
Towards Deep Reactions in Multi-Level, Multi-View Modeling
Thomas Weber

KASTEL
Karlsruhe Institute of Technology

Karlsruhe, Germany
thomas.weber@kit.edu

Monalisha Ojha
Software Engineering Group
University of Mannheim
Mannheim, Germany

monalisha.ojha@uni-mannheim.de

Mohammad Sadeghi
Software Engineering Group
University of Mannheim
Mannheim, Germany

mohammad.sadeghi@uni-
mannheim.de

Lars König
KASTEL

Karlsruhe Institute of Technology
Karlsruhe, Germany
lars.koenig@kit.edu

Martin Armbruster
KASTEL

Karlsruhe Institute of Technology
Karlsruhe, Germany

martin.armbruster@kit.edu

Arne Lange
Software Engineering Group
University of Mannheim
Mannheim, Germany

lange@uni-mannheim.de

Erik Burger
KASTEL

Karlsruhe Institute of Technology
Karlsruhe, Germany
burger@kit.edu

Colin Atkinson
Software Engineering Group
University of Mannheim
Mannheim, Germany

atkinson@uni-mannheim.de

ABSTRACT

As the scale, complexity, and scope of software-intensive systems
continue to grow, so does the importance of synergistically integrat-
ing two important emerging paradigms in software engineering -
multi-level modeling and multi-view modeling. While stable tool-
ing for both has been developed by research institutions in recent
years, to date no tool has attempted to integrate the two at a fun-
damental level. In this paper, we describe some first steps we have
taken in this direction by integrating the VitruviusV-SUM-based
multi-view environment with the Melanee multi-level modeling
environment. In particular, we show how Vitruvius’s Reactions
language, which allows different models in Vitruvius V-SUMs to
be kept consistent, can be extended to support multi-level V-SUMs
and views represented in Melanee’s dialect of multi-level modeling.

CCS CONCEPTS

• Software and its engineering → Domain specific languages;
Specialized application languages; Application specific development
environments; • Information systems→ Mediators and data inte-
gration.

KEYWORDS

Multi-level modeling, V-SUM, View-based modeling, Vitruvius,
Consistency

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688208

ACM Reference Format:

Thomas Weber, Monalisha Ojha, Mohammad Sadeghi, Lars König, Martin
Armbruster, Arne Lange, Erik Burger, and Colin Atkinson. 2024. Towards
Deep Reactions in Multi-Level, Multi-View Modeling. In ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems
(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3688208

1 INTRODUCTION

As software systems have grown in size and complexity, and are de-
veloped as parts of integrated cyber-physical systems, it has become
increasingly important to be able to describe and model them using
interrelated collections of so-called views. View-based modeling
environments that keep large numbers of semantically overlapping
descriptions of systems consistent over time are therefore receiving
growing attention in academia and industry. Of the two basic strate-
gies for achieving inter-view consistency, the so-called projective
approach is the most promising at scale, since it reduces the number
of pairwise consistency relationships that need to be maintained
[9]. However, it requires some kind of central megamodel, or Single
Underlying Model (SUM) to serve as the source of information and
truth from which the views can be projected.

The Vitruvius framework is one such environment that supports
the projective approach using a Virtual SUM (i.e., V-SUM) rather
than a pure, redundancy-free SUM. This obviates the daunting
challenge of creating a pure SUM in real-life software engineering
projects where it is necessary to work with and integrate, many
existing models, based on long-established and utilized metamodels.
A VitruviusV-SUM therefore facilitates the consistent connection
of multiple, semantically overlapping models and metamodels by
means ofConsistency Preservation Rules (CPRs) written in a specially
designed Reactions language.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0001-5775-2225
https://orcid.org/0009-0007-6333-711X
https://orcid.org/0000-0002-1189-6266
https://orcid.org/0000-0002-1751-1291
https://orcid.org/0000-0003-0779-9444
https://orcid.org/0000-0002-1776-0247
https://orcid.org/0000-0003-2832-3349
https://orcid.org/0000-0002-3164-5595
https://doi.org/10.1145/3652620.3688208
https://doi.org/10.1145/3652620.3688208
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3688208&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Weber and Ojha, et al.

While Vitruvius represents the state-of-the-art for supporting
scalable, projective view-based modeling, it suffers from the com-
mon limitation of most classic modeling environments of only di-
rectly supporting two levels of classification (i.e., types and in-
stances). While this limitation is manageable in traditional software
deployment scenarios, in cyber-physical systems that maintain
models of real-world objects over a system’s working lifetime (e.g.,
digital twins) it is desirable to use a multi-level modeling approach
that inherently supports multiple classification levels in a level-
agnostic way. In the paper we therefore present preliminary work
in adapting Vitruvius, especially its Reactions language, to support
consistency betweenmulti-level models within amulti-level V-SUM.
The particular flavor of multi-level modeling we have adopted is
that supported by Melanee [1], but the presented approach could
be used with any multi-level modeling language based on deep
instantiation.

In addition, by exemplifying our approach using a multi-level
model published as a solution to the Collaborative Comparison
Challenge [17], we show how the proposed deep Reactions lan-
guage can also be used to overcome a weakness of Melanee’s strict
multi-level modeling language which requires the use of a trick (i.e,
duplicatingmodel elements) in certain circumstances. By separating
the model elements from different dimensions within the challenge
into different, overlapping models in the V-SUM, and keeping them
consistent using the proposed deep Reactions language, we show
how the use of the trick can be avoided.

The paper is split into eight parts and ends with concluding
remarks. After this introduction, we briefly present the work that
provides the foundation of this paper. The next section explains
the monolithic solution to the Collaborative Comparison Challenge
used to exemplify the approach. We then explain how this mono-
lithic model can be split into two coupledmodels to obviate the need
for workarounds, and how we use Vitruvius’ Reactions language to
keep the overlapping parts consistent. The next two sections talk
about the current state of the Reactions language and its limitations,
which are addressed in the section after, where we introduce new
concepts to enable the Reactions language to operate in a deep
modeling environment. Finally, the related work section embeds
the work in the relevant scientific landscape.

2 FOUNDATIONS

This section provides an overview of the two core technologies
that are brought together in this paper – the multi-level modeling
approach [3] and the consistency preservation mechanisms used
in the Vitruvius platform [10].

