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Abstract We analyze the importance of cloud top temperature, dust aerosol, sea salt aerosol, and sea ice
cover for the thermodynamic phase of low‐level, mid‐level, and mid to low‐level clouds observed by CloudSat/
CALIPSO over the Arctic and the Southern Ocean using an explainable machine learning technique. As
expected, the cloud top temperature is found to be the most important parameter for determining cloud phase.
The results show also a predictive power of sea salt and sea ice on the phase of low‐level clouds, while in mid‐
level clouds dust shows predictive power. Over the Southern Ocean, strong zonal winds coincide with the
aerosol distribution. While they can produce high mixing ratios of sea spray at lower levels, the strong zonal
winds may prevent the pole‐ward transport of dust. Sea ice may prevent the release of sea salt aerosols and
marine organic aerosols leading to higher liquid fractions in clouds over sea ice.

Plain Language Summary The cloud phase describes whether a cloud consists of ice particles,
liquid droplets, or both. The representation of the cloud phase in climate and weather models is uncertain,
leading to radiation biases over the Southern Ocean and the Arctic Ocean. To investigate the impact of four
different parameters on the cloud phase, we use an explainable machine learning technique. The parameters
studied are the temperature of the cloud top, the sea ice coverage, and the concentration of sea salt aerosols and
dust aerosols, both of which can act as ice nucleating particles and contribute to the ice formation in clouds. We
find that temperature seems to be the most important factor in determining the cloud phase. Sea salt aerosol
seems to be more relevant for low‐level clouds closer to the ocean surface, the source of sea salt aerosol. Sea ice
may prevent the release of sea salt aerosol by covering the ocean and our analysis supports this hypothesis. Dust
is typically transported over long distances and our analysis shows that dust aerosol is more important for mid‐
level clouds, but persistent strong winds surrounding Antarctica may have an influence on the dust
concentration and thus on cloud phase.

1. Introduction
The uncertainty of the representation of cloud phase over the Arctic and the Southern Oceans leads to radiative
biases in climate and weather models. The latest iteration 6 of the Coupled Model Intercomparison Project
(CMIP6) shows a large intermodel spread of the representation of clouds globally, but especially in low and
middle heights over polar regions (Cesana et al., 2022). The long‐standing shortwave radiative bias over the
Southern Ocean has been slightly improved in CMIP6 simulations compared to previous versions, but the
multimodel mean bias of the shortwave cloud radiative effects is still up to 18 Wm− 2 zonally averaged south of
55°S, while it is negative north of 55°S (Cesana et al., 2022). Over the Arctic, CMIP5 simulations also showed
large uncertainties in the representation of low‐level clouds (Taylor et al., 2019), and CMIP6 shows mostly an
overestimation of the cloud fraction (Wei et al., 2021) also leading to radiative biases. Besides climate models,
weather simulations also show uncertainties and biases in the representation of clouds over the Arctic (Klein
et al., 2009; McCusker et al., 2023; Solomon et al., 2023; Tjernström et al., 2021). To improve the representation
of cloud phase over the Arctic Ocean and the Southern Ocean, an improved understanding of the factors influ-
encing cloud phase is needed. In addition to meteorological factors, dust has been identified to co‐vary with cloud
glaciation (Kawamoto et al., 2020; Villanueva et al., 2020). Our previous analysis (Dietel, Sourdeval, &
Hoose, 2024) has shown that aerosol correlations with the thermodynamic phase of low‐base and mid‐base clouds
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are largest for dust and sea salt over the Arctic and Southern Ocean. While dust is a known type of ice nucleating
particle, sea salt over the polar oceans is often co‐emitted with organic materials from the ocean micro‐layer,
resulting in sea spray aerosols, which can nucleate ice at high temperatures (Burrows et al., 2013; DeMott
et al., 2016; Ickes et al., 2020; McCluskey et al., 2018; Wilson et al., 2015). Besides aerosol correlations with
cloud phase, sea ice also showed correlations with cloud phase (Carlsen & David, 2022; Dietel, Sourdeval, &
Hoose, 2024). However, it is not yet clear how different factors influencing cloud phase interact, how large their
respective contributions to cloud phase are, and how their impact varies regionally.

In this study, we quantify the impact of cloud top temperature, sea ice concentration, dust, and sea salt for cloud
phase by analyzing satellite observations and reanalysis data in an explainable machine learning framework. We
consider sea salt in this study as a proxy for sea spray aerosols including co‐emitted organic INPs. We also
investigate the regional distribution of the parameter influence on cloud phase. The machine learning method
allows to untangle the effects of the influencing factors of cloud phase.

