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A B S T R A C T

In this paper, we introduce different concepts of Granger causality and contemporaneous
correlation for multivariate stationary continuous-time processes to model different depen-
dencies between the component processes. Several equivalent characterisations are given for
the different definitions, in particular by orthogonal projections. We then define two mixed
graphs based on different definitions of Granger causality and contemporaneous correlation,
the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs,
the components of the process are represented by vertices, directed edges between the vertices
visualise Granger causal influences and undirected edges visualise contemporaneous correlation
between the component processes. Further, we introduce various notions of Markov properties
in analogy to Eichler (2012), which relate paths in the graphs to different dependence
structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to
satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR)
processes, we explicitly characterise the edges in the (local) orthogonality graph by the model
parameters.

1. Introduction

In this paper, we define new notions of Granger causality and contemporaneous correlation specifically for multivariate stochastic
processes in continuous time and visualise them in mixed graphs. With the increasing interest in complex multivariate data sets and
networks in diversified fields, the interest in graphical models develops rapidly, although the attempt to use graphical models
for the visualisation and analysis of causal structures in stochastic models is quite old Wright [75,76]. The key advantage of
graphical models is the simple and clear way to display the dependencies of stochastic processes. We refer to the nice overview
in Maathuis et al. [54] for the state of the art on the mathematical and statistical aspects of graphical models. In our graphical models,
vertices represent the different component series 𝑌𝑣 = (𝑌𝑣(𝑡))𝑡∈R, 𝑣 ∈ 𝑉 ∶= {1,… , 𝑘}, of an underlying continuous-time stochastic
process 𝑌𝑉 = (𝑌𝑉 (𝑡))𝑡∈R. The vertices are connected with directed and undirected edges, which represent Granger causalities and
contemporaneous correlations, respectively.

The mathematical notion of causality was popularised by Clive W. J. Granger and Christopher A. Sims. In his original
work, Granger [40] used a linear vector autoregressive (VAR) model, whereas Sims [71] used a moving average (MA) model to
understand the causal effects in a bivariate model; a detailed discussion of the relationships between Granger and Sims causality

✩ Funding: This work is supported by the project ‘‘digiMINT’’, which is a part of the ‘‘Qualitätsoffensive Lehrerbildung’’, a joint initiative of the Federal
Government and the Länder which aims to improve the quality of teacher training. The program is funded by the Federal Ministry of Education and Research,
Germany. The authors are responsible for the content of this publication.
∗ Corresponding author.

E-mail addresses: vicky.fasen@kit.edu (V. Fasen-Hartmann), lea.schenk@kit.edu (L. Schenk).
https://doi.org/10.1016/j.spa.2024.104501
Received 13 September 2023; Received in revised form 23 September 2024; Accepted 1 October 2024
vailable online 9 October 2024 
304-4149/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license 
 http://creativecommons.org/licenses/by-nc/4.0/ ). 

https://www.elsevier.com/locate/spa
https://www.elsevier.com/locate/spa
mailto:vicky.fasen@kit.edu
mailto:lea.schenk@kit.edu
https://doi.org/10.1016/j.spa.2024.104501
https://doi.org/10.1016/j.spa.2024.104501
http://creativecommons.org/licenses/by-nc/4.0/


V. Fasen-Hartmann and L. Schenk

w

b

p
p

p

s
c

o
c
o
i
c

i

o

b

e

Stochastic Processes and their Applications 179 (2025) 104501 
is given in Kuersteiner [48], see also Dufour and Renault [26], Eichler [30]. Since then, their ideas have been extended in various
ays and have been applied in diversified fields, such as neuroscience (Bergmann and Hartwigsen [3]), econometrics (Imbens [46]),

environmental science (Cox and Popken [16]), genomics (Heerah et al. [45]) and social systems (Kuzma et al. [49]). The recent
publication of Shojaie and Fox [70] is an excellent review of Granger causality with its advances.

However, not every interesting relationship between two component series 𝑌𝑎 and 𝑌𝑏 is necessarily a causal relation and directed.
But this does not diminish the importance of modelling such relationships. Some well-known examples are the correlation between
the aggressive behaviour and the amount of time spent playing computer games each day (Lemmens et al. [51]) and the correlation
etween the number of infants who sleep with the light on and the number of people who develop myopia in later life (Zadnik et al.

[77]). To model such undirected relationships, we use contemporaneous correlation, a symmetric relation between 𝑌𝑎 and 𝑌𝑏.
Our novel approach is to define concepts of Granger causality and contemporaneous correlation for continuous-time multivariate

rocesses by orthogonal projections onto linear spaces generated by subprocesses, resulting in conditional orthogonality relations. For
rocesses in discrete time, this attempt was already studied in Florens and Mouchart [37], Dufour and Renault [26], Eichler [28].

In contrast to the other papers, Eichler [28] even represents the conditional orthogonality relations of a discrete-time VAR process
in a graph, where Granger causality models the directed influences and contemporaneous correlation the undirected influences.

An alternative approach is to use conditional independence relations using conditional expectations given 𝜎-fields generated by sub-
rocesses, see Chamberlain [13], Florens and Mouchart [36], Eichler [29] for discrete-time processes and Comte and Renault [15],

Florens and Fougère [35], Petrovic and Dimitrijevic [62] for continuous-time processes and especially for semimartingales. Comte
and Renault [15] propose to model undirected influences by global instantaneous causality and local instantaneous causality in
continuous time, however, the results are not related to graphical models. Again, Eichler [29] defines a graphical model for time
eries in discrete time representing the conditional independence relations using Granger causality for directed influences and
ontemporaneous conditional dependence for the undirected influences.

In principle, the two approaches of conditional orthogonality and of conditional independence to define causalities in continuous-
time processes are both conceivable and of interest. For Gaussian random vectors, conditional independence and conditional
rthogonality are even equivalent. However, in non-Gaussian time series models, conditional expectations are much more difficult to
ompute than linear predictions, which is the first reason for this paper to explore Granger causality concepts based on conditional
rthogonality instead of conditional independence. The second reason is motivated from the background on discrete-time processes
n Eichler [28,29], where the first paper derives a graphical model based on conditional orthogonality and the second paper on
onditional independence relations. The proof of the Markov properties for discrete-time processes using conditional orthogonality

of linear spaces of Eichler [28] requires fewer assumptions than for conditional independence in Eichler [29], which is based on
non-linear spaces. There, some technical and difficult-to-verify assumptions are required in order to achieve the Markov properties.
Since the aim of this paper is to propose an easy-to-use graphical model, these observations motivate our approach for using
conditional orthogonality of linear spaces, in particular since linear causality concepts in continuous time have not yet been
nvestigated. Comte and Renault [15], Florens and Fougère [35] both consider non-linear causality concepts, among others in the

context of semimartingales.
A noteworthy extension of conditional independence is the concept of local independence for composable finite Markov processes

f Schweder [69] which was generalised to semimartingales by Aalen [1]. This concept has been applied to define and analyse the
local independence graph, e.g., in the context of composable finite Markov processes, point processes and physical systems in Didelez
[21,22,23], Eichler et al. [31], Commenges and Gégout-Petit [14], Røysland et al. [66]. These definitions were recently taken up
y Mogensen and Hansen [59,60] who study (canonical) local independence graphs for Itô processes. However, the results rely on the

semimartingale property of such processes, but semimartingales do not seem to be the right tool for stationary time series models,
specially for non-Gaussian models. Additionally, Mogensen and Hansen [60] assume continuous sample paths, which excludes

Lévy-driven stochastic processes with jumps.
This paper is the first paper developing graphical models for conditional orthogonality relations of general stationary stochastic

process in continuous-time. We also present several equivalent characterisations of our concepts of Granger causality and contem-
poraneous correlation and relate them to other definitions in the literature. These definitions do not require the stationarity of
𝑌𝑉 . Importantly, we define local versions of Granger causality and contemporaneous correlation, which are less strong. Based on
the different definitions of Granger causality and contemporaneous correlation, we then introduce two mixed graphs, the (mixed)
orthogonality graph and the local (mixed) orthogonality graph for such multivariate stochastic processes in continuous time. For
example, for an Ornstein–Uhlenbeck process, the two graphs may look like in Fig. 1. We can already see from this picture that
the edges of the local orthogonality graph are also edges in the orthogonality graph.

Fig. 1. In the left figure is the orthogonality graph and in the right figure the local orthogonality graph of the Ornstein–Uhlenbeck process defined in Example 3.15.
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The causality structure of a graph is usually described by Markov properties. Eichler [28,29] discusses Markov properties for
mixed graphical models, namely the pairwise, local, block-recursive and two global Markov properties, using 𝑚-separation (Richard-
on [65]) and 𝑝-separation (Levitz et al. [52]), respectively, for the global ones. For an asymmetric graph, Didelez [23] develops

and investigates an asymmetric notion of separation and discusses different levels of Markov properties. In addition, Mogensen and
Hansen [60] show that the multivariate Ornstein–Uhlenbeck process driven by a Brownian motion is the only process that satisfies
heir global Markov property. As the above literature shows, the derivation of global Markov properties might be quite challenging

and often it is only valid under additional or even restrictive assumptions.
In our (local) orthogonality graph, we show the pairwise, local and block-recursive Markov property and then discuss global

Markov properties in both graphs. Importantly, the orthogonality graph satisfies the global Andersson, Madigan and Perlman
(AMP) Markov property (Andersson et al. [2]), which is a sufficient criterion for conditional orthogonality. The assumptions on
our orthogonality graph are quite general. We only require a stationary mean-square continuous stochastic process in continuous
time with expectation zero, which is purely non-deterministic, with some restriction on the spectral density, which is, e.g., satisfied
for Ornstein–Uhlenbeck and, more general, for continuous-time moving average (MCAR) processes. Since the notion of 𝑚-separation
in the AMP Markov property is strong, we present less restrictive alternatives and discuss the global Markov property of the
orthogonality graph. Although the local orthogonality graph also satisfies the pairwise, local and block-recursive Markov properties,
not surprisingly stronger assumptions are required for global Markov properties.

Finally, we derive the graphical structure of the popular multivariate continuous-time autoregressive (MCAR) processes driven
by a general centred Lévy process with finite second moments, which are important extensions of their discrete-time counterparts.
Different choices of the driving Lévy process and the model parameters, i.e., the parameters of the autoregressive polynomial and the
covariance matrix of the driving Lévy process, allow quite flexible modelling of the margins, so MCAR processes form a broad class
of processes. Special cases are the Gaussian MCAR processes, where the Brownian motion is the driving Lévy process and Ornstein–
Uhlenbeck processes, which are MCAR(1) processes. For general MCAR models, we derive that the (local) orthogonality graph is

ell defined and we explicitly characterise the different types of edges by the model parameters. These characterisations differ for
he orthogonality and local orthogonality graph. Finally, we find analogues to the edge characterisations for vector autoregressive
rocesses in Eichler [28].

Remarkably, in the case of Gaussian MCAR processes, our characterisations of local Granger causality and local contemporaneous
correlation given by the model parameters, respectively, coincide with the characterisations of local Granger causality and local
instantaneous causality in the non-linear setting in Comte and Renault [15]. However, our approach has several advantages. On
he one hand, their theory is developed for semimartingales and several characterisations even assume continuous sample paths.
ut non-Gaussian Lévy-driven MCAR models have jumps and can therefore not be covered by their theory. On the other hand,
odelling the dependencies of the MCAR process in the local orthogonality graph allows to encode local Granger causalities and

ocal contemporaneous correlations between multivariate subprocesses through the derived Markov properties. This is not content
f Comte and Renault [15]. Similarly, for Gaussian Ornstein–Uhlenbeck models, the local independence graph of Mogensen and

Hansen [60] coincides with our local causality graph. But their approach is based on Brownian motion driven Itô processes, again
excluding Lévy driven models or MCAR(𝑝) processes with 𝑝 ≥ 2. To the best of our knowledge, our paper is the first on graphical
roperties of Lévy-driven MCAR models. It provides a generalisation of the results known from the literature to non-Gaussian

processes. In Fasen-Hartmann and Schenk [32] we even develop extensions to the more general class of multivariate state space
models based on the present paper, and in Fasen-Hartmann and Schenk [33] we present an undirected graphical model and relate
it to the (local) orthogonality graph.

Structure of the paper

The paper is structured as follows. In Section 2, we first lay the foundation by introducing the conditional orthogonality relation
as well as appropriate linear spaces generated by multivariate stochastic processes in continuous time and their properties which
are important for this paper. We conclude the preliminaries with properties on mean-square differentiable stationary processes with
expectation zero. In Sections 3 and 4, we then define, discuss, and relate different directed and undirected interactions between the
component series of continuous-time stationary processes, i.e., Granger causality and contemporaneous correlation. This groundwork
culminates in the definition of the orthogonality graph and the local orthogonality graph in Section 5. For these orthogonality graphs,

e prove several Markov properties. Finally, in Section 6, we characterise the different graphical models for MCAR processes. The
proofs of the paper are moved to the appendix.

Notation

Throughout the paper, 𝑉 = {1,… , 𝑘} and 𝑌𝑉 = (𝑌𝑉 (𝑡))𝑡∈R denotes a 𝑘-dimensional (weakly) stationary stochastic process with
expectation zero that is continuous in mean square. From now on we call the space of all real or complex (𝑘 × 𝑘)-dimensional
matrices 𝑀𝑘(R) and 𝑀𝑘(C), respectively. Similarly, 𝑀𝑘,𝑑 (R) and 𝑀𝑘,𝑑 (C) denote real and complex (𝑘× 𝑑)-dimensional matrices. We
write 𝐼𝑘 for the 𝑘-dimensional identity matrix and 0𝑘 for the 𝑘-dimensional zero matrix (𝑘 ∈ N). With ‖ ⋅ ‖ we denote some matrix
norm. The vector 𝑒𝑣 ∈ R𝑘 is the 𝑣-th unit vector and 𝐄⊤𝑗 ∶= (0𝑘×𝑘(𝑗−1), 𝐼𝑘, 0𝑘×𝑘(𝑝−𝑗)) ∈ 𝑀𝑘×𝑘𝑝(R), 𝑗 = 1,… , 𝑝. For hermitian matrices
𝐴, 𝐵 ∈𝑀𝑘(C), we write 𝐴 ≥𝐿 𝐵 if and only if 𝐵−𝐴 is positive semi-definite, i.e., 𝐵−𝐴 ≥ 0. Similarly, we write 𝐴 > 0 if 𝐴 is positive
definite. Furthermore, 𝜎(𝐴) are the eigenvalues of 𝐴. Finally, by l.i.m. we denote the mean square limit.
3 
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2. Preliminaries

In these preliminaries, we present some basics about the conditional orthogonality relation, such as the semi-graphoid property.
urthermore, we define the important linear spaces of this paper and give properties of mean-square differentiable stationary
rocesses with expectation zero, which we use throughout the paper. We start with some fundamentals on linear spaces in
2 = 𝐿2(𝛺 , ,P), the Hilbert space of square-integrable complex-valued random variables on a common probability space (𝛺 , ,P).
s usual, the inner product is ⟨𝑋 , 𝑌 ⟩𝐿2 = E[𝑋𝑌 ] for 𝑋 , 𝑌 ∈ 𝐿2 and orthogonality with respect to this inner product is denoted by
⟂ 𝑌 . We set ‖𝑋‖𝐿2 ∶=

√

⟨𝑋 , 𝑋⟩𝐿2 for 𝑋 ∈ 𝐿2 and identify random variables that are equal P-a.s. Note that if 𝑋𝑛 →𝐿2 𝑋 and
∈ 𝐿2, then

lim
𝑛→∞

E(𝑋𝑛𝑌 ) = E(𝑋 𝑌 ), (2.1)

which can be shown by Cauchy–Schwarz inequality. Further, suppose 1 and 2 are closed linear subspaces of 𝐿2, where the closure
is formed in the mean square. Then

⊥1 = {𝑋 ∈ 𝐿2 ∶ ⟨𝑋 , 𝑌 ⟩𝐿2 = 0 for all 𝑌 ∈ 1}

is the orthogonal complement of 1. The sum of 1 and 2 is the linear vector space

1 + 2 = {𝑋 + 𝑌 ∶ 𝑋 ∈ 1, 𝑌 ∈ 2}.

Even when 1 and 2 are closed subspaces, this sum may fail to be closed if both are infinite-dimensional. A classic example of this
can be found in Halmos [41], p. 28. Hence, the closed direct sum is denoted by

1 ∨ 2 = {𝑋 + 𝑌 ∶ 𝑋 ∈ 1, 𝑌 ∈ 2}.

We further denote the orthogonal projection of 𝑋 ∈ 𝐿2 on 1 by 𝑃1
(𝑋) = 𝑃1

𝑋. A review of the properties of orthogonal projections
an be found, e.g., in Weidmann [73], Brockwell and Davis [9], Lindquist and Picci [53].

2.1. Conditional orthogonality

With those notations in mind, we define the conditional orthogonality relation as in Eichler [28], p. 347.

Definition 2.1. Let 𝑖, 𝑖 = 1, 2, 3, be closed linear subspaces of 𝐿2. Then 1 and 2 are conditionally orthogonal given 3 if

𝑋 − 𝑃3
𝑋 ⟂ 𝑌 − 𝑃3

𝑌 ∀𝑋 ∈ 1, 𝑌 ∈ 2.

The conditional orthogonality relation is denoted by 1 ⟂ 2 | 3.

Moreover, we summarise properties of the conditional orthogonality relation as given in Eichler [28], Proposition A.1.

Lemma 2.2. Let 𝑖, 𝑖 = 1,… , 4, be closed linear subspaces of 𝐿2. Then the conditional orthogonality relation defines a semi-graphoid,
i.e., it satisfies the following properties:

(C1) Symmetry: 1 ⟂ 2 | 3 ⇒ 2 ⟂ 1 | 3.
(C2) (De-) Composition: 1 ⟂ 2 | 4 and 1 ⟂ 3 | 4 ⇔ 1 ⟂ 2 ∨ 3 | 4.
(C3) Weak union: 1 ⟂ 2 ∨ 3 | 4 ⇒ 1 ⟂ 2 | 3 ∨ 4.
(C4) Contraction: 1 ⟂ 2 | 4 and 1 ⟂ 3 | 2 ∨ 4 ⇒ 1 ⟂ 2 ∨ 3 | 4.

If (2 ∨4) ∩ (3 ∨4) = 4 holds and 2 ∨3 is separable, then the conditional orthogonality relation defines a graphoid, i.e., additionally
we have:

(C5) Intersection: 1 ⟂ 2 | 3 ∨ 4 and 1 ⟂ 3 | 2 ∨ 4 ⇒ 1 ⟂ 2 ∨ 3 | 4.

Note that the definition of conditional orthogonality reduces to the usual orthogonality when 3 = {0}. For a more detailed
iscussion of the conditional orthogonality relation, we refer to Florens and Mouchart [37], who give the above results in terms of
 general Hilbert space.

Remark 2.3. If (2∨4) ∩ (3∨4) = 4 holds, we say that 2 are 3 conditionally linearly separated by 4 (cf. Eichler [28], p. 348).

2.2. Linear subspaces

To apply the concept of conditional orthogonality to a multivariate stochastic process 𝑌𝑉 , where 𝑉 = {1,… , 𝑘}, we define suitable
closed linear subspaces. Let 𝐴 ⊆ 𝑉 , 𝑠, 𝑡 ∈ [−∞,∞] and 𝑠 ≤ 𝑡. Then we define the closed linear space

𝑌𝐴 (𝑠, 𝑡) ∶= span
{

𝑌𝑎(𝑢) ∶ 𝑎 ∈ 𝐴, 𝑢 ∈ [𝑠, 𝑡] ∩ R
}

4 
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with 𝑌𝐴 (−∞,−∞) ∶= 𝑌𝐴 (∞,∞) ∶= {0} and use the shorthands

𝑌𝐴 (𝑡) ∶= 𝑌𝐴 (−∞, 𝑡), 𝑌𝐴 (−∞) ∶=
⋂

𝑡∈R
𝑌𝐴 (𝑡), 𝑌𝐴 ∶= 𝑌𝐴 (−∞,∞).

Sometimes we use as well the linear space

𝓁𝑌𝐴 (𝑠, 𝑡) ∶= span
{

𝑌𝑎(𝑢) ∶ 𝑎 ∈ 𝐴, 𝑢 ∈ [𝑠, 𝑡] ∩ R
}

,

whose closure is 𝑌𝐴 (𝑠, 𝑡). For further discussion and properties of such linear spaces, we refer to the early works of Cramér
[18,19,20], but also to Rozanov [67], Lindquist and Picci [53], Brockwell and Lindner [11]. Furthermore, in Section 5.1 we
derive sufficient criteria for conditional linear separation and separability of these linear spaces. The next lemma provides the
basic properties of these linear spaces, which we use throughout the paper. The proof is given in the Supplementary Material D.

Lemma 2.4. Let 𝐴, 𝐵 ⊆ 𝑉 , 𝑠, 𝑡 ∈ R, 𝑠 ≤ 𝑡. Then the following statements hold:

(a) 𝑌𝐴 (𝑠) ∨ 𝑌𝐴 (𝑠, 𝑡) = 𝑌𝐴 (𝑡) P-a.s.
(b) 𝑌𝐴 (𝑠, 𝑡) ∨ 𝑌𝐵 (𝑠, 𝑡) = 𝑌𝐴∪𝐵 (𝑠, 𝑡) P-a.s.
(c) 𝑌𝐴 (𝑡) ∨ 𝑌𝐵 (𝑡) = 𝑌𝐴∪𝐵 (𝑡) P-a.s.
(d) ⋃

𝑛∈N 𝑌𝐴 (𝑛) = 𝑌𝐴 P-a.s.

