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Abstract

The growing popularity of personalized services, such as Netflix or Spotify, has
pushed the automotive industry to rethink the interior space in vehicles to meet
customer demands for more individual and predictive comfort systems. To satisfy
user’s needs, in-vehicle comfort functions play a fundamental role. Automating
the in-car comfort functions according to the particular needs and routines of each
individual user would not only make customers feel their car is personalized, but
also increase their level of comfort and create a more enjoyable and less distracting
driving experience.

The main goal of this dissertation is, therefore, to apply machine learning tech-
niques to transform the in-vehicle comfort functionalities into self-learning com-
fort systems, capable of learning the individual user behavioral patterns – such
as turning on the seat heater when it is cold – in order to seamlessly control the
desired vehicle functionality as the user would do.

To accomplish this objective, the general requirements for a self-learning com-
fort system in vehicles are identified through a comprehensive literature review.
Furthermore, taking those system requirements as a foundation, a generic sys-
tem architecture describing the main system components is introduced. After-
wards, a novel Bayesian nonparametric model for understanding user behavior
with in-vehicle comfort functions is presented. The user behavioral model is the
fundamental element of a self-learning comfort system. To infer the model’s
parameters, a variational inference algorithm is introduced. The algorithm ex-
tends the current state-of-the-art in variational inference techniques by permitting
a truncation-free inference approach with minimal resource usage, enhancing the
model’s flexibility and adaptability.
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To prove the feasibility of a self-learning comfort system in real-world settings,
a preliminary prototype of a self-learning window system is developed as an ini-
tial concept demonstration. Based on the knowledge gained from the prototypical
implementation, the initial inference algorithm is optimized. The optimized varia-
tional inference algorithm expands the previous one by enabling the incorporation
of expert knowledge into the learning procedure.

Then, the user behavioral model and the inference methods are examined using
synthetically generated data that represents challenging scenarios. Finally, a
comprehensive evaluation of the model’s performance is presented, for which
real-world data collected over a six-month experimental study is employed.

Overall, self-learning comfort systems offer a promising approach to satisfy the
user needs for personalized and intelligent interior spaces in vehicles. The user
behavioral model presented in this work stands as a fundamental element for their
development.
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Kurzfassung

Die zunehmende Beliebtheit von personalisierten Anwendungen wie Netflix oder
Spotify hat die Automobilindustrie dazu gezwungen personalisierte Systeme auch
für den Innenraum von Fahrzeugen zu entwickeln, um auch dort den Kundenwun-
sch nach individualisierbaren und prädiktiven Komfortsystemen zu erfüllen. Die
automatisierte Anpassung der Komfortfunktionen im Fahrzeug an die individu-
ellen Bedürfnisse und Gewohnheiten jedes einzelnen Nutzers erfüllt nicht nur den
Wunsch nach Individualität, sondern erhöht zudem den Komfort und ermöglicht
ein angenehmeres und fokussierteres Fahrerlebnis.

Das Ziel dieser Dissertation ist daher die Anwendung von maschinellen Lern-
verfahren, um Fahrzeug-Komfortfunktionen in selbstlernende Komfortsysteme
umzuwandeln. Diese Systeme sollen in der Lage sein die individuellen Verhal-
tensmuster des Nutzers – wie zum Beispiel die Aktivierung der Sitzheizung im
Winter – zu erlernen und anschließend die entsprechenden Komfortfunktionen
selbständig zu steuern, genauso wie der Kunde sie bedienen würde.

Um dieses Ziel zu erreichen, werden die allgemeinen Anforderungen an ein selb-
stlernendes Komfortsystem im Fahrzeug durch eine Literaturrecherche identi-
fiziert. Unter Berücksichtigung dieser Anforderungen werden eine generische
Systemarchitektur und die Beschreibung der wichtigsten Systemkomponenten
vorgestellt.

Anschließend wird ein neuartiges Bayesian Nonparametric Modell vorgestellt,
welches das Nutzerverhalten bei der Bedienung von Komfortfunktionen im
Fahrzeug erlernt. Dieses Modell ist das grundlegende Element eines selbstler-
nenden Komfortsystems. Zur Bestimmung der Modellparameter wird einen
Algorithmus der Variationsinferenz eingeführt. Der Algorithmus erweitert den
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Stand der Technik bezüglich Variationsinferenztechniken, indem die Flexibilität
und Anpassungsfähigkeit des Modells durch einen sogenannten "truncation-free"
Inferenzansatz mit minimaler Ressourcennutzung verbessert wird. "Truncation-
free" bedeutet hierbei, dass die Anzahl der Parameter nicht vordefiniert ist.

Um die Umsetzbarkeit des selbstlernenden Komfortsystems unter realen Bedin-
gungen nachzuweisen, wird ein vorläufiger Prototyp eines selbstlernenden Fen-
stersystems als erste Konzeptdemonstration entwickelt. Die gewonnen Erken-
ntnisse aus der prototypischen Implementierung werden zur Weiterentwicklung
des ursprünglichen Inferenzalgorithmus verwendet. Die Erweiterung des Algo-
rithmus besteht in der Möglichkeit der Einbeziehung von Expertenwissen in das
Lernverfahren.

Darüber hinaus werden das Nutzerverhaltensmodell und die Inferenzmethoden
untersucht mit synthetisch generierten Daten, die herausfordernde Szenarien ab-
bilden. Abschließend wird auf Basis von Messdaten einer sechsmonatigen Studie
eine umfassende Bewertung der Modellgüte durchgeführt.

Zusammenfassend bieten selbstlernende Komfortsysteme einen vielversprechen-
den Ansatz, um die Kundenwünsche nach personalisierten und intelligenten
Fahrzeuginnenräumen zu erfüllen. Das in dieser Arbeit vorgestellte Nutzerver-
haltensmodell ist das grundlegende Element für ihre Entwicklung.
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1 Introduction

1.1 Motivation

Since Gottlieb Daimler and Karl Benz developed the world’s first automobile
more than 120 years ago, vehicles have greatly improved in performance, safety
and comfort. While the early efforts of the automotive industry were concentrated
on the search for reliable and portable engines, today’s research is focused on the
electrification and integration of cutting-edge machine learning technologies into
vehicles ([1], [2]). As vehicles transform from traditional modes of transportation
into intelligent environments, the potential to revolutionize the driving experience
becomes increasingly evident.