2.1 Multi-level Modeling

Multi-level modeling was developed to overcome the limitations
of the traditional, industry-standard, two-level modeling approach
revolving around only classes and their instances. Some modeling
domains demand that classes are able to characterize more than just
their immediate instances. This requirement is called deep charac-
terization, and over the last few years various modeling approaches
have been developed to support it, such as deep instantiation [3].
One of the main consequences of deep instantiation is that some
model elements are types and instances simultaneously, i.e., they

have an instance facet and a type facet. Such modeling elements
are named Class-Objects (clabjects).

The type facets of clabjects can be controlled through a prop-
erty called Potency, which is a non-negative number controlling
over how many levels a clabject can have instances and what in-
stances are in its instances extensions, over multiple levels. Over
the years, many approaches and languages for multi-level mod-
eling have emerged that offer a variety of features with different
advantages and disadvantages in particular scenarios. In this paper,
we use a strict, characterization-potency-driven multi-level model-
ing approach, which is supported by the Level-Agnostic Modeling
Language (LML) implemented in a tool called Melanee [1]. The
Pan-level Model (PLM) is the linguistic metamodel of Melanee.

Melanee supports strict multi-level modeling which only allows
the instance-of relationship to cross level boundaries and applies
the principle of Monotonic Abstraction. From this, it follows that
instances of a clabject must reside exactly on the level below that
clabject’s level.

Over the years, the notion of potency also evolved to be more
flexible in order to allow modeling constructs like Intermediate
Abstract Classes in classification hierarchies [13]. In contrast to clas-
sic potency [3] rules, the characterization potency rules stipulate
that the potency value of an instance just has to be lower than the
potency value of its type, whereas classic potency demands the
potency value to be exactly one lower than the type.

2.2 View-based Modeling and Consistency

Preservation

During the development of complex systems, developers create
different types of artifacts, or models, to describe the system. Since
these artifacts describe the same system, they may contain certain
pieces of information that can become inconsistent as changes are
made and the system evolves. This is obviously something to be
avoided, since freedom from inconsistency is necessary, although
not sufficient, to eventually build a correct system [8].

To avoid the need to define explicit consistency rules between all
artifacts that could become inconsistent, Atkinson et al. [5] intro-
duced the notion of a single underlying model (SUM) which contains
all relevant information about the system in a redundancy-free way
from which the models required by the developers are generated
on demand as projected views. Although this avoids inconsistencies
by design, designing a SUM for multiple heterogeneous types of
artifacts is challenging. A more pragmatic approach is therefore
to construct avirtual single underlying models (V-SUMs) which, in-
stead of aiming for complete freedom from redundancy, uses explicit
consistency specifications between the metamodels to maintain
their consistency [6, 16]. Although this requires explicit consis-
tency specifications inside the V-SUM, the views on the V-SUM are
still implicitly consistent by creation, as they are projected from
consistent models within the V-SUM.

As a pragmatic realization of the V-SUM concept, the Vitruvius
approach [10] employs the imperative, unidirectional, and change-
driven Reactions language [11, 10] for defining executable CPRs.
As shown in Listing 1, Reactions are defined between a source
metamodel (in reaction to) and a target metamodel (execute

Towards Deep Reactions in Multi-Level, Multi-View Modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

actions in) to keep their models consistent. Reactions are trig-
gered by changes of a certain type (here: after [. . .] created
and inserted [. . .]) to objects of a certain metaclass (here:
uml::Class) and execute Routines in response. Routines consist
of three blocks: a match block, a create block and an update block.
In match blocks, required objects can be retrieved, while in create
blocks new objects can be created. Update blocks can perform arbi-
trary modifications to the target model to preserve consistency and
may contain code in the Xtend language1, which is a Java dialect.
Listing 1: Example of an imperative consistency specification

in the Reactions language. The shown Reaction is triggered

by the creation of a UML class and creates a Java class in

response.

1 reactions: umlToJavaClass

2 in reaction to changes in uml

3 execute actions in java

4
5 reaction CreatedUmlClass {

6 after element uml::Class

7 created and inserted as root

8 call {

9 val umlClass = newValue

10 createJavaClass(umlClass)

11 }

12 }

13
14 routine createJavaClass(uml::Class umlClass) {

15 match { /* retrieve_elements */ }

16 create { /* create_elements */ }

17 update { /* update_models */ }

18 }

3 EXAMPLE

As an example of a multi-level model that could benefit from con-
sistency maintenance in the context of a view-based modeling
environment, we use the aforementioned Collaborative Compari-
son Challenge [17] that describes companies, factories, produced
devices, and owned artifacts such as intellectual property. The Mela-
nee solution [15], shown in Figure 1, consists of three levels. The
most abstract level, O0, contains the FactoryAsModelSupporter clab-
ject and its subclasses with a potency value of ‘1’, which means
that these clabjects can have instances only at the immediate level
below. The CompanyAsOwner clabject also has a potency value
of ‘1’ and has owns connections to the factory and device model
clabjects, that specialize the respective inheritance hierarchies. The
DeviceModel hierarchy, with MobilePhoneModel and HuaweiMobile-
PhoneModel as its subclasses, all have potency values of ‘2’. This
means these clabjects can influence instances until the O2 level.
The MobilePhoneModel is also the powertype of Device in the level
below.

This example was chosen not only because it shows the key
features of a multi-level model, but because it also shows how a
strict approach to multi-level modeling can be enhanced by a V-
SUM-based modeling approach of the kind supported by Vitruvius.
The Melanee solution to the Collaboration Challenge has to use
an inelegant “trick” to model a situation where a domain concept
is simultaneously related to clabjects that naturally occupy differ-
ent classification levels. The challenge description includes two
examples of this scenario related to Factory and Company and their

1https://eclipse.dev/Xtext/xtend/, accessed 03.07.2024

instances. For example, the Challenge requires a Factory supporting
instances of MobilePhoneDeviceModel at one level, and then on the
level below a Factory producing the instances of these instances. A
similar situation applies to the Company concepts.

