
Towards Integrating Low-Code in View-based Development
Anne-Kathrin Hermann

anne-kathrin.hermann@student.kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Lars König

lars.koenig@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Erik Burger

burger@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

Ralf Reussner

reussner@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Germany

ABSTRACT
In recent years, low-code development has been established as an

innovative method for software development. It enables the de-

velopment of a wide range of applications using graphical tools,

with little or no knowledge of text-based programming languages.

Closely related is model-driven development, where models play a

primary role in specifying software systems and generating code

partially automatically. While model-driven development supports

development processes where developers from different domains

work on different models that are kept consistent, in practice, classi-

cal model-driven tools are often difficult to use for domain experts

with a less technical background. To bridge this gap, we propose

a concept for integrating low-code platforms through projective

views into model-driven development environments. We provide

an initial evaluation of the feasibility of our concept using a devel-

opment platform for smart home systems as a case study.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
Model-driven Development, Low-Code, View-based Development,

Consistency Preservation

ACM Reference Format:
Anne-Kathrin Hermann, Lars König, Erik Burger, and Ralf Reussner. 2024.

Towards Integrating Low-Code in View-based Development. In ACM/IEEE
27th International Conference on Model Driven Engineering Languages and
Systems (MODELS Companion ’24), September 22–27, 2024, Linz, Austria.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3688333

1 INTRODUCTION
Low-code development platforms (LCDPs) are primarily used to

develop software [22, 25]. They enable the creation of a wide variety

of applications using graphical tools and with little or no knowledge

of a text-based programming language. Especially domain experts,

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3688333

who may have no knowledge of software development techniques,

can use LCDPs to create complex applications. But LCDPs tend to

be limited to the provided functionality and rigid in terms of the

offered extensibility [24, 9]. They often offer standalone solutions

without the possibility of using them in combination with other

tools.

In contrast, model-driven techniques offer flexibility and options

for extensions through, e.g., view-based development. In view-based

development, developers use different views to work on the artifacts

of a software system. These views consist of semantically related

information and need to be kept consistent. For our approach, we

focus on projective views on a central model, also called a single

underlying model (SUM), which are generated on demand [2]. As

a unifying meta-model for a SUM supporting various different

views is difficult to construct, we rely on pragmatic SUMs, which

are constructed by combining multiple meta-models with explicit

consistency preservation rules [2].

Model-driven development, however, also faces various chal-

lenges, particularly regarding the usability, management of models,

and maintainability of tools [4]. Low-code development places great

emphasis on exactly these aspects: providing simple tools that are

quick and easy to use. Comparing model-driven and low-code de-

velopment, Bucaioni et al. [4] point out that even if the motivation,

objectives, and technical solutions overlap, there are still differences

in terms of usability: “Even if MDE targeted the reduction of com-

plexity and proposed raising the level of abstraction for enabling

domain experts to deal with software design, empirical research tes-

tifies that IT literacy is required and that there exist several issues

related to tool usability, flexibility, and maintenance.” [4]

The concept presented in this paper offers an approach to solv-

ing these challenges by bridging the gap between low-code and

model-driven development. To this end, we have developed a pro-

cess to integrate low-code development as a view into a view-based

system. The view-based system is then able to keep the low-code

view consistent with the other views of the system. Through that,

developers can work on different levels of abstraction on the same

system and choose the views most suited for their tasks. At the

same time, as its defining properties are preserved, we retain the

advantages that low-code offers. This enables a software develop-

ment process where domain experts can contribute directly to the

creation of a system using LCDPs that are easy to use and learn. As

there is no restriction to the predefined functionality of an LCDP,

the development platform can be extended through other views,

which includes integrating additional low-code platforms.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0002-6711-3109
https://orcid.org/0000-0002-1751-1291
https://orcid.org/0000-0003-2832-3349
https://orcid.org/0000-0002-9308-6290
https://doi.org/10.1145/3652620.3688333
https://doi.org/10.1145/3652620.3688333
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3688333&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hermann et al.

In Section 2, we first introduce view-based and low-code devel-

opment and provide the definition of low-code used in our paper,

as there is none established yet. We also examine the differences

and similarities between model-driven and low-code development.

We then present our process for integrating low-code views into

view-based systems in Section 3, which includes different integra-

tion strategies. Section 4 demonstrates our process by applying

it to a simple, artificial low-code development platform for the

development of smart home systems. We conclude our paper by

highlighting related work in Section 5 and providing a summary

and an outlook on the next research steps in Section 6.

2 FOUNDATIONS
2.1 View-based Software Development
During the lifetime of a software system, different developers work

on its artifacts and thus have different views of the system, with

their interests lying in different aspects [10]. In model-driven devel-

opment, the idea of view-based development is to provide develop-

ers with views that contain relevant, semantically related informa-

tion. Similar to meta-modeling, where models follow the definition

of a meta-model, views follow the definition of a view type [10]. In
this paper, we focus on projective view-based approaches, in which

views are generated from an underlying model on demand [2].

The views themselves are transient, which requires the underlying

model, also called the single underlying mode (SUM), to contain all

the information about the system. For editable views, changes to a

view are therefore always committed back to the SUM.

In view-based development, a distinction is made between essen-

tial SUMs and pragmatic SUMs, also called virtual single underlying
models (V-SUMs) [17]. In contrast to essential SUMs, where the

SUM consists of a single, redundancy-free meta-model, pragmatic

SUMs are assembled from multiple meta-models. Two examples of

pragmatic SUMs, created as parts of our case study, are shown in

Figure 3.

2.2 Consistency Preservation
Due to the fact that in view-based development, multiple views

are used to develop a system, consistency between the views is

important for the realization of the system [8]. Using projective

view-based approaches, the challenge of maintaining consistency

is not between the different views, but shifted to the SUM, from

which the different views are projected [14]. With essential SUMs,

as introduced in Section 2.1, consistency is maintained implicitly,

as the SUM consists of a single, redundancy-free meta-model. With

pragmatic SUMs or V-SUMs, however, explicit consistency specifi-

cations between the included meta-models are required.

One framework implementing a V-SUM is Vitruvius [15]. It

enables the use of different models to describe a system, which are

automatically kept consistent by (semi-)automatic consistency rules

executed by the framework. Vitruvius supports different languages

for the specification of consistency preservation rules. One of them

is the Reactions language, an imperative, delta-based language for

the specification of unidirectional consistency preservation rules.