2.3. Mean-square differentiable stationary processes

To compute the mean-square derivative of a stationary continuous-time process 𝑌𝑉 with expectation zero, the following result
f Gihman and Skorokhod [38], IV. §3, Corollary 2 is useful; see as well Brockwell and Lindner [11], Example 5.17 and Doob [25],

XI. §9, Example 1.

Proposition 2.5. Let 𝑌𝑉 be a stationary process with expectation zero, spectral density 𝑓𝑌𝑉 𝑌𝑉 (𝜆), 𝜆 ∈ R, and spectral representation

𝑌𝑉 (𝑡) = ∫

∞

−∞
𝑒𝑖𝜆𝑡𝛷𝑉 (𝑑 𝜆), 𝑡 ∈ R, (2.2)

where 𝛷𝑉 (𝜆) = (𝛷1(𝜆),… , 𝛷𝑘(𝜆))⊤ is a random measure with

E[𝛷𝑉 (𝑑 𝜆)] = 0𝑘 ∈ R𝑘 and E[𝛷𝑉 (𝑑 𝜆)𝛷𝑉 (𝑑 𝜇)
⊤
] = 𝛿𝜆=𝜇𝑓𝑌𝑉 𝑌𝑉 (𝜆)𝑑 𝜆.

Then

l.i.m.
ℎ→0

𝑌𝑉 (𝑡) − 𝑌𝑉 (𝑡 − ℎ)
ℎ

exists if and only if ∫ ∞
−∞ 𝜆2‖𝑓𝑌𝑉 𝑌𝑉 (𝜆)‖ 𝑑 𝜆 < ∞. In this case,

𝐷(1)𝑌𝑉 (𝑡) ∶= l.i.m.
ℎ→0

𝑌𝑉 (𝑡) − 𝑌𝑉 (𝑡 − ℎ)
ℎ

= ∫

∞

−∞
𝑖𝜆𝑒𝑖𝜆𝑡𝛷𝑉 (𝑑 𝜆), 𝑡 ∈ R.

Obviously, by recursion, we receive as well higher derivatives. Note that for a one-dimensional process 𝑌 = (𝑌 (𝑡))𝑡∈R, the
condition ∫ ∞

−∞ 𝜆2|𝑓𝑌 𝑌 (𝜆)| 𝑑 𝜆 < ∞ is equivalent to the existence of 𝑐′′𝑌 𝑌 (0), where 𝑐𝑌 𝑌 (𝑡), 𝑡 ∈ R, is the autocovariance function of 𝑌 .

Remark 2.6. Suppose 𝑌𝑣 is mean-square differentiable for some 𝑣 ∈ 𝑉 . Then

𝐷(1)𝑌𝑣(𝑡) = l.i.m.
ℎ↘0

𝑌𝑣(𝑡) − 𝑌𝑣(𝑡 − ℎ)
ℎ

∈ 𝑌𝑣 (𝑡).

Similarly, we are able to show by induction that if 𝑌𝑣 is 𝑗𝑣-times mean-square differentiable, then 𝐷(𝑗𝑣)𝑌𝑣(𝑡) ∈ 𝑌𝑣 (𝑡).
For more details on stationary processes, we refer to the comprehensive works of Doob [25], Rozanov [67], Lindquist and Picci

53], Brockwell and Lindner [11].

3. Directed influences: Granger causality for stationary continuous-time processes

In this section, we introduce and characterise directed influences between the component series of 𝑌𝑉 using different concepts of
ausality: local Granger causality, Granger causality and global Granger causality, where global Granger non-causality implies Granger
on-causality which in turn implies local Granger non-causality. In Appendix A, we present the proofs of the present section.

The idea of a Granger causal influence of one component series 𝑌𝑎 on another component series 𝑌𝑏 goes back to Granger [40]. In
discrete time, the general idea that one process 𝑌𝑎 is Granger non-causal for another process 𝑌𝑏 is based on the question of whether
the prediction of 𝑌𝑏(𝑡+ 1) based on the information available at time 𝑡 provided by the past and present values of 𝑌𝑉 is diminished by
removing the information provided by the past and present values of 𝑌𝑎. To transfer this approach to the continuous-time setting, we
need to ask what it means to predict a time step into the future. As there is no obvious approach, we present the aforementioned three
different concepts, motivated by other definitions of Granger causality in the literature. The first approach is the direct generalisation
of Eichler [28], Definition 2.2, to continuous-time processes, considering one time step in the future.
5 
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Definition 3.1. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌𝐴 is Granger non-causal for 𝑌𝐵 with respect to 𝑌𝑆 if, for all 𝑡 ∈ R,

𝑌𝐵 (𝑡, 𝑡 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡).

We write 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 .

Remark 3.2. In the definition of Granger causality, we use the time step ℎ = 1 because this is also done for discrete-time processes
in Eichler [28] and it is the natural choice. Of course, it is also plausible to take some step size ℎ > 0 and define that 𝑌𝐴 is Granger
non-causal for 𝑌𝐵 with respect to 𝑌𝑆 by

𝑌𝐵 (𝑡, 𝑡 + ℎ) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R. (3.1)

The results of this paper are straightforwardly transferable to this definition, but for ease of notation we stick to ℎ = 1. For popular
examples such as the MCAR processes, see Remark 6.20, and state space models (Fasen-Hartmann and Schenk [32]), we recognise
that for different ℎ these definitions are even equivalent. However, we believe that for non-linear processes the equivalence is in
general not true anymore, see also Dufour and Renault [26], Kuersteiner [48], Eichler [30].

In the next lemma, we present some equivalent characterisations of Granger causality, for completeness the proof is given in the
Supplementary Material D.

Lemma 3.3. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then the following statements are equivalent:

(a) 𝑌𝐴 𝑌𝐵 | 𝑌𝑆
(b) 𝑌𝐵 (𝑡 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R.
(c) 𝓁𝑌𝐵 (𝑡, 𝑡 + 1) ⟂ 𝓁𝑌𝐴 (−∞, 𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R.
(d) 𝓁𝑌𝑏 (𝑠, 𝑠) ⟂ 𝓁𝑌𝑎 (𝑠

′, 𝑠′) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑠 ∈ [𝑡, 𝑡 + 1], 𝑠′ ≤ 𝑡, 𝑡 ∈ R.

The stationarity assumption is not necessary for the definition of Granger causality and its characterisations and can be neglected
here. We first need it in Section 5, e.g., for the intersection property (C5).

Remark 3.4. The characterisation in Lemma 3.3(b) is analogous to Eichler [28], Definition 2.2. The other characterisations are
seful for checking Granger non-causality. In particular, we have shown implicitly in Lemma 3.3(d) that

𝑌𝐴 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝐴 𝑌𝑏 | 𝑌𝑆 ∀ 𝑏 ∈ 𝐵 . (3.2)

From the characterisations in Lemma 3.3, the idea of Granger non-causality as equality of two predictions, as given, e.g., in Dufour
and Renault [26] for discrete-time processes, is not yet clear. Therefore, we provide another characterisation of Granger non-causality
using orthogonal projections.

Theorem 3.5. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴∩𝐵 = ∅. Then 𝑌𝐴 is Granger non-causal for 𝑌𝐵 with respect to 𝑌𝑆 if for all ℎ ∈ [0, 1], 𝑡 ∈ R, and
𝑏 ∈ 𝐵,

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌𝑏(𝑡 + ℎ) P-a.s.

In other words, the information given by the past process (𝑌𝐴(𝑠), 𝑠 ≤ 𝑡) can be forgotten without any consequences for the optimal
inear prediction of 𝑌𝐵(𝑡 + ℎ) for ℎ ∈ [0, 1]. In particular, since 𝑌𝑆⧵𝐴 (𝑡) ⊆ 𝑌𝑆⧵{𝑎} (𝑡) ⊆ 𝑌𝑆 (𝑡) for any 𝑎 ∈ 𝐴, we receive

𝑌𝐴 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝑎 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 . (3.3)

Under some additional model assumptions the opposite direction is also true. However, this is the topic of Section 5.

Remark 3.6. Florens and Fougère [35], Definition 2.1, and Comte and Renault [15], Definition 1, take a different approach to
efine Granger non-causality in continuous-time, using the equality of conditional expectations instead of orthogonal projections,
nd generated 𝜎-fields instead of generated linear spaces. Comte and Renault [15], Definition 2, also define a local version of

Granger causality, called local instantaneous causality, in the context of semimartingales. In Proposition 1, they further relate it to
he definition of Renault and Szafarz [64], who study first-order stochastic differential equations and define local Granger causality

as the equality of limits of predictions. That is, instead of looking at the entire prediction time interval [𝑡, 𝑡 + 1], they examine
[𝑡, 𝑡+ ℎ] as ℎ → 0. To obtain non-trivial limits, they consider limits of difference quotients of the underlying process. Finally, Comte
and Renault [15] discuss in detail in Section 2.5 that the highest existing derivative of the process must always be examined to obtain
a non-trivial criterion which is the motivation for our approach. Therefore, in the style of their characterisation of local Granger
causality and our Theorem 3.5, we define the following version of local Granger causality which is, as we derive in Lemma 3.13,
weaker as Granger causality.

Definition 3.7. Suppose 𝑌𝑣 = (𝑌𝑣(𝑡))𝑡∈R is 𝑗𝑣-times mean-square differentiable but the (𝑗𝑣 + 1)-derivative does not exist for 𝑣 ∈ 𝑉 .
The 𝑗 -derivative is denoted by 𝐷(𝑗𝑣)𝑌 , where for 𝑗 = 0 we define 𝐷(0)𝑌 = 𝑌 . Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌 is local
𝑣 𝑣 𝑣 𝑣 𝑣 𝐴

6 
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Granger non-causal for 𝑌𝐵 with respect to 𝑌𝑆 if, for all 𝑡 ∈ R and 𝑏 ∈ 𝐵,

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝑆⧵𝐴 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

P-a.s.

We write 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 .

Remark 3.8.
(a) Since 𝑌𝑏 is by assumption not (𝑗𝑏 + 1)-times mean-square differentiable, the 𝐿2-limit of (𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝐷(𝑗𝑏)𝑌𝑏(𝑡))∕ℎ does not

exist. However, it is still possible that the 𝐿2-limit of

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

and 𝑃𝑌𝑆∖𝐴 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

(3.4)

exist and only then local Granger non-causality is possible.
(b) Typical examples of stochastic processes that are 𝑝-times but not (𝑝 + 1)-times mean-square differentiable and the 𝐿2-limit in

(3.4) for 𝑗𝑎 = 𝑗𝑏 = 𝑝 exist are MCAR(𝑝) processes (Section 6) and the more general class of state space models (Fasen-Hartmann
and Schenk [32]). In addition, fractional MCAR processes also satisfy these assumptions (Comte and Renault [15], Marquardt
[55]).

Remark 3.9. By definition we receive

𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝐴 0 𝑌𝑏 | 𝑌𝑆 ∀ 𝑏 ∈ 𝐵 . (3.5)

Moreover, for 𝑎 ∈ 𝐴, the subset relation 𝑌𝑆⧵𝐴 (𝑡) ⊆ 𝑌𝑆⧵{𝑎} (𝑡) ⊆ 𝑌𝑆 (𝑡) implies

𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 . (3.6)

Again, the opposite direction is valid under some additional assumption, see Section 5.
Local Granger causality implies a kind of local version of conditional orthogonality.

Theorem 3.10. Suppose 𝑌𝑣 = (𝑌𝑣(𝑡))𝑡∈R is 𝑗𝑣-times mean-square differentiable but the (𝑗𝑣+ 1)-derivative does not exist for 𝑣 ∈ 𝑉 . Further,
let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 implies that, for all 𝑌 𝐴 ∈ 𝑌𝐴 (𝑡) and 𝑡 ∈ R,

lim
ℎ→0

1
ℎ
E

[

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)(

𝑌 𝐴 − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌 𝐴
)

]

= 0.

A third concept of directed influence is to consider causality up to an arbitrary horizon. In discrete time, the concept of causality
t any horizon goes back to the seminal work of Sims [71] and is also called Sims causality. We introduce the following definition
s a generalisation of Eichler [28], Definition 4.4, to continuous-time processes.

Definition 3.11. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌𝐴 is global Granger non-causal for 𝑌𝐵 with respect to 𝑌𝑆 if, for all ℎ ≥ 0
and 𝑡 ∈ R,

𝑌𝐵 (𝑡, 𝑡 + ℎ) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡).

We write 𝑌𝐴 ∞ 𝑌𝐵 | 𝑌𝑆 .
The study of such long-run effects is a useful complement to understanding the relationship between the component series and

llows us to distinguish between short-run and long-run causality.

Remark 3.12. The characterisations are similar to those for Granger causality. In particular, 𝑌𝐴 is global Granger non-causal for
𝑌𝐵 with respect to 𝑌𝑆 , if and only if, for all ℎ ≥ 0, 𝑡 ∈ R and 𝑏 ∈ 𝐵,

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌𝑏(𝑡 + ℎ) P-a.s. (3.7)

On the one hand, note that the proof is similar to the proof of Theorem 3.5 and on the other hand, that analogue relationships
as in (3.2) and (3.3) hold. The characterisation (3.7) is again consistent with the characterisation in Dufour and Renault [26] for
iscrete-time processes and with the definition of global Granger causality in Comte and Renault [15], who use generated 𝜎-fields

instead of linear spaces and conditional expectations instead of orthogonal projections. Of course, for Gaussian processes, the two
efinitions coincide.

In the following lemma, we state relations between Granger non-causality, local Granger non-causality and global Granger non-
causality. See again Dufour and Renault [26], Eichler [30], Kuersteiner [48] for the relations between the different definitions for
discrete-time processes.
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Lemma 3.13. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then the following implications hold:

(a) 𝑌𝐴 ∞ 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 .
(b) 𝑌𝐴 ∞ 𝑌𝑆⧵𝐴 | 𝑌𝑆 ⇔ 𝑌𝐴 𝑌𝑆⧵𝐴 | 𝑌𝑆 .
(c) 𝑌𝐴 𝑌𝑆⧵𝐴 | 𝑌𝑆 ⇒ 𝑌𝐴 ∞ 𝑌𝐵 | 𝑌𝑆 .
(d) 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 .

Remark 3.14. The opposite direction in Lemma 3.13(a) does not hold in general. Dufour and Renault [26], p. 1106, present
a counterexample in discrete time and explain the lack of equivalence between Granger non-causality and global Granger non-
ausality as follows. If there are auxiliary components, 𝑌𝐴 might not help to predict 𝑌𝐵 given 𝑌𝑆 one step ahead but 𝑌𝐴 might help

to predict 𝑌𝐵 given 𝑌𝑆 several periods ahead. For example, the values of 𝑌𝐴 up to time 𝑡 may help to predict 𝑌𝐵 (𝑡 + 1, 𝑡 + 2), even
though they are useless to predict 𝑌𝐵 (𝑡, 𝑡 + 1), because 𝑌𝐴 may help to predict the environment one period ahead, which in turn
influences 𝑌𝐴 at a subsequent period. Therefore, it is also not surprising that we have equivalence in the case without environment
in Lemma 3.13(b). This holds in particular for every bivariate process, i.e.,

𝑌𝑎 𝑌𝑏 | 𝑌{𝑎,𝑏} ⇔ 𝑌𝑎 ∞ 𝑌𝑏 | 𝑌{𝑎,𝑏}.

The similarities and differences between the various definitions of Granger causality can also be seen in examples, so we examine
rnstein–Uhlenbeck processes. In particular, we see that the opposite direction of Lemma 3.13(d) does not generally hold.

Example 3.15. Suppose 𝑌𝑉 = (𝑌𝑉 (𝑡))𝑡∈R is an Ornstein–Uhlenbeck process driven by a two-sided 𝑘-dimensional Lévy process
(𝐿(𝑡))𝑡∈R. An one-sided Lévy process (𝐿(𝑡))𝑡≥0 is an R𝑘-valued stochastic process with 𝐿(0) = 0𝑘 P-a.s., stationary and independent
increments and càdlàg sample paths. Now, 𝐿 = (𝐿(𝑡))𝑡∈R is obtained from two independent copies (𝐿1(𝑡))𝑡≥0 and (𝐿2(𝑡))𝑡≥0 of a
one-sided Lévy process via 𝐿(𝑡) = 𝐿1(𝑡) if 𝑡 ≥ 0 and 𝐿(𝑡) = − lim𝑠↗−𝑡 𝐿2(𝑠) if 𝑡 < 0. We assume that the Lévy process has a finite
second moment with 𝛴𝐿 ∶= E[𝐿(1)𝐿(1)⊤] and expectation zero. Suppose further that 𝐀 ∈𝑀𝑘(R) with 𝜎(𝐀) ⊆ (−∞, 0) + 𝑖R. Then the
stochastic differential equation

𝑑 𝑌𝑉 (𝑡) = 𝐀𝑌𝑉 (𝑡)𝑑 𝑡 + 𝑑 𝐿(𝑡)
has the unique stationary solution 𝑌𝑉 given by

𝑌𝑉 (𝑡) = ∫

𝑡

−∞
𝑒𝐀(𝑡−𝑢)𝑑 𝐿(𝑢), 𝑡 ∈ R.

The process 𝑌𝑉 is called (causal) Ornstein–Uhlenbeck process (cf. Masuda [57]). For the Ornstein–Uhlenbeck process, we derive in
Section 6, in the more general context of (causal) MCAR processes, that

𝑌𝑎 ∞ 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔ [𝐀𝛼]𝑎𝑏 = 0, 𝛼 = 1,… , 𝑘 − 1,
𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ⇔ [𝐀]𝑎𝑏 = 0.

Of course,

𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇒ [𝐀𝛼]𝑎𝑏 = 0, 𝛼 = 1,… , 𝑘 − 1 ⇒ [𝐀]𝑎𝑏 = 0 ⇒ 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ,

but the opposite direction does not generally hold, an exception is the case where 𝐀 is a diagonal matrix. A specific counterexample
s the Ornstein–Uhlenbeck process with

𝐀 =
⎛

⎜

⎜

⎝

-2 0 0
0 −2 1
1 1 −2

⎞

⎟

⎟

⎠

and 𝛴𝐿 =
⎛

⎜

⎜

⎝

1 0 1/2
0 1 0

1∕2 0 1

⎞

⎟

⎟

⎠

, (3.8)

which is the underlying stochastic process of Fig. 1. Here, 𝑌1 0 𝑌2 | 𝑌{1,2,3} but 𝑌1 𝑌2 | 𝑌{1,2,3}. It is clear from the example
that Granger non-causality is much stronger than local Granger non-causality, and that in general there is no equivalence. Note
that the special structure of 𝛴𝐿 does not play a role in these directed influences, but the covariance structure has an impact on the
undirected influences which we will define in the next section.

4. Undirected influences: Contemporaneous correlation for stationary continuous-time processes

In this section, we introduce and characterise undirected influences between the component series of 𝑌𝑉 using different concepts
of contemporaneous correlation. The idea is simple: There is no undirected influence between 𝑌𝑎 and 𝑌𝑏, if and only if, given the
amount of information provided by the past of 𝑌𝑉 up to time 𝑡, 𝑌𝑎 and 𝑌𝑏 are uncorrelated in the future. Again, we need to specify
what we mean by the future in continuous time. The first definition is a generalisation of Eichler [28], Definition 2.2, in discrete
ime, to continuous time, looking at the entire time interval [𝑡, 𝑡 + 1].

Definition 4.1. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌𝐴 and 𝑌𝐵 are contemporaneously uncorrelated with respect to 𝑌𝑆 if, for all
∈ R,

𝑌𝐴 (𝑡, 𝑡 + 1) ⟂ 𝑌𝐵 (𝑡, 𝑡 + 1) | 𝑌𝑆 (𝑡).

We write 𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝑆 .
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Remark 4.2. Similarly, as for the definition of Granger causality, we defined contemporaneous uncorrelation by using the step
size ℎ = 1. However, it is also possible to use some arbitrary but fixed step size ℎ > 0 and define it via

𝑌𝐴 (𝑡, 𝑡 + ℎ) ⟂ 𝑌𝐵 (𝑡, 𝑡 + ℎ) | 𝑌𝑆 (𝑡) ∀ 𝑡 ∈ R. (4.1)

The choice of ℎ has no effect on the characterisation of the undirected influences in certain models; see Remark 6.20 for MCAR
processes and Fasen-Hartmann and Schenk [32] for state space models. Again, we believe that this is generally not true for non-linear
processes.

Unlike Granger causality, contemporaneous correlation is symmetric, reflecting an undirected influence. By analogy with
Lemma 3.3, we obtain the following equivalent characterisations of contemporaneous uncorrelation. Since the proof is very similar,
it is not given here. Again, the stationarity assumption is not necessary for the definition of contemporaneous uncorrelation and its
characterisations, it can be neglected.

Lemma 4.3. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then the following characterisations are equivalent:

(a) 𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝑆 .
(b) 𝑌𝐴 (𝑡 + 1) ⟂ 𝑌𝐵 (𝑡 + 1) | 𝑌𝑆 (𝑡) ∀ 𝑡 ∈ R.
(c) 𝓁𝑌𝐴 (𝑡, 𝑡 + 1) ⟂ 𝓁𝑌𝐵 (𝑡, 𝑡 + 1) | 𝑌𝑆 (𝑡) ∀ 𝑡 ∈ R.
(d) 𝓁𝑌𝑎 (𝑠, 𝑠) ⟂ 𝓁𝑌𝑏 (𝑠

′, 𝑠′) | 𝑌𝑆 (𝑡) ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑠, 𝑠′ ∈ [𝑡, 𝑡 + 1], 𝑡 ∈ R.

Remark 4.4. In the following, we make some remarks about Lemma 4.3(d).

(a) In Lemma 4.3(d), we have implicitly shown that

𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ,
which is useful for the verification of contemporaneous uncorrelation.

