∈ 0.. log B be an encoding-dependent number of bits needed to specify where the
first bin or object of a block starts and B̄ = B − d be the payload size per block, i.e., m = N/B̄.
For a parameter a, let a random uniform hash function map the objects to am bins.

Then, PaCHash with Elias-Fano coding needs m(2 + log a + o(1)) bits of internal memory
and N(1 + d/B̄) bits of external memory. The construction cost is the same as that of sorting
the objects using am random integer keys. The expected time for retrieving an object of size
|x| bits is constant plus the time for scanning 1 + |x|/B̄ + 1/a blocks. The unsuccessful search
time is the same except that |x| is replaced by 0.

10.3.1 Construction
Assuming that the set of input objects is stored in compressed form on external memory, we
mainly need to sort the objects by their hash function value. In our model, this has complexity
sort(N). In most practically relevant situations, this can even be done in O(scan(N)) using
integer sorting, see Section 10.3.3 for details.

The sorted representation is then scanned and basically copied to the output, only adding
d bits of information within each block, which allow a query to initialize the scanning
operation. What d is depends on the concrete encoding of the data, ranging from d = 0
for objects of identical size or for 0-terminated strings to d = log(B) bits when we explicitly
encode the starting position of an object or bin. Refer to Section 10.4 for examples.

▶ Lemma 10.2. When using Elias-Fano coding to store p, the index needs 2 + log a + o(1)
bits of internal memory per block and can be constructed in time O(m).

Proof. p consists of k = m integers ≤ am = U . Inserting this into the space consumption
of Elias-Fano coded sequences (see Section 2.3) gives us space(p) = k(2 + log(U/k)) + 1 =
m(2+log(am/m))+1 = m(2+log a)+1. The select0 data structure on the upper bits H can
be stored in o(m) bits (see Section 2.1). Each of the m insertions into the sequence can be
done in constant time while generating the external object representation. The construction
of the select0 data structure takes time O(m). ◀

PaCHash

136 10.3 Analysis

We can also use Succincter [Pua08] to store the compressed sequence p. In this case,
we get an almost optimal space consumption of 1.4427 + log(a + 1) + o(1). The following
Lemmas prove this. First, we start with a general property of binomial coefficients.

▶ Lemma 10.3. For any c > 1, n > 0, let f(n, c) :=
√

c

(c − 1)2πn

(
cc

(c − 1)c−1

)n

, then

f(c, n)
(

1 − c2 − c + 1
12c(c − 1)n

)
<

(
cn

n

)
< f(c, n)e− 1

12n+1 = f(c, n)
(

1 − 1
12n

+ O
(

1
n2

))
.

Proof. We use the identity
(

cn
n

)
= (cn)!

n!(cn−n)! as well as Stirling’s approximation

√
2πm

(m

e

)m

e
1

12m+1 < m! <
√

2πm
(m

e

)m

e
1

12m .

For the upper bound we get(
cn

n

)
= (cn)!

(cn−n)! · 1
(cn−n)! <

√
2πcn

(
cn
e

)cn
e

1
12cn

√
2πn

(
n
e

)n
e

1
12n+1

· 1√
2π(c−1)n

(
(c−1)n

e

)(c−1)n

e
1

12(c−1)n+1

=
√

c

(c − 1)2πn
·
(

cc

(c − 1)c−1

)n

· e
1

12cn − 1
12n+1 − 1

12(c−1)n+1︸ ︷︷ ︸
≤12cn

.

The claim follows by observing that the leftmost and rightmost term in the exponent of e

cancel out in the estimation. The asymptotic expansion of the upper bound can be obtained
using Taylor series expansion.

Similarly, for the lower bound we get(
cn

n

)
=(cn)!

n! · 1
(cn−n)! >

√
2πcn

(
cn
e

)cn
e

1
12cn+1

√
2πn

(
n
e

)n
e

1
12n

· 1√
2π(c−1)n

(
(c−1)n

e

)(c−1)n

e
1

12(c−1)n

=
√

c

(c − 1)2πn
·
(

cc

(c − 1)c−1

)n

· e
1

12cn+1 − 1
12n − 1

12(c−1)n

>

√
c

(c − 1)2πn
·
(

cc

(c − 1)c−1

)n

·
(

1 − c2 − c + 1
12c(c − 1)n

)
.

◀

▶ Lemma 10.4. When using Succincter [Pua08] to store p, the index needs 1.4427 + log(a +
1) + o(1) bits of internal memory per block.

Proof. Remember that the internal memory data structure p of PaCHash stores m integers
in the range 1..am and must support predecessor queries. We represent all integers in a
bit vector of length (a + 1)m, using the same idea used for the most significant bits in
Elias-Fano coding. That is, each of the m integers pi is represented as a 1-bit in position
i + pi. Answering predecessor queries (which we do not consider here) becomes harder to
analyze, as we have no information about the distribution of 1-bits in the bit vector.

Using Succincter, we can store a size-U bit vector that contains n ones and supports rank
and select queries using only log

(
U
n

)
+ U

log U + ÕU
3
4 bits. Since we have a length-(a + 1)m

bit vector that contains m ones, we require log
((a+1)m

m

)
+ (a+1)m

log((a+1)m) + Õ((a + 1)m) 3
4 bits

of space. We now show the upper bound for required memory using Lemma 10.3 and
Õ((a + 1)m) 3

4 = o(m).

10.3.2 Query 137

log
(

(a + 1)m
m

)
+ o(m) < log

(√
(a + 1)
2πam

(
(a + 1)a+1

aa

)m

e− 1
12m+1

)
+ o(m)

= log
√

(a + 1)
2πam︸ ︷︷ ︸

≤0

+ log
((

(a + 1)a+1

aa

)m)
+ log e− 1

12m+1︸ ︷︷ ︸
≤0

+o(m)

≤ log
((

(a + 1)a+1

aa

)m)
+ o(m) = m ((a + 1) log(a + 1) − a log a) + o(m)

= m

(
a log

(
a + 1

a

)
+ log(a + 1)

)
+ o(m) ≤ m (1.4427 + log(a + 1)) + o(m)

The last inequality is due to the fact that a log
(

a+1
a

)
converges to log e ≈ 1.4427 from

below. Overall, we require less than 1.4427 + log(a + 1) + o(1) bits for each block. ◀

▶ Lemma 10.5. Using Succincter for representing monotonic sequences is almost space
optimal.

Proof. In Lemma 10.4 we have already seen that Succincter needs close to m(log(e)+ log(a+
1)) bits of space.

(
am
m

)
is the number of strictly monotonic sequences of m numbers in

the range 1..am and thus a lower bound for the number of monotonic sequences. Using
Lemma 10.3 once more, we get

log
(

am

m

)
≈ m((a − 1) log

(
a

a − 1 + log a

)
bits as a lower bound. Looking at the difference divided by m (i.e. bits per block), we get

a loga + 1
a

+ log(a + 1) − (a − 1) log a

a − 1 − log a

=a log a2 − 1
a2 + log a + 1

a − 1 = log e

a
+ O

(
1
a3

)
.

This difference (obtained using Taylor series development) is much smaller than the
log e + log(a + 1) bits per block needed by the Succincter data structure – at least for
sufficiently large a. ◀

As we show in Section 2.7, k-perfect hash functions have a space lower bound of n
k ·

1
2 log(2πk) bits. The value n/k is the number of blocks, so MkPHFs need Ω(log k) bits of
space per block, while we show above that PaCHash needs a constant number. In a way,
PaCHash therefore breaks the space lower bounds of MkPHFs while keeping the same O(1)
query time. Choosing parameter a large can bring the number of I/O operations arbitrarily
close to optimal, independently of k.

10.3.2 Query
We first show that a query loads a small expected number of blocks, depending only on the
size of that specific object – not the other objects in the data structure. We then show that
the exact blocks to be loaded can be determined upfront without any I/O operations, using
constant time.

PaCHash

138 10.3 Analysis

▶ Lemma 10.6. Retrieving an object x of size |x| from a PaCHash data structure loads
≤ 1 + |x|/B̄ + 1/a consecutive blocks from the external memory in expectation (setting |x| = 0
if x is not in the table).7

Proof. We first derive the expected number of blocks overlapped by the bin bx = h(x) that
x is stored in. We then analyze the edge case that PaCHash sometimes loads one additional
block unnecessarily even though it is not overlapped.

The expected size E(|bx|) of bx is the sum of |x| and all other objects from the input set
S that are mapped to it:

E(|bx|) = |x| +
∑

y∈S,y ̸=x

|y| Pr(y ∈ bx)

≤ |x| +
∑
y∈S

|y| Pr(y ∈ bx) = |x| +
∑
y∈S

|y| · 1
am

= |x| + B̄m · 1
am

= |x| + B̄
a

Let X denote the number of blocks overlapped by bin bx. Assuming that the block
boundaries and bin boundaries are statistically independent,8 and using the linearity of the
expected value, we get E(X) = 1 + (E(|bx|) − 1)/B̄ = 1 + |x|/B̄ + 1/a − 1/B̄.

At a position i, the sequence p stores the first bin bi that intersects with block i. Most of
the time, this also means that bi extends into block i−1, which is why queries load that block
as well. When a bin starts exactly at a block boundary, though, the previous block is not
actually needed. Because bin boundaries are statistically independent of block boundaries,
the probability of that happening is 1/B̄.9

We get the result by putting together the expected blocks overlapped by a bin and the
probability for loading one single block too much. For negative queries, we are interested in
the size of the bin that x would be hashed to, so we can simply set |x| = 0. ◀

▶ Lemma 10.7. When using Elias-Fano coding for the index data structure of PaCHash,
the range of blocks containing the bin of an object x can be found in expected constant time.

Proof. A query for an object x consists of four steps. First, we hash x to get the corresponding
bin bx = au + ℓ, where a is the tuning parameter of PaCHash. We then execute a constant
time select0 query on the upper bits H (see Section 2.1). That gives us the start of a cluster
of entries in the sequence that all have the same log(m) most significant bits u. We need to
iterate over the cluster entries which are < bx until we find the predecessor. Each cluster
entry corresponds to a stored bin index. Let us bound the expected size E(Yu) of all bins
that have most significant bits u and are < bx.

7 Using fewer estimates in the proof one can derive a bound of 1 + |x|−c+1−e−β

B̄ + 1
a where β = nB̄

Na is the
average number of objects per bin and c is the greatest common divisor of B̄ and all object sizes. In
particular, for objects of identical size dividing B, the bound is close to 1 + 1/a.

8 We can guarantee the independence by cyclically shifting the data structure, i.e., we set the offset of the
first block to a random number in 0..(B̄− 1) and let the last bins wrap around into the first block.

9 When the preceding bin b−1 is empty, PaCHash stores that empty bin in p, as described in Section 10.2.
This means that the probability of unnecessary block loads actually is smaller, namely 1

B̄ (1−Pr(|b−1| >
0)), where Pr(|b−1| > 0) =

(
1− 1

am

)n ≈ e− n
am is the probability of b−1 being empty.

10.3.3 Details on External Sorting 139

E(Yu) =
∑
y∈S

|y| · Pr(h(y) has MSB = u; h(y) < h(x))

≤
∑
y∈S

|y| · Pr(h(y) has MSB = u) = 1
m

∑
y∈S

|y| = mB̄
m

= B̄

The expected number of cluster entries we need to scan is therefore E(Yu)/B̄ = 1. The
practical implementation then further scans the cluster to find the last block overlapping
bx. This takes non-constant time O(1 + |x|/B̄), which is not a problem since a proportional
number of blocks are loaded anyway. However, we strengthen the lemma by observing that
we can also use another select0 query followed by a backward scan of the cluster. ◀

10.3.3 Details on External Sorting
We now show that the external sorting needed during construction of a PaCHash data
structure can be done in scanning complexity using very modest additional assumptions.
First note that the problem of sorting objects during construction is easy when the average
object size exceeds the block size, i.e., N/n > B and thus n < N/B. In that case, a variant of
bucket sort that maps the keys to O(n) buckets runs with linear internal expected work and
O(n + N/B) = O(N/B) I/Os [San+19, Theorem 5.9].

Otherwise, the average object size N/n must be at least log n since we are looking at
objects with unique keys. For the remaining case log n ≤ N/n ≤ B, we additionally make
a tall cache assumption quite usual for external memory [Fri+99] where M > B2. Since the
index data structure has at least N/B bits, we also know that M ≥ N/B. A single scan of the
input can partition it into pieces of size about N

M/B ≤ N
(N/B)/B = B2 ≤ M which fit into internal

memory. Moreover, since the average object size is ≥ log n, we can afford to replace the
objects in an internally sorted fragment of the input by key-pointer pairs which once more
allows us to use bucket sort – this time running in internal memory.