The significance of the interior space in vehicles has grown recently, since people
are inside their vehicles for a considerable portion of their days [3]. Personalized
content in social media platforms and other web applications, such as Netflix
([4]) or Spotify ([5]), are setting the expectation for an individual experiences
in vehicles [6]. The desire for personalization is also motivated by the growing
popularity of car sharing solutions, which increases the demand for vehicles
capable of adapting their interior space to the individual needs of each different
customer. Offering passengers a tailor-made in-vehicle experience will not only
contribute to increase their satisfaction, but will be a crucial factor to brand
differentiation [7]. Furthermore, as higher-level autonomous driving solutions
become commonplace, the necessity for intelligent systemswithin vehicle interiors
gains further prominence, as they will be crucial to foster trust and acceptance of
autonomous vehicles [8].
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1 Introduction

In the interior space of vehicles, the systems designed to enhance the comfort and
well-being of passengers during travel are known as comfort systems. Traditional
automotive comfort systems have been designed with a one-size-fits-all approach,
failing to account for the diverse preferences and behaviors of drivers and passen-
gers. Even if some vehicle comfort systems offer different configuration options,
they are designed to fit the average user, and are often determined by user studies
and expert knowledge, incorporating little to no user-specific information.

Occupants’ individual information, like their frequent routes, preferred seat heat-
ing stage, or locations at which they typically open the window, can serve as a
foundation for automated and personalized comfort features. Although comfort
is inherently personal and subject to change over time, humans are creatures of
habits and tend to frequently perform the same actions under similar circum-
stances [9]. For instance, a driver may frequently turn on the seat heater in cold,
rainy days. The identification of such individual behavioral patterns is possible
taking advantage of the recent advancements in machine learning techniques,
which have demonstrated remarkable success in uncovering patterns in data [10].
Automating the in-car comfort functions according to the particular needs and
routines of each individual user would not only make customers feel their car is
personalized, but also increase their level of comfort and create a more enjoyable
and less distracting driving experience.

Themain goal of this dissertation is, therefore, to investigate howmachine learning
techniques can contribute to transform in-vehicle comfort functionalities into
intelligent and adaptable systems, capable of learning users’ frequent actions in
order to seamlessly control the desired vehicle functionality as the users would
do. A systemwith such capabilities is referred to as a self-learning comfort system
throughout this dissertation.

2



1.2 Research Questions

1.2 Research Questions

The primary motivation of this dissertation is to evaluate whether machine learn-
ing techniques can be used to learn and predict individual user behavioral patterns
with vehicle comfort functionalities, in order to develop personalized vehicle com-
fort systems. To achieve this objective, the following central research questions
(RQ) are presented.

RQ 1: What are the requirements for a self-learning comfort system?

Once the requirements for a self-learning comfort system have been identified,
the next step is to present a conceptual framework or architecture of the system
that fulfills these requirements, leading to the next research question.

RQ 2: How can the architecture and the components of a self-learning comfort
system be designed to satisfy the specified requirements?

At the core of any self-learning system lies amachine learning algorithm capable of
identifying individual user behavioral patterns and predicting future user actions.
Hence, the third research question that this work aims to answer is:

RQ 3: How can individual user behavioral patterns with vehicle comfort func-
tionalities be learned and predicted using machine learning algorithms?

1.3 Thesis Overview

The content roadmap of this dissertation is illustrated in Figure 1.1.

Chapter 1 introduces the concept of self-learning comfort systems in vehicular
scenarios. It motivates the research in this area and presents the research questions
that this thesis aims to answer.

Chapter 2 provides a review of the theoretical background and related work on
self-learning systems and Bayesian learning. Furthermore, the norms, design

3



1 Introduction

guidelines and constraints imposed by the vehicle environment are presented,
together with applications of intelligent systems in vehicles.

In Chapter 3, the iterative methodology followed throughout this dissertation
and the requirements on self-learning comfort systems in vehicles are introduced.
Moreover, the main components needed to fulfil these requirements are defined.

Based on the system’s requirements, Chapter 4 presents a Bayesian nonparametric
user behavioral model to learn and predict individual behavioral patterns with ve-
hicle comfort functionalities. The design of this user behavioral model constitutes
the central element of this dissertation, as it is the fundamental pillar upon which
a self-learning comfort system is built. Also, a novel truncation-free variational
inference algorithm is presented, which allows the model to dynamically adapt its
complexity to each individual user.

Subsequently, Chapter 5 presents a prototypical implementation of a self-learning
comfort system, exemplified with a self-learning window. This preliminary study
aims to prove the feasibility of the system and provide valuable insights for further
development. Based on the results and knowledge gained from the prototype, a
second model inference method is introduced. This second algorithm extends the
first one by enabling to incorporate expert knowledge into the learning procedure.

The properties and performance of the user behavioral model are further analyzed
in Chapter 6, leveraging for this purpose synthetically generated data sets. Firstly,
the model’s ability to cope with different context circumstances are examined with
four datasets, each of which is designed to represent a single challenging situation.
Secondly, the influence of the number of user actions and user’s feedback on the
model’s uncertainty of future user actions is examined.

Complementary to the evaluation performed in the previous section with synthetic
data, Chapter 7 presents an exploratory demonstration of the user behavioral
model. To this purpose, the user behavioral model is employed to extract the
behavioral patterns with the power window and seat heater of four different users.
The data utilized in this exploratory demonstration was collected from the user’s
vehicles over a span of 6 months.
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1.3 Thesis Overview

Finally, Chapter 8 draws a conclusion and gives an outlook on possible fields of
research in the area of self-learning comfort systems and Bayesian nonparametric
techniques for modeling user behavior.

• Motivation and research questions

2. Literature Review
• Intelligent and self-learning systems

• Vehicle environment and applications

• Bayesian learning

3. Derivation of a Self-Learning Comfort System
• Methodology 

• System requirements and architecture

5. Feasibility Prototype of a Self-Learning Comfort System
• Prototype description and results

• Optimized inference algorithm

4. A Novel User Behavioral Model
• Model description

• First inference algorithm

6. Analysis of the User Behavioral Model • Model analysis with synthetic datasets

7. Experimental Evaluation of the User Behavioral Model • Model evaluation with real data

8.   Conclusion and Outlook
• Answer to research questions

• Future work

1.   Introduction • Motivation and research questions

Figure 1.1: Content roadmap of the thesis. The thesis original contribution (chapters 3-7) is indicated
in light grey.
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2 Literature Review

Research in self-learning comfort systems in vehicles is interdisciplinary, and
benefits from the integration of ideas, concepts, andmethods fromvarious research
areas.