(b) Given our Lemma 4.3(d) and Eichler [28], Definition 2.2, it would also be plausible to define contemporaneous uncorrelation
by 𝓁𝑌𝑎 (𝑠, 𝑠) ⟂ 𝓁𝑌𝑏 (𝑠, 𝑠) |𝑌𝑆 (𝑡) ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑠 ∈ [𝑡, 𝑡+ 1], 𝑡 ∈ R. In this case, however, no global Markov property can be shown
in the associated orthogonality graph (cf. Section 5), since the evidences rely heavily on Definition 4.1 and Lemma 2.2.

Similar to Granger non-causality, a characterisation of contemporaneous uncorrelation can be given, which allows for an
interpretation as the correspondence of two linear predictions.

Theorem 4.5. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩𝐵 = ∅. Then 𝑌𝐴 and 𝑌𝐵 are contemporaneously uncorrelated with respect to 𝑌𝑆 , if and only if,
for all 𝑏 ∈ 𝐵, ℎ ∈ [0, 1], and 𝑡 ∈ R,

𝑃𝑌𝑆 (𝑡)∨𝑌𝐴 (𝑡,𝑡+1)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) P-a.s.

In words, the linear prediction of the information about 𝑌𝐵 in the near future based on 𝑌𝑆 (𝑡) cannot be improved by adding
urther information about 𝑌𝐴 in the near future (and vice versa). The proof is again similar to the proof of Theorem 3.5 and we

therefore skip the details.
To define a local version of contemporaneous uncorrelation, note that the characterisation in Lemma 4.3(b) means that for any

𝑌 𝐴 ∈ 𝑌𝐴 (𝑡 + 1) and 𝑌 𝐵 ∈ 𝑌𝐵 (𝑡 + 1)

E
[

(

𝑌 𝐴 − 𝑃𝑌𝑆 (𝑡)𝑌
𝐴
)(

𝑌 𝐵 − 𝑃𝑌𝑆 (𝑡)𝑌 𝐵
)

]

= 0. (4.2)

So the motivation for the local version is that instead of taking all 𝑌 𝐴 ∈ 𝑌𝐴 (𝑡+ 1), we use only the highest derivative 𝐷(𝑗𝑎)𝑌𝑎(𝑡+ ℎ)
for each 𝑎 ∈ 𝐴 and consider ℎ→ 0, similarly for 𝑌𝐵 (𝑡 + 1). To get non-trivial limits we also have to divide by ℎ.

Definition 4.6. Suppose 𝑌𝑣 = (𝑌𝑣(𝑡))𝑡∈R is 𝑗𝑣-times mean-square differentiable but the (𝑗𝑣 + 1)-derivative does not exist for 𝑣 ∈ 𝑉 .
Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴∩𝐵 = ∅. Then 𝑌𝐴 and 𝑌𝐵 are locally contemporaneously uncorrelated with respect to 𝑌𝑆 if, for all 𝑡 ∈ R, 𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵,

lim
ℎ→0

1
ℎ
E
[

(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑆 (𝑡)𝐷
(𝑗𝑎)𝑌𝑎(𝑡 + ℎ)

)(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)
)

]

= 0.

We write 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑆 .

Remark 4.7.
(a) Due to the definition, we receive directly

𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ,
which is useful for verifying local contemporaneous uncorrelation.
9 
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(b) Definition 4.6 is similar to the characterisation of local contemporaneous uncorrelation for semimartingales in Comte and
Renault [15], Proposition 3, using linear predictions instead of conditional expectations and 𝜎-fields instead of linear spaces.
But Comte and Renault [15] assume additionally that the martingale part of the semimartingale is continuous, excluding
Lévy-Itô processes that are not Brownian motion driven, such as Lévy-driven Ornstein–Uhlenbeck processes.

(c) To give an equivalent characterisation as an equality of projections, restrictions on the linear derivative spaces are necessary.
Thus, we do not include these characterisations here. Sufficient, however, is in any case that for all 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
√

ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)∨𝑎(𝑡,𝑡+ℎ)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
√

ℎ

)

P-a.s.

Finally, we introduce a global concept of contemporaneous correlation, in analogy to global Granger causality, to discuss
short-run vs. long-run effects.

Definition 4.8. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then 𝑌𝐴 and 𝑌𝐵 are globally contemporaneously uncorrelated with respect to 𝑌𝑆 if,
for ℎ ≥ 0 and 𝑡 ∈ R,

𝑌𝐴 (𝑡, 𝑡 + ℎ) ⟂ 𝑌𝐵 (𝑡, 𝑡 + ℎ) | 𝑌𝑆 (𝑡).
We write 𝑌𝐴 ≁∞ 𝑌𝐵 | 𝑌𝑆 .

Remark 4.9. Again, projections can be used to characterise the global contemporaneous uncorrelation. Precisely, 𝑌𝐴 and 𝑌𝐵 are
lobally contemporaneously uncorrelated with respect to 𝑌𝑆 , if and only if, for all 𝑏 ∈ 𝐵, 0 ≤ ℎ′ ≤ ℎ, ℎ ≥ 0, and 𝑡 ∈ R

𝑃𝑌𝑆 (𝑡)∨𝑌𝐴 (𝑡,𝑡+ℎ)𝑌𝑏(𝑡 + ℎ′) = 𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ′) P-a.s.

The proof is similar to the proof of Theorem 4.5 and is therefore not included in the paper. Also, the analogue statements
to Remark 4.4 hold.

It is obvious that, by definition and due to Remark 2.6 and (4.2), the following relations between the three definitions of
contemporaneous uncorrelation are valid.

Lemma 4.10. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then the following implications hold:

(a) 𝑌𝐴 ≁∞ 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝑆 .
(b) 𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝑆 ⇒ 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑆 .

The similarities and differences between the various definitions again become apparent when looking at examples. In particular,
e derive that the opposite direction in Lemma 4.10(b) does not hold in general.

Example 4.11. Suppose 𝑌𝑉 is the Ornstein–Uhlenbeck process as defined in Example 3.15 with 𝐀 and 𝛴𝐿 as in (3.8). Then we
derive in Section 6 that

𝑌𝑎 ≁∞ 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇔ [𝐀𝛼𝛴𝐿(𝐀⊤)𝛽 ]𝑎𝑏 = 0, 𝛼 , 𝛽 = 0,… , 𝑘 − 1,
𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ⇔ [𝛴𝐿]𝑎𝑏 = 0.

Of course, we obtain

𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇒ [𝐀𝛼𝛴𝐿(𝐀⊤)𝛽 ]𝑎𝑏 = 0, 𝛼 , 𝛽 = 0,… , 𝑘 − 1 ⇒ [𝛴𝐿]𝑎𝑏 = 0 ⇒ 𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ,

but the opposite direction does not generally hold, in turn, an exception is the case where 𝐀 is a diagonal matrix. A specific
ounterexample is again the Ornstein–Uhlenbeck process from Example 3.15, which we see in Fig. 1. Here, 𝑌1 ≁0 𝑌2 | 𝑌{1,2,3} but
𝑌1 ∼ 𝑌2 | 𝑌{1,2,3}.

5. Orthogonality graphs for stationary continuous-time processes

In this section, we introduce graphical models for stationary, mean-square continuous processes 𝑌𝑉 = (𝑌𝑉 (𝑡))𝑡∈R. These graphical
models visualise directed as well as undirected relations between the different component series 𝑌𝑣 = (𝑌𝑣(𝑡))𝑡∈R, 𝑣 = 1,… , 𝑘. The
vertices represent the different component series 𝑌𝑣, 𝑣 = 1,… , 𝑘, of the process. Furthermore, they are connected by directed and
undirected edges, which represent certain directional and non-directional influences between them. The arising graphical models
are then called (mixed) orthogonality graphs.

5.1. Separability and conditional linear separation

For the definition of the graphical models, we first ensure that the conditional orthogonality relation satisfies the property of
intersection (C5) in Lemma 2.2 for suitable linear subspaces and second, we show that the missing relations in (3.3) and (3.6) hold.
Therefore, we investigate separability and conditional linear separation of linear spaces. The proofs of the lemmata of this subsection
are the subject of the Supplementary Material E, and the proofs of the propositions and theorems are content of Appendix B.1.
10 
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Lemma 5.1. Let 𝐴 ⊆ 𝑉 and 𝑠, 𝑡 ∈ R with 𝑠 < 𝑡. Then 𝑌𝐴 , 𝑌𝐴 (𝑡) and 𝑌𝐴 (𝑠, 𝑡) are separable.

Furthermore, we require that 𝑌𝐴 (𝑡) and 𝑌𝐵 (𝑡) are conditionally linearly separated by 𝑌𝐶 (𝑡) if 𝑡 ∈ R and 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 are disjoint.
This assumption is a lot more intricate because it is a very abstract definition and difficult to verify.

Remark 5.2. Unlike us, Eichler [29] uses conditional independence instead of conditional orthogonality. For the associated
ntersection property (C5) measurable conditional separation is required, corresponding to our conditional linear separation assumption.
here, measurable conditional separation is also generally not valid, and sufficient assumptions are given.

To better understand conditional linear separation, we introduce a sufficient criterion.

Lemma 5.3. Let 𝑡 ∈ R. Suppose that for all 𝐴, 𝐵 ⊆ 𝑉 with 𝐴 ∩ 𝐵 = ∅ we have

𝑌𝐴 (𝑡) ∩ 𝑌𝐵 (𝑡) = {0} and 𝑌𝐴 (𝑡) + 𝑌𝐵 (𝑡) = 𝑌𝐴 (𝑡) ∨ 𝑌𝐵 (𝑡) P-a.s.

Then, for all disjoint subsets 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 , we get

𝑌𝐴∪𝐶 (𝑡) ∩ 𝑌𝐵∪𝐶 (𝑡) = 𝑌𝐶 (𝑡) P-a.s.

The first assumption is the linear independence of the two linear spaces, the second assumption is the closedness of the sum.
t makes little sense to formulate these two properties as assumptions on 𝑌𝑉 , as they are still too abstract and difficult to verify.

Therefore, we provide an easy-to-use criterion.

Assumption 1. Suppose 𝑌𝑉 has a spectral density matrix 𝑓𝑌𝑉 𝑌𝑉 (⋅) > 0 and that there exists an 0 < 𝜀 < 1, such that

𝑑𝐴𝐵(𝜆) ∶= 𝑓𝑌𝐴𝑌𝐴 (𝜆)
−1∕2𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)

−1𝑓𝑌𝐵𝑌𝐴 (𝜆)𝑓𝑌𝐴𝑌𝐴 (𝜆)
−1∕2 ≤𝐿 (1 − 𝜀)𝐼𝛼 ,

for almost all 𝜆 ∈ R and for all disjoint subsets 𝐴, 𝐵 ⊆ 𝑉 with #𝐴 = 𝛼.

For 𝐴 = {𝑎} the function 𝑑𝐴𝐵(𝜆), 𝜆 ∈ R, is called multiple coherence; we refer to Priestley [63], Brillinger [7] for further reading.
Assumption 1 is satisfied, e.g., for stationary causal MCAR processes and in particular Ornstein–Uhlenbeck processes, for details see
ection 6, and for the more general family of state space models see Fasen-Hartmann and Schenk [32]. In our opinion, even fractional

MCAR processes satisfy this assumption. Furthermore, the assumption is indeed sufficient for conditional linear separability.

Proposition 5.4. Let 𝑌𝑉 satisfy Assumption 1. Then for all 𝑡 ∈ R and disjoint subsets 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 , we have

𝑌𝐴 (𝑡) ∩ 𝑌𝐵 (𝑡) = {0}, 𝑌𝐴 (𝑡) + 𝑌𝐵 (𝑡) = 𝑌𝐴 (𝑡) ∨ 𝑌𝐵 (𝑡), and 𝑌𝐴∪𝐶 (𝑡) ∩ 𝑌𝐵∪𝐶 (𝑡) = 𝑌𝐶 (𝑡) P-a.s.

Recall that in Theorem 3.10 we already assume the closedness of the sum, and now Proposition 5.4 gives a sufficient criterion
for this property.

Remark 5.5. First of all, 𝑑𝐴𝐵(𝜆) ≤𝐿 𝐼𝛼×𝛼 holds even without Assumption 1. Indeed, suppose 𝛷𝐵(⋅) is the random spectral measure
from the spectral representation of 𝑌𝐵 in (2.2), then the spectral density matrix of

𝜀𝐴|𝐵(𝑡) = 𝑌𝐴(𝑡) − ∫

∞

−∞
𝑒𝑖𝜆𝑡𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)

−1𝛷𝐵(𝑑 𝜆)

is

𝑓𝜀𝐴|𝐵𝜀𝐴|𝐵 (𝜆) = 𝑓𝑌𝐴𝑌𝐴 (𝜆) − 𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)−1𝑓𝑌𝐵𝑌𝐴 (𝜆),
and it is non-negative definite according to Brockwell and Davis [9], p. 436. Furthermore, Assumption 1 especially forbids some
purely linear relationships between the components, which can be seen as follows. Assume that 𝑑𝐴𝐵(𝜆) = 𝐼𝛼 for almost all 𝜆 ∈ R.

hen 𝑓𝜀𝐴|𝐵𝜀𝐴|𝐵 (𝜆) = 0𝛼 for almost all 𝑡 ∈ R and thus, 𝑐𝜀𝐴|𝐵𝜀𝐴|𝐵 (𝑡) = 0𝛼 for all 𝑡 ∈ R. Therefore, 𝜀𝐴|𝐵(𝑡) = 0𝛼 P-a.s. and 𝑌𝐴(𝑡) is already
 linear transformation of 𝑌𝐵(𝑡). Somewhat loosely, one could say that Assumption 1 not only forbids a purely linear relationship

between 𝑌𝐴 and 𝑌𝐵 but already requires some kind of distance between the subprocesses due to the uniform boundedness. This also
fits with Brillinger [7], eq. (8.3.10), who calls the matrix function 𝑑𝐴𝐵(𝜆) in discrete-time a measure of the linear association of 𝑌𝐴
nd 𝑌𝐵 at frequency 𝜆.

Remark 5.6. Let us compare Assumption 1 with Eichler [28], Eq. (2.1), who proposes a comparable assumption on the spectral
density matrix in discrete time, also with the aim that the property of intersection (C5) is valid. Eichler [28] demands the existence
of a constant 𝑐 > 1, such that the spectral density matrix satisfies

1
𝑐
𝐼𝑘 ≤𝐿 𝑓𝑌𝑉 𝑌𝑉 (𝜆) ≤𝐿 𝑐 𝐼𝑘, (5.1)

for all 𝜆 ∈ [−𝜋 , 𝜋]. If this assumption is fulfilled, some matrix algebra calculations as in the proof of Lemma F.1 give that for any
isjoint subsets 𝐴, 𝐵 ⊆ 𝑉 ,

𝑓𝑌𝐴𝑌𝐴 (𝜆) − 𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)−1𝑓𝑌𝐵𝑌𝐴 (𝜆) ≥𝐿
1
𝑐
𝐼𝛼 ≥𝐿

1
𝑐2
𝑓𝑌𝐴𝑌𝐴 (𝜆).
11 
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Thus, on the interval [−𝜋 , 𝜋] Assumption 1 is satisfied with 𝜀 = 1∕𝑐2. However, Eichler [28]’s assumption is stricter than ours since
one must be able to place a diagonal matrix between 1∕𝑐2𝑓𝑌𝐴𝑌𝐴 (𝜆) and 𝑓𝑌𝐴𝑌𝐴 (𝜆) − 𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)−1𝑓𝑌𝐵𝑌𝐴 (𝜆). We further point out
that we cannot generalise Eichler [28]’s assumption directly to continuous-time processes by assuming (5.1) for almost all 𝜆 ∈ R.
This requirement is too strict and, e.g., not satisfied for Ornstein–Uhlenbeck processes.

Assumption 1 now ensures, as desired, that the conditional orthogonality relation satisfies the property of intersection (C5) in
Lemma 2.2 for suitable linear subspaces. Assumption 1 further provides us with the missing relations of the causality concepts in
3.3) and (3.6).

Proposition 5.7. Let 𝑌𝑉 satisfy Assumption 1. Let 𝐴, 𝐵 ⊆ 𝑆 ⊆ 𝑉 and 𝐴 ∩ 𝐵 = ∅. Then

(a) 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝑎 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.
(b) 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.
(c) 𝑌𝐴 ∞ 𝑌𝐵 | 𝑌𝑆 ⇔ 𝑌𝑎 ∞ 𝑌𝑏 | 𝑌𝑆 ∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.

However, for the proof of the global Andersson, Madigan and Perlman (AMP) Markov property in our orthogonality graph,
e require further assumptions. Any process that is wide sense stationary can be uniquely decomposed in a deterministic and a
urely non-deterministic process that are mutually orthogonal (Gladyshev [39], Theorem 1). From the point of view of applications,

deterministic processes are not important. Therefore, we assume that the given process is purely non-deterministic.

Assumption 2. Let 𝑌𝑉 be purely non-deterministic, that is 𝑌𝑉 (−∞) = {0} P-a.s.

Necessary and sufficient conditions for processes being purely non-deterministic can be found, e.g., in Gladyshev [39], Theorem
3, Rozanov [67], III, Theorem 2.4, Matveev [58], Theorem 1. Typical examples are MCAR processes and the more general class of
state space models whose driving Lévy process has expectation zero.

Finally, we can deduce the following property from Assumptions 1 and 2, which we require for the proof of the global AMP
Markov property. The property further stands in analogy to assumption (M) on 𝜎-fields in Eichler [29] and equation (2.4) in Eichler
[27]. Note that these assumptions are stronger than our Assumptions 1 and 2 and quite difficult to verify.

Lemma 5.8. Let 𝑌𝑉 satisfy Assumptions 1 and 2. Let 𝐴 ⊆ 𝑉 and 𝑡 ∈ R. Then
⋂

𝑘∈N

(

𝑌𝐴 (𝑡 − 𝑘) ∨ 𝑌𝑉 ⧵𝐴
(𝑡)
)

= 𝑌𝑉 ⧵𝐴
(𝑡) P-a.s. (5.2)

Note that Assumptions 1 and 2 are not necessary assumptions for the following Markov properties to hold. Sufficient and weaker
ssumptions are the conditional linear separation and (5.2), both are satisfied under Assumptions 1 and 2.

5.2. Introduction to (local) orthogonality graphs

Let us now visualise suitable concepts of directed and undirected influences in graphical models. In principle, it is possible to
define a graph with any of the three definitions of Granger causality and contemporaneous correlation. However, our goal is to
define a graph with concepts that are as strong as necessary, but as weak as possible, so that the usual Markov properties for mixed
graphs hold. For MCAR processes, global Granger causality and Granger causality as well as global contemporaneous uncorrelation
and contemporaneous uncorrelation coincide (see Section 6) and therefore we do not discuss a global graph.

Definition 5.9. Let 𝑌𝑉 satisfy Assumptions 1 and 2.

(a) If we define 𝑉 = {1,… , 𝑘} as the vertices and the edges 𝐸𝑂 𝐺 via

(i) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇔ 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ,
(ii) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇔ 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ,

for 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏, then 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) is called (mixed) orthogonality graph for 𝑌𝑉 .
(b) If we define 𝑉 = {1,… , 𝑘} as the vertices and the edges 𝐸0

𝑂 𝐺 via

(i) 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔ 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ,

(ii) 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔ 𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ,

for 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏, then 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) is called local (mixed) orthogonality graph for 𝑌𝑉 .

In words, in both graphs each vertex 𝑣 ∈ 𝑉 represents one component series 𝑌𝑣. Two vertices 𝑎 and 𝑏 are joined by a directed
edge 𝑎 𝑏 whenever 𝑌𝑎 is (local) Granger causal for 𝑌𝑏 and by an undirected edge 𝑎 𝑏 whenever 𝑌𝑎 and 𝑌𝑏 are (locally)
ontemporaneously correlated given 𝑌𝑉 . We make some remarks on those graphical models.
12 
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Remark 5.10.
(a) The motivation for the name (local) orthogonality graph arises from the fact that both the directed and undirected edges

are defined by specific (local) conditional orthogonality relations. For a concise notation, we omit the word conditional.
Furthermore, the name (local) orthogonality graph is also analogous to the local independence graph (Didelez [21,22,23],
Mogensen and Hansen [59,60]). The graphical models are further named mixed orthogonality graphs because they contain
two types of edges. Since we do not usually consider purely directed or undirected graphs, we omit the prefix mixed for
ease of notation. Note that the orientation of the directed edge makes a difference and multiple edges of the same type and
orientation are not allowed. Thus, two vertices 𝑎 and 𝑏 can be connected by up to three edges, namely 𝑎 𝑏, 𝑎 𝑏 and
𝑎 𝑏, as can also be seen in Fig. 1.

(b) The Assumptions 1 and 2 as well as the stationarity and the mean square continuity are not necessary for the definition of the
graphs, but they are essential for the usual Markov properties to hold. Wide sense stationarity is a basic requirement, otherwise,
e.g., Assumption 1 is not well-defined, which is a sufficient assumption for conditional linear separation. The mean square
continuity and Assumption 1 will already be used for the first time in the proof of the local Markov property. Assumption 2
is only required in the proof of the global AMP Markov property. Since we show global Markov properties for the local
orthogonality graph only in special cases, Assumption 2 is not necessary there.

(c) We already know that 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 directly implies 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 and similarly 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 also gives 𝑎 𝑏 ∉ 𝐸0

𝑂 𝐺.
In summary, 𝐸0

𝑂 𝐺 ⊆ 𝐸𝑂 𝐺, the graph defined by the local versions of Granger causality and contemporaneous correlation has
fewer edges than the graph 𝐺𝑂 𝐺 based on the classical Granger causality and contemporaneous correlation, and in general the
graphs are not equal. Again, this can be seen in Fig. 1. The advantage of the graph 𝐺0

𝑂 𝐺 based on the local version is that it
allows to model more general graphs than 𝐺𝑂 𝐺.