10.4 Variants and Refinements

Up until now, PaCHash was described as a static, external hash table for objects of variable
size. The following section describes variants of the scheme.

Object Encoding. Instead of storing objects contiguously with a self-delimiting encoding,
PaCHash allows for a wide range of other options, as shown in Table 10.3. In general, we
have a trade-off between the space needed to decode the objects in a block and the strength
of assumptions made on object representation. For example, explicitly storing the offsets of
objects in blocks removes the restriction to a self-delimiting encoding, without increasing
the size of the internal data structure. Another important case are objects of identical size
where we can calculate the block offset at query time and therefore need no external space
overhead. When the object size divides the block size, it can be shown that the expected
number of I/O operations is close to 1 + 1/a.

Memory Locations. PaCHash can be stored fully externally. By doing so, the number of
I/Os for a query is increased by three (two I/Os to query the rank and select data structure
on the bit vector of the Elias-Fano coding and one I/O to get the remaining bits). The
number of I/Os can be reduced by interleaving the arrays of the Elias-Fano coding. PaCHash

PaCHash

140 10.4 Variants and Refinements

Table 10.3 External space overhead of d bits per block in order to facilitate scanning that block.
The term +1 when d ̸= 0 is needed for the case that no object starts in a block.

d Case Description

0 Identical object sizes, zero terminated strings and analogous cases
⌈log(w + 1)⌉ Objects that use variable bit-length encoding with ≤ w ≤ B bits
⌈log(W/w + 1)⌉ Objects of size divisible by w with W = min(B, max object size)
⌈log(B)⌉ Explicit storage of a starting position of a bin

is also interesting as a purely internal data structure since it allows for configurations that
need less space than any previous approach, even for objects of identical size. A variant that
simplifies the external memory representation is to store the d bits of offsets per block in an
internal memory data structure, possibly interleaved with the Elias-Fano representation. A
variant enabling faster scanning of blocks separates keys and values [Lu+17], for example by
storing log B bits of offset for each object.

Functional Enhancements. Because PaCHash sorts objects by their hashed key, it does
not immediately support range queries over the original keys. Litwin and Lomet [LL86]
implement range queries for hash tables by partitioning the key space into smaller pieces. An
index tree then leads to a number of small (PaCHash) tables that are fully scanned. Order-
preserving hash functions [GG86] are another alternative. PaCHash can be made dynamic
using standard techniques like a Log-Structured Merge Tree [LC20; O’N+96]. Merging
multiple PaCHash data structures is possible efficiently. The idea is to construct the hash
function h by first hashing to a larger range and then mapping it linearly to the range am.
When updating h to the new total number of blocks, the objects of both input data structures
are already sorted and can be merged with a linear sweep.

PaCHash as Variable-Bit-Length Array. Since one of PaCHash’s key features is to store
objects of variable size efficiently, it can also be used as variable-bit-length array. To this
end, we simply use the array index as hash function if we also store the number of previously
stored objects. However, we then have to assume that objects stored in the PaCHash VLA
are self-delimiting, as this allows us to identify the objects within a block. Note that this
assumption is satisfied in a lot of applications VLAs are used in, e.g., when storing variable
length codes like Elias-γ and -δ codes [Eli74] or Golomb codes [Gol66]. Alternatively, in
external memory, we can lift the restriction to self-delimiting objects by storing offsets as
described above. The number of previously stored objects is necessary to identify the object
within the block, and requires at most ⌈log n⌉ bits per external memory block.

PaCHash as Minimal k-Perfect Hash Function. The space lower bound of minimal k-
perfect hashing is 1

2 log(2πk) bits per block (see Section 2.7). In a way, PaCHash therefore
breaks the space lower bound of minimal k-perfect hashing at the cost of accessing 1/a blocks
too much in expectation (see Lemma 10.6). Assuming objects of fixed size, about k/a of the
objects in each block cannot be located exactly from the internal memory index. Whenever
the index returns more than one block, we can use a retrieval data structure (see Section 2.4)
to store the relative block index. This gives a minimal k-perfect hash function with a space
of 2 + log a + k/a + o(1) bits per block. With a = k, we get a minimal k-perfect hash function
close to the lower bound, while inheriting the fast construction and queries from PaCHash.

141

a=2 a=4 a=8 a=16 a=32

256 512 768
4096

5120

6144

7168

Average object size

Av
er

ag
e

B
/Q

ue
ry

(a) Average bytes loaded per query.

256 512 768

1.4

1.6

1.8

2

2.2

Average object size

µ
s/

Q
ue

ry
(b) Query time with direct I/O.

a B/block µs/Query

2 3.01 2.07
4 4.01 1.68
8 5.01 1.50
16 6.01 1.43
32 7.01 1.41

(c) Avg. internal space
consumption and
query time for
different values of a.

Figure 10.2 Dependence of I/O volume and query time on the average object size s and parameter
a. Sizes are normal distributed with variance s/5, rounded to the next positive integer.
Using other distributions gives equivalent results. Dotted lines show theoretic I/O
volumes, closely matching measurements given by marks. Note that the values in
Figure 10.2c do not depend on the object size.

10.5 Experiments

The code and scripts needed to reproduce our experiments are available on GitHub under the
General Public License [Leh23d]. The code for the comparison with competitors (including
our competitors’ code with some patches) is available on GitHub as well [Leh23e]. The latter
repository also contains a Docker image that can build and run a simplified version of the
experiments in about 30 minutes.

Experimental Setup. We run our experiments on an Intel i7 11700 processor with 8 cores
and a base clock speed of 2.5 GHz. We use a Samsung 980 Pro NVMe SSD with a capacity
of 1 TB. The machine runs Ubuntu 21.10 with Linux 5.13.0. We use the GNU C++ compiler
version 11.2.0 with optimization flags -O3 -march=native. Externally, each block of size
B = 215 bits (4096 bytes) stores a table of 8 byte keys and 2 byte object offsets. During
construction, we sort pointers to the objects using IPS2Ra [Axt+22]. Unless otherwise
specified, the index is an Elias-Fano coded sequence based on sdsl’s [Gog+14] arrays of
flexible bit width and the select data structures by Kurpicz [Kur22]. For the I/O operations,
we use io_uring. Query operations keep a queue of 128 asynchronous requests in flight.

10.5.1 PaCHash Configurations

The parameter a provides a trade-off between internal space consumption and query per-
formance, see Figure 10.2c. Figure 10.2 plots the bytes read per query, depending on the
average object size and parameter a. It confirms the results of our theoretical analysis in
practice. The throughput of the Elias-Fano representation increases when parameter a gets
larger because the SSD needs to load fewer blocks. We also see that (at least for larger a)
query times grow more slowly with object size than the I/O volume. We choose a = 8 for the
comparison with competitors because it achieves a good balance between space consumption
(≈ 5 bits/block) and throughput (≈ 700k Queries/second).

PaCHash

142 10.5 Experiments

Twitter UniRef 50 Wikipedia

Objects n 20 238 968 48 531 431 16 181 427
Average size 115 B 281 B 1731 B
Median size 94 B 194 B 77 B
Maximum size 560 B 45 KB 272 KB
Total size N 2.4 GB 13.2 GB 26.3 GB
Objects > B 0% 0.08% 12%

(a) Key metrics. The median of 77 bytes of the Wikipedia data
set is caused by pages that are redirects.

R
el

at
iv

e
oc

cu
rr

en
ce

s

0 200 400

Twitter

0 2000 4000

UniRef 50

0 20000 40000
Object size

Wikipedia

(b) Relative occurrences of object sizes.

Figure 10.3 Real world data sets we use for the evaluation.

Entropy coded, Twitter Entropy coded, UniRef Entropy coded, Wikipedia
Elias-Fano, Twitter Elias-Fano, UniRef Elias-Fano, Wikipedia
Succincter

1 2 4 8 16 32 64 128

2

4

6

8

10

Parameter a

B
/B

lo
ck

(a) Internal space consumption.

1 2 4 8 16 32 64 128
0

200

400

600

Parameter a

kQ
ue

rie
s/

s

(b) Query throughput with direct I/O.

Figure 10.4 PaCHash with real world data sets using different index data structures. There is
no practical implementation of Succincter [Pua08], so we only give calculated values
and no throughput. The space usage of Elias-Fano and Succincter is independent of
the object size distribution, so we plot only one of the three data sets.

10.5.2 PaCHash with Real World Data Sets

Unlike minimal perfect hashing, PaCHash is influenced by the input length distribution.
Figure 10.4 compares throughput and space consumption of PaCHash using real world size
distributions and different index data structures. The Twitter data set contains tweets from
01.08.–05.08.2021 and has only small objects. The UniRef 50 protein database [Suz+07]
contains some objects larger than the block size and the LZ4 compressed [Col] English
Wikipedia from November 2021 contains significantly larger objects. See Figures 10.3a
and 10.3b for details.

The entropy coded bit vector saves up to one bit of internal memory per block for small a.
While it comes with a performance penalty caused by decompression (up to eight times slower
than Elias-Fano), it is fast enough that it can be useful for some applications. Succincter
provides space consumption lower than Elias-Fano but has no implementation. Note that
for a ≤ 16, the entropy coded bit vector requires even less space than succincter. Only for
a ≥ 64 it requires more space than Elias-Fano.

10.5.3 Comparison with Competitors 143

Table 10.4 Configurations of competitors.

Competitor Configuration parameters

CHD [BBD09] Load factor 0.98. k = 16 collisions. Bin size 12.
Cuckoo (here, based
on [PR04])

2 hash functions, loaded in parallel to reduce latency. Streamed queries
(await any). Load factor 0.95. Random walk insertion.

LevelDB [Goo21] No compression or Bloom filters. Construction in a single write batch.
PaCHash (here) a = 8. Blocks store table of keys and offsets. Streamed queries (await any).
PTHash [PT21] α = 0.94, c = 7, D-D Encoding.
RecSplit [EGV20] Leaf size ℓ = 8. Bucket size b = 2000.
RocksDB [Fac21] No block cache, Bloom filters, memory mapping or WAL. Queries use

batches of size 64.
Separator (here,
based on [GL88])

6 bit separators. Load factor 0.96. Streamed queries (await any).

SILT [Lim+11] testCombi.xml configuration from original repository.
std::unordered_map 8 byte keys. 64 bit pointers to object contents.

10.5.3 Comparison with Competitors
In the following section, we compare PaCHash to other data structures from the literature.
First, we start with explaining our competitors.

Competitors. To our knowledge, there is no existing implementation of a hash table for
variable size objects that is simultaneously aimed at low internal memory usage and few I/O
operations. As the main competitors, we choose LevelDB [Goo21], RocksDB [Fac21], and
SILT [Lim+11]. To abstract from the different implementations of I/O operations, we also
extract the internal memory index (address calculation) from some competitors. Additionally,
we compare PaCHash to std::unordered_map, as well as the perfect hash functions Rec-
Split [EGV20], CHD [BBD09; CR+12], and PTHash [PT21]. Despite std::unordered_map
not being tuned for efficiency, it is a widely available, general purpose hash table that can
be seen as baseline for simply storing pointers instead of building a compressed index data
structure.10 Table 10.4 gives the exact configurations we use for each competitor.

We also implement Separator Hashing [GL88; LK84] and Cuckoo Hashing [Aza+94].
Our implementations can be used with objects of variable size ≤ B when setting the load
factor low enough. Note that decreasing the load factor increases the number of blocks and
therefore the space needed for indexing. The construction of PaCHash always succeeds, while
it can fail for Separator and Cuckoo Hashing depending on the preselected load factor or
tuning parameter. Figure 10.5 shows load factors between 85% and 95% in typical cases.

Comparison. Figure 10.6 shows measurements for identical size objects in order to allow for
a large set of competitors. Perhaps the closest contender to PaCHash is Separator hashing
where our implementation partially allows objects of variable size. It needs comparable
internal space and has faster queries (always a single block access). However, Separator not
only has slower construction, but it also cannot achieve a load factor close to 100% except for
objects with identical size when the block size is divisible by the object size (see Figure 10.5).

10 In this setting, general purpose internal memory hash tables do not work well, as they introduce an
overhead of at least log m bits per object to store the positions, in addition to the object length.

