
Liquid-liquid phase separation with
phase-field method

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau
des Karlsruher Instituts für Technologie (KIT)

angenomene Dissertation

von

M.Sc. Haodong Zhang

Tag der mündlichen Prüfung: 12.12.2023
Hauptreferentin: Prof. Dr. rer. nat. Britta Nestler

Korreferent: Prof. Dr. rer. nat. Dr. h.c. Lorenz Ratke





I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, Sept. 20, 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(ZHANG, Haodong)





Abstract

This thesis extensively investigates liquid phase separation in conjunction with diverse
physical fields, employing three thermodynamically consistent phase-field (PF) models
designed for multi-component systems: the pure diffusion-controlled Cahn-Hilliard (CH)
model, the hydrodynamically coupled Cahn-Hilliard-Navier-Stokes (CHNS) model, and
the electrohydrodynamic Cahn-Hilliard-Navier-Stokes-Gauss (CHNSG) model. Building
upon the beta version in Pace3D tailored for binary fluids, each model is expanded to
accommodate multicomponent systems. The energy law is meticulously scrutinized, taking
into account the coupling of concentration, velocity, and electrical fields, rectifying any
inaccuracies in the algorithms. Of particular significance, the surface stress tensor and
Maxwell stress tensor in the Navier-Stokes equations are derived and formulated in a
thermodynamically consistent manner. Additionally, the requisite boundary conditions
for different models are implemented in Pace3D.

Subsequently, a comprehensive examination of the numerical stability and convergence
of the PF models is conducted by varying parameters such as mesh fineness (Δ𝑥 ), timestep
(Δ𝑡 ), and simulation residual (EPS). Through comparisons between simulations and previ-
ous experimental results, the accuracy of the PF models is validated across three critical
dimensions: (I) thermodynamics, (II) hydrodynamics, and (III) electrohydrodynamics. (I)
Thermodynamic consistency for all three PF models is verified by accurately reproducing
the system’s phase diagram via simulation. This entails comparing correct spinodal/bin-
odal compositions and interfacial tension with theoretical or experimental values. (II)
For models coupled with hydrodynamics, a keen focus is placed on validating flow ve-
locity and Young-Laplace pressure. (III) In the case of the CHNSG model, validation is
achieved by comparing droplet deformation inside an electric field with previous analytical
formulations.

Preceding the phase separation simulations, the algorithm for thermal noise in Pace3D
is revisited through the investigation of droplet Brownian motion (BM). Stochastic velocity
and displacement of droplets at equilibrium are compared with statistical mechanics.
Notably, attention is drawn to the interface effect on BM, often overlooked in prior studies
based on Einstein’s rigid body assumption. Furthermore, owing to the surface stress tensor
in the Navier-Stokes equation, composition fluctuations can trigger fluid flow, significantly
impacting droplet coalescence behaviors, especially for small, deformable droplets at
elevated temperatures, such as those generated by phase separation.

Finally, for each model, a pertinent scenario is selected and simulated. Multi-layer emul-
sion formation via Non-solvent-induced phase separation is studied using the CH model,
Janus droplet production by thermally induced phase separation is investigated employing
the CHNS model, and phase separation within electric fields is explored adopting the
CHNSG model.
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Zusammenfassung

Diese Dissertation untersucht umfassend die Phasentrennung von Flüssigkeiten in Ver-
bindung mit verschiedenen physikalischen Feldern unter Verwendung von drei thermo-
dynamisch konsistenten Phasenfeld (PF)-Modellen, die für Mehrkomponentensysteme
entwickelt wurden: das reine diffusionsgesteuerte Cahn-Hilliard (CH)-Modell, das hydro-
dynamisch gekoppelte Cahn-Hilliard-Navier-Stokes (CHNS)-Modell und das elektrohy-
drodynamische Cahn-Hilliard-Navier-Stokes-Gauss (CHNSG)-Modell. Aufbauend auf der
Beta-Version in Pace3D, die für binäre Fluide maßgeschneidert ist, werden die Modelle
jeweils erweitert, um Mehrkomponentensysteme aufzunehmen. Das Energierecht wird
sorgfältig untersucht, wobei die Kopplung von Konzentration, Geschwindigkeit und elek-
trischen Feldern berücksichtigt wird, um etwaige Ungenauigkeiten in den Algorithmen
zu korrigieren. Von besonderer Bedeutung ist der Oberflächenspannungstensor und der
Maxwell-Spannungstensor in den Navier-Stokes-Gleichungen, die auf thermodynamisch
konsistente Weise abgeleitet und formuliert werden. Zusätzlich werden die erforderlichen
Randbedingungen für verschiedene Modelle in Pace3D implementiert.
Anschließend wird eine umfassende Untersuchung der numerischen Stabilität und

Konvergenz der PF-Modelle durchgeführt, wobei Parameter wie Maschenfeinheit (Δ𝑥),
Zeitschritt (Δ𝑡 ) und Simulationsschwund (EPS) variiert werden. Durch den Vergleich
zwischen Simulationen und früheren experimentellen Ergebnissen wird die Genauig-
keit der PF-Modelle über drei kritische Dimensionen validiert: (I) Thermodynamik, (II)
Hydrodynamik und (III) Elektrohydrodynamik. (I) Die thermodynamische Konsistenz
für alle drei PF-Modelle wird durch die genaue Reproduktion des Phasendiagramms
des Systems über die Simulation verifiziert. Dies beinhaltet den Vergleich der richtigen
Spinodal-/Binodal-Zusammensetzungen und der Grenzflächenspannung mit theoretischen
oder experimentellen Werten. (II) Bei Modellen, die mit Hydrodynamik gekoppelt sind,
wird ein besonderer Fokus auf die Validierung von Strömungsgeschwindigkeit und Young-
Laplace-Druck gelegt. (III) Im Fall des CHNSG-Modells wird die Validierung durch den
Vergleich der Deformation von Tropfen innerhalb eines elektrischen Feldes mit vorherigen
analytischen Formulierungen erreicht.

Vor den Phasentrennungssimulationen wird der Algorithmus für thermische Rauschen
in Pace3D durch die Untersuchung der Brownschen Bewegung (BM) von Tropfen erneut
überprüft. Die stochastische Geschwindigkeit und Verschiebung der Tropfen im Gleichge-
wicht werden mit der statistischen Mechanik verglichen. Es wird insbesondere auf den
Schnittstelleneffekt auf BM hingewiesen, der in früheren Studien auf Grundlage der starren
Körperannahme von Einstein häufig übersehen wurde. Darüber hinaus können durch den
Oberflächenspannungstensor in der Navier-Stokes-Gleichung Konzentrationsfluktuatio-
nen Strömungen auslösen, was sich erheblich auf das Koaleszenzverhalten von Tropfen
auswirkt, insbesondere für kleine, verformbare Tropfen bei erhöhten Temperaturen, wie
sie bei der Phasentrennung entstehen.
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Schließlich wird für jedes Modell ein relevante Szenario ausgewählt und simuliert. Die
Bildung von Mehrschichtemulsionen durch Phasentrennung induziert durch Nichtlöse-
mittel wird mit Hilfe des CH-Modells untersucht, die Produktion von Janus-Tropfen durch
thermisch induzierte Phasentrennung wird unter Verwendung des CHNS-Modells unter-
sucht und die Phasentrennung innerhalb elektrischer Felder wird unter Verwendung des
CHNSG-Modells erforscht.
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Preface

This dissertation undertakes an investigation into the phase separation behaviors of multi-
component systems utilizing phase-field simulations. The inquiry commences with an
exploration of the thermodynamic underpinnings of phase separation. Guided by the
principle of energy minimization, the morphological transformations during the phase
separation process manifest different off-equilibrium pathways significantly influenced by
diverse dynamics. Integrated with assorted fields into the standard Cahn-Hilliard type of
the phase-field model, three distinct models are introduced and tailored to address specific
problems.

The initial model delineates phase separation dominated by diffusion, wherein material
morphologies are determined by the interplay between spinodal decomposition and the
minimization of surface energy. The second model incorporates hydrodynamics, enabling
phase separation to be expedited through the Marangoni effect, stemming from imbalanced
chemical potential. Furthermore, the fluid flow induced by phase separation also shows
impacts on phase coalescence, exerting a pivotal influence during the late stages of phase
separation and dramatically altering phase morphologies, encompassing parameters such
as droplet size, porosity, and permeability. The third model integrates an electric field,
significantly influencing the phase separation process. The fluid phases resulting from
phase separation exhibit altered shapes under the influence of electrostatic forces. The
dissertation meticulously explores the mechanism governing droplet deformation within
the electric field and scrutinizes electric field-induced spinodal decomposition.

Additionally, a thorough investigation of thermal noise, often regarded as the initiator
of phase separation yet frequently overlooked, is presented. Through the application of
various noise levels to the fluid system, the interface’s impact on droplet stochastic behavior
is elucidated. Notably, the simulation of droplet Brownian motion reveals unexpected
distinctions from classic theories pertaining to rigid bodies, as posited by Einstein and
Langevin.

The first chapter provides an introduction along with the fundamental physical aspects
underlying the phase separation process. The subsequent chapter extensively delves into
three distinct phase-field models, emphasizing their derivations. Chapters 3-6 encompass
a compilation of two published and three unpublished articles, with minor adjustments
made to preserve the original content. The articles are enumerated as follows:

• Article 1: H. Zhang, F. Wang, and B. Nestler. Janus droplet formation via ther-
mally induced phase separation: a numerical model with diffusion and convection.
Langmuir, 2022, 38(22), 6882-6895, DOI: 10.1021/acs.langmuir.2c00308.

• Article 2: H. Zhang, Y. Wu, F. Wang, F. Guo, and B. Nestler. Phase-field modeling of
multiple emulsions via spinodal decomposition. Langmuir, 2021, 37(17), 5275–5281,
DOI: 10.1021/acs.langmuir.1c00275.

vii

https://dx.doi.org/10.1021/acs.langmuir.2c00308
https://dx.doi.org/10.1021/acs.langmuir.1c00275


• Article 3: H. Zhang, F. Wang, L. Ratke, and B. Nestler. Brownian motion of droplets
induced by thermal noise. Physical Review E, 2024, 109(2): 024208, DOI: 10.1103/

PhysRevE.109.024208.

• Article 4: H. Zhang, F.Wang, B. Nestler. Multi-component electro-hydro-thermodynamic
model with phase-field method. I. Dielectric. Journal of Computational Physics, 2024,
505: 112907, DOI: 10.1016/j.jcp.2024.112907.

• Article 5: H. Zhang, F. Wang, L. Ratke, and B. Nestler. Thermal noises are so
different: the energy fluctuation and dissipation at interfaces. In preparation.

In the last chapter, summaries and future directions are given.
The following works were published during the Ph.D. study, and not included in the

present dissertation.

• H. Zhang, F. Wang, and B. Nestler. Line tension of sessile droplets: Thermodynamic
considerations. Physical Review E, 2023, 08(5): 054121, DOI: 10.1103/PhysRevE.108.

054121.
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Tao ( Nihil )bears One
( Existentia, Singularity )

One begets Two
( Yin/Yang, +/- spins )

Two breed Three
( Heaven/Earth/Creature, X-Y-Z coordinate )

Three become every things

—Lao Tzu—
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1. Introduction

1.1. Liquid-liquid phase separation

Liquid phase separation (PS) is ubiquitous and fundamental physical phenomenon which
plays a crucial significance in the both fundamental research and industrial applications.
Phase separation occurs as the initially homogeneous multi-component fluid gradually
undergoes differentiation into distinct phases [1, 2, 3, 4]. Here, a brief explanation is needed.
The term ’phase’, rooted in Plato’s theory of forms, represents a highly idealized concept.
It is conventionally defined as a collective of materials possessing identical physical and
chemical properties. For instance, a partially filled water bottle exhibits two immiscible
phases. Water droplets drawn from any location within the bottle retain consistent
density, taste, smell, and transparency, regardless of the droplet size or measurement
circumstances. These characteristics contrast with the air phase, which, while colorless and
odorless, is nearly 800 times lighter than water. Hence, density serves as a distinguishing
factor between the water and air phases. To depict the two-phase water-air system
mathematically, each phase is denoted by a phase variable normalized by water density
(998g/m3). In this representation, the water phase is assigned ’1’, while the air phase is
labeled ’0’ (approximately 1.27/998). An alternative representation involves utilizing water
concentration 𝑐 where c=1 signifies the water phase with 100% water molecules, and c=0
denotes the dry air phase. The concentration parameter allows for the definition of miscible
fluid systems, as observed in water-ethanol mixtures. In such mixtures, medical alcohol
is characterized by 𝑐 = 0.75, vodka by 𝑐 = 0.40, Pils by 𝑐 = 0.05. The disparity between
miscible and immiscible scenarios lies in phase miscibility. Despite the distinct tastes
of water and ethanol, they amalgamate into a single phase when combined, rendering
the water-ethanol mixture a homogeneous single-phase system. During the Covid-19
pandemic, individuals might attempt to manufacture disinfectants by concentrating vodka
at home to purify the ethanol phase. Distillation stands as the most straightforward method
for phase separation — separating water from ethanol. By applying heat, volatile ethanol
evaporates first. Although this disinfectant production method is not notably efficient, it
underscores an intriguing physical principle. At elevated temperatures, the water-ethanol
solution spontaneously segregates into a two-phase system comprising gaseous alcohol
and liquid water. In fact, besides the utilization of phase separation technologies in the
food industry for centuries, PS is a ubiquitous process that has been observed in diverse
contexts, ranging from biological systems [5, 6, 7, 8, 9], such as the phase separation of
proteins in human cell [10], to industrial processes [11, 12]. Understanding liquid phase
separation enables us to elucidate the behavior of complex systems, so that the optimization
and extending of its applications becomes possible and efficient. Before discussing the
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1. Introduction

application, I present the fundamental theories for the phase separation process from two
aspects, namely, the thermodynamics and the kinetics.

1.2. Thermodynamics

As discussed above, the essence of phase separation lies in a process commencing from
an unstable, high-energy uniform single phase, progressing towards a reduction in total
energy, and ultimately achieving a stable, low-energy multiphase state. Here, the stable
state, especially its properties, such as composition, temperature, morphology, is the key
study aspect of the thermodynamics.

1.2.1. free energy functional

1.2.1.1. Bulk free energy

Figure 1.1.: Free energy of mixture for a binary system. (I) Entropy 𝑠 as a function of the
composition 𝑐 . (II) Enthalpy ℎ by different Flory parameter 𝜒 . (III) Free energy
density 𝑓 = 𝑠 + ℎ with the increase in temperature 𝑇 .

The term "energy" within the context of phase separation pertains to the mixing free
energy functional of the system,

F = 𝑇S +H + G, (1.1)

encompassing three fundamental components: the entropy of mixing (S), the enthalpy
of mixing (H ), and the interfacial term (G). Following Boltzmann’s theory, the mixing
entropy is represented as a function of the Boltzmann constant (𝑘𝐵), temperature (𝑇 ), and
characteristic volume (𝑣𝑚),

S =

∫
Ω
𝑠 (𝒄) 𝑑Ω =

∫
Ω

𝑘𝐵

𝑣𝑚

𝑁∑︁
𝑖=1

𝑐𝑖 ln 𝑐𝑖 𝑑Ω, (1.2)

In Fig. 1.1(I), the entropy of a binary system is graphically depicted by the red line. The en-
tropy consistently displays a global minimum at 𝑐 = 0.5, indicating that inmulti-component
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1.2. Thermodynamics

systems, the mixing of different substances is favorable and occurs spontaneously, align-
ing with the second law of thermodynamics for a closed system. Based on the lattice
model demonstrate in Fig. 1.2, the enthalpy term is expressed by considering the short
range interactions between components, resulting in the enthalpy term, as exemplified
in the lattice model illustrated in Fig. 1.2, accounts for short-range interactions between
components,

H =

∫
Ω
ℎ(𝒄) 𝑑Ω =

∫
Ω

( 𝑁,𝑁∑︁
1≤𝑖< 𝑗

𝜒𝑖 𝑗 𝑐𝑖 𝑐 𝑗 +
𝑁,𝑁,𝑁∑︁

1≤𝑖< 𝑗<𝑘
𝜒𝑖 𝑗𝑘 𝑐𝑖 𝑐 𝑗 𝑐𝑘 + . . .

)
𝑑Ω, (1.3)

involving the Flory parameter 𝜒𝑖 𝑗 which not only represents the interaction strength
between different components 𝑖 and 𝑗 , but also has a significant impact on phase separation.

Figure 1.2.: The schematic binary lattice in 2 dimension. Red and blue dots represent the
𝛼 and 𝛽 molecules, respectively. The black stick connecting the dots stands for
3 different bonding types.

A more tangible understanding of 𝜒𝑖 𝑗 is derived from the bonding energy (𝑒𝑖 𝑗 ) between
different species.

𝜒𝑖 𝑗 =
𝑘𝐵𝑇

𝑍

2 𝑒𝑖 𝑗 − (𝑒𝑖𝑖 + 𝑒 𝑗 𝑗 )
2

. (1.4)

Here, 𝑍 is the coordination number meaning how many nearest molecules has the short
range interactions with the central molecule. Here, 𝑍 denotes the coordination number,
signifying the number of nearest molecules with short-range interactions with the central
molecule. Typically, 𝑍 is considered as 4 for 2-dimensional systems and is set to 6 in
3-dimensional cases. If 𝜒𝑖 𝑗 < 0, it implies that 2𝑒𝑖 𝑗 < 𝑒𝑖𝑖 + 𝑒 𝑗 𝑗 , hence the lower energy state
of mixing with the bonding energy 𝑒𝑖 𝑗 is more preferred than demixing 𝑒𝑖𝑖 + 𝑒 𝑗 𝑗 , and vice
versa. Therefore, a positive 𝜒𝑖 𝑗 can be construed as repulsive enthalpic interaction, while a
negative value denotes attraction. Evidently, phase separation is highly associated with a
positive enthalpy of mixing.

Combining the entropy contributions, the summation of 𝑠 and ℎ is denoted as the bulk
free energy 𝑓 , illustrated in Fig. 1.1(III) for various𝑇 in a binary system. Due to the entropy
effect, the sign of 𝜒𝑖 𝑗 alone cannot dictate molecular interactions or phase separation,
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1. Introduction

especially at higher temperatures where the entropy term becomes more pronounced
(see Fig. 1.1(I)), as demonstrated by the grey dot-dashed line at 𝑇 = 1.8 in Fig. 1.1(III).
Mathematically, a critical point exists, defined by the second derivative of 𝑓 with respect
to the composition 𝒄 = (𝑐1, 𝑐2, . . . , 𝑐𝑁 )

𝜕2𝑓

𝜕 𝒄2 = det

����������������

𝜕2𝑓

𝜕𝑐2
1

𝜕2𝑓

𝜕𝑐1𝜕𝑐2
. . .

𝜕2𝑓

𝜕𝑐1𝜕𝑐𝑁
𝜕2𝑓

𝜕𝑐1𝜕𝑐2

𝜕2𝑓

𝜕𝑐2
2

· · · 𝜕2𝑓

𝜕𝑐2𝜕𝑐𝑁
...

...
. . .

...

𝜕2𝑓

𝜕𝑐1𝜕𝑐𝑁

𝜕2𝑓

𝜕𝑐2𝜕𝑐𝑁
· · · 𝜕2𝑓

𝜕𝑐2𝜕𝑐𝑁

����������������
= 0, (1.5)

constituting a quadratic function of 𝒄 , 𝑇 , and 𝜒𝑖 𝑗 . By fixing the Flory parameter 𝜒𝑖 𝑗 ,
a composition pair fulfilling Eq. (1.5) is determined at different temperatures 𝑇 , akin
to finding the eigenvalue of the Hessian matrix in Eq. (1.5). Particularly, at a specific

Figure 1.3.: (I) The free energy density of a binary system and the equilibrium with the
dashed common tangent lines for various temperatures. Square: equilibrium
binodal compositions; circle: spinodal compositions. (II) The 𝑐 − 𝑇 phase
diagram corresponding to (I).

temperature, the Hessian matrix possesses only one eigenvalue. This temperature is
termed the critical temperature 𝑇𝑐 , above which the quadratic function Eq. (1.5) lacks a
root, as seen by the red dot in Fig. 1.3(II). Given that the critical point occurs precisely at
𝑐 = 0.5, the critical temperature of a binary system is easily computed as

𝑇𝑐 =
𝑣𝑚

2𝑘𝐵
𝜒, (1.6)

beyond which no phase separation can occur, and all components are homogeneously
mixed in a single phase. For 𝑇 ≤ 𝑇𝑐 , the composition pair fulfilling Eq. (1.5) are termed
spinodal compositions, delineated by the red dashed spinodal lines in Fig. 1.3(II) for a
binary system. The light red region enclosed by these spinodal lines is referred to as the
spinodal region, wherein the homogeneousmixing of all components is thermodynamically
metastable. With the presence of slight thermal fluctuations, the system reduces its energy
by initiating the phase separation process, also referred to as spinodal decomposition.
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1.2. Thermodynamics

1.2.2. Phase diagram

An inquiry may arise regarding the extent to which phase separation ceases. Physically,
the destination of phase separation is referred to as equilibrium, deriving from the Latin
words ’aequus’ (equal) and ’libra’ (balance). Etymologically, ’equilibrium’ conveys that the
various separated phases are all thermodynamically equal. Mathematically, the equilibrium
state can be described by the following equations

𝜕𝑓

𝜕𝒄𝛼
=
𝜕𝑓

𝜕𝒄𝛽
= 𝝁𝑒, (1.7)

𝑓 (𝒄𝛼 ) − 𝝁𝑒𝒄𝛼 = 𝑓 (𝒄𝛽) − 𝝁𝑒𝒄𝛽 . (1.8)

Here, 𝛼 and 𝛽 can represent any phases existing at equilibrium, with equilibrium com-
positions denoted as 𝒄𝛼 = (𝑐1𝛼 , 𝑐2𝛼 , · · · , 𝑐𝑁𝛼 ), 𝒄𝛽 = (𝑐1𝛽, 𝑐2𝛽, · · · , 𝑐𝑁𝛽) are denominated as
the binodal compositions. Schematically illustrated in Fig. 1.3(I), the binodal composition
of a binary system at a given temperature is calculated by the colored dashed common
tangent line of 𝑓 , forming the blue binodal lines in Fig. 1.3(II). The phase separation process
ceases when all phases reach their respective equilibrium compositions on the binodal
lines. However, the essence of phase separation is fundamentally determined by the term
𝝁𝑒 = (𝜇𝑒1, 𝜇𝑒2, · · · , 𝜇𝑒𝑁 ) in Eq. (1.7), denoted as the chemical potential. According to the
Gibbs-Duhem equation, under an isotherm and isobaric conditions, phase separation only
halts when the equilibrium chemical potential 𝝁𝑒 is reached for all phases. In other words,
phase separation occurs if the chemical potential 𝜇𝑖 in any phase for any component 𝑖 is
not equal to the equilibrium 𝜇𝑒𝑖 .

Furthermore, the triple interaction parameter 𝜒𝑖 𝑗𝑘 for ternary systems in Eq. (1.3) is not
discussed. Given that the diffusion equation and Fokker-Planck equation are equivalent,
the concentration 𝑐𝑖 can be analogized as a probability of finding a component 𝑖 molecule
at position 𝒙 and time 𝑡 . Consequently, the term 𝑐𝑖𝑐 𝑗𝑐𝑘 interpreted as the joint probability
or conditional probability of finding a component 𝑖 molecule when the probabilities of
existing the 𝑗 molecule and 𝑘 molecule at the same position are 𝑐 𝑗 and 𝑐𝑘 , respectively. 𝜒𝑖 𝑗𝑘
functions as a scaling factor, converting the conditional probability into energy density.
Phenomenologically, larger 𝜒𝑖 𝑗𝑘 indicates a more intense energy requirement for placing an
𝑖 molecule at the position 𝒙 where 𝑗 and 𝑘 molecules already exist. In other words, 𝜒𝑖 𝑗𝑘 > 0
can be interpreted as repulsive triple interactions. However, unlike the Flory parameter
𝜒𝑖 𝑗 , the magnitude of 𝜒𝑖 𝑗𝑘 is unknown for most multicomponent systems. Typically, it is
set to a positive man-made value to penalize the co-existence of three components in a
specific region, especially at triple junctions. Here, it is suggested that the triple interaction
parameter 𝜒𝑖 𝑗𝑘 contributes to the system’s energy and may play a vital role in microscopic
droplet systems, such as the line tension effect for nanoscale sessile droplets and liquid
lenses.

1.2.2.1. Interfacial free energy functional

The foregoing section provided a concise discussion on the thermodynamics of bulk
regions, where free energy is primarily described by the entropy S and enthalpy H . Now,
attention is directed towards the interface region, which has its own energy contribution G
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1. Introduction

to the system in the free energy functional Eq. (1.1). The mathematical expression for this
term is deduced by J.W. Cahn in his ground-breaking paper [13]. An alternative derivation
of the classic Cahn-Hilliard theory is presented as follows.

In Fig. 1.2, the interface between phase 𝛼 and 𝛽 is depicted by a mixture of red and blue
molecules. Eq. (1.2) describes the entropy of a homogeneous cell assumed to have composi-
tion 𝑐 . However, for materials at the interface, the composition gradually transitions from

Figure 1.4.: The schematic lattices at the interface. The composition varies from red 𝛼
phase to blue 𝛽 phase. At the black dashed cell boundaries, 𝑐 deviates from the
cell center by 𝑑𝑐 .

the equilibrium compositions 𝑐𝛼 to 𝑐𝛽 , as shown in Fig. 1.4. The cell boundaries, marked
by dashed lines, have different compositions from the cell center. The composition at the
boundary positions is taken as the mean average of the adjacent cells. For instance, at the
boundary of cells 3 and 4, the composition is 𝑐3 + 𝑑𝑐 = 𝑐4 − 𝑑𝑐 . Consequently, the entropy
at the interface is derived from the cell center. Employing a first-order approximation, the
entropy at the interface is expanded using a Taylor series, resulting in

𝑠𝑏 = (𝑐 + 𝑑𝑐) ln(𝑐 + 𝑑𝑐) +
(
1 − 𝑐 − 𝑑𝑐

)
ln

(
1 − 𝑐 − 𝑑𝑐

)
= 𝑐 ln 𝑐 +

(
1 − 𝑐

)
ln

(
1 − 𝑐

)
− (𝑑𝑐)2

2 𝑐 (1 − 𝑐) ,

where the odd terms of 𝑑𝑐 are canceled due to the reflection symmetry of 𝒙 → −𝒙 .
Similarly, the enthalpy term is also expanded as

ℎ𝑏 = 𝜒 (𝑐 + 𝑑𝑐) (1 − 𝑐 − 𝑑𝑐) = 𝜒𝑐 (1 − 𝑐) − 𝜒 (𝑑𝑐)2.

Therefore, the energy density changed by the interface yields

Δ𝑓 = (𝑠 + ℎ) − (𝑠𝑏 + ℎ𝑏) =
( 𝑘𝐵𝑇

2𝑐 (1 − 𝑐)𝑣𝑚
+ 𝜒

)
𝜖2(∇𝑐)2.

And the interfacial energy term is written as

G =

∫
Ω
Δ𝑓 𝑑Ω =

∫
Ω
𝜅 𝜖2(∇𝑐)2𝑑Ω.

Here, the interfacial tension parameter is denoted as 𝜅 = 𝑘𝐵𝑇 /[2𝑐 (1 − 𝑐)𝑣𝑚] + 𝜒 and 𝜖 is
the interface width parameter with 𝑑𝑐 = 𝜖∇𝑐 . At the temperature far below the critical
temperature 𝑇𝑐 , the entropy effect can be neglected and 𝜅 ≈ 𝜒 , reflecting the relation
between macroscopic interfacial tension and microscopic intermolecular forces.
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1.2. Thermodynamics

1.2.2.2. Flory-Huggins theory

In the free energy density expressions of Eqs. (1.2) and (1.3), where Van der Waals forces
are considered as the intermolecular interactions, represent a type of free energy density
formulation known as the regular solution model. In contrast, polymer chains comprise
monomers (large blue dots) connected by covalent bonds (dark blue lines), as schematically
shown in Fig. 1.5(I). Due to the new chemical bonds, the polymer chain is less flexible than
the monomers and has a reduced entropy formulation, known as Flory-Huggins theory,
expressed as

S =

∫
Ω

𝑘𝐵𝑇

𝑣𝑚

𝑁∑︁
𝑖=1

𝑐𝑖 ln 𝑐𝑖
𝑁𝑖

𝑑Ω, (1.9)

in which 𝑁𝑖 is the degree of polymerization (DP) of component 𝑖 . For non-polymers,
𝐷𝑃 = 1. Notably, the deduction of Eq. (1.9) by Flory is based on the Gauss chain assumption,
allowing for intersections of polymer chains with zero entanglement, as highlighted by
the red dashed square in Fig. 1.5(I). This assumption is valid for polymer solutions near
the critical temperature 𝑇𝑐 or melting polymers. Consequently, the polymer solution in
Flory-Huggins theory results in an asymmetric free energy and phase diagram in Fig. 1.5(II)
and (III).

Figure 1.5.: Flory-Huggins theory for the binary polymer solution. (I) The schematic
polymer solution in 2 dimensional lattice. The degree of polymerization (DP) is
4. Red and blue dots represent the solvent andmonomermolecules, respectively.
The dark blue stick connecting the monomers stands for covalent bond and the
thin dashed line indicates the Van derWaals bond. The red square highlights the
entanglement. (II) Free energy density with spinodal and binodal compositions.
The common tangent line decides the equilibrium. (III) Phase diagram.

Compared with the free energy 𝑓 and phase diagram of the regular solution model
in Fig. 1.3, The polymerization, as opposed to the non-polymers, reduces the entropy
on the polymer-dense side (large 𝑐), so that both 𝑓 and PD becomes asymmetric to the
composition, thus drastically influencing phase separation behavior. For instance, the
spinodal and equilibrium composition shown in Fig. 1.5(II)(III) become lopsided for the
polymer solution with 𝑁 = 4. Moreover, the tilted common tangent line not only moves
the equilibrium compositions, but also indicated the equilibrium chemical potential 𝜇𝑒 ≠ 0
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1. Introduction

which has a great impact on the surface stress tensor in the momentum balance equations
(discussed later in Sec. 2.2 of chapter 2).

Another distinction in polymeric phase separation is that the polymer reaches its
equilibrium composition 𝑐𝑝 over a much longer time 𝑡𝑝 than the solvent matrix 𝑡𝑠 , as
demonstrated in Fig. 1.6. Therefore, in addition to thermodynamics, the kinetics of phase
separation are also prominent in determining system morphologies and will be discussed
in next section.

Figure 1.6.: Morphological transition of a binary polymer solution from Ref. [14]. Repro-
duced with permission. Copyright 2017, American Physical Society. The blue
and the red areas represent polymer-rich and solvent-rich phases, respectively.
(I) Phase separation with time. (II) The delayed equilibrium of polymer phase
which reaches the equilibrium composition 𝑐𝑝 slower than the solvent phase
(𝑡𝑠 < 𝑡𝑝 ).

1.3. Kinetics

In the preceding section, a succinct discussion on the thermodynamics of phase separation
was presented, elucidating the ultimate trajectory of the phase transformation. However,
in reality, the final morphology is also highly dependent on kinetics, particularly diffusion
and convection.

1.3.1. Diffusion

Commencing with the classic physical model for diffusion, Fick’s law describes the micro-
scopical diffusion flux 𝒋𝑑 , stemming from the composition gradient as

𝜕𝑐

𝜕𝑡
= ∇ · (−𝒋𝑑), (1.10)

𝒋𝑑 = D∇𝑐. (1.11)
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1.3. Kinetics

where D stands for the interdiffusivity. However, this equation is inadequate for elucidat-
ing the phase separation process, during which uphill diffusion with negative D happens.
Instead of the composition gradient, the chemical potential gradient serves as the driving
force for phase separation, with the composition evolving as

𝜕𝑐

𝜕𝑡
= ∇ · (−𝒋𝑑) = ∇ · (M∇𝜇), (1.12)

𝜇 =
𝛿F
𝛿𝑐

=
𝜕(𝑠 + ℎ)
𝜕𝑐

− 2𝜅𝜖2∇2𝑐. (1.13)

Here, the functional derivative follows

𝛿

𝛿𝑐
=
𝜕

𝜕𝑐
− ∇ · 𝜕

𝜕(∇𝑐) + ∇2 · 𝜕

𝜕(∇2𝑐) + · · · + (−1)𝑛∇𝑛 · 𝜕

𝜕(∇𝑛𝑐) . (1.14)

Comparing Eq (1.12) with Eq.(1.11), the relation between the mobility and diffusivity is
derived as

M =
D

𝜕𝜇/𝜕𝑐 =
D

𝜕2𝑓 /𝜕𝑐2 . (1.15)

Importantly, this relationship necessitates a one-to-one mapping (bijection) between 𝜇
and 𝑐 , valid only for miscible liquid systems. Furthermore, this relationship explains the
delayed phase separation behavior observed in polymeric solutions, as shown in Fig. 1.6.
For polymer and solvent phases reaching their individual equilibrium compositions, the
kinetic speed is dominated by the mobility M, scaled by the thermodynamic-related
factor 𝜕2𝑓 /𝜕𝑐2. Apparently illustrated in Fig. 1.3(II), different curvatures of the free energy
density 𝑓 at the polymer and solvent equilibrium compositions (squares) are noticeable,
resulting in different second derivative values (𝜕2𝑓 /𝜕𝑐2). In this way, the larger 𝜕2𝑓 /𝜕𝑐2

for polymer densed phases leads to smaller mobility and slower phase separation speed
than the solvent phase.