Since relationships (other than instantiation) between clabjects
at different levels are forbidden in strict multi-level modeling envi-
ronments, the Melanee solution has to use a “trick” to cope with
this scenario involving the introduction of two separate Factory and
Company clabjects that represent the same objects in the real world.
This duplication of concepts is necessary because the Challenge
deliberately mixes concerns so that concepts of different abstrac-
tion levels have to be connected to each other. The former is the
concern of supporting device models and the latter is the concern
of producing devices that conform to the aforementioned device
models. The accidental complexity introduced by the use of the de-
scribed “trick” can therefore only be untangled by separating these
concerns within a model, which is something that can be elegantly
achieved using Vitruvius’s consistency maintenance capabilities.
The result is two models, one for each concern, which have the
DeviceModel hierarchy in common, where they completely overlap.

4 RUNNING EXAMPLE

This section shows how Vitruvius allows the single, but inelegant
multi-level model in Figure 1 to be split into two separate, but
synchronized multi-level models that avoid the need for the afore-
mentioned trick. The first model, shown in Figure 2, addresses the
concern of Factory producing mobile phone devices. The second
model, shown in Figure 3 describes Factory supporting mobile
phone devices. In both Figure 2 and Figure 3, the color-coding of
the hierarchies represents the following:

• Factory hierarchy is colored green.
• Company hierarchy is colored yellow.
• DeviceModel hierarchy is colored blue.

The main reason for the color-coding is to highlight different hier-
archies visually and to display the importance of the DeviceModel
hierarchy which has the same form in both hierarchies and thus
represents an overlap. Therefore, it has to be kept consistent. There
is a 1-to-1 mapping between the two models, e.g., if another in-
stance of S400 is created in one model it must be reflected in the
other model.

The other hierarchies also have to be kept consistent, although
they exist on different levels of abstraction in eachmodel. In Figure 2
the Factory concept is introduced at level O1 whereas in Figure 3
the same concept is introduced at level O0. The same is true for the
Company concepts.

5 VITRUVIUSREACTIONS LANGUAGE

The purpose of the Vitruvius Reactions language [10, 12] is to sup-
port the specification of CPRs. CPRs are imperative and consist of
different Reactions language constructs. A consistency specification
consists of CPRs. This section gives an overview of the language
and its constructs and discusses an example that illuminates the
current obstacles to defining Reactions for deep models.

https://eclipse.dev/Xtext/xtend/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Weber and Ojha, et al.

supports

owns ownsCompanyAsOwner1FactoryAsModelSupporter1 DeviceModel2

Company1

 name1: String1

Factory0 Device0

MP_Device0:MobilePhoneModel

 IMEI1: String
 RAM1: Integer

HuaweiMPDevice0:HuaweiMPModel

 RAM1: Integer

owns

owns

owns

owns

supports

supports

S400_0010:S400

 IMEI0: String = '001468723648726'
 RAM0: Integer = 4

S400_0020:S400

 IMEI0: String = '0018768768475638'
 RAM0: Integer = 8

owns

device

device

10..*

10..*

MP_Factory0

HuaweiMP_Factory1

producer device

ownerfactory

produces

factory

factory

produces

owner owner

owner
Huawei0:Company

 name: String = 'Huawei'

Factory1240:HuaweiMP_Factory

owner

deviceModel

deviceModel

owner

owner

factory

factory

Factory1240:HuaweiMPFactoryAsModelSupporter Huawei0:CompanyAsOwner

factory

supportedModel

supportedModel

supportedModel

factory

factory

S4001:HuaweiMPModel

 RAM1: Integer

S5001:HuaweiMPModel

 RAM1: Integer

factory

deviceModel

MobilePhoneModel2

 RAM2: Integer

MobilePhoneFactoryAsModelSupporter1
supportsfactory

supportedModel

O0

O1

O2

produces

HuaweiMPFactoryAsModelSupporter1 HuaweiMPModel2

producesproducer device

supports

factory supportedModel

Figure 1: The Melanee solution for the Collaboration Challenge that introduced two separate Factory and Company concepts to

adhere to the strict MLM doctrine [15].

Towards Deep Reactions in Multi-Level, Multi-View Modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

O0

O1

Device Model2

HuaweiMobilePhoneModel2

Factory0

 MobilePhoneDevice0: MobilePhoneModel

 RAM:Integer
 IMEI: String

 HuaweiMobilePhoneDevice0: HuaweiMobilePhoneModel

 RAM1:Integer

 S4001: HuaweiMobilePhoneModel

 RAM:Integer

 S5001: HuaweiMobilePhoneModel

 RAM:Integer

O2

 S400_0010 : S400

 RAM:Integer = 4
 IMEI: String = 00146872864372

 S400_0020 : S400

 RAM:Integer = 8
 IMEI: String = 00178872864372

 MobilePhoneModel2

 RAM:Integer

MobilePhoneFactory1

HuaweiMobilePhoneFactory1

Company1

 Name: String
Device0

Factory1240: HuaweiMobilePhoneFactory
 Huawei0: Company

 Name: String = Huawei

owns

produces

* 1

*

*

1

**

*

*

FactoryAsOwner

Figure 2: Model where a Company’s Factory produces Mobile

Phone Devices. The Factory hierarchy is colored green, the

Company hierarchy yellow and the overlapping DeviceModel
hierarchy blue.

Listing 2: Import of used Java elements; Import of metamod-

els by their namespace Uniform Resource Identifier (URI)

into a Reaction.

1 import org.melanee.core.models.plm.PLM.PLMPackage

2
3 import "http :// melanee.org/PLM" as owner

4 import "http :// melanee.org/PLM" as supporter

5.1 Structure

The Reactions language is defined as an Xtext [7] grammar, avail-
able in our repository2. Firstly, CPRs are defined in Reactions files,
which start with imports of metamodels and arbitrary Java ele-
ments as seen in Listing 2. Note that in the current prototype PLM
metamodels have to be imported twice, once for the owner model
and once for the supporter model.

