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A B S T R A C T

Limited medical image data hinders the training of deep learning (DL) models in the biomedical field. Image
augmentation can reduce the data-scarcity problem by generating variations of existing images. However,
currently implemented methods require coding, excluding non-programmer users from this opportunity.

We therefore present ImageAugmenter, an easy-to-use and open-source module for 3D Slicer imaging
computing platform. It offers a simple and intuitive interface for applying over 20 simultaneous MONAI
Transforms (spatial, intensity, etc.) to medical image datasets, all without programming.
ImageAugmentermakes accessible medical image augmentation, enabling a wider range of users to improve the

performance of DL models in medical image analysis by increasing the number of samples available for training.
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1. Motivation and significance

In the field of medical image analysis, deep learning (DL) models
have achieved remarkable success in tasks like disease classification,
tissue and organ segmentation, and image registration [1]. However,
two major barriers in the development of these models are the limited

availability of medical image data, and the increasingly stringent reg-
ulations that make the sharing of medical images, even for research
purposes, more complex. This scarcity of data hinders the training
process, often leading to models that overfit the training data and
perform poorly on unseen data. Data augmentation has been proposed
by several authors to address this issue [2–5].

Image augmentation is a technique that synthetically expands the
training dataset by manipulating existing images or by generating arti-
ficial samples from scratch [6]. In the first, and most common case, the
augmentation can include geometric transformations (translations, ro-
tations, flips, scaling, deformation, zooming), intensity variations (his-
togram based operations), and noise injection [7].

Augmented data helps the DL model to learn features that are
invariant to these alterations and improves the generalization capabil-
ities of the model. Current augmentation techniques are often based on
custom code written in programming languages such as Python. While
there are existing tools and frameworks that address medical image
augmentation, such as Medical Imaging Toolkit (MITK) [8,9], Pillow
[10], PyTorch [11], TorchIO [12], and MONAI [13], they all have one
thing in common: they require programming knowledge to be effec-
tively used. This excludes researchers and medical professionals, who
may lack programming skills, from exploiting the benefits of image
augmentation. It is also time consuming for investigators to implement
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different kinds of augmentation before finding the optimal set that
maximizes model performance.

ImageAugmenter addresses this challenge by providing a user-
friendly tool for medical image augmentation and enabling the crea-
tion of richer and more diverse training datasets, which can directly
improve the performance of DL models.

This translates to increased accuracy, generalizability, and robust-
ness for tasks like cancer detection, segmentation of anatomical struc-
tures, and computer-aided diagnosis.

ImageAugmenter is integrated within the open source 3D Slicer [14]
platform as a module of a new extension, designated as "Slicer-
ImageAugmenter." 3D Slicer is widely used in scientific and clinical
settings. Its popularity is evidenced by a high number of downloads
(over 1.5 million since 2011)1 and a large community of active users.

Using the module is simple and intuitive. The user must:

1. install the extension through 3D Slicer’s extension management
module;

2. select the data to be augmented, where the module supports several
medical image formats, including DICOM and NIfTI with two
different types of folder hierarchies;

3. select the MONAI Transforms to be applied;
4. perform data augmentation; here, several parameters to customize

data augmentation can be selected;.
5. visualize and analyze the augmented data.

The integration with 3D Slicer makes the tool easily accessible to a
wide range of users, facilitating the use of advanced data augmentation
techniques for medical image retrieval and analysis. Moreover,
augmented images can be also visualized through 3D Slicer panels for
easily checking the artificial data space.

2. Software description

The module leverages the capabilities of PyTorch [11] and MONAI
[13] to perform data augmentation on medical image datasets. This
process involves applying a series of specific MONAI transformations to
each image within the dataset, creating a larger and more diverse
collection of samples for training DL models. In light of the mentioned
points, all forthcoming references to the term "transformation" should be
understood in a more precise manner as "MONAI Transform".

2.1. Software architecture

The ImageAugmenter module is structured into several classes,
including those provided by the 3D Slicer infrastructure for building
scripted modules2. These include the ImageAugmenterWidget, which is
responsible for managing the graphical user interface (GUI) of the
module, and the ImageAugmenterLogic, which handles the general logic
of the module. Additionally, a set of custom classes and Python modules
are grouped in the library named ImageAugmenterLib, which allows for
the creation of a modular architecture and serves as the core of the
module.