1.3.2. convection

In some multicomponent liquid systems, pronounced fluid flows are observed, such as the
droplets inside microfluidic devices in Fig. 1.7. The phase separation can thus be influenced
by convection, which transports material through another flux term 𝒋𝑐 as

𝜕𝑐

𝜕𝑡
= ∇ · (−𝒋𝑐 − 𝒋𝑑) = ∇ · (−𝒖𝑐 +M∇𝜇), (1.16)

𝜇 =
𝛿F
𝛿𝑐

=
𝜕(𝑠 + ℎ)
𝜕𝑐

− 2𝜅𝜖2∇2𝑐. (1.17)

In this context, the fluid velocity denoted by 𝒖, which accelerates the particle system (PS),
is induced by the so-called Marangoni effect.
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1. Introduction

Figure 1.7.: Morphological transition of a ternary DEP/ethanol/water solution from
Ref. [15]. Reproduced with permission. Copyright 2014, Wiley-VCH Ver-
lag GmbH & Co. KGaA, Weinheim. (I) Schematic illustration of a microfluidic
glass capillary. (II) Formation of a quintuple droplet over time (in seconds)
from a ternary DEP/ethanol/water mixture (0.41/0.42/0.17 vol %).

Figure 1.8.: (I) Schematic illustration of the evaporation induced surfactant inhomogeneity
causes fluid flows from Ref. [16]. Copyright 2020 The Author(s). Published by
Elsevier Inc. (II) Formation of multiple ejected droplets from the central large
drop via phase separation with Marangoni effect from Ref. [17]. The mass
fraction of alcohol is increased from 0.4 (left) to 0.5 (right), which decreases
the size of the ejected droplets.
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1.3.3. Marangoni effect

The Marangoni effect is fundamentally characterized as the transfer of material along an
interface between two phases due to a surface tension gradient. In Fig. 1.8(I), for instance,
evaporation of solvent (depicted by the red arrows) leads to a concentration difference of
surfactants within the droplet, triggering the fluid flow (illustrated by the blue arrows).

TheMarangoni effect can also be combinedwith the phase separation and create different
morphologies, as shown in Fig. 1.8(II). Here, the blue ink/alcohol solution is slightly heated
and the volatile alcohol being evaporated, bring the system into the metastable spinodal
region and propels PS. Additionally, the surface tension gradient between the thin edge and
thick center engenders the Marangoni effect which ejects the PS produced tiny droplets
away from the center. By changing the alcohol concentration inside the initial drop, the
magnitude of the Marangoni effect, as well as the phase separation region, are also altered
accordingly which modifies the different patterns consisted of tiny droplets with diverse
radii.

1.3.4. Droplet coalescence

The fluid flow not only impacts droplet formation during the phase separation process
but also instigates droplet coalescence [18, 19]. As depicted in Fig. 1.9(I), the PS produced
droplets are merging with each other which results in large drops in the end. Here, three
mechanisms are attributed to the droplet coalescence, namely, the slow Ostwald ripening
via diffusion [21], the droplet Brownian motion with thermal noises, and the rapid Tanaka-
Golovin mechanism by convection. Actually, the droplet motion is mainly consisted of
two aspects. Due to the thermal noises, the Brownian motion can continuously drift the
droplet, as shown in the left panel of Fig. 1.9(II).
The rapid Tanaka-Golovin mechanism moves the droplet with a deterministic way

which can be clearly seen in the droplet trajectories in Fig. 1.9(III). The droplet coalescence
via Tanaka-Golovin mechanism can be seen by plotting the mean radius 𝑅 versus the
normalized time 𝑡 in Fig. 1.9(IV) which shows the linear tendency of 𝑅 ∼ 𝑡 , totally
different from the 1/3 scaling law for Ostwald ripening and Brownian motion. The primary
mechanism driving droplet coalescence is attributed to the unbalanced chemical potential.
Within the gap between two droplets, the concentration is higher than outside the gap
due to overlapping concentration profiles shown in the right panel of Fig. 1.9(V). The
concentration disparity, indicated by the green horizontal lines, generates an unbalanced
chemical potential,initiating droplet motion. Theoretically, the Tanaka-Golovinmechanism
is essentially an alternative interpretation of the Marangoni effect. A detailed mathematical
model describing the Marangoni effect is documented in Sec. 2.2 of chapter 2.

1.4. Types of phase separation

1.4.1. Thermally induced phase separation

Thermally induced phase separation (TIPS) manifests the phase separation driven by tem-
perature changes. This phenomenon finds its application in many diverse fields, ranging
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1. Introduction

Figure 1.9.: Spontaneous motion of droplets. (I) Phase separation microstructures at differ-
ent times with an initial concentration 𝑐0 = 0.25. (II) Schematic pictures for
random and directional motions, respectively. (III) An example of single droplet
trajectories from the microstructures shown in (II). (IV) Symbols with different
colors depict the dimensionless displacements of different droplets shown in
(II) as a function of time. The blue straight line illustrates the displacement
from Brownian motion and the red dashed line has a slope of 1 corresponding
to Marangoni effect. (V) The double droplet motion. Left: Simulation snapshot.
Mid: the composition profile of the droplets along the line connecting their
centres of mass for two droplets. Right: Enlargement of the composition profile
of the left droplet. Reproduced with permission. [20] Copyright 2015, Springer
Nature.
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Figure 1.10.: Three types of phase separation. (I) Phase diagram. (a) Thermally induced
phase separation (TIPS); (b) polymerization induced phase separation (PIPS);
(c) non-solvent induced phase separation (NIPS). The open black circle and
red square denote the start and end state, respectively. (II) Schematic pictures
for phase separation with time.

from material sciences to environmental engineering. Understanding the thermodynamics
and kinetics of TIPS enables us to extent its potential for tailored material design and
efficient industrial processes. Thermodynamically, PS is driven by composition fluctu-
ations which stems from perturbations in chemical free energy functional Eq. (1.1). As
shown in the phase diagram in Fig. 1.10(I)(a), when a homogeneous system (open dot)
experiences temperature drop from temperature above the critical temperature𝑇𝑐 to𝑇 < 𝑇𝑐 ,
the enthalpic and entropic contributions to chemical free energy undergo a discernible
changes. As entropy loses its importance with decreasing 𝑇 , the enthalpy becomes more
pronounced which enhances repulsive interactions between different species. The balance
between enthalpic and entropic in the wake of temperature changes brings the system
into the metastable region where PS starts which results in the emergence of tiny droplets
and their coalescence, as shown in Fig. 1.10(II)(a). Understanding TIPS has far-reaching
implications across several disciplines.
In engineering, the precise control over temperature enables us to achieve the phase

separation which allows for the design and fabrication of composite materials with prop-
erties, including enhanced strength, or optical characteristics [22]. A deep understanding
on TIPS is also vital in the medical field, where TIPS can be applied to formulate drug
delivery systems with controlled release profiles [23, 24, 25].

1.4.2. Polymerization induced phase separation

Polymerization-induced phase separation (PIPS) takes place within polymeric systems [26],
characterized by the demixing of monomers during forming long polymer chains via
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polymerization, and results in the formation of polymer-riched and polymer-lean phases
with different compositions. The principles of polymerization-induced phase separation
is governed by interplay of thermodynamic, kinetic and reaction. Here, considering the
polymerization reaction speed orders faster than diffusion, the formation of long chain
from monomers is mimic via assigning the degree of polymerization 𝐷𝑃 as a function of
time 𝑡 . At the onset of polymerization, the entropy of the long polymer chains decreases
with the polymerization reaction which curtails the mixing tendency of polymer with
solvent, as guided by the Flory-Huggins theory Eq. (1.9). Concurrently, the enthalpy which
is related to molecular interactions dominates. Consequently, with the increase in 𝐷𝑃 ,
the metastable region expands [27] and the homogeneous mixing at small 𝐷𝑃 enters the
spinodal region at large 𝐷𝑃 ; see Fig. 1.10(I)(b). Resulting from this, the assemble of long
polymer chains generates the polymer densed droplet, as demonstrated in Fig. 1.10(II)(b).

In applications, by controlling the polymerization conditions, such as monomer compo-
sition, polymerization speed, temperature, various morphologies which directly translate
into desired mechanical, thermal, and biological properties, can be achieved. Furthermore,
PIPS holds promise in finding new receipts for the development of new materials in many
sophisticated applications. With a deeper understanding of the principles, as well as
kinetics, the potential for tailored materials with enhanced functionality and performance
is substantially heightened, making PIPS a focal point of academic research and industrial
innovation.

1.4.3. Non-solvent induced phase separation

Non-solvent induced phase separation (NIPS) represents a phase separation process
wherein the diffusion of non-solvent molecules into the matrix phase prompts the separa-
tion of phases, as illustrated in Fig. 1.10(II)(c). Due to the different solubility of the blue
tiny non-solvent molecules in droplet and matrix, the diffusion brings the system from
the white one phase region into the pink metastable area, as shown in the phase diagram
Fig. 1.10(I)(c).
Non-solvent-induced phase separation serves as a versatile platform for designing

and fabricating functional materials, encompassing a broad spectrum of applications in
medical field and food industry. Modifying the solubility of non-solvent molecules across
various phases, achieved through techniques like pH adjustments and surfactant addition,
affords precise control over phase separation processes. Moreover, non-solvent-induced
phase separation (NIPS) can be synergistically employed in conjunction with polymer-
induced phase separation (PIPS) and temperature-induced phase separation (TIPS), where
polymerization and temperature alterations further modify solubility. This suggests the
coexistence or domination of TIPS, PIPS, and NIPS within the same system, influencing
phase separation at different stages for distinct compositions and under varying conditions.
Such interactions prove intricate and demand careful consideration during experimental
investigations.

In contrast, computer simulations facilitate the handling of complex systems. By select-
ing appropriate simulation parameters in corresponding mathematical models, researchers
can meticulously examine the intensity and extent of diverse phase separation mecha-
nisms—an endeavor often unfeasible in experimental setups. Particularly, spatial and
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temporal properties, such as local composition distribution, transient fluid velocity, which
are challenging to measure experimentally yet crucial for elucidating the underlying
mechanisms, can be readily traced and scrutinized through simulation. Consequently, in
the ensuing chapters, I introduce and employ the phase-field method to delve into the
intricacies of the phase separation process.
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2. Methods

In this chapter, three different phase-field (PF) models are presented which are correlated
with respective problems, namely,

• (I) The multi-component Cahn-Hilliard (CH) type PF model deals with the standard
phase separation (PS) is developed, which is applied in Ref. [28]. In this scenario, PS
is governed by two main mechanisms, namely, the reduction of the chemical free
energy and the minimization of surface energy.

• (II) The Cahn-Hilliard-Navier-Stokes (CHNS) model is expanded to multiple com-
ponent systems to simulate the PS coupled with hydrodynamics in many complex
fluid systems. Besides the CH equation, the convection is treated by the momentum-
conserved incompressible Navier-Stokes (NS) equations. Mathematically, the CH
and NS equations are connected by the thermodynamic force term which can either
be derived from the energy law, or with the aid of Noether’s theorem in Ref. [29].
Consequently, the inhomogeneous chemical potential inside the system propels
the so-called Marangoni flow which in return promotes the droplet motion and
coalescence during PS.

• (III) The Cahn-Hilliard-Navier-Stokes-Gauss (CHNSG) is demonstrated to deal with
the PS of the dielectric fluids inside the electric field. Starting from the energy
minimization principle, the thermodynamic-consistent electrochemical potential is
deduced which complements the widely accepted electrohydrodynamic model in
the society of fluid mechanics [30, 31]. By these means, the effect of the electric field
on the droplet-matrix interfacial tension, as well as the phase diagram, are heedfully
studied which shows the magnificent impact on PS.

2.1. Model A: The multi-component Cahn-Hilliard model

2.1.1. Free energy functional

Based on the mean field theory, I consider the free energy functional of mixture for the
𝑁 -component system F inside the domain Ω as

F =

∫
Ω
𝑔(𝒄,∇𝒄) 𝑑Ω =

∫
Ω

[
𝑓 (𝒄 (𝒙, 𝑡)) + 𝜿 𝜖 (∇𝒄)2

]
𝑑Ω, (2.1)

where 𝑔 denotes the chemical free energy density. The composition is represented by a
vector 𝒄 (𝒙, 𝑡) = (𝑐1, 𝑐2, · · · , 𝑐𝑁 ) which is spatial 𝒙 and temporal 𝑡 dependent. In the bracket
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2. Methods

of Eq. (2.1), the first term 𝑓 describes the bulk free energy and takes the Flory-Huggins
model [32] as

𝑓 =
𝑘𝐵𝑇

𝑣𝑚

( 𝑁∑︁
𝑖=1

𝑐𝑖 ln 𝑐𝑖
𝑁𝑖

+
𝑁,𝑁∑︁
𝑖=1𝑖< 𝑗

𝜒𝑖 𝑗 𝑐𝑖𝑐 𝑗 +
𝑁,𝑁,𝑁∑︁
𝑖=1
𝑖< 𝑗<𝑘

𝜒𝑖𝑗𝑘 𝑐𝑖𝑐 𝑗𝑐𝑘

)
, (2.2)

in which 𝑘𝐵 , 𝑇 and 𝑣𝑚 stand for the Boltzmann constant, the temperature, and the simula-
tion cell volume, respectively. 𝑁𝑖 indicates the polymerization degree of the 𝑖th component.
For monomers and non-polymers, 𝑁 is set to be 1.0. The double molecular interaction be-
tween component 𝑖 and 𝑗 is characterized by the Flory parameter 𝜒𝑖 𝑗 , while 𝜒𝑖 𝑗𝑘 scales the
triple interaction. The composition gradient term in Eq. (2.1) reflects the interfacial tension
which is parameterized by the surface tension parameter 𝜿 = (𝜅1, 𝜅2, · · · , 𝜅𝑁 ), altogether
with the interface width parameter 𝜖 . For brevity, 𝜖 = 4.0 is set for all components in this
work and guarantees the numerical stability of the simulations. In this way, the chemical
potential 𝝁 = (𝜇1, 𝜇2, · · · , 𝜇𝑁 ) of the system is reckoned with the functional derivative as

𝝁 =
𝛿𝑔

𝛿𝒄
=
𝜕𝑓

𝜕𝒄
− 2𝜿𝜖∇2𝒄, (2.3)

in which the functional derivative obeys the principle of least action in Lagrangian me-
chanics

𝛿

𝛿𝒄
=
𝜕

𝜕𝒄
+

∞∑︁
𝑘=1

(−1)𝑘∇𝑘 𝜕

𝜕∇𝑘𝒄
, 𝑘 ∈ Z.

Hence, the thermodynamic equilibrium is decided by the state where the chemical potential
for all component 𝑖 reaches the constant values.

2.1.2. Evolution equation

The previous defined chemical potential Eq. (2.3) indicates that the inhomogeneous chemi-
cal potential turns out to be the propeller of the phase separation process. So the diffusion
equation (the Fickian laws), is reformulated as the classic stochastic Cahn-Hilliard equa-
tion [13]

𝜕𝑐𝑖

𝜕𝑡
= ∇ ·

( 𝑁∑︁
𝑗=1

𝐷𝑖 𝑗∇𝑐 𝑗 + 𝝃 𝑖
)
= ∇ ·

( 𝑁∑︁
𝑗=1

𝐷𝑖 𝑗
𝜕𝑐 𝑗

𝜕𝜇 𝑗
∇𝜇 𝑗 + 𝝃 𝑖

)
= ∇ ·

( 𝑁∑︁
𝑗=1

𝐷𝑖 𝑗

𝜕𝑐𝑐 𝑓
∇𝜇 𝑗 + 𝝃 𝑖

)
= ∇ ·

( 𝑁∑︁
𝑗=1

𝑀𝑖 𝑗∇𝜇 𝑗 + 𝝃 𝑖

)
. (2.4)

Here, the mobility is assigned with the Onsager’s relationship as

𝑀𝑖 𝑗 = 𝐷𝑖 𝑗/𝜕𝑐𝑐 𝑓 = 𝑀0𝑐𝑖 (𝛿−𝑐 𝑗 ), (2.5)
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in which 𝛿𝐾 is the Dirac delta and𝑀0 =
∑𝑁
𝑖=1𝐷𝑖𝑐𝑖 obeys the Darken’s law with 𝐷𝑖 denoting

the diffusivity of pure component 𝑖 . The Gaussian white composition noise 𝝃 𝑖 follows the
fluctuation-dissipation theorem [33] as〈

𝝃 𝑖, 𝝃
′
𝑖

〉
=

2M𝑖𝑖𝑘𝐵𝑇

𝑣𝑚Δ𝑡
∇2𝛿 (𝒙 − 𝒙′)𝛿 (𝑡 − 𝑡 ′), (2.6)

where 𝛿 is the Dirac delta and Δ𝑡 is the simulation timestep.

2.1.3. Volume conservation

By nature, the evolution equation Eq. (2.4) is intrinsic volume conserved. In other words,
at arbitrary position and time (𝒙, 𝑡), the constraint ∑𝑁

𝑖=1 𝑐𝑖 = 1 is proven as follows. From
Eq. (2.4), I express the mass flux for each component as

𝒋 =


𝑗1
𝑗2
...

𝑗𝑁


= −

𝑁∑︁
𝑗=1

𝑀𝑖 𝑗∇𝜇 𝑗 = −


𝑀11 𝑀12 · · · 𝑀1𝑁
𝑀21 𝑀22 · · · 𝑀2𝑁
...

...
. . .

...

𝑀𝑁 1 𝑀𝑁 2 · · · 𝑀𝑁𝑁



∇𝜇1
∇𝜇2
...

∇𝜇𝑁


. (2.7)

Due to the property of the Gaussian thermal noise, the summation of composition fluctua-
tion 𝝃 𝑖 has a zero expectation, thus, has no contribution to the mass flux and is cancelled
in Eq. (2.7). By adding the mass flux for all components, the volume conservation demands
the zero flux,

𝑁∑︁
𝑖=1

𝑗𝑖 = −
(
∇𝜇1

𝑁∑︁
𝑗=1

𝑀 𝑗1 + ∇𝜇2

𝑁∑︁
𝑗=1

𝑀 𝑗2 + · · · + ∇𝜇𝑁
𝑁∑︁
𝑗=1

𝑀 𝑗𝑁

)
= 0. (2.8)

Considering that the gradient of chemical potential ∇𝜇𝑖 can have arbitrary values, the
realization of Eq. (2.8) needs the mobility matrix to be constraint as

𝑁∑︁
𝑗=1

𝑀𝑖 𝑗 ≡ 0.

Applying the Onsager’s relation Eq. (2.5), the volume conservation is recovered as

𝑁∑︁
𝑗=1

𝑀𝑖 𝑗 = 𝑀0𝑐𝑖

(
1 −

𝑁∑︁
𝑗=1
𝑐 𝑗

)
≡ 0.

In addition, the constant mobility𝑀𝑖 𝑗 = 𝑀0 gives rise to the positive
∑𝑁
𝑗=1𝑀𝑖 𝑗 = 𝑁𝑀0 > 0.

It implies that the constant mobility setup does not naturally conserve the volume. The
equilibrium state with ∇𝝁 ≡ 0 is the only scenario where the constant mobility setup
works.
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2.1.4. Energy law

According to the second law of thermodynamics, for the system off-equilibrium, the total
chemical free energy functional F ought to decrease with time before reaching the steady
state. The phase separation process also obeys the energy minimization principle and its
thermodynamic consistency is demonstrated as follows. The total chemical free energy
dissipation with time is written as

𝑑F
𝑑𝑡

=

∫
Ω

𝑑𝑔

𝑑𝑡
𝑑Ω =

∫
Ω

[ 𝜕𝑓
𝜕𝒄

𝑑𝒄

𝑑𝑡
+ 𝜕[𝜿𝜖 (∇𝒄)

2]
𝜕∇𝒄 · 𝑑 (∇𝒄)

𝑑𝑡

]
𝑑Ω

=

∫
Ω

[
𝜕𝑓

𝜕𝒄

𝑑𝒄

𝑑𝑡
+ 𝜿 𝜖∇𝒄 · 𝑑 (∇𝒄)

𝑑𝑡

]
𝑑Ω

=

∫
Ω

[
𝜕𝑓

𝜕𝒄

𝑑𝒄

𝑑𝑡
+ 𝜿 𝜖∇𝒄 · ∇(𝜕𝑡𝒄) + 𝜅 𝜖∇𝒄 · 𝒖 · ∇∇𝒄

]
𝑑Ω. (2.9)

During a diffusion-dominated phase separation process, convection can be ignored which
results in the zero fluid flow with 𝒖 ≡ 0. With the following simple calculus of derivatives,

𝑑∇𝒄
𝑑𝑡

=
𝜕∇𝒄
𝜕𝑡

+ 𝒖 · ∇∇𝒄, 𝜕∇𝒄
𝜕𝑡

= ∇ 𝜕𝒄

𝜕𝑡
, (2.10)

as well as the application of integral by parts, I substitute the composition evolution
equation Eq. (2.4) into Eq. (2.9) and arrive at

𝑑F
𝑑𝑡

=

∫
Ω

(
𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖∇2𝒄

)
𝑑𝒄

𝑑𝑡
𝑑Ω =

∫
Ω

𝑁∑︁
𝑖=1

𝜇𝑖∇ ·
( 𝑁∑︁
𝑗=1

𝑀𝑖 𝑗∇𝜇 𝑗
)
𝑑Ω

= −
∫
Ω∗

𝑁∑︁
𝑖=1

M𝑖𝑖

(
∇∗𝜇𝑖

)2
𝑑 Ω∗ ≤ 0. (2.11)

Because the mobility𝑀𝑖 𝑗 defined by Onsager’s relation is positive semi-definite, I transform
the gradient operator∇∗ := L∇ into the Ω∗ space. The transformationmatrix L is calculated
with the Cholesky decomposition as𝑀 = L𝑇ML. Finally, the total chemical free energy
during the phase separation process decreases with time. The energy minimum state with
zero energy dissipation is nothing but the thermodynamic equilibrium for all components
with ∇𝜇𝑖 = 0 (or ∇∗𝜇𝑖 = 0).

2.1.5. Interfacial tension

To recover the interfacial tension, I consider the equilibrium state of the 𝛼/𝛽 binary phase
system. The solution of the Cahn-Hilliard equation results in the homogeneous chemical
potential in the whole system as

𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖∇2𝒄 = 𝝁𝑒 (2.12)

𝝁𝑒𝛼 = 𝝁𝑒
𝛽
= 𝝁𝑒 . (2.13)
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Multiplying both sides of Eq. (2.12) by 𝜕𝒄/𝜕𝑟 and integrating, I have∫ 𝑥

0

( 𝜕𝑓
𝜕𝒄

− 2𝜿 𝜖∇2𝒄
) 𝜕𝒄
𝜕𝑟
𝑑𝑟 =

∫ 𝑥

0
𝝁𝑒
𝜕𝒄

𝜕𝑟
𝑑𝑟

𝜿 𝜖
( 𝜕𝒄
𝜕𝑟

)2���𝑥
0
= (𝑓 − 𝝁𝑒𝒄)

���𝑥
0
.

In this way, the interfacial tension 𝛾 between phase 𝛼 and 𝛽 is calculated by the path
integral starting from the location 𝑟 = 0 for the bulk 𝛼 , to 𝑟 = ∞ for the bulk 𝛽 , which
yields

𝛾 =

∫ ∞

0
𝑓 − 𝝁𝑒𝒄 + 𝜿 𝜖

( 𝜕𝒄
𝜕𝑟

)2
𝑑𝑟 =

∫ ∞

0
2𝜿 𝜖

( 𝜕𝒄
𝜕𝑟

)2
𝑑𝑟 (2.14)

in which 𝒄𝑒𝛼 and 𝒄𝑒
𝛽
stand for the equilibrium composition for phase 𝛼 and 𝛽 , respectively.

2.2. Model B: The multi-component
Cahn-Hilliard-Navier-Stokes model

2.2.1. Free energy functional

To couple the convection into the phase separation process, I define the total energy
function as L which is contributed by the free energy functional of mixture F , and the
kinetic energy K

L = F + K,

in which

K =

∫
Ω

1
2
𝜌 𝒖2 𝑑 Ω. (2.15)

Here, 𝜌 stands for the fluid density and 𝒖 is the flow velocity.

2.2.2. Evolution equation

Now considering the phase separation coupled with hydrodynamics, the advection term is
added into the standard Cahn-Hilliard equation Eq. (2.4)

𝜕𝑐𝑖

𝜕𝑡
+ ∇ · (𝒖 𝑐𝑖) = ∇ ·

( 𝑁∑︁
𝑗=1

𝑀𝑖 𝑗∇𝜇 𝑗 + 𝝃 𝑖

)
, (2.16)

which indicates that the mass transport of the liquid phases is not only facilitated by the
diffusion, but also achieved by convection. Thus, the mass flux is formulated as

𝑗𝑖 = 𝒖 𝑐𝑖 −
𝑁∑︁
𝑗=1

𝑀𝑖 𝑗∇𝜇 𝑗 − 𝝃 𝑖 . (2.17)
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Meanwhile, the inhomogeneous composition leads to so-called Marangoni flow by adding
the thermodynamic force 𝒇 𝑠 into the momentum conservation Navier-Stokes equation as

∇ · 𝒖 = 0,

𝜌

(
𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖

)
= −∇𝑝 + 𝒇 𝑠 + ∇ ·

[
𝜂 (∇𝒖 + ∇𝒖𝑇 )

]
+ 𝒇 𝑖 .

(2.18)

Here, 𝑝 is the pressure solved by the incompressible condition ∇ · 𝒖 = 0. The density 𝜌
and viscosity 𝜂 are interpolated as 𝜌 =

∑𝑁
𝑖=1 𝜌𝑖𝑐𝑖 and 𝜂 =

∑𝑁
𝑖=1 𝜂𝑖𝑐𝑖 , with 𝜌𝑖 and 𝜂𝑖 taking

the values of the pure component 𝑖 , respectively. Conform with FDT, the random body
force term 𝒇 𝑖 are Gaussian and spatial/temporal relevant with〈

𝒇 𝑖,𝒇
′
𝑖

〉
=

2𝜂 𝑘𝐵𝑇
𝑣𝑚Δ𝑡

∇2𝛿 (𝒙 − 𝒙′)𝛿 (𝑡 − 𝑡 ′), (2.19)

In this chapter, I present the following expression for the inhomogeneous composition-
induced thermodynamic force

𝒇 𝑠 = −𝒄 ∇𝝁 . (2.20)

which has two alternative expressions in some literature. The first formulation [34] says

𝒇 𝑠 = ∇ · [𝛾 ( I − 𝒏 ⊗ 𝒏)𝛿𝐷], (2.21)

where 𝛾 is the interfacial tension and I is the identity matrix. 𝛿𝐷 denotes the Dirac delta
function to localize the force explicitly on the droplet-matrix interface. The normal vector
of the interface 𝒏 is computed as

𝒏 =
∇𝑐𝑖
|∇𝑐𝑖 |

. (2.22)

which may become a harm to the calculation accuracy, if not carefully treated. Another
difficulty of Eq. (2.21) is that this treatment cannot deal with the changing interfacial
tension 𝛾 , which prevails in the diffusion-dominated process, as well as phase separation.
This formulation is widely applied in the level-set and volume-of-fluid (VOF) methods,
and more details can be found in Ref. [35, 36, 37, 38, 39].

The second approach is deduced by Noether’s theorem in a quite decent way and reads

𝒇 𝑠 = ∇ ·
[ (
𝑔 − 𝝁𝒄

)
I − 2𝜿 𝜖∇𝒄 ⊗ ∇𝒄

]
. (2.23)

Differing from Eq. (2.21), the interfacial tension 𝛾 is replaced by the excessive energy term
𝑔 − 𝝁𝒄 . In this way, the alternating interfacial tension during the phase separation process
can be correctly recovered. But compared with Eq. (2.20), this treatment is more difficult
to implement, due to the mathematical complexity of doing the matrix calculus.

In addition, one may find a similar expression with Eq. (2.20) in some publications [40],

𝒇 𝑠 = 𝝁∇𝒄 . (2.24)
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2.2. Model B: The multi-component Cahn-Hilliard-Navier-Stokes model

Apparently, this expression turns out to be the Legendre transformation of −𝒄∇𝝁 and
could be correct if and only if the equilibrium chemical potential is zero for all components.
Widely applied in the hydrodynamic models to study fluid flow dominated phenomena,
such as the flow inside the pipe with larger Reynold number, droplet wetting and dewetting,
Eq. (2.24) may not lead to any noticeable flaw. Because the diffusion is so subtle in those
scenarios that the composition can hardly be off-equilibrium. Therefore, to recover the
unchanged surface tension, the free energy density 𝑓 is simply assigned with a quartic
polynomial of composition 𝑐 to mimic the energy barrier between different phases which
have the same 𝑓 value at equilibrium. In this way, the equilibrium chemical potential
is zero and the expression of Eq. (2.24) does not lost its validity. But for those scenarios
with pronounced phase transformations, such as evaporation, condensation, or the phase
separating polymeric solution, Eq. (2.24) may lead to errors. This incorrectness is emerged
from the misunderstanding of the underlying mechanism for the Marangoni flow. Instead
of the composition gradient ∇𝑐 , the chemical potential gradient ∇𝜇 should be the only
dominate contributor to the fluid flow. In next part, I will present the deduction of
thermodynamic force 𝒇 𝑠 Eq. (2.20) in Navier-Stokes equation with the energy law.

2.2.3. Energy law

Since both diffusion and convection are intertwined in the CHNS model, the total energy
L is composed of two parts, namely, the chemical free energy F and the kinetic energy
K . Therefore, the total energy dissipation is interpreted as

𝑑L
𝑑𝑡

=
𝑑F
𝑑𝑡

+ 𝑑K
𝑑𝑡

. (2.25)

• (i) The dissipation of F follows Eq. (2.9) as
𝑑F
𝑑𝑡

=

∫
Ω

[
𝜕𝑓

𝜕𝒄

𝑑𝒄

𝑑𝑡
+ 2𝜿 𝜖∇𝒄 · ∇(𝜕𝑡𝒄) + 2𝜿 𝜖∇𝒄 · 𝒖 · ∇∇𝒄

]
𝑑Ω

=

∫
Ω

[
𝝁
𝑑𝒄

𝑑𝑡
+ 2𝜿 𝜖∇2𝒄

(
𝒖 ·∇𝒄

)
+ 2𝜿 𝜖∇𝒄 ·𝒖 ·∇∇𝒄

]
𝑑Ω.

By using a well-known equality of vector calculus, ∇ · (a ⊗ b) = (∇ · a)b + a · ∇b,
the above equation is further simplified as

𝑑F
𝑑𝑡

=

∫
Ω

[
𝝁
𝑑𝒄

𝑑𝑡
+ ∇ ·

(
2𝜿 𝜖∇𝒄 ⊗ ∇𝒄

)
· 𝒖

]
𝑑Ω (2.26)

• (ii) The kinetic energy K decays with time as

𝑑K
𝑑𝑡

=

∫
Ω

1
2
𝑑 (𝜌𝒖2)
𝑑𝑡

𝑑Ω =

∫
Ω
𝜌
𝑑𝒖

𝑑𝑡
· 𝒖 𝑑Ω.

Substituting the Navier-Stokes equations Eq. (2.18) into above formulation,
𝑑K
𝑑𝑡

=

∫
Ω

{
−∇𝑝 + 𝒇 𝑠 + ∇ ·

[
𝜂
(
∇𝒖 + ∇𝒖𝑇

) ]}
· 𝒖 𝑑Ω

=

∫
Ω
∇ ·

[
− 𝑃 I − (𝑔 − 𝝁𝒄) I − ∇ · Θ + 𝜂

(
∇𝒖 + ∇𝒖𝑇

) ]
· 𝒖 𝑑Ω.
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Here, the thermodynamic force 𝒇 𝑠 is defined as −∇ ·Θ and Θ is named as the surface
stress tensor. Moreover, in contrast to the thermodynamic potential, the Landau
potential 𝑃 is defined as,

𝑃 = 𝑝 −
(
𝑔 − 𝝁𝒄

)
. (2.27)

Considering the no-slip boundary condition and the incompressible condition ∇·𝒖 =

0, it is noteworthy that ∫
Ω
−∇ · (𝑃 I) · 𝒖 𝑑Ω = 0.