PaCHash

144 10.6 Summary

Identical size Normal distribution Uniform distribution

300 400 500 600
85%

90%

95%

100%

Average object size

M
ax

im
um

lo
ad

fa
ct

or

(a) Cuckoo hashing.

300 400 500 600

85%

90%

95%

100%

Average object size

M
ax

im
um

lo
ad

fa
ct

or

(b) Separator hashing.

Figure 10.5 Maximum achievable load factor with different distributions of object sizes. For an
average object size s, the normal distribution has a variance of s/5 and the uniform
random sizes are drawn from [0.25s, 1.75s].

The perfect hashing methods have similar problems with respect to variable size objects
and are more expensive with respect to internal space and construction costs. Cuckoo hashing
needs no internal space but has more expensive queries and the same problems with variable
size objects as Separator or perfect hashing.

The object stores LevelDB, RocksDB, and SILT have much larger internal space re-
quirements and some external overhead. In part this comparison is unfair since they have
additional functionality like dynamic operation. For SILT and LevelDB we have been able
to extract the static part of the data structure. Still, they need considerably more space and
have lower performance than PaCHash. Figure 10.6 contains measurements for both the full
competitors and their static parts. Comparing query throughput is complicated because of
different file access modes, internal caching, and history dependent performance for the actual
SSD accesses (the controller uses caching and rearranges data outside the control of the user).
Most competitors do not support direct I/O. For those that do, preliminary experiments
show that the relative performance between the approaches stays similar. Overall, we get
a consistent picture with Separator being the fastest method followed by PaCHash. A
comparison with the internal hash table std::unordered_map is also instructive. We naturally
get faster construction and high internal space consumption. Surprisingly, access to the
internal data structure is only faster than PaCHash for very small inputs that fit into cache.

While not as surprisingly, it should be noted that all object stores supporting variable
size objects do not show any difference with respect to (internal and/or external) space
requirements, construction and query throughput when storing variable size objects compared
to identical size objects. Thus, all benefits of PaCHash described above hold true for variable
size objects as well.

10.6 Summary

With PaCHash, we present a static external memory hash table. In contrast to a k-perfect
hash function, it can space-efficiently store (possibly compressed) objects of variable size.
The objects are stored contiguously without the usual need for empty space to equalize
the nonuniformity in assignment by a hash function. This is facilitated by a small internal
memory index data structure that needs only a constant number of bits per external memory

145

CHD (16-perfect) [BBD09] PTHash [PT21] SILT (Static part) [Lim+11]
Cuckoo [PR04] RecSplit [EGV20] Separator [LK84]
LevelDB (Static part) [Goo21] RocksDB [Fac21] PaCHash [KLS23]
LevelDB [Goo21] SILT [Lim+11] std::unordered_map

0 2 4 6 8 10
0

20

40 No variable size

Internal Bits/Object

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(a) Space and query throughput of internal mem-
ory index data structure. No I/O, n = 2 million
objects. Approaches marked with gray back-
ground support only objects of fixed size.

270 275 280

0.5

1

1.5

External Bytes/Object

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(b) Space and query throughput of the external
memory data structure. Buffered I/O, n = 2
million objects.

1 2 3 4 5

106

107

Input size (Millions)

T
hr

ou
gh

pu
t

(O
bj

ec
ts

/s
)

(c) Construction throughput with buffered I/O,
based on the input size.

1 2 3 4 5
0

20

40

60

Input size (Millions)

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

(d) Query throughput of the index data structure,
based on the input size.

Figure 10.6 Comparison of object stores using objects of identical size 256 bytes. Keys are 8 byte
random strings. Dotted lines indicate methods supporting only objects of identical
size natively.

block. In constant expected time, it yields a near-optimal range of blocks that contain the
sought object. Our implementation of PaCHash considerably outperforms previous object
stores for variable size objects and even matches or outperforms systems that are purely
internal memory or only handle objects of identical size like perfect hash functions.

PaCHash

147

11 Conclusion
Summary: Perfect hash functions are an important building block of many space-
efficient data structures. In this dissertation, we present significant improvements to
the state of the art. Our perfect hash functions get closer to the space lower bound than
any competitor from the literature before. We also present algorithms that achieve very
fast construction and queries. Together with a detailed evaluation, this dissertation is
a significant step forward in state-of-the-art perfect hashing.

To manage the ever-growing volumes of data, space-efficient data structures are a vital
ingredient. Perfect hashing is a building block of space efficient data structures. It is an
active field of research offering a large number of techniques with different trade-offs. In this
dissertation, we have developed three new techniques for fast and space-efficient minimal
perfect hashing. The techniques cover a wide range of trade-offs between space consumption,
query throughput, and construction throughput. Our techniques dominate almost the entire
Pareto front, being faster or more space-efficient than any other approach before.

SIMDRecSplit uses brute-force and parallelizes the construction on the levels of bits,
SIMD vectors, threads, and the GPU. Brute-force constructions probe random functions and
hope for them to be minimal. In Figure 11.1a, we illustrate the room of all functions and the
subset of perfect hash functions. A brute-force iteration simply tests one of the functions.
SIMDRecSplit also contributes a step away from plain brute-force through rotation fitting.
There we can efficiently derive additional candidate hash functions from a single probe. In
Figure 11.1b, we illustrate this by probing a narrow bar in the hash function space. The
main focus of SIMDRecSplit is on small space consumption, but it turns out to be also fast
to construct for larger space consumption.

On the other end of the spectrum, we introduce SicHash, which offers a very directed
search through constructing cuckoo hash tables. SicHash offers a good balance between
construction and query time, as well as space consumption. It is not space optimal partly
because its internal state can redundantly represent multiple different perfect hash functions.
We illustrate this in Figure 11.1d by having each probe large enough such that it usually
contains multiple perfect hash functions.

Finally, we introduce ShockHash, which is still based on brute-force but replaces a
significant portion of the search by cuckoo hash table construction. Its bipartite variant is
more than 2n times faster than brute-force, while still achieving the asymptotically optimal
space consumption. For a brute-force construction, ShockHash searches a considerably large
space of hash function candidates at once. As we illustrate in Figure 11.1c, it usually does
not find too many of them at once. This enables its good space-efficiency.

In addition to the minimal perfect hash functions, we also give an efficient monotone
minimal perfect hash function which keeps the natural order of the input keys. LeMonHash
uses a learning-based index data structure to estimate the rank of a key and resolves collisions
using retrieval. For many data sets, LeMonHash is – simultaneously – more space-efficient,
faster to query, and faster to construct than competing approaches.

Finally, we look at a generalization of k-perfect hashing and introduce PaCHash, an
external memory hash table for objects of variable size. From a small internal memory index,

Conc lus ion

148 11 Conclusion

SampleMPHF

(a) RecSplit.

SampleMPHF

(b) Rotation fitting.

SampleMPHF

(c) ShockHash.

SampleMPHF

(d) SicHash.

Figure 11.1 Search space of different perfect hash function constructions. The boxes illustrate
the space of all functions, while we mark the perfect hash functions among those.

PaCHash can determine a near optimal range of external memory blocks that need to be
loaded. PaCHash has faster queries than other variable size object stores, while being more
space-efficient both in internal and external memory.

Impact. The approaches presented in this dissertation make up for almost the entire Pareto
front of the best query time, construction time, and space consumption. This confirms the
success of the techniques presented in this dissertation and, more generally, the merits of the
Algorithm Engineering methodology. Given the large number of applications (see Section 1.4),
our perfect hash functions can accelerate algorithms from various research domains. Our
extensive review of related work and our detailed evaluation can help to further push perfect
hashing research.

Future Work. In GPURecSplit, we harness the processing power of modern GPUs to
build perfect hash functions. In the future, it would be interesting to accelerate additional
perfect hash functions using the GPU. While it is not the focus of this dissertation, we have
introduced two k-perfect hash functions (see Sections 7.5.2 and 10.4). An interesting topic for
future work would be a thorough survey on the performance of k-perfect hashing. Finally, it
would be interesting to integrate the approaches developed here into real world applications
to demonstrate their performance in practice.

Appendix

151

Publications and Supervised Theses

In Conference Proceedings
F. Kurpicz, H.-P. Lehmann, and P. Sanders. “PaCHash: Packed and Compressed Hash
Tables”. In: ALENEX. SIAM, 2023, pages 162–175. doi: 10.1137/1.9781611977561.
CH14
H.-P. Lehmann, P. Sanders, and S. Walzer. “SicHash – Small Irregular Cuckoo Tables
for Perfect Hashing”. In: ALENEX. SIAM, 2023, pages 176–189. doi: 10.1137/1.
9781611977561.CH15
D. Bez, F. Kurpicz, H.-P. Lehmann, and P. Sanders. “High Performance Construction of
RecSplit Based Minimal Perfect Hash Functions”. In: ESA. volume 274. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 19:1–19:16. doi: 10.4230/LIPICS.
ESA.2023.19
H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Towards Optimal-Space Minimal
Perfect Hashing Beyond Brute-Force”. In: ALENEX. SIAM, 2024, pages 194–206. doi:
10.1137/1.9781611977929.15
P. Ferragina, H.-P. Lehmann, P. Sanders, and G. Vinciguerra. “Learned Monotone
Minimal Perfect Hashing”. In: ESA. volume 274. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, 46:1–46:17. doi: 10.4230/LIPICS.ESA.2023.46
S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer. “PHOBIC: Perfect
Hashing with Optimized Bucket Sizes and Interleaved Coding”. In: ESA. volume 308.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, 69:1–69:17. doi:
10.4230/LIPIcs.ESA.2024.69

Journal Articles
H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Near Optimal-Space Minimal
Perfect Hashing Beyond Brute-Force”. In: arXiv preprint, invited to Algorithmica (2024).
DOI: 10.48550/ARXIV.2310.14959

Technical Reports
F. Kurpicz, H.-P. Lehmann, and P. Sanders. “PaCHash: Packed and Compressed Hash
Tables”. In: CoRR abs/2205.04745 (2022). doi: 10.48550/ARXIV.2205.04745
H.-P. Lehmann, P. Sanders, and S. Walzer. “SicHash – Small Irregular Cuckoo Tables for
Perfect Hashing”. In: CoRR abs/2210.01560 (2022). doi: 10.48550/ARXIV.2210.01560
D. Bez, F. Kurpicz, H.-P. Lehmann, and P. Sanders. “High Performance Construction
of RecSplit Based Minimal Perfect Hash Functions”. In: CoRR abs/2212.09562 (2022).
doi: 10.48550/ARXIV.2212.09562
H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Towards Optimal-Space
Minimal Perfect Hashing Beyond Brute-Force”. In: CoRR abs/2308.09561 (2023). doi:
10.48550/ARXIV.2308.09561

App end ix

https://doi.org/10.1137/1.9781611977561.CH14
https://doi.org/10.1137/1.9781611977561.CH14
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.4230/LIPICS.ESA.2023.46
https://doi.org/10.4230/LIPIcs.ESA.2024.69
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.48550/ARXIV.2205.04745
https://doi.org/10.48550/ARXIV.2210.01560
https://doi.org/10.48550/ARXIV.2212.09562
https://doi.org/10.48550/ARXIV.2308.09561

152

P. Ferragina, H.-P. Lehmann, P. Sanders, and G. Vinciguerra. “Learned Monotone
Minimal Perfect Hashing”. In: CoRR abs/2304.11012 (2023). doi: 10.48550/ARXIV.
2304.11012
H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Near Optimal-Space Minimal
Perfect Hashing Beyond Brute-Force”. In: CoRR abs/2310.14959 (2024). doi: 10.48550/
ARXIV.2310.14959
S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer. “PHOBIC: Perfect
Hashing with Optimized Bucket Sizes and Interleaved Coding”. In: CoRR abs/2404.18497
(2024). doi: 10.48550/ARXIV.2404.18497

Theses
Hans-Peter Lehmann. “Weighted Random Sampling – Alias Tables on the GPU”. Master’s
thesis. Karlsruhe Institute of Technology (KIT), 2020
Hans-Peter Lehmann. “Practicality of shoulder-surfing proof, graphical password input
methods”. Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2018

Supervised Theses
Jonatan Ziegler. “Compacting Minimal Perfect Hashing using Symbiotic Random Search”.
Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2024
Sebastian Georg Kirmayer. “Engineering k-perfect Hashing”. Bachelor’s thesis. Karlsruhe
Institute of Technology (KIT), 2024
Benedikt Waibel. “Cuckoo-PTHash: Exploring Cuckoo Hashingin the PTHash Frame-
work”. Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2024
Stefan Hermann. “Accelerating Minimal Perfect Hash Function Construction using GPU
Parallelization”. Master’s thesis. Karlsruhe Institute of Technology (KIT), 2023
Jan Benedikt Schwarz. “Engineering Succinct Predecessor Data Structures”. Master’s
thesis. Karlsruhe Institute of Technology (KIT), 2023
Tobias Paweletz. “Compressed Bit Vectors with Rank and Select Support”. Bachelor’s
thesis. Karlsruhe Institute of Technology (KIT), 2023
Dominik Bez. “Perfect Hash Function Generation on the GPU with RecSplit”. Master’s
thesis. Karlsruhe Institute of Technology (KIT), 2022

https://doi.org/10.48550/ARXIV.2304.11012
https://doi.org/10.48550/ARXIV.2304.11012
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.48550/ARXIV.2404.18497

153

Bibliography
[Ada+21] D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov. “Combinatorial algo-

rithms for multidimensional necklaces”. In: CoRR abs/2108.01990 (2021). doi:
10.48550/ARXIV.2108.01990.