(d) In Definition 5.9, we have defined the orthogonality graph and the local orthogonality graph. Of course, it is also possible to
define the global orthogonality graph based on global Granger causality and global contemporaneous correlation, but this is not
part of this work. There are various reasons for this. On the one hand, the sparsity structure of the global orthogonality graph
is very weak. The global orthogonality graph has even more edges than the orthogonality graph and the local orthogonality
graph. Moreover, the orthogonality graph already satisfies the global AMP Markov and the global Markov property, as we are
going to derive later in Section 5.3.2. These Markov properties can easily be transferred to the global orthogonality graph, the
proofs are even easier. On the other hand, in specific models such as MCAR processes and state space models, Granger causality
corresponds to global Granger causality, and contemporaneous correlation corresponds to contemporaneous correlation (cf.
Remark 6.20), so that the global orthogonality graph is equal to the orthogonality graph and does not give any additional
information.

5.3. Markov properties of (local) orthogonality graphs

The (local) orthogonality graph decodes directed and undirected relations between component series of the process 𝑌𝑉 .
Conversely, a mixed graph can be associated with a set of constraints imposed on the stochastic process 𝑌𝑉 . Such a set of causal
relations encoded by a graph is commonly known as a Markov property of the graph (cf. Lauritzen [50], Whittaker [74]). In this
section, we introduce various levels of Markov properties. We start with the pairwise, local and block-recursive Markov properties.
We then move on to two global Markov properties, namely the global AMP Markov property and the global Markov property.

5.3.1. Pairwise, local and block-recursive Markov property
Let us start with a few simple Markov properties that we expect from a graph. First of all, the (local) orthogonality graph

visualises pairwise relationships between the components of a process 𝑌𝑉 by definition, that is the pairwise Markov property.

Proposition 5.11.
(a) Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the pairwise Markov property with respect to 𝐺𝑂 𝐺, i.e., for

all 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏:

(i) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇒ 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ,
(ii) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇒ 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 .

(b) Let 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) be the local orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the pairwise Markov property with respect to 𝐺0
𝑂 𝐺.

Further, define pa(𝑎) = {𝑣 ∈ 𝑉 | 𝑣 𝑎 ∈ 𝐸} and ne(𝑎) = {𝑣 ∈ 𝑉 | 𝑣 𝑎 ∈ 𝐸} as the set of parents and neighbours of 𝑎 ∈ 𝑉 ,
espectively. If we consider a vertex 𝑎 ∈ 𝑉 , then all vertices 𝑏 ∈ 𝑉 ⧵ (pa(𝑎) ∪ {𝑎}) are Granger non-causal for 𝑎, i.e., 𝑌𝑏 𝑌𝑎 | 𝑌𝑉 .

A direct consequence of Proposition 5.7(a) is then that 𝑌𝑉 ⧵(pa(𝑎)∪{𝑎}) 𝑌𝑎 | 𝑌𝑉 holds. The same applies to neighbours of 𝑎 and the
components being contemporaneously uncorrelated. Let 𝑎 ∈ 𝑉 and 𝑏 ∈ 𝑉 ⧵ (ne(𝑎) ∪ {𝑎}), then 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 and 𝑌𝑏 ≁ 𝑌𝑎 | 𝑌𝑉 .
Remark 4.4 yields 𝑌𝑉 ⧵(ne(𝑎)∪{𝑎}) ≁ 𝑌𝑎 | 𝑌𝑉 . This is the local Markov property. The same arguments work for the local orthogonality
raph using Proposition 5.7(b) and Remark 4.7, respectively.
13 
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Proposition 5.12.
(a) Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the local Markov property with respect to 𝐺𝑂 𝐺, i.e., for all

𝑎 ∈ 𝑉 :

(i) 𝑌𝑉 ⧵(pa(𝑎)∪{𝑎}) 𝑌𝑎 | 𝑌𝑉 ,
(ii) 𝑌𝑉 ⧵(ne(𝑎)∪{𝑎}) ≁ 𝑌𝑎 | 𝑌𝑉 .

(b) Let 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) be the local orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the local Markov property with respect to 𝐺0
𝑂 𝐺.

Furthermore, let pa(𝐴) = ⋃

𝑎∈𝐴 pa(𝑎) and ne(𝐴) = ⋃

𝑎∈𝐴 ne(𝑎) denote the set of all parents and neighbours of vertices in 𝐴 ⊆ 𝑉 .
gain, we expect components that are not parents of 𝐴 to be Granger non-causal for 𝐴 and components that are not neighbours
f 𝐴 to be contemporaneously uncorrelated to 𝐴. This is the block-recursive Markov property and it also follows directly from

Proposition 5.7, Remark 4.4 and Remark 4.7.

Proposition 5.13.
(a) Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the block-recursive Markov property with respect to 𝐺𝑂 𝐺,

i.e., for all 𝐴 ⊆ 𝑉 :

(i) 𝑌𝑉 ⧵(pa(𝐴)∪𝐴) 𝑌𝐴 | 𝑌𝑉 ,
(ii) 𝑌𝑉 ⧵(ne(𝐴)∪𝐴) ≁ 𝑌𝐴 | 𝑌𝑉 .

(b) Let 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) be the local orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the block-recursive Markov property with respect to
𝐺0
𝑂 𝐺.

In our (local) orthogonality graph all three Markov properties are fulfilled. Thus, for example, using the local Markov property,
we can infer from Fig. 1 that 𝑌{2,3} 𝑌1|𝑌{1,2,3} and 𝑌{2,3} 0 𝑌1|𝑌{1,2,3}. However, the validity of Markov properties is not
self-evident. For more information, see Eichler [29], Theorem 2.1 and Definition 2.3, who proposes to specify graphical time series

odels that satisfy the block-recursive Markov property as graphical time series models. For the visualisation of the various Markov
roperties at more complex examples than the one in Fig. 1, we also refer to Eichler [29], Example 2.1.

5.3.2. Global Markov properties for the orthogonality graph 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺)
The three Markov properties we have discussed so far only encode relations with respect to 𝑌𝑉 . However, for a better

nderstanding of the causal structure, we are interested in relations with respect to partial information. An intuitive analysis of
orthogonality graphs suggests that paths between vertices may be associated with relations between corresponding components
given only the information provided by a subprocess. To this end, we first introduce the global AMP Markov property of Andersson
et al. [2], Definition 6, which relates paths in a graph to conditional orthogonality relations between variables. We then introduce
the global Markov property, which provides sufficient criteria for Granger non-causality and contemporaneous uncorrelation. As
we have to make additional assumptions for the local orthogonality graph, the results for the local model are presented in the next
subsection, and here we only consider the orthogonality graph.

Let us start with the global AMP Markov property, where for 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 disjoint, the fact that 𝐴 and 𝐵 are separated given
𝑆 implies that 𝐴 and 𝐵 are conditionally orthogonal given 𝑆 . But there are two main approaches to defining separation. The
first approach is based on the path-oriented criterion ‘‘𝑚-separation’’. The second approach uses separation in undirected graphs
by applying the operation of augmentation or moralisation to appropriate subgraphs (Eichler [28], Section 3). Since the second
approach to defining a global Markov property is not straightforward in the sense that the graph is modified during the test, we just
iscuss the concept of 𝑚-separation and refer to Fasen-Hartmann and Schenk [33], who compare the augmented causality graph, the

augmentation of the causality graph, with the path diagram, an undirected graphical model for continuous-time stationary processes.
To define the latter, we start with some definitions from graph theory, which can be found in Eichler [28,29].

Definition 5.14. Let 𝐺 = (𝑉 , 𝐸) be a mixed graph. A path 𝜋 between two vertices 𝑎 and 𝑏 is a sequence 𝜋 = ⟨𝑒1,… , 𝑒𝑛⟩ of edges
𝑒𝑖 ∈ 𝐸, such that 𝑒𝑖 is an edge between 𝑣𝑖−1 and 𝑣𝑖 for some sequence of vertices 𝑎 = 𝑣0, 𝑣1,… , 𝑣𝑛 = 𝑏. We say that 𝑎 and 𝑏 are the
endpoints of the path, while 𝑣1,… , 𝑣𝑛−1 are intermediate vertices. 𝑛 is called length of the path. An intermediate vertex 𝑐 on a path
𝜋 is said to be a collider on the path, if the edges preceding and succeeding 𝑐 on the path both have an arrowhead or a dashed tail
at 𝑐, i.e., 𝑐 , 𝑐 , 𝑐 , 𝑐 . Otherwise the vertex 𝑐 is said to be a non-collider on the path. A path 𝜋
etween vertices 𝑎 and 𝑏 is said to be 𝑚-connecting given a set 𝑆 if

(a) every non-collider on the path is not in 𝑆, and
(b) every collider on the path is in 𝑆,

otherwise we say the path is 𝑚-blocked given 𝑆. If all paths between 𝑎 and 𝑏 are 𝑚-blocked given 𝑆, then 𝑎 and 𝑏 are said to be
𝑚-separated given 𝑆. Similarly, sets 𝐴 and 𝐵 are said to be 𝑚-separated in 𝐺 given 𝑆, denoted by 𝐴 ⋈𝑚 𝐵 | 𝑆 [𝐺], if for every pair
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, 𝑎 and 𝑏 are 𝑚-separated given 𝑆.
14 
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The 𝑚-separation is the natural extension of the 𝑑-separation for directed graphs (cf. Pearl [61]) to mixed graphs (cf. Richardson
[65]), and was earlier also called 𝑑-separation by Spirtes et al. [72], Koster [47]. Since we consider mixed graphs, which are generally
not directed, we prefer the notion of 𝑚-separation. For a motivation and visualisation of the respective definitions, we also refer to
hese papers. Note that condition (a) differs from the original definition of 𝑚-connecting paths in Richardson [65] and takes into
ccount that we consider paths that can intersect themselves, as in Eichler [28]. Nevertheless, the concepts of 𝑚-separation here

and in Richardson [65] are equivalent. In contrast, Eichler [29] uses another natural extension of 𝑑-separation, called 𝑝-separation
nd introduced by Levitz et al. [52] for chain graphs, where 𝑐 is considered a non-collider. Let us present the main result,
he global AMP Markov property.

Theorem 5.15. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the global AMP Markov property with respect
to 𝐺𝑂 𝐺, i.e., for all disjoint subsets 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 ,

𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺𝑂 𝐺] ⇒ 𝑌𝐴 ⟂ 𝑌𝐵 | 𝑌𝐶 .

In words, if the sets 𝐴 and 𝐵 are 𝑚-separated given 𝐶, then 𝑌 𝐴 ∈ 𝑌𝐴 and 𝑌 𝐵 ∈ 𝑌𝐵 are uncorrelated after removing all of the
linear) information provided by 𝑌𝐶 . A visualisation of the global AMP Markov property at a typical mixed graph is illustrated
n Eichler [29], Example 2.1, which can also be found in several of his articles. The proof of Theorem 5.15 is structured into three

auxiliary statements that culminate in the actual proof, see Appendix B.2. Note that in the latter we need Assumption 2 for the first
time.

Remark 5.16. Similar statements can be found, e.g., in Eichler [27], Theorem 4.8, Eichler [28], Theorem 3.1 or Eichler [29],
Theorem 4.1. However, the graphs defined there are based on different definitions of the edges and on processes in discrete time.

he definition of the undirected edges in Eichler [29] further differs from our definition. The linear continuous-time analogue of
is definition is that 𝑌𝐴 (𝑡, 𝑡+ 1) ⟂ 𝑌𝐵 (𝑡, 𝑡+ 1) |𝑌𝑆 (𝑡) ∨𝑆⧵(𝐴∪𝐵)(𝑡, 𝑡+ 1). Still most of the proofs can be carried over because it makes
o difference whether one adds 𝑆⧵(𝐴∪𝐵)(𝑡, 𝑡 + 1) or not.

The concept of 𝑚-separation provides a sufficient criterion for conditional orthogonality. However, we would also like to derive
sufficient graphical conditions for Granger non-causality and processes being contemporaneously uncorrelated. An obvious first idea
would be to start again with 𝑚-separation. However, this condition is stronger than necessary. A motivating example to only consider
paths that point in the ‘‘right’’ direction is provided by Eichler [28], p. 341. We introduce further graph-theoretic notions and then
rovide the main result.

Definition 5.17. Let 𝐺 = (𝑉 , 𝐸) be a mixed graph. A path 𝜋 between vertices 𝑎 and 𝑏 is called 𝑏-pointing if it has an arrowhead at
he endpoint 𝑏. More generally, a path 𝜋 between 𝐴 and 𝐵 is said to be 𝐵-pointing if it is 𝑏-pointing for some 𝑏 ∈ 𝐵. Furthermore,
 path 𝜋 between vertices 𝑎 and 𝑏 is said to be bi-pointing if it has an arrowhead at both endpoints 𝑎 and 𝑏.

Theorem 5.18. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Then 𝑌𝑉 satisfies the global Markov property with respect to 𝐺𝑂 𝐺,
i.e., for all disjoint subsets 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 the following conditions hold:

(a) If every 𝐵-pointing path in 𝐺𝑂 𝐺 between 𝐴 and 𝐵 is 𝑚-blocked given 𝐵 ∪ 𝐶 then 𝑌𝐴 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 .
(b) If 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, and if every bi-pointing path in 𝐺𝑂 𝐺 between 𝐴 and 𝐵 is 𝑚-blocked given 𝐴 ∪𝐵 ∪𝐶, then

𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 .

A similar result in discrete time can be found in Eichler [28], Theorems 4.1 and 4.2, and Eichler [29], Theorem 4.2. For the
visualisation of the global AMP Markov property at some mixed graph, we also refer to Eichler [29], Example 2.1. Because of the
properties of a graphoid in Lemma 2.2, the block-recursive Markov property in Proposition 5.13 and Lemma B.2, the proof can be
carried out similarly as in Eichler [28,29], respectively, and is therefore skipped.

As a consequence of the global Markov property, we find that the 𝑚-separation 𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺𝑂 𝐺] is indeed too strong implying
causality in both directions between 𝑌𝐴 and 𝑌𝐵 as well as their contemporaneous uncorrelation. We refer to Eichler [29], Corollary
4.1, and Eichler [28], Corollary 4.3 for the proof.

Corollary 5.19. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 and let 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 be disjoint subsets. Then 𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺𝑂 𝐺]
implies

𝑌𝐴 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 , 𝑌𝐵 𝑌𝐴 | 𝑌𝐴∪𝐵∪𝐶 , and 𝑌𝐴 ≁ 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 .

5.3.3. Global Markov properties for the local orthogonality graph 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺)
For the local orthogonality graph, the global Markov properties are, as expected, much more difficult due to the weaker definition

of the edges. However, we still derive sufficient graphical conditions for local Granger non-causality and local contemporaneous
uncorrelation. At least under additional assumptions, the property of 𝑚-separation implies local Granger non-causality in both
directions between 𝑌𝐴 and 𝑌𝐵 , and that they are locally contemporaneously uncorrelated. We start with a special case where
𝐶 = 𝑉 ⧵ (𝐴 ∪ 𝐵). The proofs of this subsection are given in Appendix B.3.
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Proposition 5.20. Let 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) be the local orthogonality graph for 𝑌𝑉 and 𝐴, 𝐵 ⊆ 𝑉 with 𝐴 ∩ 𝐵 = ∅. Then 𝐴 ⋈𝑚
𝐵 | 𝑉 ⧵ (𝐴 ∪ 𝐵) [𝐺0

𝑂 𝐺] implies

𝑌𝐴 0 𝑌𝐵 | 𝑌𝑉 , 𝑌𝐵 0 𝑌𝐴 | 𝑌𝑉 , and 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑉 .

We consider a second special case where the block-recursive Markov property already leads to local Granger non-causality and
ocal contemporaneous uncorrelation.

Proposition 5.21. Let 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) be the local orthogonality graph for 𝑌𝑉 and let 𝐴, 𝐵 , 𝐶 ⊆ 𝑉 be disjoint subsets. Suppose
pa(𝐴) ∪ pa(𝐵) ⊆ 𝐴 ∪ 𝐵 ∪ 𝐶. Then 𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺0

𝑂 𝐺] implies

𝑌𝐴 0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 , 𝑌𝐵 0 𝑌𝐴 | 𝑌𝐴∪𝐵∪𝐶 , and 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 .

Remark 5.22.
(a) an(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝐴 ∪ 𝐵 ∪ 𝐶 implies pa(𝐴) ∪ pa(𝐵) ⊆ 𝐴 ∪ 𝐵 ∪ 𝐶. Therefore, we also have a graphical condition for non-causality

and contemporaneous uncorrelation for ancestral subsets.
(b) pa(𝐵) ⊆ 𝐴 ∪ 𝐵 ∪ 𝐶 is sufficient for 𝑌𝐴 0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 .

For the proof of Proposition 5.21, we need the left decomposition property of local Granger non-causality.

Lemma 5.23. Let 𝐴, 𝐵 , 𝐶 , 𝐷 ⊆ 𝑉 be disjoint subsets. Then

𝑌𝐴∪𝐵 0 𝑌𝐶 | 𝑌𝐴∪𝐵∪𝐶∪𝐷 ⇒ 𝑌𝐴 0 𝑌𝐶 | 𝑌𝐴∪𝐶∪𝐷.

Remark 5.24.
(a) The right decomposition property, which is that

𝑌𝐴 0 𝑌𝐵∪𝐶 | 𝑌𝐴∪𝐵∪𝐶∪𝐷 ⇒ 𝑌𝐴 0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐷

cannot be expected. This can be explained as follows: It is possible that 𝑌𝐴 is non-causal for 𝑌𝐵∪𝐶 given 𝑌𝐴∪𝐵∪𝐶∪𝐷, since the
corresponding information of 𝑌𝐴 is already present in 𝑌𝐶 . However, if 𝑌𝐶 is omitted, there may be causal influence of 𝑌𝐴 on
𝑌𝐵 . This topic has been addressed, e.g., by Didelez [21] in the context of directed graphs.

(b) The lack of right decomposability is the key problem when trying to derive the global Markov property from the block-recursive
Markov property. In the case that 𝐴 ∪ 𝐵 ∪ 𝐶 ⊂ 𝑉 , Corollary 1 and Proposition 2 of Koster [47] yield

𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺0
𝑂 𝐺] ⇔ 𝐴′ ⋈𝑚 𝐵

′
| 𝐶 [𝐺0

𝑂 𝐺 ,an(𝐴∪𝐵∪𝐶)],

for disjoint subsets 𝐴′ and 𝐵′ with 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ and 𝐴′ ∪𝐵′ ∪𝐶 = an(𝐴∪𝐵 ∪𝐶) as in the proof of Theorem 5.15. According
to Proposition 5.20, we can conclude

𝑌𝐴′ 0 𝑌𝐵′ | 𝑌𝐴′∪𝐵′∪𝐶 , 𝑌𝐵′ 0 𝑌𝐴′ | 𝑌𝐴′∪𝐵′∪𝐶 and 𝑌𝐴′ ≁0 𝑌𝐵′ | 𝑌𝐴′∪𝐵′∪𝐶 ,

in [𝐺0
𝑂 𝐺 ,an(𝐴∪𝐵∪𝐶)]. Since the definition of local Granger non-causality and local contemporaneous uncorrelation does not

depend on whether we choose the subgraph with vertices in 𝐴′ ∪𝐵′ ∪𝐶 or the whole graph with vertices in 𝑉 , the statements
also hold for [𝐺0

𝑂 𝐺]. But to obtain from this, e.g., 𝑌𝐴 0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 , we not only need the left decomposability but also the
right decomposability.

6. Orthogonality graphs for MCAR processes

To gain a deeper understanding of the theoretical concept of a (local) orthogonality graph, we apply the graphical models to the
class of causal MCAR processes. We not only give theoretical results but also interpret them and relate them to the results of Eichler
[28] in discrete time. First, we give a brief introduction to MCAR processes and show that they satisfy the assumptions of the (local)
orthogonality graph. We then derive linear predictors of MCAR processes, which we require to characterise the edges; which is the
ultimate goal of this section. The details of the proofs of this section are moved to Appendix C.

6.1. MCAR processes

A multivariate 𝑘-dimensional continuous-time AR (MCAR) process is a continuous-time version of the well-known vector AR
(VAR) process in discrete time. The driving process is a 𝑘-dimensional Lévy process (𝐿(𝑡))𝑡∈R as defined in Example 3.15 and satisfies
the following assumption throughout the paper.

Assumption 3. The two-sided Lévy process 𝐿 = (𝐿(𝑡))𝑡∈R satisfies E𝐿(1) = 0𝑘 and E‖𝐿(1)‖2 <∞ with 𝛴𝐿 = E[𝐿(1)𝐿(1)⊤].
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The idea is then that a 𝑘-dimensional MCAR(𝑝) process is the solution of the stochastic differential equation

𝑃 (𝐷)𝑌 (𝑡) = 𝐷 𝐿(𝑡) for 𝑡 ∈ R, (6.1)

where 𝐷 is the differential operator with respect to 𝑡 and

𝑃 (𝜆) ∶= 𝐼𝑘𝜆
𝑝 + 𝐴1𝜆

𝑝−1 +⋯ + 𝐴𝑝, 𝜆 ∈ C, (6.2)

is the autoregressive polynomial, respectively with 𝐴1,… , 𝐴𝑝 ∈ 𝑀𝑘(R). However, this is not the formal definition of an MCAR
rocess, since a Lévy process is not differentiable. The formal definition of a Lévy-driven causal MCAR process used here goes back

to Marquardt and Stelzer [56], Definition 3.20. However, one-dimensional Gaussian CARMA processes were already investigated
y Doob [24] (cf. Doob [25]) and Lévy-driven CARMA processes were propagated by Peter Brockwell at the beginning of this century,
ee Brockwell [8], Brockwell and Lindner [11] for an overview. Very early Gaussian MCAR processes were already studied in the
conomics literature, e.g., in Harvey and Stock [42,43,44] and were further explored in the well-known paper of Bergstrom [4].