Now, I arrive at

𝑑K
𝑑𝑡

=

∫
Ω
∇ ·

[
− (𝑔 − 𝝁𝒄) I − Θ + 𝜂

(
∇𝒖 + ∇𝒖𝑇

) ]
· 𝒖 𝑑Ω. (2.28)

• (iii) Combining Eq. (2.26) and Eq. (2.28), L has to decrease with time until the
equilibrium is established, so that

𝑑L
𝑑𝑡

=

∫
Ω
𝝁
𝑑𝒄

𝑑𝑡
+∇·

[
2𝜿 𝜖∇𝒄⊗∇𝒄 − (𝑔−𝝁𝒄) I − Θ + 𝜂

(
∇𝒖+∇𝒖𝑇

) ]
·𝒖 𝑑Ω ≤ 0,

requiring the following formulation for the surface stress tensor to be held for any
velocity field 𝒖, in any position 𝒙 , and at any time 𝑡 ,

Θ = −
(
𝑔 − 𝝁𝒄

)
I + 2𝜿 𝜖∇𝒄 ⊗ ∇𝒄 . (2.29)

Hence, the thermodynamic force is expressed identically to Eq. (2.23) and after
simplification,

𝒇 𝑠 = −𝒄∇𝝁 . (2.30)

• (iv) Taking the CH equation Eq. (2.16), the total energy dissipation reads

𝑑L
𝑑𝑡

= −
∫
Ω

[
𝜂∇𝒖 :∇𝒖

]
𝑑Ω −

∫
Ω∗

𝑁∑︁
𝑖=1

M𝑖𝑖

(
∇∗𝜇𝑖

)2
𝑑 Ω∗ ≤ 0.

The notations inside the last integral are referred to in the paragraph below Eq. (2.11).

2.2.4. Young-Laplace pressure

In this part, I present the deduction of the Young-Laplace pressure which can be recovered
by solving the CHNS equations. Considering a droplet with radius 𝑅 inside the domain Ω,
the chemical potential in the entire domain reaches the equilibrium 𝝁𝑒 which is expressed
in 𝑑-dimensional polar coordinate (𝑑 = 2, 3)

𝝁𝑒 =
𝛿𝑔

𝛿𝒄
=
𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖

( 𝜕2𝒄

𝜕𝑟 2 + 𝑑 − 1
𝑟

𝜕𝒄

𝜕𝑟

)
.
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2.3. Model C: The multi-component Cahn-Hilliard-Navier-Stokes-Gaussian model

Multiplying by 𝜕𝒄/𝜕𝑟 and integrating from 0 (droplet center) to∞ yields∫ ∞

0
𝝁𝑒
𝜕𝒄

𝜕𝑟
𝑑𝑟 =𝑔

���∞
0
−
∫ ∞

0
(𝑑 − 1) 2𝜿 𝜖

𝑟

( 𝜕𝒄
𝜕𝑟

)2
𝑑𝑟

=
(
𝝁𝑒𝒄

) ���∞
0
. (2.31)

At equilibrium, with the formulation of Landau pressure 𝑃 in Eq. (2.27), the curvature
effect on the pressure Δ𝑃 with the first-order approximation is replicated

Δ𝑃 = 𝑃 (0) − 𝑃 (∞) = (𝑔 − 𝝁𝑒𝒄)
���∞
0
=

∫ ∞

0
(𝑑 − 1) 2𝜿 𝜖

𝑟

( 𝜕𝒄
𝜕𝑟

)2
𝑑𝑟

=
(𝑑 − 1) 𝛾

𝑅
+ O

( 1
𝑅 2

)
,

in which the Young-Laplace pressure is recovered and the surface tension 𝛾 is identical to
Eq. (2.14) as

𝛾 =

∫ ∞

0
2𝜿 𝜖

( 𝜕𝒄
𝜕𝑟

)2
𝑑𝑟 .

2.3. Model C: The multi-component
Cahn-Hilliard-Navier-Stokes-Gaussian model

2.3.1. Free energy functional

To couple the electrical field into the phase separation process, the first step is to reevaluate
the total energy of system L. Besides, the chemical free energy F and the kinetic energy
K , the electric potential energyU also contribute toL by taking the following formulation

L = F + K +U,

in which

U =

∫
Ω
𝑢 (𝜌𝑒,∇Ψ) 𝑑 Ω =

∫
Ω

[
− 𝜀

2
(∇Ψ)2 + 𝜌𝑒 Ψ

]
𝑑 Ω. (2.32)

The electrical potential energy density 𝑢 is composed of two aspects. One stems from the
energy density of the electric field related to the material permittivity 𝜀 (𝒄) = ∑𝑁

𝑖=1 𝜀𝑖𝑐𝑖 with
𝜀𝑖 representing the permittivity of component 𝑖 . The other term 𝜌𝑒 Ψ denotes the energy
needed for putting the charge density 𝜌𝑒 onto the electric potential Ψ. In perfect dielectric
systems, there exists no charge, and the 𝜌𝑒 Ψ term can be canceled. By applying the Gauss’
law ∇· (𝜀∇Ψ) = −𝜌𝑒 and the divergence theorem, as well as the no-flux boundary condition
∇Ψ · 𝒏 = 0 on the domain boundary 𝑆 , the electrostatic energy functional can also be
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rewritten as

U =

∫
Ω

[
− 𝜀

2
(∇Ψ)2 − ∇ · (𝜀 Ψ∇Ψ) + 𝜀 (∇Ψ)2

]
𝑑 Ω

=

∫
Ω

𝜀

2
(∇Ψ)2𝑑 Ω −

∫
𝑆

𝜀 Ψ∇Ψ · 𝒏𝑑 𝑆

=

∫
Ω

𝜀

2
(∇Ψ)2𝑑 Ω.

Moreover, since the electrical potential energy density 𝑢 is a function of the material
permittivity 𝜀 (𝒄), the chemical potential 𝝁 becomes electric field dependent and therefore,
is renamed as the electrochemical potential in the Cahn-Hilliard-Navier-Stokes-Gauss
model (CHNSG).

2.3.2. Electrochemical potential

With the above total energy functional, I define the electrochemical potential 𝝁 as the
functional derivative of the potential energy F + U with respect to the composition 𝒄 .
So the electrochemical potential contains two parts, namely, the contributions from the
chemical free energy density 𝛿𝑔/𝛿𝒄 and the electric potential energy density 𝛿𝑢/𝛿𝒄

𝝁 =
𝛿𝑔

𝛿𝒄
+ 𝛿𝑢
𝛿𝒄

=
𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖 ∇2𝒄 − 1

2
𝜕𝜀

𝜕𝒄

(
∇Ψ

)2
. (2.33)

2.3.3. Evolution equation

Based on the CHNS model, I present the CHNSG model for two typical dielectric systems,
namely, the leaky dielectric and the perfect dielectric.

• (i) For the leaky dielectric system where charges are induced by the external field, I
replace the chemical potential with the newly defined electrochemical potential into
Eq. (2.16) and obtain the corresponding CH equation,

𝜕𝑐𝑖

𝜕𝑡
+ ∇ · (𝒖 𝑐𝑖) = ∇ ·

{ 𝑁∑︁
𝑗=1

M𝑖 𝑗∇
[ 𝜕𝑓
𝜕𝑐𝑖

− 2𝜅𝑖 𝜖 ∇2𝑐𝑖 −
1
2
𝜕𝜀

𝜕𝑐𝑖

(
∇Ψ

)2
]
+ 𝝃 𝑖

}
. (2.34)

Moreover, with Ohm’s law, the conservation equation of charges 𝜌𝑒 reads

𝜕𝜌𝑒

𝜕𝑡
+ ∇ ·

(
𝒖 𝜌𝑒) = ∇ · (𝜎∇Ψ), (2.35)

in which the material conductivity is interpolated by 𝜎 (𝒄) =
∑𝑁
𝑖=1 𝜎𝑖𝑐𝑖 with 𝜎𝑖

indicating the conductivity of component 𝑖 . The induced charge also interacts with
the external field Ψ which is described by Gauss’ law

∇ · (𝜀∇Ψ) = −𝜌𝑒 . (2.36)
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2.3. Model C: The multi-component Cahn-Hilliard-Navier-Stokes-Gaussian model

Furthermore, both the composition field and the electric field are influenced by the
fluid flow. In return, the unbalanced concentration and charge fields can modify the
flow field by adding the corresponding force into Navier-Stokes equations

∇ · 𝒖 = 0, (2.37)

𝜌
𝑑𝒖

𝑑𝑡
= −∇𝑝 − 𝒄∇𝝁 − 𝜌𝑒∇Ψ + ∇ ·

[
𝜂 (∇𝒖 + ∇𝒖𝑇 )

]
+ 𝒇 𝑖 . (2.38)

• (ii) For the perfect dielectric system where the external field induces no charge, the
above-listed CHNSG model is simplified to

∇ · 𝒖 = 0,

∇ · (𝜀∇Ψ) = 0,

𝜕𝑐𝑖

𝜕𝑡
+ ∇ · (𝒖 𝑐𝑖) = ∇ ·

( 𝑁∑︁
𝑗=1

M𝑖 𝑗∇𝜇 𝑗 + 𝝃 𝑖

)
,

𝜌
𝑑𝒖

𝑑𝑡
= −∇𝑝 − 𝒄∇𝝁 + ∇ ·

[
𝜂 (∇𝒖 + ∇𝒖𝑇 )

]
+ 𝒇 𝑖 .

(2.39)

Most importantly, taking out the term −𝒄∇𝝁 = −𝒄∇(𝛿𝑔/𝛿𝒄) − 𝒄∇(𝛿𝑢/𝛿𝒄) from Navier-
Stokes equation, I expand the electric field related −𝒄∇(𝛿𝑢/𝛿𝒄) as

−𝒄∇
(𝛿𝑢
𝛿𝒄

)
= −𝒄∇

[
− 1

2
𝜕𝜀

𝜕𝒄

(
∇Ψ

)2
]
= ∇

[ 𝒄
2
𝜕𝜀

𝜕𝒄

(
∇Ψ

)2
]
− 1

2
∇𝜀

(
∇Ψ

)2
. (2.40)

In previous electrohydrodynamic models [30, 41], the first term in Eq. (2.40) is expressed
as a function of the fluid density 𝜌 , rather than composition 𝒄 , and understood as the
dielectric constraint force

∇
[ 𝜌

2
𝜕𝜀

𝜕𝜌

(
∇Ψ

)2
]
,

which is often misleadingly neglected. The reason may be associated with the incom-
pressible assumption which says the fluid density must be a constant. Insisting on this
notion, one may erroneously cancel this term by thinking 𝜕𝜀/𝜕𝜌 = 0. However, for the sake
of thermodynamic consistency, Eq. (2.40) is the only expression that correctly describes
the electro-hydro-thermodynamical interactions in the system, especially for the phase
separating fluid systems where the permittivity 𝜀 changes drastically with the composition.

2.3.4. Energy law

In this part, I demonstrate the energy dissipation of the CHNSG model in which the total
energy dissipation 𝑑L/𝑑𝑡 is composed of three parts,

𝑑L
𝑑𝑡

=
𝑑F
𝑑𝑡

+ 𝑑K
𝑑𝑡

+ 𝑑U
𝑑𝑡

. (2.41)
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• (i) The dissipation of chemical free energy 𝑑F/𝑑𝑡 still follows Eq. (2.26) and is not
shown here for brevity.

• (ii) The kinetic energy of the whole system K dissipates as

𝑑K
𝑑𝑡

=

∫
Ω
𝜌
𝑑𝒖

𝑑𝑡
· 𝒖 𝑑Ω

=

∫
Ω
∇ ·

[
−𝑃 I − 𝜕𝑔

𝜕∇𝒄 ⊗∇𝒄 +
𝜕𝑢

𝜕∇Ψ ⊗∇Ψ + 𝜂
(
∇𝒖+ ∇𝒖𝑇

) ]
· 𝒖 𝑑Ω. (2.42)

Pertaining to the newly implemented electric field, the Landau potential 𝑃 is rede-
fined accordingly,

𝑃 = 𝑝 − 𝑔 − 𝑢 +
(𝛿𝑔
𝛿𝒄

+ 𝛿𝑢
𝛿𝒄

)
𝒄 + 𝛿𝑢

𝛿𝜌𝑒
𝜌𝑒 = 𝑝 −

(
𝑔 + 𝑢 − 𝝁𝒄 − Ψ𝜌𝑒

)
. (2.43)

Substituting Eq. (2.43) into Eq. (2.42), the kinetic energy dissipation follows

𝑑K
𝑑𝑡

=

∫
Ω
∇ ·

[
− 𝜕𝑔

𝜕∇𝒄 ⊗∇𝒄 +
𝜕𝑢

𝜕∇Ψ ⊗∇Ψ + 𝜂
(
∇𝒖+ ∇𝒖𝑇

) ]
· 𝒖 𝑑Ω. (2.44)

Noteworthily, the opposite sign before the term (𝜕𝑔/𝜕∇𝒄)⊗∇𝒄 and (𝜕𝑢/𝜕∇Ψ)⊗∇Ψ
strongly indicates that the surface tension and electric field have the opposite effect
on the system. Phenomenologically, the increase in Ψ can drop the surface tension
which is in accordance with experiments.

• (iii) The electric potential energy dissipation is twofold.
1. For the leaky dielectric material, it reads

𝑑U
𝑑𝑡

=

∫
Ω

𝑑

𝑑𝑡

[
𝜌𝑒 Ψ − 𝜀

2
(∇Ψ)2

]
𝑑Ω

=

∫
Ω

[
Ψ
𝑑𝜌𝑒

𝑑𝑡
+ 𝜌𝑒𝑑Ψ

𝑑𝑡
− E2

2
𝜕𝜀

𝜕𝒄

𝑑𝒄

𝑑𝑡
− ∇ ·

(
𝜀E)𝑑Ψ

𝑑𝑡
− ∇ · (𝜀E⊗E) · 𝒖

]
𝑑Ω (2.45)

=

∫
Ω

[ 𝛿𝑢
𝛿𝜌𝑒

𝑑𝜌𝑒

𝑑𝑡
+ 𝛿𝑢
𝛿𝒄

𝑑𝒄

𝑑𝑡
− ∇ · ( 𝜕𝑢

𝜕∇Ψ ⊗∇Ψ) · 𝒖
]
𝑑Ω. (2.46)

Here, the electrical field strength is defined by E = −∇Ψ. Gauss’ law is used to
cancel the second term with the fourth term in Eq. (2.45).

2. For the perfect dielectric material, I have

𝑑U
𝑑𝑡

=

∫
Ω

𝑑

𝑑𝑡

[
− 𝜀

2
(∇Ψ)2

]
𝑑Ω

=

∫
Ω

[𝛿𝑢
𝛿𝒄

𝑑𝒄

𝑑𝑡
− ∇ · ( 𝜕𝑢

𝜕∇Ψ ⊗ ∇Ψ) · 𝒖
]
𝑑Ω (2.47)

Note that both Eq. (2.46) and Eq. (2.47) lead to a term ∼ ∇Ψ ⊗ ∇Ψ if 𝑢 ∼ (∇Ψ)2 is
applied. This new term is consistent with the Maxwell stress tensor. As the effect
of the chemical term ∇𝑐𝑖 ⊗ ∇𝑐𝑖 , the stress tensor ∇Ψ ⊗ ∇Ψ is responsible for the
transformation of the electrostatic energy into the kinetic energy.
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• (iv) Finally, combining Eqs. (2.26) (2.44) and (2.46), the energy law for the leaky
dielectric system yields,

𝑑L
𝑑𝑡

= −
∫
Ω

[
𝜂∇𝒖 :∇𝒖 + 𝜎

(
∇Ψ

)2
]
𝑑Ω −

∫
Ω∗

𝑁∑︁
𝑖=1

M𝑖𝑖

(
∇∗𝜇𝑖

)2
𝑑 Ω∗ ≤ 0.

Meanwhile, for the perfect dielectric system with Eqs (2.26) (2.44) and (2.47),

𝑑L
𝑑𝑡

= −
∫
Ω
𝜂∇𝒖 :∇𝒖 𝑑Ω −

∫
Ω∗

𝑁∑︁
𝑖=1

M𝑖𝑖

(
∇∗𝜇𝑖

)2
𝑑 Ω∗ ≤ 0.

2.3.5. Young-Laplace pressure and interfacial tension

Then, I show the way to recover the Young-Laplace pressure and the interfacial tension
for the CHNSG model. For a droplet with a radius 𝑅, the electrochemical potential in
the entire domain reaches the equilibrium 𝝁𝑒 which is expressed in 𝑑-dimensional polar
coordinate (𝑑 = 2, 3) as

𝝁𝑒 =
𝛿𝑔

𝛿𝒄
+ 𝛿𝑢
𝛿𝒄

=
𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖

( 𝜕2𝒄

𝜕𝑟 2 + 𝑑 − 1
𝑟

𝜕𝒄

𝜕𝑟

)
− 1

2
𝜕𝜀

𝜕𝒄

(
∇Ψ

)2
.

Multiplying by 𝜕𝒄/𝜕𝑟 and integrating from 0 (droplet center) to ∞, and summing the
equations for different components yield∫ ∞

0
𝝁𝑒
𝜕𝒄

𝜕𝑟
𝑑𝑟 =

∫ ∞

0

[
𝜕𝑓

𝜕𝒄
− 2𝜿 𝜖

( 𝜕2𝒄

𝜕𝑟 2 + 𝑑 − 1
𝑟

𝜕𝒄

𝜕𝑟

)] 𝜕𝒄
𝜕𝑟
𝑑𝑟 −

∫ ∞

0

1
2
𝜕𝜀

𝜕𝑟

(
∇Ψ

)2
𝑑𝑟 . (2.48)

By applying the integration by parts, I rewrite the last integral in Eq. (2.48)∫ ∞

0

1
2
𝜕𝜀

𝜕𝑟

(
∇Ψ

)2
𝑑𝑟 =

𝜀

2
(
∇Ψ

)2
���∞
0
−
∫ ∞

0

𝜕𝜀

𝜕𝑟

𝜕Ψ

𝜕𝑟
∇2Ψ𝑑𝑟

=
𝜀

2
(
∇Ψ

)2
���∞
0
−
∫ ∞

0

𝑑 − 1
𝑟

𝜕𝜀

𝜕𝑟

( 𝜕Ψ
𝜕𝑟

)2
𝑑𝑟 . (2.49)

Substituting Eq. (2.49) into Eq. (2.48), I have∫ ∞

0
𝝁𝑒
𝜕𝒄

𝜕𝑟
𝑑𝑟 =

(
𝑔 + 𝑢 − 𝜌𝑒Ψ

) ���∞
0
−
∫ ∞

0
(𝑑 − 1)

[
2𝜿 𝜖
𝑟

( 𝜕𝒄
𝜕𝑟

)2
− 1
𝑟

𝜕𝜀

𝜕𝑟

( 𝜕Ψ
𝜕𝑟

)2
]
𝑑𝑟

=
(
𝝁𝑒𝒄

) ���∞
0

At equilibrium, with the formulation of the grand pressure 𝑃 in Eq. (2.43), the curvature
effect on the Young-Laplace pressure Δ𝑃 with the first-order approximation is replicated
as

Δ𝑃 = 𝑃 (0) − 𝑃 (∞) =
(
𝑔 + 𝑢 − 𝜌𝑒Ψ − 𝝁𝑒𝒄

) ���∞
0

=

∫ ∞

0
(𝑑 − 1)

[
2𝜿 𝜖
𝑟

( 𝜕𝒄
𝜕𝑟

)2
− 1
𝑟

𝜕𝜀

𝜕𝑟

( 𝜕Ψ
𝜕𝑟

)2
]
𝑑𝑟

=
(𝑑 − 1) 𝛾

𝑅
+ O

( 1
𝑅 2

)
,
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2. Methods

in which 𝑅 represents the droplet radius and the surface tension 𝛾 inside the electric field
reads

𝛾 =

∫ ∞

0

[
2𝜿 𝜖

( 𝜕𝒄
𝜕𝑟

)2
− 𝜕𝜀

𝜕𝑟

( 𝜕Ψ
𝜕𝑟

)2
]
𝑑𝑟 . (2.50)

2.4. Non-dimensionalization of the models

Parameters Description Calculation
𝑥∗ Length -
𝛾∗ Interfacial tension -
𝐷∗ Diffusivity -
𝐸∗ Electric strength -
𝜂∗ Dynamic viscosity 𝑥∗𝛾∗/𝐷∗

𝑈 ∗ Electric potential 𝐸∗𝑥∗

𝑡∗ Time 𝑥∗2/𝐷∗

𝑓 ∗ Free energy density 𝛾∗/𝑥∗
𝑃∗ Pressure 𝛾∗/𝑥∗
𝜌∗ Density 𝑥∗𝛾∗/𝐷∗2

𝑢∗ Velocity 𝐷∗/𝑥∗
𝜎∗ Conductivity 𝑥∗𝛾∗/(𝐷∗𝐸∗2)
𝜀∗ Permittivity 𝛾∗/(𝐸∗2𝑥∗)
𝜌𝑒∗ Charge density 𝛾∗/(𝐸∗𝑥∗2)

Table 2.1.: Scaling factors for physical parameters of the Cahn-Hilliard-Navier-Stokes-
Gauss model.

All the physical parameters are non-dimensionalized by the characteristic length 𝑥∗,
reference surface tension 𝛾∗, diffusivity 𝐷∗, and electric field strength 𝐸∗. I have the
following scaling factors for the physical parameters, as shown in Table 2.1. Based on the
scaling factors, the non-dimensionalized evolution equations for all phase-field models are
documented in Appendix. A.1.

2.5. Discretization and staggered mesh

In this section, I discuss the discretization of all phase-field models. As demonstrated in
Fig. 2.1, the domain Ω is discretized into an equidistant uniform mesh with Δ𝑥 = Δ𝑦 =

Δ𝑧 = 1. The index 𝑖 , 𝑗 , and 𝑘 represent the grid of mesh in 𝑥 , 𝑦, and 𝑧 direction, respectively.
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2.5. Discretization and staggered mesh

Figure 2.1.: (a) The blue area denotes the bulk region updated by Eqs. (2.34)
(2.35) (2.36) (2.37) (2.38) and (2.39), and the grey cells stand for the bound-
ary where corresponding boundary conditions are adopted. (b) The staggered
mesh for the numerical discretization. Four neighboring cells with solid point:
scalar variable position in the bulk, hollow point: scalar variable position on
the boundary. The vectors, such as the velocity 𝒖, the electric field strength
∇Ψ, the diffusion flux ∇𝜇𝑖 , and the noise term 𝝃 𝑖 in the x (or z), y dimensions
are described by the triangle and the square, respectively (dark grey for the
boundary, light blue for the bulk).

2.5.1. Bulk region

In the first part, I show the discretization process inside the bulk region which corresponds
to the blue-colored cells in Fig. 2.1. Here, the Cahn-Hilliard-Navier-Stokes-Gauss model
is demonstrated as the most complex system which contains all four variables, namely,
the composition 𝒄 , the velocity 𝒖, the electric field Ψ, and the charge density 𝜌𝑒 which are
iterated during the simulation. Initially, I define the following distinct difference operators
applied on an arbitrary variable 𝑋 at grid position (𝑖, 𝑗, 𝑘) as

• (i) Forward difference scheme

∇+𝑋 =

[
𝑋𝑖+1, 𝑗,𝑘 − 𝑋𝑖, 𝑗,𝑘

Δ𝑥
,
𝑋𝑖, 𝑗+1,𝑘 − 𝑋𝑖, 𝑗,𝑘

Δ𝑦
,
𝑋𝑖, 𝑗,𝑘+1 − 𝑋𝑖, 𝑗,𝑘

Δ𝑧

]
.

• (ii) Central difference scheme

∇◦𝑋 =

[
𝑋𝑖+1, 𝑗,𝑘 − 𝑋𝑖−1, 𝑗,𝑘

2Δ𝑥
,
𝑋𝑖, 𝑗+1,𝑘 − 𝑋𝑖, 𝑗−1,𝑘

2Δ𝑦
,
𝑋𝑖, 𝑗,𝑘+1 − 𝑋𝑖, 𝑗,𝑘−1

2Δ𝑧

]
.

• (iii) Backward difference scheme

∇−𝑋 =

[
𝑋𝑖, 𝑗,𝑘 − 𝑋𝑖−1, 𝑗,𝑘

Δ𝑥
,
𝑋𝑖, 𝑗,𝑘 − 𝑋𝑖, 𝑗−1,𝑘

Δ𝑦
,
𝑋𝑖, 𝑗,𝑘 − 𝑋𝑖, 𝑗,𝑘−1

Δ𝑧

]
.

• (iv) When 𝑨 is a vector, its divergence is computed with

∇− · 𝑨 =

[
𝑨𝑖, 𝑗,𝑘 −𝑨𝑖−1, 𝑗,𝑘

Δ𝑥
+
𝑨𝑖, 𝑗,𝑘 −𝑨𝑖, 𝑗−1,𝑘

Δ𝑦
+
𝑨𝑖, 𝑗,𝑘 −𝑨𝑖, 𝑗,𝑘−1

Δ𝑧

]
.
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2. Methods

• (iv) The forward scheme calculates the mean average of 𝑋 as

𝑋1/2 = diag
{
𝑋𝑖+1, 𝑗,𝑘 + 𝑋𝑖, 𝑗,𝑘

2
,
𝑋𝑖, 𝑗+1,𝑘 + 𝑋𝑖, 𝑗,𝑘

2
,
𝑋𝑖, 𝑗,𝑘+1 + 𝑋𝑖, 𝑗,𝑘

2

}
.

2.5.1.1. Concentration evolution

The time and space-dependent 𝑐𝑖 in the grid (𝑖, 𝑗, 𝑘) at time 𝑡 is updated by the Cahn-Hilliard
equation discretized as

𝑐𝑡+Δ𝑡
𝑖, 𝑗,𝑘

− 𝑐𝑡
𝑖, 𝑗,𝑘

Δ𝑡
= ∇− · (−𝑐1/2𝒖

𝑡 +M∇+𝜇𝑖, 𝑗,𝑘 + 𝝃 𝑐).

The chemical potential is discretized as

𝜇𝑖, 𝑗,𝑘 =
(
𝜕𝑓 /𝜕𝑐

)
𝑖, 𝑗,𝑘

− 𝜅 𝜖
(
∇− · ∇+𝑐𝑖, 𝑗,𝑘

)
−
(
𝜕𝜀/𝜕𝑐

)
𝑖, 𝑗,𝑘

(
∇◦Ψ

)2/2.

2.5.1.2. Velocity evolution

For the velocity field in 3 dimensions, the position of the velocity vector lies on the grid
boundary as shown in Fig. 2.1(b). The incompressible Navier-Stokes equation is solved
with Chorin’s projection method [42] as:

• (i) Calculating the intermediate velocity 𝑢∗ by ignoring the pressure term

𝒖∗ − 𝒖𝑡

Δ𝑡
= −𝒖𝑡 · ∇+𝒖𝑡 +

𝒇 𝑐 + 𝒇 𝑒 + 𝒇 𝑣
𝜌

.

For the three force terms, namely, the thermodynamic force 𝒇 𝑐 , the Coulomb’s force
𝒇 𝑒 , and the viscous force 𝒇 𝑣 , I have the following discretization

𝒇 𝑐 = −𝑐1/2(∇+𝜇)𝑇 ,

𝒇 𝑒 = −𝜌𝑒1/2(∇+Ψ)𝑇 ,

𝒇 𝑣 = ∇− ·
[
𝜂1/2(∇+𝒖 + ∇+𝒖𝑇 )

]
.

• (ii) The velocity 𝑢𝑡+Δ𝑡 is calculated with

𝒖𝑡+Δ𝑡 = 𝒖∗ − Δ𝑡

𝜌
∇+𝑝

𝑡+Δ𝑡
𝑖, 𝑗,𝑘

,

which is constraint by the incompressibility assumption with ∇·𝒖𝑡+Δ𝑡 = 0. Therefore,
the pressure term is solved by the following Poisson equation as

∇− ·
(
∇+𝑝

𝑡+Δ𝑡
𝑖, 𝑗,𝑘

)
=
𝜌

Δ𝑡
∇− · 𝒖∗.
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2.5. Discretization and staggered mesh

2.5.1.3. Electric field evolution

The calculation of the electric potential Ψ is achieved by the solution of the Poisson
equation guided by the Gaussian law which defines two different scenarios:

• (i) The leaky dielectric system with net charges,

∇− · (𝜀1/2∇+Ψ𝑖, 𝑗,𝑘) = −𝜌𝑒
𝑖, 𝑗,𝑘

.

• (ii) The perfect dielectrics,

∇− · (𝜀1/2∇+Ψ𝑖, 𝑗,𝑘) = 0.

2.5.1.4. Charge density evolution

The charge density only exists when the system is not perfect dielectrics. Considering the
fluid flow and charge migration, 𝜌𝑒 should follow the continuity equation (2.35) which
can be reckoned by

𝜌
𝑒,𝑡+Δ𝑡
𝑖, 𝑗,𝑘

− 𝜌𝑒,𝑡
𝑖, 𝑗,𝑘

Δ𝑡
= −∇+𝜌

𝑒 · 𝒖𝑡 + ∇− · (𝜎∇+Ψ𝑖, 𝑗,𝑘).

2.5.2. Boundary condition

In the second part, the discretization process inside the boundary 𝑆 is demonstrated The
boundary cell denotes the grid position whose index (𝑖, 𝑗, 𝑘) fulfills (𝑖 − 1) ( 𝑗 − 1) (𝑘 − 1) (𝑖 −
𝑁𝑥 ) ( 𝑗 − 𝑁𝑦) (𝑘 − 𝑁𝑧) = 0, as illustrated by the grey-colored cells in Fig. 2.1.

2.5.2.1. Concentration boundary condition

The composition 𝑐 in the boundary 𝑆 is restricted with two Boundary condition (BC) of
the Cahn-Hilliard equation which is a second order partial differential equation. Due to
the material conservation, the first BC is adopted for the chemical potential 𝝁 with

∇+𝝁𝑖, 𝑗,𝑘 · 𝒏 = 0,

in which 𝑛 is the normal vector of the domain boundary. The second BC is twofold.

• (i) For the isolate composition BC, the Neumann BC is applied as

∇+𝒄𝑖, 𝑗,𝑘 · 𝒏 = 0.

• (ii) Whereas, for the periodic composition BC, it yields

𝒄1, 𝑗,𝑘 = 𝒄𝑁𝑥 ,𝑗,𝑘, 𝒄𝑖,1,𝑘 = 𝒄 𝑖,𝑁𝑦,𝑘, 𝒄𝑖, 𝑗,1 = 𝒄 𝑖, 𝑗,𝑁𝑧 .
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2. Methods

2.5.2.2. Velocity boundary condition

If Navier-Stokes equation is solved, the following velocity BC can be used in the Pace3d.

• (i) No-slip boundary condition

𝒖𝑖, 𝑗,𝑘 = 0.

• (ii) Periodic boundary condition

𝒖1, 𝑗,𝑘 = 𝒖𝑁𝑥 ,𝑗,𝑘, 𝒖𝑖,1,𝑘 = 𝒖𝑖,𝑁𝑦,𝑘, 𝒖𝑖, 𝑗,1 = 𝒖𝑖, 𝑗,𝑁𝑧 .

2.5.2.3. Electrical boundary condition

If electric field is coupled and solved inside the domain, the BCs for the electric field Ψ are
defined as follows.

• (i) At the anode or cathode, the Dirichlet BC is adopted to assign a constant electric
potential Ψ0 on the boundary as

Ψ𝑖, 𝑗,𝑘 = Ψ0.

• (ii) Ψ can also be constraint by the natural boundary condition with

∇+Ψ𝑖, 𝑗,𝑘 · 𝒏 = 0.

• or with the periodic BC as

Ψ1, 𝑗,𝑘 = Ψ𝑁𝑥 ,𝑗,𝑘, Ψ𝑖,1,𝑘 = Ψ𝑖,𝑁𝑦,𝑘, Ψ𝑖, 𝑗,1 = Ψ𝑖, 𝑗,𝑁𝑧 .

For the leaky materials with induced charges, the BC for the charge density 𝜌𝑒 reads,

∇+𝜌
𝑒
𝑖, 𝑗,𝑘

· 𝒏 = 0.
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3. Thermal noise for triggering the phase
separation 1

Phase separations (PS) always start from the everlasting thermal noises which bring the
high-energy metastable fluid mixtures into the low-energy stable phases and result in a
variety of microstructural morphologies. In previous investigations [20], thermal noise
terms are simply treated as a trigger for PS by adding some spatial-temporal dependent
random numbers into the composition field, as well as the flow field. The mathematical
model for the randomness still copies the fluctuation-dissipation theorem (FDT) which
has been developed by studying the rigid body Brownian motion (BM).

3.1. System definition

In this chapter, the stochastic behavior of the standard Cahn-Hilliard model and the Cahn-
Hilliard-Navier-Stokes model is revisited by studying the BM of the deformable droplet.
Distinct from the rigid body scenario, the droplet BM shows a magnificent difference which
is not explainable by Einstein’s theory. The following sections are based on Ref. [43].

3.2. Simulation setup

The finite difference method is implemented on a staggered mesh with a size of 𝑁𝑥 ×𝑁𝑦 ×
𝑁𝑧 and equidistant Cartesian spacing Δ𝑥 = Δ𝑦 = Δ𝑧 to solve the evolution equations, the
Cahn-Hilliard equation, as illustrated in Fig. 3.1. The Navier-Stokes equations are updated
with the explicit Euler scheme. The concentration 𝑐 , and the fluid velocity 𝒖 are subjected
to the periodic boundary conditions. Parallelization of the numerical algorithm is achieved
with Message Passing Interface (MPI) techniques.