2.1 Intelligent and Self-Learning Systems

Intelligent systems are designed to exhibit characteristics associated with human
intelligence. They have, at least, three capabilities: perception, reasoning, and
action [11]. Perception is achieved thorough sensors or any other input device that
enables the system to gather relevant data from the environment, such as cameras,
microphones, or sensors of physical quantities. Reasoning involves processing the
input data and generating suitable actions to achieve the system’s goals. Finally,
intelligent systems must be able to execute the actions they decided to take using
actuators, which can be physical devices or software-based functions.

According to [11], intelligent systems or agents, are entities that can perceive its
environment through sensors and act upon that environment through effectors.
They can be classified into five groups based on their level of intelligence and
capabilities, as showed in Figure 2.1. The five categories, from lowest to highest
degree of intelligence, are: simple reflex, model-based reflex, goal-based, utility-
based, and learning agents.

Simple reflex agents act only on the basis of the current percept, ignoring the rest
of the percept history. Their function is based on the rule: “if condition, then
action”.
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Agents

Simple reflex
Model-based 

reflex
Goal-based Utility-based Learning

Figure 2.1: Types of intelligent systems, or agents, based on their level of intelligence and capabilities
according to [11].

Model-based agents, on the other hand, can handle partially observable environ-
ments. Their current state is stored inside the agent maintaining a structure which
describes the part of the world which cannot be seen. This knowledge about “how
the world works” is called a model of the world.

Taking a step further, goal-based agents build upon the capabilities of model-
based agents, by incorporating “goal” information. Goal information describes
situations that are desirable. This allows the agent a way to choose amongmultiple
possibilities, selecting the one which reaches a goal state.

Utility-based agents introduce the concept of assigning desirability measures to
states, distinguishing between goal states and non-goal states. They achieve this
by employing a utility function that maps states to utility values. Rational utility-
based agents select actions that maximize the expected utility of their outcomes,
taking into consideration the probabilities and utilities associated with each pos-
sible outcome. To do this effectively, these agents must maintain a comprehensive
model of their environment, a task that involves research in perception, represen-
tation, reasoning, and learning.

Learning agents, on the other hand, possess the remarkable ability to adapt to un-
known environments and enhance their performance beyond their initial knowl-
edge. A learning agent comprises several key components: the “critic” describes
how well the agent is doing with respect to a fixed performance standard, the
“learning element” is responsible for making improvements, the "performance

8



2.1 Intelligent and Self-Learning Systems

element" selects external actions, and the "problem generator" suggests actions
that lead to new and informative experiences.

Self-learning systems are learning agents capable of learning even when there is
no external indication concerning the correctness of the response of the system to
the presented data [12]. For an intelligent system to be able to “program itself”,
i.e., acquire the knowledge it needs to achieve its goal, the use of the application
has to involve a substantial amount of repetitive behavior [13]. The terms “self-
learning system” and “autonomous system” are often used interchangeably. The
decision to use one term over the other depends on which aspect of the system’s
capabilities is being emphasized: the term “self-learning” highlights the system’s
capability to acquire knowledge and improve performance over time, while the
term “autonomous” stresses the system’s ability to operate independently.

Self-learning systems have been employed in various domains due to their ability
to autonomously improve and adapt over time. In the field of network telecom-
munications, self-learning systems have been employed for misuse and attack
detection ([14], [15]). The energy and smart home sectors benefit from self-
learning systems in optimizing energy consumption patterns to minimize waste
and costs ([16], [17], [18]). In healthcare, self-learning systems aid medical
diagnostics by detecting fault-diagnosis [19].

2.1.1 Automation

A fundamental characteristic of self-learning comfort systems is their capacity to
control the vehicle comfort systems automatically, based on the user’s individual
preferences. Automation does not exist in an all-or-none fashion, but can be
implemented at various levels, described in Table 2.1 [20]. A task may be
accomplished: (1) manually, with no assistance from the system, (2) by the user
with input in the form of recommendations provided by the system, (3) by the
system, with the consent of the user required to carry out the action, (4) by the
system, to be automatically implemented unless vetoed by the user, or (5) fully
automatically, with no user interaction. These levels reflect the extent to which
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2 Literature Review

an intelligent system can operate independently, make decisions, and perform
tasks without human intervention. When selecting the level of automation for an
intelligent system, several aspects must be considered, such as the difficulty level
of the task, the associated risks, and the user acceptance.

Roles
Level of Automation User System

1 None Decide, Act -
2 Decision Support Decide, Act Suggest
3 Consensual Approve Decide, Act
4 Monitored Veto Decide, Act
5 Full - Decide, Act

Table 2.1: Levels of automation. Adapted from [21].

The design of a system with automation capabilities is challenging [22]. The
systemmust be able to answer following questions [23]: when to act, what actions
to take, how to perform the actions, and how to learn to improve its behavior. For
this purpose, [24] defines nine principles that should guide the system’s automatic
behavior, which have significally influenced this work:

• Valuable: advances the user’s interests and tasks, in the user’s opinion.

• Pertinent: attentive to the current situation.

• Competent: within the scope of the agent’s abilities and knowledge.

• Unobtrusive: not inferring with the user’s own activities or attention,
without warrant.

• Transparent: understandable to the user.

• Controllable: exposed to the scrutiny and according to the mandate of the
user.

10



2.1 Intelligent and Self-Learning Systems

• Deferent: gracefully unimposing.

• Anticipatory: aware of current and future needs and opportunities.

• Safe: minimizes negative consequences, in the user’s opinion.

2.1.2 User Acceptance

The analysis and prediction of the user acceptance is crucial, since an intelligent
system that aligns with user expectations and is well-accepted is more likely to
be successful in achieving its goals and fulfilling the intended purpose. In this
regard, several models can be used to assess and predict user acceptance of new
technologies. One of the most influential and widely recognized models is the
Technology Acceptance Model (TAM), which has undergone various refinements
and extensions since it was first introduced [25]. TAM, described in Figure
2.2, postulates that among the many variables that influence system usage, two
factors are especially important: the perceived usefulness and the perceived ease
of use. Perceived usefulness refers to the degree to which a person perceives the
technology as useful to her everyday life, and it is often the strongest positive
predictor of an individual’s behavioral intention to use new technology ([26],
[27]). The second variable, the perceived ease of use, refers to a user’s perception
of how effortless a technological device would be to use.