Definition 6.1. Let (𝐿(𝑡))𝑡∈R be a two sided 𝑘-dimensional Lévy process. Further, let 𝐀 ∈𝑀𝑘𝑝(R), 𝑝 ≥ 1 with 𝜎(𝐀) ⊆ (−∞, 0) + 𝑖R,
such that

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0𝑘 𝐼𝑘 0𝑘 ⋯ 0𝑘
0𝑘 0𝑘 𝐼𝑘 ⋱ ⋮
⋮ ⋱ ⋱ 0𝑘
0𝑘 ⋯ ⋯ 0𝑘 𝐼𝑘
−𝐴𝑝 −𝐴𝑝−1 ⋯ ⋯ −𝐴1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐁⊤ = (0𝑘,… , 0𝑘, 𝐼𝑘) ∈𝑀𝑘×𝑘𝑝(R) and 𝐂 = (𝐼𝑘, 0𝑘,… , 0𝑘) ∈𝑀𝑘×𝑘𝑝(R). Then the process 𝑌𝑉 = (𝑌𝑉 (𝑡))𝑡∈R given by

𝑌𝑉 (𝑡) = 𝐂𝑋(𝑡),

where 𝑋 = (𝑋(𝑡))𝑡∈R is the unique 𝑘𝑝-dimensional stationary solution of the state equation

𝑑 𝑋(𝑡) = 𝐀𝑋(𝑡)𝑑 𝑡 + 𝐁𝑑 𝐿(𝑡), (6.3)

is called (causal) MCAR(𝑝) process.
Indeed, if 𝑝 = 1, the MCAR(1) process corresponds to the Ornstein–Uhlenbeck process of Example 3.15. We summarise important

properties of causal MCAR processes used in this paper. Details are given in Marquardt and Stelzer [56], Schlemm and Stelzer [68].

Lemma 6.2. Let 𝑌𝑉 be a causal MCAR(𝑝) process. Then the following results hold:

(a) The unique stationary solution 𝑋 of the state Eq. (6.3) has the representation

𝑋(𝑡) = ∫

𝑡

−∞
𝑒𝐀(𝑡−𝑢)𝐁𝑑 𝐿(𝑢), 𝑡 ∈ R,

and

𝑋(𝑡) = 𝑒𝐀(𝑡−𝑠)𝑋(𝑠) + ∫

𝑡

𝑠
𝑒𝐀(𝑡−𝑢)𝐁𝑑 𝐿(𝑢), 𝑠, 𝑡 ∈ R, 𝑠 < 𝑡.

(b) We denote the 𝑗-th 𝑘-block of 𝑋 by

𝑋(𝑗)(𝑡) =
⎛

⎜

⎜

⎝

𝑋(𝑗−1)𝑘+1(𝑡)
⋮

𝑋𝑗 𝑘(𝑡)

⎞

⎟

⎟

⎠

, 𝑡 ∈ R, 𝑗 = 1,… , 𝑝, (6.4)

such that 𝑋(𝑡) = (𝑋(1)(𝑡)⊤,… , 𝑋(𝑝)(𝑡)⊤)⊤, 𝑡 ∈ R. Suppose 𝛷𝐿(⋅) is the 𝑘-dimensional random orthogonal measure of the Lévy process
𝐿, i.e,

𝛷𝐿([𝑎, 𝑏)) = ∫

∞

−∞

𝑒−𝑖𝜆𝑎 − 𝑒−𝑖𝜆𝑏
2𝜋 𝑖𝜆 𝑑 𝐿(𝜆), −∞ < 𝑎 < 𝑏 < ∞,

with spectral measure 𝐹𝐿(𝑑 𝜆) = 𝛴𝐿∕2𝜋 𝑑 𝜆 and E(𝛷𝐿([𝑎, 𝑏))) = 0𝑘. Then

𝑋(𝑗)(𝑡) = ∫

∞

−∞
𝑒𝑖𝜆𝑡(𝑖𝜆)𝑗−1𝑃 (𝑖𝜆)−1𝛷𝐿(𝑑 𝜆), 𝑡 ∈ R,

and in particular, 𝑌𝑉 (𝑡) = 𝑋(1)(𝑡) = ∫ ∞
−∞ 𝑒𝑖𝜆𝑡𝑃 (𝑖𝜆)−1𝛷𝐿(𝑑 𝜆), 𝑡 ∈ R.

(c) The covariance function (𝑐𝑋 𝑋 (𝑡))𝑡∈R of 𝑋 is

𝑐𝑋 𝑋 (𝑡) = 𝑐𝑋 𝑋 (−𝑡)⊤ = E[𝑋(𝑡 + ℎ)𝑋(ℎ)
⊤
] = 𝑒𝐀𝑡𝛤 (0), 𝑡 ≥ 0, (6.5)

where 𝛤 (0) = ∫ ∞
0 𝑒𝐀𝑢𝐁𝛴𝐿𝐁⊤𝑒𝐀

⊤𝑢𝑑 𝑢 satisfies

𝐀𝛤 (0) + 𝛤 (0)𝐀⊤ = −𝐁𝛴𝐿𝐁⊤. (6.6)
17 



V. Fasen-Hartmann and L. Schenk

p

S

Stochastic Processes and their Applications 179 (2025) 104501 
(d) The spectral density of the causal MCAR process 𝑌𝑉 is

𝑓𝑌𝑉 𝑌𝑉 (𝜆) =
1
2𝜋
𝑃 (𝑖𝜆)−1𝛴𝐿

(

𝑃 (−𝑖𝜆)−1
)⊤ = 1

2𝜋
𝐂
(

𝑖𝜆𝐼𝑘𝑝 − 𝐀
)−1 𝐁𝛴𝐿𝐁⊤

(

−𝑖𝜆𝐼𝑘𝑝 − 𝐀⊤
)−1 𝐂⊤, 𝜆 ∈ R.

We point out some more properties that we use later in the paper.

Remark 6.3.
(a) If 𝛴𝐿 > 0, then 𝑐𝑋 𝑋 (0) > 0. Indeed, 𝐁 is of full rank and thus the assumptions of Schlemm and Stelzer [68], Corollary 3.9, are

satisfied.
(b) Since the matrix exponential is continuous, we have 𝑐𝑋 𝑋 (𝑡) → 𝑐𝑋 𝑋 (0) for 𝑡 → 0. Now, 𝑐𝑌𝑉 𝑌𝑉 (⋅) corresponds to the upper left

𝑘× 𝑘 block of 𝑐𝑋 𝑋 (⋅). Thus, 𝑐𝑌𝑉 𝑌𝑉 (𝑡) → 𝑐𝑌𝑉 𝑌𝑉 (0) for 𝑡→ 0. Cramér [17], Lemma 1, then gives that the causal MCAR process 𝑌𝑉
is mean-square continuous.

For the definition of the local orthogonality graph and, in particular, the local Granger non-causality and the local contempora-
neous uncorrelation, respectively, we need some knowledge about the existence and the description of the mean-square derivatives
of the MCAR process. Therefore, we note the following.

Remark 6.4. Due to the spectral representation of 𝑋(𝑗) given in (6.4), we directly obtain the spectral density

𝑓𝑋(𝑗)𝑋(𝑗) (𝜆) = 1
2𝜋

(𝑖𝜆)𝑗−1𝑃 (𝑖𝜆)−1𝛴𝐿(𝑃 (−𝑖𝜆)−1)⊤(−𝑖𝜆)𝑗−1, 𝜆 ∈ R.

Therefore, it holds that ∫ ∞
−∞ 𝜆2‖𝑓𝑋(𝑗)𝑋(𝑗) (𝜆)‖ 𝑑 𝜆 < ∞ for 𝑗 = 1,… , 𝑝 − 1, but ∫ ∞

−∞ 𝜆2‖𝑓𝑋(𝑝)𝑋(𝑝) (𝜆)‖ 𝑑 𝜆 = ∞. Thus, a conclusion of
Proposition 2.5 is that the process 𝑋(𝑗) is mean-square differentiable with derivative

𝐷(1)𝑋(𝑗)(𝑡) = 𝑋(𝑗+1)(𝑡), 𝑗 = 1,… , 𝑝 − 1, (6.7)

while for 𝑋(𝑝) the mean-square derivative does not exist. With 𝑌𝑉 (𝑡) = 𝑋(1)(𝑡) in mind, we receive iteratively from (6.7) that 𝑌𝑉 is
(𝑝 − 1)-times mean-square differentiable with

𝐷(𝑗)𝑌𝑉 (𝑡) = 𝑋(𝑗+1)(𝑡), 𝑗 = 1,… , 𝑝 − 1, (6.8)

but the 𝑝-th derivative does not exist. By the same arguments, we receive that for any component 𝑌𝑣, 𝑣 ∈ 𝑉 , of 𝑌𝑉 there is no
derivative higher than (𝑝 − 1).

6.2. Orthogonality graph for MCAR processes

In the following, we verify that the (local) orthogonality graph for the MCAR process is well-defined. Therefore, we have to
check that the Assumptions 1 and 2 are satisfied.

Proposition 6.5. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0. Then 𝑌𝑉 satisfies Assumptions 1 and 2.

The proof of Assumption 1 is elaborate, using results from matrix analysis and functional analysis (Bernstein [5], Bhatia [6],
Bühler and Salamon [12]), and is therefore presented in the Supplementary Material F. However, the basic idea is simple. Note,
𝛴𝐿 > 0 results in 𝑓𝑌𝑉 𝑌𝑉 (⋅) > 0. On the one hand, we prove that an epsilon bound can always be found on compact intervals.
On the other hand, the matrix function converges to a boundary matrix which can also be bounded. Together this then gives
Assumption 1. The proof of Assumption 2 is also given in the Supplementary Material F and is based on a characterisation of
urely non-deterministic processes by limits of orthogonal projections. It was expected that the MCAR(𝑝) process would satisfy this

assumption since in our case the driving Lévy process has no drift term. Since Assumptions 1 and 2 hold, a direct consequence of
ection 5 is then the following.

Proposition 6.6. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0. If we define 𝑉 = {1,… , 𝑘} as the vertices and the edges 𝐸𝑂 𝐺 via

(i) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇔ 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ,
(ii) 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇔ 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ,

for 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏, then the orthogonality graph 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) for the MCAR process 𝑌𝑉 is well-defined and satisfies the pairwise, local,
block-recursive, global AMP and global Markov property.

If we look at the local orthogonality graph, we also get the following from Section 5.
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Proposition 6.7. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0. If we define 𝑉 = {1,… , 𝑘} as the vertices and the edges 𝐸0
𝑂 𝐺 via

(i) 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔ 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ,

(ii) 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔ 𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ,

for 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏, then the local orthogonality graph 𝐺0
𝑂 𝐺 = (𝑉 , 𝐸0

𝑂 𝐺) for the MCAR process 𝑌𝑉 is well-defined and satisfies the pairwise,
local and block-recursive Markov property. Furthermore, the statements of Propositions 5.20 and 5.21 hold.

6.3. Prediction of MCAR processes

To characterise the different Granger causalities and contemporaneous correlations as is done, e.g., in Theorems 3.5 and 4.5,
respectively, we need to compute the linear predictions of the MCAR process and its derivatives on the different subspaces. To do
this, we first give a suitable representation for 𝑌𝑣(𝑡 + ℎ). Appendix C.1 contains all proofs of this subsection.

Lemma 6.8. Let 𝑌𝑉 be a causal MCAR(𝑝) process. Further, let 𝑡 ∈ R, ℎ ≥ 0, and 𝑣 ∈ 𝑉 . Then

𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂𝑒
𝐀ℎ

𝑝
∑

𝑗=1
𝐄𝑗𝐷(𝑗−1)𝑌𝑉 (𝑡) + 𝑒⊤𝑣𝐂∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) P-a.s.

From this representation of 𝑌𝑣(𝑡+ℎ) we conclude that on the one hand, the past (𝑌𝑉 (𝑠), 𝑠 ≤ 𝑡) of all components and on the other
and, the future of the Lévy process (𝐿(𝑡+ ℎ) −𝐿(𝑠), 𝑡 ≤ 𝑠 ≤ 𝑡+ ℎ) are relevant for 𝑌𝑣(𝑡+ ℎ). Based on this knowledge, we specify the
rthogonal projections.

Proposition 6.9. Let 𝑌𝑉 be a causal MCAR(𝑝) process. Further, let 𝑡 ∈ R, ℎ ≥ 0, 𝑆 ⊆ 𝑉 , and 𝑣 ∈ 𝑉 . Then

𝑃𝑌𝑆 (𝑡)𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂𝑒
𝐀ℎ ∑

𝑠∈𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) + 𝑒⊤𝑣𝐂𝑒𝐀ℎ

∑

𝑠∈𝑉 ⧵𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝑃𝑌𝑆 (𝑡)𝐷

(𝑗−1)𝑌𝑠(𝑡) P-a.s.

According to Lemma 6.8, the basic idea of the proof is simple: 𝑌𝑠(𝑡) and its derivatives are already in 𝑌𝑆 (𝑡) (see Remark 2.6)
and are therefore projected onto themselves. Additionally, 𝜎(𝑌𝑆 (𝑠) ∶ 𝑠 ≤ 𝑡) and 𝜎(𝐿(𝑡+ℎ) −𝐿(𝑠) ∶ 𝑡 ≤ 𝑠 ≤ 𝑡+ℎ) are independent and
thus, 𝑒⊤𝑣𝐂 ∫ 𝑡+ℎ𝑡 𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) is projected on zero.

Remark 6.10. For 𝑆 = 𝑉 we get the explicit representation

𝑃𝑌𝑉 (𝑡)𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂𝑒
𝐀ℎ ∑

𝑠∈𝑉

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) = 𝑒⊤𝑣𝐂𝑒

𝐀ℎ𝑋(𝑡),

as in Brockwell and Lindner [10] for univariate CARMA processes. For an explicit representation in the case 𝑆 ⊂ 𝑉 the methods
n Rozanov [67], III, 5, can be applied but this is quite elaborate.

Next, we calculate the projections of 𝐷(𝑝−1)𝑌𝑉 , which we require for the characterisation of local Granger causality and local
ontemporaneous correlation.

Lemma 6.11. Let 𝑌𝑉 be a causal MCAR(𝑝) process. Further, let 𝑡 ∈ R, ℎ ≥ 0, 𝑆 ⊆ 𝑉 , and 𝑣 ∈ 𝑉 . Then

𝑃𝑌𝑆 (𝑡)
(

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) −𝐷(𝑝−1)𝑌𝑣(𝑡)
)

= 𝑒⊤𝑣𝐄
⊤
𝑝
(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)
∑

𝑠∈𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) + 𝑒⊤𝑣𝐄⊤𝑝

(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

∑

𝑠∈𝑉 ⧵𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝑃𝑌𝑆 (𝑡)𝐷

(𝑗−1)𝑌𝑠(𝑡) P-a.s.

and

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑝−1)𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐄

⊤
𝑝 ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) P-a.s.

6.4. Characterisation of the directed and undirected influences for the MCAR process

In this subsection, we focus on criteria for the directed and undirected influences for causal MCAR(𝑝) processes. All proofs
of this subsection are carried out in Appendix C.2. We start with a characterisation of (local) Granger causality for an MCAR
process, which is well suited for interpretation and for comparison with Eichler [28] in discrete time. The proofs are based on
the characterisation of (local) Granger causality in Theorem 3.5 using the orthogonal projections from Section 6.3. Note that for
the definition of local Granger causality and local contemporaneous correlation, we use that all components of 𝑌𝑉 are (𝑝− 1)-times

ean square differentiable, but the 𝑝-th derivative does not exist (cf. Remark 6.4), so that 𝑗 = 𝑝 − 1 for any 𝑣 ∈ 𝑉 .
𝑣
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Proposition 6.12. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0. Further, let 𝑎, 𝑏 ∈ 𝑉 and 𝑎 ≠ 𝑏. Then the following holds.

(a) 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔
[

𝐂𝑒𝐀ℎ𝐄𝑗
]

𝑏𝑎 =
[

𝑒𝐀ℎ
]

𝑏 𝑘(𝑗−1)+𝑎 = 0 ∀ℎ ∈ [0, 1], 𝑗 = 1,… , 𝑝.
(b) 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ⇔

[

𝐄⊤𝑝𝐀𝐄𝑗
]

𝑏𝑎
=
[

𝐴𝑗
]

𝑏𝑎 = 0 ∀ j=1,. . . ,p.

These characterisations of (local) Granger causality are convenient since we no longer need to compute and compare orthogonal
rojections. Moreover, the deterministic criteria depend only on the state transition matrix 𝐀 and not on the driving Lévy process.

Let us now move on to contemporaneous uncorrelation and also give a first characterisation specifically related to the structure
f an MCAR(𝑝) process. Similar to Proposition 6.12, the proof is based on the characterisation of contemporaneous uncorrelation
y orthogonal projections from Section 6.3 and (4.2).

Proposition 6.13. Let 𝑌𝑉 be a causal MCAR(𝑝) process. Further, let 𝑎, 𝑏 ∈ 𝑉 and 𝑎 ≠ 𝑏. Then the following holds.

(a) 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇔
[

∫ min(ℎ,ℎ̃)
0 𝐂𝑒𝐀(ℎ−𝑢)𝐁𝛴𝐿𝐁⊤𝑒𝐀

⊤(ℎ̃−𝑢)𝐂⊤𝑑 𝑢
]

𝑎𝑏
= 0 ∀ℎ, ℎ̃ ∈ [0, 1].

(b) 𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ⇔
[

𝛴𝐿
]

𝑎𝑏 = 0.

Remark 6.14.
(a) Comte and Renault [15] investigate non-stationary Brownian motion driven MCAR processes on local Granger causality

and local instantaneous causality, which are similar to our concepts of local Granger causality and local contemporaneous
correlation. In their Proposition 20, Comte and Renault [15] obtain that 𝑌𝑎 does not locally Granger cause 𝑌𝑏 if and only if
[

𝐴𝑗
]

𝑏𝑎 = 0, for 𝑗 = 1,… , 𝑝, as in our Proposition 6.12. Furthermore, there is no local instantaneous causality between 𝑌𝑎 and 𝑌𝑏
if and only if [𝛴𝐿

]

𝑎𝑏 = 0, as in Proposition 6.13 for the local orthogonality graph. Statements about local Granger causality and
local instantaneous causality for subprocesses under possible partial information, as we present with the Markov properties in
Section 5.3, are not available there.

(b) Furthermore, as a generalisation of Didelez [21], Mogensen and Hansen [60] study the local independence graph for Itô
processes where the graph models the local independence structure of the underlying stochastic process; in contrast, we
model local orthogonality. A special case is the Brownian motion driven Ornstein–Uhlenbeck process. The edges of the local
independence graph of a Brownian motion driven Ornstein–Uhlenbeck process (cf. Proposition 7 in Mogensen and Hansen
[60]) are the same as given here in Propositions 6.12 and 6.13, i.e., there is no directed edge from 𝑎 to 𝑏 if and only if
[𝐀]𝑏𝑎 = 0, and there is no undirected edge between 𝑎 and 𝑏 if and only if [𝛴𝐿

]

𝑎𝑏 = 0. Thus, in the case of a Brownian motion
driven Ornstein–Uhlenbeck process, the local independence graph and our conditional orthogonality graph coincide.

(c) In both papers Comte and Renault [15] and Mogensen and Hansen [60], it is important to have Brownian motion driven Itô
processes to receive the dependence structure of the underlying processes. Since for Gaussian models conditional orthogonality
and conditional independence are equivalent, it is not surprising that we obtain the same edge characterisations as there for
Gaussian driven Ornstein–Uhlenbeck processes. However, it will be a challenging task to extend the results in Comte and
Renault [15] and Mogensen and Hansen [60] to Lévy-driven Itô processes. Our approach is able to fill this gap by presenting
a graphical model for Lévy-driven MCAR(𝑝) processes that moves away from the Gaussian assumption and 𝑝 ≥ 2 but is still
consistent with the existing literature and satisfies some Markov properties.

Let us compare our results for the continuous-time multivariate AR process with the results for discrete-time vector AR (VAR)
processes of Eichler [28], whose article provided the basis for our considerations. We start with the local orthogonality graph because
he comparison is obvious there.

Remark 6.15. The 𝑘-dimensional VAR(𝑝) process 𝑍𝑉 = (𝑍𝑉 (𝑡))𝑡∈Z is defined as

𝑍𝑉 (𝑡 + 1) =
𝑝
∑

𝑛=1
𝛷𝑛𝑍𝑉 (𝑡 + 1 − 𝑛) + 𝜀(𝑡 + 1), 𝑡 ∈ Z, (6.9)

where 𝜀 = (𝜀(𝑡))𝑡∈Z is a 𝑘-dimensional white noise process with non-singular covariance matrix 𝛴𝜀 ∈ 𝑀𝑘(R) and autoregressive
coefficients 𝛷𝑛 ∈ 𝑀𝑘(R), 𝑛 = 1,… , 𝑝. Further, define the AR-polynomial 𝛷(𝜆) = 𝐼𝑘 + 𝛷1𝜆 +⋯ + 𝛷𝑝𝜆𝑝, 𝜆 ∈ C, and denote by B the
backshift operator. Then

𝛷(𝙱)𝑍𝑉 (𝑡) = 𝜀(𝑡),

which corresponds to the idea for an MCAR(𝑝) process to be the solution of the stochastic differential equation

𝑃 (𝐷)𝑌𝑉 (𝑡) = 𝐷 𝐿(𝑡),
where 𝑃 (𝜆) = 𝐼𝑘𝜆𝑝 + 𝐴1𝜆𝑝−1 +⋯ + 𝐴𝑝, 𝜆 ∈ C. Let 𝐺 = (𝑉 , 𝐸) be the path diagram of 𝑍𝑉 as defined in Eichler [28].