The next part of a Reactions file specifies its name to enable
the import and reuse of Reactions files inside other Reactions files.
Additionally, the source metamodel, i.e., the metamodel whose in-
stances are modified by the developer, and the target metamodel,
i.e., the metamodel whose instances are modified by the Reactions,
are defined, as illustrated in Listing 3. More than two metamodels

2https://github.com/vitruv-tools/Vitruv-DSLs/blob/main/bundles/tools.vitruv.dsls.r
eactions/src/tools/vitruv/dsls/reactions/ReactionsLanguage.xtext, accessed 03.07.2024

FactoryAsModelSupporter

O0

O1

Factory1 Device Model2Company1

MobilePhoneFactory1

HuaweiMobilePhoneFactory1

HuaweiMobilePhoneModel2

 MobilePhoneModel2

 RAM:Integer

Device0

 MobilePhoneDevice0: MobilePhoneModel

 RAM1:Integer
 IMEI1: String

 HuaweiMobilePhoneDevice0:
HuaweiMobilePhoneModel

 RAM1:Integer

Factory1240: HuaweiMobilePhoneFactory Huawei0: Company

 S4001: HuaweiMobilePhoneModel

 RAM:Integer

 S5001: HuaweiMobilePhoneModel

 RAM:Integer

O2 S400_0010

 RAM:Integer = 4
 IMEI: String = 00146872864372

 S400_0020

 RAM:Integer = 8
 IMEI: String = 00178872864372

owns owns

supports
*

1

*

*

*
*

*
1

*

*

*

*

*

*

*

*

Figure 3: Model where a Company’s Factory supports Mobile

Phone Devices. The Factory hierarchy is colored green, the

Company hierarchy yellow and the overlapping DeviceModel
hierarchy blue.

can be imported, e.g., if annotation metamodels are used. Modi-
fications in the annotated metamodel, such as the deletion of an
element, also necessitate the deletion of their annotation.

Note that we have the same metamodel in both the source and
the target definition, and thus Vitruvius is not able to distinguish
changes based on their metamodel. A change in the instance of
the supporter metamodel also triggers reactions for the instances
of the owner metamodel. We are currently only able to handle
this by explicitly mirroring the structure of the metamodel in the
Reactions, leading to a lot of specification overhead and duplication.
We omitted the duplication in our code examples, but you can view
them in our code3.
Listing 3: A Reaction defines a source metamodel owner on
which changes are reflected to a target metamodel supporter
to keep it consistent.

1 reactions: owner2supporter

2 in reaction to changes in owner

3 execute actions in supporter

The final part of a Reactions file consist of the definitions of
concrete Reactions and Routines. A Reaction has a name and three
distinct parts. The first part is the definition of the change that
the Reaction should react to. In the example in Listing 4, the name
is NewS400Inserted, and the definition of the change contains
the insertion of an element of type OwnedElement into a Level.
3https://doi.org/10.5281/zenodo.13325994

https://github.com/vitruv-tools/Vitruv-DSLs/blob/main/bundles/tools.vitruv.dsls.reactions/src/tools/vitruv/dsls/reactions/ReactionsLanguage.xtext
https://github.com/vitruv-tools/Vitruv-DSLs/blob/main/bundles/tools.vitruv.dsls.reactions/src/tools/vitruv/dsls/reactions/ReactionsLanguage.xtext
https://doi.org/10.5281/zenodo.13325994

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Weber and Ojha, et al.

The with-block contains constraints for the triggering of the Reac-
tion. In our example in Listing 4, the Level the OwnedElement (i.e.,
affectedEObject) needs to be inserted into is two. Additionally,
the directType of the newValue, i.e., the OwnedElement that is
inserted, needs to have a specific name, here “S400”. Note that, due
to the current limitations of the Reactions language, we cannot
refer to any of the types by their actual type, but only through their
name and their PLM metamodel type, e.g., OwnedElement. The last
block of a Reaction definition is the definition of Routines to call. In
our example in Listing 4, we call a Routine called addNewS400 with
the parameter newValue, which is the inserted OwnedElement.
Listing 4: Reaction to describe the insertion of an OwnedEle-
ment into a Level. The with block defines constraints and the

call block the (re)actions to execute to preserve consistency.

1 reaction NewS400Inserted {

2 after element owner:: OwnedElement inserted in owner ::Level[

content]

3 with {

4 affectedEObject.level === 2

5 && (newValue instanceof Entity)

6 && (newValue as Entity).directType.name == "S400"

7 }

8 call {

9 insertNewS400(newValue as Entity)

10 }

11 }

Routines define parameters and three blocks. The match block
retrieves model elements, e.g., containers of elements or corre-
sponding elements. An element corresponds to another element,
if a correspondence to that element has been created, e.g., during
the execution of a Reaction. Due to the missing support for deep
models, we cannot distinguish changes between the owner and sup-
porter model. The corresponding workaround, i.e., adding tagged
correspondences which are a mapping from one list of objects to
another list of objects, annotated with a string, is omitted from the
examples. The tagged correspondences capture information about
whether an element is part of the owner or supporter model.

The othertype is used to add the classification of the new ele-
ment created by this routine, retrieved from the directType used
by the input of this routine. The supporterDeepModel element is
used as a container for the newly created element. In general, we
can rely on a corresponding type in the supporter model, because
we have, e.g., set it earlier in the Routine reacting to the creation of
the type in the owner model.

The next block, i.e., create, creates new model elements and
supports a shorter notation for the usage of EMF factories. The up-
date block then updates model elements in the supporter model
and also inserts the newly created newEntity and newClassifica-
tion. Their attributes are set according to the elements in the owner
model. Lastly, they are inserted into the supporter model at level
two. For further Reactions, e.g., modifying the inserted elements,
we also set correspondences for the Entity and Classification
pairs. Other case studies can be found online4.

5.2 Adding new Ontological Types

In the previous example, we outlined how a Reaction handles the
addition of new instances of the S400 clabject. However, what if we
want to react to, and mirror, the introduction of a new phone model,
4https://github.com/vitruv-tools/Vitruv-CaseStudies, accessed 03.07.2024

Listing 5: A routine creating a S400 in the supportermodel

for a given S400 in the owner model.

1 routine insertNewS400(owner:: Entity ownedElement) {

2 match {

3 val othertype = retrieve supporter :: Clabject corresponding to

ownedElement.directType

4 val supporterDeepModel = retrieve supporter :: DeepModel

corresponding to ownedElement.deepModel

5 }

6 create {

7 val newEntity = new supporter :: Entity

8 val newClassification = new supporter :: Classification

9 }

10 update {

11 newEntity.name = ownedElement.name

12 newClassification.instance = newEntity

13 newClassification.type = othertype

14 val level = supporterDeepModel.getLevelAtIndex (3)

15 level.content += newElem

16 level.content += newClassification

17 addCorrespondenceBetween(ownedElement , newEntity , "")

18 addCorrespondenceBetween(ownedElement.classificationsAsInstance.

get(0), newClassification , "")

19 ...