The ImageAugmenterTransformationParser class is responsible for
coordinating the controller classes and collecting the list of MONAI
Transforms in accordance with the user inputs.

The ImageAugmenterTransformControllerInterface, located in the
ImageAugmenterLib, is the abstract class upon which three distinct
classes are then built: ImageAugmenterSpatialController, Image-
AugmenterIntensityController and ImageAugmenterCropController.
The aim of the controller classes is to be specialized in mapping different
types of MONAI Transforms, ensuring compatibility with the dataset
class. The ImageAugmenterDataset class implements the Dataset ab-
stract class from PyTorch and handles dataset loading and MONAI
Transforms application.

In addition to the mentioned classes, two further Python modules are

included in the ImageAugmenterLib. The ImageAugmenterUtils Python
module contains essential functions, such as saving to disk and pre-
viewing the result, plus other minor utility functions. The Image-
AugmenterValidator Python module, on the other hand, contains
functions used in the initial phase to validate the fields in the GUI.

This modular approach, which combines the standard Slicer module
structure with a set of custom classes, provides a foundation for future
enhancements and additions to the module’s capabilities.

2.2. Software functionalities

ImageAugmenter enables users to define and apply different image
augmentation transformations to their own medical image datasets,
with the ability to maintain the same input hierarchy and ensure that
spatial correspondence between image and mask is maintained through
the applied transformations.

With a user-friendly graphical interface, the module allows users to
select input and output directories, specify image and mask prefixes,
define desired transformations through a comprehensive set of options,
and choose the device (CPU or PyTorch compatible GPUs) on which to
execute the computation. It also provides real-time progress visualiza-
tion and informative status updates.

The module includes a "preview" functionality. Users can select a
subset of transformations and visualize the resulting augmented images
alongside their original counterparts. This facilitates the refinement of
the selected transformations to achieve the optimal outcome for their
specific use case. Furthermore, this approach avoids occupying memory
on the disk and facilitates the user’s understanding of the model’s input
during training. As a consequence, time can be invested in further stages
of research because a data sanity check has already been performed.

In the current version, 7 spatial transformations, 12 intensity trans-
formations, 2 crop transformations and 2 pad transformations are
available. Nevertheless, our efforts have been concentrated on ensuring
that the integration of further MONAI Transforms is straightforward,
largely due to the code design.

Moreover, the majority of parameters that users are required to
configure for each transformation are identical in terms of nomenclature
and functionality to those found in the MONAI library. This approach
streamlines the referencing of MONAI documentation and standardizes
the augmentation pipeline. It ensures that every detail of the trans-
formations in the module is reflected and directly accessible in the
official MONAI documentation.

3. Illustrative examples

Fig. 1 illustrates the ImageAugmenter module. The user is first
prompted to specify the path to the images to be augmented, file hier-
archy information, and file name patterns that will allow the detection
of images and masks (if any) within the specified path. The user is then
prompted to specify a path where the augmented images will be stored.

Subsequently, the user is given the option to select any MONAI
Transforms to be applied, as well as tune their parameters. If the un-
derlying hardware provides a PyTorch-compatible GPU, the user can
also select the device on which the augmentation will be performed.

Finally, the user can choose to preview or save the augmented
images.

Fig. 2 shows an example of how the 3D Slicer scene looks like when
using the "Preview" feature of ImageAugmenter. The inclusion of a pre-
view function within the 3D Slicer module increases the user’s control
over the augmentation process. By allowing real-time tuning of pa-
rameters within the augmentation panel, users will be able to establish
the result of the MONAI Transforms used by checking the images slice by
slice from the 3D Slicer infrastructure.

Finally, Listing 1 shows how ImageAugmenter exports augmented
images with different dataset types. It is appreciable how the module
maintains the input hierarchy, clearly adding the type of MONAI
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Fig. 1. ImageAugmenter graphical user interface.
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Transform applied to a specific case.

Fig. 2. Preview mode.

Listing 1. Input and output example. The two hierarchies of inputs that are supported are illustrated on the left, and the respective generated outputs are shown on
the right.
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4. Impact

Medical data augmentation has emerged as a powerful technique to
enhance the accuracy and robustness of various deep learning-based
tasks in medical image analysis [15].