3.3. Model validation

3.3.1. Brownian coefficient measurement

In previous experiments [44], the Brownian coefficient 𝐷∗ is normally fitted with the mean
square displacement ⟨Δ𝑿2⟩. To eliminate the observational error for the precise value,
huge amounts of displacement data are measured for a long experimental time. However,
1Copyright notice: With the exception of the section 3.4, all other sections of this section are reused with
permission from Zhang H., Wang F., Ratke L., Nestler B. Brownian motion of droplets induced by thermal
noise[J]. Physical Review E, 2024, 109(2): 024208. Copyright 2024 by the American Physical Society.
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3. Thermal noise for triggering the phase separation

in the simulations with the diffuse interface CH and CHNS models, fitting 𝐷∗ by Δ𝑿2

for the long time period turns out to be inefficient. While in the simulations with the
diffuse interface models, the particle centroid position at each time 𝑡 , 𝑿 (𝑡), is computed
by integrating all the phase-field variable 𝜙 or composition 𝑐 over the entire domain Ω as

𝑿 (𝑡) =
∫
Ω
𝑐 (𝑡) 𝒙 𝑑𝒙

/∫
Ω
𝑐 (𝑡) 𝑑𝒙, if 𝑐 (𝑡) > 0.5.

Here, I postulate an alternative way to measure the Brownian coefficient 𝐷∗ in which
the particle velocity 𝒗 is defined by the particle centroid changes for each short simulation
time span Δ𝑡 as

𝒗 =
Δ𝑿

Δ 𝑡
=
𝑿 (𝑡 + Δ𝑡) − 𝑿 (𝑡)

Δ𝑡
.

According to statistical mechanics, the particle velocity follows the specific distributions
when the thermodynamic equilibrium is reached. In the 1D case, the velocity v obeys the
half-normal distribution as

𝑓𝑣 (𝒗, 𝐷∗) =
√︂

2
𝜋

1
𝐷∗ exp

(
− 𝒗2

2𝐷∗2

)
, (3.1)

while in 2D case, theoretically [45], the velocity can be described by the Rayleigh distribu-
tion as

𝑓𝑣 (𝒗, 𝐷∗) = |𝒗 |
𝐷∗2 exp

(
− 𝒗2

2𝐷∗2

)
, (3.2)

and in 3D, the Maxwell distribution restricts the particle velocity as

𝑓𝑣 (𝒗, 𝐷∗) =
√︂

2
𝜋

𝒗2

𝐷∗3 exp
(
− 𝒗2

2𝐷∗2

)
. (3.3)

Moreover, the displacement Δ𝑿 of the Brownian particle in each dimension should abide
by the normal distribution as

𝑓𝑥 (Δ𝑿 , 𝐷∗) = 1
√

2𝜋𝐷∗2
exp

(
− Δ𝑿2

2𝐷∗2

)
. (3.4)

An advantage of this approach is that fitting the Brownian coefficient by the velocity
distribution converges with only 1 × 104 velocity data. In contrast to this, with the
conventional method, to get the smooth ⟨Δ𝑿2⟩ mean squared displacement curve with
time, it needs 20 times more data quantity than the approach based on the distribution of
the velocity. Therefore, in this work, the Brownian coefficient 𝐷∗ is fitted with the droplet
velocity distribution via Eq. (3.1) in 1D, Eq. (3.2) in 2D, and via Eq. (3.3) in 3D. In some
showcases, the displacement distribution Eq. (3.4) is also used to fit 𝐷∗ and serves as the
supplement for the velocity distribution.
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3.3. Model validation

Figure 3.1.: The numerical convergence of the stochastic Cahn-Hilliard-Navier-Stokes
model with composition noise 𝝃 𝑖 = 0.001 for a droplet with 𝑟0 = 20. (I) The
initial filling. The color bar denotes the droplet concentration 𝑐P. (II) and (III)
show the pressure distribution and the velocity field, respectively, for Δ𝑥 = 1.0
at 𝑡 = 1× 104. The color bars beneath the figure scale the corresponding values.
(IV) The Brownian coefficient 𝐷∗ and the interfacial tension 𝛾 with respect to
Δ𝑥 . (V) and (VI) The normalized Young-Laplace pressure ⟨Δp⟩/Δp∗ averaged
over 1 × 104 frames with Δ𝑥 and eps, respectively.

3.3.2. Numerical convergence

In the following part, the numerical convergence of the Cahn-Hilliard-Navier-Stokes model
is presented. I place a droplet with an initial radius of 𝑟0 = 20/Δ𝑥 amid the 12𝑟0 × 12𝑟0
squared matrix, as depicted in Fig. 3.1(I). The initial composition is chosen to be the bulk
equilibrium value with 𝑐P = 0.973 in the droplet and 𝑐𝑀 = 1 − 𝑐P = 0.027 in the matrix,
respectively. For all mesh fineness Δ𝑥 , the composition noise with amplitude 𝝃 𝑖 = 0.001 is
applied. The densities for both droplet and matrix are set to be 0.01. The viscosity is set to
be 0.001 and the random body force is neglected.

After proceeding with the simulations for different mesh resolution Δ𝑥 in 2D, I measure
the droplet centroid velocities for a time period of 5 × 103 and fit the Brownian coefficient
𝐷∗ with the Rayleigh distribution according to Eq. (3.2). As shown in Fig. 3.1(IV), 𝐷∗

converges gradually with the reduction in the resolution, and approaches to 5.18 × 10−9

as Δ𝑥 ≤ 1.0. The same tendency is observed for the droplet surface tension 𝛾 , which is
calculated with the radial droplet concentration 𝑐 profile as

𝛾 =

∫ 120/Δ𝑥

0
2𝜅 𝜖

( 𝜕𝑐
𝜕𝑟

)2
𝑑𝑟 . (3.5)

For better statistical integrity, 𝛾 is normalized by the reference interfacial tension value
at Δ𝑥 = 1.0 which is averaged over the time period of 5 × 103. Moreover, the numerical
accuracy of the Navier-Stokes equations is tested for different Δ𝑥 and residual parameter
eps and the results are demonstrated in Fig. 3.1(V) and (VI). The normalized Young-Laplace
pressure possesses higher accuracy with a finer resolution and a smaller eps. Considering
a compromise between the simulation accuracy and the time expense of computing, I set
Δ𝑥 = 1.0 and eps= 1𝑒 − 8 for all the CHNS simulations in the following sections.
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3. Thermal noise for triggering the phase separation

3.3.3. Capillary wave theory

Figure 3.2.: Validation of the stochastic CHNS model with the capillary wave theory. Open
colored symbols: with hydrodynamics; dashed color lines: without hydrody-
namics. (a) The initial unperturbed flat interface. (b) The capillary wave ampli-
tudes ⟨Δℎ̃2(𝑞)⟩ according to Eq. (3.7) in the reciprocal space for the perturbed
interface with different composition noise amplitudes 𝝃 𝑖 . (c) ⟨Δℎ̃2(𝑞)⟩ versus
𝑞 for different interfacial tensions, 𝛾 at noise amplitude 𝝃 𝑖 = 0.05. (d) ⟨Δℎ̃2(𝑞)⟩
versus 𝑞 for different viscosities 𝜂 with noise amplitude 𝝃 𝑖 = 0.1. The black
solid lines guide the capillary wave theory relationship of ⟨Δℎ̃2(𝑞)⟩ ∼ 𝑞−2. The
dotted, solid, and dot-dashed lines show different scaling laws, ⟨Δℎ̃2(𝑞)⟩ ∼ 𝑞−1,
∼ 𝑞−2, and ∼ 𝑞−4, respectively.

For liquid surfaces with small thermal noise, the capillary wave theory (CWT) is regarded
as a decent way to describe its behavior which has been proven by several experiments [46,
47] and simulations [48]. Perturbed by the noise, the surface energy increase Δ𝐸 of a
planar fluid interface is proportional to the surface area change as

Δ𝐸 ≈ 𝛾

2

∫ (
∇ℎ

)2
𝑑𝑥𝑑𝑦, (3.6)

where the interface position ℎ is defined by the location with composition 𝑐 = 0.5. The
liquid-matrix interfacial tension is represented by 𝛾 . After Fourier transformation, Eq. (3.6)
is expressed in the reciprocal space as

Δ𝐸 (𝑞) = 𝛾
2

∫
𝑞2��Δℎ̃(𝑞)��2𝑑𝑞,
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3.3. Model validation

where 𝑞 symbolizes the wave number, and ℎ̃(𝑞) represents the capillary wave amplitude
in the wavenumber domain. In statistical mechanics, each wave mode of the fluctuation
has the identical energy 𝑘𝐵𝑇 , so that

〈
Δℎ̃2(𝑞)

〉
=

𝑘𝐵𝑇

4𝜋2𝑞2 𝛾
, (3.7)

where
〈
Δℎ̃2(𝑞)

〉
is named as the structure factor of the fluid interface. According to the

noise formulations stated by FDT, I have
〈
Δℎ̃2(𝑞)

〉
∝ 𝝃 2

𝑖 for CHNS model.
To validate the energy dissipation behaviors of the CHNS models with the capillary

wave theory (CWT), an initial setup with a flat liquid-matrix interface is demonstrated
in Fig. 3.2(I)(a). The density 𝜌 = 0.01, the interfacial tension 𝛾 = 1.0 are adopted. Here,
the structure factor

〈
Δℎ̃2(𝑞)

〉
is measured for two scenarios: i) with hydrodynamics (open

dots) and ii) without hydrodynamics (dashed lines). The mobility M0 set to be 1.0 and the
viscosity is 𝜂 = 0.001. In good consistency with previous researches [47], at large wave
number 𝑞,

〈
Δℎ̃2(𝑞)

〉
shows the 𝑞−2 tendency with the wave number 𝑞 for both scenarios,

as guided by the black solid line in Fig. 3.2(II)(a). With the growth of the noise amplitude 𝝃 𝑖
by 10 times,

〈
Δℎ̃2(𝑞)

〉
increases accordingly by 102 times, showing good consistence with

Eq. (3.7). For the short wavelength perturbations with 𝑞 < 0.1, the Cahn-Hilliard model
without hydrodynamics (dashed colored lines) shows an apparent deviation from the
CWT scaling law. It indicates that hydrodynamics is a crucial mechanism for the surface
energy dissipation of the fluid interface, especially for the noise with short wavelengths.
Then, in Fig. 3.2(II)(b), I fix the constant noise amplitude 𝝃 𝑖 = 0.05, and observe the
reduction in capillary wave amplitudes with the increase in the surface tension 𝛾 which
is in good accordance with the CWT. In Fig. 3.2(II)(c), the viscosity effect on the scaling
law of

〈
Δℎ̃2(𝑞)

〉
versus 𝑞 is illustrated. By setting a larger 𝜂, the viscous stress 𝜂∇2𝒖 in

the Navier-Stokes equation is magnified, giving rise to a stronger energy dissipation via
frictional forces between fluids. But the deduction of Eq. (3.7) only considers the surface
energy dissipation and does not take the viscosity effect on the kinetic energy into account.
This observation in turn indicates that for the composition noise dominated Brownian
motion of sub-micro droplets, the viscous effect is of subtle importance. In this way, I
set low viscosity 𝜂 = 0.001 in the following parts to eliminate the viscous dissipation
mechanism, which is in line with the CWT and experiments.

3.3.4. Dispersion relation

To have a better understanding of the CWT for CHNS models, I scrutinize the energy
dissipation by investigating the dispersion relation which explains the distinct scaling
laws between the capillary wave amplitude ⟨Δ2ℎ⟩ with the wavenumber 𝑞 by considering
the interplay of diffusion and convection.
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3. Thermal noise for triggering the phase separation

3.3.4.1. Diffusion dominated regime

For the CHNS model, the fluctuation energy-gaining rate reads

𝜕F +

𝜕𝑡
=

∫
Ω
𝑓 ∗M 𝝃 2

𝑖 𝑑Ω = 𝑓 ∗M0 𝝃
2
𝑖 S.

Meanwhile, the energy dissipates as

𝜕F −

𝜕𝑡
=

∫
Ω

𝛿𝐹

𝛿𝑐

𝑑𝑐

𝑑𝑡
𝑑Ω = −

∫
Ω
M(∇𝜇)2𝑑Ω

= S
∫ ∞

−∞
M 𝑓 ∗2 𝜖 2 (𝑞2𝜒2 + 2𝜖2𝑞4𝜒 + 𝜖4𝑞6) 𝑐 2 𝑑𝑥

= M0 𝑓
∗2 𝜖 2 S

(
𝑞2𝜒2 + 2𝜖2𝑞4𝜒 + 𝜖4𝑞6)Δ2ℎ,

in which the integrated term is expanded at the interface position with 𝑐 = 0.5 + 𝜖 𝑐 . The
composition perturbation 𝑐 is analogized with the wave function 𝑒𝜁𝑡−𝑖𝑞𝑦 . At equilibrium, I
obtain

Δ2ℎ ∝
𝝃 2
𝑖

𝛾
(
𝜒2𝑞2 + 2𝜒 𝜖2𝑞4 + 𝜖4𝑞6) . (3.8)

Both 𝑞−2 and 𝑞−4 scaling laws are captured in the simulated CWT of the Cahn-Hilliard
model without hydrodynamics; see dashed lines in Fig. 3.2(b). It reflects the prominent
difference between the Cahn-Hilliard equation and the diffusion equation (Fick’s second
law), since CH is a fourth-order partial differential equation expressed with composition
perturbation 𝑐 as

𝑑𝑐

𝑑𝑡
= ∇ · (M𝛾

𝜖
𝜒∇𝑐) − ∇ · (M𝛾𝜖 ∇3𝑐).

Hence, the energy dissipation for small wavelength noises (large 𝑞) behaves similarly to
the standard diffusion process. While for the large wavelength (small 𝑞), its dissipation is
dominated by the fourth-order term 𝜎∇4𝑐 .

3.3.4.2. Convection dominated regime

The energy law behaves entirely differently when convection overwhelms diffusion, and I
have another energy law for the CHNS model

𝜕F −

𝜕𝑡
=

∫
Ω
𝒖 · 𝜌𝑑𝒖

𝑑𝑡
𝑑Ω =

∫
Ω
𝒖 ·

(
𝜇∇𝑐

)
𝑑Ω

= S
∫ ∞

−∞
∇Ψ ·

(𝛾 𝜒
𝜖
𝑐 − 𝛾𝜖 ∇2𝑐

) (
𝜖 ∇𝑐

)
𝑑𝑥

=
𝛾 S 𝜖
𝜖
𝑞′Ψ

(
𝜒 𝑞 + 𝜋2𝜖2𝑞3)Δ2ℎ.
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3.4. Stochastic Cahn-Hilliard model

Here, I assume the velocity 𝒖 as the gradient of the tiny perturbed stream function Ψ =

𝑒𝜁
′𝑡−𝑖𝑞′𝑥 with the different phase parameter 𝑞′ from the composition noise. Under this

circumstance, the energy law for the convection-dominated CHNS model is deduced as

Δ2ℎ ∝
M0 𝝃

2
𝑖 𝜖

𝛾 (𝜒 𝑞 + 𝜖2 𝑞3) , (3.9)

which is also in line with the CWT simulation results shown in Fig. 3.2. These dispersion
relations are dealing with the composition noise dissipated via convection, and has never
been considered in previous FDT and CWT theories. I stress that this energy dissipation
mechanism is entirely different from the one in the Langevin mechanics, where the random
body force gets smoothed by the viscous stress. Testified in previous simulations [49,
50], the random body force perturbed interface still follows the CWT scaling law with
⟨Δℎ̃2⟩ ∼ 𝑞−2.

3.4. Stochastic Cahn-Hilliard model

In this section, I present the stochastic Cahn-Hilliard model is investigated with the droplet
Brownian motion (BM) simulations. Here, only the diffusion and composition noises are
considered for sub-micro droplets for which the hydrodynamics is neglected.

3.4.1. Anomaly of the Brownian motion with dimensions

The droplet with radius 𝑟0 = 40 in placed inside the domain with 𝑁𝑥 = 12𝑟0 for 1D,
𝑁𝑥 × 𝑁𝑦 = 12𝑟0 × 12𝑟0 for 2D, and 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 12𝑟0 × 12𝑟0 × 12𝑟0 for 3D, respectively.
The mobility is set to be 1.0 and the composition noise amplitude 𝝃 𝑖 = 0.001 are considered
for all components. As shown in Fig. 3.3(I), the droplet trajectories in (a)-1D, (b)-2D, and (c)-
3D present the stochastic motion. Notably, in the velocity distributions; see Fig. 3.3(II), all
simulated droplet velocity (histograms) obeys the corresponding theoretical distributions
(solid lines) Eqs. 3.1, 3.2, and (3.3), which indicates that the droplet motions reach the
thermal equilibrium. In addition, the Gaussian distributed droplet displacements by each
dimension in Fig. 3.3(III) also strongly prove of the conformity between simulation and
statistical mechanics. However, the mean squared displacement in Fig. 3.3(IV) tell an
entirely different story from the BM theories. According to Einstein’s theory based on the
rigid body assumption, the linear relation between MSD and time is

⟨ΔX2⟩ = 𝑛 𝐷∗𝑡, (3.10)

scaled by the dimension number 𝑛 and the Brownian coefficient 𝐷∗. In other words, the
rigid body BM in 3 dimension space has the largest diffusion rate which is 1.5 times in 2D,
and 3 times in 1D. But for the Brownian droplet with composition fluctuations, although
the linear relationship of ⟨ΔX2⟩ ∼ 𝑡 is observed (see the black solid line), the simulated
MSD in Fig. 3.3(IV) expresses the totally reversed tendency, where the BM has the largest
𝐷∗ in 1D and smallest in 3D.
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3. Thermal noise for triggering the phase separation

Figure 3.3.: n-dimensional Brownian motion induced by composition noises. (I) Trajecto-
ries of the droplet with radius 𝑟0 = 40 in (a) 1D, (b) 2D, and (c) 3D. The color
bar measures the time sequence. (II) The simulated velocity histograms in (a)
1D, (b) 2D, and (c) 3D, each fitted by half-normal (black line), Rayleigh (red
line), and Maxwell (blue line) distributions, respectively. (III) The simulated
displacement histograms in 𝑥 direction, (a) 1D, (b) 2D, and (c) 3D, fitted by
normal distributions (solid colored lines). (IV) The mean squared displacement
(MSD) ⟨ΔX2⟩ decreases with the dimension 𝑛, which disobeys the Einstein-
Stokes relation ⟨ΔX2⟩ ∼ 𝑛𝐷∗𝑡 . The solid line guides the ∼ 𝑡 tendency.
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3.4. Stochastic Cahn-Hilliard model

3.4.2. Equipartition theorem

To explain the anomaly relationship between the Brownian coefficient 𝐷∗ with the dimen-
sion number 𝑛, I performed simulation for various droplet radii ranging from 𝑟0 = 10 to
100 by different 𝑛. The Brownian coefficient 𝐷∗ is fitted by the droplet velocity distribu-
tions and is depicted in Fig. 3.4(I). Clearly can be noticed, 𝐷∗ presents absolutely distinct
relations with 𝑟0 for different dimensions. In 1D, 𝐷∗ stays almost constant which is solely
decided by the noise amplitude 𝝃 𝑖 (equivalent to the temperature 𝑇 ). While, in 2D cases,
the Einstein inverse relation 𝐷∗ ∼ 𝑟−1

0 is observed, as guided by the red dot-dashed line
in Fig. 3.4(I). Most interestingly, in 3D cases, 𝐷∗ ∼ 𝑟−2

0 tendency indicates the different
fluctuation-dissipation mechanism from the rigid body BM.

Figure 3.4.: Equipartition theorem for the composition noise. (I) Droplet Brownian co-
efficient 𝐷∗ in different dimensions following distinct scaling laws with the
radius 𝑟0, which are guided by the colored lines. Only 2D BM follows the
Einstein-Stokes relation 𝐷∗ ∼ 𝑟−1

0 . (II) Contrived example of two types of
noise-induced droplet motions based on the lattice model. (a) Composition
noise propels only the interface obeying Fick’s first law; (b) Random body
force displaces the whole droplet following Newton’s second law.

To elucidate the anomaly size effect on the Brownian coefficient 𝐷∗, in Fig. 3.4(II), I show
two schemes that would help to understand the underlying mechanisms of two types of
BM, namely, (a) the droplet BM perturbed by composition noises, and (b) the rigid body
BM propelled by random body forces. The composition noises 𝝃 𝑖 only have pronounced
effect on the molecules at the interface region, due to the definition of noise amplitude 𝝃 𝑖
by FDT with

⟨𝝃 𝑖, 𝝃 ′
𝑖⟩ ∼ 2M0 𝑐𝑖 (1 − 𝑐𝑖) 𝑘𝐵𝑇,

where 𝑐𝑖 (1 − 𝑐𝑖) approaching 0 inside the bulk droplet and matrix leads to negligible
composition fluctuations. Hence, to diffuse the droplet rightwards by a random distance
Δ𝑿 , the thermal composition noises dissolve the droplet molecules on the left interface
into the matrix with a width Δ𝑿 , while condensing the same amount on the right side,
as schematically shown in Fig. 3.4(II)(a). In fact, the light blue-colored molecules inside
the droplet bulk actually do not need to move at all. In this way, I can explain the reason
why the Brownian coefficient 𝐷∗ in the 1D case has no size effect. Because the stochastic
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3. Thermal noise for triggering the phase separation

motion obeys Fick’s 1st law, the material flux at the interface has hardly any connection
with the bulk region. In contrast to this in Fig. 3.4(II)(b), the random body forces 𝒇 𝑖 act on
the whole particle,

⟨𝒇 𝑖,𝒇 ′
𝑖⟩ ∼ 2𝜂 𝑘𝐵𝑇,

where the viscosity 𝜂 is always nonzero inside the rigid body. To shift rightwards by
Δ𝑿 , the particle follows Newton’s second law. It implies that the random body forces
are allocated on every molecule inside the droplet by the density 𝜌 , so that all molecules
moves the same distance Δ𝑿 . Therefore, the random motion in 𝑛-dimension is simply the
summation of the BM in each dimension, which is the exact idea of Einstein’s deduction.
However, for the droplet BM, the deduction of the mean squared displacement is as follows.

𝑑𝑿

𝑑 𝑡
=

1
S

∫
𝑆

𝑑 ℎ

𝑑 𝑡
𝑑𝑆 =

1
S

∫
𝑆

𝜕ℎ

𝜕𝑐

𝑑 𝑐

𝑑 𝑡
𝑑𝑆 =

1
S |∇𝑐 |

∫
𝑆

𝑑 𝑐

𝑑 𝑡
𝑑𝑆 =

1
S |∇𝑐 |

∫
𝑆

𝝃 𝑖 𝑑𝑆.

Here, |∇𝑐 | denote the equilibrium composition gradient at the interface position ℎ. The
surface integral of composition noises on 𝑆 can be treated with the definition of the noise
amplitude by FDT, ∫

𝑆

𝝃 𝑖 𝑑𝑆

∫ ′

𝑆

𝝃 ′
𝑖 𝑑𝑆

′ =

∫
𝑆

⟨𝝃 𝑖, 𝝃 ′
𝑖⟩ 𝑑𝑆 =

M0 𝑘𝐵𝑇 S
2 𝑣𝑚 Δ𝑡

,

where the delta function 𝛿𝐾 (𝒙 −𝒙′) removes one space integration. Applying the temporal
delta function 𝛿𝐾 (𝑡 − 𝑡 ′) to cancel one timestep term 𝑑𝑡 , I obtain the Brownian coefficient,

𝐷∗ =
⟨𝑑𝑿 , 𝑑𝑿 ′⟩

𝑑 𝑡
=
M0 𝑘𝐵𝑇

𝛼 S
, with the unit of

[m2

s

]
, (3.11)

in which the parameter 𝛼 = 2 𝑣𝑚 (∇𝑐)2. For the 1D droplet, S = 2 results in 𝐷∗ ∼ M0 𝑘𝐵𝑇

with no radius dependency. Similarly, the anomalous tendencies 𝐷∗ ∼ 𝑟−1
0 in 2D and

𝐷∗ ∼ 𝑟−2
0 in 3D are derived and show well accordance with our simulations in Fig. 3.4(I).

Our analysis also indicates two differences between the chemical free energy fluctuations
and the kinetic energy perturbations.

• (i) The equipartition of thermal fluctuation energy. For composition noises, the
molecules at the interface are entitled to share the majority parts of the thermal
energy. Actually, I can say that the thermal fluctuation energy is transformed into
the surface energy changes of the system. For random body force, thermal energy
is expressed by the kinetic energy perturbations which are partitioned onto all
molecules by their density.

• The energy dissipation mechanism. The composition noises get dissipated by the
surface energy minimization which is related to the interface area S. Therefore, the
composition fluctuation shows a stronger dissipation effect at higher dimensions.
Whereas, the random body force is smoothed by the Stokes drag force which is
always proportional to the droplet radius 𝑟0. Thus, the dissipation effect is simply
the summation of all the 𝑛 dimensions.
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3.4. Stochastic Cahn-Hilliard model

3.4.3. Noise reduction mechanism

In previous parts, I discussed the properties of the composition noise which differ from
the random body force. Notably, the thermal energy dissipation mechanism via interface
tension shows a strong dependency on the dimension number 𝑛, so the noises are reduced
more severely in 3D than in 2D. In this part, I present other two dimension-related
composition noise reduction mechanisms with the help of the capillary wave theory
(CWT). More details about CWT are found in Sec. 3.3.3.

3.4.3.1. Non-linearity of the Cahn-Hilliard equation

The greatest progress the Cahn-Hilliard equation made is that the driving force for the
diffusion process is attributed to the unbalanced chemical potential, rather than the
concentration gradient. So the equilibrium interface can be established and the interfacial
tension effect can be studied. By taking the infinitesimal composition fluctuation 𝑐 at the
interface with 𝑐 = 0.5 + 𝜖 𝑐 and neglecting the higher order of 𝑐 , the CH equation yields,

𝜕𝑐

𝜕𝑡
= M∇2𝜇 = M∇2

(
− 𝛾
𝜖
𝜖 𝑐 − 2𝛾 𝜖 𝜖 ∇2𝑐

)
. (3.12)

Whereas the standard mass conservation equation follows Fick’s law as

𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐. (3.13)

Apparently, the Laplace operator∇2 is linearwith the dimension number𝑛, which is defined
in the Cartesian coordinate system R𝑛 with coordinates basic vector 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑛) as

∇2 :=
𝜕2

𝜕𝒙2 =

𝑛∑︁
𝑖=1

𝜕2

𝜕𝑥2
𝑖

.

Thus, for the standard diffusion equation Eq. (3.13) and the momentum conservation
Navier-Stokes equation, the expression in each dimension is addable which reflects the fact
that there is no interaction between different dimensions, so as the identical-independent-
distributed noise terms. I highlight that the interfacial term in CH equation Eq. (3.12) is
totally different and is defined by a fourth-order operator

∇2(∇2𝑐) :=
𝜕2

𝜕𝒙2

(
𝜕2𝑐

𝜕𝒙2

)
=

𝑛∑︁
𝑖=1

𝜕4𝑐

𝜕𝑥4
𝑖

+ 2
𝑛,𝑛∑︁
𝑖> 𝑗=1

𝜕4𝑐

𝜕𝑥2
𝑖
𝜕𝑥2

𝑗

,

where the last summation term is non-linear to dimension number𝑛. Thus, the CH equation
cannot be treated as the add-up of all expressions in each dimension together, distinct from
the diffusion equation and NS equation. Moreover, with the increase in dimension, the
number of non-linear terms increases accordingly. Since the terms 𝜕4/(𝜕𝑥2

𝑖 𝜕𝑥
2
𝑗 ) represent

the interfacial effect which smooths the composition noise, the noise amplitude is smaller
by larger dimension number 𝑛, even though the noise amplitude 𝝃 𝑖 are set equally.

In Fig. 3.5(I), the perturbed fluid interfaces at 2D (a) and 3D (b) are shown at time 𝑡 = 1000.
Weak noise reduction can be noticed in the CWT Fig. 3.5(II). At the short wavevector
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3. Thermal noise for triggering the phase separation

Figure 3.5.: Energy dissipation of composition noise perturbed interface. (I) Interface
height changes Δℎ at 𝑡 = 100. (a) 2D, and (b) 3D (the color bar scales Δℎ). (II)
Dispersion relation with different dimensions shows stronger damping for
long wave perturbations (small wavevector q). The capillary wave amplitude
⟨Δℎ̃2(q)⟩ for 2D (red lines) and 3D (blue lines) cases with different interface
scale 𝐿.

|𝒒 | = 0.5, the capillary wave (CW) amplitude ⟨Δℎ̃2(q)⟩ is equivalent to the variance of the
composition noise. The tiny difference between the red-circled 2D and the blue-squared
3D variances are noticeable in the inset of Fig. 3.5(II). Most importantly, I observe the
second noise reduction mechanism at the long wavelength region in the CWT.

3.4.3.2. Long range constrain

In 2D scenario, the CW amplitudes follows the scaling law with ⟨Δℎ̃2(q)⟩ ∼ |𝒒 |−4 in
the long-wavelength region with |𝒒 | < 0.1 which indicates the equipartition of thermal
fluctuation energy on the interface and in good agreement with the theory Eq. (3.8).
In the 3D case, the CW amplitudes behave entirely different from the scaling law of
CWT with ⟨Δℎ̃2(q)⟩ < |𝒒 |−2 in the mid-wavevector region with 0.02 < |𝒒 | < 0.1. The
energy dissipation at interface is much stronger in 3D than in 2D, especially, in the long
wavevector region with |𝒒 | < 0.01. Although identical parameters are adopted for 2D and
3D simulations in Fig. 3.5(II), the CW amplitude in 3D falls on the plateau and shows great
derivation from the 2D case, indicating the noise reduction by the long-range constraint.
This observation strongly resembles the Mermin–Wagner theorem pointing out that the
2D and 3D fluid systems are different. Intuitively, it means that at finite temperatures, the
long-range interface fluctuations can be easily created and maintained by tiny composition
fluctuations in 2D, but can be deeply damped in 3D which is highly associated with the
interfacial term in the CH equation. The breakdown of the equipartition theorem in 3D
should be heeded in future works.
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3.5. Stochastic Cahn-Hilliard-Navier-Stokes model

3.5.1. Equilibrium

3.5.1.1. The Einstein’s relation

Figure 3.6.: 2D Brownian motion of droplets by CHNS model. (a) The Brownian motion
coefficient 𝐷∗, upper: with noise amplitude 𝝃 𝑖 ; mid: with initial radius 𝑟0;
lower: with kinetic parameter 𝜏 , the dashed red lines guide the 𝐷∗ ∝ 𝝃 2

𝑖 , 1/𝑟0,
and M relations, respectively. (b) The probability density function (PDF) of
particle velocity follows the Rayleigh distribution. Upper: with 𝝃 𝑖 ; lower: with
𝑟0. (c) The particle trajectory. The color bar scales the time sequence.

I present a simple proof of the Einstein relation replicated with the phase-field model.
The total fluctuation energy normalized by the characteristic free energy density 𝑓 ∗ on
the 2-dimensional particle with radius 𝑟0 reads

⟨𝐸⟩/𝑓 ∗ =
∫
Ω
⟨
√
M 𝝃 𝑖,

√
M 𝝃 ′

𝑖⟩ 𝑑Ω =

∫
Ω
M0 𝝃

2
𝑖 𝜙 (1 − 𝜙) 𝑑Ω

= M0 𝝃
2
𝑖

∫ ∞

0
𝑐 (1 − 𝑐) 2𝜋𝑟 𝑑𝑟

= M0 𝝃
2
𝑖 S,

where S =
∫ ∞

0 𝑐 (1 − 𝑐) 2𝜋 𝑟𝑑𝑟 = 2𝜋𝑟0 represents the surface area of the perfect spherical
droplet with the interface width approaching the sharp interface limit [51]. The character-
istic free energy 𝑓 ∗ equates to 1.0 after non-dimensionalization. Consequently, with the
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3. Thermal noise for triggering the phase separation

property of the Rayleigh distribution, the root mean square droplet velocity in 2D reads

𝑣𝑟𝑚𝑠 =
√︁
⟨𝒗2⟩ =

√︂
2⟨𝐸⟩
𝑚

=

√︄
4M0 𝝃

2
𝑖

𝑟0
=
√

2𝐷∗,

from which the Brownian coefficient 𝐷∗ follows

𝐷∗ =
2M0 𝝃

2
𝑖

𝑟0
. (3.14)

To testify the Einstein’s relation, I perform 2D Brownian motion simulations. A droplet
with an initial radius of 𝑟0 = 20 is placed amid the domain with a size of 12𝑟0 × 12𝑟0 which
can eliminate the influence of boundary on the droplet motion [45]. The surface tension
parameter is set to be 𝛾 = 1.0 With an increase in the noise amplitude 𝝃 𝑖 , the Brownian
coefficient 𝐷∗ shows a parabolic relation with 𝝃 𝑖 , as guided by the red dashed line in
Fig. 3.6(I)(a). According to FDT, the linear dependency of 𝐷∗ on 𝑘𝐵𝑇 is confirmed. Here,
𝐷∗ is fitted with the Rayleigh distribution based on the droplet velocity distributions for
106 time steps, as sketched in Fig. 3.6(b). For stronger noise (or higher temperatures),
the probability distribution function (PDF) of velocity becomes broad and shifts to the
high-velocity side, indicating enhanced droplet motion by the composition noise.