The Automation Acceptance Model (AAM), as described in [28], is an extension
of the TAM that aims to provide a more accurate representation of the acceptance
of automated systems. AAM takes into account the interactive nature of many
automated systems, represented in Figure 2.2 by the dashed-lines, since user ex-
periences with the automated system influence the system usage. AAM remarks
on the influence of task-technology compatibility and trust in the acceptance of
automated systems. Compatibility refers to the degree to which the automated
system aligns with the user’s task requirements, work processes and past experi-
ences. Trust reflects the user’s belief in the system’s ability to perform its primary
functions.
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2 Literature Review

Technology Acceptance Model (TAM)
External 

Variables

Compatibility

Trust

Perceived 
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Figure 2.2: Factors that influence user acceptance, according to the TAM and AAM frameworks.
Adapted from [28].

TAM, as well as AAM, have proven to be useful in evaluating the acceptance of
technologies in several domains, for example health care [29], self-driving cars
[30], and in-vehicle functionalities ([31], [32]).

2.1.3 User Modeling under Uncertainty

User modeling techniques play a crucial role in developing intelligent systems that
provide personalized and adaptive experiences [33]. It describes the process of
creating a user model, which captures the behavior (patterns, goals, interesting
topics, etc.) the user shows when interacting with the system, for the purpose
of customizing products and services to better suit the user [34]. User mod-
eling involves inferring unobservable information about a user from observable
information about her, such as her actions or utterances [35].

Recent research on user modeling has predominantly pursued to describe the
user’s behavioral patterns and preferences, motivated by the growing demand for
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personalized services and information in electronic commerce, social media and
news applications [36]. There are two primary approaches to user modeling:
stereotype-based and individual-specific models. In stereotype-based user mod-
els, users are classified into predefined stereotypes or classes based on common
characteristics. For example, users who have similar browsing or purchase his-
tories might be grouped into a class of "frequent buyers". On the other hand,
individual-specific user models focus on representing each user uniquely. These
models aim to capture the specific preferences, interests, and behaviors of indi-
vidual users, allowing intelligent systems to tailor their actions precisely to each
user’s needs. In the context of personalized systems, such a self-learning com-
fort system, the relevance of individual-specific models becomes evident as they
facilitate a higher level of adaptivity.

Situations where the user repeatedly performs a task that involves selecting among
several predefined options, are ideal for using machine learning techniques to
form a model of the user [36]. In such situations, a model of a user’s decision-
making process can be created, and it can be used to emulate the user’s decisions
on future problems. However, it is rather difficult to describe unambiguously
the knowledge and decision-making process of a human. The data acquired
under these circumstances is often limited, imprecise and incomplete, and human
behavior is inherently stochastic and can be observed only partially. Also, any
model will be uncertain when predicting unobserved data. Hence, uncertainty
plays a fundamental role in user modeling.

According to the machine learning literature, there are two types of uncertainty:
epistemic and aleatoric [37], illustrated in Figure 2.3. Epistemic uncertainty,
also known as model uncertainty, arises from a lack of knowledge about the true
underlying relationship in the data. It is associated with the uncertainty about
the model parameters or structure. Epistemic uncertainty can be reduced with
more data or by building more complex models that better capture the underlying
patterns in the data. On the other hand, aleatoric uncertainty, also known as
data uncertainty, arises from the inherent variability or stochasticity in the data-
generating process. It is irreducible even with an infinite amount of data and
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can be thought of as the "noise" in the observed data. Even though it cannot be
eliminated, it can be accounted for in the modeling process.
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Figure 2.3: Illustration of the difference between aleatoric and epistemic uncertainties. The dots
on the plot represent the available data points. Aleatoric uncertainty captures varying
degrees of inherent noise in the data, while epistemic uncertainty indicates the ignorance
gap due to a lack of data

In scenarios in which control is handed-over to automated systems, it is important
to quantify the confidence about the models’ predictions, because decisions based
upon incorrect predictions can cause significant losses. Understanding if a model
is underconfident or falsely over-confident (i.e., its uncertainty estimates are too
small) can help preventing unintended behaviour [37].

Traditionally, probabilistic methods have been perceived as the ultimate tool for
uncertainty handling [38]. They rely on probability theory to represent, propagate,
and analyze all forms of uncertainty [39]. Probabilistic methods are commonly
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used with Bayesian inference to model uncertainty in various parameters or vari-
ables ([40], [41]). Non-probabilistic methods, on the other hand, rely onmodeling
uncertainty by considering the variation across repeated trials. Instead of han-
dling uncertainty using explicit probabilisticmodels, thesemethods use alternative
mathematical frameworks or representations such as intervals ([42]), fuzzy sets
([43]), Credal partition ([44]), or distance-based evidence reasoning mechanisms
([45]) to quantify uncertainty. Classical non-probabilistic approaches often rely
on large datasets to converge to a solution. However, when building individual-
specific user models, there is usually a relatively small amount of data available
for each user. This limitation makes non-probabilistic approaches less suitable
than probabilistic methods for building user-specific models under uncertainty
[46].

Probabilistic modelling has therefore emerged as one of the principal theoret-
ical and practical approaches for designing machines that learn from data ac-
quired through experience [46]. Probabilistic models have been successfully
implemented in many scientific domains, such as transportation, medicine, eco-
nomics, automated diagnosis, where uncertain factors are encountered and affect
the knowledge of situations related to the systems’ operations [47]. For example,
[48] focused on Bayesian networks to understand driver music genre preferences
to make personalized soundtrack recommendations. Also, a Bayesian decision
model about driver distraction and aggression is presented in [49], which aims
to identify pre-crash conditions. Therefore, probabilistic Bayesian methods are
employed in this dissertation to develop a user-specific behavioral model for
self-learning comfort applications in vehicles. Bayesian learning methods are
introduced in Section 2.3.

2.1.4 Context-Awareness

While user models aim to capture user preferences, behaviors, and characteristics,
context-awareness focuses on understanding and utilizing the contextual factors
surrounding user interactions, such as location and time, to provide relevant and
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timely services. The integration of context-awareness with user modeling enables
the development of context-aware user models, which leverage the dynamic adap-
tation to changing contextual factors, enhancing the adaptability and accuracy of
user models.

The most accepted definition of context is “any information that can be used to
characterize the situation of an entity”, where an entity can be a person, place or
object relevant to the interaction between a user and an application, including the
user and the application themselves [50]. The nature of the context information
analyzed depends on the specific application domain. Location, identity, time,
and activity are the primary context types for characterizing the situation of any
entity, as described in [51]. Nevertheless, social context, such as whether the user
is alone, as well as the user’s emotional state can also be utilized [52].