[AFK23] S. Assadi, M. Farach-Colton, and W. Kuszmaul. “Tight Bounds for Monotone
Minimal Perfect Hashing”. In: SODA. SIAM, 2023, pages 456–476. doi: 10.
1137/1.9781611977554.CH20.

[AIS93] R. Agrawal, T. Imielinski, and A. N. Swami. “Mining Association Rules between
Sets of Items in Large Databases”. In: SIGMOD Conference. ACM Press, 1993,
pages 207–216. doi: 10.1145/170035.170072.

[AKS15] R. Agarwal, A. Khandelwal, and I. Stoica. “Succinct: Enabling Queries on
Compressed Data”. In: NSDI. USENIX Association, 2015, pages 337–350.

[Alm+18] F. Almodaresi, H. Sarkar, A. Srivastava, and R. Patro. “A space and time-
efficient index for the compacted colored de Bruijn graph”. In: Bioinform. 34.13
(2018), pages i169–i177. doi: 10.1093/BIOINFORMATICS/BTY292.

[And+09] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V.
Vasudevan. “FAWN: a fast array of wimpy nodes”. In: SOSP. ACM, 2009,
pages 1–14. doi: 10.1145/1629575.1629577.

[ANS10] Y. Arbitman, M. Naor, and G. Segev. “Backyard Cuckoo Hashing: Constant
Worst-Case Operations with a Succinct Representation”. In: FOCS. IEEE
Computer Society, 2010, pages 787–796. doi: 10.1109/FOCS.2010.80.

[App10] A. Appleby. SMHasher. https://github.com/rurban/smhasher. 2010.
[Axt+22] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. “Engineering In-place

(Shared-memory) Sorting Algorithms”. In: ACM Trans. Parallel Comput. 9.1
(2022), 2:1–2:62. doi: 10.1145/3505286.

[Aza+94] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. “Balanced allocations
(extended abstract)”. In: STOC. ACM, 1994, pages 593–602. doi: 10.1145/
195058.195412.

[Bas+06] H. Bast, K. Mehlhorn, G. Schäfer, and H. Tamaki. “Matching Algorithms Are
Fast in Sparse Random Graphs”. In: Theory Comput. Syst. 39.1 (2006), pages 3–
14. doi: 10.1007/S00224-005-1254-Y.

[BB08] D. K. Blandford and G. E. Blelloch. “Compact dictionaries for variable-length
keys and data with applications”. In: ACM Trans. Algorithms 4.2 (2008), 17:1–
17:25. doi: 10.1145/1361192.1361194.

[BBD09] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer,
2009, pages 682–693. doi: 10.1007/978-3-642-04128-0_61.

[BCO11] A. Boldyreva, N. Chenette, and A. O’Neill. “Order-Preserving Encryption
Revisited: Improved Security Analysis and Alternative Solutions”. In: CRYPTO.
Volume 6841. Lecture Notes in Computer Science. Springer, 2011, pages 578–595.
doi: 10.1007/978-3-642-22792-9_33.

App end ix

https://doi.org/10.48550/ARXIV.2108.01990
https://doi.org/10.1137/1.9781611977554.CH20
https://doi.org/10.1137/1.9781611977554.CH20
https://doi.org/10.1145/170035.170072
https://doi.org/10.1093/BIOINFORMATICS/BTY292
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1109/FOCS.2010.80
https://github.com/rurban/smhasher
https://doi.org/10.1145/3505286
https://doi.org/10.1145/195058.195412
https://doi.org/10.1145/195058.195412
https://doi.org/10.1007/S00224-005-1254-Y
https://doi.org/10.1145/1361192.1361194
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-22792-9_33

154 Bibliography

[Bea+10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. “Finding a Needle in
Haystack: Facebook’s Photo Storage”. In: OSDI. USENIX Association, 2010,
pages 47–60.

[Bel+09] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. “Monotone minimal perfect
hashing: searching a sorted table with O(1) accesses”. In: Proc. 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2009, pages 785–794.
doi: 10.1137/1.9781611973068.86.

[Bel+10] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. “Fast Prefix Search in Little
Space, with Applications”. In: ESA (1). Volume 6346. Lecture Notes in Computer
Science. Springer, 2010, pages 427–438. doi: 10.1007/978-3-642-15775-2_37.

[Bel+11] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. “Theory and practice of
monotone minimal perfect hashing”. In: ACM J. Exp. Algorithmics 16 (2011).
doi: 10.1145/1963190.2025378.

[Bel+14] D. Belazzougui, P. Boldi, G. Ottaviano, R. Venturini, and S. Vigna. “Cache-
Oblivious Peeling of Random Hypergraphs”. In: DCC. IEEE, 2014, pages 352–
361. doi: 10.1109/DCC.2014.48.

[Bel+20] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. “Linear-time String
Indexing and Analysis in Small Space”. In: ACM Trans. Algorithms 16.2 (2020),
17:1–17:54. doi: 10.1145/3381417.

[Bel23] P. Beling. “Fingerprinting-based Minimal Perfect Hashing Revisited”. In: ACM
J. Exp. Algorithmics 28 (2023), 1.4:1–1.4:16. doi: 10.1145/3596453.

[Ben+18] M. A. Bender, M. Farach-Colton, M. Goswami, R. Johnson, S. McCauley, and
S. Singh. “Bloom Filters, Adaptivity, and the Dictionary Problem”. In: FOCS.
IEEE Computer Society, 2018, pages 182–193. doi: 10.1109/FOCS.2018.00026.

[Ben+23] M. A. Bender, A. Conway, M. Farach-Colton, W. Kuszmaul, and G. Tagliavini.
“Iceberg Hashing: Optimizing Many Hash-Table Criteria at Once”. In: J. ACM
70.6 (2023), 40:1–40:51. doi: 10.1145/3625817.

[Ber24] S. Bernstein. “On a modification of Chebyshev’s inequality and of the error
formula of Laplace”. In: Ann. Sci. Inst. Sav. Ukraine, Sect. Math 1.4 (1924),
pages 38–49.

[Bez22] D. Bez. “Perfect Hash Function Generation on the GPU with RecSplit”. Master’s
thesis. Karlsruhe Institute for Technology (KIT), 2022. doi: 10.5445/IR/
1000152719.

[Bez+22] D. Bez, F. Kurpicz, H.-P. Lehmann, and P. Sanders. “High Performance
Construction of RecSplit Based Minimal Perfect Hash Functions”. In: CoRR
abs/2212.09562 (2022). doi: 10.48550/ARXIV.2212.09562.

[Bez+23] D. Bez, F. Kurpicz, H.-P. Lehmann, and P. Sanders. “High Performance Construc-
tion of RecSplit Based Minimal Perfect Hash Functions”. In: ESA. Volume 274.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 19:1–19:16.
doi: 10.4230/LIPICS.ESA.2023.19.

[BFV22] A. Boffa, P. Ferragina, and G. Vinciguerra. “A Learned Approach to Design
Compressed Rank/Select Data Structures”. In: ACM Trans. Algorithms 18.3
(2022), 24:1–24:28. doi: 10.1145/3524060.

[BGJ06] J. Bruck, J. Gao, and A. Jiang. “Weighted Bloom filter”. In: ISIT. IEEE, 2006,
pages 2304–2308. doi: 10.1109/ISIT.2006.261978.

[BGZ04] F. C. Botelho, D. M. Gomes, and N. Ziviani. “A new algorithm for constructing
minimal perfect hash functions”. In: differences 100.2 (2004), page 09.

https://doi.org/10.1137/1.9781611973068.86
https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1145/1963190.2025378
https://doi.org/10.1109/DCC.2014.48
https://doi.org/10.1145/3381417
https://doi.org/10.1145/3596453
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1145/3625817
https://doi.org/10.5445/IR/1000152719
https://doi.org/10.5445/IR/1000152719
https://doi.org/10.48550/ARXIV.2212.09562
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1145/3524060
https://doi.org/10.1109/ISIT.2006.261978

155

[Blo70] B. H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Errors”.
In: Commun. ACM 13.7 (1970), pages 422–426. doi: 10.1145/362686.362692.

[BM03] A. Z. Broder and M. Mitzenmacher. “Survey: Network Applications of Bloom
Filters: A Survey”. In: Internet Math. 1.4 (2003), pages 485–509. doi: 10.1080/
15427951.2004.10129096.

[BN14] D. Belazzougui and G. Navarro. “Alphabet-Independent Compressed Text
Indexing”. In: ACM Trans. Algorithms 10.4 (2014), 23:1–23:19. doi: 10.1145/
2635816.

[BN15] D. Belazzougui and G. Navarro. “Optimal Lower and Upper Bounds for Repre-
senting Sequences”. In: ACM Trans. Algorithms 11.4 (2015), 31:1–31:21. doi:
10.1145/2629339.

[BNV13] D. Belazzougui, G. Navarro, and D. Valenzuela. “Improved compressed indexes
for full-text document retrieval”. In: J. Discrete Algorithms 18 (2013), pages 3–
13. doi: 10.1016/J.JDA.2012.07.005.

[Bof+22] A. Boffa, P. Ferragina, F. Tosoni, and G. Vinciguerra. “Compressed String
Dictionaries via Data-Aware Subtrie Compaction”. In: SPIRE. Volume 13617.
Lecture Notes in Computer Science. Springer, 2022, pages 233–249. doi: 10.
1007/978-3-031-20643-6_17.

[Bot+08] F. C. Botelho, H. R. Langbehn, G. V. Menezes, and N. Ziviani. “Indexing
Internal Memory with Minimal Perfect Hash Functions”. In: SBBD. SBC, 2008,
pages 16–30. doi: 10.5555/1498932.1498935.

[BPZ07a] F. C. Botelho, R. Pagh, and N. Ziviani. “Perfect Hashing for Data Management
Applications”. In: CoRR abs/cs/0702159 (2007). doi: 10.48550/arXiv.cs/
0702159.

[BPZ07b] F. C. Botelho, R. Pagh, and N. Ziviani. “Simple and Space-Efficient Minimal
Perfect Hash Functions”. In: WADS. Volume 4619. Lecture Notes in Computer
Science. Springer, 2007, pages 139–150. doi: 10.1007/978-3-540-73951-7_13.

[BPZ13] F. C. Botelho, R. Pagh, and N. Ziviani. “Practical perfect hashing in nearly
optimal space”. In: Inf. Syst. 38.1 (2013), pages 108–131. doi: 10.1016/J.IS.
2012.06.002.

[BSV08] P. Boldi, M. Santini, and S. Vigna. “A large time-aware web graph”. In: SIGIR
Forum 42.2 (2008), pages 33–38. doi: 10.1145/1480506.1480511.

[Bur94] M. Burrows. “A block-sorting lossless data compression algorithm”. In: SRS
Research Report 124 (1994).

[BZ07] F. C. Botelho and N. Ziviani. “External perfect hashing for very large key sets”.
In: CIKM. ACM, 2007, pages 653–662. doi: 10.1145/1321440.1321532.

[Cay78] A. Cayley. “A theorem on trees”. In: Quart. J. Math. 23 (1878), pages 376–378.
[Cel88] P. Celia. External Robin Hood Hashing. Technical report. Computer Science

Department, Indiana University. TR246, 1988.
[Cha+11] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S. Rokhsar.