2. Data
A detailed description of the data set used can be found in Dietel, Sourdeval, and Hoose (2024), but we will
summarize the most important information in the following.

This study is based on a 2‐year data set (2007 and 2008) of cloud phase information from DARDAR (Delanoë &
Hogan, 2008, 2010) over the Southern Ocean (40°S–82°S) and the Arctic Ocean (60°N–82°N) excluding data
over land surfaces to reduce uncertainties introduced by orography. We analyze single‐layer low‐level, mid‐level
clouds, and mid‐to‐low‐level clouds, henceforth mid‐low‐level which are defined by their cloud top height (CTH)
and their cloud base height (CBH) as described in Dietel, Sourdeval, and Hoose (2024). Low‐level clouds are
defined as clouds with CBH and CTH between 0.5 and 2 km, mid‐level clouds with a CBH and CTH larger than
2 km, but lower than a thresholds z linearly increasing from 4 km at the pole to 7 km at 40°S/N, and mid‐low‐level
clouds are defined by a CBH between 0.5 and 2 km, and a CTH between 2 km and the mentioned threshold z. For
each cloud profile, we calculate the liquid fraction ( f )with Equation 1 based on the number of liquid vertical bins
(nLiq) , mixed‐phase vertical bins (nMix) , and ice vertical bins (nIce) . The factor 0.5 is used in absence of better
information assuming half of a mixed‐phase vertical bin consists of ice particles and half of it consists of liquid
droplets. The results are not very sensitive to this choice (see Figure S1 in Supporting Information S1).

f =
nLiq + 0.5 ⋅ nMix

nLiq + nMix + nIce
(1)

Collocated 3‐hourly mixing ratios of dust and sea salt from the ECMWF Atmospheric Composition Reanalysis 4
(EAC4) (Inness et al., 2019) from the Copernicus Atmosphere Monitoring Service (CAMS) are used. The size
modes are summed up and mixing ratios are averaged over the cloud heights for each cloud profile. The horizontal
resolution of the aerosol data is about 80 km. In this study, sea salt is used as proxy for sea spray aerosols,
including organic materials. Daily sea ice concentrations with a horizontal resolution of 25 km from Nimbus‐7
SMMR and DMSP SSM/I‐SSMIS Passive Microwave satellite instrument version 1 (Cavalieri et al., 1996)
are also collocated to the cloud profiles. Cloud top temperature is derived from the temperature provided as part of
the DARDAR data set coming from the ECMWF‐AUXillary (ECMWF‐AUX) product (CloudSat DPC, 2024).

3. Method of Explainable Machine Learning Technique
A Histogram‐based Gradient Boosting Regression Tree model (based on the python package scikit‐learn
(Pedregosa et al., 2011)) is trained to predict the liquid fraction of a cloud using the four parameters of cloud
top temperature, sea ice concentration below the cloud, dust aerosol mixing ratio, and sea salt aerosol mixing
ratio. These are selected because our previous study (Dietel, Sourdeval, & Hoose, 2024) has shown correlations of
the cloud phase with these parameters. Furthermore, it is known that a decreasing temperature leads to an
increased freezing probability, while aerosols like dust and sea spray including marine organics can act as INP and
thereby influence cloud phase. Sea ice cover changes surface conditions, but is also hypothesized to reduce sea
spray emission and thereby indirectly influence cloud phase. Six different models are trained for the combinations
of three different cloud types, low‐level, mid‐level, mid‐low‐level, over the two regions of the Southern Ocean
and the Arctic Ocean. Due to different cloud type occurrence frequencies, the training sample sizes vary, but the

Writing – review & editing:
Hendrik Andersen, Jan Cermak,
Philip Stier, Corinna Hoose

Geophysical Research Letters 10.1029/2024GL110325

DIETEL ET AL. 2 of 8

 19448007, 2024, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
110325 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [20/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



smallest training sample size still has 300,000 samples (see Table S2 in Supporting Information S1). The training
and validation data sets are randomly sampled subsets of the original data set. Being much faster than other
Gradient Boosting Regressors, this machine learning model is well‐suited for our purpose and large data sets, as
the input samples are binned before the gradient boosting, which reduces the training for finding the optimal split
(Tamim Kashifi & Ahmad, 2022). Furthermore, decision trees are well‐suited for parameters covering different
size ranges. We don't use spatial or temporal information for the model training, but use only the four feature
parameters to predict the liquid fraction independent of the location and time.