In most real-world scenarios, context data are noisy, ambiguous or subject to
change. For instance, in autonomous vehicles, unexpected road conditions or
sudden obstacles can introduce uncertainty into the context that the vehicle must
interpret and respond to. Hence, addressing uncertainty in context requires tech-
niques that go beyond deterministic reasoning, and probabilistic methods offer
mechanisms to model and manage uncertainty effectively [46].

Deciding if a context feature is relevant for an application involves evaluating
its impact on the application’s performance and its ability to provide valuable
information for the problem at hand. One approach is to consult domain experts,
whose knowledge can help identify features that are known to have a significant
impact on the application’s behavior or performance. The work in [53] suggests
that if domain knowledge is at hand, it should be utilized. Another approach is
to evaluate the correlation between each context feature and the target variable,
so that features that have a strong connection and are likely to be influential are
recognized. Lastly, the implementation of cross-validation techniques allows for
a comprehensive assessment of how the model performs with different subsets of
context features, providing insights into feature stability and generalizability to
new data ([54], [55]).

16



2.1 Intelligent and Self-Learning Systems

2.1.5 Decision-Making

Decision theory provides a framework for rational decision-making by consider-
ing uncertainties, risks, and potential outcomes associated with different options
[56]. Combined with probability theory, it enables to make optimal decisions
in situations involving uncertainty, such as those encountered in real-work ap-
plications by self-learning comfort systems. Decision-making can be seen as an
important final step in every user model. User models allow understanding user
preferences, but, if the intention is to translate this understanding into an action,
it is essential to also consider the potential rewards and risks associated with each
estimation.

In decision-making problems, it is required to choose an action from a set of
possible actions. The optimal action is determined by maximizing the expected
utility, which measures how compatible the action is with the current situation
[57]. Equivalently, other authors define the optimal action as the one that mini-
mizes the expected loss. Maximizing the benefit, or minimizing the lost, is the
essence of a rational behavior.

In situations where the potential risks or costs associated with making a wrong
decision are high, the decision-maker may prefer not to commit to any option.
This is known as reject option [10]. By opting not to act, the decision-maker
acknowledges the limitations of available information and the potential negative
consequences of committing to a decision without a strong basis. For example, on
a hypothetical automatic X-ray image classification system, it may be appropriate
to automatically classify those image for which there is little doubt as to the correct
class, while leaving a human expert to classify the more ambiguous cases. This
can be achieved by introducing a threshold T , and rejecting those inputs for which
the largest of the posterior probabilities is less or equal to T .

Threshold-based decision-making strategies are particularly useful when dealing
with uncertain situations, as they simplify the decision process and provide clear
guidelines for action. For example, [58] presents an intelligent calendaring system
that uses Bayesian reasoning to make informed decisions. Only if the inferred
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probability of users willing a service is above a “do-it” threshold, the system
autonomously schedules a meeting on behalf of the user.

2.2 Vehicle Environment

In the early stages of automotive development, vehicles were predominantly me-
chanical devices. Comfort systems includedmanual seat andwindow adjustments,
basic ventilation systems and rudimentary heating mechanisms. While these me-
chanical comfort systems provided some level of convenience, they often lacked
the sophistication and versatility needed to fulfill the diverse comfort preferences
of passengers.

The advent of electrical innovations brought a significant revolution in vehicles,
and electrical systems began to replace or augment various mechanical functions
[59]. As presented in Figure 2.4, electronic systems now constitute a significantly
larger portion of a car’s overall cost, increasing from approximately 1% of the
global car value in 1950 to roughly 35% in 2020. This substantial increase is
primarily driven by consumers’ persistent expectations for electronic devices, IT
services, connectivity, and the continuous integration of automation in vehicles
[60].

Consequently, electrical comfort systems have become commonplace. Some
examples include the electrically adjustable seat comfort system, which provides
ergonomic and adjustable seat options and may include seat heater, seat cooling
or lumbar support; and the power sunroof system, which allows adjusting the
sunroof easily. However, they typically rely on manual input and predefined
settings, lacking the ability to adapt to individual preferences.

Self-learning comfort systems aim to change this interaction paradigm, by an-
ticipating and responding to the needs and preferences of each user, offering a
personalized, adaptive, and user-centric experience. The automotive industry has
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Figure 2.4: The cost of automotive electronics as a percentage of total car costs worldwide from 1950
to 2030. Adapted from [61].

already initiated a process of transformation towards more intelligent and per-
sonalized vehicles, even though there is still room for further advancements and
improvements, especially in the vehicle comfort domain.

One critical factor that constraints the development of intelligent systems in ve-
hicles compared to other environments, such as data centers or high-performance
servers, is that vehicles have limited computational resources. Besides the strict
safety and data privacy constraints, presented in the next section, the algorithms
must operate efficiently within the resource limitations, encompassing processing
power, memory capacity and energy efficiency.
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Figure 2.5: Interior of the Mercedes-Maybach S-Class [62].

2.2.1 Norms and Guidelines

Data Privacy and Protection

The European Commission and European Data Protection Board have acknowl-
edged the importance of the protection of privacy as a fundamental condition
for a responsible use and exchange of in-vehicle data. In the context of data
privacy and protection in vehicles, the General Data Protection Regulation and
ePrivacy Directive are relevant ([63], [64]). The privacy principles comprise the
three core points of transparency, autonomy, and data security. In order to protect
the customers’ right to privacy, car manufactures must provide them with clear,
meaningful information about the types of information collected and how it is
used. Moreover, customer’s consent must be obtained before collecting, process-
ing, using, and sharing in-vehicle data. Lastly, vehicle manufacturers must protect
customers from misuse of the data required for vehicle communication systems
thorough the application of data protection principles. When applying security
measures, gateways and firewalls must seal off the security-relevant areas in the
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networked vehicle, and data should be encrypted. The vehicles’ software and
hardware architectures must ensure a high level of technical security.

Safety

Multiple guidelines and norms have been developed by different organizations to
ensure that vehicle systems are used safely. The most relevant International Orga-
nization for Standardization (ISO) norms when developing in-vehicle intelligent
systems are ISO 26262 “Road vehicles — Functional safety” ([65]), ISO 21434
“Road Vehicles — Cybersecurity engineering” ([66]), ISO 9241 “Ergonomics of
Human System Interaction” ([67]), and ISO 21448 “Road vehicles—Safety of the
intended functionality” ([68]). Even though they are voluntary, many automobile
manufacturers have committed to complying with them.