An example of a reaction between a UML model and a Java model

is shown in Listing 1. The reaction itself contains a trigger (after
element [...] created and inserted as root) on the UML

1 reaction CreatedUmlClass {

2 after element uml:: Class

3 created and inserted as root

4 call {

5 val umlClass = newValue

6 createJavaClass(umlClass)

7 }

8 }

9

10 routine createJavaClass(uml:Class umlClass) {

11 match { /* retrieve_elements */ }

12 create { /* create_elements */ }

13 update { /* update_models */ }

14 }

Listing 1: Example of a reaction that creates a new class in a
Java model whenever a class is created in a UML model.

model and a call block, in which routines are called that keep

the Java model consistent. Routines consist of three blocks: match,
create, and update. While the match block is used to retrieve

elements from the source and target models, the create block is

used to create new elements in the target model only. In the update
block, arbitrary code can be executed to, e.g., set attributes, insert

newly created model elements, or move existing ones.

In addition to automatic consistency preservation, there are also

approaches that check and, if possible, try to repair inconsistencies

between models. There are, however, consistency relations between

models that cannot be preserved or repaired automatically, e.g.,

when additional information from a developer is required [14]. In

practice, there are also cases where tolerating inconsistencies is

reasonable [7], e.g., when they can only be resolved at a later stage

of development.

2.3 Low-Code Development
In recent years, low-code development has become increasingly

popular as a new way of developing software. Instead of using

traditional programming languages, applications are usually cre-

ated by dragging and dropping prebuilt modules [12]. With the

help of graphical visualization, so-called citizen developers, who

have little or no programming knowledge, can create complex pro-

grams [9]. Low-code development platforms, which permit the use

of source code in certain areas, are differentiated from no-code

platforms, which enable software development without requiring

any programming knowledge. An essential feature of low-code

development is therefore the elimination of text-based program-

ming through visual languages [9]. This hides low-level concerns

from developers, as low-code development platforms (LCDPs) allow

them to focus on higher levels of abstraction.

The market research company Forrester Research coined the

term low-code in 2014, defining low-code platforms as “Products

and/or cloud services for application development that employ vi-

sual, declarative techniques instead of programming” [23]. Forrester

Research predicted a promising future for these platforms [23].

Although the term low-code was already coined in 2014, the

first peer-reviewed publications on low-code development have not

been published until 2018. Since then, there has been a significant

increase in related publications [4]. As low-code development is

still quite young, there are aspects that are relatively unexplored,

Towards Integrating Low-Code in View-based Development MODELS Companion ’24, September 22–27, 2024, Linz, Austria

and an established definition in the community is also lacking. As

mentioned above, there is a definition from Forrester Research,

which has also significantly characterized the term low-code [23]

but is missing some key aspects. Bucchiarone et al. [5] also describe

these difficulties, as LCDPs were inspired by various modeling

paradigms and were mostly adapted to the various domains. They

define the primary objective of low-code development platforms

as transferring programming tasks from software developers to

domain experts. Bucaioni et al. [4] provide the following definition

after an extensive literature review: They see LCDPs as “a set of

methods and/or tools in the context of a broader methodology,

being in this case MDE” [4].

Many also define low-code by looking at the fundamental prop-

erties. Among these, certain properties are repeatedly mentioned,

from which a definition can be derived. For Di Ruscio et al. [9],

these platforms are characterized by their reduction of technical

complexity associated with the installation and operation of both

development environments and the applications created. This is

relevant because low-code is primarily aimed at citizen developers.

Usually, the reduction in complexity is achieved by providing cloud-

based development environments [9]. Furthermore, according to

Di Ruscio et al. [9], every development with an LCDP consists of

typical, tool-based steps: modeling of the domain, definition of a

user interface, specification of the business logic, integration with

external services, application generation and deployment, andmain-

tenance [9]. Hinrichsen et al. [12] confirm this characterization: in

their view, special features of low-code development environments

are a simple setup and the ability to reduce complexity in opera-

tional processes. However, they also point out that, although these

platforms offer many advantages, their complex inner workings

usually remain hidden. The literature review by Pinho et al. [21]

identifies eight characteristics of low-code development platforms.

These include non-programmers as users, the use of visual tools

and drag-and-drop functions, increased abstraction, a low level

of code-based programming, model-based software development,

rapid application development, software lifecycle management, and

the use of cloud resources.

As there is no established definition of the term low-code, we
deem it necessary to clarify with which meaning we use the term.

Based on the frequently mentioned characteristics of low-code, we

therefore make the following definition for our paper:

Definition 1. Low-code development platforms enable domain
experts to develop systems with little or no programming effort us-
ing visual languages and higher levels of abstraction by reducing
technological, representation-induced, and domain-wise complexity.

2.4 Low-Code and Model-Driven Development
Current research has not conclusively clarified the relationship

between model-driven and low-code development. While Bucaioni

et al. [4] and Cabot [6] regard them as synonymous, Di Ruscio

et al. [9] and Hinrichsen et al. [12] highlight clear differences. For

example, according to Di Ruscio et al. [9], not all model-driven

techniques aim to reduce the amount of source code required, and

not all low-code approaches are clearly model-driven [9]. In addi-

tion, some model-driven approaches do not include deployment

and lifecycle management, whereas these aspects are nearly always

integrated into low-code development platforms (LCDPs). Further-

more, the user profiles differ, with low-code development platforms

often involving citizen developers who have less of a software en-

gineering background, while users of model-driven development

(MDD) techniques have a stronger technical focus. There are also

low-code approaches that do not use models with explicitly de-

fined languages or meta-models, but instead store data in relational

databases or in schema-less XML/JSON documents [9].

According to Hinrichsen et al. [12], model-driven software de-

velopment, generative programming, and low-code programming

sharemany similarities. This viewpoint is supported by Forrester [23],

Cabot [6], and Bucchiarone et al. [5]. However, differences between

these approaches become apparent when considering the types of

modeling languages used and the underlying software architec-

ture [12]. The emphasis of LCDPs is on platform usability rather

than the precise specification of the elements used [12]. Uyanık and

Sayar [30] point out the importance of model-based approaches in

automated code generation.