(a) Directed edges: Lemma 2.3 and Definition 2.1 in Eichler [28] state that the directed edges in the path diagram 𝐺 of the
discrete-time VAR(𝑝) process 𝑍𝑉 satisfy

[ ]
𝑍𝑎 𝑍𝑏 |𝑍𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸 ⇔ 𝛷𝑗 𝑏𝑎 = 0, 𝑗 = 1,… , 𝑝.
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However, this is again in analogy to the characterisation of directed edges in the local orthogonality graph 𝐺0
𝑂 𝐺 of an MCAR(𝑝)

processes where

𝑌𝑎 0 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔

[

𝐴𝑗
]

𝑏𝑎 = 0, 𝑗 = 1,… , 𝑝.
In summary, both continuous and discrete-time models have in common that there is no directed edge between components
𝑎 and 𝑏 if and only if the 𝑏𝑎-th components of the autoregressive coefficients are zero.

(b) Undirected edges: On the other hand, for the undirected edges in the path diagram 𝐺 of the VAR(𝑝) process 𝑍𝑉 , Lemma 2.3
and Definition 2.1 in Eichler [28] give the equivalence

𝑍𝑎 ≁ 𝑍𝑏 |𝑍𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸 ⇔
[

𝛴𝜀
]

𝑎𝑏 = 0.
However, this is again in analogy to the condition for the undirected edges in the local orthogonality graph 𝐺0

𝑂 𝐺 where

𝑌𝑎 ≁0 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸0
𝑂 𝐺 ⇔

[

𝛴𝐿
]

𝑎𝑏 = 0.
Thus, a common feature of the continuous-time and discrete-time model is that there is no undirected edge between

components 𝑎 and 𝑏 if and only if the 𝑎-th and 𝑏-th components of the driving process are uncorrelated.

Next, we compare the path diagram of the VAR model with the orthogonality graph of the MCAR model. Before doing so, we
need to give some interpretations for the orthogonality graph.

Remark 6.16. For the purpose of interpretation of the directed and undirected edges in the orthogonality graph 𝐺𝑂 𝐺, recall from
Lemma 6.8 the representation of the component 𝑌𝑣 of the MCAR process 𝑌𝑉 as

𝑌𝑣(𝑡 + ℎ) =
𝑝
∑

𝑗=1
𝑒⊤𝑣𝛩

(ℎ)
𝑗 𝐷(𝑗−1)𝑌𝑉 (𝑡) + 𝑒⊤𝑣 𝜀(ℎ)(𝑡), 𝑣 ∈ 𝑉 , (6.10)

with

𝛩(ℎ)
𝑗 ∶= 𝐂𝑒𝐀ℎ𝐄𝑗 ∈𝑀𝑘(R) and 𝜀(ℎ)(𝑡) ∶= ∫

𝑡+ℎ

𝑡
𝐂𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) ∈ R𝑘.

(a) Directed edges: A direct application of Proposition 6.12 gives the condition for the directed edges in the orthogonality graph
𝐺𝑂 𝐺 as

𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔
[

𝛩(ℎ)
𝑗

]

𝑏𝑎
= 0 ∀ℎ ∈ [0, 1], 𝑗 = 1,… , 𝑝. (6.11)

This means that the components 𝑌𝑎(𝑡), 𝐷(1)𝑌𝑎(𝑡),. . . , 𝐷(𝑝−1)𝑌𝑎(𝑡) in the representation of the 𝑏th component 𝑌𝑏(𝑡+ℎ) vanish due
to the corresponding prefactors being zero. 𝑌𝑎(𝑡) and its derivatives do not matter to predict 𝑌𝑏(𝑡 + ℎ).

(b) Undirected edges: A consequence of Proposition 6.13 is the condition for the undirected edges in the orthogonality graph 𝐺𝑂 𝐺
as

𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇔
[

E[𝜀(ℎ)(𝑡)𝜀(ℎ̃)(𝑡)⊤]
]

𝑎𝑏
=
[

E[𝜀(ℎ)(0)𝜀(ℎ̃)(0)⊤]
]

𝑎𝑏
= 0 ∀ℎ, ℎ̃ ∈ [0, 1], (6.12)

i.e., the noise terms 𝑒⊤𝑎 𝜀(ℎ)(𝑡) and 𝑒⊤𝑏 𝜀
(ℎ̃)(𝑡) of 𝑌𝑎(𝑡 + ℎ) and 𝑌𝑏(𝑡 + ℎ̃) are uncorrelated for any 𝑡 ≥ 0.

Remark 6.17. The characterisations of the directed and undirected edges of the orthogonality graph in Remark 6.16 are well
suited for comparison with VAR(𝑝) processes in Eichler [28]. The challenge here is that in representation (6.10) of 𝑌𝑉 (𝑡+ ℎ) appear
derivatives which have to be related to appropriate differences in the discrete-time process (6.9). Thus, our goal is to replace
the backshifts 𝑍𝑉 (𝑡 + 1 − 𝑛), 𝑛 = 1,… , 𝑝, by appropriate differences. To do this, we define a discrete-time difference operator
teratively by

𝙳(1)𝑍𝑉 (𝑡) = 𝑍𝑉 (𝑡) −𝑍𝑉 (𝑡 − 1), 𝙳(𝑗)𝑍𝑉 (𝑡) = 𝙳(𝑗−1)
(

𝑍𝑉 (𝑡) −𝑍𝑉 (𝑡 − 1)) ,
𝑗 = 1,… , 𝑝 − 1, where we set 𝙳(0)𝑍𝑉 (𝑡) = 𝑍𝑉 (𝑡). Furthermore, define

𝛩𝑗 ∶=
𝑝
∑

𝑛=𝑗

(

𝑛 − 1
𝑗 − 1

)

(−1)𝑗−1𝛷𝑛, 𝑗 = 1,… , 𝑝.

Then some direct calculations show (see the Supplementary Material F) that

𝑍𝑏(𝑡 + 1) =
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝛩𝑗𝙳

(𝑗−1)𝑍𝑉 (𝑡) + 𝑒⊤𝑏 𝜀(𝑡 + 1). (6.13)

This representation is now in analogy to (6.10) for MCAR(𝑝) processes.

(a) Directed edges: In the former Remark 6.15 we just saw that for the discrete-time VAR(𝑝) process 𝑍𝑉 the directed edges in the
path diagram 𝐺 satisfy

[ ]
𝑍𝑎 𝑍𝑏 |𝑍𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸 ⇔ 𝛷𝑗 𝑏𝑎 = 0, 𝑗 = 1,… , 𝑝.
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But
[

𝛷𝑗
]

𝑏𝑎 = 0, 𝑗 = 1,… , 𝑝 ⇔
[

𝛩𝑗
]

𝑏𝑎 =
𝑝
∑

𝑛=𝑗

(

𝑛 − 1
𝑗 − 1

)

(−1)𝑗−1
[

𝛷𝑛
]

𝑏𝑎 = 0, 𝑗 = 1,… , 𝑝.

However, this is again analogous to the characterisation of directed edges in the orthogonality graph 𝐺𝑂 𝐺 for the MCAR(𝑝)
process in (6.11) where

𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸 ⇔
[

𝛩(ℎ)
𝑗

]

𝑏𝑎
= 0 ∀ℎ ∈ [0, 1], 𝑗 = 1,… , 𝑝.

(b) Undirected edges: For the path diagram 𝐺 for the VAR(𝑝) process 𝑍𝑉 we have

𝑍𝑎 ≁ 𝑍𝑏 |𝑍𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸 ⇔
[

E[𝜀(0)𝜀(0)⊤]
]

𝑎𝑏 = 0.
Here we have the similarity to the condition (6.12) for the undirected edges of the MCAR(𝑝) in the orthogonality graph 𝐺𝑂 𝐺

𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇔ 𝑎 𝑏 ∉ 𝐸𝑂 𝐺 ⇔
[

E[𝜀(ℎ)(0)𝜀(ℎ̃)(0)⊤]
]

𝑎𝑏
= 0 ∀ℎ, ℎ̃ ∈ [0, 1].

Since a continuous-time Ornstein–Uhlenbeck process sampled at discrete equidistant time points is a discrete-time VAR(1)
process, we study the results for an Ornstein–Uhlenbeck process in more detail and, in particular, relate them to the results for

AR models in Eichler [28].

Remark 6.18. Let 𝑌𝑉 be a causal Ornstein–Uhlenbeck process as given in Example 3.15 with 𝛴𝐿 > 0. Then the continuous-time
process 𝑌𝑉 sampled at discrete-time points of distance ℎ is a discrete-time VAR(1) process with representation

𝑌𝑉 ((𝑘 + 1)ℎ) = 𝑒𝐀ℎ𝑌𝑉 (𝑘ℎ) + ∫

(𝑘+1)ℎ

𝑘ℎ
𝑒𝐀((𝑘+1)ℎ−𝑢) 𝑑 𝐿(𝑢) = 𝑒𝐀ℎ𝑌𝑉 (𝑘ℎ) + 𝜀(ℎ)(𝑘ℎ), 𝑘 ∈ Z,

which we denote by 𝑌 (ℎ)
𝑉 = (𝑌𝑉 ((𝑘 + 1)ℎ))𝑘∈Z and the corresponding discrete-time path diagram by 𝐺(ℎ) = (𝑉 , 𝐸(ℎ)). Then a direct

conclusion of Remark 6.15 is that for 𝑎, 𝑏 ∈ 𝑉 and 𝑎 ≠ 𝑏:

(a) 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇒
[

𝑒𝐀ℎ
]

𝑏𝑎 = 0 ⇒ 𝑌 (ℎ)
𝑎 𝑌 (ℎ)

𝑏 | 𝑌 (ℎ)
𝑉 .

(b) 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇒
[

E[𝜀(ℎ)(0)𝜀(ℎ)(0)⊤]
]

𝑎𝑏 = 0 ⇒ 𝑌 (ℎ)
𝑎 ≁ 𝑌 (ℎ)

𝑏 | 𝑌 (ℎ)
𝑉 .

This means that a directed (undirected) edge 𝑎 𝑏 ∈ 𝐸(ℎ) (𝑎 𝑏 ∈ 𝐸(ℎ)) in the discrete-time model 𝑌 (ℎ)
𝑉 implies a (undirected)

directed edge 𝑎 𝑏 ∈ 𝐸𝑂 𝐺 (𝑎 𝑏 ∈ 𝐸𝑂 𝐺) in the continuous-time model 𝑌𝑉 . In summary, 𝐸(ℎ) ⊆ 𝐸𝑂 𝐺 for every ℎ ∈ [0, 1]. We
believe that this result may hold for general MCAR(𝑝) processes. This phenomenon is an advantage of the orthogonality graph over
the local orthogonality graph, where there is generally no relationship between the edges 𝐸(0)

𝑂 𝐺 and 𝐸(ℎ).

The characterisation of the directed edges in Proposition 6.12 and the characterisation of the undirected edges in Proposition 6.13
are nice for interpretation, but depend on the lags ℎ, ℎ̃. We provide simpler necessary and sufficient criteria for the directed and
undirected edges, respectively, where the lags ℎ, ℎ̃ no longer play a role.

Theorem 6.19. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0. Further, let 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏. Then the following holds.

(a) 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔
[

𝐂𝐀𝛼𝐄𝑗
]

𝑏𝑎 = [𝐀𝛼]𝑏,𝑘(𝑗−1)+𝑎 = 0, 𝛼 = 1,… , 𝑘𝑝 − 1, 𝑗 = 1,… , 𝑝.
(b) 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 ⇔

[

𝐂𝐀𝛼𝐁𝛴𝐿𝐁⊤
(

𝐀⊤
)𝛽 𝐂⊤

]

𝑎𝑏
= 0, 𝛼 , 𝛽 = 0,… , 𝑘𝑝 − 1.

Remark 6.20. The proof of Theorem 6.19 shows that in the definition of Granger causality and contemporaneous correlation
he choice of the step size ℎ as defined in Remark 3.2 (cf. (3.1)) and Remark 4.2 (cf. (4.1)), respectively, has no influence on the

final characterisations of the edges in the MCAR model. For any choice ℎ > 0 we obtain the characterisations as in Theorem 6.19.
In particular, it follows that Granger causality and global Granger causality as well as contemporaneous correlation and global
contemporaneous correlation are equivalent for MCAR(𝑝) processes, and hence the global orthogonality graph also satisfies the
different Markov properties.

We obtain the following direct conclusion from Propositions 6.12, 6.13 and Theorem 6.19, setting 𝛼 = 𝑝 in Theorem 6.19(a) and
𝛼 = 𝛽 = 𝑝 − 1 in Theorem 6.19(b).

Corollary 6.21. Let 𝑌𝑉 be a causal MCAR(𝑝) process with 𝛴𝐿 > 0, orthogonality graph 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺), and local orthogonality graph
𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺). Then 𝐸(0)

𝑂 𝐺 ⊆ 𝐸𝑂 𝐺, and in general the sets are not equal.

In particular, in the case of an Ornstein–Uhlenbeck process, the characterisation of the edges in an orthogonality graph can be
reduced to the following.

Corollary 6.22. Let 𝑌𝑉 be a causal Ornstein–Uhlenbeck process with 𝛴𝐿 > 0. Further, let 𝑎, 𝑏 ∈ 𝑉 , 𝑎 ≠ 𝑏. Then the following holds.

(a) 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 ⇔ [𝐀𝛼]𝑏𝑎 = 0, 𝛼 = 1,… , 𝑘 − 1.
(b) 𝑌 ≁ 𝑌 | 𝑌 ⇔

[

𝐀𝛼𝛴
(

𝐀⊤
)𝛽
]

= 0, 𝛼 , 𝛽 = 0,… , 𝑘 − 1.
𝑎 𝑏 𝑉 𝐿 𝑎𝑏
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Remark 6.23. Suppose 𝛴𝐿 is a diagonal matrix and 𝑌𝑉 is a causal Ornstein–Uhlenbeck process. Then Corollary 6.22 implies that
from 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 directly follows 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 . Thus, a directed edge in such an orthogonality graph of an Ornstein–Uhlenbeck
rocess induces an undirected edge.

7. Conclusion

In this paper, we have introduced concepts of directed and undirected influences for stochastic processes in continuous time,
efined (local) orthogonality graphs, discussed their properties, and applied them to MCAR processes. The main results are as follows:

(a) (Local) orthogonality graphs provide a simple visualisation and a concise way to communicate directed and undirected (local)
conditional orthogonality structures of the process.

(b) (Local) orthogonality graphs are defined using the pairwise Markov property to represent the pairwise relationships between
variables. However, the associated orthogonality graph can be interpreted using the global AMP Markov and the global Markov
property. In this way, new Granger non-causality relations and contemporaneous uncorrelations between subprocesses can be
obtained.

(c) For MCAR models the (local) orthogonality graphs are closely related to the moving average parameters and the covariance
matrix of the driving Lévy process. Any local orthogonality graph can be constructed by an MCAR model, but this is generally
not true for an orthogonality graph. However, if there is no edge in the orthogonality graph, then there is no edge in the
discrete-time sampled model.
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Appendix A. Proofs of Section 3

Proof of Theorem 3.5. Due to Lindquist and Picci [53], Proposition 2.4.2, 𝑌𝐵 (𝑡, 𝑡 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) is equivalent to
𝑃𝑌𝑆 (𝑡)𝑌 𝐵 = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌 𝐵 P-a.s. for all 𝑌 𝐵 ∈ 𝑌𝐵 (𝑡, 𝑡 + 1). Due to the linearity and continuity of orthogonal projections, this is in
turn equivalent to 𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌𝑏(𝑡 + ℎ) P-a.s. for all ℎ ∈ [0, 1], 𝑡 ∈ R and 𝑏 ∈ 𝐵. □

Proof of Theorem 3.10. First assume that 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 , i.e., P-a.s.

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝑆⧵𝐴 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

, (A.1)

for all 𝑡 ∈ R and 𝑏 ∈ 𝐵. Now let 𝑌 𝐴 ∈ 𝑌𝐴 (𝑡), 𝑏 ∈ 𝐵, and 𝑡 ∈ R. Then as well 𝑌 𝐴 ∈ 𝑌𝑆 (𝑡) and 𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) ∈
𝑌𝑆 (𝑡)

⟂, so
1
ℎ
E
[(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)

𝑌 𝐴
]

= 0.

Adding and subtracting 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) in the first factor and then forming the limit gives

lim
ℎ→0

1
ℎ
E
[(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)

𝑌 𝐴
]

+ lim
ℎ→0

1
ℎ
E
[(

𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆 (𝑡)𝐷

(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)
)

𝑌 𝐴
]

= 0.

(A.2)

Due to Remark 2.6 and 𝐴∩𝐵 = ∅, we already know that 𝐷(𝑗𝑏)𝑌𝑏(𝑡) ∈ 𝑌𝑆⧵𝐴 (𝑡) ⊆ 𝑌𝑆 (𝑡). Then it follows together with (A.1) and (2.1)
hat the second summand in (A.2) is zero and thus, the first summand is zero as well, i.e.,

lim
ℎ→0

1
ℎ
E
[(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)

𝑌 𝐴
]

= 0.

Further, 𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) ∈ 𝑌𝑆⧵𝐴 (𝑡)
⟂ and 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌 𝐴 ∈ 𝑌𝑆⧵𝐴 (𝑡) give

1
ℎ
E
[(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)

𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌 𝐴
]

= 0.

Adding the limit, the last two equations yield as claimed

lim
ℎ→0

1
ℎ
E

[

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)

)(

𝑌 𝐴 − 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌 𝐴
)

]

= 0. □
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Proof of Lemma 3.13. (a) This is obvious by definitions.
(b) The implication ⇒ follows instantly. For the proof of ⇐ we use mathematical induction and show that

𝑌𝑆⧵𝐴 (𝑡 + 𝑘) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R, 𝑘 ∈ N. (A.3)

First, we note that 𝑌𝐴 𝑌𝑆⧵𝐴 | 𝑌𝑆 and Lemma 3.3(b) yield the initial case

𝑌𝑆⧵𝐴 (𝑡 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R. (A.4)

Now, replacing 𝑡 by 𝑡 + 1 in the induction hypothesis gives

𝑌𝑆⧵𝐴 (𝑡 + 𝑘 + 1) ⟂ 𝑌𝐴 (𝑡 + 1) | 𝑌𝑆⧵𝐴 (𝑡 + 1) ∀ 𝑡 ∈ R.

Since by Lemma 2.4 we have 𝑌𝐴 (𝑡 + 1) = 𝑌𝐴 (𝑡) ∨ 𝑌𝐴 (𝑡, 𝑡 + 1), the property of decomposition (C2) from Lemma 2.2 implies

𝑌𝑆⧵𝐴 (𝑡 + 𝑘 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡 + 1) ∀ 𝑡 ∈ R,

which is by Lemma 2.4 again

𝑌𝑆⧵𝐴 (𝑡 + 𝑘 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∨ 𝑌𝑆⧵𝐴 (𝑡, 𝑡 + 1) ∀ 𝑡 ∈ R.

This result together with the initial case (A.4) and the properties of decomposition (C2) and contraction (C4) from Lemma 2.2 yield

𝑌𝑆⧵𝐴 (𝑡 + 𝑘 + 1) ∨ 𝑌𝑆⧵𝐴 (𝑡, 𝑡 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R.

Finally, the property of decomposition (C2) gives the induction step

𝑌𝑆⧵𝐴 (𝑡 + 𝑘 + 1) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R.

To bring the proof to an end, let ⌈⋅⌉ be the ceiling function. Then 𝑌𝑆⧵𝐴 (𝑡 + ℎ) ⊆ 𝑌𝑆⧵𝐴 (𝑡 + ⌈ℎ⌉). Now it follows from (A.3) and the
decomposition property (C2) that

𝑌𝑆⧵𝐴 (𝑡 + ℎ) ⟂ 𝑌𝐴 (𝑡) | 𝑌𝑆⧵𝐴 (𝑡) ∀ 𝑡 ∈ R, ℎ ≥ 0.

(c) This follows directly due to (b), the decomposition property (C2), and 𝐵 ⊆ 𝑆 ⧵ 𝐴.
(d) Let 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 , i.e., 𝑌𝐵 (𝑡+ 1) ⟂ 𝑌𝐴 (𝑡) |𝑌𝑆⧵𝐴 (𝑡) for all 𝑡 ∈ R due to Lemma 3.3(b). Then, as in the proof of Theorem 3.5

(cf. Proposition 2.4.2 in Lindquist and Picci [53]), we have

𝑃𝑌𝑆 (𝑡)𝑌
𝐵 = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝑌

𝐵 P-a.s.

for all 𝑌 𝐵 ∈ 𝑌𝐵 (𝑡+ 1) and 𝑡 ∈ R. Furthermore, Remark 2.6 provides that, for 𝑏 ∈ 𝐵 and ℎ ∈ [0, 1], we have 𝐷(𝑗𝑏)𝑌𝑏(𝑡+ℎ) ∈ 𝑌𝐵 (𝑡+ℎ) ⊆
𝑌𝐵 (𝑡 + 1). All together result in

𝑃𝑌𝑆 (𝑡)𝐷
(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)𝐷

(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) P-a.s.

Since, in addition, 𝐷(𝑗𝑏)𝑌𝑏(𝑡) ∈ 𝑌𝑆⧵𝐴 (𝑡) ⊆ 𝑌𝑆 (𝑡) by Remark 2.6 again, we have

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= 𝑃𝑌𝑆⧵𝐴 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

.