“Meraculous: De Novo Genome Assembly with Short Paired-End Reads”. In:
PLOS ONE 6.8 (Aug. 2011), pages 1–13. doi: 10.1371/journal.pone.0023501.
url: https://doi.org/10.1371/journal.pone.0023501.

[Che+21] X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and T. Zhang. “KallaxDB:
A Table-less Hash-based Key-Value Store on Storage Hardware with Built-in
Transparent Compression”. In: DaMoN. ACM, 2021, 3:1–3:10. doi: 10.1145/
3465998.3466004.

App end ix

https://doi.org/10.1145/362686.362692
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1145/2635816
https://doi.org/10.1145/2635816
https://doi.org/10.1145/2629339
https://doi.org/10.1016/J.JDA.2012.07.005
https://doi.org/10.1007/978-3-031-20643-6_17
https://doi.org/10.1007/978-3-031-20643-6_17
https://doi.org/10.5555/1498932.1498935
https://doi.org/10.48550/arXiv.cs/0702159
https://doi.org/10.48550/arXiv.cs/0702159
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1016/J.IS.2012.06.002
https://doi.org/10.1016/J.IS.2012.06.002
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1145/1321440.1321532
https://doi.org/10.1371/journal.pone.0023501
https://doi.org/10.1371/journal.pone.0023501
https://doi.org/10.1145/3465998.3466004
https://doi.org/10.1145/3465998.3466004

156 Bibliography

[CHM92] Z. J. Czech, G. Havas, and B. S. Majewski. “An Optimal Algorithm for Gen-
erating Minimal Perfect Hash Functions”. In: Inf. Process. Lett. 43.5 (1992),
pages 257–264. doi: 10.1016/0020-0190(92)90220-P.

[CHM97] Z. J. Czech, G. Havas, and B. S. Majewski. “Perfect hashing”. In: Theoretical
Computer Science 182.1-2 (1997), pages 1–143. doi: 10.1016/S0304-3975(96)
00146-6.

[Cic80] R. J. Cichelli. “Minimal Perfect Hash Functions Made Simple”. In: Commun.
ACM 23.1 (1980), pages 17–19. doi: 10.1145/358808.358813.

[CL05] C. Chang and C. Lin. “Perfect Hashing Schemes for Mining Association Rules”.
In: Comput. J. 48.2 (2005), pages 168–179. doi: 10.1093/COMJNL/BXH074.

[Cla96] D. R. Clark. “Compact Pat Trees”. PhD thesis. University of Waterloo, Canada,
1996.

[CLM16] R. Chikhi, A. Limasset, and P. Medvedev. “Compacting de Bruijn graphs from
sequencing data quickly and in low memory”. In: Bioinform. 32.12 (2016),
pages 201–208. doi: 10.1093/BIOINFORMATICS/BTW279.

[CMV20] K. Chung, M. Mitzenmacher, and S. P. Vadhan. “When Simple Hash Func-
tions Suffice”. In: Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020, pages 567–585. doi: 10.1017/9781108637435.033.

[Col] Y. Collet. LZ4: Extremely Fast Compression algorithm. https://github.com/
lz4/lz4.

[Com79] D. Comer. “The Ubiquitous B-Tree”. In: ACM Comput. Surv. 11.2 (1979),
pages 121–137. doi: 10.1145/356770.356776.

[CR+12] D. de Castro Reis, D. Belazzougui, F. C. Botelho, and N. Ziviani. CMPH - C
Minimal Perfect Hashing Library. http://cmph.sourceforge.net/. 2012.

[CSM13] Y. Chen, B. Schmidt, and D. L. Maskell. “A hybrid short read mapping accelera-
tor”. In: BMC Bioinform. 14 (2013), page 67. doi: 10.1186/1471-2105-14-67.

[DH90] M. Dietzfelbinger and F. M. auf der Heide. “A New Universal Class of Hash
Functions and Dynamic Hashing in Real Time”. In: ICALP. Volume 443. Lec-
ture Notes in Computer Science. Springer, 1990, pages 6–19. doi: 10.1007/
BFB0032018.

[Die+10] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and
M. Rink. “Tight Thresholds for Cuckoo Hashing via XORSAT”. In: ICALP (1).
Volume 6198. Lecture Notes in Computer Science. Springer, 2010, pages 213–225.
doi: 10.1007/978-3-642-14165-2_19.

[Die+94] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert,
and R. E. Tarjan. “Dynamic Perfect Hashing: Upper and Lower Bounds”. In:
SIAM J. Comput. 23.4 (1994), pages 738–761. doi: 10.1137/S0097539791194094.

[Die+97] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. “A Reliable
Randomized Algorithm for the Closest-Pair Problem”. In: J. Algorithms 25.1
(1997), pages 19–51. doi: 10.1006/JAGM.1997.0873.

[Dil+22] P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer. “Fast Succinct
Retrieval and Approximate Membership Using Ribbon”. In: SEA. Volume 233.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 4:1–4:20. doi:
10.4230/LIPICS.SEA.2022.4.

[Din+20] P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz. “Practical
Performance of Space Efficient Data Structures for Longest Common Extensions”.
In: ESA. Volume 173. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 39:1–39:20. doi: 10.4230/LIPICS.ESA.2020.39.

https://doi.org/10.1016/0020-0190(92)90220-P
https://doi.org/10.1016/S0304-3975(96)00146-6
https://doi.org/10.1016/S0304-3975(96)00146-6
https://doi.org/10.1145/358808.358813
https://doi.org/10.1093/COMJNL/BXH074
https://doi.org/10.1093/BIOINFORMATICS/BTW279
https://doi.org/10.1017/9781108637435.033
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://doi.org/10.1145/356770.356776
http://cmph.sourceforge.net/
https://doi.org/10.1186/1471-2105-14-67
https://doi.org/10.1007/BFB0032018
https://doi.org/10.1007/BFB0032018
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1006/JAGM.1997.0873
https://doi.org/10.4230/LIPICS.SEA.2022.4
https://doi.org/10.4230/LIPICS.ESA.2020.39

157

[DMR11] M. Dietzfelbinger, M. Mitzenmacher, and M. Rink. “Cuckoo Hashing with
Pages”. In: ESA. Volume 6942. Lecture Notes in Computer Science. Springer,
2011, pages 615–627. doi: 10.1007/978-3-642-23719-5_52.

[DR09] M. Dietzfelbinger and M. Rink. “Applications of a Splitting Trick”. In: ICALP
(1). Volume 5555. Lecture Notes in Computer Science. Springer, 2009, pages 354–
365. doi: 10.1007/978-3-642-02927-1_30.

[DSL11] B. K. Debnath, S. Sengupta, and J. Li. “SkimpyStash: RAM space skimpy
key-value store on flash-based storage”. In: SIGMOD Conference. ACM, 2011,
pages 25–36. doi: 10.1145/1989323.1989327.

[DW07] M. Dietzfelbinger and C. Weidling. “Balanced allocation and dictionaries with
tightly packed constant size bins”. In: Theor. Comput. Sci. 380.1-2 (2007),
pages 47–68. doi: 10.1016/J.TCS.2007.02.054.

[EGV20] E. Esposito, T. M. Graf, and S. Vigna. “RecSplit: Minimal Perfect Hashing via
Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175–185. doi: 10.1137/
1.9781611976007.14.

[Eli74] P. Elias. “Efficient Storage and Retrieval by Content and Address of Static
Files”. In: J. ACM 21.2 (1974), pages 246–260. doi: 10.1145/321812.321820.

[ESS08] S. Edelkamp, P. Sanders, and P. Simecek. “Semi-external LTL Model Checking”.
In: CAV. Volume 5123. Lecture Notes in Computer Science. Springer, 2008,
pages 530–542. doi: 10.1007/978-3-540-70545-1_50.

[Fac21] Facebook. RocksDB. A Persistent Key-Value Store for Fast Storage Environ-
ments. https://rocksdb.org. 2021.

[Fag+79] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. “Extendible Hashing -
A Fast Access Method for Dynamic Files”. In: ACM Trans. Database Syst. 4.3
(1979), pages 315–344. doi: 10.1145/320083.320092.

[Fan+14] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher. “Cuckoo Filter:
Practically Better Than Bloom”. In: CoNEXT. ACM, 2014, pages 75–88. doi:
10.1145/2674005.2674994.

[Fan71] R. M. Fano. On the number of bits required to implement an associative memory.
Technical report. Project MAC, Memorandum 61". MIT, Computer Structures
Group, 1971.

[FCH92] E. A. Fox, Q. F. Chen, and L. S. Heath. “A Faster Algorithm for Constructing
Minimal Perfect Hash Functions”. In: SIGIR. ACM, 1992, pages 266–273. doi:
10.1145/133160.133209.

[Fer+08] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter. “On searching com-
pressed string collections cache-obliviously”. In: PODS. ACM, 2008, pages 181–
190. doi: 10.1145/1376916.1376943.

[Fer+23a] P. Ferragina, H.-P. Lehmann, P. Sanders, and G. Vinciguerra. “Learned Mono-
tone Minimal Perfect Hashing”. In: ESA. Volume 274. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023, 46:1–46:17. doi: 10.4230/LIPICS.ESA.
2023.46.

[Fer+23b] P. Ferragina, H.-P. Lehmann, P. Sanders, and G. Vinciguerra. “Learned Mono-
tone Minimal Perfect Hashing”. In: CoRR abs/2304.11012 (2023). doi: 10.
48550/ARXIV.2304.11012.

[FK16] A. Frieze and M. Karoński. Introduction to random graphs. Cambridge University
Press, 2016. doi: 10.1017/CBO9781316339831.

App end ix

https://doi.org/10.1007/978-3-642-23719-5_52
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1145/1989323.1989327
https://doi.org/10.1016/J.TCS.2007.02.054
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/321812.321820
https://doi.org/10.1007/978-3-540-70545-1_50
https://rocksdb.org
https://doi.org/10.1145/320083.320092
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.4230/LIPICS.ESA.2023.46
https://doi.org/10.4230/LIPICS.ESA.2023.46
https://doi.org/10.48550/ARXIV.2304.11012
https://doi.org/10.48550/ARXIV.2304.11012
https://doi.org/10.1017/CBO9781316339831

158 Bibliography

[FKP16] N. Fountoulakis, M. Khosla, and K. Panagiotou. “The Multiple-Orientability
Thresholds for Random Hypergraphs”. In: Comb. Probab. Comput. 25.6 (2016),
pages 870–908. doi: 10.1017/S0963548315000334.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. “Storing a Sparse Table with
0(1) Worst Case Access Time”. In: J. ACM 31.3 (1984), pages 538–544. doi:
10.1145/828.1884.

[FLV21] P. Ferragina, F. Lillo, and G. Vinciguerra. “On the performance of learned
data structures”. In: Theor. Comput. Sci. 871 (2021), pages 107–120. doi:
10.1016/J.TCS.2021.04.015.

[Fly72] M. J. Flynn. “Some Computer Organizations and Their Effectiveness”. In: IEEE
Trans. Computers 21.9 (1972), pages 948–960. doi: 10.1109/TC.1972.5009071.

[FM00] P. Ferragina and G. Manzini. “Opportunistic Data Structures with Applications”.
In: FOCS. IEEE Computer Society, 2000, pages 390–398. doi: 10.1109/SFCS.
2000.892127.

[FM05] P. Ferragina and G. Manzini. “Indexing compressed text”. In: J. ACM 52.4
(2005), pages 552–581. doi: 10.1145/1082036.1082039.

[FMM09] A. M. Frieze, P. Melsted, and M. Mitzenmacher. “An Analysis of Random-Walk
Cuckoo Hashing”. In: APPROX-RANDOM. Volume 5687. Lecture Notes in
Computer Science. Springer, 2009, pages 490–503. doi: 10.1007/978-3-642-
03685-9_37.

[FMV22] P. Ferragina, G. Manzini, and G. Vinciguerra. “Compressing and Querying
Integer Dictionaries Under Linearities and Repetitions”. In: IEEE Access 10
(2022), pages 118831–118848. doi: 10.1109/ACCESS.2022.3221520.

[FN] P. Ferragina and G. Navarro. Pizza&Chili Corpus. Accessed: February 2023.
url: http://pizzachili.dcc.uchile.cl/texts.html.