The application of ImageAugmenter can provide a meaningful
contribution in addressing key research questions and challenges in
medical deep learning. As evidencedby studies referenced in [16,17], data
augmentation is an effectivemethod for enhancing the generalization and
robustness of medical image analysis models across different imaging
modalities, scanner types, andpatient demographics.Addressing this issue
is essential to ensure thatmodels perform effectively on previously unseen
data and are not susceptible to bias. Furthermore, medical imaging data-
sets often suffer from class imbalance, where certain disease classes are
underrepresented. Thoughtful application of augmentation methods can
mitigate this issue, particularly in tasks like lesion detection or segmen-
tation [18]. By augmenting images from minority classes, the dataset be-
comes more balanced, leading to improved model performance.

It is also important to consider that medical imaging is prone to arti-
facts such as motion blur, noise, or intensity inhomogeneities [19]. A key
consideration is how augmentation techniques can be used to simulate
these imaging artifacts, thereby training models that are more resilient to
such commonchallenges in real-worldmedical imaging. Thiswill improve
the ability of the model to deal effectively with noisy or imperfect data.

Finally, in order to make it clear the impact that ImageAugmenter
module can have on the research community, we would like to point out
how that Goceri’s review [15] examined very comprehensively
augmentation techniques that have been applied to improve the per-
formance of deep learning-based diagnosis on different organs (brain,
lung, breast, and eye), using different imaging modalities (MRI, CT,
mammography, and fundoscopy). Results reported in Tables 1–4 of the
review [15], showed that 56 out of the 77 studies proposed in the tables,
involved the use of transformations (such as translation, scaling, flip-
ping, brightness changing, rotation, mirroring, zooming, resizing, etc),
as augmentation methods, improving performance across the wide
range of tasks to which it was applied.

In light of this, the positive implications of ImageAugmenter for the
scientific community and upcoming research efforts are obvious. More-
over, a strong foundation for the adoption of this module is the wide-
spread use of 3D Slicer, both within and beyond the intended user group.

4.1. Comparison with other available tools

The ImageAugmenter module within the 3D Slicer environment is
only comparable to the TorchIO 3D Slicer module3 in terms of func-
tionality. TorchIO is a Python package based on PyTorch for reading,
preprocessing, augmenting, and writing 3D medical images for deep
learning applications. It offers intensity and spatial transforms for data
augmentation and preprocessing. The developers of TorchIO library
describe the TorchIO 3D Slicer module as a tool that allows users to
rapidly visualize the impact of each transformation parameter, thereby

providing an intuitive understanding of the output without the need for
coding4. Although the underlying concept may seem similar, several
important differences emerge between the TorchIO 3D Slicer module
and ImageAugmenter. The following section will describe the distinc-
tions between the two modules and illustrate the enhancements that we
have implemented to enhance the overall user experience.

The first distinction between the two modules is related to their
foundational frameworks. Our module is based on MONAI, while
TorchIO 3D Slicer module is based on the TorchIO package. MONAI
provides a comprehensive suite of high-level Transform classes, partic-
ularly in the domain of spatial transformations, which are not present in
TorchIO. Consequently, this represents an important drawback for the
3D Slicer TorchIO module, as it necessitates additional effort from users
to implement functionality comparable to the advanced Transform
classes available in MONAI.

Another difference lies in the number of transformations that the two
modules offer to the user and the usability of these transformations. Our
module provides more than 20 MONAI Transforms customizable and
applicable to anentire dataset of images andmasks simultaneously. The3D
Slicer TorchIO module offers approximately 10 TorchIO transformations,
the majority of which are random and basic, such as RandomAffine.

It is also crucial to highlight the distinction in the manner in which
our module is integrated in the 3D Slicer environment and how it in-
teracts with the operating system. Unlike the TorchIO 3D Slicer module,
the user is not required to load the images into the 3D Slicer environ-
ment to apply the augmentation. Our module enables the loading of
datasets directly from the operating system, supporting two distinct
hierarchies. It is possible to apply multiple transformations simulta-
neously, preview the transformations, and then automatically save the
results with the same hierarchy and file names as the input dataset,
enhancing and accelerating the user experience.

On the other hand, the TorchIO 3D Slicer module enables the
application of a single TorchIO transformation to a single volume at a
time and it is not possible to save the augmented volume directly on the
operating system with the same input hierarchy. Consequently, further
interaction with 3D Slicer is required to export the augmented volume
and repeat the process for the entire dataset.