Next, I alter the droplet radius 𝑟0 for a constant noise amplitude 𝝃 𝑖 = 0.001. The inverse
relationship of 𝐷∗ ∼ 1/𝑟0 is clearly demonstrated in the mid row of Fig. 3.6(a), as guided
by the red dashed line. By increasing the droplet radius, I observe that the peak of the
velocity PDF moves to the low-velocity in Fig. 3.6(b). It implies that the Brownian droplet
approaching its equilibrium is influenced by the size effect. Moreover, I observe another
linear relationship between 𝐷∗ and the mobilityM which is shown in the lower row of
Fig. 3.6(a). Compared to the 2D droplet trajectories in Fig. 3.6(c), the larger molecular
mobility not only enhances the macroscopic diffusion of the whole Brownian droplet but
also modifies the motion behavior which is discussed later in Sec. 3.5.2.1.

3.5.1.2. Fluctuation-dissipation theorem

In the standard CHNS model (Model H), two types of noises are implemented which give
rise to the Brownian motion, namely composition noise 𝝃 𝑖 and random body force 𝒇 𝑖 .
Therefore, the momentum is written as∫

Ω

𝑑 (𝒖 𝑐)
𝑑𝑡

𝑑Ω =

∫
Ω

(
𝒖
𝑑𝑐

𝑑𝑡
+ 𝑐 𝑑𝒖

𝑑𝑡

)
𝑑Ω, (3.15)

𝑑𝑐

𝑑𝑡
= ∇ · (M∇𝜇 +

√
M 𝝃 𝑖). (3.16)

𝑑𝒖

𝑑𝑡
= −∇𝑃 − 𝑐∇𝜇 + (𝜂∇2𝒖 + √

𝜂 𝒇 𝑖). (3.17)

Here, two noises are dissipated by individual diffusion-type equations synchronously, one
in the mass conservation equation Eq. (3.16), another one for the momentum conservation
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equation Eq. (3.17). Previous studies [52, 53] show that the random body force gives rise
to the Stokes-Einstein-Sutherland relation (SES) with

𝐷∗
𝐻 =

𝑘𝐵𝑇

𝑎𝜋𝜂 𝑟0
= 𝑘𝐵𝑇𝜁 ,

where the constant 𝑎 is decided by the geometry of the motion and the so-called hydrody-
namic mobility 𝜁 = (𝑎𝜋𝜂 𝑟0)−1. And Eq. (3.14), as well as the simulation results, tell the
linear relationship between 𝐷∗ and the thermodynamic mobility𝑀 as

𝐷∗ =
4M0𝑘𝐵𝑇

𝑟0
= 𝑘𝐵𝑇𝑀.

Here, I categorize the Brownian motion into two subgroups, namely i) the composition
noise dominated BM for droplets at higher temperatures and large inter-molecular diffu-
sivity, and ii) the random body force dominated BM for the rigid body, each type has its
individual Brownian coefficient as

𝐷∗ =

{
𝑘𝐵𝑇 𝜁 ∝ 𝜂−1, for rigid body;
𝑘𝐵𝑇𝑀 ∝ M0, for droplets.

(3.18)

Moreover, both Eqs. (3.16) and (3.17) are diffusion-type equations, with the composition 𝑐
diffused by the termM∇2𝜇 and the velocity 𝒖 by 𝜂∇2𝒖, which results in the exponential
decay of 𝑐 and 𝒖 with time toward the equilibrium state. But the results show entirely
opposite scaling laws. I argue that this phenomenon can be understood as follows. For a
0.1𝜇m droplet with the diffusivity by the order of 10−9m2/s, its characteristic time scale
𝑡 = 𝑥∗2/𝐷 = 10−5s is 1000 times larger than the characteristic time scale of Brownian
motion and hydrodynamics 𝑡 = 10−8s. Therefore, the huge composition fluctuation can
never be dissipated to equilibrium by the slow diffusion in the hydrodynamic time scale.
In this way, Eq. (3.16) is underdamped, and results in the droplet Brownian coefficient
𝐷∗ ∼ M0 which is not fulfilled with the FDT. This conclusion is in line with the dispersion
relation, Eq. (3.9). The fluctuation energy dissipation rate is not only proportional to 𝑘𝐵𝑇 ,
but also scaled by the prefactor, not coincidentally, M0. For the droplet with larger length
scales or the rigid body, the composition noise is so weak to be smoothed by diffusion,
and the stochastic droplet motion is mainly attributed to the random body force F which
recovers the SES relation.

3.5.2. Non-equilibrium

3.5.2.1. Marangoni effect

In the deduction of the Brownian coefficient by Einstein, the particle is assumed to be a
perfectly rigid body, and the energy is dissipated via the viscous stress by the surrounding
matrix. In this derivation, the surface tension of the particle is overlooked, because its
characteristic time scale is several orders shorter than the BM. Highly contrasted to this,
for the Brownian droplet with finite surface tension, the time scale of the surface tension
becomes comparable with BM. The composition noise engenders the interfacial tension
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Figure 3.7.: 2D Brownianmotion of a droplet for increasing hydrodynamics (Weber number
We) with an initial radius 𝑟0 = 20 with the composition noise amplitude
𝝃 𝑖 = 0.001: (a) Mean squared displacement with time. (b) Upper: the probability
density function (PDF) of the velocity; lower: Brownian coefficient 𝐷∗ with We.
(c) Velocity field at 𝑡 = 200. The black circles mark the particle-matrix interface
with 𝜙 = 0.5. The color bar (log) scales the velocity magnitude. (d) Power
spectral density (PSD) of the particle displacement with the wavenumber 𝑞
shows Brownian relationship 𝑃𝑆𝐷 ∝ 𝑞−2.

gradient which induces the so-called Marangoni flow and propels the droplet Brownian
motion. In simulations, I alter the Weber number We to control the surface tension force
in the Navier-Stokes equation. As shown in the velocity-field snapshots in Fig. 3.7(c),
a reduction in We intensifies the surface tension force which enhances the Marangoni
flow around droplets. Due to the low viscosity, the droplet motion cannot be efficiently
damped by the viscous stress 𝜂∇2𝒖. Consequently, the stronger Marangoni flow results in
the droplet motion transition from Brownian motion (large We) to ballistic motion (small
We). This transition can be seen in the mean squared displacement (MSD) of Fig. 3.7(a),
where the tendency of ⟨Δ𝑿2⟩ ∼ 𝑡2 is guided by the dashed lines. Meanwhile, the Weber
number has a minor influence on the droplet velocity distribution |𝒗 |. For instance, the
Brownian coefficient 𝐷∗ is increased by 5% when We number decreases from 100 to 0.01;
but the droplet MSD presents a completely different scaling law with time. Moreover, I
compute the power spectral density of the droplet displacement (PSD) and observe PSD
following the −2 scaling law with the wavenumber 𝑞 in Fig. 3.7(d). It indicates that both
ballistic and Brownian motions of the droplet motion are emanated from the same origin -
the compositional Gaussian white noise. After testing the droplet motion behaviours for
various P𝑒 and We, I categorize the droplet motion into three scenarios distinguished by
the droplet trajectory and MSD. (I) Standard Brownian motion with sub-diffusive drift: the
mean squared displacement ⟨Δ𝑿2⟩ < 2𝐷∗𝑡 . The weak composition fluctuation is dissipated
via inter-molecular diffusion, while the convection can be neglected. This scenario with
large P𝑒clect number and large Weber number corresponds to the dark-blue region in the
motion phase diagram of Fig. 3.8(a). Here, I highlight the difference between rigid particles
and soft Brownian droplets with the CHNS model. For the composition noise-dominated
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Figure 3.8.: The phase diagram of Brownian motion with various Weber number We and
Péclet number P𝑒 . The initial radius is 𝑟0 = 20. CHNS model with the noise
amplitude 𝝃 𝑖 = 0.01 is studied. (a) The motion phase diagram. The dot-dashed
line and the dashed line separate the ballistic motion region (orange) from the
standard Brownian motion region (blue) and the geometric Brownian motion
region (light blue). The light grey region in between the dashed and dot-dashed
lines show the transition area. Some exemplary motion trajectories are shown
around: pentagon-standard Brownian motion; square-geometrical Brownian
motion; triangle-ballistic motion; circle-transition region. (b) The probability
density function (PDF) of the droplet displacement. Simulation: colored dots;
normal distribution fitting: solid lines. Upper: x direction; lower: y direction.
(c) The MSD ⟨Δ𝑿2⟩ and fourth cumulant ⟨Δ𝑿4⟩ of the example simulations
with time.

scenario, the droplet drift displacement is

Δ𝑿 =

∫
Ω
𝑑𝑐 𝒙 𝑑Ω =

∫
Ω
∇ · (M∇𝜇 𝑑𝑡 +

√
M 𝝃 𝑖) 𝒙 𝑑Ω

=

∫
Γ
(M∇𝜇 𝑑𝑡 +

√
M 𝝃 𝑖) · 𝒏 𝒙 𝑑Γ

=

{
0, for rigid body;

≠ 0, for droplets,

where the droplet centroid position 𝑿 is static for the rigid body, due to the no-flux
boundary condition ∇𝜇 · 𝒏 and zero composition noise 𝝃 𝑖 = 0 applied on the particle
boundary Γ. But for droplets, there is a material flux across the interface which results in
non-zero displacement, if and only if the composition fluctuation cannot fully dissipate
at each time sequence. Because of the composition noise mean ⟨𝝃 𝑖⟩ = 0, the droplet will
always go back to its origin with ⟨Δ𝑿⟩ = 0. As demonstrated by the blue pentagons in the
MSD Fig. 3.8(b), the simulation presents the MSD with the sub-diffusion tendency lower
than the ⟨Δ𝑿2⟩ ∼ 𝑡 guided by the solid line. Meanwhile, the fourth cumulant ⟨Δ𝑿4⟩ lies
at around 10−32 with no time dependency which implies that the droplet displacement
follows the standard Gaussian distribution.
(II) Geometric Brownian motion with diffusive drift: the convection comes into play.

This scenario with small P𝑒 and large We number corresponds to the light-blue regions
in the motion phase diagram of Fig. 3.8. Only partially dissipated by the inter-molecular

51



3. Thermal noise for triggering the phase separation

diffusion, the noise increases with the reduction in P𝑒 and emerges the Marangoni flow
propelling the droplet drift motion which gets gradually damped by the viscous stress.
The droplet trajectory for both models shows the self-similar fractal structure and finally
reaches the equilibrium with MSD ⟨Δ𝑿2⟩ ∼ 2𝐷∗𝑡 . The fourth cumulant ⟨Δ𝑿4⟩ gradually
increases with time 𝑡 . At long time period, wefind ⟨Δ𝑿4⟩ ∼ 𝑡2 similar to the observation
in Ref. [54] as

⟨Δ𝑿4⟩ ≈ 12Var(𝐷∗) 𝑡2,

where Var(𝐷∗) is the variance of 𝐷∗. The displacement distribution in the simulations still
follows the Gaussian but without an exponential tail; see Fig. 3.8(b). It indicates that the
non-constant Brownian coefficient 𝐷∗ changing with time is produced by a mechanism
differing from the diffusing-diffusivity models [55]. Understanding this phenomenon
reveals that the deformable droplet deviates from its original perfect spherical shape.
Hence, the perturbed surface energy results in the random droplet surface area 𝑆 in Eq. 3.14
and thereby denotes the non-zero variance of the Brownian coefficient. Meanwhile, since
every molecule inside the droplet is perturbed by random noises at every time point,
the Brownian coefficient of the whole droplet becomes a time sequence that follows the
Gaussian distribution with Var(𝐷∗) > 0, according to the central limit theorem. On the
contrary, every molecule of the rigid body shares the same noise each time, which results
in the zero variance of 𝐷∗.
(III) Underdamped ballistic motion: with a further reduction in We, the composition

fluctuation induced Marangoni flow dominates. Once accelerated, the droplet can be
slowed down neither by the diffusion nor by the viscous stress, resulting in the ballistic
motion which deviates from the equilibrium as

⟨Δ𝑿⟩ = 𝒗 𝑡 ∼
√︁
M0 𝝃 𝑖 𝑡,

⟨Δ𝑿2⟩ = ⟨𝒗 𝑡, 𝒗′𝑡 ′⟩ ∼ M0 𝝃
2
𝑖 𝑡

2,

⟨Δ𝑿4⟩ ∼ Var(M0 𝝃
2
𝑖 ) 𝑡4 = Var(𝐷∗) 𝑡4.

I observe that the short-time MSD (𝑡 < 0.1) shows the diffusion or sub-diffusion relation
with time. The droplet motion range reduces with the increase in P𝑒 , as illustrated by
the y-intercept of MSD in Fig. 3.8(c). The later long-time behavior is vastly influenced
by the composition noise induced Marangoni flow which is noticed by the steepening
slope of MSD with a decrease in We. I notice that the dissipation mechanism for this
Marangoni flow is lacking in the conventional stochastic models. Based on the FDT,
only the composition perturbation

√
M 𝝃 𝑖 emanated from the free energy fluctuation

is dissipated by the diffusion M∇2𝜇, and the random body force √𝜂 F arising from the
kinetic energy gets smoothed out by the viscous term 𝜂∇2u. Both noises are assumed as
independent Gaussian with no covariance. However, in fact, their interaction has been
observed and discussed in the capillary wave theory simulation and the dispersion relation
analysis of Sec. 3.3.3. In fact, two types of noises are intertwined with each other by the
surface stress tensor which is expressed mathematically by the stochastic surface tension
force term −𝑐∇𝜇 in the Navier-Stokes equation and is not considered in the FDT. More
investigations are needed to elucidate this problem in future work.
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3.6. Conclusion

In conclusion, I have postulated and validated two types of stochastic phase-field models
coupling with hydrodynamics to simulate the Brownian motion of particles and droplets.
Propelled by the composition fluctuations with weak Marangoni effect, the particle/droplet
proceeds the Brownian motion, depending on the amplitude of the random noise and the
particle size, and the microscopic kinetic parameter. Moreover, by altering the parameters
in the Navier-Stokes equations, the stochastic phase-field models go beyond the limita-
tion of the Langevin equation only for the rigid body, and can also be utilized for soft
deformable droplets. After testifying the results with the Einstein relationship within
the equilibrium condition, I extend the model further into two off-equilibrium scenarios.
i) When the composition noise-induced fluid flow becomes pronounced, the transition
from Brownian motion to ballistic motion is observed which indicates the noise-induced
fluid flow underdamped by the viscous stress. ii) The double particle simulation shows a
stochastic-induced deterministic droplet motion, which plays a vital role in the coalescence
of the multi-particle system and is hardly considered in the Langevin dynamics. Neverthe-
less, in the previous Cahn-Hilliard type phase-field models [56, 57], the stochastic noise
terms are totally overwhelmed by the pronounced diffusion and Ostwald ripening, and
simply applied as a trigger for the phase separation. Here, I reevaluate the importance of
the noise term and focus on the stochastic droplet motions during the coalescence process,
while the subordinate Ostwald ripening effect can be neglected. Thus, the missing linkage
between the coarsening droplet and the randomly drifting rigid particle is connected. The
model is also fully implemented in 3D. Weanticipate performing large-scale 3-dimensional
multi-droplet simulations in forthcoming research to understand the underlying mech-
anisms of the micro-droplet motions, especially for the gelation process of soft matter
materials.
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4. Multi-component phase separation
induced multi-layer emulsion1

4.1. System definition

In this chapter, I apply Cahn-Hilliard model to simulate the high-order multiple emulsion
which is engendered by the liquid-liquid phase separation for the diethyl phthalate (DEP)-
water-ethanol ternary system. This chapter is based on Ref. [28].

Spontaneous formation of ’onion-like’ multiple emulsions [58, 59, 60] via liquid-liquid
phase separation in ternary polymer solutions [15, 61, 62, 63] is widely utilised to design
complex droplets consisting of sequentially encapsulated oil and water layers. The compo-
sitions of DEP (or oil), water, and ethanol are space (x) and time (𝑡 ) dependent, which are
denominated as 𝑐1(x, 𝑡), 𝑐2(x, 𝑡) and 𝑐3(x, 𝑡), respectively. In the following, I will utilise
the composition vector c = (𝑐1, 𝑐2, 𝑐3) to describe the emulsion state. Concerning the con-
straint

∑3
𝑖=1 𝑐𝑖 = 1, there are two independent compositions: 𝑐1 and 𝑐2. The space and time

dependent composition of polymer A, polymer B, and solvent is defined as 𝑐1(x, 𝑡), 𝑐2(x, 𝑡),
and 𝑐3(x, 𝑡), respectively, and subjected to the constraint of the incompressible condition∑3
𝑖=1 𝑐𝑖 = 1.
To reproduce the phase diagram of DEP-water-ethanol, following parameters are

adopted for its free energy density. Concerning the repulsive interaction of DEP with
water, I assume a positive 𝜒12 = 3.0. On the contrary, because of the good miscibility of
oil and water in ethanol, the interaction parameters 𝜒13, 𝜒23, and 𝜒123 can be qualitatively
described as 0.5, 0.5, and -3.0, respectively. Since the molar mass of DEP is 10 times larger
than water, 𝑁 is chosen to be 5. Taking the given parameters, the free energy density of the
oil-water-ethanol system is demonstrated by the heat map in Fig. 4.1(I). The binodal and
spinodal lines are indicated by red solid line and dashed line, respectively. The obtained
phase diagram is in good accordance with the one reconstructed from the experiments
in Fig. 4.1(II)[15]. The surface tension values for DEP and ethanol utilised in eq. (2.4) are
normalized by the surface tension of pure water (𝜎0

2 = 7.28× 10−2N/m), namely 𝜎1 = 0.5𝜎0
2

and 𝜎3 = 0.3𝜎0
2 . Moreover, as reported in previous researches, the surfactant into water

is a crucial ingredient for the multiple emulsion [64, 65, 66]. Owing to its low content
(≃ 0.1 𝑤𝑡 .%) and negligible influence on the phase diagram, as well as for the sake of
simplicity, the surfactant is not treated as a single component in our model. The effect
of the surfactant is considered by altering the surface tension of water 𝜎2, depending on
which type of the surfactant is adopted.

1Copyright notice: This chapter is reprinted (adapted) with permission from Zhang H., Wu Y., Wang F.,
Britta N. Phase-field modeling of multiple emulsions via spinodal decomposition[J]. Langmuir, 2021,
37(17): 5275-5281. Copyright 2021 American Chemical Society.
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Figure 4.1.: (I) Middle: the phase diagram of the DEP-water-ethanol system. Themagnitude
of the free energy density is described by the heat map (red: high; blue: low).
The binodal and spinodal compositions are depicted by the red solid line and
dashed line, respectively. The white-black dots indicate the initial compositions
for the emulsion droplets considered in the simulation with the initial water
content 𝑐0

2 = 0.029, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50. Surrounding: snapshots
(1)-(8) depict the simulated morphologies of droplets at the simulation time
𝑡 = 2500. The corresponding initial setups are sequentially numbered in the
phase diagram. The scalar bar denotes 20. The color bar beneath illustrates
the oil (DEP) composition for all the simulation snapshots in this work. (II)
The experiment morphologies of the emulsions with the reconstructed phase
diagram based on the experimental results. Reproduced with permission [15].
Copyright 2014, WILEY-VCH Verlag.
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4.2. Simulation setup

In this work, the finite difference method and the explicit Euler scheme are implemented to
solve the Cahn-Hilliard equation with the equidistant Cartesian mesh, which is subject to
the Neumann boundary conditions. All the physical parameters are non-dimensionalized
by the characteristic length 𝑥∗ = 2 × 10−6m, surface tension of pure water (𝜎0

2 = 7.28 ×
10−2N/m), and self-diffusivity of pure water (𝐷𝑤 = 2.29 × 10−9m2/s).

4.3. Model validation

In this section, I present the validation of our simulation model by changing the Flory
parameter 𝜒 to recover the feasible phase diagram which is in line with the experiments.
The numerical stability is also examined by changing the resolution Δ𝑥 and the theoretical
surface tension is recovered with our model.

4.3.1. Resolution
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Figure 4.2.: (I) The emulsion droplet with an initial composition c0 =

(0.101453, 0.5, 0.398547) and radius 𝑟 0 = 16. (II) Mesh resolution study.
(a) The equilibrium composition of DEP and water inside the droplet as a
function of mesh size. (b) The equilibrium composition of DEP and water
outside the droplet as a function of mesh size. The color bar scales the oil
(DEP) concentrations.

Firstly, the mesh fineness validation is preformed to testify the numerical calculation
convergence. Here, I simulate a droplet amid the matrix with various resolutions by
reducing the mesh fineness Δ𝑥 (= Δ𝑦) from 2.0 to 0.25. As demonstrated in Fig. 4.2(I), the
droplet with an initial composition c0 = (0.101453, 0.5, 0.398547) and radius 𝑟 0 = 16 is
placed in the center of a 200 × 200 domain. The composition in the matrix is initially set
as c0 = (0.01, 0.95, 0.04). The convergence of the model is characterized by measuring the
equilibrium composition of DEP and water inside (outside) the droplet with increasing Δ𝑥 ,
as shown in Fig. 4.2(II). With an increase in the mesh fineness, the equilibrium compositions
converge gradually. Thence, Δ𝑥 = 0.5 is a an acceptable compromise to trade-off between
the simulation precision and computational efforts.
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4.3.2. Interfacial tension of DEP and water

Secondly, the interfacial tension between DEP and water is numerically calculated with
the total excess free energy at the interface, which reads

𝜎 =

∫ ∞

0

[
𝑓 (𝑐1, 𝑐2, 𝑐3) − 𝑓𝑒𝑞 +

3∑︁
𝑖=1

𝜎𝑖𝜖 (∇𝑐𝑖)2
]
𝑑x. (4.1)

Here, 𝑓𝑒𝑞 denotes the equilibrium free energy density and x is the normal direction of the
interface. According to the Flory-Huggins theory [32], the following free energy density
formulation is applied

𝑓 =
𝜎0

2
𝜖

[
𝑇

(
𝑐1 ln 𝑐1

𝑁
+ 𝑐2 ln 𝑐2 + 𝑐3 ln 𝑐3

)
+

∑︁
𝑖, 𝑗=1,2,3
𝑖< 𝑗

𝜒𝑖 𝑗𝑐𝑖𝑐 𝑗 + 𝜒123𝑐1𝑐2𝑐3

]
. (4.2)

Here, 𝑇 is the temperature and 𝑁 indicates the polymerization degree of DEP. The in-
teraction between component 𝑖 and 𝑗 is characterized by 𝜒𝑖 𝑗 . The last term in eq. (4.2)
describes the interaction between all three components. For simplicity, I perform 1D simu-
lation (domain size: 200 × 1) with an initial composition c0 = (0.97300, 0.02679, 0.00021)
(c0 = (0.0000149, 0.999624, 0.0003611)) in the DEP (water)-riched phase. In this case, x
manifests the x-direction. From the simulated composition distributions along the inter-
face, the interfacial tension between DEP and water is computed by eq. (4.1) as 0.526𝜎0
(38.34N/m), which is in well accordance with the experiments.

4.3.3. Selection of Flory-Huggins parameters

Thirdly, the criterion of the Flory-Huggins parameter between DEP and water 𝜒12 is the
most important factor. A) The Flory parameter 𝜒12 scales the interfacial tension of the
DEP-water interface. At the given temperature and composition, the interfacial tension
can be determined by experiments. When the concentration of ethanol is so small that it
can be neglected, the interfacial tension of the DEP-water interface is proportional to √𝜒12.
B) The driving force of the phase separation can be written as 𝜕𝑐𝑐 𝑓 which is proportional
to 𝜒12. More suffice to say, 𝜒12 can also influence the equilibrium compositions. In a word,
the Flory-Huggins parameter 𝜒12 is the most crucial parameter that controls both the
phase separation and interfacial tension of the system and cannot be changed arbitrarily.
Contrarily, the selection of 𝜒13, 𝜒23, and 𝜒123 are not so constraint as 𝜒12. The only

criterion is the phase diagram, for which the miscible gap appears when these values are
large enough. As presented in Fig. 4.3, with increasing 𝜒13 and 𝜒23 from −2 to 2 (T→M→B),
the phase separation between DEP and ethanol begins to appear. Compared (T) with (M),
I could conclude that the minus 𝜒13 and 𝜒23 has little impact on the phase diagram, which
also proofs the good robustness of the system. Meanwhile, with the growth of 𝜒123 from
−6 to 3 (L→M→R), the repulsive interaction between three species increases, which leads
to the extension of phase separation in the middle of the phase diagram into the ethanol
riched region.
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4.3. Model validation

Figure 4.3.: Phase diagrams of DEP-water-ethanol system with different Flory-Huggins
parameters. Solid dark red lines: binodal; dashed red lines: spinodal. (M) the
phase diagram in the main text with 𝜒12 = 3.0, 𝜒13 = 𝜒23 = 0.5, 𝜒123 = −3.0;
(T) top: 𝜒13 = 𝜒23 = −2.0; (B) bottom: 𝜒13 = 𝜒23 = 2.0; (L) left: 𝜒123 = −6.0; (R)
right: 𝜒123 = 3.0. Color bar labels the magnitude of the free energy density 𝑓 .
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4. Multi-component phase separation induced multi-layer emulsion

4.3.4. Validation of the phase diagram

Figure 4.4.: (I) The phase diagram of the DEP-water-ethanol system. The binodal and spin-
odal compositions are plotted with the solid line and dashed line, respectively.
The white-red square with error bars depict the simulated spinodal line. The
triangles 𝑎, 𝑏, 𝑐 , 𝑑 label four initial compositions to valid the spinodal decompo-
sition with simulation snapshots shown in (II). Two pairs of white-black dots
linked with tie lines point the binodal compositions. (III) depicts the validation
of the binodal compositions. The color bar scales the oil (DEP) concentrations.

Finally, I verify the capability of the multi-component phase-field method to model the
emulsion behaviours. As shown in Fig. 4.4(I), I plot the binodal and spinodal lines in the
DEP-water-ethanol phase diagram with solid and dashed lines, respectively. The spinodal
region is highlighted with rose color. The white-red square denotes the simulated spinodal
compositions. The error bars are measured with the binary search algorithm. I choose
four typical initial compositions 𝑎, 𝑏, 𝑐 , and 𝑑 from the phase diagram and disturb the
whole domain with the Gaussian white noise (variance 𝛿2 = 0.01). It is noteworthy that
𝑎 and 𝑑 are out of the spinodal region, while 𝑏 and 𝑐 are within it. As can be seen from
Fig. 4.4(II), the spinodal decomposition occurs in the initial compositions 𝑏 and 𝑐 , while no
obvious phase separation happens for the initial compositions 𝑎 and 𝑑 . This result is in
good consistent with the calculated spinodal line in the phase diagram.

The blue colored area highlights the binodal region of the system. The tie lines (i) and
(ii) connect two pairs of binodal compositions (the white-black dots) which correspond to
two pairs of equilibrium compositions. The left white-black dots mark the compositions of
the oil-rich droplet and the right dots label the contents of the water-rich surrounding. To
valid the binodal compositions, I fill the domain with a oil-rich (red) droplet surrounded
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by oil-poor environment (blue), by which the initial compositions are selected from the tie
lines (i) and (ii) in Fig. 4.4(I). After a long time simulation (t=60000), the compositions are
stable and stay in well accordance with the calculated binodal compositions in the phase
diagram.

4.4. Results and discussion

In this section, I apply the CH model to investigate the morphological evolution of the
multiple emulsion propelled by liquid-liquid phase separation. The influences of initial
emulsion compositions, surface tension, and emulsion droplet size upon the number of
the multi-layer are focused on.

4.4.1. Emulsion composition

In first part, 8 homogeneous emulsion droplets with an initial radius 𝑟 0 = 40 are sur-
rounded by the identical water over-saturated environment with the composition c =

(0.01, 0.95, 0.04). The initial droplet compositions c = (𝑐0
1, 𝑐

0
2, 𝑐

0
3) are picked from the

binodal line of the system with water content rising from 0.029 to 0.50, as sequentially
numbered by the white-black dots (1) − (8) on the phase diagram in Fig. 4.1(I). Due to the
surfactant, the surface tension of water is significantly reduced and can be represented
by setting 𝜎2 = 0.1𝜎0

2 [15]. The simulation snapshots (1) − (8) aside demonstrate the
morphologies of the corresponding emulsions at 𝑡 = 2500.

It is noteworthy that the multiplicity of the droplets is highly correlated with the initial
composition which shows an excellent accordance with the experimental observations in
Fig. 4.1(II). From the perspective of thermodynamics, this phenomenon can be explained
with the help of the phase diagram. For composition (1), the emulsion builds no extra layer.
Since this composition stays far away from the spinodal region, the phase separation is
impossible to be propelled by the water diffusing from the outside. Hence, the droplet
quickly equilibrates itself by releasing water into the surrounding without entering the
spinodal region. Contrarily, by adding the water content from composition (2) to (7), the
simulated oil-water interface begins to add up from 2 to 5 layers. This tendency is also
confirmed in the experiment results, as demonstrated in Fig. 4.1(II). The reason for the
distinct morphological evolution can be elucidated as follows. With the additional water
content in the initial emulsion, the binodal compositions approach the spinodal line, by
which the stable region of the droplet shrinks (see Fig. 4.1(I)). Hence, as a tiny amount of
excessive water diffuses gradually inwards the interior of the droplet, the local composition
inside the droplet enters the spinodal region. Once the phase separation is triggered, the
excessive thermodynamic energy quickly transfers into the surface energy of the emulsion
and thus the multiple layers are produced.
Another observation is that from composition (1) to (8), the thickness of the DEP-rich

layer (red colored areas in the snapshots of Fig. 4.1(I)) decreases significantly with the
reduction of the initial composition 𝑐0

1 in the mixture. According to the lever rule, when
the initial composition 𝑐0

1 of the droplet decreases, the volume fraction (𝑉𝑓 ) of the oil-rich
layers also decreases; the volume fraction of the water-rich layers increases. Consequently,
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4. Multi-component phase separation induced multi-layer emulsion

the thickness of the DEP-rich layers is positively correlated with its𝑉𝑓 and decreases with
the drop of the initial composition 𝑐0

1 inside the emulsion.
Under extreme circumstance, the volume fraction of the oil-rich layers is so small that

a morphological instability is observed. For the composition (8), the thin DEP-rich layer
breaks up into tiny droplets. In this scenario, the surface energy minimization dominates
over the spinodal decomposition and the oil layer becomes unstable breaking up into
droplets to minimize the surface energy. This observation implies the great importance
of the surface tension. During the evolution of the emulsion, its excess thermodynamic
energy for the phase separation declines, while the total surface energy surges. The
formation of the multi-layers is, then, the consequence of these two vying energies. Hence,
for a better understanding of the physical mechanisms for the multiple emulsion, the
interplay of both phase separation and surface tension should be heedfully investigated.

4.4.2. Surface tension

In this part, one droplet with composition c = (0.1909, 0.40, 0.4091) (composition (7) in
Fig. 4.1(I)) and an initial radius 𝑟 0 = 40 is set in the homogeneous surrounding with
c = (0.01, 0.95, 0.04), as shown by the snapshot (I) in Fig. 4.5(I)(a). To peer the effect of the
surface tension on the formation of multi-layer, I alter 𝜎2 to analyse the transient states
by considering the evolving competition between phase separation and surface energy
minimization.

The kinetic pathways for 𝜎2/𝜎0
2 = 10, 5.0, 1.0 are plotted in the ternary phase diagram, as

illustrated in Fig. 4.5(I)(a), (b), and (c), respectively. Here, three representative compositions
inside the droplet are traced, namely, the compositions with a maximal (red line) and
minimal value (blue line) for 𝑐1, and the composition at the droplet center (gold line).
All simulations start with the identical setup labelled as 𝐼 , except different values of 𝜎2.
The green arrows with the letter 𝑀 point out a crucial mid-point, and 𝐸 denotes the
terminal of the simulation. The simulation snapshots at these three points are pictured
beneath the corresponding kinetic trajectories. At the beginning, the red and blue lines
separate from each other which indicates the start of the spinodal decomposition. This
process is achieved via the penetration of the over-saturated water into the droplet. As
the location with maximal 𝑐1 (red line) moves leftwards on the phase diagram and forms
the oil-rich/water-poor layer, the position with minimal 𝑐1 (blue line) shifts rightwards for
the oil-poor/water-rich region. Therefore, the oil-water interface is being established in
between.