[FN07] K. Fredriksson and F. Nikitin. “Simple Compression Code Supporting Random
Access and Fast String Matching”. In: WEA. Volume 4525. Lecture Notes in
Computer Science. Springer, 2007, pages 203–216. doi: 10.1007/978-3-540-
72845-0_16.

[Fog13] A. Fog. C++ vector class library. http : / / www . agner . org / optimize /
vectorclass.pdf. 2013.

[Fot+05] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. “Space Efficient Hash
Tables with Worst Case Constant Access Time”. In: Theory Comput. Syst. 38.2
(2005), pages 229–248. doi: 10.1007/S00224-004-1195-X.

[Fox+91] E. A. Fox, Q. F. Chen, A. M. Daoud, and L. S. Heath. “Order-Preserving
Minimal Perfect Hash Functions and Information Retrieval”. In: ACM Trans.
Inf. Syst. 9.3 (1991), pages 281–308. doi: 10.1145/125187.125200.

[FP12] N. Fountoulakis and K. Panagiotou. “Sharp load thresholds for cuckoo hashing”.
In: Random Struct. Algorithms 41.3 (2012), pages 306–333. doi: 10.1002/RSA.
20426.

[FPS13] N. Fountoulakis, K. Panagiotou, and A. Steger. “On the Insertion Time of
Cuckoo Hashing”. In: SIAM J. Comput. 42.6 (2013), pages 2156–2181. doi:
10.1137/100797503.

[Fri+99] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. “Cache-Oblivious
Algorithms”. In: FOCS. IEEE Computer Society, 1999, pages 285–298. doi:
10.1109/SFFCS.1999.814600.

https://doi.org/10.1017/S0963548315000334
https://doi.org/10.1145/828.1884
https://doi.org/10.1016/J.TCS.2021.04.015
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1007/978-3-642-03685-9_37
https://doi.org/10.1007/978-3-642-03685-9_37
https://doi.org/10.1109/ACCESS.2022.3221520
http://pizzachili.dcc.uchile.cl/texts.html
https://doi.org/10.1007/978-3-540-72845-0_16
https://doi.org/10.1007/978-3-540-72845-0_16
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
https://doi.org/10.1007/S00224-004-1195-X
https://doi.org/10.1145/125187.125200
https://doi.org/10.1002/RSA.20426
https://doi.org/10.1002/RSA.20426
https://doi.org/10.1137/100797503
https://doi.org/10.1109/SFFCS.1999.814600

159

[FV20a] P. Ferragina and G. Vinciguerra. “Learned Data Structures”. In: Recent Trends
in Learning From Data. Edited by L. Oneto, N. Navarin, A. Sperduti, and D.
Anguita. Springer International Publishing, 2020, pages 5–41. isbn: 978-3-030-
43883-8. doi: 10.1007/978-3-030-43883-8_2.

[FV20b] P. Ferragina and G. Vinciguerra. “The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds”. In: Proc. VLDB Endow. 13.8
(2020), pages 1162–1175. doi: 10.14778/3389133.3389135.

[GG86] A. K. Garg and C. C. Gotlieb. “Order-Preserving Key Transformations”. In:
ACM Trans. Database Syst. 11.2 (1986), pages 213–234. doi: 10.1145/5922.
5923.

[GL20] T. M. Graf and D. Lemire. “Xor filters: Faster and smaller than bloom and
cuckoo filters”. In: Journal of Experimental Algorithmics (JEA) 25 (2020),
pages 1–16. doi: 10.1145/3376122.

[GL88] G. H. Gonnet and P. Larson. “External hashing with limited internal storage”.
In: J. ACM 35.1 (1988), pages 161–184. doi: 10.1145/42267.42274.

[GNP20] T. Gagie, G. Navarro, and N. Prezza. “Fully Functional Suffix Trees and Optimal
Text Searching in BWT-Runs Bounded Space”. In: J. ACM 67.1 (2020), 2:1–2:54.
doi: 10.1145/3375890.

[GO14] R. Grossi and G. Ottaviano. “Fast Compressed Tries through Path Decomposi-
tions”. In: ACM J. Exp. Algorithmics 19.1 (2014). doi: 10.1145/2656332.

[Gog+14] S. Gog, T. Beller, A. Moffat, and M. Petri. “From Theory to Practice: Plug and
Play with Succinct Data Structures”. In: SEA. Volume 8504. Lecture Notes in
Computer Science. Springer, 2014, pages 326–337. doi: 10.1007/978-3-319-
07959-2_28.

[Gol66] S. W. Golomb. “Run-length Encodings”. In: IEEE Trans. Inf. Theory 12.3
(1966), pages 399–401. doi: 10.1109/TIT.1966.1053907.

[Goo] Google. Google Ngram Exports. Accessed: March 2023. url: https://storage.
googleapis.com/books/ngrams/books/datasetsv3.html.

[Goo21] Google. LevelDB is a Fast Key-Value Storage Library Written at Google. https:
//github.com/google/leveldb. 2021.

[GOR10] R. Grossi, A. Orlandi, and R. Raman. “Optimal Trade-Offs for Succinct String
Indexes”. In: ICALP (1). Volume 6198. Lecture Notes in Computer Science.
Springer, 2010, pages 678–689. doi: 10.1007/978-3-642-14165-2_57.

[GOV16] M. Genuzio, G. Ottaviano, and S. Vigna. “Fast Scalable Construction of (Minimal
Perfect Hash) Functions”. In: SEA. Volume 9685. Lecture Notes in Computer
Science. Springer, 2016, pages 339–352. doi: 10.1007/978-3-319-38851-9_23.

[GT63] M. Greniewski and W. M. Turski. “The external language KLIPA for the
URAL-2 digital computer”. In: Commun. ACM 6.6 (1963), pages 321–324. doi:
10.1145/366604.366654.

[Her23] S. Hermann. “Accelerating Minimal Perfect Hash Function Construction Using
GPU Parallelization”. Master’s thesis. Karlsruhe Institute for Technology (KIT),
2023. doi: 10.5445/IR/1000164413.

[Her+24a] S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer. “PHOBIC:
Perfect Hashing with Optimized Bucket Sizes and Interleaved Coding”. In: ESA.
Volume 308. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024,
69:1–69:17. doi: 10.4230/LIPIcs.ESA.2024.69.

App end ix

https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/5922.5923
https://doi.org/10.1145/5922.5923
https://doi.org/10.1145/3376122
https://doi.org/10.1145/42267.42274
https://doi.org/10.1145/3375890
https://doi.org/10.1145/2656332
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1109/TIT.1966.1053907
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://github.com/google/leveldb
https://github.com/google/leveldb
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1145/366604.366654
https://doi.org/10.5445/IR/1000164413
https://doi.org/10.4230/LIPIcs.ESA.2024.69

160 Bibliography

[Her+24b] S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer. “PHOBIC:
Perfect Hashing with Optimized Bucket Sizes and Interleaved Coding”. In:
CoRR abs/2404.18497 (2024). doi: 10.48550/ARXIV.2404.18497.

[HK73] J. E. Hopcroft and R. M. Karp. “An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs”. In: SIAM J. Comput. 2.4 (1973), pages 225–231.

[HT01] T. Hagerup and T. Tholey. “Efficient Minimal Perfect Hashing in Nearly Minimal
Space”. In: STACS. Volume 2010. Lecture Notes in Computer Science. Springer,
2001, pages 317–326. doi: 10.1007/3-540-44693-1_28.

[HTT02] G.-J. Hwang, W. Tsai, and J. C. Tseng. “A minimal perfect hashing approach
for mining association rules from very large databases”. In: The 6th IASTED
International Conference on Internet and Multimedia Systems and Applications,
Kaua’i, Hawaii, USA. 2002, pages 80–85.

[Int11] Intel. Advanced Vector Extensions Programming Reference. https://www.intel.
com/content/dam/develop/external/us/en/documents/36945. 2011.

[Int13] Intel. AVX-512 Instructions. https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-avx-512-instructions.html.
2013.

[Jac89] G. Jacobson. “Space-efficient Static Trees and Graphs”. In: FOCS. IEEE Com-
puter Society, 1989, pages 549–554. doi: 10.1109/SFCS.1989.63533.

[Jae81] G. Jaeschke. “Reciprocal Hashing: A Method for Generating Minimal Perfect
Hashing Functions”. In: Commun. ACM 24.12 (1981), pages 829–833. doi:
10.1145/358800.358806.

[JDP83] K. Joag-Dev and F. Proschan. “Negative Association of Random Variables with
Applications”. In: The Annals of Statistics 11.1 (1983), pages 286 –295. doi:
10.1214/aos/1176346079.

[Jen06] J. L. W. V. Jensen. “Sur les fonctions convexes et les inégalités entre les
valeurs moyennes”. In: Acta mathematica 30.1 (1906), pages 175–193. doi:
10.1007/BF02418571.

[JL07] S. Janson and M. J. Luczak. “A simple solution to the k-core problem”. In:
Random Struct. Algorithms 30.1-2 (2007), pages 50–62. doi: 10.1002/rsa.
20147.

[JP08] M. S. Jensen and R. Pagh. “Optimality in External Memory Hashing”. In:
Algorithmica 52.3 (2008), pages 403–411. doi: 10.1007/S00453-007-9155-X.

[KA19] M. Khosla and A. Anand. “A Faster Algorithm for Cuckoo Insertion and
Bipartite Matching in Large Graphs”. In: Algorithmica 81.9 (2019), pages 3707–
3724. doi: 10.1007/S00453-019-00595-4.

[Kho13] M. Khosla. “Balls into Bins Made Faster”. In: ESA. Volume 8125. Lecture Notes
in Computer Science. Springer, 2013, pages 601–612. doi: 10.1007/978-3-642-
40450-4_51.

[Kip+19] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T.
Neumann. “SOSD: A Benchmark for Learned Indexes”. In: CoRR abs/1911.13014
(2019). doi: 10.48550/ARXIV.1911.13014.

[KLS22] F. Kurpicz, H.-P. Lehmann, and P. Sanders. “PaCHash: Packed and Compressed
Hash Tables”. In: CoRR abs/2205.04745 (2022). doi: 10.48550/ARXIV.2205.
04745.

[KLS23] F. Kurpicz, H.-P. Lehmann, and P. Sanders. “PaCHash: Packed and Compressed
Hash Tables”. In: ALENEX. SIAM, 2023, pages 162–175. doi: 10.1137/1.
9781611977561.CH14.

https://doi.org/10.48550/ARXIV.2404.18497
https://doi.org/10.1007/3-540-44693-1_28
https://www.intel.com/content/dam/develop/external/us/en/documents/36945
https://www.intel.com/content/dam/develop/external/us/en/documents/36945
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/358800.358806
https://doi.org/10.1214/aos/1176346079
https://doi.org/10.1007/BF02418571
https://doi.org/10.1002/rsa.20147
https://doi.org/10.1002/rsa.20147
https://doi.org/10.1007/S00453-007-9155-X
https://doi.org/10.1007/S00453-019-00595-4
https://doi.org/10.1007/978-3-642-40450-4_51
https://doi.org/10.1007/978-3-642-40450-4_51
https://doi.org/10.48550/ARXIV.1911.13014
https://doi.org/10.48550/ARXIV.2205.04745
https://doi.org/10.48550/ARXIV.2205.04745
https://doi.org/10.1137/1.9781611977561.CH14
https://doi.org/10.1137/1.9781611977561.CH14

161

[Knu73] D. E. Knuth. The art of computer programming: Volume 3: Sorting and Searching
(First edition). Addison-Wesley, 1973. isbn: 0-201-03803-X.

[Knu98] D. E. Knuth. The art of computer programming: Volume 3: Sorting and Searching
(Second edition). Addison-Wesley, 1998. isbn: 978-0-201-89685-5.

[Kos24] D. Kosolobov. “Simplified Tight Bounds for Monotone Minimal Perfect Hashing”.
In: CPM. Volume 296. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2024, 19:1–19:13. doi: 10.4230/LIPICS.CPM.2024.19.

[KPR22] D. Köppl, S. J. Puglisi, and R. Raman. “Fast and Simple Compact Hashing
via Bucketing”. In: Algorithmica 84.9 (2022), pages 2735–2766. doi: 10.1007/
S00453-022-00996-Y.

[Kra+18] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. “The Case for
Learned Index Structures”. In: SIGMOD Conference. ACM, 2018, pages 489–504.
doi: 10.1145/3183713.3196909.