To illustratemore clearly thedifferencesbetween ImageAugmenter and
the TorchIO 3D Slicermodule, a comparison has been proposed in Table 1.
The table highlights the key features and capabilities of both modules,
providing an overview of their respective strengths and limitations.

4.2. Performance

The analysis of the tool’s performance is based on a series of different
benchmarks. The benchmarks evaluated the time required to preview
and save images as the image size, the number of images, and the
number of image transformations increased. The indicated preview and
save times are averaged on three consecutive runs. The tests were con-
ducted with both CPU and GPU to provide a more comprehensive
evaluation and perspective of the tool.

Table 1
Differences between ImageAugmenter and the TorchIO 3D Slicer module.

Feature ImageAugmenter TorchIO 3D Slicer Module

Base Framework MONAI TorchIO
Transforms # 24 MONAI transforms 10 TorchIO transforms
Transforms
Parameters

Customizable Customizable

Dataset Loading Direct from operating system, supports two different hierarchies Requires loading the data into 3D Slicer as Volumes in order to apply the
augmentation

Augmentation Can apply multiple transforms to the entire dataset, on the image and the related
segmentation/mask (if present) simultaneously

Applies a single transformation to a single volume at a time

Preview Available for all the MONAI Transforms chosen on a volume of the dataset Available for the volume on which the transform is being applied
Saving The augmented dataset is automatically exported with the same hierarchy and

file names as the original, directly to the operating system
Additional interactions with 3D Slicer are required for the exportation of
augmented volumes to the operating system manually
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The hardware used for these tests included:

• CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
• GPU: NVIDIA Corporation GA104GL [RTX A4000] (16GB)
• RAM: 12 × 16GB DDR4 DIMM

Furthermore, the number of cases and the amount of input files, as

well as the corresponding cases and output files, are presented to assess
the consistency of the savings.

To ensure reproducibility, three different public datasets of different

sizes were used:

• PDDCA v1.4.1 [20] with 12 images averaging 512 × 512 × 138 in
size.

• SynthRAD2023 [21] challenge dataset for Task 1, using only the
validation set with 30 images of size 220 × 220 × 200 (average) .

• SynthRAD2023 challenge dataset for Task 1.2, using only the training
set with 179 images of size 220 × 220 × 200 (average).

The following section provides a summary of the datasets (Table 2),
the types of MONAI Transforms applied (Table 3), and the parameters
used to run the benchmarks. The results obtained for each benchmark
are presented in Table 4.

Dataset

Transformations

5. Results

It is important to note that the results obtained (Table 4) depend on
the hardware used and should therefore be understood as a non-absolute
indicator of the tool performance.

The results prove the consistency in terms of output, with a number

Table 2
Description of the datasets and input files used in the benchmark.

DatasetID Description Size Input image file Input segmentation file Patients (#) Files in total (#)

D1 PDDCA v1.4.1 (part 1) 512 × 512 × 138 circa img.nrrd BrainStem.nrrd 12 48
D2 SynthRAD2023 - Task1 - Brain - Validation set 220 × 220 × 200 circa mr.nii.gz mask.nii.gz 30 60
D3 SynthRAD2023 - Task1.2 - Brain - Train set 220 × 220 × 200 circa ct.nii.gz mask.nii.gz 179 359

Table 3
Description of the transformations and specific parameters used in the benchmark.

TransformsID Description Settings

T1 A. Rotate
B. RandomFlip

A. Angle: 0.5rad; interpolation mode: nearest
B. -

T2 A. Rotate (angle: 0.5rad, interpolation mode: nearest)
B. RandomFlip
C. Zoom
D. BorderPad

A. Angle: 0.5rad; interpolation mode: nearest
B. -
C. Factor: 1.2; interpolation mode: area; padding mode: edge
D. Spatial border: 10; mode: symmetric

T3 A. Rotate
B. RandomFlip
C. Zoom
D. BorderPad
E. CenterSpatialCrop
F. GaussianSmooth
G. RandomZoom
H. RandomRotate

A. Angle: 0.5rad; interpolation mode: nearest
B. -
C. Factor: 1.2; interpolation mode: area; padding mode: edge
D. Spatial border: 10; mode: symmetric
E. Height: 200; width: 200
F. Factor: 1.0
G. From 0.5 to 0.9; interpolation mode :area; padding mode:edge
H. On the X axis; from 0.6rad to 0.9rad; interpolation mode: nearest; padding mode:reflection

Table 4
Summary of tests performed, devices used, time taken and files exported.