20 }

21 }

Listing 6: Test code for inserting a new S400_003 of type S400
1 var entity = PLMFactory.eINSTANCE.createEntity ();

2 entity.setName (" S400_003 ");

3 var classification = PLMFactory.eINSTANCE.createClassification ();

4 classification.setInstance(entity);

5 classification.setType ((Clabject) Util.getElementWithName ("S400",

owner));

6 getSecondLevel(owner).getContent ().add(entity);

7 getSecondLevel(owner).getContent ().add(classification);

for instance, a S600? In this case, a newReaction is needed for which
we apply the same principle as in the existing Reaction: if a new
element is inserted into level one of the ownermodel with the direct
type HuaweiMobilePhoneModel, a Routine creates a corresponding
element in the supporter model with the same name. If there is a
Factory which supports such a newly introduced phone model in
the supporter model, the developer needs to connect the Factory
with the phone model.

By adding the S600 instance to the owner and supportermodels,
we also want a Reaction which reacts to the addition of instances
of the S600. One possibility is partial reuse of the Reaction for the
S400. The Routine shown in Listing 5 is independent of the concrete
phone model. Thus, we can reuse it without modification for the
S600. We only need to copy and adjust the Reaction in Listing 4
so that it checks the direct type name to be equal to S600. Since
Vitruvius does not support the addition of new Reactions during
runtime, Vitruviuswould have to be restarted to add the Reaction
for instances of the S600.

Another possibility is to extend the checks in Listing 4. Instead of
testing the name of the direct type of the new element, the name of
the direct type’s direct type can be tested on equality to HuaweiMo-
bilePhoneModel. As a consequence, the Reaction for new instances
of the S400 would also apply to all instances of new HuaweiMo-
bilePhoneModels such as the S600. This can avoid a restart of
Vitruvius when this possibility is considered beforehand. Other-
wise, Vitruvius still needs to be restarted to extend the Reaction of
the S400.

https://github.com/vitruv-tools/Vitruv-CaseStudies

Towards Deep Reactions in Multi-Level, Multi-View Modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

5.3 Complete Example Reaction

The complete example5 to react to the insertion of a new S400,
consists of the preceding examples. To test the addition of a new
S400, we create a new S400_003 with its classification as a
S400, seen in Listing 6. We then add both to the second level in
the owner model and assert that they also exist in the supporter
model after we execute the consistency preservation.

5.4 Consistency between Domains

The Routine in Listing 7 shows a comprehensive example of how
consistency is preserved in the separated models. The previous
section was concerned with the DeviceModel hierarchy and the
ability to react to new instances of the S400 device at the same
level of abstraction. This Routine, however, shows the consistency
preservation of model elements that exist on different levels of
abstraction. For instance, the Factory clabject in Figure 2 exists at a
lower level of abstraction than the Factory clabject in Figure 3. The
Routine would almost be the same for the Company hierarchy.

With this Routine, we can split the original model into two sepa-
rate models while preserving their consistency at different levels
of abstraction. This solution addresses the original challenge while
avoiding the accidental complexity present in the initial approach.

6 TOWARDS DEEP REACTIONS

In the previous section, we have shown that we can write and
execute Reactions for the two separate multi-level models. For
example, we have shown how we can react to newly instantiated
S400 phonemodels by instantiating a new instance in the other view.
Additionally, we described how we can react to adding a new phone
model, for example, a S600. In the current prototype,Vitruviusneeds
to be stopped, and a newly created Reaction has to deal with the
newly created type S600. Furthermore, the Reactions language in
its current state is not aware of the deepness of the model, which
means that a modeler cannot exploit the idiosyncrasies of a deep
modeling environment.

Below, we identify the requirements that a deep Reactions lan-
guage for a deep virtual SUM environment needs to fulfill.
R1: The language should be aware of the deepness of the mod-

els and meta-models.
R2: Since the deep modeling approach used in this paper is level-

adjuvant, the Reactions language should also be aware of

levels.
R3: The deep Reactions language should have reflective capa-

bilities that allow the methodologists to write precise and
rich queries.

The first requirement states that the new features should be
aware of the deepness of the models. The language needs to be
aware of clabjects influencing more than one instantiation step,
i.e., one level of type-instance relationships and has to provide
language features that allow the modelers (or methodologists) to
specify that changes to a clabject should be reacted to in a deep
manner. Consider the scenario of having to react to a new instance
of a S400 phone device with only one Reaction definition in the
context of DeviceModel in level O0.

5https://doi.org/10.5281/zenodo.13325994

Listing 7: A routine creating a Factory in the supportermodel

for a given Factory in the owner model (we omitted the Re-

action definition here, it is similar to Listing 4).

1 routine insertNewHuaweiMobilePhoneFactory(owner :: Entity

ownedElement) {

2 match {

3 val othertype = retrieve supporter :: Clabject corresponding to

ownedElement.directType

4 val supporterDeepModel = retrieve supporter :: DeepModel

corresponding to ownedElement.deepModel

5 val supporterConnection = retrieve supporter :: Entity

corresponding to ownedElement.connections.findFirst[it.name

=== "owns"]

6 val othercompany = retrieve supporter :: Entity corresponding to

ownedElement.connections.findFirst[it.name === "owns "].

participants.findFirst[it.directType.name === "company "]

7 }

8 create {

9 val newFactory = new supporter :: Entity

10 val factoryClassification = new supporter :: Classification

11 val connection = new supporter :: Connection

12 val newFactoryConnectionEnd = new supporter :: ConnectionEnd

13 val companyConnectionEnd = new supporter :: ConnectionEnd

14 val connectionClassification = new supporter ::

Classification

15 }

16 update {

17 newFactory.name = ownedElement.name

18 val level = supporterDeepModel.getLevelAtIndex (2)

19 factoryClassification.type = othertype

20 factoryClassification.instance = newFactory

21 newFactoryConnectionEnd.destination = newFactory

22 connection.allConnectionEnd += newFactoryConnectionEnd

23 companyConnectionEnd.destination = othercompany

24 connection.allConnectionEnd += companyConnectionEnd

25 connectionClassification.type = supporterConnection

26 connectionClassification.instance = connection

27 level.content += newFactory

28 level.content += factoryClassification

29 level.content += connection

30 level.content += connectionClassification

31 }

32 }

The second requirement states that the language should be aware
of levels (in a level-adjuvant MLM approach). The current state of
the prototype is level aware in the sense that a level is a container
for model elements that are of interest and have to be reacted
to. The new Reactions language should be aware of the multiple
classification levels so that the modeler can control over how many
levels the Reaction should be executed.