ISO 26262 provides guidelines for the development of safety-critical automotive
systems. It focuses on the identification andmanagement of safety risks associated
with the system’s functionality, and provides a framework for the development of
safety-related hardware and software. Complementing this, ISO 21434 addresses
the need for cybersecurity in automotive electrical systems. It integrates principles
and requirements for cybersecurity throughout the development lifecycle, aiming
to protect vehicles against potential cyber threats.

ISO 9241, on the other hand, is a series of standards that provide guidelines for
the design and evaluation of user interfaces for interactive systems. They cover a
wide range of topics related to human-computer interaction, including ergonomic
principles, usability, accessibility, and user-centered design. According to these
guidelines and norms, vehicle systems should prioritize simplicity, intuitiveness,
and ease of use. User interfaces should be designed with minimal cognitive load,
allowing drivers to access the features without excessive interaction. Also, they
suggest reducing the need for visual and manual interactions.

The standard ISO 21448, also known as SOTIF, was published recently to address
the new safety challenges faced by autonomous vehicles and advanced driver assis-
tance systems [69]. ISO 21448 complements ISO 26262, as illustrated in Figure

21



2 Literature Review

2.6. While ISO 26262 covers the malfunctioning behavior of electric/electronic
systems, which includes random hardware faults and systematic hardware and
software faults, SOTIF activities cover functional insuficiencies of the intended
functionality or by reasonable foreseeable misuse by persons. By identifying fore-
seeable scenarios and implementing mitigation strategies, this standard ensures
safety beyond systematic failures, thereby enhancing the overall safety landscape
in the automotive sector. For a self-learning comfort system in vehicles, this
norm requires ensuring that the intended functions work reliably, and analyzing
its behavior in various scenarios to anticipate and prevent any unforeseen risks or
hazards that might arise due to the system’s learning capabilities.
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Figure 2.6: Overlap of ISO 26262 and ISO 21448 activities. Adapted from [68]. The title of the ISO
21448 clauses is indicated in Table 2.2.
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Clause
number

Title

5 Specification and design.
6 Identification and evaluation of hazards.
7 Identification and evaluation of potential functional insufficiencies

and potential triggering conditions.
8 Functional modifications addresing SOTIF-related risks.
9 Definition of the verification and validation strategy.
10 Evaluation of known scenarios.
11 Evaluation of unknown scenarios.
12 Evaluation of the achievement of the SOTIF.

Table 2.2: ISO 21448 clauses [68].

2.2.2 Driver Distraction

The research on driver distraction has experienced significant growth, largely
motivated by its close relationship with the field of adaptive infotainment sys-
tems. Driver distraction occurs “when a driver is delayed in the recognition of
information needed to safely accomplish the driving task because some event,
activity, object or person within or outside the vehicle compelled or tended to
induce the driver’s shifting attention away from the driving task” [70]. Distracted
drivers are more likely to be involved in traffic accidents and exhibit poorer driving
performance compared to focused drivers [71].

Distractions can be grouped into three main categories, based on the sources
that causes them [72]. Firstly, visual distractions, such as looking at mobile
devices, divert the driver’s eyes from the road. Secondly, cognitive distractions,
like engaging in a conversation, occupy the driver’s attention. Finally, manual
distractions, such as adjusting radio stations, require the driver’s hands to be off
the steering wheel. Even though each of these distractions can impair driver
performance and increase the risk of accidents, they do not affect the driving
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performance equally. Studies have shown that visual and manual distractions
impact the driver performance more negatively than cognitive distractions [73].

The design of in-vehicles systems and their associated user interfaces plays an
important role to mitigate driver distractions [74]. Unintuitive user interfaces,
excessive information displays, or overly demanding interactions can draw the
driver’s attention away from the road and compromise her concentration. There-
fore, their design must complain with the safety guidelines.

2.2.3 Adaptive Infotainment Systems

Systems that adapt their behavior or presentation to the environment, user or task
are known as adaptive systems [75]. Adaptive systems share some similaritieswith
self-learning systems, as they both can change or improve based on its experiences
or interactions with the environment. While self-learning systems are a subset
of adaptive systems, not all adaptive systems necessarily involve learning. For
example, a wiper washer system that starts to function when it detects rain based
on pre-programmed rules is adaptable, but not self-learning. Hence, for this work,
only in-vehicle adaptive systems with learning capabilities are relevant. Specially,
those which encode their understanding of the user in a user model that represents
an estimate of the characteristics of the user relevant to the particular application.

In the vehicular context, adaptive systems have beenmainly used for enhancing the
user interfaces for infotainment functions. Adaptive interfaces have become key
elements in vehicles because they give the driver quicker access to the information
she needs or wants, in a more appropriate form, which reduces the chances for
distraction [76]. According to [76], a critical property of in-vehicle adaptive
systems is building the usermodels unobtrusively, requiring neither explicit setting
of preferences nor rating of the system’s performance. They suggest that user
models must be built with implicit feedback through normal interaction, since
drivers have no attention to spare.

24



2.2 Vehicle Environment

Adaptive infotainment systems typically support the driver either by filtering
information or by giving recommendations. To the first group of adaptive systems,
those that filter information to reduce the workload of drivers, belongs the system
described by [77], which filters information according to situational requirements.
For example, phone calls are automatically redirected to the voice mailbox when
the workload level of the driver exceeds a certain threshold, so the driver can
direct full attention to the driving situation. The work in [78] describes an
adaptive system which recognizes the driver’s affective state, such as emotions or
sleepiness, based on an individual user model. The system’s goal is to provide
feedback about driver state to the driver and take actions to influence the driver
state positively, such as by changing the radio station, rolling down the window
or splashing some water on her face.

Adaptive systems that support the driver by providing recommendations with
relevant content at the right moment, simplifying the interaction, belong to the
second group. In this context, recommender systems can be viewed as a subtype
of adaptive interfaces. The system presented in [79], for instance, gives proactive
recommendations for fuel stations depending on the context, such as when the fuel
tank is nearly empty, which aims to reduce the interactions. The system further
provided explanations about why a certain recommendation was given, to enhance
the system’s transparency and hence, its acceptance ([80], [81]). The research
in [82] presents an adaptive radio station system, which uses knowledge about
the recurrent preferences of the user to make user-specific recommendations. It
evaluates two different levels of adaptivity or automation in the interactions with
users. In the first approach, users can choose a radio station from a list of recom-
mendations, whereas in the second approach, the system automatically changes
the radio station, but users have the possibility to abort the execution within the
first seconds over a dialog. Results of both approaches confirmed the positive
effects on the users’ workload, which suggests that higher level of automations in
adaptive vehicle systems are promising in recurrent, routine situations.