Due to the relatively large surface tension of water by setting 𝜎2/𝜎0
2 = 10 in Fig. 4.5(I)(a),

the demanding energy for one stable oil-water interface cannot be supplied by the thermo-
dynamic energy of the system. Thus, after an abrupt turnover at point𝑀 in the trajectory
diagram, the oil content difference between the red and blue lines starts to decline which
implies that the phase separation is suppressed by the effect of the surface area minimiza-
tion. Under this circumstance, the dominant surface tension pushes the emulsion to form a
small oil-rich sphere which possesses the lowest surface area of all shapes. Consequently,
the indistinct internal oil-water interface vanishes from the snapshots𝑀 to 𝐸.
With a smaller 𝜎2/𝜎0

2 = 5.0 (Fig. 4.5(I)(b)), the proceeding spinodal decomposition
continuously makes its contribution to build the inner oil-water interface. As shown by
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Figure 4.5.: Themorphological evolution of the emulsionwith respect to the surface tension
𝜎2. (I) Trajectory diagrams with the kinetic pathways of 3 specific compositions.
The red/blue lines trace the compositions with the max/min oil content (𝑐1)
amidst the droplets, while the gold line guides the evolving composition at the
droplet center. (a) 𝜎2/𝜎0

2 = 10.0, (b) 𝜎2/𝜎0
2 = 5.0, and (c) 𝜎2/𝜎0

2 = 1.0. All initial
setups are consistent with the composition (7) in Fig. 4.1(I). The snapshots
beneath the trajectory diagrams picturize the oil distributions at three crucial
moments: 𝐼 (initial),𝑀 (mid), and 𝐸 (end), which are labeled in the respective
trajectory diagrams as well. (II) Emulsion morphologies with decreasing 𝜎2 at
an intermediate state (𝑡 = 1250). From (a) to (f), 𝜎2/𝜎0

2 declines from 10 to 0.1.
The scale bar denotes 20.
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4. Multi-component phase separation induced multi-layer emulsion

the trajectory diagram in Fig. 4.5(I)(b) and the corresponding snapshots 𝐼 ,𝑀 , and 𝐸, the
DEP content gap between maximal and minimal 𝑐1 grows ceaselessly and the blurred
second interface becomesmore andmore stable and clear. This process is achieved by phase
separation overcoming the surface area minimization. In the end, one double emulsion is
engendered.
For an even lower 𝜎2/𝜎0

2 = 1.0 (Fig. 4.5(I)(c)), the morphological evolution is vastly
controlled by the phase separation, rather than the surface energy minimization. This is
strongly proofed by the formation of one tiny oil-rich droplet in the emulsion center, as
pictured in the snapshot 𝐸. Despite of the relatively large curvature of the tiny droplet, it
survives with time, which leads to the formation of a triple oil-water layers emulsion.
Next, I further reduce 𝜎2 till 0.1𝜎0

2 and the corresponding emulsion morphologies are
illustrated in Fig. 4.5(II). More extra layers (up to 5 with 𝜎2/𝜎0

2 = 0.1 in (f)) are generated
and the size of the multi-layer emulsion also increases. This result suggests that the
subordinate roll of the surface tension is gradually overwhelmed by the phase separation
which decides the morphological evolution of the emulsions magnificently.

4.4.3. Size effect

Figure 4.6.: Morphology diagram with respect to the initial water content 𝑐0
2 and droplet

outermost radius 𝑟1. The diagram is divided into three areas: (L), (M), and (R).
Typical emulsion morphologies in each area are shown at the top of the figure:
(L) Emulsion encapsulating water droplets; (M) onion-like oil-water layers; (R)
breakup of oil-rich layers into satellites. The colored circles from red to gray
present the number of emulsion layers (from single to septuple), which is in
good agreement with the prediction of the dot dashed iso-multiplicity lines
fitted with the simulation results.

64



4.4. Results and discussion

As aforementioned, the multiplicity of the emulsion is also highly related to the initial
size of the droplet. In this part, I will study the relationship between the layer multiplicity
and the droplet size by altering the initial radius 𝑟 0 from 10 to 100 with a constant 𝜎2/𝜎0

2 =

1.0. To reveal the combined impact of size and composition (especially 𝑐2) on the final
morphology, a series of initial compositions on the binodal line of the phase diagram in
Fig. 4.1(I) with initial water content 𝑐0

2 adding from 0.10 to 0.50 are taken into consideration.
The resulting morphology diagram in Fig. 4.6 illustrates the layer multiplicity varying
with the droplet size and initial 𝑐0

2. Here, owing to the shrinkage of the droplet, the droplet
size is represented by the outermost radius 𝑟1 measured at the specific transient moment
with the maximal multiplicity of oil-water interfaces. The growing emulsion multiplicities
are distinguished by distinct circles with the rainbow order colors and separated into
iso-multiplicity zones by the sequence of dot-dashed curves which are mathematically
modelled based on the simulation results and will be introduced later. The Janus circles
depict the transition between two neighboring regions where the midmost oil-water
interface is so blurred that vanishes due to the surface energy minimization. Moreover,
the obtained morphology diagram is divided into three regions with respective simulation
snapshots: (L) emulsion confining water droplets (rose red area); (M) the continuous DEP-
rich multiple layers (golden region); (R) emergence of the tiny oil satellites (blue section).
Typical emulsion morphologies in the three regions, (M), (L), and (R) are demonstrated in
Fig. 4.7.

In the middle area (M), the emulsions of the droplet with compositions (3)-(7) increase
their multiplicities with the droplet size. The iso-multiplicity zones which are demarcated
by the dot-dashed lines show an excellent consistency with previous experiments [15].
For clarity, as depicted in the lower inset of Fig. 4.7(I)(b), I number the outermost oil-
water interface of the droplet as the 1st layer, with the increasing number indicating
its internal interfaces sequentially. Then, as exemplified in Fig. 4.7(I) with composition
(5), the radius of the 𝑖-th layer 𝑟𝑖 increases linearly with the initial size 𝑟 0 (see the upper
inset of Fig. 4.7(I)(b)). Consequently, for every layer in emulsion (5), its radius 𝑟𝑖 with
respect to the radius of its inner successor 𝑟𝑖+1 falls onto the identical linear scaling curve,
namely 𝑟𝑖+1 = 𝑎𝑟𝑖 +𝑏. Apparently, by applying recursion, the function for 𝑟𝑖 is expressed as
𝑟𝑖 = 𝑏 (1−𝑎𝑖)/(1−𝑎). Moreover, because the phase separation plays a vital role during the
whole process, the fitting parameters 𝑎 and 𝑏 can be both related with the magnitude of
the phase separation, which is qualitatively represented by 𝑐0

2. Thus, the radii of 𝑖th layer
for each setup are written as the function of the 𝑐0

2 and depicted as the dot-dashed lines in
Fig. 4.6. The detailed fitting method for the multiplicity is demonstrated as follows.

4.4.4. Fitting of emulsion multiplicities

In this part, I show the functional relationships for the radius of the initial water com-
position 𝑐0

2. Here, the rainbow ordered colors are selected to represent the sequence of
the layers, as the red color denotes the outermost 1st oil-water interface of the droplet
and yellow for the inner 2nd layer; green-3rd; cyan-4th; blue-5th; violet-6th. Firstly, as
demonstrated in the column (a) of Fig. 4.8(I)-(V), I measure the simulated radii of the 𝑖th
oil-water interface with varying initial compositions (3)-(7) marked in the Fig. 4.1 of the
main text, by which the initial water composition 𝑐0

2 ranging from 0.2 to 0.4. The radii for
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4. Multi-component phase separation induced multi-layer emulsion

Figure 4.7.: (I) (a) The emulsion morphology for composition (5) in Fig. 4.1 with the initial
radius varying from 10 to 100. The snapshots are taken at the time with
maximal multiplicity. (b) The linear scaling law for composition (5) between
the radius of 𝑖th and (𝑖 + 1)th layers as 𝑟𝑖+1 = 𝑎𝑟𝑖 + 𝑏. The inset: upper: the
dependence of 𝑟𝑖 on the initial radius 𝑟 0. Lower: the rainbow order colors from
red to violet represent the numbers of the oil-water interfaces adding from
1 to 7. (II) and (III) The morphology evolution of the emulsion for the initial
compositions (2) and (8) in Fig. 4.1, respectively. All scale bars denote 20.
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Figure 4.8.: (I)-(V) The linear scaling law for (a) the radius of the 𝑖th layer 𝑟𝑖 vs. the radius
of initial droplet 𝑟 0 and (b) the radius of (𝑖 + 1)th layer 𝑟𝑖+1 vs. the radius of its
inner successor layer (𝑖th) 𝑟𝑖 . (I)-(V) stand for compositions (3)-(7) with initial
water composition 𝑐0

2 ranging from 0.2 to 0.4 marked in the Fig. (1) of the main
text. The linear relationship between the radius of 𝑖th and (𝑖 + 1)th layers is
fitted as 𝑟𝑖+1 = 𝑎𝑟𝑖 + 𝑏. (VI) The functional relationship for the parameter 𝑎 vs.
initial water composition 𝑐0

2 and 𝑏 vs. 𝑐0
2.
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each layer show a good linear correlation with the initial droplet radius 𝑟 0 ranging from
10 to 100. Secondly, for each initial composition, the relationship between the radius of 𝑖th
layer 𝑟𝑖 vs. the radius of its outer layer 𝑟𝑖+1 are displayed in the column (b) of Fig. 4.8(I)-(V).
Clearly, for every initial composition, the relationships between the radius of 𝑖th and
(𝑖 + 1)th layers fall on to the respective linear scaling law which are fitted as 𝑟𝑖+1 = 𝑎𝑟𝑖 + 𝑏.
In this way, the radius of the 𝑖th layer can be recursively computed with the following
arithmetic sequence,

𝑟𝑖+1 = 𝑎𝑟𝑖 + 𝑏 = 𝑎2𝑟𝑖−1 + 𝑎𝑏 + 𝑏 = 𝑎3𝑟𝑖−2 + 𝑎2𝑏 + 𝑎𝑏 + 𝑏 · · · . (4.3)

By assuming the 0th layer has the zero radius. The radius of the 𝑖th layer is expressed as

𝑟𝑖 = 𝑏
1 − 𝑎𝑖
1 − 𝑎 . (4.4)

Since the parameters 𝑎 and 𝑏 vary with the initial composition, I fit 𝑎 and 𝑏 as the cubic
polynomial functions of 𝑐0

2 in Fig. 4.8(VI) with the fitting equations indicated in the
corresponding figures. For each initial setup, the emulsion droplet can form 𝑛 oil-water
interfaces, when its radius is larger than the 𝑟𝑛 fitted with Eq. (4.4). With the same fitting
method, the iso-multiplicity lines in Fig. (3) in the main text are also calculated.
At the regions of (L) and (R), fitting curves deviate largely from the simulation results.

The misfitting is attributed to the prevalent effect of the surface energy minimization.
In the left area (L) where 𝑐0

2 < 0.20, at the beginning of the evolution (see Fig. 4.7(II)
first column), indistinct multi-layers are produced by the phase separation. When the
oil-water interfaces are gradually being established, the surface energy of the system rises
and dominates the process vastly. For the sake of the surface energy minimization, the
thinner water-rich layers prefer to break up into droplets, rather than the thicker oil-rich
rings (see Fig. 4.7(II) second column). Moreover, due to the large curvature, as well as
the shrinkage of the whole emulsion, these tiny droplets may also contact and merge
with each other. Particularly in the third column of Fig. 4.7(II), several multi-chambered
droplets with distinct patterns are observed which can be widely used as biodegradable
polymer shells for the drug delivery. Similarly, the scenario of the right region (R) is
controlled by the same physical picture. Here, the component oil (DEP) forms thin layers
during the spinodal decomposition, which break up into micro satellites. As shown in
Fig. 4.7(III), more oil-rich satellites with radius 𝑟 < 10 are born by a bigger initial emulsion.
These transient morphologies are seldom reported and should be further confirmed by
experiments.

4.5. Conclusion

In summary, I present a multi-component Cahn-Hilliard model to simulate the formation
of the multi-layer polymeric emulsion via liquid-liquid phase separation. By tracing the
local composition inside the droplets during the emulsion, I elucidate the kinetics for the
establishment of the ’onion-like’ multi-layers. The simulation results suggest that the
surface energy minimization is a crucial mechanism that competes with the spinodal de-
composition. The joint effect of these two mechanisms decides the transient morphologies
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of the emulsion droplets. By altering the surface tension, size, and composition of the mix-
ture, distinct intermediate microstructures are observed, ranging from multi-chambered
droplets to micro satellite particles. Additionally, the morphology of the emulsion should
also show its higher complexity in 3D simulations, in which the curvature of the interfaces
can magnificently influence the intermediate microstructures of the droplet and shall be
investigated in the future. Moreover, another important issue remaining to be resolved is
the morphological stability of the multi-layers under the impact of fluid flow. A possible
exploitation in this direction might be coupling the Navier-Stokes equations with the
present model. It should be noticed that the present model only considers the diffusion
mechanism for the emulsion. The timescale of the emulsion from the present model
overall shows a fair agreement with the experiments [67] (see Fig. S5 in the supplementary
document of Ref. [28]), although there are minor discrepancies. The small discrepancies
of the timescale between simulations and experiments may be attributed to the fact that
fluid flow, e.g. Marangoni flow, may occur during the emulsion process in reality. The
hydrodynamic effect has been overlooked in the current model and will be discussed in a
forthcoming work. Additionally, the hydrodynamics also has an impact on the timescale of
the structure evolution, since the surface tensions may be altered by the Marangoni flow,
which will be discussed in the next Chapter. I believe that the present research involving
multiple emulsion formation based on kinetics analysis will shed new light on multi-phase
microfluidic manipulation technology for wide applications.
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5. Multi-component phase separation
producing Janus droplet with
hydrodynamics1

5.1. System definition and simulation setup

In this work, I apply the Cahn-Hilliard-Navier-Stokes model to simulate the formation
process of Janus droplets via phase separation. This chapter is based on Ref. [68].
Janus droplets have been experimentally observed in polymer solutions consisting of

polymer species A and B, and a solvent species (like water) with molecular weight much
less than A and B [60]. A Janus particle usually has two distinct faces which are immiscible
with each other as well as with the solvent-rich matrix. Each face of the Janus particle is
composed of distinct polymer species [24]. The space and time dependent composition of
polymer A, polymer B, and solvent is defined as 𝑐1(x, 𝑡), 𝑐2(x, 𝑡), and 𝑐3(x, 𝑡), respectively,
and subjected to the constraint of the incompressible condition

∑3
𝑖=1 𝑐𝑖 = 1. The Flory

parameters 𝜒𝑖 𝑗 and 𝜒𝑖 𝑗 𝑘 are supposed to be temperature dependent as [69, 70]

𝜒𝑖 𝑗 = 𝑎𝑖 𝑗 +
𝑏𝑖 𝑗

𝑇
, 𝑖 < 𝑗,

𝜒𝑖 𝑗 𝑘 = 𝑎𝑖 𝑗 𝑘 +
𝑏𝑖 𝑗 𝑘

𝑇
, 𝑖 < 𝑗 < 𝑘. (5.1)

The degree of polymerization 𝑁𝑖 , the temperature coefficients for the Flory parameters
𝑎𝑖 𝑗 , 𝑎𝑖 𝑗𝑘 , 𝑏𝑖 𝑗 , 𝑏𝑖 𝑗𝑘 are chosen to be consistent with the following experimental observations:
(i) When the temperature is greater than the critical temperature 𝑇𝑐 , i.e., 𝑇 > 𝑇𝑐 , the
polymer A and B are well miscible with each other and form a homogeneous droplet. The
homogeneous droplet consisting of polymer A and B is immiscible with the solvent matrix,
which is attributed to a relatively strong repulsive interaction between the solvent and the
two polymer species. (ii) As𝑇 < 𝑇𝑐 , the repulsive force between polymer A and B increases
with a reduction in temperature. The enhanced repulsive force at low temperature leads to
a miscibility gap involving polymer-A rich and polymer-B rich phases, which results in the
phase separation inside the homogeneous droplets formed above the critical temperature.
Such kind of features (i) and (ii) for the phase diagram can be found in the ternary system
of hexane-perfluorohexane-water [60] and many other ternary polymer solutions. The
parameters 𝑁𝑖 , 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑎𝑖 𝑗 𝑘 , 𝑏𝑖 𝑗 𝑘 for modeling the ternary phase diagram are tabulated in
Table 5.1.
1Copyright notice: This chapter is licensed under a Creative Commons Attribution-Non Commercial 4.0
International License (CC BY-NC 4.0): https://creativecommons.org/licenses/by-nc/4.0/deed.en
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5. Multi-component phase separation producing Janus droplet with hydrodynamics

Two typical phase diagrams at temperatures greater and less than 𝑇𝑐 are shown in
Fig. 5.1(I). The binodal and spinodal lines are depicted by the solid and dashed lines,
respectively, in the contour plot for the bulk free energy density.

Parameters Description Value
𝑁1, 𝑁2, 𝑁3 Degree of polymerization (5, 5, 1)

𝑎12, 𝑎13, 𝑎23, 𝑎123 First Flory parameter coefficient (−1.33, 0.0, 0.0, 5.0)
𝑏12, 𝑏13, 𝑏23, 𝑏123 Second Flory parameter coefficient (3.33, 4.2, 4.2, −8.0)

Table 5.1.: Free energy parameters of the ternary system for phase separations.

All the physical parameters are non-dimensionalized by the characteristic length 𝑥∗ =
2×10−10 m, reference surface tension𝜎∗ = 1.0×10−2 N/m, and diffusivity𝐷∗ = 1×10−9 m2/s.
The dimensionless quantities 𝑅𝑒 ,𝑊𝑒 , and 𝑃𝑒 applied in the model are calculated as

𝑅𝑒 =
𝜌∗𝑢∗𝑥∗

𝜂∗
, 𝑊 𝑒 =

𝜌∗𝑢∗2𝑥∗

𝜎∗
, 𝑃𝑒 =

𝑢∗𝑥∗

𝐷∗ . (5.2)

Since I am interested in phase separation coupled with fluid flow, the convection and diffu-
sion processes become comparable. In other words, the relaxation time for thermodynamic
process (𝑥∗)2/𝐷∗ is in the same magnitude with hydrodynamics 𝑥∗/𝑢∗, which gives rise
to the P𝑒clet number 𝑃𝑒 = 𝑢∗𝑥∗/𝐷∗ = 1.0. While 𝑅𝑒 and𝑊𝑒 vary respectively with the
magnitude of the hydrodynamic effect.
In our work, the finite difference method and the explicit Euler scheme are imple-

mented to solve the CHNS model with the equidistant Cartesian mesh. Periodic boundary
conditions are applied for the composition and the fluid velocity.

5.2. Results and discussion

5.2.1. The formation of Janus droplet

In the following discussions, I consider the scenario where the phase separation via
diffusion process dominates the Janus droplet formation and the weak convection can
be neglected as reported [15]. Initially, at the temperature 𝑇 = 1.05𝑇𝑐 , a homogeneous
solution of polymer A and B is dissolved in the abundant solvent (𝑐1 : 𝑐2 : 𝑐3 = 15 : 15 : 70).
The initial composition of the ternary polymer solution is marked by the triangle symbol
in Fig. 5.1(I). As shown in the phase diagram, this initial composition locates between the
black dashed lines, i.e., inside the spinodal region. A Gaussian white noise with amplitude
𝐴𝜉 = 0.1 for the diffusion flux of all components, as depicted by Eq. (2.18), is used to model
the composition fluctuation. Triggered by the composition fluctuation, phase separation
begins and polymer-rich droplets (light green) start to form and grow from the solvent-
rich matrix (dark purple), as illustrated in Fig. 5.1(II)(i). With time, these droplets coarsen
with each other dominating by the Ostwald ripening effect due to their radius difference.
Meanwhile, the coalescence of relatively large droplets is observed as highlighted by the
dashed square. Consequently, dispersed droplets with various sizes are obtained. The
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Figure 5.1.: (I) Left: the ternary phase diagram of the polymer A-polymer B-solvent system
at𝑇 = 𝑇𝐻 (𝑇𝐻 = 1.05𝑇𝑐). The magnitude of the free energy density is described
by the heat map (red: high; blue: low). The binodal and spinodal compositions
are depicted by the dark red solid lines and dashed lines, respectively. Thewhite
triangle indicates the initial compositions with 𝑐1 = 𝑐2 = 0.15. The equilibrium
compositions of droplet and matrix are labelled with the green circle and the
white square, respectively. Right: the phase diagram at 𝑇 = 𝑇𝐿 (𝑇𝐿 = 0.95𝑇𝑐).
The green circle corresponds to the initial homogeneous composition in the
droplet resulting from the phase separation at 𝑇 = 𝑇𝐻 . The Janus symbols
mark the equilibrium compositions in each Janus hemispheres. (II) Upper row:
the microstructure evolution for the production of homogeneous polymer
droplets at 𝑇 = 𝑇𝐻 . Lower row: the formation of Janus particles via spinodal
decomposition when reducing the temperature to 𝑇 = 𝑇𝐿 . The simulation
domain size is 400 𝜇m × 400 𝜇m. In this work, all the white scale bars denote
50 𝜇m and each color bar scales the polymer composition, if not specified.
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5. Multi-component phase separation producing Janus droplet with hydrodynamics

equilibrium composition in the droplets is marked by the green circle on the binodal line in
the left phase diagram. Since at𝑇 > 𝑇𝑐 polymer A and B are miscible with each other, Janus
particle is not observed at this temperature. As demonstrated in the following section, the
droplet with miscible polymer A and B formed at𝑇 > 𝑇𝑐 is the precursor for the formation
of the Janus droplet.
Next, I reduce the temperature till 𝑇 = 0.95𝑇𝑐 , where the miscibility gap between two

polymer species begins to appear which results in the spinodal decomposition inside the
precursor polymer droplet. To simulate the Janus droplet formation and to ensure a stable
three phase region, I assign the following interfacial tension parameters 𝜎1 = 𝜎2 = 0.64,
𝜎3 = 3.6. As presented in the snapshots of Fig. 5.1(II)(ii), at 𝑡 = 5 s, two polymer species get
separated to form a polymer A-rich region (blue) and a polymer B-rich region (red). These
two regions are divided by the light green interfaces. Accompanied by the proceeding
spinodal decomposition, the interfaces between the blue and the red regions are stabilized
(see the snapshot at 𝑡 = 10 s). Decided by the wetting effect at the triple junction involving
polymer A-rich phase, polymer B-rich phase, and the solvent-rich phase, Janus droplets
with 𝑟 ⪅ 15 𝜇m are generated at 𝑡 = 10 s. Afterwards, the phase separation subsides
and the minimization of free energy functional is mainly manifested by the reduction
in the interfacial energy. Then, the Ostwald ripening effect and coalescence come on to
the stage. For instance, the tiny droplet in the white circle vanishes, because of its huge
curvature difference from its surrounding large droplets. As highlighted by the orange
dashed squares of Fig. 5.1(II)(ii), three tiny Janus droplets coalesce into a large one due
to their relatively narrow distances. Moreover, a large Janus droplet with a transient
hamburger structure [71, 72] is captured in the white-dashed circle at 𝑡 = 50 s. This
observation indicates that the size of the precursor polymer droplet plays an important
role on the morphological evolution of the Janus droplet, which will be discussed in the
following parts.

5.2.2. Radius and initial composition

In the manufacturing process of Janus particles, the final product with different sizes can be
achieved by controlling the holding time at 𝑇 = 1.05𝑇𝑐 above the critical temperature. As
shown in section 5.2.1, the Ostwald ripening effect together with the droplet coalescence
results in precursor droplets with various sizes. However, with the descending temperature,
the phase separation of polymer A and B cannot simultaneously engender perfect Janus
droplet for different sized precursor droplets. In order to have a heedful look at this
size effect, I place three precursor droplets with initial radius 𝑟0 = 20, 40, 80 𝜇m in the
solvent-rich matrix and reduce the temperature to 𝑇 = 0.95𝑇𝑐 . As shown in Fig. 5.2, the
smallest droplet with 𝑟0 = 20 𝜇m forms a perfect Janus at 50 s, while the largest precursor
droplet with 𝑟0 = 80 𝜇m spends 20 times longer for the transformation into a perfect Janus
particle. The reason for this size effect can be explained by viewing the intermediate stage
of the Janus droplet development.

As depicted in Fig. 5.2, more complex bi-continuous structures are produced inside the
relatively large droplets by phase separation. The final perfect Janus droplet is formed
via the coalescence of the tortuous bi-continuous structure. As demonstrated in the
third snapshot of Fig. 5.2, for all the three phases, namely, the blue-highlighted polymer
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Figure 5.2.: The Janus droplet formation with 3 initial radii: 20, 40, and 80 𝜇m. In simula-
tions, all droplets are placed in their individual domains and are stitched in a
domain for a better comparison.

A-rich phase, the red-colored polymer B dense phase, and the matrix, the equilibrium
compositions are reached. Hence, at this stage, the phase separation plays hardly any role
now and the Ostwald ripening is the main mechanism for the Janus droplet evolution.
According to the classic theory of the Ostwald ripening [73, 74, 75], the mean average
radius of the phase separation structure follows the quintessential LSW (Lifshitz-Slyozov-
Wagner) power law 𝑟 ∼ 𝑡1/3. Therefore, the transformation of the droplet with 𝑟0 = 80 𝜇m
into a Janus shape takes about 43 times longer than the tiny one with 𝑟0 = 20 𝜇m.

In some experiments [77, 63, 76, 78], non-equal compositions of polymer A and B are
adopted to synthesize different droplet morphologies, e.g. vesicle, uneven Janus, etc. In
Fig. 5.3(I), I perform simulations with unequal polymer compositions, namely 𝑐1 : 𝑐2 = 3 : 7
and 𝑐1 : 𝑐2 = 7 : 3, for a precursor droplet with 𝑟0 = 80 𝜇m. Since the composition ratio
between the two polymers is off 5 : 5, in lieu of bi-continuous structures, sub-droplets
are engendered inside the precursor droplet via the spinodal decomposition. To minimize
the interfacial energy, those sub-droplets merge into a joint phase. This routine for the
Janus droplet formation is in good agreement with the confocal microscopy images for
the dextran-PEG-water system, as illustrated in Fig. 5.3(II). It is also noteworthy that the
interface between Polymer A and B in our simulation (7 : 3 in Fig. 5.3(I)) has the different
convexity from the experiment (PEG riched case in Fig. 5.3(II)). As the analyse in Ref.
33 , the Janus structure is extremely sensitive to the composition dependent interfacial
tension parameters 𝜎𝑖 . Thus, the slight polymer composition changes can result in the
huge difference in the interface convexity.
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5. Multi-component phase separation producing Janus droplet with hydrodynamics

Figure 5.3.: (I) The morphological evolution via sub-droplet coalescence by unequal initial
polymer A & B composition ratios; upper panel: polymer A:B = 3:7; lower
panel: polymer A:B = 7:3. The initial droplet size is 80 𝜇m. (II) The confocal
microscopy images of Janus particle formation by the sub-droplet coalescence
in the dextran-PEG (green dyed)-Water system. Reproduced with permission
from Ref. [76], copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Wein-
heim.
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5.2.3. Interfacial tension

In the previous part, I elucidate the formation of Janus droplet via liquid-liquid phase
separation which transforms the bulk free energy of mixture into the interfacial energy.
The latter one determines the pattern of the microstructure around the triple junction.
In this section, I address the microstructure pattern at the region of the triple junction
by varying the interfacial tension. In experiments, the adjustment of interfacial tensions
is achieved by adding various surfactant into the system [60]. As a rule of thumb, the
surfactant quantity less than 0.1%𝑣/𝑣 has a minor effect on altering the ternary phase
diagram [15]. In our simulations, the effect of specific surfactants can be mimicked by
changing the interfacial tension parameter 𝜎𝑖 . To be consistent with the sharp interface
model, the interfacial tension between the component A-rich phase and the component
B-rich phase in the Cahn-Hilliard approach (see the right column of Fig. 5.4(I)) is calculated
as

𝜎𝛼𝛽 =

∫
𝜎∗

𝜖
Δ𝑓 (𝑐1, 𝑐2, 𝑐3) +

3∑︁
𝑖=1

𝜎𝑖 𝜖 (∇𝑐𝑖)2 𝑑s, (5.3)

where s delineates the integral routine which follows the energy minimum principle. As
displayed by the solid arc with white open arrow in Fig. 5.4(I), the integration starts from
the white open dot with one bulk equilibrium composition (𝑐𝑒𝑞1 , 𝑐

𝑒𝑞

2 , 𝑐
𝑒𝑞

3 ) inside the phase 𝛼
to the other bulk equilibrium composition (𝑐𝑒𝑞∗1 , 𝑐

𝑒𝑞∗
2 , 𝑐

𝑒𝑞∗
3 ) inside the phase 𝛽 . The term

Δ𝑓 is defined as

Δ𝑓 = 𝑓 (𝑐1, 𝑐2, 𝑐3) − 𝑓 (𝑐𝑒𝑞1 , 𝑐
𝑒𝑞

2 , 𝑐
𝑒𝑞

3 ) −
3∑︁
𝑖=1

𝜇
𝑒𝑞

𝑖
(𝑐𝑖 − 𝑐𝑒𝑞𝑖 ), (5.4)

which measures the excess free energy density referring to the equilibrium state with the
formulation as 𝑓 (𝑐𝑒𝑞1 , 𝑐

𝑒𝑞

2 , 𝑐
𝑒𝑞

3 ) +∑3
𝑖=1 𝜇

𝑒𝑞

𝑖
𝑐
𝑒𝑞

𝑖
. From this expression, the interfacial tension

of the system is not only decided by the interfacial tension parameters 𝜎𝑖 , but also relies
on the bulk free energy density of the mixture. Owing to adding the third component
(C in this example), the integral routine at the equilibrium state does not take the dot-
dashed straight line from 𝛼 to 𝛽 in the phase diagram, but follows the deterministic path
which corresponds to the fundamental energy minimization principle as addressed by the
Cahn-Hilliard equation, Eq. (2.4). In this way, the interfacial tensions in the ternary system
can deviate largely from the one in the binary system, crucially depending on the Flory
parameters 𝜒𝑖 𝑗 and 𝜒123. It appears that the addition of the third component dramatically
increases the complexity for measuring and calculating the interfacial tension. In most
cases, there is a paucity of experimental data for the interfacial tensions to validate the
model. Here, I systematically discuss the effect of the interfacial tension on the pattern
formation of the Janus particles.
Firstly, I analyse the interfacial tension parameters 𝜎𝑖 affecting the formation of the

Janus droplet. The interface tension parameters 𝜎1 and 𝜎2 both vary from 0.2 to 4.2, while
all other parameters are the same as that in section 5.2.2. This setup can be comprehended
as introducing a tiny amount of surfactant which can drastically reduce the interfacial
tension of the system, while the phase diagram is not altered. As displayed in Fig. 5.4(II),
an increase in 𝜎1 and 𝜎2 results in different morphological evolution during the phase
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5. Multi-component phase separation producing Janus droplet with hydrodynamics

Figure 5.4.: (I) Left: the equilibrium interfacial tension 𝜎𝛼𝛽 of the A-rich droplet 𝛼 and
B-rich matrix 𝛽 with the sharp interface model. Right: the schematic integral
routine with black open arrow on the phase diagram for the calculation of
𝜎𝛼𝛽 in the Cahn-Hilliard model. (II) The formation of Janus particle via the
spinodal decomposition with increasing interfacial tension parameters 𝜎1 = 𝜎2.
The initial droplet sizes are 20 𝜇m. (III) The contact angle 𝜃 between two
hemispheres versus 𝜎1 = 𝜎2. Black cross: calculated with Eq. (5.5); orange open
dot: fitted with simulation.
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separation. For instance, the 3-fold symmetric droplet is observed in the setup with
𝜎1 = 𝜎2 = 1.0 which shows high similarities with the experimental observations for
the patchy droplet structures of self-assembly materials [79]. With an increase in 𝜎1
and 𝜎2, the time expense for the formation of Janus droplet via the Ostwald ripening is
sharply reduced and the final contour of the Janus droplet transforms from a joint sphere
to a quasi-ellipse. In Fig. 5.4(III), the contact angles 𝜃 between two Janus hemispheres
are measured with two different methods. 1) Orange open dots: the interfaces between
the Janus hemispheres and the solvent matrix are extracted from the simulation by the
criterion: 𝑐1 = 0.5 for the polymer A hemisphere and 𝑐2 = 0.5 for polymer B. As sketched
by the inset in Fig. 5.4(III), I fit the interfaces between polymer A-rich hemisphere and
solvent matrix and between polymer B-rich hemisphere and solvent matrix with circles.
The interfaces intersect at the triple junction where the contact angle 𝜃 is computed by
the included angle of the two tangent lines of the fitted circles. 2) Black crosses: with
Eq. (5.3), the three interfacial tensions form the so-called Neumann triangle relation which
constrains the 𝜃 at equilibrium as

cos𝜃 =
𝜎2

12 − 𝜎2
13 − 𝜎2

23
2𝜎13 𝜎23

. (5.5)

Showing good agreement in these two methods, the contact angle 𝜃 decreases with
enlarging the interfacial tension parameters 𝜎1 (= 𝜎2). The comparison not only indicates
the droplet contour changing from Janus (𝜃 ∼ 180◦) to quasi-dumbbell structure (𝜃 ∼ 155◦)
controlled by the interfacial tension, but also validates the Cahn-Hilliard model for the
Janus droplet system.

Secondly, I assign different Flory parameters 𝜒12 with the same interfacial tension pa-
rameters 𝜎1 = 𝜎2 = 1.0 in the simulation. This setup may be achieved by applying different
polymer species in the system. As demonstrated in the free energy landscapes in Fig. 5.5(I),
an increase in 𝜒12 not only modifies the interfacial tension between polymer A and B, but
also broadens the miscibility gap as depicted by the light red shadow regions. Thence,
more pronounced phase separation accelerating the production of polymer A/B interfaces
is expected for a larger value of 𝜒12, as demonstrated in Fig. 5.5(II). Most interestingly, in
the blue highlighted simulation snapshots of Fig.5.5(II), intermediate droplets with polygon
and triangle shapes are observed. This observation implies that the thermally induced
liquid-liquid phase separation may have the potential to synthesize droplets with some
special morphologies, which shall be investigated in the future.