Test # Device DatasetID TransformsID (number of actual transformations) Preview time (s) Saving time (s) Augmented patients (#)

1 CPU D1 T1 (2) 2.37 24.97 24
2 CPU D1 T2 (4) 3.46 36.06 48
3 CPU D1 T3 (8) 5.55 57.87 96
4 CPU D2 T1 (2) 1.05 21.2 60
5 CPU D2 T2 (4) 1.55 28.98 120
6 CPU D2 T3 (8) 2.47 44.99 240
7 CPU D3 T1 (2) 1.07 122.58 358
8 CPU D3 T2 (4) 1.72 188.61 716
9 CPU D3 T3 (8) 2.55 274.12 1432
10 GPU D1 T1 (2) 2.48 24.17 24
11 GPU D1 T2 (4) 3.89 40.13 48
12 GPU D1 T3 (8) 6.04 56.31 96
13 GPU D2 T1 (2) 1.05 20.02 60
14 GPU D2 T2 (4) 1.6 30.9 120
15 GPU D2 T3 (8) 2.62 45.26 240
16 GPU D3 T1 (2) 1 132.23 358
17 GPU D3 T2 (4) 1.73 217.11 716
18 GPU D3 T3 (8) 2.5 265.95 1432
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of new cases and files generated that are proportional to the trans-
formations used. With regard to the preview times, it can be observed
that they are relatively short. This is because the transformations are
applied to a single exemplary volume, which allows the parameters to be
promptly fine-tuned until the user is satisfied, thus precisely obtaining
the desired behavior.

The execution time increases in proportion to the complexity of the
experiments, exhibiting no unexpected behaviors. Additionally, the re-
sults indicate that the use of the GPU does not consistently outperform
the use of the CPU. This is because, for a few transformations, the time

required for the transfer of data between devices may exceed the ben-
efits gained, and the system still relies on the CPU for disk I/O opera-
tions. Therefore, for simple tasks, using the GPU may result in a time
penalty.

This is visible in the comparison between experiment #9 and
experiment #18, executed respectively on CPU and GPU. In this case,
the computation on the CPU takes 10 s less than the GPU implementa-
tion. This outcome suggests that the benefits of GPU usage are only
evident when an important number of images and transformations are
involved.

Fig. 3. Original image (bottom) compared to Rotate result (middle) and to Random Flip result (top).
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5.1. Exemplary output

This section illustrates how the MONAI Transforms applied with
ImageAugmenter maintain anatomical consistency by comparing the
original image (bottom) and the result obtained (top) by applying the T1
transformations (rotation and flip) to a case of the D1 dataset (Fig. 3).
The original and the transformed volumes are then manually compared
using the volume geometry metadata available in the "Volumes" module
of 3D Slicer (Table 5).

6. Conclusions

In this paper, we presented ImageAugmenter, a 3D Slicer module that
provides an intuitive user interface for executing data augmentation on
medical images. It is designed to be flexible and versatile, supporting a
wide range of MONAI Transforms and offering the users precise control
over the transformation parameters. In addition, it guarantees the
application of the same random transforms to each pair of anatomical
and segmentation volumes, as well as the support of PyTorch compatible
GPUs to decrease computation time.

The performance of ImageAugmenter was evaluated through a series
of benchmarks that measured the time required for previewing and
saving images as the image size, number of images, and transformations
increased. These tests, conducted on both the CPU and the GPU,
demonstrated that the number of generated cases and files was consis-
tently proportional to the applied transformations. The preview times
were short, allowing for quick parameter adjustments. It was found that
the module does not alter dimensions, spacing, origin, scan order, scalar
type and the scalar range of the volumes. Therefore, the consistency of
the results depends on the user’s parameter choices.

The tool allows users to visually assess the effect of data augmenta-
tion transformations and to save the augmented data to be used for
analysis and AI models training. This 3D Slicer module would represent
a powerful tool for researchers, clinicians, biologists, and any user who
intends to use data augmentation techniques for improving the accu-
racy, generalizability, and robustness of their medical DL models, in a
broad accessible way, without writing code and by simply using a
graphical user interface.
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