A different perspective is presented by Bucaioni et al. [4], who

state that “it is widely accepted in the MDE [model-driven engineer-

ing] community to consider LCD [low-code development] as some

sort of synonym for MDE, or to consider MDE techniques as foun-

dations for LCD solutions” [4]. They see similarities primarily in

the motivation, objectives, and technical solutions, while Di Ruscio

et al. [9] highlight differences in precisely these areas. According

to Bucaioni et al. [4], in some literature, low-code development is

even viewed as a further development or maturity stage of MDE,

particularly regarding usability and flexibility [4].

For Cabot [6], low-code development is a limited view of MDE

in which only data-intensive web or mobile applications are con-

sidered. Furthermore, low-code can be viewed as a solution with

a fixed language, as the underlying language is usually not visible

in LCDPs. Nevertheless, LCDPs are more popular because they

offer clear application scenarios and are less complex, whereas the

modeling tools in MDE tend to be rather unwieldy and complex [6].

With regard to our Definition 1, low-code and model-driven de-

velopment have similarities when it comes to reducing handwritten

code and a higher level of abstraction regarding content. However,

there are also distinct differences, as a current challenge in model-

driven development is the lack of effective, easy-to-use tools [7],

while low-code focuses mainly on this. Furthermore, model-driven

development is not limited to visual languages but uses them in

combination with textual ones [12].

3 CONCEPT
Our concept for integrating low-code development platforms into

a view-based system includes retrieving the low-code meta-model,

determining the related meta-models, as well as different strate-

gies for integrating the low-code meta-model. Depending on the

low-code development platform and the data available, different

techniques can be used for retrieving or creating a meta-model,

which we describe in Section 3.1. Although, in the end, consis-

tency with a source code view is required, the meta-models directly

related by consistency specifications or view definition can be dif-

ferent, as described in Section 3.2. In Section 3.3, we then discuss

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hermann et al.

two different strategies for integrating a low-code view in the V-

SUM with respect to the available meta-models. The entire process

of instantiating our concept is shown in Figure 1.

3.1 Meta-model
For the integration of low-code views in a model-driven environ-

ment, it is essential to have a meta-model of the information repre-

sented in the low-code development platform (LCDP). As explained

in Section 2.4, low-code and model-driven development are not

mutually exclusive, i.e., there are LCDPs that employ model-driven

techniques. We can therefore distinguish four cases:

(1) The LCDP is implemented using model-driven techniques,

and the meta-model of the represented information is avail-

able.

(2) The LCDP is not implemented using model-driven tech-

niques, but a schema of the represented information is avail-

able, e.g., an XML schema.

(3) The LCDP does not provide a meta-model or a schema, but

created models can be exported and imported, e.g., in an

XML format.

(4) The LCDP does not allow exporting or importing any data.

In the first case, the meta-model can directly be used to integrate

the LCDP into a consistency-preserving development process. The

second and third cases account for LCDPs that do not use model-

driven techniques or do not make their meta-model available. If, in

the second case, however, the LCDP provides another description

of the format of the represented data, e.g., in the form of an XML

schema, this description can be used to derive a meta-model. As an

example, Neubauer et al. [19] show how to generate meta-models

and Xtext grammars from XML schema definitions (XSDs), which

could be used in this case. The third case describes a scenario where

the LCDP permits the export and import of data but without a

description of its structure, e.g., as XML files without a schema defi-

nition. In this case, techniques for deriving XSDs from XML data [3]

can be combined with the work of Neubauer et al. [19] for deriving

meta-models from XSDs. In the fourth case, the LCDP cannot be

integrated at all, as data transfer from and to the LCDP is not pos-

sible. This can be the case if the LCDP provides only an executable

or, more often, includes deployment and hosting of the created

application. Except for the fourth case, where a direct integration is

not possible, this shows that a meta-model for the information rep-

resented in the LCDP can be retrieved or derived for the integration

in a model-driven, consistency-preserving development process.

3.2 Relations to Other Meta-Models
Integrating low-code views into a view-based consistency-preserving

development process has the benefit of different views, including a

low-code view that is customized for domain experts, being avail-

able for different development tasks, e.g., requirements engineering,

database schema development, or test specification, which are all

kept consistent. For integrating low-code views, consistency speci-

fications to all related meta-models need to be established. A special

role is, however, played by the source code view, which is not only

the primary artifact of traditional software development, but also

required for creating an executable, deliverable product. As with

code generation on low-code development platforms, it is therefore

LC MM

available

schema

available

data

available

generate

LC MM

generate

schema

connect to

source code

MM

choose

intermediate MMs

choose other

related MMs

include

LC MM in

V-SUM

define

consistency relations

create view

generator

create identity

view generator

Meta-model

Relations to Other Meta-models

Integration Strategies

[no] [no]

[no]

[yes] [yes][yes]

[no]

[yes]

[no]

[yes]

Figure 1: Process of integrating a low-code view from a low-
code development platform into a view-based consistency
preserving development process.

Towards Integrating Low-Code in View-based Development MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Test : Class

foo : Property

Type = Int

bar : Operation

x : Parameter

Type = Int

y : Parameter

Type = Int

: Parameter

Type = Int

Direction = Return

Test : Class

foo : Field

Int

bar : Class Method

Int

x : Ordinary Parameter

Int

y : Ordinary Parameter

Int

: Block

: Return

0 : Literal

Figure 2: Comparison of a UML model (left) and a Java model (right) for the same class Test with an attribute foo and a method
bar. The shown classes Int referenced from the objects in the Java model are placeholders for the same class Int.

necessary to keep the low-code view consistent with the source

code view. But this does not require a direct relationship, e.g., con-

sistency preservation rules, between their meta-models, as other

models could be used as intermediate models to achieve consis-

tency with the source code view. Depending on the concrete use

case, keeping consistency with a simpler intermediate model can

reduce the complexity of the required consistency specifications.

An example of this can be seen in the comparison of a UML model

and a Java model, for a small example, in Figure 2.

Preserving consistency between a low-code view and a source

code view, either directly or via an intermediate model, is a trade-off

decision. A pragmatic argument is the availability of meta-models.