The third requirement aims at the reflective capabilities of the
language. This feature helps the modeler write richer and more
concise type queries that are essential for controlling the scope of
what the Reaction should react to and the scope of the actionable
model elements in the other views of the V-SUM system.

To fulfill these requirements, we propose the following syntax
changes, accompanied by a corresponding implementation.

6.1 Support for Deep Types

The first syntax change we propose relates to the handling of deep
types in Reactions. As Reactions are defined between metamodels,
their syntax supports only the types defined in the metamodel.
For deep models, however, the PLM metamodel only describes the
structure of deep models in general, i.e., the linguistic metamodel.
This newly introduced feature relates to the requirement R1.

https://doi.org/10.5281/zenodo.13325994

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Weber and Ojha, et al.

The actual types a Reactions developer would be interested in,
from an Ecore point of view, are instances of the PLM model. In the
current prototype, shown in Listings 2, 3, 4 and 5, this means that
developers can only use the types from the PLM metamodel (e.g.,
OwnedElement or Entity) and have to check manually whether
the Ecore model elements have the correct level and deep type, as
shown in lines 4-6 of Listing 4.

In order to allow developers to use deep model types in their
Reactions, we propose to specify whether the Reactions in a file are
defined between Ecore metamodels or between deep models when
importing the metamodels or models. For deep models, instead of,
e.g., import "http://melanee.org/PLM" as owner (Listing 2,
line 3), developers would then write import deep "<pathtolml-
model>" as owner (Listing 8, line 1). Note that the import deep
statement is followed by a path to an LML model rather than a
namespace URI because we cannot distinguish LML models in
the Eclipse metamodel registry (as both have the namespace URI
“http://melanee.org/PLM”). Thus, we have to distinguish LML mod-
els differently.

For all deep models imported using the deep keyword, the types
defined in the model become available using the common type
syntax of the Reactions language, as shown, e.g., in line 9 of Listing 8
(owner::S400).

Listing 8: Example Reaction for consistency preservation

between two deep models using our proposed syntax for

supporting deep models in the Reactions language.

1 import deep "pathtolml_model" as owner

2 import deep "pathtolml_model" as supporter

3
4 reactions: owner2supporter

5 in reaction to changes in owner below level 1

6 execute actions in supporter below level 1

7
8 reaction NewS400Inserted {

9 after direct element owner::S400 inserted in owner at level 2

10 call {

11 addNewS400(newValue)

12 }

13 }

14
15 routine addNewS400(owner::S400 oldS400) {

16 match {

17 val supDeviceLevel = retrieve level 2 in supporter

18 }

19 create {

20 val supDevice = new supporter ::S400

21 }

22 update {

23 supDevice.name = oldS400.name

24 addCorrespondenceBetween(oldS400 , supDevice)

25 supDeviceLevel.content.add(supDevice)

26 }

27 }

6.2 Level Restriction for Changes

Our proposed new syntax for supporting deep models, as described
in subsection 6.1, allows developers to use deep types when defining
Reactions. While this seems useful, using types from an Ecore
model comes with certain problems. With classical Ecore models,
Reactions are defined between metamodels and changes occur only
at the model level. This is not the case with deep models, however,
where there is no distinction between a fixed meta-level and a
changing model level. It would therefore be possible for Reactions,

using types from a deep model, to become invalid after changes
to the deep model at the runtime. As this would result in a system
unable to react to further changes to the deep model, we propose
to limit the changes to which Reactions can react to certain levels.
This newly introduced feature relates to requirement R2.

We propose to limit the levels on which changes are permitted
using the syntax in Reaction to changes in <deep source
model> below level <x> and execute actions in <deep tar-
get model> below level <y> at the beginning of a Reactions file,
as shown in lines 5-6 of Listing 8. In the example, the Reactions only
react on changes at the meta-level O2, specified by below level
1 for the source model, while changes on meta-levels O0 and O1
would be rejected by Vitruvius. The keyword below refers to the
representation of the level in the figures, i.e., O1 is below O0. The
same is true for the target model, which can receive changes as
well. The types at the meta-levels O0 and O1 from the source and
target models can therefore be used as types in the definition of
the Reactions. If it becomes necessary to perform changes at the
meta-levels O0 or O1 of either model, Vitruviuswould have to be
shut down and restarted with the adapted Reactions. In terms of
the introduction of new phone models, this would be necessary in
order to add the Reaction for new phone models at O1 and to raise
the level so that Vitruvius can execute the Reaction.

To support the separation of concerns and re-usability of the
Reactions, we would propose to allow Reactions to be used for dif-
ferent levels of the same source or target model together. Changes
on a deep model would, however, only be accepted if all Reactions
defined for the deep model permit them. We would not limit the
co-existence of Reactions to Reactions on deep models but allow
Reactions to be used on deep models together with Reactions de-
fined on conventional Ecore metamodels, which includes the PLM
metamodel.

6.3 Explicit Level Support

As the changes to which Reactions between deep models can re-
act target elements at different meta-levels, with the restrictions
described in subsection 6.2, it is necessary for developers to spec-
ify the meta-level of changes. This newly introduced feature also
relates to the requirement R2. In the current version of the Reac-
tions language, this requires checking or setting the level of model
elements manually. Examples are shown in line 4 of Listing 4 and
lines 14-16 of Listing 5. As with explicit support for deep types, as
described in subsection 6.1, we want to add explicit support for
deep meta-levels to the Reactions language.

To make working with deep meta-levels more intuitive, we pro-
pose two new syntax elements for the specification of meta-levels
for the changes that a Reaction reacts to and for levels used during
the creation of consequential changes in update blocks. For the
first case, we propose to extend the syntax after in the definition
of a Reaction to include the deep meta-level of the changes. For
insertion changes, e.g., the complete syntax would be: after ele-
ment <element type> inserted in <deep model> at level
<x>, as shown in line 9 of Listing 8. This is also beneficial in Reac-
tions for adding new phone models and their instances. When the
Reaction in Listing 8 specifies owner::HuaweiMobilePhoneModel
as the inserted element type, it can react to all new instances of

Towards Deep Reactions in Multi-Level, Multi-View Modeling MODELS Companion ’24, September 22–27, 2024, Linz, Austria

new phone models. Instead of specifying a single level, it would
also be possible to react to changes in a range of levels, e.g., using
the syntax at level 2-3. A Reaction with this trigger would not
only react to changes to instances of the specified element type but
also to instances of instances of it. For the second case, we propose
to retrieve the PLM object representing the meta-level in the match
block of routines. The retrieved objects can then be used in the
Xtend code of the update block of routines as before, e.g., for adding
elements to a deep meta-level. An example of this mechanism can
be seen in line 17 and line 25 of Listing 8. This newly introduced
feature relates to the requirement R3.