After amanual testing of hyperparameters, a grid searchmethod including a 3‐fold cross validation (GridSearchCV
from the python package scikit‐learn) is used to find the optimal set of hyperparameters (see Table S1 in Supporting
Information S1). To investigate the importance and influence of different parameters on the prediction, we use
SHAP values (S. Lundberg & Lee, 2017; S.M. Lundberg et al., 2020) as a Tree Explainer method, which show the
quantitative contribution of each feature value to the prediction. SHAP values show the marginal contribution of a
feature to a prediction while considering all permutations of the feature values. Due to computational costs, we
calculate them for a representative subset of 500,000 samples for each cloud type over each region. If two (ormore)
features co‐vary, the SHAP values cannot separate the contributions of the features to the prediction, and might
even give misleading results. However, as the size of the samples is very large, such that is likely that it contains
sufficient independent variation. We also investigate the spatial distribution of the importance of the parameters
compared to the averaged importance for the complete region of the Arctic Ocean or the Southern Ocean.

4. Results and Discussion
The models can predict the liquid fraction based on the feature variables. Figure 1 shows a good agreement
between observations and predictions of the mean liquid fraction as a function of the cloud top temperature. The
performance of the models is also shown by Pearson correlation coefficients between observations and pre-
dictions for the validation data set, which is in the range of 0.61 and 0.85 for different cloud types and regions (see
Table S2 in Supporting Information S1).

4.1. Importance of Parameters for Cloud Phase

To assess the importance of the individual model features on cloud phase, we separate these into three groups of
low (smaller than 25th percentile), middle (between 25th and 75th percentile), and high (larger than 75th
percentile) feature values and analyze the distribution of SHAP values in these groups (Figure 2). For the sea ice

Figure 1. Mean of the observed liquid fraction as a function of cloud top temperatures (CTT) and mean of the liquid fraction
predicted by the machine learning models with shaded areas representing standard deviations. The gray histogram shows the
distribution of cloud top temperatures in the validation subset (500,000 samples).
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concentration the group division is not based on percentiles, because of the distribution, but low values corre-
spond to a sea ice concentration of 0, middle values correspond to a sea ice concentration between 0 and 0.8, and
high values correspond to a sea ice concentration larger than 0.8. All cloud types show the largest absolute SHAP

Figure 2. Distribution of SHAP values of different features, namely CTT, sea ice concentration, dust mixing ratio, and sea salt
mixing ratio. The colors correspond to small (X ≤P25, blue), middle (P25<X ≤P75, gray), and high (P75<X, red) values,
based on the 25th percentile (P25) and the 75th percentile (P75) of the feature values, except for sea ice. Small sea ice
concentration refers to values of zero, middle sea ice concentration refers to values larger than 0 and lower or equal than 0.8,
while high values refer to larger than 0.8. Each distribution represents a probability density function based on a density
estimation using Gaussian kernels. Each distribution is scaled by the maximum value of the distribution to improve readability.
Left column: Southern Ocean, right column: Arctic Ocean.
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values for the parameter of cloud top temperature with strongest differences
of SHAP values between high and low cloud top temperatures. SHAP values
of other parameters show smaller differences (Figure 2). Low temperatures
correspond to negative SHAP values and a decreased predicted liquid fraction
and vice versa. This highlights the importance of the temperature for cloud
phase, which is expected as decreasing temperature leads to an increasing
freezing probability. Besides temperature, the influence of the features varies
between the cloud types. Dust shows a higher impact in mid‐level clouds with
higher dust concentrations leading to a lower liquid fraction (shown by
negative SHAP values), which could be explained by dust acting as ice
nucleating particles and thereby inducing ice formation (Hoose & Möh-
ler, 2012). Sea salt is most relevant in low‐level clouds over both polar re-
gions and also shows a reduced liquid fraction for higher sea salt
concentrations. This is in line with the fact that sea salt as a proxy for co‐
emitted marine organics (or sea spray) can also act as ice nucleating parti-
cles and thereby induce ice formation (Burrows et al., 2013; DeMott
et al., 2016; Ickes et al., 2020; McCluskey et al., 2018; Wilson et al., 2015).
Mid‐level and mid‐low‐level clouds over the Southern Ocean also seem to be
slightly impacted by sea salt. Low sea ice concentrations lead to a lower liquid
fraction in low‐level clouds over both regions and in mid‐level clouds over the
Southern Ocean, while other cloud types only show smaller influences by sea
ice. It is hypothesized that sea ice prevents the release of sea spray leading to
lower INP concentrations and thereby higher liquid fractions over sea ice.
This will be further analyzed in the next section investigating the regional
distribution of the impact of the different parameters on cloud phase.