If there are applicable meta-models already included in the V-SUM

for other reasons, keeping the low-code view consistent with these

can reduce the effort of consistency preservation. If no applicable

meta-models are available, adding a new intermediate meta-model

to the V-SUM would require adding consistency specifications both

between the low-code view type and the intermediate meta-model

and between the intermediate meta-model and the source code view

type. The decision to use an intermediate meta-model also depends

on the type of low-code view. For structural low-code views, e.g.,

commonly used meta-models abstracting from the source code, like

UML, can be used, while meta-models representing the behavior of

source code are less common. In these cases, it can be necessary to

define consistency specifications between the low-code view type

and the source code meta-model directly.

3.3 Integration Strategies
With the meta-model of the low-code view available and the related

meta-models in the V-SUM decided, the final step to integrating a

low-code view into a V-SUM, is to decide where the information

shown in the view is projected from. By that, together with the se-

lection of related meta-models in Section 3.2, we follow the process

scenario view type driven (existing view type) from the Vitruvius

approach [15]. There are two strategies: either the meta-model of

the low-code view is included in the V-SUM as one of its internal

meta-models and the view is projected directly from that, or the

information can be derived from the chosen related meta-models in

the V-SUM. Examples of V-SUMs created with the two integration

strategies are shown in Figure 3. In both cases the meta-model of the

low-code view is used as a view type for the V-SUM, the difference

lies in the generation of the view and the consistency preservation

in the V-SUM. Both approaches come with benefits and drawbacks,

depending on the concrete scenario, which are discussed in the

following.

If the meta-model of the low-code view is included in the V-SUM,

as shown in Figure 3a, the view generation is the identity function,

as the low-code model can directly be used as the low-code view.

The complexity, however, lies in defining the consistency preser-

vation rules to the related meta-models. The actual complexity is

highly dependent on the connected meta-models, as discussed in

Section 3.2, and also depends on the languages available for consis-

tency preservation. For the Vitruvius framework [15] used in our

case study, e.g., consistency preservation rules are specified in a

low-level delta-based language, which requires considerable effort

for defining the necessary rules. Having the low-code meta-model

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hermann et al.

LC

Java

UML

LC

Java

UML

(a) Example of a V-SUM where the low-code meta-model (LC) is
integrated in the V-SUM. The dashed arrows represent the possible
consistency relations described in Section 3.2.

Java

UML

LC

Java

UML

(b) Example of a V-SUM where low-code views are projected from
other meta-models. The dashed arrows represent the possible view
type dependencies described in Section 3.2.

Figure 3: Examples of a V-SUM with three view types: A placeholder for a low-code (LC) view type, a Java and an UML view
type. The two versions show the two different integration strategies described in Section 3.3. In the figures, rectangles ()
represent meta-models, circles () represent view types, unidirectional arrows (,) represent view type dependencies
and bidirectional arrows (,) represent consistency relations.

available in the V-SUM could, however, be beneficial for connecting

additional meta-models, as the consistency specifications to them

can be developed independently, or for replacing the connected

meta-models. The approach is the only possible solution if the

meta-model of the low-code view describes information that is not

available in the other meta-models of the V-SUM. It is also the pre-

ferred solution if the generation of the view would require complex

reconstruction of information, such as the reverse engineering of

software components from source code.

Generating low-code views directly from the models of the re-

lated meta-models, on the other hand, requires no additional effort

for consistency preservation, as no meta-model is added to the

V-SUM itself. However, with this integration strategy, the view gen-

eration transformation becomes more complex, as the information

shown in the view must be derived from the information available

in the V-SUM, which can be spread over several models. An exam-

ple of a V-SUM created with this integration strategy is shown in

Figure 3b. The complexity of the view generation transformation is

dependent on the included meta-models and the language available

for specifying the transformation. In general, however, we expect

the transformation to be less complex if the included meta-models

have a similar structure as the low-code view type. This could be

the case, e.g., when introducing a graphical representation for al-

ready available information or when combining information from

multiple meta-models. This integration strategy is beneficial if mul-

tiple different low-code view types are to be integrated, as it avoids

issues present in larger networks of consistency specifications, as

discussed in [16]. For both approaches, larger differences in the

structure of the low-code meta-model and the related meta-models

in the V-SUM require more complex view generation transforma-

tions or consistency specifications, respectively. When generating

low-code views from related models in the V-SUM, however, these

complex transformations need to be executed every time a view is

checked out by a developer, which could be a performance issue.

4 CASE STUDY
This section outlines the case study employed to evaluate parts of

the concept. For that, the integration of a low-code development

platform into a view-based system will be used as an example, fol-

lowing the process shown in Figure 1. The low-code trend has also

arrived in the IoT domain, and there are already several low-code

development platforms [13], although most of them are not open

source. For the sake of simplicity, we have decided to develop our

own very slimmed-down version of an IoT low-code development

platform, including a meta-model in the Ecore
1
format, such that

we could use it directly as described in Section 3.1. We implemented

our case study in the view-based, consistency-preserving frame-

work Vitruvius [15], providing an implementation of a V-SUM, as

explained in Section 2.1 and Section 2.2. In our scenario, we aim

to ensure consistency between the low-code view and the source-

code view, although our concept can be applied to keep consistency

with other models as well. Therefore, both a Java meta-model [1,

11] and the UML [29] meta-model are within the V-SUM. As our

low-code view is a structural abstraction, we can keep the low-code

meta-model consistent with the UML meta-model, which simplifies

the required consistency specifications, as discussed in Section 3.2.

Consistency preservation rules between UML and Java already ex-

ist [28], which we use to achieve consistency between our smart

home low-code view and the source code view. To keep the models

consistent, we chose the first integration strategy described in Sec-

tion 3.3 and shown in Figure 3a. Following the integration strategy,

we integrated the low-code meta-model as an internal meta-model

into the V-SUM and developed consistency preservation rules to

the chosen UML meta-model. The source code for our case study

can be found as a contribution to the Vitruvius projects
2,3

.