6.4 Triggers for Changes to Direct and Indirect

Instances

With the proposed changes in subsection 6.3, it would be possible
to react to changes of instances of a deep type, as well as instances
further down the instance-of hierarchy, by specifying the permitted
levels at which changes are reacted to. Often, however, it is desirable
to target instances of subclasses of the specified deep type as well.
Since we expect this to be the default case for developers, we do
not want to introduce a new syntax for including instances of
subclasses, but would instead offer a syntax to prevent the inclusion
of instances of subclasses. In this case, developers who only wish to
react to changes to instances would use the syntax after direct
element instead of after element, as can be seen in line 9 of
Listing 8.

6.5 Implicit Creation of Classifications

When creating a new element, in a deep model, as well as in tradi-
tional Ecore models, it is necessary to define the type of the element.
In the PLM metamodel, this is represented by an instance of the
metaclass Classification with attributes for the new instance
and its type. In the current implementation of the deep Reactions
language, the classification needs to be created manually, as shown
in lines 8 and 12-13 of Listing 5. With our proposed changes to the
Reactions language, described in subsection 6.1, however, this be-
comes unnecessary in most cases, as the types from the deep model
can be used when creating elements, as shown in line 20 of Listing 8.
This allows Vitruvius to implicitly create a classification relation-
ship where the newly created element is the instance and the deep
type is the type of the classification. This newly introduced feature
relates to the requirement R1.

Creating classification relationships implicitly depends on the
availability of the types from the deep model. As discussed in sub-
section 6.2, however, only types from a certain range of levels can
be made available, as changes to types that are used in Reactions
would break the Reactions at runtime. When creating objects of
types that are allowed to change, and which therefore are not avail-
able as types for the definition of Reactions, classifications cannot
be created implicitly, as the type information is not available. In
these cases, the classifications would have to be createdmanually, as
done in the current version of the Reactions language in Listing 5.
For example, new phone models such as S600 are not available,
so the classifications for their instances would need to be created
manually.

7 RELATEDWORK

Kühne [14] introduced an approach to combat the introduced ac-
cidental complexity of strict, level-adjuvant multi-level modeling
paradigms by separating the emerging orthogonal, ontological di-
mensions. clabjects from different dimensions can be connected
regardless of their level of abstraction so that the “Factory” clabject
can be connected to mobile phone models and/or devices. In every
dimension, the strict multi-level rules apply so that there are rules
and checks in place to prevent the user from modeling well-known
antipatterns, like meta-bombs or meta-cycles [2].

Another already deep, view-based, modeling approach is Ortho-
graphic Software Modeling (OSM) [4], which uses a deep dialect
of ATL (Atlas Transformation Language) to keep the views and
the SUM consistent. It is an approach that expects the SUM to be
redundancy-free in comparison to the V-SUM approach presented
in this paper, which is a pragmatic method to assemble the meta-
model information needed to generate the views in a projective
manner. In the current version of OSM, the solution to the challenge
would also include the “trick” in the SUM because it is based on
the strict multi-level modeling variant that forbids any connections
other than instance-of relationships from crossing level boundaries.

Generated views in OSM would look the same as in the pre-
sented model in Figure 3 and Figure 2. Although using deep models
is already possible with OSM, the V-SUM approach supports the
integration of multiple, pre-existing metamodels from development
tools [6]. This requires explicit consistency specifications between
the metamodels, which can be achieved for example by using the
extended Reactions language [11] we have proposed in this paper.

Stevens [18] introduced consistency management between mod-
els as a challenging aspect of Model-Driven Development (MDD).
To model large-scale software, megamodelling, like a V-SUM, is
employed to encapsulate dependencies between models and to en-
sure consistency through heterogeneous transformations including
unidirectional, bidirectional, and multi-directional transformations.
By applying a build system to the metamodel, it is possible to de-
termine which models are affected by a change and ensure that the
minimum necessary transformations are performed to maintain
the state in a coherent manner, thereby addressing the challenge of
Multi-Model Consistency Management.

8 CONCLUSION

In this paper, we showed how the original Melanee solution to the
Collaboration challenge, can be separated into two separate models,
to avoid the accidental complexity introduced by the “trick” em-
ployed to overcome the restrictions of strict modeling.We explained
how we split the model along its natural dimensional boundary to
remove the unwanted accidental complexity. As a result, we claim
that the resulting models are easier to understand and maintain in
the future.

We implemented a part of the consistency preservation speci-
fications to resolve the overlap with the Reactions language. Ad-
ditionally, we illustrated the shortcomings of the language for use
with deep models by showing example specifications in the current
version. Based on the observed shortcomings, we created require-
ments for a deep Reactions language. Additionally, the proposed
features allow us to be more dynamic when reacting to changes,

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Weber and Ojha, et al.

especially changes at the levels O1 or O0, which can not currently
be handled at runtime in Vitruvius.

The new deep keyword will make the Reactions language aware
of the deepness of the models used, and thus fulfill our first require-
ment R1. The level Ox and below level Ox keywords allow us
to write level-aware Reactions as described in requirement R2. The
combination of these new language features allows us to access
the ontological type of the models to write precise, dynamic, and
rich deep queries, thus fulfilling requirement R3. A deep version
of Vitruviuswould allow Melanee’s deep modeling approach to be
combined with the pragmatic V-SUM approach, and thus open new
application areas for both. On the one hand, methodologists using
the Vitruvius approach are empowered to use the features of deep
models for their existing V-SUMS, as deep models can be seamlessly
integrated into a V-SUM that provides deep Reactions. On the other
hand, existing deep models with overlapping information can be
kept consistent using deep Reactions in the Vitruvius framework.