5.2.4. Asymmetric phase separation

In the previous sections, the Flory parameters 𝜒13 and 𝜒23 are assumed to be the same, so
do the interfacial tension parameters 𝜎1 = 𝜎2. These setups usually give rise to symmetrical
kinetics for the formation of the Janus droplet, i.e., different faces of the Janus droplet and
the diffusion path of distinct polymer species following identical kinetics. Actually, in
most real systems, the Flory parameters of polymer A and polymer B with the solvent are
not equal, e.g., 𝜒13 ≠ 𝜒23, denoting different attractive/repulsive potential of the polymer
species with the solvent molecules. In addition, the interfacial tensions between polymer
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Figure 5.5.: (I) The free energy density at 𝑇 = 0.95𝑇𝑐 for different Flory parameters 𝜒12
between polymer A and polymer B. The light red shadow regions mark the
miscibility gaps. (II) The formation of the Janus droplet with the enhancing 𝜒12.
The blue highlighted snapshots display the transient pentagon and triangle
droplet shapes. The initial droplet sizes are 20 𝜇m.
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species and solvent should be distinct from each other, which may be caused by unequal
interfacial tension parameters, 𝜎1 ≠ 𝜎2. The Janus droplet formation is attributed to the
interplay of both liquid-liquid phase separation and the interfacial energy minimization,
the kinetics of which is both essentially affected by the Flory parameters as well as the
interfacial tension parameters. Thus, the distinguishing properties of polymer A and B
may lead to asymmetrical kinetics for the microstructure evolution of the Janus droplet
formation as well as dissymmetric diffusion path, which will be discussed in this section.

To elucidate the symmetric kinetics, I place one homogeneous droplet with 𝑟0 = 30 𝜇m
and initial composition 𝑐1 = 𝑐2 = 0.47 inside the polymer lean matrix (𝑐1 = 𝑐2 = 0.00025).
In this setup, I adopt the same interfacial tension and Flory parameters for polymer A and
B, i.e., 𝜎1 = 𝜎2 = 0.6 and 𝜒13 = 𝜒23 = 4.2. From Eq. (5.3), I have 𝜎13 = 𝜎23. Triggered by the
composition fluctuation, the phase separation generates a polymer A-rich region (blue
colored) and a polymer B-rich region (red colored), which comprise of the bi-continuous
structure resulting from the spinodal decomposition, as displayed in Fig. 5.6(I)(ii). The
kinetics of the Janus droplet formation is characterized by tracing the maximal polymer
A composition 𝑐1 (turquoise line) and the maximal polymer B composition 𝑐2 (red line)
starting from the green circle on the phase diagram. As can be noticed in Fig. 5.6(I)(i),
once the polymer A-rich blue region forms, the turquoise trajectory of the maximal 𝑐1
falls exactly on the black solid binodal line. This overlap implies that there exist a series
of transient pseudo-binary equilibrium states between the polymer A-dense blue region
and the polymer lean solvent matrix (black open square). One typical exemplary pseudo-
binary equilibrium is shown by the blue dot-dashed tie line. This kind of pseudo-binary
equilibrium is unstable over time because of the presence of the adjacent polymer B-
rich red region, which is not in equilibrium with the polymer A-dense region. Driven
by the free energy minimization, the immiscible polymer A in the adjoining red region
is rejected. For the low solubility of polymers in the solvent matrix, phase separation
induced mass transformation via the surrounding matrix is in vain. The precipitated
polymer A from the red region can only diffuse across the A-B interface, resulting in
an enrichment of polymer A in the blue colored regions. Consequently, the maximal
composition 𝑐1 continuously moves leftwards along the binodal line, and finally reaches
the ternary equilibrium composition labelled by the blue Janus symbol on the phase
diagram in Fig. 5.6(I)(i). At this right stage, a perfect Janus droplet is completely formed.
The same kinetics happens inside the polymer B region, because of the exactly equal
interfacial tension and Flory parameters of polymer B and A. As depicted in Fig. 5.6(I)(iii),
I observe the same tendencies of the maximal polymer A composition (blue solid line)
and maximal polymer B composition (red solid line) changing with time. The small ups
and downs are in line with the coarsening and coalescence of the phases which change
the curvature and consequently the composition. In this way, I denominate this kind of
kinetics as “symmetric” which denotes the identical kinetic pathways for polymer A and
B.

In our second simulation, I set the interfacial tension parameters to be asymmetric for
polymer A and B as 𝜎1 = 1.0, 𝜎2 = 0.6. The Flory parameters are 𝜒13 = 𝜒23 = 4.2, as the one
in Fig. 5.6(I)(i). With Eq. (5.3), it can be shown that the interfacial tension between polymer
B-rich phase and solvent-rich phase 𝜎23 is smaller than that between polymer A-rich
phase and solvent-rich phase 𝜎13. Hence, at the very beginning of the phase separation, in
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Figure 5.6.: (I) The symmetric kinetics of the Janus droplet formation with the same in-
terfacial tensions 𝜎13 = 𝜎23. (i) The kinetic pathway of the maximal polymer
A rich region (turquoise solid line) and the maximal polymer B rich region
(red solid line) on the phase diagram. The dot-dashed lines indicate the tie
lines for the pseudo-binary equilibrium between polymer droplets and solvent
matrix; (ii) the Janus droplet formation with initial droplet size 𝑟0 = 20 𝜇m; (iii)
the time sequence of the composition with maximal 𝑐1/𝑐2 (blue/red solid line).
The dot-dashed horizontal line indicates the spinodal composition. (II) The
asymmetric kinetics of the Janus droplet formation with unequal interfacial
tensions 𝜎13 > 𝜎23. The initial droplet size is 20 𝜇m. (III) The microscopy im-
ages of Janus particle formation via the asymmetric phase separation in a three
phase system. Bright: dextran (DEX); grey: poly(2-ethyl-2-oxazoline) (PEtOx),
and grey matrix: polyethylene glycol (PEG). Reproduced with permission from
Ref. [78], copyright 2021, American Chemical Society.
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order to reduce the interfacial energy, the polymer B prefers to contact with the solvent
matrix and encircles polymer A to prevent the formation of the interface between polymer
A and solvent matrix. Such a kinetic process leads to centrosymmetric diffusion fluxes
of polymer A and B. Accordingly, an intermediate core-shell morphology is established,
which has been observed in many micro-capsule systems [80, 81, 82, 62, 83]. As shown in
Fig. 5.6(II)(i) for the kinetic pathway on the phase diagram, the core-shell morphology is
accompanied by a deviation of the red trajectory (the maximal 𝑐2) from the black solid
binodal line. This deviation is explained as follows. From the intermediate state𝑀1 to𝑀2,
due to spinodal decomposition, the blue polymer A-rich core forms and quickly reaches
the equilibrium composition on the binodal line. But in the shell region, the kinetics is
totally different. Since both polymer A-rich phase and the solvent matrix contact with
the shell, there exist two interfaces, namely, the polymer A-B interface and the polymer
B-solvent interface. The composition in the shell region evolves not only via the phase
separation with respect to the polymer-A rich core but also the binodal decomposition
pertaining to the solvent matrix. The non-equal diffusion fluxes at the core-shell interface
via spinodal decomposition and at the shell-solvent interface via binodal decomposition
give rise to the deviation of the maximal 𝑐2 trajectory from the binodal line in the polymer
B-rich region.

In Fig. 5.6(II) between the time points𝑀2 and𝑀3 , the maximal 𝑐2 hardly increases with
time and the core-shell structure stagnates. The reason for this utterly slow morpholog-
ical transformation can be explained by the kinetic pathway on the phase diagram in
Fig. 5.6(II)(i). At𝑀2, the red trajectory passes through the black dotted spinodal line and the
composition in the shell falls outside the spinodal region. Thereafter, the microstructure
evolution is dominated by the binodal decomposition instead of spinodal decomposition.
Since the former one is much slower than the latter one, the composition 𝑐2 in the shell
region increases with time at a relatively slow rate, leading to a stagnation state from𝑀2
and𝑀3. Noteworthily, the core-shell structure is not the energy minimal state. In the shell
region, the everlasting Gaussian composition fluctuation gives rise to small composition
gradients and produces a circular diffusion for the polymer B component, leading to the
breakup of the core-shell structure at 𝑀4. When the core-shell structure collapses, the
interfacial tension rapidly reshapes the polymer B-rich layer into a hemisphere (at 𝐸)
which is the final equilibrium state of the system. I name the observation in this setup as
“asymmetric kinetics” to make the distinction from the previous “symmetric” case, which
has also been studied in many experiments [77, 63, 78], as the microscopic images shown
in Fig. 5.6(III).

5.2.5. Fluid dynamics

In the previous sections 5.2.1-5.2.4, I considered the Janus droplet formation via diffusion
controlled phase separation process and observed a stagnation stage for the intermediate
core-shell microstructure in the formation process of the Janus droplet. In this section,
I will shed light on the effect of hydrodynamics on the morphological evolution of the
Janus particle as well as the core-shell microstructure. Considering the kinetics of the
polymeric phase separation, the polymer diffusivity can vary from 10−9 m2/s to 10−12 m2/s
which is decided by the degree of polymerization, temperature, solvent property, and so
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on. Thus, when the polymer system becomes semi-dilute, or even dense, the diffusivity
of polymer chains decreases drastically. When 𝐷∗ drops to the order of 10−12 m2/s, the
hydrodynamic effect plays a non negligible role compared with diffusion. As written in
Eq. (2.20), the composition gradient ∇𝑐𝑖 in the inhomogeneous fluid system can propel the
fluid flow via the capillary tensor term Θ in the Navier-Stokes (NS) equations Eq. (2.18).
This mechanism is called the Marangoni effect. By adjusting the dimensionless numbers, 1)
Weber number: We and 2) Reynolds number: Re, in the nondimensionalized NS equation
Eq. (2.18), I will show distinct hydrodynamic behaviors for the microstructure evolution
of the Janus droplet.

In a first setup, I perform a single droplet simulation with the asymmetric interfacial
tension 𝜎13 > 𝜎23 as the previous section 5.2.4. To couple the hydrodynamic effect with
the phase separation, the Weber number We and Reynolds number Re are both set as 1.
As can be noticed in both the morphological evolution and the kinetic pathway in Fig. 5.7,
the transient core-shell structure survives 10 times shorter than the simulation without
the hydrodynamics shown in Fig. 5.6. By viewing the pressure distribution around the
droplet in Fig. 5.7(I)(ii), the pressure has its maximum (dark red colored) in the polymer B
dense shell region, the minimum inside the solvent matrix, and the intermediate value
(yellowish) in the polymer A-rich core. Here, the pressure is induced by the surface tension
force subjected to the incompressible condition. In order to reduce the surface energy,
the convection resulting from the pressure difference on both sides of the shell structure
together with the diffusion leads to the breakup of the shell, which is faster than the
morphological transformation solely via diffusion. The stagnation period of the core-shell
structure around the spinodal composition only lasts several seconds in this case.

The Marangoni flow has two origins: i) phase separation driving force. During the phase
separation process, the composition has not yet reached the equilibrium value, where
excess free energy density of mixture results in the surface tension force ∇ · Θ in the N-S
equation. As demonstrated in Eq. (2.23), the term ∇ · Θ is proportional to the chemical
potential gradients which can not be balanced by the pressure 𝑝 around the droplet.
Consequently, the convection takes place. ii) The minimization of the interfacial energy.
The phase separation leads to the creation of new interfaces. The non-uniform curvature
along the interface as well as the surface tension force enforcing the Young’s contact angle
at the triple junction also gives rise to a convection. The former one occurs at the early
stage of the phase separation. The latter one appears once new interfaces are established
and dominates the evolution when the bulk composition reaches the equilibrium value.
It is noteworthy that both mechanisms also exist when the Janus droplets are produced
by the phase separation via solely diffusion (see Fig. 5.1). The main difference is the way
how the energy is minimized, or more suffice to say, the energy dissipation associated
with different kinetics. When the hydrodynamics is coupled, the excess free energy and
surface energy can be transformed into the kinetic energy of the fluid flow. As displayed
in Fig. 5.7(I)(iii), the fluid velocity around the droplet increases simultaneously with the
proceeding spinodal decomposition. After reaching the equilibrium composition and
the breakup, the non-uniform curvature and the free energy minimization at the triple
junction lead to a further increase in the fluid velocity. When the curvature becomes
uniform around the Janus droplet and the contact angle at the triple junction reaches the
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Figure 5.7.: (I) The single Janus droplet formation with asymmetric interfacial tensions
𝜎13 > 𝜎23 and the hydrodynamic effect𝑊𝑒 = 1.0. The initial droplet size
is 20 𝜇m. (i) Composition field; (ii) pressure distribution; (iii) velocity field
and the stream lines. The white translucent circles mark the Janus droplet
interface with solvent composition 𝑐3 = 0.5. Each color bar beneath shows
the respective magnitude. (II) The asymmetric kinetics of the Janus droplet
with the hydrodynamic effect (𝑊𝑒 = 1.0) and unequal interfacial tension
𝜎13 > 𝜎23. (i) The kinetic pathway of the maximal polymer A/B dense region
(turquoise/red solid line) on the phase diagram. (ii) The time sequence of the
composition with maximal 𝑐1/𝑐2 (blue/red solid line).
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equilibrium value, the fluid flow dissipates and tends to vanish, as shown in Fig. 5.7(I) at
𝑡 = 16 s.

Next, I simulate the Janus droplet formation via a two-step phase separation. At step (i),
homogeneous polymer droplets are produced at 𝑇 = 1.05 𝑇𝑐 . At step (ii), the temperature
is reduced to 𝑇 = 0.95 𝑇𝑐 , where Janus droplets are formed. Here, two magnitudes of the
hydrodynamic effect are considered, namely,𝑊𝑒 = 1 and 0.01, to elucidate its influence
on the multi-droplet system. By the definition of the Weber number, a large𝑊𝑒 indicates
a strong capillary effect. By comparing the morphological evolution in Fig. 5.8 with the
previous case only with diffusion (Fig. 5.1), the phase separation process is magnificently
accelerated. For the phase separations at high temperature 𝑇 = 1.05 𝑇𝑐 , it always takes
less time 𝑡𝑒 for the droplet to reach its equilibrium concentration when the hydrodynamic
effect becomes more pronounced. For𝑊𝑒 = ∞ (diffusion only), 𝑡𝑒 = 8.5 s; 𝑊𝑒 = 1.0,
𝑡𝑒 = 2.0 s; 𝑊𝑒 = 0.01, 𝑡𝑒 = 0.5 s. As 𝑇 = 0.95 𝑇𝑐 , concerning the size effect discussed
in section 5.2.2, droplets with similar sizes are compared. The Janus droplet production
also becomes quicker with the stronger convection. For𝑊𝑒 = ∞, 𝑡𝑒 = 30.0 s;𝑊𝑒 = 1.0,
𝑡𝑒 = 18.0 s;𝑊𝑒 = 0.01, 𝑡𝑒 = 2.25 s.

Also, the size distribution of the Janus droplet becomes more dispersed with the en-
hancing hydrodynamic effect. The underlying mechanism can be elucidated with the
Tanaka-Golovin theory [20] that has two important contributions to the polydispersity of
the Janus droplet. On the one hand, the hydrodynamic force is produced by the overlap
of the diffusion potential and propels the droplet coalescence. Hence, the droplets with
relatively small distances apart are prone to impinge with each other, forming a large
droplet as illustrated in the gold dashed squares of Fig. 5.8. On the other hand, the hydro-
dynamics can act as a supporter for the tiny droplet and curtails the consumption of small
droplet by its large peers because of the competitive fluxes of diffusion and convection
(see the discussion in Ref. [26, 19]). The distinct life time of the mini-droplets circled
in Fig. 5.1 and 5.8 confirms the supporting effect of hydrodynamics. The pronounced
coalescence effect for large droplets and the shielding effect for the small droplets result in
the polydispersity of Janus droplet. This observation is also consistent with the theoretical
derivation [84]. In addition, since both the phase separation and the fluid mechanics
are considered in our model, the Janus production via microfluidic process can also be
simulated and will be discussed in future works.

Finally, I simulate the Janus droplet formation where the surface tensions of polymer
A and B are identical. As shown in Fig. 5.9, the perfect Janus droplets with symmetric
hemispheres of A and B are produced. Similar to the previous simulations with unequal
surface tensions (Fig. 5.8), the Janus sizes increases with the increasing hydrodynamic effect.
The size distribution also turns to be more dispersed with enhancing convection inside
the system, which is attributed to the two reasons discussed in the previous paragraph: (i)
the imbalanced surface tension force ∇ · Θ induces convection which propels the droplet
coalescence; (ii) the strong Marangoni flow also acts as a counter-force that curtails the
diffusion process. Under this circumstance, the LSW mechanism plays only a subordinate
role and the mean radius does not obey the 1/3 scaling law anymore [20].

86



5.2. Results and discussion

Figure 5.8.: Janus droplet formation via phase separation with the surface tension of poly-
mer A (𝜎13) larger than the surface tension of polymer B (𝜎23). (I) The spinodal
decomposition coupling with a weak capillary effect with𝑊𝑒 = 1. Step (i):
at high temperature: 𝑇 = 1.05𝑇𝑐 ; step (ii): at low temperature: 𝑇 = 0.95𝑇𝑐 .
(II) The spinodal decomposition coupling with a weak capillary effect with
𝑊𝑒 = 0.01. (i) High temperature: 𝑇 = 1.05𝑇𝑐 ; (ii) low temperature: 𝑇 = 0.95𝑇𝑐 .
The simulation domain size is 400 𝜇m × 400 𝜇m.
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Figure 5.9.: Janus droplet formation via phase separation with the surface tension of poly-
mer A (𝜎13) equal to the surface tension of polymer B (𝜎23). (I) The spinodal
decomposition coupling with a weak capillary effect with𝑊𝑒 = 1. Step (i):
at high temperature: 𝑇 = 1.05𝑇𝑐 ; step (ii): at low temperature: 𝑇 = 0.95𝑇𝑐 .
(II) The spinodal decomposition coupling with a weak capillary effect with
𝑊𝑒 = 0.01. (i) High temperature: 𝑇 = 1.05𝑇𝑐 ; (ii) low temperature: 𝑇 = 0.95𝑇𝑐 .
The simulation domain size is 400 𝜇m × 400 𝜇m.
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5.3. Conclusion

In summary, I have presented a multi-component and multi-phase Cahn-Hilliard-Navier-
Stokesmodel to simulate the formation of the Janus droplet via the thermally induced liquid-
liquid phase separation. By considering the initial polymer composition, Flory parameters,
and the interfacial tension parameters, I elucidate the competing mechanisms for the
morphological evolution, namely, i) the diffusion dominated phase separation process, and
ii) the minimization of the interfacial energy. Due to the interplay of these two crucial
factors, various transient morphologies of the droplets have been observed, including the
polygon shaped structures and patchy droplets which need to be investigated in detail in
future work. Most importantly, I stress the significance of hydrodynamic effect. Owing to
the curtailed diffusivity of entangled long polymer chains, the composition inhomogeneity
induced Marangoni effect becomes comparable with the diffusion of polymeric species.
Hence, not only the phase separation process of the droplet, but also the droplet coalescence
are magnificently accelerated by the Marangoni flow, which results in a broad range for
the size of Janus droplets. Further systematic computational studies of material properties
and pattern correlations will be considered in the forthcoming researches. As the approach
is already capable to be applied in 3 dimensional structures, the 3D simulation of the
Janus droplet will be conducted and analysed. I believe that the present research involving
Janus droplet formation via diffusion as well as fluid dynamics will shed new light on
multi-phase microfluidic manipulation technology for wide applications.
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6. Multi-component phase separation
inside the electric field1

6.1. System definition

In this chapter, I present the Chan-Hilliard-Navier-Stokes-Gauss model based on Ref. [85,
86], to investigate a multi-component fluid system coupled with hydrodynamics and elec-
trodynamics inside the domain Ω enclosed by the boundary 𝑆 , as schematically illustrated
in Fig. 6.1. The domain is subjected to an electrical field E with voltages Ψ1 and Ψ0 at
the top and bottom boundaries, respectively. The electrostatic potential is represented
by Ψ. The fluid consists of 𝑁 components and the space 𝒙 and time 𝑡 dependent fluid
composition is represented by 𝒄 = (𝑐1, 𝑐2, . . . , 𝑐𝑁 ). The number of the immiscible phases
in the 𝑁 -component system depends on the formulation of the chemical free energy F .
The density of the fluid 𝜌 (𝒙) does not vary with time within the scope of incompressible
fluids. The convection velocity is denoted by u. The charge density is denoted by 𝜌𝑒 (𝒙, 𝑡).
The system is at a constant temperature and one atmosphere pressure. No mass and
heat in-/outflow are considered at the boundaries of the domain. The system energy
functional L is spatial and temporal dependent and consists of three main parts, namely,
the chemical free energy functional F , the macroscopic kinetic energy K , and the electric
energy functional U

L = F (𝒙, 𝑡, 𝒄,∇𝒄) + K(𝒙, 𝑡, 𝜌,u) + U(𝒙, 𝑡, 𝜌𝑒,∇Ψ).

Other notations applied in this work for the model description are documented in Chapter
III. To simulate the phase separation inside the electric field, the CHNSG model is applied.
More detailed descriptions is documented in Chapter III.

6.2. Numerical stability and validation

6.2.1. Mesh resolution

In the first part, I present the numerical stability of our model and vary the resolution
by changing Δ𝑥 from 0.5 to 4.0. The initial simulation setup is illustrated in Fig. 6.2(II)
in which a droplet with the equilibrium composition 𝑐𝑚 = 0.973 and diameter 𝑑0 = 80 is
placed amid a 240 × 240 fluid matrix with the equilibrium composition 𝑐𝑑 = 0.027; see
Fig. 6.2(II). The electric potential in the domain takes Ψ1 = 10 at the boundary top and
1Copyright notice: This chapter is licensed under a Creative Commons Attribution-Non Commercial 4.0
International License (CC BY-NC 4.0): https://creativecommons.org/licenses/by-nc/4.0/deed.en
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Ψ0 = 0 at the bottom. The conductivity 𝜎 of the droplet and matrix are chosen as 5.0
and 1.0, respectively, while their permittivity 𝜀 are assigned to be 80.0 and 1.0. The Flory
parameter of the free energy density 𝑓 in Eq. (1.3) is fixed as 𝜒 = 3.78, together with the
surface parameter 𝜅 = 1.0 and 𝜖 = 4.0. The density and viscosity of both droplet and
matrix are set to be 1.0. After the non-dimensionalization process, we adopt the following
non-dimensionalized number in the simulations as

P𝑒 = 1.0, We = 1.0, Re = 1.0, Ca𝐸 = 1.0.

For the solution of the incompressible Navier-Stokes equation and Poisson equation, I
select the residual threshold eps= 10−7 for the numerical accuracy, which will be discussed
in the next part.
Here, two criteria are available for the evaluation process, namely the deformation

factor 𝐷 and the surface charge 𝐶𝑒 . The deformation factor reflects the oval shape of the
droplet inside the electric field. Fitting the droplet interface with an ellipse, 𝐷 is calculated
as

𝐷 =
𝑎 − 𝑏
𝑎 + 𝑏 , (6.1)

where 𝑎 and 𝑏 represent the lengths of the semi-major axis (align with the x-axis) and the
semi-minor axis (the y-axis), respectively. In the diffuse interface phase-field model, the
droplet interface position denotes the location with 𝑐 = 0.5, based on which 𝑎 and 𝑏 are
fitted with the least squares method. The surface charge density 𝐶𝑒 is integrated by the
charge density 𝜌𝑒 along the y-axis of the oval droplet from the center as

𝐶𝑒 =

∫
𝑁𝑦

𝑁𝑦/2
𝜌𝑒 𝑑𝑦. (6.2)

As shown in Fig. 6.2(I), both 𝐷 and 𝐶𝑒 converge with the reduction in Δ𝑥 at the constant
interface width parameter 𝜖 = 4.0. The difference is attributed to the calculation of the
induced charge density 𝜌𝑒 , as demonstrated in Fig. 6.2(III) and (V), especially in the x
direction. In addition, the electric field distribution at the droplet-matrix interface is also

Figure 6.1.: Schematic of the multicomponent fluid system amid the domain Ω within the
electric field E. The domain boundary 𝑆 is colored in grey. The voltages at the
top and bottom boundaries are Ψ1 and Ψ0, respectively.
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modified which can be noticed in the inset of Fig. 6.2(IV). And only subtle variance is
observed in the concentration distribution of Fig. 6.2(f). To achieve acceptable accuracy
and save calculation time, I adhere to Δ𝑥 = 1.0 in the following parts.

Figure 6.2.: (I) The validation with the mesh resolution Δ𝑥 . Blue dots: deformation factor
𝐷 with Δ𝑥 ; black hexagons: surface charge density 𝐶𝑒 with Δ𝑥 . (II) Initial
filling of the red droplet inside the blue matrix. The scale bar denotes 40 and
the colorbar measures the droplet concentration. (III) Charge density 𝜌𝑒 at
𝑡 = 1𝑒4 scaled by the colorbar below. (IV) (V) and (VI) illustrate the electric
potential Ψ, charge density 𝜌𝑒 , and droplet concentration 𝑐 at 𝑡 = 1𝑒4 in x and
y directions, respectively.

6.2.2. Interface width-Cahn number Cn

In the second part, the influence of the interface width 𝑤 on the numerical accuracy is
discussed. Here, I alter the model parameter 𝜖 in the free energy density functional Eq. (2.1)
from 0.5 to 4.0. In this way, the so-called Cahn number Cn= 𝑤/𝑑0 to express the ratio
of the interface width to the droplet diameter. By setting a larger 𝜖 , the interface width
increases, and so as Cn. The result in Fig. 6.3(I) implies that both the deformation factor
𝐷 and the surface charge density 𝐶𝑒 indicate Cn= 0.1 (𝜖 = 4.0) to be a good compromise
between accuracy and calculation speed.
Here, I address that the surface charge density 𝐶𝑒 is the key value of the validation

process, rather than the charge density 𝜌𝑒 . With the widened interface with Cn, the com-
position gradient ∇𝑐 reduces (see Fig. 6.3(III)) which results in the decreasing permittivity
gradient ∇𝜀 = (𝑑𝜀/𝑑𝑐)∇𝑐 . While the surrounding electric potential Ψ is hardly modified,
for there are not huge amounts of induced charges in our simulations. Resulting from this,
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Figure 6.3.: (I) The validation with the Cahn number (Cn=𝑤/𝑑0). Blue dots: deformation
factor 𝐷 with Cn; black hexagons: surface charge density 𝐶𝑒 with Cn. (II)
Charge density at 𝑡 = 104. Upper row: charge density distribution; lower row:
intersections along x and y directions. The upper and lower domain borders
are constrained with the electric potential Ψ1 = 10 and Ψ0 = 0, respectively.
The scale bar denotes 50 and the colorbar scales 𝜌𝑒 . (III) Concentration field at
𝑡 = 1𝑒4 with the colorbar below measures the droplet concentration.
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the calculated 𝜌𝑒 by the Poisson equation changes with Cn as

∇ · (𝜖∇Ψ) = ∇𝜖 · ∇Ψ + 𝜖∇2Ψ =
𝑑𝜖

𝑑𝑐
∇𝑐 · E + 𝜖∇2Ψ = −𝜌𝑒 (6.3)

In fact, according to the Gaussian law, the induced charge wrapped by a closed surface
should be irrelevant to the interface width. Hence, I choose the more appropriate𝐶𝑒 as the
criterion for deciding the resolution Δ𝑥 and interface width parameter 𝜖 , rather than the
charge density 𝜌𝑒 .

6.2.3. Residual threshold eps and time step

In this part, I focus on the numerical accuracy of solving the Navier-Stokes equation and
Poisson equation. Two factors are investigated, namely the residual threshold eps and
the time step Δ𝑡 . Here, eps controls the accuracy of the Poisson equation solutions for
the Navier-Stokes equation, as well as the Gaussian equation. When the absolute residual
values of these two equations become smaller than the preset eps, the iteration stops and
returns the velocity u and electrical potential Ψ. As illustrated in Fig. 6.4, the deformation
factor 𝐷 shows hardly any prominent influence by eps and Δ𝑡 . But the surface charge
density𝐶𝑒 converges as eps≤ 1𝑒−8 and Δ𝑡 ≤ 1𝑒−4. So I choose eps= 1𝑒−8 and Δ𝑡 = 1𝑒−4
in all other simulations of this work.

Figure 6.4.: Convergence of the droplet deformation factor𝐷 and the surface charge density
𝐶𝑒 with (I) the residual threshold of Poisson equation eps and (II) the time step
Δ𝑡 .

6.3. Model validation with Taylor’s theory

For the leaky dielectric droplet inside the electric field, its shape is deformed into an
ellipse. The deformation factor 𝐷 has been deduced as a function of permittivity ratio
𝜀𝑑/𝜀𝑚, conductivity ratio 𝜎𝑑/𝜎𝑚, and the electro-capillary number Ca𝐸 . In Ref. [87], Taylor
derived the deformation factor

𝐷 =
9Ca𝐸

16
(𝜎𝑑/𝜎𝑚)2 + 1.5𝜎𝑑/𝜎𝑚 − 3.5 𝜀𝑑/𝜀𝑚 + 1

(𝜎𝑑/𝜎𝑚 + 2)2
. (6.4)
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Another derivation in 2-dimensional case is achieved by Feng [88] who presents the
following expression,

𝐷 =
Ca𝐸 [(𝜎𝑑/𝜎𝑚)2 + 𝜎𝑑/𝜎𝑚 − 3 𝜀𝑑/𝜀𝑚 + 1]

3(𝜎𝑑/𝜎𝑚 + 1)2
. (6.5)

In the following parts, I validate our model by changing the permittivity ratio 𝜀𝑑/𝜀𝑚,
conductivity ratio 𝜎𝑑/𝜎𝑚 between droplet and matrix, and the electro-capillary number
Ca𝐸 . The simulated droplet deformation factor 𝐷 is compared with both Eqs. (6.4) and (6.5).

6.3.1. Permittivity

Figure 6.5.: (I) The droplet deformation factor 𝐷 with the permittivity ratio 𝜀𝑑/𝜀𝑚 between
droplet and matrix, compared with Taylor’s (black dashed line) and Feng’s
theory (blue solid line). (II)(a) The charge density 𝜌𝑒 and (b) the concentration
distribution 𝑐 . (III) Left half panel: the velocity field u; right half panel: |u|
scaled by the color bar below. The grey circles mark the droplet interfaces.

The initial setup is identical to Sec. 6.2.1, as shown in Fig. 6.2(II). The permittivity ratio
𝜀𝑑/𝜀𝑚 varies from 0.1 to 100. The simulated deformation factor presents two behaviors,
as depicted in Fig. 6.5(I). At 𝜀𝑑/𝜀𝑚 < 10.3, 𝐷 < 0 denotes a prolate droplet shaped under
the electric field. While for the setup with 𝜀𝑑/𝜀𝑚 > 10.3, the droplet is stretched in the
horizontal direction forming an oblate ellipse with 𝐷 > 0. The droplet morphology
snapshots in Fig. 6.5(II) clearly demonstrate the shape changing from prolate to oblate
with increasing 𝜀𝑑/𝜀𝑚. Compared with Eqs. (6.4) and (6.5), a better match gives credit to
Feng at a larger permittivity ratio, and the droplets with 𝜀𝑑/𝜀𝑚 ≤ 1.0 are more consonant
with Taylor’s theory. As discussed in previous researches [89, 34], the droplet deformation
is propelled by the induced interfacial charges, which change signs at 𝜀𝑑/𝜀𝑚 = 10.3 (see
Fig. 6.5(II)). Resulting from this, the Coulomb force and the dielectric force trigger the
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fluid flow tangent to the droplet interface. For 𝜀𝑑/𝜀𝑚 > 10.3, the material flows from pole
to equator, while reversed at 𝜀𝑑/𝜀𝑚 < 10.3, which is illustrated by the velocity vectors in
Fig. 6.5(IV). Consequently, the droplet shows diverse ending equilibrium morphologies.

6.3.2. Conductivity

Next, the conductivity ratio between the droplet and matrix 𝜎𝑑/𝜎𝑚 is varied from 0.5 up to
100.0 at the constant permittivity ratio 𝜀𝑑/𝜀𝑚 = 80.0. All other simulation parameters are
identical to Sec. 6.3.1. The comparison with Taylor and Feng’s theory is demonstrated in
Fig. 6.6 and the good consistency of the droplet deformation factor 𝐷 with Feng’s equation
(blue solid line) can be observed.

Figure 6.6.: The droplet deformation factor 𝐷 with the conductivity ratio 𝜎𝑑/𝜎𝑚 between
droplet and matrix, compared with Taylor’s (black dashed line) and Feng’s
theory (blue solid line).

6.3.3. Electro-capillary number

Figure 6.7.: (I) The droplet deformation factor 𝐷 with the electro-capillary number Ca𝐸 ,
compared with Feng’s theory (blue dashed lines), (a) oblate droplets; (b) prolate
drops. (II) The droplet interface with various Ca𝐸 of the oblate drops. Dots:
simulated interface positions with 𝑐 = 0.5; lines: elliptical fitting with the least
squares method. (III) concentration profiles of the interface intersected at x=0,
(a) oblate; (b) prolate.