In Section 4.1, we describe the low-code development platform

and the implemented example. The implementation of our concept

1
https://eclipse.dev/modeling/emf/, last visited on 2024-07-02

2
https://github.com/kit-sdq/DemoMetamodels/pull/29

3
https://github.com/vitruv-tools/Vitruv-CaseStudies/pull/295

https://eclipse.dev/modeling/emf/
https://github.com/kit-sdq/DemoMetamodels/pull/29
https://github.com/vitruv-tools/Vitruv-CaseStudies/pull/295

Towards Integrating Low-Code in View-based Development MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Lamp

ZigBee

Lighting

Server

Smart Home

Server

REST

Figure 4: Part of the model of our example smart home sys-
tem as it would be shown on the UI of our low-code develop-
ment platform.

is presented in Section 4.2 with the realization of the view, in Sec-

tion 4.3, in which the meta-model is explained, and in Section 4.4,

which is concerned with the consistency preservation relations.

Section 4.5 then focuses on the source code in the example.

4.1 A Low-Code Development Platform for
Smart Home Systems

Wehave established a low-code development platform for designing

smart home systems as the foundation of our evaluation. Using

graphical visualization, a domain expert can model how the various

components of such a smart home system should be organized.

Figure 4 shows a part of a designed smart home system featuring

devices and servers. Other components of the system could be sen-

sors or interfaces. The example illustrates how the various systems

are connected and communicate with each other. The smart home
server communicates through REST interfaces with the various sub-

systems, such as the lighting server, which controls the lamps. The

smart home system shown in Figure 4 can be put together using

drag-and-drop within a low-code development platform. However,

the actual connection of devices and servers cannot be accom-

plished without writing source code. For instance, implementing a

REST API is necessary for enabling communication between the

smart home server and other subsystems. After a domain expert

has modeled the smart home system on the low-code development

platform, another domain expert establishes connections between

sensors and servers. This involves implementing the modeled con-

nections and protocols in source code to finalize the smart home

system. By integrating this smart home low-code perspective into

a view-based system, the planning of the smart home system can

occur within the low-code environment, while the protocols are

implemented using source code. The view-based system ensures

consistency between both views, meaning changes made in the low-

code environment are synchronized with the source code and vice

versa. This collaborative approach allows experts from different

domains to work effectively within their preferred environments.

protocol[1..1]

components

[2..*]

supportedProtocols

[1..*]

Link

Protocol

name : EString

Component

name : EString

Device Server

Figure 5: Meta-model for describing a smart home system
consisting of devices and servers that are linked using mutu-
ally supported protocols.

4.2 Low-Code View
A practical application of our concept would integrate an existing

low-code development platform into a V-SUM, without the need to

re-implement its functionality or UI. For our evaluation, however,

we chose to create a simple, artificial low-code development plat-

form, including a meta-model and corresponding UI. This way, we

can focus on and evaluate the integration of the low-code platform.

For the graphical implementation of this UI, we plan to use

Eclipse Theia
4
. A Vitruvius, Eclipse Theia is based on the Eclipse

Modeling Framework (EMF), which enables us to use it as a frontend

for Vitruvius. In general, Eclipse Theia is a free and open-source

framework for creating web-based development environments. It is

highly modular and extensible, offering extensions including visual

tools, drag-and-drop functionality, and other features suitable for

a low-code UI. The implementation of the low-code UI, however,

constitutes future work and will be implemented in the next stage

of our evaluation.

4.3 Low-Code Meta-Model
A meta-model of the low-code view is necessary for implement-

ing the concept described in Section 3. As part of our artificial

low-code development platform, we therefore developed a meta-

model using the Eclipse Modeling Framework (EMF) to enable its

practical integration. Having a meta-model for the low-code devel-

opment platform available constitutes the case with the least effort,

as described in Section 3.1. For an existing low-code development

platform without a meta-model available, future work on our eval-

uation would require deriving the meta-model using techniques

mentioned in Section 3.1.

Figure 5 illustrates themeta-model for the low-code development

platform designed for creating smart home systems. Components

such as devices and servers can be connected using links, each of

which is associated with a protocol selected from a list of supported

protocols and involves at least two components.

4.4 Consistency Relations with the UML
Meta-Model

Based on the meta-models, consistency is implemented with the

help of consistency rules. We used the Reactions language [15] to

4
https://theia-ide.org/, last visited on 2024-07-04

https://theia-ide.org/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hermann et al.

1 reaction ServerInserted {

2 after element smarthome ::Sever inserted in smarthome

:: SmartHomeSystem[server]

3 call { createServerUmlClass(newValue) }

4 }

5

6 routine createrServerUmlClass(smarthome :: Server server) {

7 match {

8 val model = retrieve uml:: Model

9 corresponding to UMLPackage.eINSTANCE

10 val superClass = retrieve uml:: Class

11 with it.name == "Server"

12 }

13 create {

14 val class = new uml::Class

15 }

16 update {

17 class.name = server.name

18 model.packagedElements += class

19 addCorrespondenceBetween(server , class)

20 addUmlSuperClassGeneralization(class , superClass)

21 }

22 }

Listing 2: Example of a reaction for adding a new server to a
smart home model.

connect the smart home meta-model, i.e., the low-code meta-model,

with the rest of the view-based system. Instead of maintaining con-

sistency directly with the source code meta-model, Java in our case,

we opted to use UML as an intermediate layer, as described in Sec-

tion 3.2. Since the Reactions language supports only unidirectional

consistency rules, we implemented both directions separately.

When a new SmartHome system is created, all abstract classes

(Component, Device, Server) are created. If afterward a component is

created, the UML class inheriting from the abstract class is created

with a concrete name. For example, if a new server is created,

this must also be done appropriately in UML. Listing 2 shows the

implemented reaction for this process. As described in Section 2.2, a

reaction consists of different parts. As the first part of a reaction, the

event that triggers the reaction is described, in this case the insertion

of a smarthome::Server. The called routine then retrieves the affected
elements (match), creates new elements (create), and performs

actions to preserve consistency in the target model (update). In the

routine shown in Listing 2, the UML model as well as the abstract

class Server are retrieved. The newly created UML class is then

updated and inserted into the UMLmodel. Finally, a correspondence

link between the server in the smart home model and the UML class

is created. Regarding the direction from UML to the smart home

meta-model, modifications, additions, or deletions are permitted

only within subclasses of our generated abstract superclasses. These

abstract superclasses themselves must remain unchanged.