In the future, we plan to implement our proposed new keywords
and features and evaluate their usability in a user study. We aim to
rework Vitruvius so that the whole platform can deal with multiple
instantiation levels instead of the regular EMF two-level dichotomy.
Understanding how reactions could work in a multi-level modeling
setting is one of the first steps toward realising a deep version of
Vitruvius.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – CRC 1608 – 501798263 and
supported by funding from the pilot program Core Informatics at
KIT (KiKIT) of the Helmholtz Association (HGF), and funded by the
Topic Engineering Secure Systems of the Helmholtz Association
(HGF) and supported by KASTEL Security Research Labs.

REFERENCES

[1] Colin Atkinson and Ralph Gerbig. 2012. Melanie: multi-level modeling and
ontology engineering environment. In Proceedings of the 2nd International
Master Class on Model-Driven Engineering: Modeling Wizards, 1–2.

[2] Colin Atkinson and Thomas Kühne. 2001. Processes and Products in a Multi-
Level Metamodeling Architecture. en. International Journal of Software Engi-
neering and Knowledge Engineering, 11, 06, (Dec. 2001), 761–783. doi: 10.1142
/S0218194001000724.

[3] Colin Atkinson and Thomas Kühne. 2001. The Essence of Multilevel Metamod-
eling. en. In UML 2001 — The Unified Modeling Language. Modeling Languages,
Concepts, and Tools (Lecture Notes in Computer Science). Martin Gogolla and

Cris Kobryn, (Eds.) Springer, Berlin, Heidelberg, 19–33. isbn: 978-3-540-45441-
0.

[4] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. 2010. Orthographic soft-
ware modeling: a practical approach to view-based development. In Evalua-
tion of Novel Approaches to Software Engineering. Leszek A. Maciaszek, César
González-Pérez, and Stefan Jablonski, (Eds.) Springer Berlin Heidelberg, Berlin,
Heidelberg, 206–219. isbn: 978-3-642-14819-4.

[5] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. 2010. Orthographic Software
Modeling: A Practical Approach to View-Based Development. en. In Evaluation
of Novel Approaches to Software Engineering (Communications in Computer
and Information Science). Leszek A. Maciaszek, César González-Pérez, and
Stefan Jablonski, (Eds.) Vol. 69. Springer Berlin Heidelberg, Berlin, Heidelberg,
206–219. isbn: 978-3-642-14819-4. doi: 10.1007/978-3-642-14819-4_15.

[6] Colin Atkinson, Christian Tunjic, and Torben Moller. 2015. Fundamental Re-
alization Strategies for Multi-view Specification Environments. en. In 2015
IEEE 19th International Enterprise Distributed Object Computing Conference.
IEEE, Adelaide, Australia, (Sept. 2015), 40–49. isbn: 978-1-4673-9203-7. doi:
10.1109/EDOC.2015.17.

[7] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

[8] Istvan David, Hans Vangheluwe, and Eugene Syriani. 2023. Model consistency
as a heuristic for eventual correctness. Journal of Computer Languages, 76,
101223.

[9] 2011. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE
Std 1471-2000). eng. (2011).

[10] Heiko Klare, Max E Kramer, Michael Langhammer, DominikWerle, Erik Burger,
and Ralf Reussner. 2021. Enabling consistency in view-based system develop-
ment—the vitruvius approach. Journal of Systems and Software, 171, 110815.

[11] Max Emanuel Kramer. 2017. Specification Languages for Preserving Consistency
between Models of Different Languages. PhD Thesis. Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany. doi: 10.5445/IR/1000069284.

[12] Max Emanuel Kramer. 2019. Specification languages for preserving consistency
between models of different languages. Vol. 24. KIT Scientific Publishing.

[13] Thomas Kühne. 2018. Exploring Potency. In Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
(MODELS ’18). event-place: Copenhagen, Denmark. ACM, New York, NY, USA,
2–12. isbn: 978-1-4503-4949-9. doi: 10.1145/3239372.3239411.

[14] Thomas Kühne. 2022. Multi-dimensional multi-level modeling. en. Software and
Systems Modeling, 21, (Jan. 2022), 543–559. doi: 10.1007/s10270-021-00951-5.

[15] Thomas Kühne and Arne Lange. 2022. Melanee and dlm: a contribution to
the multi collaborative comparison challenge. In (MODELS ’22). Associa-
tion for Computing Machinery, Montreal, Quebec, Canada, 434–443. isbn:
9781450394673. doi: 10.1145/3550356.3561571.

[16] Johannes Meier, Christopher Werner, Heiko Klare, Christian Tunjic, Uwe
Aßmann, Colin Atkinson, Erik Burger, Ralf Reussner, and AndreasWinter. 2020.
Classifying approaches for constructing single underlying models. In Model-
Driven Engineering and Software Development: 7th International Conference,
MODELSWARD 2019, Prague, Czech Republic, February 20–22, 2019, Revised
Selected Papers 7. Springer, 350–375.

[17] Gergely Mezei, Thomas Kühne, Victorio Carvalho, and Bernd Neumayr. 2021.
The multi collaborative comparison challenge. In 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 495–496.

[18] Perdita Stevens. 2020. Connecting software build with maintaining consistency
between models: towards sound, optimal, and flexible building from megamod-
els. Software and Systems Modeling, 19, 4, 935–958. doi: 10.1007/s10270-020-00
788-4.

https://doi.org/10.1142/S0218194001000724
https://doi.org/10.1142/S0218194001000724
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1109/EDOC.2015.17
https://doi.org/10.5445/IR/1000069284
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1007/s10270-021-00951-5
https://doi.org/10.1145/3550356.3561571
https://doi.org/10.1007/s10270-020-00788-4
https://doi.org/10.1007/s10270-020-00788-4

	Abstract
	1 Introduction
	2 Foundations
	2.1 Multi-level Modeling
	2.2 View-based Modeling and Consistency Preservation

	3 Example
	4 Running Example
	5 Vitruvius Reactions Language
	5.1 Structure
	5.2 Adding new Ontological Types
	5.3 Complete Example Reaction
	5.4 Consistency between Domains

	6 Towards Deep Reactions
	6.1 Support for Deep Types
	6.2 Level Restriction for Changes
	6.3 Explicit Level Support
	6.4 Triggers for Changes to Direct and Indirect Instances
	6.5 Implicit Creation of Classifications

	7 Related Work
	8 Conclusion
	Acknowledgments