[KRT22] E. M. Kornaropoulos, S. Ren, and R. Tamassia. “The Price of Tailoring the Index
to Your Data: Poisoning Attacks on Learned Index Structures”. In: SIGMOD
Conference. ACM, 2022, pages 1331–1344. doi: 10.1145/3514221.3517867.

[Kur22] F. Kurpicz. “Engineering Compact Data Structures for Rank and Select Queries
on Bit Vectors”. In: SPIRE. Volume 13617. Lecture Notes in Computer Science.
Springer, 2022, pages 257–272. doi: 10.1007/978-3-031-20643-6_19.

[Kus16] W. Kuszmaul. “Fast Concurrent Cuckoo Kick-Out Eviction Schemes for High-
Density Tables”. In: CoRR abs/1605.05236 (2016). doi: 10.48550/arXiv.1605.
05236.

[Kü14] M. O. Külekci. “Enhanced Variable-Length Codes: Improved Compression
with Efficient Random Access”. In: DCC. IEEE, 2014, pages 362–371. doi:
10.1109/DCC.2014.74.

[Lar88] P. Larson. “Linear Hashing with Separators - A Dynamic Hashing Scheme
Achieving One-Access Retrieval”. In: ACM Trans. Database Syst. 13.3 (1988),
pages 366–388. doi: 10.1145/44498.44500.

[LC20] C. Luo and M. J. Carey. “LSM-based storage techniques: a survey”. In: VLDB
J. 29.1 (2020), pages 393–418. doi: 10.1007/s00778-019-00555-y.

[LC88] T. G. Lewis and C. R. Cook. “Hashing for Dynamic and Static Internal Tables”.
In: Computer 21.10 (1988), pages 45–56. doi: 10.1109/2.7056.

[Leh23a] H.-P. Lehmann. GpuRecSplit - GitHub. https://github.com/ByteHamster/
GpuRecSplit. 2023.

[Leh23b] H.-P. Lehmann. MMPHF-Experiments - GitHub. https : / / github . com /
ByteHamster/MMPHF-Experiments. 2023.

[Leh23c] H.-P. Lehmann. MPHF Experiments - GitHub. https://github.com/ByteHamster/
MPHF-Experiments. 2023.

[Leh23d] H.-P. Lehmann. PaCHash - GitHub. https://github.com/ByteHamster/
PaCHash. 2023.

[Leh23e] H.-P. Lehmann. PaCHash Experiments - GitHub. https : / / github . com /
ByteHamster/PaCHash-Experiments. 2023.

[Leh23f] H.-P. Lehmann. SicHash - GitHub. https : / / github . com / ByteHamster /
SicHash. 2023.

[Leh24] H.-P. Lehmann. ShockHash - GitHub. https://github.com/ByteHamster/
ShockHash. 2024.

[Lel12] M. Lelarge. “A new approach to the orientation of random hypergraphs”. In:
SODA. SIAM, 2012, pages 251–264. doi: 10.1137/1.9781611973099.23.

App end ix

https://doi.org/10.4230/LIPICS.CPM.2024.19
https://doi.org/10.1007/S00453-022-00996-Y
https://doi.org/10.1007/S00453-022-00996-Y
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3514221.3517867
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.48550/arXiv.1605.05236
https://doi.org/10.48550/arXiv.1605.05236
https://doi.org/10.1109/DCC.2014.74
https://doi.org/10.1145/44498.44500
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1109/2.7056
https://github.com/ByteHamster/GpuRecSplit
https://github.com/ByteHamster/GpuRecSplit
https://github.com/ByteHamster/MMPHF-Experiments
https://github.com/ByteHamster/MMPHF-Experiments
https://github.com/ByteHamster/MPHF-Experiments
https://github.com/ByteHamster/MPHF-Experiments
https://github.com/ByteHamster/PaCHash
https://github.com/ByteHamster/PaCHash
https://github.com/ByteHamster/PaCHash-Experiments
https://github.com/ByteHamster/PaCHash-Experiments
https://github.com/ByteHamster/SicHash
https://github.com/ByteHamster/SicHash
https://github.com/ByteHamster/ShockHash
https://github.com/ByteHamster/ShockHash
https://doi.org/10.1137/1.9781611973099.23

162 Bibliography

[LH06] S. Lefebvre and H. Hoppe. “Perfect spatial hashing”. In: ACM Trans. Graph.
25.3 (2006), pages 579–588. doi: 10.1145/1141911.1141926.

[Lia+19] X. Liao, M. Li, Y. Zou, F. Wu, Y. Pan, and J. Wang. “Current challenges and
solutions of de novo assembly”. In: Quant. Biol. 7.2 (2019), pages 90–109. doi:
10.1007/S40484-019-0166-9.

[Lim+11] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. “SILT: a memory-efficient,
high-performance key-value store”. In: SOSP. ACM, 2011, pages 1–13. doi:
10.1145/2043556.2043558.

[Lim+17] A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo. “Fast and Scalable Minimal
Perfect Hashing for Massive Key Sets”. In: SEA. Volume 75. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 25:1–25:16. doi: 10.4230/
LIPICS.SEA.2017.25.

[LK84] P. Larson and A. Kajla. “File Organization: Implementation of a Method Guar-
anteeing Retrieval in One Access”. In: Commun. ACM 27.7 (1984), pages 670–
677. doi: 10.1145/358105.358193.

[LL86] W. Litwin and D. B. Lomet. “The Bounded Disorder Access Method”. In: ICDE.
IEEE Computer Society, 1986, pages 38–48. doi: 10.1109/ICDE.1986.7266204.

[LPB06] Y. Lu, B. Prabhakar, and F. Bonomi. “Perfect Hashing for Network Applica-
tions”. In: ISIT. IEEE, 2006. doi: 10.1109/ISIT.2006.261567.

[LR85] P. Larson and M. V. Ramakrishna. “External Perfect Hashing”. In: SIGMOD
Conference. ACM Press, 1985, pages 190–200. doi: 10.1145/318898.318916.

[LSW22] H.-P. Lehmann, P. Sanders, and S. Walzer. “SicHash – Small Irregular Cuckoo
Tables for Perfect Hashing”. In: CoRR abs/2210.01560 (2022). doi: 10.48550/
ARXIV.2210.01560.

[LSW23a] H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Towards Optimal-
Space Minimal Perfect Hashing Beyond Brute-Force”. In: CoRR abs/2308.09561
(2023). doi: 10.48550/ARXIV.2308.09561.

[LSW23b] H.-P. Lehmann, P. Sanders, and S. Walzer. “SicHash – Small Irregular Cuckoo
Tables for Perfect Hashing”. In: ALENEX. SIAM, 2023, pages 176–189. doi:
10.1137/1.9781611977561.CH15.

[LSW24a] H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Near Optimal-Space
Minimal Perfect Hashing Beyond Brute-Force”. In: CoRR abs/2310.14959 (2024).
doi: 10.48550/ARXIV.2310.14959.

[LSW24b] H.-P. Lehmann, P. Sanders, and S. Walzer. “ShockHash: Towards Optimal-
Space Minimal Perfect Hashing Beyond Brute-Force”. In: ALENEX. SIAM,
2024, pages 194–206. doi: 10.1137/1.9781611977929.15.

[Lu+17] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. “WiscKey: Separating Keys from Values in SSD-Conscious Storage”.
In: ACM Trans. Storage 13.1 (2017), 5:1–5:28. doi: 10.1145/3033273.

[Lub+01] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. “Efficient
erasure correcting codes”. In: IEEE Trans. Inf. Theory 47.2 (2001), pages 569–
584. doi: 10.1109/18.910575.

[LV23] H.-P. Lehmann and G. Vinciguerra. LeMonHash - GitHub. https://github.
com/ByteHamster/LeMonHash. 2023.

[Mai83] H. G. Mairson. “The Program Complexity of Searching a Table”. In: FOCS.
IEEE Computer Society, 1983, pages 40–47. doi: 10.1109/SFCS.1983.76.

[Mai92] H. G. Mairson. “The Effect of Table Expansion on the Program Complexity of
Perfect Hash Funtions”. In: BIT 32.3 (1992). doi: 10.1007/BF02074879.

https://doi.org/10.1145/1141911.1141926
https://doi.org/10.1007/S40484-019-0166-9
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.4230/LIPICS.SEA.2017.25
https://doi.org/10.4230/LIPICS.SEA.2017.25
https://doi.org/10.1145/358105.358193
https://doi.org/10.1109/ICDE.1986.7266204
https://doi.org/10.1109/ISIT.2006.261567
https://doi.org/10.1145/318898.318916
https://doi.org/10.48550/ARXIV.2210.01560
https://doi.org/10.48550/ARXIV.2210.01560
https://doi.org/10.48550/ARXIV.2308.09561
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.1145/3033273
https://doi.org/10.1109/18.910575
https://github.com/ByteHamster/LeMonHash
https://github.com/ByteHamster/LeMonHash
https://doi.org/10.1109/SFCS.1983.76
https://doi.org/10.1007/BF02074879

163

[Maj+96] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. “A Family of
Perfect Hashing Methods”. In: Comput. J. 39.6 (1996), pages 547–554. doi:
10.1093/COMJNL/39.6.547.

[Már+15] L. Mármol, S. Sundararaman, N. Talagala, and R. Rangaswami. “NVMKV: A
Scalable, Lightweight, FTL-aware Key-Value Store”. In: USENIX ATC. USENIX
Association, 2015, pages 207–219.

[Meh82] K. Mehlhorn. “On the Program Size of Perfect and Universal Hash Functions”.
In: FOCS. IEEE Computer Society, 1982, pages 170–175. doi: 10.1109/SFCS.
1982.80.

[Meh84] K. Mehlhorn. “Data Structures and Algorithms, Vol. 1: Sorting and Searching”.
In: EATCS Monographs on Theoretical Computer Science, Springer-Verlag
(1984).

[Mol05] M. Molloy. “Cores in random hypergraphs and Boolean formulas”. In: Random
Struct. Algorithms 27.1 (2005), pages 124–135. doi: 10.1002/RSA.20061.

[MR01] J. I. Munro and V. Raman. “Succinct Representation of Balanced Parentheses
and Static Trees”. In: SIAM J. Comput. 31.3 (2001), pages 762–776. doi:
10.1137/S0097539799364092.

[MV08] M. Mitzenmacher and S. P. Vadhan. “Why simple hash functions work: exploiting
the entropy in a data stream”. In: SODA. SIAM, 2008, pages 746–755. doi:
10.5555/1347082.1347164.

[Mü+14] I. Müller, P. Sanders, R. Schulze, and W. Zhou. “Retrieval and Perfect Hashing
Using Fingerprinting”. In: SEA. Volume 8504. Lecture Notes in Computer
Science. Springer, 2014, pages 138–149. doi: 10.1007/978-3-319-07959-2_12.

[Nav14] G. Navarro. “Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences”. In: ACM Comput. Surv. 46.4 (2014), pages 1–47. doi:
10.1145/2535933.

[Nav16] G. Navarro. Compact Data Structures – A Practical Approach. Cambridge
University Press, 2016.

[New10] M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.
doi: 10.1093/ACPROF:OSO/9780199206650.001.0001.

[Nis+13] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McEl-
roy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. “Scaling Memcache at Facebook”. In: NSDI. USENIX Association, 2013,
pages 385–398.

[NM23] R. Nygaard and H. Meling. “SNIPS: Succinct Proof of Storage for Efficient Data
Synchronization in Decentralized Storage Systems”. In: CoRR abs/2304.04891
(2023). doi: 10.48550/ARXIV.2304.04891.

[NR21] G. Navarro and J. Rojas-Ledesma. “Predecessor Search”. In: ACM Comput.
Surv. 53.5 (2021), 105:1–105:35. doi: 10.1145/3409371.

[Nvi20] Nvidia. Nvidia Ampere GA102 GPU Architecture. https://www.nvidia.com/
content/PDF/nvidia- ampere- ga- 102- gpu- architecture- whitepaper-
v2.pdf. 2020.

[Nvi22] Nvidia. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. 2022.

[OBS99] M. A. Olson, K. Bostic, and M. I. Seltzer. “Berkeley DB”. In: USENIX ATC,
FREENIX Track. USENIX, 1999, pages 183–191.

App end ix

https://doi.org/10.1093/COMJNL/39.6.547
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/10.1002/RSA.20061
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.5555/1347082.1347164
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1145/2535933
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.48550/ARXIV.2304.04891
https://doi.org/10.1145/3409371
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

164 Bibliography

[O’N+96] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. “The Log-Structured
Merge-Tree (LSM-Tree)”. In: Acta Informatica 33.4 (1996), pages 351–385. doi:
10.1007/s002360050048.