4.5 Consistency between Low-Code and Source
Code

In our example, as already described, the low-code development

platform alone is not sufficient to implement a complete smart home

system. For the case study, we have therefore implemented part of

the example system, as can be seen in Figure 6. The LightingServer
implements the REST interface, which contains all the required

information for a REST API. The LightingServer also manages sev-

eral lamps. We maintain consistency between low-code and source

code through consistency preservation rules between low-code

and UML, and the already existing consistency preservation rules

between UML and Java [28]. By that, when a change is made, it

becomes visible in the other view. For example, if a new lamp is

added in low-code, this is then automatically mapped in the source

code.

5 RELATEDWORK
Low-code development encounters several challenges. One of them

is interoperability, i.e., the ability of a tool to exchange information

internally (between components) and externally (between services).

Low-code development platforms (LCDPs) often offer few or no

practices such as versioning, collaboration tools, reuse of program

modules, or automated tests, which makes maintenance more dif-

ficult compared to classical programming languages [12, 24, 9].

Bucaioni et al. [4] also highlight future concerns regarding the

portability, maintainability, and scalability of LCDPs. They identify

concerns about potential restrictions imposed by providers, a lack

of adaptability, and potential lock-in effects [4, 12]. Pacheco et al.

[20] also criticize the fact that many LCDPs have no option to ex-

port source code. They are particularly focused on UI/UX LCDPs,

such as Figma or Sketch. There are already some plugins that solve

this code generation problem, but none that export to a format that

can be fed back into an LCDP. This is implemented for OutSystems

as an example.

The work of Zaheri [31] addresses the challenge of consistency

management on low-code development platforms. They identify

lightingS

lamps

smartHomeS

lightingS

«interface»

Protocol

«interface»

ZigBee
«interface»

REST

LightingServerLamp SmartHomeServer

Device Server

Figure 6: Class diagram for our smart home example.

Towards Integrating Low-Code in View-based Development MODELS Companion ’24, September 22–27, 2024, Linz, Austria

several key aspects of this issue, including potentially conflicting

viewpoints, a lack of separation of meta-levels, and inconsistencies

in data and artifacts. Zaheri [31] proposes a solution that includes

pre-processing, trace modeling, and consistency rule checking, fol-

lowed by inconsistency discovery and recovery. They focus on

vertical consistency between different levels of abstraction, while

our work is independent of these abstraction levels. In particular,

their concept deals with different instantiations and inconsistencies

between them.

As alreadymentioned in Section 2.4, there is still no consensus on

the relationship between low-code and model-driven development.

However, there is already work in progress that attempts to bring

them together. Michael and Wortmann [18] present a model-driven

low-code approach for the configuration and reconfiguration of

digital twins using language-specific plugins. Digital twins are

used to monitor and control cyber-physical systems in various

domains. The authors integrate their architecture with the code

generation framework MontiGem
5
to create interactive digital twin

cockpits. This platform allows users to create digital twins using

a configuration wizard that conforms to the proposed reference

architecture and uses the domain-specific languages available in

MontiGem. A model-driven architecture has been developed that

fulfills the main advantage of low-code, which is ease of use for

domain experts. By doing so, they have built their own LDCP.

However, this approach cannot be easily generalized because it is

closely tied to this specific case.

On the other hand, the work by Hinrichsen et al. [12] presents a

case study on the integration of low-code, generative, and model-

driven programming to simplify software development processes

in hardware-related areas. This required the development of a dedi-

cated tool chain to ensure flexibility in the use of specific hardware

components. An iterative approachwas used to create ameta-model

for the application domain, which served as the basis for the tool

chain. This is thus a concrete application example, while we want

to bring these domains together at a higher level of abstraction

independent of a specific application.

For the further evaluation of our approach, we want to use

Eclipse Theia to implement a UI for the low-code view used in

our case study, described in Section 4.2. Something similar has

already been done by Saini et al. [26] for collaborative modeling

with the graphical User Requirements Notation (URN). Theia was

used to build the textual models and generate the corresponding

graphical models in the web browser [26]. They then extended this

to other model types in general [27]. However, both are focused on

real-time collaboration, while we focus on asynchronous collabora-

tion, where changes are committed to the underlying model and

then projected to views when required.

6 CONCLUSION
Both low-code development and model-driven development, which

includes view-based development, encounter several challenges.

Model-driven development, and consequently view-based develop-

ment, is perceived as cumbersome. These challenges include a lack

of good tools, insufficient agility in development and high barriers

to entry, particularly for non-technical users. In contrast, low-code

5
https://se-rwth.github.io/research/MontiGem/, last visited on 2024-07-04

development platforms provide precisely that: user-friendly tools

that facilitate rapid learning and usage, allowing users to focus

entirely on the domain. However, while low-code development

platforms tend to be rigid and restrictively feature-limited, a view-

based system demonstrates flexibility and can be readily expanded,

for instance, by introducing additional views.

The concept presented in this paper combines the advantages

of both areas, such that the easy-to-learn and easy-to-use UI of

a low-code development platform can be used, while at the same

time, the developed artifacts can be extended through a view-based

system. Through this, our concept enables development scenarios

requiring collaboration between domain experts and, e.g., software

developers. By integrating low-code meta-models into a V-SUM

using consistency rules, the low-code view is kept consistent with

the source code view, enabling both experts to work in their pre-

ferred environments on shared artifacts. Our case study shows the

feasibility of the concept by linking a low-code view for the devel-

opment of a smart home system, which we developed ourselves,

with existing meta-models in a view-based system. To achieve this,

we used the Vitruvius framework [15] and its Reactions language

to define consistency preservation rules between the smart home

meta-model and the UML meta-model as an intermediate layer

towards the source code.

While the limitations of LCDPs are part of the motivation for

this paper, they also limit the applicability of our approach, as we

require the export and import of data from and to the LCDP to

keep it consistent with the other development artifacts. In addition,

the effort for specifying the consistency preservation rules or view

generation transformations needs to be taken into account.

As future work, we plan to extend our case study by adding

a UI for the low-code view in Eclipse Theia to enable an end-to-

end evaluation of our concept. We also intend to link a different,

behavioral low-code view with the source code model, i.e., without

a UML model as an intermediate layer. The next step to validating

our concept is to perform a larger evaluation with a low-code

development platform that is used in practice. We are also going to

implement the other integration strategy described in Section 3.3

in a further case study, i.e., to generate a low-code view from other,

non-low-code models.