Letting ℎ → 0, we receive the statement. □

Appendix B. Proofs of Section 5

B.1. Proofs of Section 5.1

Proof of Proposition 5.4. Let 𝐴, 𝐵 ⊆ 𝑉 be disjoint with #𝐴 = 𝛼, #𝐵 = 𝛽. First, according to Assumption 1, there exists an 0 < 𝜀 < 1
such that

𝑓𝑌𝐴𝑌𝐴 (𝜆)
−1∕2𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)

−1𝑓𝑌𝐵𝑌𝐴 (𝜆)𝑓𝑌𝐴𝑌𝐴 (𝜆)
−1∕2 ≤𝐿 (1 − 𝜀)𝐼𝛼 ,

for almost all 𝜆 ∈ R and hence,

(1 − 𝜀)𝑓𝑌𝐴𝑌𝐴 (𝜆) − 𝑓𝑌𝐴𝑌𝐵 (𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)−1𝑓𝑌𝐵𝑌𝐴 (𝜆) ≥ 0,

for almost all 𝜆 ∈ R. If we choose 0 < ̃𝜀 < 1, such that (1 − 𝜀)2 = (1 − 𝜀), we obtain

(1 − 𝜀)𝑓𝑌𝐴𝑌𝐴 (𝜆) − 𝑓𝑌𝐴𝑌𝐵 (𝜆)
(

(1 − �̃�)𝑓𝑌𝐵𝑌𝐵 (𝜆)
)−1

𝑓𝑌𝐵𝑌𝐴 (𝜆) ≥ 0,

for almost all 𝜆 ∈ R. Since (1 − 𝜀)𝑓𝑌𝐵𝑌𝐵 (𝜆) ≥ 0, Bernstein [5], Proposition 8.2.4., provides
(

(1 − 𝜀)𝑓𝑌𝐴𝑌𝐴 (𝜆) 𝑓𝑌𝐴𝑌𝐵 (𝜆)
)

≥ 0,

𝑓𝑌𝐵𝑌𝐴 (𝜆) (1 − 𝜀)𝑓𝑌𝐵𝑌𝐵 (𝜆)
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respectively
(

𝑓𝑌𝐴𝑌𝐴 (𝜆) 𝑓𝑌𝐴𝑌𝐵 (𝜆)
𝑓𝑌𝐵𝑌𝐴 (𝜆) 𝑓𝑌𝐵𝑌𝐵 (𝜆)

)

≥𝐿 𝜀
(

𝑓𝑌𝐴𝑌𝐴 (𝜆) 0𝛼×𝛽
0𝛽×𝛼 𝑓𝑌𝐵𝑌𝐵 (𝜆)

)

, (B.1)

for almost all 𝜆 ∈ R. With this preliminary work in mind, we can now provide the actual proof of the assertion. Let 𝑌 𝐴 ∈ 𝑌𝐴 (𝑡)
nd 𝑌 𝐵 ∈ 𝑌𝐵 (𝑡), 𝑡 ∈ R. Then 𝑌 𝐴 ∈ 𝑌𝐴 and 𝑌 𝐵 ∈ 𝑌𝐵 . Due to Rozanov [67], I, (7.2), the spectral representation

𝑌 𝐴 = ∫

∞

−∞
𝜑(𝜆)𝛷𝐴(𝑑 𝜆) and 𝑌 𝐵 = ∫

∞

−∞
𝜓(𝜆)𝛷𝐵(𝑑 𝜆) P-a.s.

holds, where 𝛷𝐴(⋅) and 𝛷𝐵(⋅) are the random spectral measures form the subprocesses 𝑌𝐴 and 𝑌𝐵 from (2.2). Furthermore,
(⋅) ∈ 𝐶1×𝛼 and 𝜓(⋅) ∈ 𝐶1×𝛽 are measurable vector functions that satisfy

∫

∞

−∞
𝜑(𝜆)𝑓𝑌𝐴𝑌𝐴 (𝜆)𝜑(𝜆)

⊤
𝑑 𝜆 <∞ and ∫

∞

−∞
𝜓(𝜆)𝑓𝑌𝐵𝑌𝐵 (𝜆)𝜓(𝜆)

⊤
𝑑 𝜆 <∞.

Using (B.1) and the monotonicity of the integral in the inequality, we obtain

‖𝑌 𝐴 + 𝑌 𝐵‖2
𝐿2 = ∫

∞

−∞
(𝜑(𝜆) 𝜓(𝜆))

(

𝑓𝑌𝐴𝑌𝐴 (𝜆) 𝑓𝑌𝐴𝑌𝐵 (𝜆)
𝑓𝑌𝐵𝑌𝐴 (𝜆) 𝑓𝑌𝐵𝑌𝐵 (𝜆)

)

(𝜑(𝜆) 𝜓(𝜆))
⊤
𝑑 𝜆

≥ 𝜀∫

∞

−∞
(𝜑(𝜆) 𝜓(𝜆))

(

𝑓𝑌𝐴𝑌𝐴 (𝜆) 0𝛼×𝛽
0𝛽×𝛼 𝑓𝑌𝐵𝑌𝐵 (𝜆)

)

(𝜑(𝜆) 𝜓(𝜆))
⊤
𝑑 𝜆 = 𝜀

(

‖𝑌 𝐴‖2 + ‖𝑌 𝐵‖2
𝐿2

)

.

Then Feshchenko [34], Proposition 2.3, provides that for 𝑡 ∈ R,

𝑌𝐴 (𝑡) ∩ 𝑌𝐵 (𝑡) = {0} and 𝑌𝐴 (𝑡) + 𝑌𝐵 (𝑡) = 𝑌𝐴 (𝑡) ∨ 𝑌𝐵 (𝑡) P-a.s.

Thus, Lemma 5.3 yields the final statement 𝑌𝐴∪𝐶 (𝑡) ∩ 𝑌𝐵∪𝐶 (𝑡) = 𝑌𝐶 (𝑡) P-a.s. □

Proof of Proposition 5.7. (a) The direction ⇒ is already given in (3.3). Thus, let us prove ⇐ and assume that 𝑌𝑎 𝑌𝑏 | 𝑌𝑆 for
all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Then we receive due to Theorem 3.5 that

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵{𝑎} (𝑡)
𝑌𝑏(𝑡 + ℎ) P-a.s.

for all ℎ ∈ [0, 1], 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. This implies that

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) ∈ 𝑌𝑆⧵{𝑎} (𝑡) ∀ 𝑎 ∈ 𝐴.

Now, from Proposition 5.4, which requires Assumption 1, we conclude that

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) ∈
⋂

𝑎∈𝐴
𝑌𝑆⧵{𝑎} (𝑡) = 𝑌𝑆⧵𝐴 (𝑡),

implying due to Brockwell and Davis [9], Proposition 2.3.2. (vii) that

𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)
𝑃𝑌𝑆 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑆⧵𝐴 (𝑡)

𝑌𝑏(𝑡 + ℎ) P-a.s.

for all 𝑏 ∈ 𝐵, 𝑡 ∈ R, and ℎ ∈ [0, 1]. We apply Theorem 3.5 again and obtain 𝑌𝐴 𝑌𝐵 | 𝑌𝑆 .
(b) The direction ⇒ is already given in (3.6) and we just prove ⇐. Thus assume that 𝑌𝑎 0 𝑌𝑏 | 𝑌𝑆 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. By

Definition 3.7 that is

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝑆⧵{𝑎} (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

P-a.s.

for all 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Since 𝑌𝑆⧵{𝑎} (𝑡) is closed in the mean-square sense, we obtain

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

∈ 𝑌𝑆⧵{𝑎} (𝑡) ∀ 𝑎 ∈ 𝐴.

As in (a), Proposition 5.4, which requires Assumption 1, yields

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

∈ 𝑌𝑆⧵𝐴 (𝑡).

Due to Brockwell and Davis [9], Proposition 2.3.2. (iv) and (vii), it follows

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= 𝑃𝑌𝑆⧵𝐴 (𝑡)l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= l.i.m. 𝑃 (𝑡)𝑃 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
)

ℎ→0 𝑌𝑆⧵𝐴 𝑌𝑆 ℎ
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= l.i.m.
ℎ→0

𝑃𝑌𝑆⧵𝐴 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

P-a.s.

for all 𝑏 ∈ 𝐵, 𝑡 ∈ R. By Definition 3.7 that is 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑆 .
(c) The proof is the same as in (a). □

B.2. Proof of Theorem 5.15

The proof of the global AMP Markov property is structured in three auxiliary lemmata and is based on the ideas of Eichler
28,29]. At the end, we present the proof of Theorem 5.15.

Lemma B.1. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Suppose 𝐴, 𝐵 ⊆ 𝑉 are disjoint subsets, 𝑡 ∈ R, and 𝑘 ∈ N. Then

𝐴 ⋈𝑚 𝐵 | 𝑉 ⧵ (𝐴 ∪ 𝐵) [𝐺𝑂 𝐺] ⇒ 𝑌𝐴 (𝑡) ⟂ 𝑌𝐵 (𝑡) | 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡) ∨ 𝑌𝐴∪𝐵 (𝑡 − 𝑘).

Proof. The proof can be done step by step as in Eichler [29], proof of Lemma 4.1, by induction over 𝑘, using the properties of a
semi-graphoid given in our Lemma 2.2. □

Lemma B.2. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 . Suppose 𝐴, 𝐵 ⊆ 𝑉 are disjoint subsets and 𝑡 ∈ R. Then

𝐴 ⋈𝑚 𝐵 | 𝑉 ⧵ (𝐴 ∪ 𝐵) [𝐺𝑂 𝐺] ⇒ 𝑌𝐴 (𝑡) ⟂ 𝑌𝐵 (𝑡) | 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡).

Proof. First, 𝑌𝐴∪𝐵 (𝑡 − 𝑘) ∨ 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡) ⊇ 𝑌𝐴∪𝐵 (𝑡 − 𝑘 − 1) ∨ 𝑌𝑉 ⧵(𝐴∪𝐵)

(𝑡) for 𝑘 ∈ N and
⋂

𝑘∈N

(

𝑌𝐴∪𝐵 (𝑡 − 𝑘) ∨ 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡)
)

= 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡),

due to Lemma 5.8. Theorems 4.31(b) and 4.32 in Weidmann [73] provide

l.i.m.
𝑘→∞

𝑃𝑌𝐴∪𝐵 (𝑡−𝑘)∨𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)
𝑌 = 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)

𝑌 , 𝑌 ∈ 𝐿2.

Let 𝑌 𝐴 ∈ 𝑌𝐴 (𝑡) and 𝑌 𝐵 ∈ 𝑌𝐵 (𝑡). Then, using (2.1),

E

[

(

𝑌 𝐴 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)
𝑌 𝐴

)(

𝑌 𝐵 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)
𝑌 𝐵

)

]

= lim
𝑘→∞

E

[

(

𝑌 𝐴 − 𝑃𝑌𝐴∪𝐵 (𝑡−𝑘)∨𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)
𝑌 𝐴

)(

𝑌 𝐵 − 𝑃𝑌𝐴∪𝐵 (𝑡−𝑘)∨𝑌𝑉 ⧵(𝐴∪𝐵) (𝑡)
𝑌 𝐵

)

]

.

The expression on the right-hand side is zero since, due to Lemma B.1, 𝑌𝐴 (𝑡) ⟂ 𝑌𝐵 (𝑡) | 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡) ∨ 𝑌𝐴∪𝐵 (𝑡 − 𝑘) for 𝑡 ∈ R, 𝑘 ∈ N.

hus, the expression on the left-hand side is also zero and 𝑌𝐴 (𝑡) ⟂ 𝑌𝐵 (𝑡) | 𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡). □

Lemma B.3. Let 𝐺𝑂 𝐺 = (𝑉 , 𝐸𝑂 𝐺) be the orthogonality graph for 𝑌𝑉 and suppose 𝐴, 𝐵 ⊆ 𝑉 are disjoint subsets. Then

𝐴 ⋈𝑚 𝐵 | 𝑉 ⧵ (𝐴 ∪ 𝐵) [𝐺𝑂 𝐺] ⇒ 𝑌𝐴 ⟂ 𝑌𝐵 | 𝑌𝑉 ⧵(𝐴∪𝐵)
.

Proof. First, note from Lemma 2.4 that ⋃

𝑛∈N 𝑌𝑆 (𝑛) = 𝑌𝑆 P-a.s. for any 𝑆 ⊆ 𝑉 . Let 𝑌 𝐴 ∈ 𝑌𝐴 and 𝑌 𝐵 ∈ 𝑌𝐵 . Then analogue
rguments as in the proof of Lemma B.2 give

𝑌 𝐴 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵)
𝑌 𝐴 = l.i.m.

𝑛→∞
𝑃𝑌𝐴 (𝑛)𝑌

𝐴 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑛)
𝑃𝑌𝐴 (𝑛)𝑌

𝐴,

𝑌 𝐵 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵)
𝑌 𝐵 = l.i.m.

𝑛→∞
𝑃𝑌𝐵 (𝑛)𝑌

𝐵 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑛)
𝑃𝑌𝐵 (𝑛)𝑌

𝐵 .

Further, (2.1) yields

E

[

(

𝑌 𝐴 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵)
𝑌 𝐴

)(

𝑌 𝐵 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵)
𝑌 𝐵

)

]

= lim
𝑛→∞

E

[

(

𝑃𝑌𝐴 (𝑛)𝑌
𝐴 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑛)

𝑃𝑌𝐴 (𝑛)𝑌
𝐴
)(

𝑃𝑌𝐵 (𝑛)𝑌 𝐵 − 𝑃𝑌𝑉 ⧵(𝐴∪𝐵) (𝑛)
𝑃𝑌𝐵 (𝑛)𝑌 𝐵

)

]

.

The expression on the right-hand side is zero, since 𝑌𝐴 (𝑡) ⟂ 𝑌𝐵 (𝑡) |𝑌𝑉 ⧵(𝐴∪𝐵)
(𝑡) for 𝑡 ∈ R due to Lemma B.2. Thus, the left-hand side

s zero and 𝑌𝐴 ⟂ 𝑌𝐵 | 𝑌𝑉 ⧵(𝐴∪𝐵)
. □

Proof of Theorem 5.15. For the proof of Theorem 5.15, we refer to the proof of Theorem 3.1 in Eichler [28], since it is based only
on Lemma B.3, properties of mixed graphs, and Lemma 2.2. □
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B.3. Proofs of Section 5.3.3

Proof of Proposition 5.20. For a graph 𝐺 = (𝑉 , 𝐸) let

ch(𝑎) = {𝑣 ∈ 𝑉 |𝑎 𝑣 ∈ 𝐸} and dis(𝑎) = {𝑣 ∈ 𝑉 |𝑣 ⋯ 𝑎 or 𝑣 = 𝑎},

denote the set of children and the district of 𝑎 ∈ 𝑉 , respectively. For 𝐴 ⊆ 𝑉 let ch(𝐴) = ⋃

𝑎∈𝐴 ch(𝑎) and dis(𝐴) = ⋃

𝑎∈𝐴 dis(𝑎). Due
to Eichler [28], Lemma B.1, 𝐴 ⋈𝑚 𝐵 | 𝑉 ⧵ (𝐴 ∪ 𝐵) [𝐺0

𝑂 𝐺] yields dis (𝐴 ∪ ch(𝐴)) ∩ dis (𝐵 ∪ ch(𝐵)) = ∅. In particular, ch(𝐴) ∩ 𝐵 = ∅,
∩ ch(𝐵) = ∅, and ne(𝐴) ∩ 𝐵 = ∅. Thus, as claimed, 𝑌𝐴 0 𝑌𝐵 | 𝑌𝑉 , 𝑌𝐵 0 𝑌𝐴 | 𝑌𝑉 , and 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑉 . □

Proof of Lemma 5.23. The assumption 𝑌𝐴∪𝐵 0 𝑌𝐶 | 𝑌𝐴∪𝐵∪𝐶∪𝐷 states that for all 𝑡 ∈ R and 𝑐 ∈ 𝐶,

l.i.m.
ℎ→0

𝑃𝑌𝐴∪𝐵∪𝐶∪𝐷 (𝑡)

(

𝐷(𝑗𝑐 )𝑌𝑐 (𝑡 + ℎ) −𝐷(𝑗𝑐 )𝑌𝑐 (𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝐶∪𝐷 (𝑡)

(

𝐷(𝑗𝑐 )𝑌𝑐 (𝑡 + ℎ) −𝐷(𝑗𝑐 )𝑌𝑐 (𝑡)
ℎ

)

P-a.s.

An application of 𝑃𝑌𝐴∪𝐶∪𝐷 (𝑡) on the left and the right hand side, Brockwell and Davis [9], Proposition 2.3.2.(iv,vii), and

𝑃𝑌𝐴∪𝐶∪𝐷 (𝑡)𝑃𝑌𝐴∪𝐵∪𝐶∪𝐷 (𝑡) = 𝑃𝑌𝐴∪𝐶∪𝐷 (𝑡) and 𝑃𝑌𝐴∪𝐶∪𝐷 (𝑡)𝑃𝑌𝐶∪𝐷 (𝑡) = 𝑃𝑌𝐶∪𝐷 (𝑡),

respectively, give for 𝑡 ∈ R and 𝑐 ∈ 𝐶,

l.i.m.
ℎ→0

𝑃𝑌𝐴∪𝐶∪𝐷 (𝑡)

(

𝐷(𝑗𝑐 )𝑌𝑐 (𝑡 + ℎ) −𝐷(𝑗𝑐 )𝑌𝑐 (𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝐶∪𝐷 (𝑡)

(

𝐷(𝑗𝑐 )𝑌𝑐 (𝑡 + ℎ) −𝐷(𝑗𝑐 )𝑌𝑐 (𝑡)
ℎ

)

P-a.s.

By definition that is 𝑌𝐴 0 𝑌𝐶 | 𝑌𝐴∪𝐶∪𝐷. □

Proof of Proposition 5.21. The block-recursive Markov property Proposition 5.13 says that 𝑌𝑉 ⧵(𝐵∪pa(𝐵)) 0 𝑌𝐵 |𝑌𝑉 . By assumption,
𝐵∪pa(𝐵) ⊆ 𝐴∪𝐵∪𝐶. However, 𝐴∩pa(𝐵) = ∅. Otherwise, there are vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 𝑏 ∈ 𝐸0

𝑂 𝐺 is a 𝑚-connecting
path between 𝐴 and 𝐵 given 𝐶 which is a contradiction to 𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺0

𝑂 𝐺]. Thus, 𝐵 ∪ pa(𝐵) ⊆ 𝐵 ∪ 𝐶 and Proposition 5.7 yields
𝑌𝑉 ⧵(𝐵∪𝐶) 0 𝑌𝐵 | 𝑌𝑉 . The property of left decomposition (Lemma 5.23) gives 𝑌𝐴 0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 . By symmetry of 𝑚-separation
𝑌𝐵 0 𝑌𝐴 | 𝑌𝐴∪𝐵∪𝐶 follows.

It remains to show that 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 . Proposition 5.13 provides 𝑌𝑉 ⧵(𝐵∪ne(𝐵)) ≁0 𝑌𝐵 | 𝑌𝑉 . Here, 𝐴 ∩ ne(𝐵) = ∅. Else there are
vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 𝑏 ∈ 𝐸0

𝑂 𝐺 is a 𝑚-connecting path between 𝐴 and 𝐵 given 𝐶 which is again a contradiction
to 𝐴 ⋈𝑚 𝐵 | 𝐶 [𝐺0

𝑂 𝐺]. So Remark 4.7 yields 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝑉 . By definition and 𝐷(𝑗𝑎)𝑌𝑎(𝑡), 𝐷(𝑗𝑏)𝑌𝑏(𝑡) ∈ 𝑌𝐴∪𝐵∪𝐶 (𝑡) ⊆ 𝑌𝑉 (𝑡) we get

0 = lim
ℎ→0

1
ℎ
E
[

(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑗𝑎)𝑌𝑎(𝑡 + ℎ)

)(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)
)

]

= lim
ℎ→0

ℎ E
[(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)
ℎ

− 𝑃𝑌𝑉 (𝑡)
𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)

ℎ

)

×
(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

− 𝑃𝑌𝑉 (𝑡)
𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)

ℎ

)

]

, (B.2)

for 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Due to Proposition 5.13 and pa(𝐴) ∪ pa(𝐵) ⊆ 𝐴 ∪ 𝐵 ∪ 𝐶 we receive, as in the first part of this proof,

𝑌𝑉 ⧵(𝐴∪𝐵∪𝐶) 0 𝑌𝐵 | 𝑌𝑉 and 𝑌𝑉 ⧵(𝐴∪𝐵∪𝐶) 0 𝑌𝐴 | 𝑌𝑉 ,

which means that P-a.s.

l.i.m.
ℎ→0

𝑃𝑌𝑉 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)

(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

)

and

l.i.m.
ℎ→0

𝑃𝑌𝑉 (𝑡)

(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)
ℎ

)

= l.i.m.
ℎ→0

𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)

(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)
ℎ

)

,

for 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Similar arguments as in the proof of Theorem 3.10 and (B.2) yield

0 = lim
ℎ→0

ℎ E
[(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)
ℎ

− 𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)
𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) −𝐷(𝑗𝑎)𝑌𝑎(𝑡)

ℎ

)

×
(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)
ℎ

− 𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)
𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) −𝐷(𝑗𝑏)𝑌𝑏(𝑡)

ℎ

)

]

= lim
ℎ→0

1
ℎ
E
[

(

𝐷(𝑗𝑎)𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)𝐷
(𝑗𝑎)𝑌𝑎(𝑡 + ℎ)

)(

𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝐴∪𝐵∪𝐶 (𝑡)𝐷(𝑗𝑏)𝑌𝑏(𝑡 + ℎ)
)

]

for 𝑡 ∈ R, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, which says that 𝑌𝐴 ≁0 𝑌𝐵 | 𝑌𝐴∪𝐵∪𝐶 . □
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Appendix C. Proofs of Section 6

C.1. Proofs of Section 6.3

Proof of Lemma 6.8. Let 𝑡 ∈ R, ℎ ≥ 0, and 𝑣 ∈ 𝑉 . First of all, due to Lemma 6.2,

𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂𝑋(𝑡 + ℎ) = 𝑒⊤𝑣𝐂
(

𝑒𝐀ℎ𝑋(𝑡) + ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢)

)

.