Aligned with these results, studies indicate that higher levels of automation lead to
reduced driver distraction levels and enhanced user experience. For instance, [83]
studies the advantages of fully automated telematic systems in situations in which
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only routine tasks are performed. It suggests that they are more advantageous
than systems with intermediate levels of adaptivity. Also, the research work in
[31] on vehicle recommender systems concludes that the information should be
delivered without any request from the user, in an understandable and intuitive
manner to minimize the cognitive load of drivers. Furthermore, [84] studied the
performance of vehicle infotainment systems with no user interaction in terms of
driver distraction and user experience, and concluded that they performed better
than vehicle infotainment systems featuring lower levels of interaction. The study
conducted by [32] focus on smart vehicle comfort functionalities. It evaluates their
user acceptance in recurrent and routine scenarios. Even though results indicate
a considerable level of acceptance for smart automated comfort functions in
routine situations, smart automated comfort system that allowed users to abort the
automation received significantly higher acceptance scores compared to those that
directly executed the automation. Therefore, results indicate that safety-relevant
vehicle functions shall be highly automated, rather than fully automated.

2.3 Bayesian Learning

Bayesian learning is a machine learning framework which applies probability
theory to learn from data, enabling to handle uncertainty in models, make pre-
dictions, and adapt beliefs in light of new data [46]. In the context of Bayesian
learning, a model refers to a mathematical representation of a system, process,
or phenomenon in a given problem, that captures the assumptions and beliefs
about how data is generated or how the different variables are related to each
other. Unlike traditional frequentist approaches that rely on fixed parameters,
Bayesian learning embraces uncertainty by treating model parameters as random
variables, allowing to quantify the confidence in various hypotheses. This makes
it particularly well-suited for addressing problems where data is limited, noisy, or
incomplete. For example, Bayesian learning has been employed in areas like per-
sonalized medicine ([85], [86]) and recommendation systems ([87], [88]), where
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there is a relatively small amount of data for each patient or client, and the predic-
tions must be customized for each person, becoming necessary to build a model
for each person, with its inherent uncertainties.

Learning is achieved through two key components: the prior distribution and
the likelihood function. The prior distribution captures initial beliefs about the
parameters of a model before observing any data, while the likelihood function
expresses the probability of observing the data given the model parameters. By
combining these components, Bayes’ theorem yields the posterior distribution,
which represents the updated beliefs about the parameters after incorporating the
observed data, as showed in Figure 2.7.

Bayes’ theorem, also known as Bayes’ rule, is defined as follows:

P (θ|D) = P (D|θ) · P (θ)
P (D)

=
P (D|θ)P (θ)∫

θ
P (D|θ)P (θ)dθ

(2.1)

where P (θ|D) represents the posterior distribution over parameters θ given data
D, P (D|θ) is the likelihood of observing the data given the parameters θ, P (θ)
denotes the prior distribution representing initial believes about θ, and P (D) is
the marginal likelihood, also referred to as the model evidence, which acts as a
normalizing constant.

In cases where the prior distribution and the likelihood function are chosen from
the same family of probability distributions, the resulting posterior distribution
will also belong to that same family. This family of prior and likelihood distribu-
tions is referred to as a conjugate family, and the prior distribution is referred to as
a conjugate prior for the given likelihood function. The benefit of using conjugate
distributions lies in the simplification of the calculations involved in updating
probabilities. When the prior and likelihood are conjugate, the resulting posterior
distribution can be obtained analytically, often leading to closed-form expressions,
which can significantly speed up computations and facilitate more intuitive inter-
pretation of the results. Otherwise, it may be necessary to approximate the value
of the denominator on Bayes’ rule, which typically involves marginalising all the
variables in the model except for the variables of interest. Such high-dimensional

27



2 Literature Review

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y 
D

en
si

ty
Prior
Likelihood
Posterior

Figure 2.7: Bayesian updating of the prior distribution to posterior distribution. The posterior distri-
bution is a compromise between the information brought by the prior and the information
brought by the likelihood.

sums and integrals are generally computationally demanding, in the sense that for
many models here is no known polynomial-time algorithm for performing them
exactly. Therefore, it is often necessary to approximate the posterior distribution.
Methods for approximate inference are introduced in Section 2.3.2.

Bayesian models that use a fixed and finite number of parameters to capture
the relevant information in the data necessary to make predictions are known as
parametric models. The process of determining the optimal number of parameters
is generally time-consuming and may not be scalable to large-scale unfamiliar
data. This is due to the fact that it typically involves human labor or restarting
the algorithm several times to find the optimal settings. Moreover, parametric
models are prone to suffering from overfitting or underfitting if there is a misfit
between the complexity of the model and the amount of data available [89].
Hence, parametric models are often not well-suited for applications where the
model must be flexible and grow in complexity as more data is collected, such
as for capturing the diverse and evolving nature of user preferences in comfort
systems. In such cases, nonparametric Bayesian models offer a better approach.
The concepts of underfitting, optimal fitting, and overfitting, are shown in Figure
2.8.
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Figure 2.8: Illustration of the underfitting/overfitting dilemma on a simple regression case. Data
points are shown as blue dots and model fits as orange lines. Underfitting occurs with a
linear model (top-left panel), an optimal fit with a polynomial of degree 2 (botton panel),
and overfitting with polynomial of degree 20 (top-right panel).

2.3.1 Bayesian Nonparametric Models

Bayesian nonparametric (BNP) models extend the Bayesian framework to scenar-
ios where the number of underlying parameters is unknown or could potentially
grow as more data is observed. They offer an alternative to traditional parametric
models by assuming an infinite-dimensional parameter space, effectively having
infinitely many parameters. This allows for greater flexibility in capturing the
inherent complexity of real-world data without the need for pre-specified model
structures. They are useful to find out the latent causes and structures behind
data, and appear as an alternative to model selection. Model selection is one of
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the main concerns within the machine learning community and is often related to
issues such as overfitting and underfitting, as described in [90]. By using a model
with unbounded complexity, underfitting can be mitigated, while the Bayesian
approach of computing or approximating the full posterior over parameters can
help to mitigate overfitting. BNP models have been used to solve problems such
as face recognition [91], clustering gene expression patterns ([92], [93]), speech
recognition [94], and modelling the topics of documents [95].