ACKNOWLEDGMENTS
This work was supported by funding from the pilot program Core

Informatics at KIT (KiKIT) of the Helmholtz Association (HGF) and

supported by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) - SFB 1608 - 501798263 and KASTEL Security

Research Labs.

REFERENCES
[1] Martin Armbruster. 2022. Parsing and Printing Java 7-15 by Extending an

Existing Metamodel. en. Tech. rep. doi: 10.5445/IR/1000149186.

[2] Colin Atkinson, Christian Tunjic, and Torben Möller. 2015. Fundamental Re-

alization Strategies for Multi-view Specification Environments. In 2015 IEEE
19th International Enterprise Distributed Object Computing Conference. ISSN:
1541-7719. (Sept. 2015), 40–49. doi: 10.1109/EDOC.2015.17.

[3] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. 2007. Inferring XML

schema definitions from XML data. In Proceedings of the 33rd international
conference on Very large data bases. Citeseer, 998–1009.

[4] Alessio Bucaioni, Antonio Cicchetti, and Federico Ciccozzi. 2022. Modelling

in low-code development: a multi-vocal systematic review. en. Software and

https://se-rwth.github.io/research/MontiGem/
https://doi.org/10.5445/IR/1000149186
https://doi.org/10.1109/EDOC.2015.17

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Hermann et al.

Systems Modeling, 21, 5, (Oct. 2022), 1959–1981. doi: 10.1007/s10270-021-00964
-0.

[5] Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio,

Matthias Tichy, Massimo Tisi, Andreas Wortmann, and Vadim Zaytsev. 2021.

What Is the Future of Modeling? en. IEEE Software, 38, 2, (Mar. 2021), 119–127.

doi: 10.1109/MS.2020.3041522.

[6] Jordi Cabot. 2020. Positioning of the low-code movement within the field of

model-driven engineering. en. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. ACM, Virtual Event Canada, (Oct. 2020), 1–3. isbn: 978-1-4503-

8135-2. doi: 10.1145/3417990.3420210.

[7] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. 2019. Multi-

view approaches for software and system modelling: a systematic literature

review. en. Software and Systems Modeling, 18, 6, (Dec. 2019), 3207–3233. doi:
10.1007/s10270-018-00713-w.

[8] Istvan David, Hans Vangheluwe, and Eugene Syriani. 2023. Model consistency

as a heuristic for eventual correctness. en. Journal of Computer Languages, (July
2023). doi: 10.1016/j.cola.2023.101223.

[9] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Mas-

simo Tisi, andManuelWimmer. 2022. Low-code development andmodel-driven

engineering: Two sides of the same coin? en. Software and Systems Modeling,
21, 2, (Apr. 2022), 437–446. doi: 10.1007/s10270-021-00970-2.

[10] Thomas Goldschmidt, Steffen Becker, and Erik Burger. 2012. Towards a tool-

oriented taxonomy of view-based modelling. In Modellierung 2012. Hrsg.: Sinz,
Elmar J.. Fachtagung Modellierung, 2012, Bamberg. Fachtagung Modellierung.

2012 (Bamberg, Deutschland, Mar. 14–16, 2012). Elmar J. Sinz and A. Schürr,

(Eds.) Gesellschaft für Informatik (GI), 59–74. isbn: 978-3-88579-295-6.

[11] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende.

2010. Closing the Gap betweenModelling and Java. en. In Software Language En-
gineering. Mark van den Brand, Dragan Gašević, and Jeff Gray, (Eds.) Springer,

Berlin, Heidelberg, 374–383. isbn: 978-3-642-12107-4. doi: 10.1007/978-3-642-

12107-4_25.

[12] Sven Hinrichsen, Stefan Sauer, and Klaus Schröder, (Eds.) 2023. Prozesse in
Industriebetrieben mittels Low-Code-Software digitalisieren: Ein Praxisleitfaden.
de. Intelligente Technische Systeme – Lösungen aus dem Spitzencluster it’s OWL.
Springer, Berlin, Heidelberg. isbn: 978-3-662-67949-4. doi: 10.1007/978-3-662-

67950-0.

[13] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso

Pierantonio. 2020. Low-code engineering for internet of things: a state of

research. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings (MODELS

’20). Association for Computing Machinery, New York, NY, USA, (Oct. 2020),

1–8. isbn: 978-1-4503-8135-2. doi: 10.1145/3417990.3420208.

[14] Heiko Klare. 2022. Building Transformation Networks for Consistent Evolution of
Interrelated Models. PhD Thesis. Karlsruher Institut für Technologie (KIT). doi:

10.5445/KSP/1000138566. ISBN: 978-3-7315-1132-8, ISSN: 1867-0067, Series:

The Karlsruhe Series on Software Design and Quality / Ed. by Prof. Dr. Ralf

Reussner, Volume: 34.

[15] Heiko Klare, Max E. Kramer, Michael Langhammer, Dominik Werle, Erik

Burger, and Ralf Reussner. 2021. Enabling consistency in view-based system

development — The Vitruvius approach. Journal of Systems and Software, 171,
(Jan. 2021), 110815. doi: 10.1016/j.jss.2020.110815.

[16] Heiko Klare, Torsten Syma, Erik Burger, and Ralf Reussner. 2019. A Categoriza-

tion of Interoperability Issues in Networks of Transformations. en. The Journal
of Object Technology, 18, 3, 4:1–20. doi: 10.5381/jot.2019.18.3.a4.

[17] Johannes Meier, Christopher Werner, Heiko Klare, Christian Tunjic, Uwe

Aßmann, Colin Atkinson, Erik Burger, Ralf Reussner, and Andreas Winter.

2020. Classifying Approaches for Constructing Single Underlying Models. en.

In Model-Driven Engineering and Software Development (Communications in

Computer and Information Science). Slimane Hammoudi, Luís Ferreira Pires,

and Bran Selić, (Eds.) Springer International Publishing, Cham, 350–375. isbn:

978-3-030-37873-8. doi: 10.1007/978-3-030-37873-8_15.