With the definition of the 𝑗-th 𝑘-block 𝑋(𝑗) of 𝑋 as in (6.4) and with (6.8) it follows

𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂𝑒
𝐀ℎ

𝑝
∑

𝑗=1
𝐄𝑗𝑋(𝑗)(𝑡) + 𝑒⊤𝑣𝐂∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) = 𝑒⊤𝑣𝐂𝑒

𝐀ℎ
𝑝
∑

𝑗=1
𝐄𝑗𝐷(𝑗−1)𝑌𝑉 (𝑡) + 𝑒⊤𝑣𝐂∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢). □

Proof of Lemma 6.11. For the proof of the first equation note that the MCAR(𝑝) process 𝑌𝑉 is (𝑝 − 1)-times differentiable with
(𝑝−1)𝑌𝑉 (𝑡) = 𝑋(𝑝)(𝑡) = 𝐄⊤𝑝𝑋(𝑡), see Remark 6.4. Then, as in the proof of Lemma 6.8,

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) −𝐷(𝑝−1)𝑌𝑣(𝑡)

= 𝑒⊤𝑣𝐄
⊤
𝑝

(

(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

𝑋(𝑡) + ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢)

)

= 𝑒⊤𝑣𝐄
⊤
𝑝
(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

𝑝
∑

𝑗=1
𝐄𝑗𝐷(𝑗−1)𝑌𝑉 (𝑡) + 𝑒⊤𝑣𝐄⊤𝑝 ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢).

Remark 2.6 states that 𝑌𝑠(𝑡) and its derivatives are already in 𝑌𝑆 (𝑡) and are therefore projected onto themselves. Additionally,
(𝑌𝑆 (𝑡′), 𝑡′ ≤ 𝑡) and 𝜎(𝐿(𝑡 + ℎ) − 𝐿(𝑡′), 𝑡 ≤ 𝑡′ ≤ 𝑡 + ℎ) are independent and thus, 𝑒⊤𝑣𝐄⊤𝑝 ∫

𝑡+ℎ
𝑡 𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) is projected on zero. It

follows

𝑃𝑌𝑆 (𝑡)
(

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) −𝐷(𝑝−1)𝑌𝑣(𝑡)
)

= 𝑒⊤𝑣𝐄
⊤
𝑝
(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)
∑

𝑠∈𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) + 𝑒⊤𝑣𝐄⊤𝑝

(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

∑

𝑠∈𝑉 ⧵𝑆

𝑝
∑

𝑗=1
𝐄𝑗𝑒𝑠𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑗−1)𝑌𝑠(𝑡)
)

P-a.s.

For the proof of the second equation, we apply the same arguments to receive

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑝−1)𝑌𝑣(𝑡 + ℎ)

= 𝑒⊤𝑣𝐄
⊤
𝑝

(

𝑒𝐀ℎ𝑋(𝑡) + ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢)

)

− 𝑃𝑌𝑉 (𝑡)

(

𝑒⊤𝑣𝐄
⊤
𝑝

(

𝑒𝐀ℎ𝑋(𝑡) + ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢)

))

= 𝑒⊤𝑣𝐄
⊤
𝑝 ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) P-a.s. □

C.2. Proofs of Section 6.4

Proof of Proposition 6.12. (a) Recall that, due to Theorem 3.5, 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 if and only if,
𝑃𝑌𝑉 (𝑡)𝑌𝑏(𝑡 + ℎ) = 𝑃𝑌𝑉 ⧵{𝑎} (𝑡)

𝑌𝑏(𝑡 + ℎ) P-a.s. ∀ℎ ∈ [0, 1], 𝑡 ∈ R.

From Proposition 6.9 we know that

𝑃𝑌𝑉 (𝑡)𝑌𝑏(𝑡 + ℎ) =
𝑝
∑

𝑗=1

∑

𝑠∈𝑉
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡),

𝑃𝑌𝑉 ⧵{𝑎} (𝑡)
𝑌𝑏(𝑡 + ℎ) =

𝑝
∑

𝑗=1

∑

𝑠∈𝑉 ⧵{𝑎}
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) +
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝑃𝑌𝑉 ⧵{𝑎} (𝑡)
𝐷(𝑗−1)𝑌𝑎(𝑡) ∀ℎ ∈ [0, 1], 𝑡 ∈ R.

We equate the two orthogonal projections and remove the coinciding terms. Then we receive 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 if and only if
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝐷(𝑗−1)𝑌𝑎(𝑡) =
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝑃𝑌𝑉 ⧵{𝑎} (𝑡)
𝐷(𝑗−1)𝑌𝑎(𝑡) P-a.s.

for ℎ ∈ [0, 1], 𝑡 ∈ R. The expression on the right side is in 𝑌𝑉 ⧵{𝑎}
(𝑡) and the expression on the left side is in 𝑌𝑎 (𝑡). Due to their

equality, they are in 𝑌𝑉 ⧵{𝑎}
(𝑡) ∩ 𝑌𝑎 (𝑡) = {0}, making use of Proposition 5.4. Thus, 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 if and only if

𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝐷(𝑗−1)𝑌𝑎(𝑡) = 0 P-a.s. ∀ℎ ∈ [0, 1], 𝑡 ∈ R. (C.1)

In the following, we show that (C.1) is equivalent to
⊤ 𝐀ℎ
𝑒𝑏 𝐂𝑒 𝐄𝑗𝑒𝑎 = 0 ∀ℎ ∈ [0, 1], 𝑗 = 1,… , 𝑝. (C.2)
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Clearly, (C.2) implies (C.1). For the opposite direction, suppose (C.1) holds. Define the 𝑘𝑝-dimensional vector 𝐲 = (𝑦1,… , 𝑦𝑘𝑝) with
entries

𝑦𝑖 =

{

𝑒⊤𝑏 𝐂𝑒
𝐀ℎ𝐄𝑗𝑒𝑎 if 𝑖 = (𝑗 − 1)𝑘 + 𝑎, 𝑗 = 1,… , 𝑝,

0 else.

Then (C.1) implies P-a.s.

0 =
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝐷(𝑗−1)𝑌𝑎(𝑡) =
𝑝
∑

𝑗=1
𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎𝑋(𝑗−1)𝑘+𝑎(𝑡) = 𝐲⊤𝑋(𝑡)

and, in particular,

0 = E
[

(

𝐲⊤𝑋(𝑡)
)2] = 𝐲⊤𝑐𝑋 𝑋 (0)𝐲.

But 𝑐𝑋 𝑋 (0) > 0 (cf. Remark 6.3(a)) such that 𝐲 is the zero vector and (C.2) is valid.
(b) Let 𝑆 ⊆ 𝑉 , 𝑣 ∈ 𝑉 , 𝑡 ∈ R, and ℎ ≥ 0. From Lemma 6.11 we already know that

1
ℎ
𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) −𝐷(𝑝−1)𝑌𝑣(𝑡)
)

=
𝑝
∑

𝑗=1

∑

𝑠∈𝑆
𝑒⊤𝑣𝐄

⊤
𝑝

(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

ℎ
𝐄𝑗𝑒𝑠𝐷(𝑗−1)𝑌𝑠(𝑡) +

𝑝
∑

𝑗=1

∑

𝑠∈𝑉 ⧵𝑆
𝑒⊤𝑣𝐄

⊤
𝑝

(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

ℎ
𝐄𝑗𝑒𝑠𝑃𝑌𝑆 (𝑡)(𝐷(𝑗−1)𝑌𝑠(𝑡)) P-a.s.

But limℎ→0
(

𝑒𝐀ℎ − 𝐼𝑘𝑝
)

∕ℎ = 𝐀 implies that

l.i.m.
ℎ→0

𝑃𝑌𝑆 (𝑡)

(

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) −𝐷(𝑝−1)𝑌𝑣(𝑡)
ℎ

)

=
𝑝
∑

𝑗=1

∑

𝑠∈𝑆
𝑒⊤𝑣𝐄

⊤
𝑝𝐀𝐄𝑗𝑒𝑠𝐷

(𝑗−1)𝑌𝑠(𝑡) +
𝑝
∑

𝑗=1

∑

𝑠∈𝑉 ⧵𝑆
𝑒⊤𝑣𝐄

⊤
𝑝𝐀𝐄𝑗𝑒𝑠𝑃𝑌𝑆 (𝑡)𝐷

(𝑗−1)𝑌𝑠(𝑡).

Then the remaining proof is similar to the proof of (a). □

Proof of Proposition 6.13. (a) A combination of Remark 6.10 and Lemma 6.2(a) results in
𝑌𝑣(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐂∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢).

Thus, 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 if and only if
0 = E

[(

𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝑌𝑎(𝑡 + ℎ)
) (

𝑌𝑏(𝑡 + ℎ̃) − 𝑃𝑌𝑉 (𝑡)𝑌𝑏(𝑡 + ℎ̃)
)]

= E

[

(

𝑒⊤𝑎𝐂∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢)

)

(

𝑒⊤𝑏 𝐂∫

𝑡+ℎ̃

𝑡
𝑒𝐀(𝑡+ℎ̃−𝑢)𝐁𝑑 𝐿(𝑢)

)]

=𝑒⊤𝑎𝐂∫

min(ℎ,ℎ̃)

0
𝑒𝐀(ℎ−𝑢)𝐁𝛴𝐿𝐁⊤𝑒𝐀

⊤(ℎ̃−𝑢)𝑑 𝑢 𝐂⊤𝑒𝑏

for ℎ, ℎ̃ ∈ [0, 1], 𝑡 ∈ R.
(b) Let 𝑎, 𝑏, 𝑣 ∈ 𝑉 , 𝑡 ∈ R, and ℎ ≥ 0. An application of Lemma 6.11 gives that

𝐷(𝑝−1)𝑌𝑣(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑝−1)𝑌𝑣(𝑡 + ℎ) = 𝑒⊤𝑣𝐄

⊤
𝑝 ∫

𝑡+ℎ

𝑡
𝑒𝐀(𝑡+ℎ−𝑢)𝐁𝑑 𝐿(𝑢) P-a.s.

Thus,

E
[

(

𝐷(𝑝−1)𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑝−1)𝑌𝑎(𝑡 + ℎ)

)(

𝐷(𝑝−1)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷(𝑝−1)𝑌𝑏(𝑡 + ℎ)
)

]

= 𝑒⊤𝑎𝐄
⊤
𝑝 ∫

ℎ

0
𝑒𝐀𝑢𝐁𝛴𝐿𝐁⊤𝑒𝐀

⊤𝑢𝑑 𝑢 𝐄𝑝𝑒𝑏.

Setting 𝑓 (𝑢) = 𝑒𝐀𝑢𝐁𝛴𝐿𝐁⊤𝑒−𝐀
⊤𝑢 and 𝐹 (⋅) as its primitive function, we obtain

lim
ℎ→0

1
ℎ
E
[

(

𝐷(𝑝−1)𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷
(𝑝−1)𝑌𝑎(𝑡 + ℎ)

)(

𝐷(𝑝−1)𝑌𝑏(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)𝐷(𝑝−1)𝑌𝑏(𝑡 + ℎ)
)

]

= 𝑒⊤𝑎𝐄
⊤
𝑝

[

lim
ℎ→0

𝐹 (ℎ) − 𝐹 (0)
ℎ

]

𝐄𝑝𝑒𝑏 = 𝑒⊤𝑎𝛴𝐿𝑒𝑏. □

Proof of Theorem 6.19. (a) ⇐: Suppose 𝑒⊤𝑏 𝐂𝐀
𝛼𝐄𝑗𝑒𝑎 = 0 for 𝛼 = 1,… , 𝑘𝑝 − 1 and 𝑗 = 1,… , 𝑝. Bernstein [5], (11.2.1) provides

𝑒𝐀ℎ =
𝑘𝑝−1
∑

𝛼=0
𝜓𝛼(ℎ)𝐀𝛼 , ℎ ∈ R, where 𝜓𝛼(ℎ) = 1

2𝜋 𝑖 ∮

𝜒 [𝛼+1]
𝐀 (𝑧)
𝜒𝐀(𝑧)

𝑒𝑡𝑧𝑑 𝑧, (C.3)

𝜒 [1]
𝐀 (⋅),… , 𝜒 [𝑘𝑝]

𝐀 (⋅) are polynomials defined by recursion and  is a simple, closed contour in the complex plane enclosing 𝜎(𝐀). With
⊤
𝑏 𝐂𝐀

𝛼𝐄𝑗𝑒𝑎 = 0 we can conclude then that

𝑒⊤𝑏 𝐂𝑒
𝐀ℎ𝐄𝑗𝑒𝑎 =

𝑘𝑝−1
∑

𝜓𝛼(ℎ)𝑒⊤𝑏 𝐂𝐀
𝛼𝐄𝑗𝑒𝑎 = 0 ∀ℎ ∈ [0, 1],
𝛼=0
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such that Proposition 6.12 results in 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 .
⇒: Assume 𝑌𝑎 𝑌𝑏 | 𝑌𝑉 . Thus, 𝑒⊤𝑏 𝐂𝑒

𝐀ℎ𝐄𝑗𝑒𝑎 = 0 for ℎ ∈ [0, 1] and 𝑗 = 1,… , 𝑝 by Proposition 6.12. Define

𝑓 (ℎ) = 𝑒⊤𝑏 𝐂𝑒
𝐀ℎ𝐄𝑗𝑒𝑎, ℎ ∈ R,

and differentiate this function using Bernstein [5], Proposition 11.1.4. Then

𝑓 (𝛼)(ℎ) = 𝑒⊤𝑏 𝐂𝐀
𝛼𝑒𝐀ℎ𝐄𝑗𝑒𝑎, ℎ ∈ R, 𝛼 = 1,… , 𝑘𝑝 − 1.

Since 𝑓 (ℎ) = 0 for ℎ ∈ [0, 1] and 𝑓 (𝛼)(⋅) is continuous, we obtain 𝑓 (𝛼)(ℎ) = 0 for ℎ ∈ [0, 1]. Putting ℎ = 0, we get as claimed

0 = 𝑒⊤𝑏 𝐂𝐀
𝛼𝐄𝑗𝑒𝑎, 𝛼 = 1,… , 𝑘𝑝 − 1, 𝑗 = 1,… , 𝑝.

(b) ⇐: Let 𝑒⊤𝑎𝐂𝐀𝛼𝐁𝛴𝐿𝐁⊤(𝐀⊤)𝛽𝐂⊤𝑒𝑏 = 0 for 𝛼 , 𝛽 = 0,… , 𝑘𝑝 − 1. We apply the representation (C.3) and obtain

𝑒⊤𝑎𝐂∫

min(ℎ,ℎ̃)

0
𝑒𝐀(ℎ−𝑠)𝐁𝛴𝐿𝐁⊤𝑒𝐀

⊤(ℎ̃−𝑠)𝑑 𝑠 𝐂⊤𝑒𝑏 =
𝑘𝑝−1
∑

𝛼=0

𝑘𝑝−1
∑

𝛽=0
∫

min(ℎ,ℎ̃)

0
𝜓𝛼(ℎ − 𝑠)𝜑𝛽 (ℎ̃ − 𝑠)𝑒⊤𝑎𝐂𝐀

𝛼𝐁𝛴𝐿𝐁⊤
(

𝐀⊤
)𝛽 𝐂⊤𝑒𝑏 𝑑 𝑠 = 0,

for ℎ, ℎ̃ ∈ [0, 1], 𝑡 ∈ R, by assumption. Proposition 6.13 yields then 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 .
⇒: Assume 𝑌𝑎 ≁ 𝑌𝑏 | 𝑌𝑉 . Due to Theorem 4.5 we have for ℎ ∈ [0, 1] and 𝑡 ∈ R,

𝑃𝑌𝑉 (𝑡)∨𝑌𝑏 (𝑡,𝑡+1)
𝑌𝑎(𝑡 + ℎ) = 𝑃𝑌𝑉 (𝑡)𝑌𝑎(𝑡 + ℎ) P-a.s.

In addition, we know from Proposition 6.9 that 𝑃𝑌𝑉 (𝑡)𝑌𝑎(𝑡 + ℎ) = 𝑒⊤𝑎𝐂𝑒
𝐀ℎ𝑋(𝑡). Both together provide

𝑃𝑌𝑉 (𝑡)∨𝑌𝑏 (𝑡,𝑡+1)
𝑌𝑎(𝑡 + ℎ) = 𝑒⊤𝑎𝐂𝑒

𝐀ℎ𝑋(𝑡) P-a.s. (C.4)

for ℎ ∈ [0, 1] and 𝑡 ∈ R. Since 𝑌𝑏(𝑡 + ℎ̃) ∈ 𝑌𝑉 (𝑡) ∨ 𝑌𝑏 (𝑡, 𝑡 + 1) for ℎ̃ ∈ [0, 1] as well as 𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)∨𝑌𝑏 (𝑡,𝑡+1)
𝑌𝑎(𝑡 + ℎ) ∈

(𝑌𝑉 (𝑡) ∨ 𝑌𝑏 (𝑡, 𝑡 + 1))⊥, we obtain

0 = E
[(

𝑌𝑎(𝑡 + ℎ) − 𝑃𝑌𝑉 (𝑡)∨𝑌𝑏 (𝑡,𝑡+1)
𝑌𝑎(𝑡 + ℎ)

)

𝑌𝑏(𝑡 + ℎ̃)
]

.

Plugging in (C.4) gives

0 = E
[(

𝑌𝑎(𝑡 + ℎ) − 𝑒⊤𝑎𝐂𝑒𝐀ℎ𝑋(𝑡)
)

𝑌𝑏(𝑡 + ℎ̃)
]

= 𝑒⊤𝑎𝐂E
[(

𝑋(𝑡 + ℎ) − 𝑒𝐀ℎ𝑋(𝑡)
)

𝑋(𝑡 + ℎ̃)
]

𝐂⊤𝑒𝑏 = 𝑒⊤𝑎𝐂
(

𝑐𝑋 𝑋 (ℎ − ℎ̃) − 𝑒𝐀ℎ𝑐𝑋 𝑋 (−ℎ̃)
)

𝐂⊤𝑒𝑏,

for ℎ, ℎ̃ ∈ [0, 1]. If we only consider the case 0 ≤ ℎ̃ ≤ ℎ ≤ 1 then (6.5) provides

0 = 𝑒⊤𝑎𝐂
(

𝑒𝐀(ℎ−ℎ̃)𝑐𝑋 𝑋 (0) − 𝑒𝐀ℎ𝑐𝑋 𝑋 (0)𝑒𝐀
⊤ℎ̃
)

𝐂⊤𝑒𝑏 = 𝑒⊤𝑎𝐂𝑒
𝐀ℎ

(

𝑒−𝐀ℎ̃𝑐𝑋 𝑋 (0) − 𝑐𝑋 𝑋 (0)𝑒𝐀
⊤ℎ̃
)

𝐂⊤𝑒𝑏,

using Bernstein [5], Corollary 11.1.6. Now, we define

𝛾(ℎ, ℎ̃) = 𝑒⊤𝑎𝐂𝑒
𝐀ℎ

(

𝑒−𝐀ℎ̃𝑐𝑋 𝑋 (0) − 𝑐𝑋 𝑋 (0)𝑒𝐀
⊤ℎ̃
)

𝐂⊤𝑒𝑏, 0 ≤ ℎ̃ ≤ ℎ ≤ 1.

Differentiating this function several times (cf. Bernstein [5], Proposition 11.1.4) provides
𝜕𝑚

𝜕 ℎ𝑚
𝜕𝑛

𝜕ℎ̃𝑛
𝛾(ℎ, ℎ̃) = 𝑒⊤𝑎𝐂𝐀

𝑚𝑒𝐀ℎ
(

(−𝐀)𝑛 𝑒−𝐀ℎ̃𝑐𝑋 𝑋 (0) − 𝑐𝑋 𝑋 (0)
(

𝐀⊤
)𝑛 𝑒𝐀

⊤ℎ̃
)

𝐂⊤𝑒𝑏.

Furthermore, since 𝛾(ℎ, ℎ̃) = 0 for 0 ≤ ℎ̃ ≤ ℎ ≤ 1 and due to the continuity of the function under consideration, we obtain that the
erivatives are zero for 0 ≤ ℎ̃ ≤ ℎ ≤ 1. Now, plugging in ℎ = ℎ̃ = 0 yields

𝑒⊤𝑎𝐂𝐀
𝑚𝑐𝑋 𝑋 (0)

(

𝐀⊤
)𝑛 𝐂⊤𝑒𝑏 = 𝑒⊤𝑎𝐂𝐀

𝑚 (−𝐀)𝑛 𝑐𝑋 𝑋 (0)𝐂⊤𝑒𝑏, 𝑚, 𝑛 ∈ N0. (C.5)

Finally, (6.6) leads to
𝑒⊤𝑎𝐂𝐀

𝛼𝐁𝛴𝐿𝐁⊤
(

𝐀⊤
)𝛽 𝐂⊤𝑒𝑏

= 𝑒⊤𝑎𝐂𝐀
𝛼 (−𝐀𝑐𝑋 𝑋 (0) − 𝑐𝑋 𝑋 (0)𝐀⊤

) (
𝐀⊤

)𝛽 𝐂⊤𝑒𝑏
= −𝑒⊤𝑎𝐂𝐀𝛼+1𝑐𝑋 𝑋 (0)

(

𝐀⊤
)𝛽 𝐂⊤𝑒𝑏 − 𝑒⊤𝑎𝐂𝐀

𝛼𝑐𝑋 𝑋 (0)
(

𝐀⊤
)𝛽+1 𝐂⊤𝑒𝑏.

Applying (C.5) gives then

𝑒⊤𝑎𝐂𝐀
𝛼𝐁𝛴𝐿𝐁⊤

(

𝐀⊤
)𝛽 𝐂⊤𝑒𝑏 = −𝑒⊤𝑎𝐂(−1)𝛽𝐀𝛼+𝛽+1𝑐𝑋 𝑋 (0)𝐂⊤𝑒𝑏 − 𝑒⊤𝑎𝐂(−1)𝛽+1𝐀𝛼+𝛽+1𝑐𝑋 𝑋 (0)𝐂⊤𝑒𝑏 = 0,

for 𝛼 , 𝛽 = 0,… , 𝑘𝑝 − 1, the desired statement. □

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spa.2024.104501.
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