[OS07] D. Okanohara and K. Sadakane. “Practical Entropy-Compressed Rank/Select
Dictionary”. In: ALENEX. SIAM, 2007. doi: 10.1137/1.9781611972870.6.

[OV14] G. Ottaviano and R. Venturini. “Partitioned Elias-Fano indexes”. In: SIGIR.
ACM, 2014, pages 273–282. doi: 10.1145/2600428.2609615.

[Pag03] R. Pagh. “Basic External Memory Data Structures”. In: Algorithms for Memory
Hierarchies. Volume 2625. Lecture Notes in Computer Science. Springer, 2003,
pages 14–35. doi: 10.1007/3-540-36574-5_2.

[Pib22] G. E. Pibiri. “Sparse and skew hashing of k-mers”. In: Bioinformatics 38.Sup-
plement_1 (2022), pages i185–i194. doi: 10.1093/bioinformatics/btac245.

[Pib23] G. E. Pibiri. “On weighted k-mer dictionaries”. In: Algorithms Mol. Biol. 18.1
(2023), page 3. doi: 10.1186/S13015-023-00226-2.

[PP08] A. Pagh and R. Pagh. “Uniform Hashing in Constant Time and Optimal Space”.
In: SIAM J. Comput. 38.1 (2008), pages 85–96. doi: 10.1137/060658400.

[PPR07] A. Pagh, R. Pagh, and M. Ruzic. “Linear probing with constant independence”.
In: STOC. ACM, 2007, pages 318–327. doi: 10.1145/1250790.1250839.

[PR04] R. Pagh and F. F. Rodler. “Cuckoo hashing”. In: J. Algorithms 51.2 (2004),
pages 122–144. doi: 10.1016/j.jalgor.2003.12.002.

[PSL23] G. E. Pibiri, Y. Shibuya, and A. Limasset. “Locality-preserving minimal perfect
hashing of k-mers”. In: Bioinform. 39.Supplement-1 (2023), pages 534–543. doi:
10.1093/BIOINFORMATICS/BTAD219.

[PT21] G. E. Pibiri and R. Trani. “PTHash: Revisiting FCH Minimal Perfect Hashing”.
In: SIGIR. ACM, 2021, pages 1339–1348. doi: 10.1145/3404835.3462849.

[PT24] G. E. Pibiri and R. Trani. “Parallel and External-Memory Construction of
Minimal Perfect Hash Functions With PTHash”. In: IEEE Trans. Knowl. Data
Eng. 36.3 (2024), pages 1249–1259. doi: 10.1109/TKDE.2023.3303341.

[Pua08] M. Puatracscu. “Succincter”. In: FOCS. IEEE Computer Society, 2008, pages 305–
313. doi: 10.1109/FOCS.2008.83.

[PV17a] G. E. Pibiri and R. Venturini. “Dynamic Elias-Fano Representation”. In: CPM.
Volume 78. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
30:1–30:14. doi: 10.4230/LIPICS.CPM.2017.30.

[PV17b] G. E. Pibiri and R. Venturini. “Efficient Data Structures for Massive N -Gram
Datasets”. In: SIGIR. ACM, 2017, pages 615–624. doi: 10.1145/3077136.
3080798.

[RGR20] D. Reinsel, J. Gantz, and J. Rydning. The Digitization of the World: From
Edge to Core. https://www.seagate.com/files/www-content/our-story/
trends/files/dataage-idc-report-final.pdf. 2020.

[Ric79] R. F. Rice. “Some practical universal noiseless coding techniques”. In: Jet
Propulsion Laboratory, JPL Publication (1979).

[RKR24] J. Reichinger, T. Krismayer, and J. S. Rellermeyer. “COPR – Efficient, large-
scale log storage and retrieval”. In: CoRR abs/2402.18355 (2024). doi: 10.
48550/ARXIV.2402.18355.

[RT89] M. V. Ramakrishna and W. R. Tout. “Dynamic External Hashing with Guaran-
teed Single Access Retrieval”. In: FODO. Volume 367. Lecture Notes in Computer
Science. Springer, 1989, pages 187–201. doi: 10.1007/3-540-51295-0_127.

https://doi.org/10.1007/s002360050048
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1007/3-540-36574-5_2
https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1186/S13015-023-00226-2
https://doi.org/10.1137/060658400
https://doi.org/10.1145/1250790.1250839
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1093/BIOINFORMATICS/BTAD219
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.4230/LIPICS.CPM.2017.30
https://doi.org/10.1145/3077136.3080798
https://doi.org/10.1145/3077136.3080798
https://www.seagate.com/files/www-content/our-story/trends/files/dataage-idc-report-final.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/dataage-idc-report-final.pdf
https://doi.org/10.48550/ARXIV.2402.18355
https://doi.org/10.48550/ARXIV.2402.18355
https://doi.org/10.1007/3-540-51295-0_127

165

[Sab+22] I. Sabek, K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, and T. Kraska. “Can
Learned Models Replace Hash Functions?” In: Proc. VLDB Endow. 16.3 (2022),
pages 532–545. doi: 10.14778/3570690.3570702.

[San+19] P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev. Sequential and
Parallel Algorithms and Data Structures - The Basic Toolbox. Springer, 2019.
doi: 10.1007/978-3-030-25209-0.

[Sch90] D. C. Schmidt. “GPERF: A Perfect Hash Function Generator”. In: C++ Con-
ference. USENIX Association, 1990, pages 87–102.

[Spr77] R. Sprugnoli. “Perfect Hashing Functions: A Single Probe Retrieving Method
for Static Sets”. In: Commun. ACM 20.11 (1977), pages 841–850. doi: 10.1145/
359863.359887.

[Sta11] R. P. Stanley. “Enumerative Combinatorics Volume 1 second edition”. In: Cam-
bridge studies in advanced mathematics (2011). doi: 10.1017/CBO9781139058520.

[Str+20] G. P. Strimel, A. Rastrow, G. Tiwari, A. Piérard, and J. Webb. “Rescore
in a Flash: Compact, Cache Efficient Hashing Data Structures for n-Gram
Language Models”. In: INTERSPEECH. ISCA, 2020, pages 3386–3390. doi:
10.21437/INTERSPEECH.2020-1939.

[Suz+07] B. E. Suzek, H. Huang, P. B. McGarvey, R. Mazumder, and C. H. Wu. “UniRef:
comprehensive and non-redundant UniProt reference clusters”. In: Bioinform.
23.10 (2007), pages 1282–1288. doi: 10.1093/BIOINFORMATICS/BTM098.

[Szu06] M. Szudzik. “An elegant pairing function”. In: Wolfram Research (ed.) Special
NKS 2006 Wolfram Science Conference. 2006, pages 1–12.

[Tho15] M. Thorup. “High Speed Hashing for Integers and Strings”. In: CoRR abs/1504.06804
(2015). doi: 10.48550/ARXIV.1504.06804.

[Vig08] S. Vigna. “Broadword Implementation of Rank/Select Queries”. In: WEA.
Volume 5038. Lecture Notes in Computer Science. Springer, 2008, pages 154–
168. doi: 10.1007/978-3-540-68552-4_12.

[VS94] J. S. Vitter and E. A. M. Shriver. “Algorithms for Parallel Memory I: Two-Level
Memories”. In: Algorithmica 12.2/3 (1994). doi: 10.1007/BF01185207.

[Wal21] S. Walzer. “Peeling Close to the Orientability Threshold - Spatial Coupling in
Hashing-Based Data Structures”. In: SODA. SIAM, 2021, pages 2194–2211. doi:
10.1137/1.9781611976465.131.

[Wal22] S. Walzer. “Insertion Time of Random Walk Cuckoo Hashing below the Peeling
Threshold”. In: ESA. Volume 244. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 87:1–87:11. doi: 10.4230/LIPICS.ESA.2022.87.

[Wal24] S. Walzer. “The Probability to Hit Every Bin with a Linear Number of Balls”.
In: CoRR abs/2403.00736 (2024). doi: 10.48550/ARXIV.2403.00736.

[Wei73] P. Weiner. “Linear Pattern Matching Algorithms”. In: SWAT. IEEE Computer
Society, 1973, pages 1–11. doi: 10.1109/SWAT.1973.13.

[WH20] S. A. Weaver and M. Heule. “Constructing Minimal Perfect Hash Functions
Using SAT Technology”. In: AAAI. AAAI Press, 2020, pages 1668–1675. doi:
10.1609/AAAI.V34I02.5529.

[WMB99] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.

[Zha+18] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen. “Efficient Document
Analytics on Compressed Data: Method, Challenges, Algorithms, Insights”. In:
Proc. VLDB Endow. 11.11 (2018), pages 1522–1535. doi: 10.14778/3236187.
3236203.

App end ix

https://doi.org/10.14778/3570690.3570702
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1145/359863.359887
https://doi.org/10.1145/359863.359887
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.21437/INTERSPEECH.2020-1939
https://doi.org/10.1093/BIOINFORMATICS/BTM098
https://doi.org/10.48550/ARXIV.1504.06804
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/BF01185207
https://doi.org/10.1137/1.9781611976465.131
https://doi.org/10.4230/LIPICS.ESA.2022.87
https://doi.org/10.48550/ARXIV.2403.00736
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1609/AAAI.V34I02.5529
https://doi.org/10.14778/3236187.3236203
https://doi.org/10.14778/3236187.3236203

	Abstract
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Perfect Hashing
	1.2 Contributions
	1.3 Outline
	1.4 Applications

	2 Preliminaries
	2.1 Rank and Select
	2.2 Golomb-Rice Coding
	2.3 Elias-Fano Coding
	2.4 Retrieval Data Structures
	2.5 Cuckoo Hashing
	2.6 Perfect Hashing Through Retrieval
	2.7 Space Lower Bounds
	2.8 Achieving Minimality

	3 Contributions
	3.1 Minimal Perfect Hashing Through Tuned Brute-Force
	3.2 Small Irregular Cuckoo Tables for Perfect Hashing
	3.3 Small, Heavily Overloaded Cuckoo Hash Tables for Minimal Perfect Hashing
	3.4 Practical Comparison of Modern Perfect Hashing
	3.5 Learned Monotone Minimal Perfect Hashing
	3.6 Perfect Hashing for Variable Size Objects
	3.7 Summary

	4 A Brief History of Perfect Hashing
	4.1 The Birth of Perfect Hashing
	4.2 Categorization
	4.3 Random Hypergraphs
	4.4 Brute-Force
	4.5 Fingerprinting
	4.6 Summary

	5 Minimal Perfect Hashing Through Tuned Brute-Force
	5.1 Rotation Fitting
	5.2 SIMD Parallelization
	5.3 Multi-Threaded Parallelization
	5.4 GPUs
	5.5 GPU Parallelization
	5.6 Internal Experiments
	5.7 Summary

	6 Small Irregular Cuckoo Tables for Perfect Hashing
	6.1 Overloading
	6.2 SicHash Perfect Hash Functions
	6.3 Enhancements
	6.4 Analysis
	6.5 Internal Experiments
	6.6 Summary

	7 Small, Heavily Overloaded Cuckoo Hash Tables for Minimal Perfect Hashing
	7.1 Pairing Functions
	7.2 ShockHash
	7.3 Bipartite ShockHash
	7.4 Analysis
	7.5 Partitioning
	7.6 Variants and Refinements
	7.7 Internal Experiments
	7.8 Summary

	8 Practical Comparison of Modern Perfect Hashing
	8.1 Plotting Three-Dimensional Measurements
	8.2 Experimental Setup
	8.3 Construction Performance
	8.4 Query Performance
	8.5 Scaling in the Input Size
	8.6 Multi-Threaded Construction
	8.7 Selected Configurations
	8.8 Summary

	9 Learned Monotone Minimal Perfect Hashing
	9.1 Related Work
	9.2 LeMonHash
	9.3 LeMonHash-VL
	9.4 Variants and Refinements
	9.5 Analysis
	9.6 Experiments
	9.7 Summary

	10 Perfect Hashing for Variable Size Objects
	10.1 Related Work
	10.2 The PaCHash Data Structure
	10.3 Analysis
	10.4 Variants and Refinements
	10.5 Experiments
	10.6 Summary

	11 Conclusion
	Appendix
	Publications and Supervised Theses

	Bibliography