4.2. Regional Distribution of Parameter Impact on Cloud Phase

The regional distribution of the influence of the different parameters on the
model prediction shows a strong gradient in the SHAP values for cloud top
temperature in low‐level clouds (Figure 3). This is related to the general
temperature gradient, which can also be seen in the cloud top temperature of
low‐level clouds (see Figure S2 in Supporting Information S1). Generally, the
regional analysis shows strongest differences in the SHAP values for low‐
level clouds (see Figures S4 and S5 in Supporting Information S1). SHAP
values of sea ice and sea salt show similar regional patterns. This also sup-
ports the hypothesis that there is a connection between sea ice coverage and

the presence of sea spray influencing cloud phase. Regions where sea ice can occur show mostly positive SHAP
values for sea salt representing higher predicted liquid fractions. Contrarily, SHAP values for sea salt are mostly
negative in regions, where no sea ice occurs representing a reduced liquid fraction. We hypothesize that mixing
ratios of sea salt and co‐emitted organics are higher over the open ocean than over sea ice. The emitted sea spray
can induce ice formation by acting as INP and thereby leads to lower liquid fractions in clouds over the open
ocean compared to sea ice covered regions. Nevertheless, there may be dynamical processes connected to the
presence of sea ice impacting cloud phase, which can be investigated in future studies. Dust shows only smaller
SHAP values in low‐level clouds compared to the other parameters. For mid‐level and mid‐low‐level clouds
cloud top temperatures also shows the largest absolute SHAP values in the regional analysis (see Figures S4 and
S5 in Supporting Information S1). The other parameters show smaller SHAP values with less clear regional
differences. While in Figure 2 dust shows an impact on the phase of mid‐level clouds, Figure 3 shows that there is
no consistent regional pattern of the influence of dust. This may be explained by temporally variable dust con-
centrations, which depend on long‐range transport. This long‐range transport of dust can have a strong effect on
the phase of mid‐level clouds, but is not connected to specific regions in the Arctic. Furthermore, other aerosol
sources from land surfaces surrounding the Arctic like anthropogenic aerosols from factories may play a role and
influence cloud phase, though they are not well represented in current reanalyses.

Figure 3. Regional distribution of the averaged SHAP values for different
features, namely CTT, sea ice concentration, sea salt mixing ratio, and dust
mixing ratio for low‐level clouds and dust mixing ratio for mid‐level clouds.
Left column: Arctic Ocean, right column: Southern Ocean. Positive
(negative) SHAP values (reddish (blueish)) refer to an increased (decreased)
liquid fraction, based on the feature parameters CTT, Sea ice, Sea salt, and
Dust. For the direction from the input parameter to the predictor see Figure 2.
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Contrarily to the Arctic Ocean, the regional distribution of the SHAP values
over the Southern Ocean show a much stronger meridional gradient in most
patterns. The SHAP values of the cloud top temperature of low‐level clouds
show the strongest meridional gradient, probably related to the strong zonal
winds at the polar front surrounding Antarctica, and the Antarctic Circum-
polar Current (ACC). SHAP values of sea ice show strong positive values in
regions where sea ice occurs, while in other regions the values are mostly
negative. The presence of sea ice leads to a higher liquid fraction in the model
prediction. The pattern of the SHAP values of sea ice again correlates with the
pattern of SHAP values of sea salt, similar to the Arctic Ocean, but sea salt
production also depends on other factors like surface wind velocity. Never-
theless, we can see a reduced prediction of the liquid fraction due to sea salt
(used as a proxy for co‐emitted INPs) in regions where the ocean is usually
not covered by sea ice and therefore sea spray concentrations are higher
compared to regions covered by sea ice. SHAP values of dust are lower in
low‐level clouds, but larger in mid‐level clouds with a strong meridional
gradient with more positive values pole‐ward. Figure 2 shows that high dust
mixing ratios correspond with negative SHAP values and a decreasing liquid
fraction, while low dust concentrations show more positive SHAP values and
an increasing liquid fraction, which corresponds to the knowledge of dust
acting as ice nucleating particle and contributing to ice formation. The strong
meridional gradient can also be seen in the mixing ratio of dust (see Figure S3
in Supporting Information S1), and may also be related to the strong zonal
winds, preventing the pole‐ward transport of dust to high southern latitudes
(Li et al., 2008). This effect is contrary to the usual temperature gradient and
might at least to some degree counteract the influence of temperature on cloud
phase. In mid‐low‐level clouds, the largest absolute SHAP values are shown
for CTT, but small impacts of sea ice and sea salt can be seen again correlating
spatially (see Figure S4 in Supporting Information S1).