Next, I alter the electro-capillary number Ca𝐸 . Here, two scenarios are considered, the
oblate and prolate droplet (named after the final morphology). Setting the permittivity
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ratio 𝜀𝑑/𝜀𝑚 = 80.0 and the conductivity ratio 𝜎𝑑/𝜎𝑚 = 5.0, the droplet deformation factor
𝐷 shows a linear relationship with Ca𝐸 , as guided by the blue dashed line in Fig. 6.7(I)(a).
Similarly, for the prolate drops, by choosing 𝜀𝑑/𝜀𝑚 = 1.75 and 𝜎𝑑/𝜎𝑚 = 3.5, 𝐷 ∝ Ca𝐸 is
in good agreement with Feng’s theory. Some discrepancies are expected at large Ca𝐸
setups where the droplet interface deviates from the elliptical shape. Clearly noticeable
in Fig. 6.7(II), the interface position marked by the red dots for Ca𝐸 = 10.0 shows large
mismatches with the solid ellipse line fitted with the least squares method. In this way,
both Taylor and Feng’s analytical equations are incapable of describing the real stretched
interface. In our model, I observe another mechanism attributing to this derivation which
is not considered in previous researches. As I compare the concentration distribution along
the interface between different Ca𝐸 in Fig. 6.7(III)(a), the interface widens itself and the
matrix equilibrium concentration increases with Ca𝐸 . It indicates that the thermodynamic
equilibrium is modified by the external field.

Figure 6.8.: (I) The schematic equilibrium condition. The free energy densities with and
without the electric field strength E are depicted with the solid blue and
black lines, respectively. The dot-dashed lines are the common tangent at
equilibrium, with the open dots marking the equilibrium compositions 𝑐 with
E and open squares for 𝑐 without E. (II) The equilibrium concentration 𝑐 and
electric potential Ψ at 𝑡 = 1𝑒5 with the electro-capillary number Ca𝐸 = 0.5.
(III) Droplet-matrix interfacial tension 𝛾 < 0 with Ca𝐸 number. The simulated
values (open dots) fall on the theoretical line with Eq. (6.7). The red-colored
region highlights the interfacial instability with 𝛾 < 0 at Ca𝐸 ≥ 6.0. (IV) The
interface instability evolves with time at Ca𝐸 = 8.0. The color bar scales the
composition.

6.4. Thermodynamics with electric fields

To study the electro-thermodynamic equilibrium, a flat droplet-matrix interface is consid-
ered, as illustrated in Fig. 6.8(IV)(𝑡 = 0), where the curvature effect is negligible inside the
bulk regions with 𝜅𝜖∇2𝑐 = 0. In this way, the simplified electrochemical potential reads

𝜇 (𝑐) = 𝜕𝑓

𝜕𝑐
− 𝜕𝑢

𝜕𝑐
=
𝜕𝑓

𝜕𝑐
− Ca𝐸

2
(𝜀𝑑 − 𝜀𝑚)E2. (6.6)
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Due to the difference of the conductivity 𝜎 (𝑐) = 𝜎𝑑𝑐 + 𝜎𝑚 (1 − 𝑐), the electric field strength
E𝑚 inside the bulk matrix becomes larger than E𝑑 amid the bulk droplet, as shown by
the simulated equilibrium electric field in Fig. 6.8(II). Moreover, the electric field strength
E changes the energy state of the droplet and matrix, leading to the right-lopsided free
energy density 𝑓 + 𝑢 which is schematically illustrated in Fig. 6.8(I). At equilibrium, the
new equilibrium compositions 𝑐𝑚 and 𝑐𝑑 of each phase are established by the tilted blue dot-
dashed common tangent line. In the matrix phase, the equilibrium concentration 𝑐𝑚 shows
a larger deviation Δ𝑐𝑚 than Δ𝑐𝑑 inside the droplet. Due to the equilibrium concentration
changes, the surface tension is affected by the electric field and can be expressed by the
following integral from 𝑦 = 0 to∞ as

𝛾 =

∫ ∞

0

[
Δ𝑓 (𝑦) + Δ𝑢 (𝑦) + 𝜅𝜖

2
(∇𝑐)2

���
𝑦

− Ca𝐸
2

|∇𝜀 |
(
∇Ψ

) 2
���
𝑦

]
𝑑𝑦

=

∫ ∞

0

[
𝜅𝜖 (∇𝑐)2 − Ca𝐸 |∇𝜀 |E2

]
𝑑𝑦

= 𝛾 ∗ − Ca𝐸
∫ ∞

0
|∇𝜀 |E2𝑑𝑦. (6.7)

Testified in our simulations shown in Fig. 6.8(III), the surface tension 𝛾 follows the linear
relationship with Ca𝐸 . A further increase in the electric effect can result in interface
instability. As demonstrated in Fig. 6.8(IV) with Ca𝐸 = 8.0, the interface starts to oscillate
and develops the fingering morphology at 𝑡 = 4𝑒2. Finally, the droplet phase gets polarized
and its interface lays parallel to the electric field direction at 𝑡 = 1.5𝑒3. With further
enhancing the dielectric force, the surface tension converges to zero.

Inferring from the above discussion, I emphasize two crucial mechanisms contributing
to the fluid deformation inside the electric field. (I) The dielectric force proportional to
−∑

𝑁

𝑖=1 𝑐𝑖 (𝛿𝑢/𝛿𝑐𝑖) − 𝜌𝑒 (𝛿𝑢/𝛿𝜌𝑒). (II) The droplet surface tension reduction proportional to
−Ca𝐸 |∇𝜀 |E2. Resulting from this, the fluid gets stretched and expands its surface area
most rapidly in the direction with the largest surface tension decrease. The electric
field induced surface tension drop is vastly ignored in previous researches and should be
carefully scrutinized for the surface tension force treatment in the front-tracking simulation
methods, such as LS and VOF.
In addition, I suggest a more complex phase diagram for the binary fluids inside the

electric field, as illustrated in Fig. 6.9(I). According to Gibbs’ phase rule, the degree of
freedom F=C− P+ n is decided by the component number C= 2, the phase number P, and
the external factor number n. In isobaric cases, n= 2 represents the two decisive factors,
namely the temperature 𝑇 and electric field strength E. Theoretically, the equilibrium
compositions 𝑐𝑚 and 𝑐𝑑 can be calculated with

𝜇 (𝑐𝑚) = 𝜇 (𝑐𝑑) = 𝜇𝑒,[
𝑓 (𝑐𝑚) + 𝑢 (𝑐𝑚)

]
−
[
𝑓 (𝑐𝑑) + 𝑢 (𝑐𝑑)

]
= 𝜇𝑒 (𝑐𝑚 − 𝑐𝑑),

|E𝑚 | =
Ψ1 − Ψ0

𝐿

𝜎 (𝑐𝑑)
𝜎 (𝑐𝑚) + 𝜎 (𝑐𝑑)

, |E𝑑 | =
Ψ1 − Ψ0

𝐿

𝜎 (𝑐𝑚)
𝜎 (𝑐𝑚) + 𝜎 (𝑐𝑑)

.

(6.8)

Instead of the binodal line, the equilibrium composition is expressed by a 3-dimensional
binodal surface, as highlighted in Fig. 6.9(I). Simulated at various temperatures 𝑇 ; see
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6. Multi-component phase separation inside the electric field

Figure 6.9.: (I) The schematic phase diagram (PD) of the binary fluid system with tempera-
ture 𝑇 -composition 𝑐-electric field strength |E| obeying the Gibbs’ phase rule.
(II) The binodal compositions with temperature𝑇 are influenced by the electric
field and deviate from the black binodal line (E= 0). Open dots: simulation
as in (III) and (IV); solid colored lines: theory with Eq. (6.8). (III) Equilibrium
concentration profile across the interface with temperature 𝑇 at E= 0 (solid
lines) and with E (dashed lines) as (II). (IV) Equilibrium electrical field Ψ with
temperature 𝑇 at 𝑡 = 1𝑒6 with Ψ1 = 20 at 𝑦 = 0 and Ψ0 = 0 at 𝑦 = 200. Rest
parameters are identical to Fig. 6.2.

Fig. 6.9(III) and (IV), the T-c phase diagram for the binary fluid system at Ca𝐸 = 1.0 is
recovered in Fig. 6.9(II). Both 𝑐𝑚 (blue open dots) and 𝑐𝑑 (red open dots) deviate largely
from the black solid E-free binodal line and show good consistencies with the theoretical
colored binodal lines calculated via Eq. (6.8).

6.5. Dynamics with capillary wave theory

In the previous section, thermodynamics, especially the equilibrium states, are discussed.
In this section, I study energy dissipation with the help of the capillary wave theory (CWT).
For liquid surfaces perturbed by small thermal noises, its energy dissipation obeying CWT
has been proved by several experiments [46, 47]. When the perturbation is small, the
increase in the surface energy Δ𝐸 is proportional to the change in the surface area as

Δ𝐸 ≈ 𝛾

2

∫ (
∇ℎ

) 2
𝑑𝑥𝑑𝑦, (6.9)

where the interface position ℎ is marked by the location with the droplet composition
𝑐 = 0.5. After Fourier transformation, Eq. (6.9) is rewritten as

Δ𝐸 (𝑞) = 𝛾
2

∫
𝑞2
��Δℎ̃(𝑞)��2𝑑𝑞,

where 𝑞 denotes the wave frequency, and Δℎ̃2(𝑞) stands for the capillary wave amplitude.
At equilibrium, each wave mode of the fluctuation has the energy of 𝑘𝐵𝑇 , which says〈

Δℎ̃2(𝑞)
〉
=

𝑘𝐵𝑇

4𝜋 2𝑞2 𝛾
. (6.10)
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Figure 6.10.: (I) The exemplary composition 𝑐 and charge density 𝜌𝑒 perturbed by the
composition noise 𝝃

𝑐
= (0.01, 0.01) at 𝑡 = 1𝑒5 with Ca𝐸 = 0.1. The color bar

of 𝜌𝑒 value is in log-scale. (II) The capillary wave amplitudes ⟨Δℎ̃2(𝑞)⟩ with
the wave frequency 𝑞 for different Ca𝐸 numbers. The black solid line guides
⟨Δℎ̃2(𝑞)⟩ ∼ 𝑞−2.

To validate the energy dissipation of the droplet interface in our electro-hydro-thermo-
dynamic model, a flat fluid-fluid interface is placed in the center of a 100 × 100 domain,
as shown in Fig. 6.10(I)(a). All other setups are identical to Sec. 6.3.3. Perturbed by the
compositional fluctuation with the amplitude of 𝝃

𝑐
= (0.01, 0.01), the induced charges are

clearly visible at both interface and the bulk regions, as demonstrated in Fig. 6.10(I)(b). This
observation is totally distinct from the charge distribution without noise; see Fig. 6.2(II).
By varying Ca𝐸 from 0.01 to 1.0, the capillary wave amplitude

〈
Δℎ̃2(𝑞)

〉
in Fig. 6.10(II)

not only shows the 𝑞−2 scaling law predicted by the CWT, but also magnifies with the
increase in Ca𝐸 . This observation indicates that the leaky dielectric droplet still follows
CWT, which suggests the energy dissipation via surface energy reduction.

6.6. Result and discussion

In this section, I discuss the droplet coalescence and spinodal decomposition of an A-B-C
ternary system with the electro-hydro-thermodynamic model. Choosing the free energy
parameters in Tab. 6.1, the ternary phase diagram in Fig. 6.11 has three local minimal
states, as marked by the red open dot for component 1 rich phase A, the blue open dot for
component 2 dense phase B, and the purple open square for C. The corresponding equi-
librium compositions for phases A, B, and C are (0.770, 0.115, 0.115), (0.115, 0.770, 0.115),
and (0.115, 0.115, 0.770), respectively.

6.6.1. Ternary droplet coalescence

For binary system, abundant previous results [89] are available for the droplet coalescence
with electro-hydrodynamics. The droplets merge by minimizing the surface energy,
resulting in the final morphology of a single droplet. With our multi-component model, I
elucidate the ternary droplet coalescence by placing the red droplet (component 1 riched
phase A) and another blue droplet (component 2 dense phase B) in a 240 × 480 purple
matrix (phase C) domain. The initial droplet radii are 40 and their spacing is set to be 40,

101
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Parameters Description Values
𝜒12, 𝜒13, 𝜒23 Flory parameters 2.5, 2.5, 2.5

𝜒123 Triple interaction parameter 3.5
𝜅 Surface tension parameter 1.0
𝜖 Interface width parameter 4.0

𝐷1, 𝐷2, 𝐷3 Diffusivity for each component 1.0, 1.0, 1.0
𝜌1, 𝜌2, 𝜌3 Density for each component 1.0, 1.0, 1.0
𝜂1, 𝜂2, 𝜂3 Viscosity for each component 1.0, 1.0, 1.0

Table 6.1.: Simulation parameters for the ternary system.

Figure 6.11.: Ternary phase diagram of an A-B-C system, on which the equilibrium compo-
sition of A, B, and C are marked by the red open dot, blue open dot, and purple
open square, respectively. The parameters of free energy density are tabulated
in Tab. 6.1. The color bar measures the free energy density magnitude.
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as shown in Fig. 6.12(I)(a). The external electric field parallel to the x-direction is applied
with Ψ1 = 24.0 at the left boundary and Ψ0 = 0 at the right. Here, the conductivity for each
component is assigned to be (𝜎1, 𝜎2, 𝜎3) = (5.0, 1.0, 1.0) and a special permittivity setup is
chosen as (𝜀1, 𝜀2, 𝜀3) = (50.0, 1.0, 5.0).

Figure 6.12.: Ternary droplet coalescence coupled with electro-hydrodynamics. (I) Surface
tension dominant coalescence with a weak electrostatic effect, Ca𝐸 = 1.0.
(a) The composition field 𝒄 evolves with time and the color bar shows red
for droplet A, blue for droplet B, and purple for matrix C. The velocity field
is stacked on the same figure. (b) The evolution of the charge density 𝜌𝑒
with time and the values are scaled by the color bars beneath the figure. (II)
The electric field dominated droplet motion with a strong electrostatic effect,
Ca𝐸 = 10.0. The velocity magnitude is measured by the vector cone size, as
well as the white-black color bar.

Clearly noticeable in charge density distribution in Fig. 6.12(I)(b), the selected permit-
tivity ratio emerges negative charges at the right side of droplet A, directly towards the
charges with the same sign on the left side of droplet B. This scenario can never take
place in the binary system and the repulsive Coulomb force of the same charges can
magnificently alter the droplet coalescence. By setting a weak electric capillary effect with
Ca𝐸 = 1.0, the surface tension overwhelms the electric forces. The Coulomb force scaled
by Ca𝐸 is too weak to stop the aggregation of the negative charges. At 𝑡 = 1𝑒4, the droplets
merge into a Janus particle which is composed of the oblate droplet A and prolate drop B,
as depicted in Fig. 6.12(I). After coalescence, the Janus droplet experiences the so-called
Quincke rotation [31, 90] counterclockwise. Similar morphological transformations are
reported in the Janus droplet [91] and double-emulsion droplet [92].
With further increasing Ca𝐸 to 10.0, the droplet coalescence is entirely denied by

the repulsive Coulomb force between A and B, as highlighted by the white squares in
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Fig. 6.12(II)(b). The left interface of the red droplet A is firstly deformed into a con-
cave shape, and finally cut into 2 small droplets, as marked by yellow dashed lines in
Fig. 6.12(II)(a). Moreover, the strong electrostatic force propels the fluid flow in the whole
domain, causing the instability of the elongating blue droplet B which ruptures into 3
satellite drops at 𝑡 = 3𝑒3. Similar droplet breakup has been observed in the electrospinning
process [93] and needs to be heeded in future works.

6.6.2. Ternary spinodal decomposition

Figure 6.13.: Ternary spinodal decomposition (SP) coupled with electro-hydrodynamics.
(I) Surface tension dominant SP with weak Ca𝐸 = 1.0. (a) The composition 𝑐
stacked by the velocity field (grey cones). Two stretched droplets are high-
lighted with yellow dot-dashed lines. (b) The charge density 𝜌𝑒 evolution
scaled by the color bars below. (II) The electric field dominated SP with strong
Ca𝐸 = 10.0. Some charge-induced vortices are highlighted in white "⊗/⊙"
symbols obeying the right-hand rule.

In this part, the influence of electrohydrodynamics on the ternary spinodal decom-
position is elucidated. Initially, a homogeneous 200 × 200 domain with composition
𝒄 = (0.33, 0.33, 0.34) is perturbed by the composition noise with amplitude of 𝝃

𝑐
=

(0.01, 0.01, 0.01). The permittivity and conductivity are set to be (50.0, 25.0, 1.0) and
(5.0, 3.0, 1.0), and the electric field setup is identical to sec. 6.2.1. Triggered by noises, the
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phase separation starts and produces a huge amount of interfaces, as shown in Fig. 6.13(I)(a).
Due to the selected permittivity ratio, the purple phase C is stretched in y direction by
the electric force, while the red phase A elongates in the x direction which is highlighted
by the yellow dot-dashed line in Fig. 6.13(I)(a). Since the weak electro-capillary effect
with Ca𝐸 = 1.0 is adopted, the surface tension dominates the morphological evolution.
The inhomogeneous surface tension induced the so-called Marangoni flow which propels
the droplet coalescence. In the white squares of Fig. 6.13(I)(a), the Marangoni flow is
sketched by the grey cones. Large flow velocity appears when droplets merge and the fluid
flow behaves vastly like the laminar flow with direction perpendicular to the interfaces.
Consequently, the final morphology shows only a subtle difference from the spinodal
structures with slightly deformed droplets.
By increasing Ca𝐸 to 10.0, the electric effect becomes dominant. The fluid flow is no

longer decided by the surface tension itself, and its direction is highly correlated with
the charge distribution. Highlighted in the white dashed squares in Fig. 6.13(II), negative
charges are induced at the left interface of the purple droplet C, and positive charges on the
right side. Therefore, the Coulomb’s force results in the upwards fluid flow tangent to the
left interface, while the downstream appears on the right. Consequently, the vortex marked
by the white "⊗" symbol is produced which rotates the droplet C clockwise. Moreover, the
vortex expands to the entire domain until damped by the viscous effect, and results in the
rotation of the whole domain. Consequently, the phase separation morphology deviates
largely from the spinodal structure in Fig. 6.13(I). In addition, I find the transient state in
the white circles in Fig. 6.13(II). Different from the surface tension dominated scenario,
the zigzag interface is stabilized by the electric field. Finally, when the induced charges
get gradually dissipated by the conduction, all droplets get polarized, forming a lamellar
structure parallel to the external field.

6.7. Conclusion

In conclusion, I present a multi-component electro-hydro-thermodynamic model to inves-
tigate the droplet behaviors affected by the interplay of diffusion, hydrodynamics, and
electric field. The total energy functional for both leaky and perfect dielectric materials
is derived and the corresponding energy law is presented. The validation of our model
with Taylor and Feng’s classic theories is performed in 2D. Most importantly, differing
from the previous models, the expression of the electrochemical potential 𝜇 is revisited
and the dielectric-related correction term is added to recapitulate the models. The modifi-
cation in the chemical potential leads to a generalized electro-hydro-thermodynamic force
including the Kortweg stress and the Maxwell stress. Consequently, the thermodynamic
equilibrium is deeply impacted by the electric field which explains the surface tension
reduction induced by the electric field that has been observed in many experiments. In
addition, our multi-component model enables us to study the ternary droplet coalescence
and spinodal decomposition, bringing some interesting observations that can hardly be
scrutinized in the binary system. I expect that the present model will help to understand
the electrohydrodynamic behaviors of complex droplet systems and deepen our knowl-
edge of droplet/fluid manipulation by the electric field, for instance, in the electrospinning
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process. Other suggestions for future work could be the electro-wetting/dewetting and
ionized surfactant-related phenomena.
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7. Conclusion

7.1. Conclusion and remarks

In this doctoral thesis, the investigation primarily focuses on elucidating the behaviors of
liquid phase separation (PS) through the utilization of three distinct phase-field models: the
Cahn-Hilliard (CH) model, the Cahn-Hilliard-Navier-Stokes (CHNS) model, and the Cahn-
Hilliard-Navier-Stokes-Gauss (CHNSG) model. For an in-depth exploration of ternary
phase separation predominantly governed by diffusion, an extension of the multicompo-
nent CH model is devised, building upon prior algorithms designed for binary systems.
Furthermore, to account for hydrodynamics during PS, the CHNS model is revisited, cul-
minating in an accurate formulation of the surface tension force within the Navier-Stokes
(NS) equations, derived from the energy minimization principles. Subsequently, for PS
occurring in the presence of an electric field, the CHNSG model is specifically formulated
for both leaky and perfect dielectric fluid systems. The respective boundary conditions for
electric potential and charge density—namely, Neumann, Dirichlet, and periodic boundary
conditions—are applied. Each of these phase-field models undergoes meticulous validation
across two critical domains. Firstly, careful attention is paid to numerical stability across
all three models, scrutinizing simulation accuracy and convergence by varying resolution
and timestep parameters. Specifically, for the CHNS and CHNSG models incorporating
NS equations and Gauss’ law (including charge), the accuracy and stability of solving the
Poisson equation are examined. Secondly, simulation results are rigorously compared
against analytical theories or experimental data. For scenarios where interfacial tension
significantly influences outcomes, simulated interfacial tensions are validated against
experimental values. Simulations involving hydrodynamics entail a comparison of the
relationship between droplet pressure and interface curvature with the classic Young-
Laplace equation. Additionally, simulations for droplet deformation within an electric
field (referred to as electric-hydro-thermodynamic or EHTD cases) are contrasted with
analytical theories based on G.I. Taylor and J. Feng.
It is pertinent to note that the initiation of phase separation necessitates perpetual

thermal noises, conforming to formulations based on the fluctuation-dissipation theorem
(FDT) derived from statistical mechanics. Typically, thermal noise serves as a trigger
primarily active during the early stages of PS. Through the simulation of droplet motion
under thermal noises, the stochastic CH and CHNS models are effectively validated. The
Brownian motion induced by thermal noises is thoroughly discussed, accounting for
various parameters such as droplet radii, interfacial tension, temperature, and viscosity.
A fundamental characteristic of Brownian particles, as expressed in the quintessential
Einstein relation, is the mean squared displacement (MSD), represented by ⟨Δ𝑿2⟩ ∼ 𝑛𝐷∗𝑡 ,
where 𝑛, 𝐷∗, and 𝑡 correspond to dimension, Brownian coefficient, and time, respectively.
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However, the Brownian motion of droplets exhibits pronounced energy dissipation at
the interface, a phenomenon not considered in Einstein’s deduction based on the rigid
body assumption. Particularly, a comprehensive investigation into the differences between
two types of thermal noises—composition noise and random body force—is conducted.
Although the fluctuation-dissipation theorem prescribes similar formulations for both
noises in prior stochastic phase-field models [20], and Langevin mechanics [94], their
dissipation mechanisms are significantly diverse. The composition noise stems from
fluctuations in chemical free energy and is mitigated by surface tension, while the random
body force arises from kinetic energy perturbations and dissipates via Stokes’ drag force.
An essential motivation for studying noises prior to PS lies in the recognition that thermal
noise can profoundly impact late-stage PS by influencing droplet coalescence driven by
Brownian motion.
To evaluate the multicomponent Cahn-Hilliard model, simulations are conducted to

replicate the formation of multi-layer polymeric emulsions through liquid-liquid phase
separation. The evolution of local composition within the droplets during the emulsifica-
tion process is meticulously tracked, allowing for analysis of the kinetics governing the
establishment of ’onion-like’ multi-layer structures. The simulation outcomes highlight
that surface energy minimization competes significantly with spinodal decomposition in
determining transient morphologies of emulsion droplets. Manipulating surface tension,
size, and composition of the mixture reveals a spectrum of intermediate microstructures,
ranging from multi-chambered droplets to micro-satellite particles. The insights garnered
from this study, encompassing multiple emulsion formations via kinetics analysis, of-
fer promising prospects for the advancement of multi-phase microfluidic manipulation
technology across diverse applications.

It is essential to emphasize that the CH model exclusively accounts for diffusion as the
primary mechanism driving PS. In the study of multi-layer emulsions, minor divergences
in morphological evolution between simulation and experiment are attributed to fluid flow
phenomena, such as Marangoni flow—an aspect overlooked in the CH model but pervasive
in real fluid systems. Consequently, the hydrodynamic effect is explicitly addressed in
the CHNS model. To evaluate the multicomponent Cahn-Hilliard-Navier-Stokes model,
investigations are conducted concerning the formation of Janus droplets through thermally
induced liquid-liquid phase separation. Analogous to the CH model, this study examines
the interplay between two dominant mechanisms shaping morphological evolution: i)
the diffusion-dominated phase separation process, and ii) interfacial energy minimization.
The interplay of these factors yields a diverse array of transient droplet morphologies,
including polygonal structures and patchy droplets. Importantly, the significance of the
hydrodynamic effect is underscored within the CHNS model. Due to the constrained
diffusivity of entangled long polymer chains, the Marangoni effect induced by composition
inhomogeneity becomes comparable to the diffusion of polymeric species. Consequently,
the phase separation process and droplet coalescence are significantly accelerated by the
Marangoni flow, resulting in a broad spectrum of Janus droplet sizes. The CHNS model,
by virtue of its simulation of Janus droplet formation, advances the comprehension of
morphological evolution during PS, with potential applicability to a myriad of complex
fluid systems. This model’s versatility renders it amenable to applications in microfluidics,
droplet manipulation, and related domains.
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Subsequently, the study extends to the multi-component electro-hydro-thermodynamic
CHNSG model, focusing on elucidating droplet behaviors influenced by the interplay of
diffusion, hydrodynamics, and electric fields. The total energy functional for both leaky
and perfect dielectric materials is derived, and the corresponding energy law is presented.
The validation of this model against Taylor and Feng’s classical theories is meticulously
carried out in a 2D context. Notably departing from earlier models, this work revisits
the expression for the electrochemical potential (𝜇) and introduces a dielectric-related
correction term to accurately recapitulate the models. This modification in the chemical
potential engenders a generalized electro-hydro-thermodynamic force, encompassing
Kortweg stress and Maxwell stress. Consequently, the thermodynamic equilibrium is
profoundly influenced by the electric field, elucidating the observed reduction in surface
tension induced by the electric field in numerous experiments. Additionally, ternary
spinodal decomposition and ternary droplet coalescence are investigated within the multi-
component model, considering the intricate interplay of composition field, velocity field,
and electric field. The fluid’s behavior in this scenario diverges significantly from that
observed in the CH and CHNS models due to these interactions. The impact of the electric
field on interfacial tension is examined from a thermodynamic perspective, yielding good
agreement with Gibbs’ phase law. A mechanism elucidating the reduction in interfacial
tension, associated with the orientation of the interface in response to the electric field, is
also presented. The study carefully deliberates on the influence of the electric field on the
phase separation process. Notably, as the electric field strength increases, PS transitions
from droplet or bi-continuous structures to lamellar structures parallel to the external
electric field. The CHNSG model holds promise for potential applications in the design of
electronic devices.

7.2. Future directions

The present dissertation primarily delves into an exploration of three phase-field models
and their applications pertaining to the phase separation process. In certain complex
systems, such as solutions containing long-chain polymeric entities, the behavior of
viscoelastic polymer species significantly deviates from that of small molecules, rendering
accurate descriptions inadequate via the CH and CHNS models. A thorough review of
pertinent literature [95, 96, 97] and discussions concerning the viscoelastic model have
been initiated. These discussions hold promise for intriguing observations. For example,
when viscoelasticity is integrated, the CHNS model facilitates an investigation into liquid-
liquid phase separation within intricate contexts, like living cells and colloid systems.
Additionally, stochastic behaviors undergo substantial alterations when droplets engage
in Brownian motion within viscoelastic environments. The distinct relaxation time of the
viscoelastic surroundings impedes synchronous movement with the droplet, potentially
constraining its motion and modifying random motion into non-Gaussian behavior, as
observed in experiments [98, 99, 10]. The viscoelastic model provides a platform to explore
off-equilibrium multicomponent systems, offering insights into new thermodynamic and
dynamic phenomena.
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7. Conclusion

Given that the CHNSG model has been validated to simulate systems with multiple
droplets, it can be extended to investigate electrospinning and electrowetting phenomena.
The crux lies in the accurate application of boundary conditions on the substrate in contact
with the fluid. In the electrospinning process, the substrate acts as the nozzle through
which the electrospun polymer solution is extruded. This extension has already been
implemented, and future endeavors will involve tests related to Taylor cone formation. In
the context of electrowetting, the substrate functions as the electrode attracting or repelling
ionized surfactants. By altering the voltage on the substrate, the surfactant concentration
is modified, subsequently altering the contact angle of the sessile droplet. Another crucial
extension necessitated by the electrowetting model is the exploration of ionized surfactant
electromigration. This has been integrated into the Paced3D model, based on the previous
works of our group [100, 101, 102, 103] for the wetting phenomenon, requiring further
validation. Leveraging this model, the study of multiple droplet microfluidic systems is
facilitated. In previous model [104], droplets were artificially assigned different phase
variables to prevent coalescence. However, this approach lacks physical basis, merely
mimicking electric interactions between surfactants at the droplet interface to stabilize and
prevent coalescence. Future research will apply the ionized surfactant model to simulate
intriguing structures, enhancing our understanding of physical processes within living
cells.
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A. Appendix

A.1. Non-dimensionalization

In this section, the non-dimensionalization process is presented. Here, the most complex
Cahn-Hilliard-Navier-Stokes-Gauss model for the leaky material is selected as the example.
The characteristic scaling factors for all the other physical parameters are shown in Ta-
ble 2.1. Substituting the scaling factors into the CHNSGmodel Eqs. (2.34) (2.35) (2.36) (2.37)
and (2.38), resulting in
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After simplification, the non-dimensionalized form of the Cahn-Hilliard-Navier-Stokes-
Gauss equation reads
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The dimensionless quantities Re, We, Ca, and P𝑒 are calculated as

𝑃𝑒 =
𝑢∗𝑥∗

𝐷∗ , 𝑅𝑒 =
𝜌∗𝑢∗𝑥∗

𝜂∗
, 𝑊 𝑒 =

𝜌∗𝑢∗2𝑥∗

𝜎∗
, Ca𝐸 =

𝜀∗𝐸∗2𝑥∗

𝜎∗
.
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A.2. List of symbols

Notation Description
Ω Domain investigated
𝑆 Domain boundary
L Total energy functional
F Chemical free energy functional
S Entropy
H Enthalpy
G Interfacial energy functional
K Kinetic energy
U Electrical potential energy
𝑔 Chemical free energy density
𝑓 Bulk free energy density
𝑠 Bulk entropy density
ℎ Bulk enthalpy density
𝑐𝑖 Concentration of composition 𝑖
𝑐𝑑 Equilibrium droplet concentration
𝑐𝑚 Equilibrium matrix concentration
𝑁 Number of components
𝜇 Electrochemical potential
𝜒 Flory interaction parameter
𝛾 Surface tension
𝜅 Surface tension parameter
𝜖 Interface width parameter
𝑘𝐵 Boltzmann constant
𝑣𝑚 Lattice volume
𝑇 Temperature
𝒙 Position vector
𝑡 Time
𝐷 Diffusivity
M Mobility
𝜏 Kinetic parameter for Allen-Cahn model
𝝃
𝑐

Thermal composition noise amplitude vector
𝜉𝑎 Thermal phase variable noise amplitude
𝛿𝐾 Kronecker’s delta
𝜆 Lagrange multiplier
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u Fluid velocity
𝑝 Hydrostatic pressure
𝑃 Grand potential
𝜌 Density
𝜂 Dynamic viscosity
Θ Thermodynamic stress tensor
𝒇
𝑐

Thermodynamic force
T Viscous stress tensor
𝜎𝑀 Maxwell stress tensor
𝒇
𝑒

Dielectric force
𝐸 Surface energy

⟨Δℎ2(𝑞)⟩ Capillary wave amplitude
𝑞 Capillary wave frequency
𝑢 Electrical energy density
Ψ Electric potential
E Electric energy strength
𝜎 Conductivity
𝜀 Permittivity
𝜌𝑒 Charge density
𝐶𝑒 Surface charge density
𝐷 Droplet deformation factor
Δ𝑥 Mesh resolution
Δ𝑡 Simulation time step
eps Poisson equation residual threshold
Pé Pélect number
Cn Cahn number
We Weber number
Re Reynold number
Ca𝐸 Electro-capillary number
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A.3. List of Abbreviations

Abbreviation Description
BC Boundary condition
BM Brownian motion
CH Cahn-Hilliard

CHNS Cahn-Hilliard-Navier-Stokes
CHNSG Cahn-Hilliard-Navier-Stokes-Gauss
CW Capillary wave
CWT Capillary wave theory
DP Degree of polymerization

EHTD Electro-hydro-thermodynamic
FDT Fluctuation-dissipation theorem
FH Flory-Huggins
NS Navier-Stokes equations

Pace3D Parallel Algorithms for Crystal Evolution in 3D
PF Phase-field
PDE Partial differential equation
SD Spinodal decomposition
NIPS Non-solvent induced phase separation
TIPS Thermally induced phase separation
PIPS Polymerization induced phase separation
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to septuple), which is in good agreement with the prediction of the dot
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