[18] Judith Michael and Andreas Wortmann. 2021. Towards Development Platforms

for Digital Twins: A Model-Driven Low-Code Approach. en. In Advances in
Production Management Systems. Artificial Intelligence for Sustainable and Re-
silient Production Systems (IFIP Advances in Information and Communication

Technology). Alexandre Dolgui, Alain Bernard, David Lemoine, Gregor von

Cieminski, and David Romero, (Eds.) Springer International Publishing, Cham,

333–341. isbn: 978-3-030-85874-2. doi: 10.1007/978-3-030-85874-2_35.

[19] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and

Manuel Wimmer. 2015. XMLText: from XML schema to xtext. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Software Language Engi-
neering (SLE 2015). Association for Computing Machinery, New York, NY, USA,

(Oct. 2015), 71–76. isbn: 978-1-4503-3686-4. doi: 10.1145/2814251.2814267.

[20] João Pacheco, Stoyan Garbatov, and Miguel Goulão. 2021. Improving Collab-

oration Efficiency Between UX/UI Designers and Developers in a Low-Code

Platform. In 2021 ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems Companion (MODELS-C). (Oct. 2021), 138–147. doi:
10.1109/MODELS-C53483.2021.00025.

[21] Daniel Pinho, Ademar Aguiar, and Vasco Amaral. 2023. What about the usabil-

ity in low-code platforms? A systematic literature review. Journal of Computer
Languages, 74, (Jan. 2023), 101185. doi: 10.1016/j.cola.2022.101185.

[22] Niculin Prinz, Christopher Rentrop, and Melanie Huber. 2021. Low-Code De-

velopment Platforms – A Literature Review. AMCIS 2021 Proceedings, 2, (Aug.
2021). https://aisel.aisnet.org/amcis2021/adv_info_systems_general_track/ad

v_info_systems_general_track/2.

[23] Clay Richardson, John R. Rymer, Christopher Mines, Alex Cullen, and Do-

minique Whittaker. 2014. New Development Platforms Emerge For Customer-

Facing Applications. en. Tech. rep. Forrester Research, Cambridge, MA, USA.

Retrieved Dec. 15, 2023 from https://www.forrester.com/report/New-Develop

ment-Platforms-Emerge-For-CustomerFacing-Applications/RES113411.

[24] Karlis Rokis and Marite Kirikova. 2022. Challenges of Low-Code/No-Code

Software Development: A Literature Review. en. In Perspectives in Business
Informatics Research (Lecture Notes in Business Information Processing). Ērika

Nazaruka, Kurt Sandkuhl, and Ulf Seigerroth, (Eds.) Springer International

Publishing, Cham, 3–17. isbn: 978-3-031-16947-2. doi: 10.1007/978-3-031-1694

7-2_1.

[25] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieran-

tonio. 2020. Supporting the understanding and comparison of low-code devel-

opment platforms. In 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). (Aug. 2020), 171–178. doi: 10.1109/SEAA51
224.2020.00036.

[26] Rijul Saini, Shivani Bali, and Gunter Mussbacher. 2019. Towards Web Col-

laborative Modelling for the User Requirements Notation Using Eclipse Che

and Theia IDE. In 2019 IEEE/ACM 11th International Workshop on Modelling in
Software Engineering (MiSE). ISSN: 2575-4475. (May 2019), 15–18. doi: 10.1109

/MiSE.2019.00010.

[27] Rijul Saini and Gunter Mussbacher. 2021. Towards Conflict-Free Collabora-

tive Modelling using VS Code Extensions. In 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). (Oct. 2021), 35–44. doi: 10.1109/MODELS-C53483.2021.00013.

[28] Torsten Syma. 2018. Multi-model Consistency through Transitive Combination
of Binary Transformations. Master’s thesis. Karlsruher Institut für Technologie

(KIT). doi: 10.5445/IR/1000104128.

[29] 2017. Unified Modeling Language (UML) Version 2.5.1. Standard. Object Man-

agement Group (OMG), (Dec. 2017). https://www.omg.org/spec/UML/2.5.1.

[30] Burak Uyanık and Ahmet Sayar. 2024. Analysis and comparison of automatic

code generation and transformation techniques on low-code platforms. In

Proceedings of the 2023 5th International Conference on Software Engineering and
Development (ICSED ’23). Association for Computing Machinery, Singapore,

Singapore, 17–27. isbn: 9798400709463. doi: 10.1145/3637792.3637795.

[31] MohammadAmin Zaheri. 2022. Towards consistency management in low-code

platforms. In Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings (MODELS ’22).

Association for Computing Machinery, New York, NY, USA, (Nov. 2022), 176–

181. isbn: 978-1-4503-9467-3. doi: 10.1145/3550356.3558510.

https://doi.org/10.1007/s10270-021-00964-0
https://doi.org/10.1007/s10270-021-00964-0
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1016/j.cola.2023.101223
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1007/978-3-662-67950-0
https://doi.org/10.1007/978-3-662-67950-0
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.5445/KSP/1000138566
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.5381/jot.2019.18.3.a4
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1007/978-3-030-85874-2_35
https://doi.org/10.1145/2814251.2814267
https://doi.org/10.1109/MODELS-C53483.2021.00025
https://doi.org/10.1016/j.cola.2022.101185
https://aisel.aisnet.org/amcis2021/adv_info_systems_general_track/adv_info_systems_general_track/2
https://aisel.aisnet.org/amcis2021/adv_info_systems_general_track/adv_info_systems_general_track/2
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/MiSE.2019.00010
https://doi.org/10.1109/MiSE.2019.00010
https://doi.org/10.1109/MODELS-C53483.2021.00013
https://doi.org/10.5445/IR/1000104128
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1145/3637792.3637795
https://doi.org/10.1145/3550356.3558510

	Abstract
	1 Introduction
	2 Foundations
	2.1 View-based Software Development
	2.2 Consistency Preservation
	2.3 Low-Code Development
	2.4 Low-Code and Model-Driven Development

	3 Concept
	3.1 Meta-model
	3.2 Relations to Other Meta-Models
	3.3 Integration Strategies

	4 Case Study
	4.1 A Low-Code Development Platform for Smart Home Systems
	4.2 Low-Code View
	4.3 Low-Code Meta-Model
	4.4 Consistency Relations with the UML Meta-Model
	4.5 Consistency between Low-Code and Source Code

	5 Related Work
	6 Conclusion
	Acknowledgments