4.3. Impact of Feature Parameters as a Function of Cloud Top Temperature

Besides the regional distribution, the relative impact (given by the SHAP values) of the different features as a
function of cloud top temperatures (Figure 4) is of interest, as many models parameterize the cloud phase based on

Figure 4. Mean absolute SHAP values of different feature parameters as a
function of CTT for different cloud types over the Arctic Ocean (AO, left
column) and the Southern Ocean (SO, right column). Four bars always
correspond to the same 5°C bin, which is indicated by the small grid lines.

Figure 5. Summary schematic of possible parameters (in addition to temperature) influencing the phase of low‐level and mid‐
level clouds over the Arctic and the Southern Ocean. Low‐level clouds over sea ice show higher liquid fractions compared to
low‐level clouds over open ocean. This is hypothesized to be related to the emission of sea spray aerosol with co‐emitted
INPs, which is prevented by sea ice cover, leading to fewer INPs over sea ice. Mid‐level clouds seem to be more affected by
other long‐range transported aerosol types like dust acting as INPs. Over the Southern Ocean, the pole‐ward transport of dust
seems to be blocked by strong westerly winds, leading to higher liquid fractions in mid‐level clouds at high latitudes, possibly
due to fewer INPs.
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temperature. The impact of temperature becomes stronger toward the edges of the mixed‐phase temperature
regime, where the relative impact of other parameters decreases, as expected when the droplets remain liquid at/
above 0°C or freeze homogeneously below − 38°C. The SHAP values of the other parameters are more constant
with temperature with the notable exception of dust in mid‐level clouds, which has a maximum impact at CTTs of
about − 20°C. Further analysis (Figures S6–S9 in Supporting Information S1) revealed that this signal shows little
seasonal variation over the Southern Ocean, but is strongest in winter over the Arctic Ocean. Over the Southern
Ocean, the SHAP values for dust are even similarly high as the SHAP values for temperature in this intermediate
CTT range. In low‐level clouds sea ice and sea salt (as a proxy for co‐emitted INPs) are the second most important
parameters in most parts of the mixed‐phase temperature regime. As the mean SHAP values for the aerosol
variables and sea ice mostly do not show a strong temperature dependence, temperature‐dependent aerosol
properties are probably not the cause of the non‐monotonous behavior of the liquid fraction (Figure 1), which are
not well understood (Dietel, Sourdeval, & Hoose, 2024).

5. Conclusion
Using a histogram‐based gradient boosting regression model and SHAP values as an explainable machine
learning technique, we showed that temperature is the most important parameter determining cloud phase over the
Arctic and the Southern Ocean. The impacts besides temperature are illustrated schematically in Figure 5 and
show that sea salt (used as a proxy for sea spray) seems to be more relevant for low‐level clouds phase, but
correlates strongly with the impact of sea ice. This encourages the hypothesis that sea ice prevents the release of
sea salt aerosol (Carlsen & David, 2022; Dietel, Sourdeval, & Hoose, 2024) leading to fewer INPs and therefore
higher liquid fractions over sea ice compared to a cloud over open ocean with the same cloud top temperature. The
role of dynamical processes and resulting microphysical regimes, for example, regarding secondary ice pro-
duction, connected to the presence of sea ice can be a further reason of the impact of sea ice on cloud phase and
should be investigated in future studies. Mid‐level clouds phase seem to be more influenced by dust, while over
the Southern Ocean a strong meridional gradient of its influence is observed. We hypothesize that the strong
meridional winds inhibit the long‐range transport of dust to high latitudes, leading to fewer INPs. Over the Arctic
Ocean, there are no strong spatial/regional patterns of the influence of dust on cloud phase, and they are probably
more dependent on current synoptic wind patterns, temporally varying. Furthermore, other aerosols from sur-
rounding land sources may be more relevant over the Arctic Ocean than over the very remote Southern Ocean.

Data Availability Statement
The scripts to train the machine learning model used in this study is published in an institutional repository at
https://doi.org/10.35097/VEbaqHtbXdEzreqO (Dietel, Andersen, et al., 2024). The DARDAR products (Cec-
caldi et al., 2013; Delanoë & Hogan, 2008, 2010; Sourdeval et al., 2018) are provided by the Aeris/ICARE data
center (https://www.icare.univ‐lille.fr/dardar/). The sea ice concentration from Nimbus‐7 SSMR and DMSP
SSM/I‐SSMIS Passive Microwave Data Version 1 (Cavalieri et al., 1996) are provided on the website of the
National Snow and Ice Data Center (https://nsidc.org/data/nsidc‐0051/versions/1). The aerosol mixing ratios
from the CAMS reanalysis data (Inness et al., 2019) are available on the CAMS Atmosphere Data Store (ADS)
website (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams‐global‐reanalysis‐eac4?tab=overview).
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