The central idea behind BNP methods is the replacement of the classical finite-
dimensional prior distribution with a general stochastic process, allowing an
open-ended number of degrees of freedom in a model [96]. A review of Bayesian
nonparametric models is outside the scope of this dissertation, so only the key
models for this work are mentioned. For further insights, references [90], [97]
and [39] are recommended.

2.3.1.1 Dirichlet Processes

The Dirichlet process (DP), first formalized in [96], is a stochastic process whose
samples are probability distributions. Hence, a Dirichlet process is often de-
fined as a “distribution over distributions”. It is a fundamental tool in Bayesian
nonparametric modeling, particularly for clustering and mixture models [98].

Dirichlet processes are defined by a positive real number α, called the concentra-
tion parameter, and a base distributionG0 over a measurable spaceΘ. According
to [96], a random distribution G is distributed according to a DP if its marginal
distributions are Dirichlet distributed. More formally, given a measurable set S,
a base probability distribution H , and a positive real number α, the Dirichlet
process DP (H,α) is a stochastic process whose realization is a probability dis-
tribution over S. For any measurable finite partition of S, denoted {Ai}ni=1, the
following holds:

if G ∼ DP(G0, α)

then (G(A1), ..., G(AK)) ∼ Dir(αG0(Ai), ..., αG0(AK)).
(2.2)
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In the above equation, Dir(·) denotes the Dirichlet distribution. The density
function of a Dirichlet distribution is:

p(π1, ..., πk|α) =
Γ(

∑
k αk)∏

k Γ(αk)

K∏
k=1

παk−1
k (2.3)

where Γ(·) is the gamma function.

The parameters G0 and α play intuitive roles in the definition of the Dirichlet
process. The base distribution, G0, is the expected value of the process: the DP
draws distributions “around” the base distribution the way a Normal distribution
draws real numbers around its mean. The concentration parameter, α, can be
understood as an inverse variance: the larger α is, the smaller the variance and
thus, the DP will concentrate more of its mass around the mean. Figure 2.9 shows
different draws from the Dirichlet process DP(N (0, 1), α) for different values of
α. Draws from a DP are discrete with probability one [96].

Since the formal definition of Dirichlet process is very abstract, it is frequent to use
metaphors to provide a more intuitive understanding of how to generate samples
from a DP. Among all the equivalent views, the most relevant ones are the Pólya
urn scheme, the chinese restaurant process and the stick-breaking process [99].

The chinese restaurant process (CRP) is illustrated in Figure 2.10. The metaphor
describes a chinese restaurant with an infinite number of circular tables, each with
infinite capacity. As new customers enter, they can decide weather to seat at an
occupied table or at an empty one. Customers will sit at an occupied table with a
probability proportional to the number of customers already seated there, or at an
unoccupied table with a probability proportional to the concentration parameter
α. After infinitely many customers entered, one obtains a probability distribution
over infinitely many tables to be chosen. This probability distribution over the
tables is a random sample of the probabilities drawn from a Dirichlet process with
scaling parameter α.

An impotant characteristic of the DP is that it exhibits a self-reinforcing property.
The more often a given value has been sampled in the past, the more likely it
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Figure 2.9: Draws from the Dirichlet process DP(N(0, 1), α). The four rows use different α. Top to
bottom: α = 1, 10, 100, 1000. Each row contains three repetitions of the same experi-
ment. As seen from the graphs, draws from a Dirichlet process are discrete distributions.
They become less concentrated (more spread out) with increasing α.

is to be sampled again, in a so-called “rich get richer” fashion. This property
can be explained using the CRP metaphor: since customers sit at a table with a
probability proportional to the number of customers already sitting at it, they are
more likely to sit at a table with many customers than few.
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Figure 2.10: Illustration of the chinese restaurant process (CRP). Tables are represented as circles.
Each table has a dish, represented as θ, which are draws from the base measure G0.
The probability of a new customer (in blue) sitting on each table is shown inside each
table. New customers will sit at an occupied table (gray) with a probability proportional
to the number of customers already seated there or at an unoccupied table (white) with
a probability proportional to the concentration parameter α. The resulting distribution
over tables is a random sample of a Dirichlet process DP (α,G0).

2.3.1.2 Dirichlet Process Mixture Models

ADirichlet processmixture (DPM)model assumes that, given a set of observations
{x1, x2, ..., xN}, each observation xn is independently drawn from a distribution
F (θn), such that:

xn ∼ F (θn)
θn ∼ G
G ∼ DP(α,G0),

(2.4)

where DP(α,G0) is the Dirichlet process with concentration parameter α and
base measure G0. Since the function G, the DP, is discrete, different θn (n ∈
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{1, ..., N}) can take simultaneously the same value. Hence, the model above can
be seen as a mixture model where the observations xn with the same parameter θn
belong to the same component or cluster. In this context, "components" represent
different patterns or groups within the data.

The graphical representation of a generic DPMmodel is presented in Figure 2.11.

Figure 2.11: A generic Dirichlet process mixture (DPM) model. Shaded nodes represent observed
variables, unshaded nodes represent latent variables, arrows denote dependence, and the
rectangle is plate notation, denoting the number N copies of the outlined structure.

The Dirichlet process mixture is also referred to as an “infinite” mixture model
because it can accomodate a potentially limitless number of components, as new
data can introduce previously unseen components [100]. The fact that there is no
limit to the number of distinct components which may be generated, bypasses the
need to determine the “correct” number of components in a mixture model. In
many context, a countably infinite mixture is often a more realistic model than
a mixture with a small number of components. This makes Dirichlet process
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mixtures the most popular approach for clustering data when the number of
clusters is not well-defined in advance [98].

2.3.2 Variational Inference (VI)

Despite the simplicity of Bayes’ rule, the high-dimensional integrals in its de-
nominator are in most cases either impossible or very difficult to compute in
closed form (see Equation 2.1). Thus, the main effort in Bayesian inference is
concentrated on techniques that allow to bypass or approximately evaluate this
term.

Bayesian inference methods can be classified into two broad categories: sam-
pling methods and deterministic approximations. Sampling methods, such as
Markov chain Monte Carlo (MCMC) techniques, involve a stochastic process
where Markov chains are used to explore the parameter space by sampling suc-
cessive points from the true posterior distribution. These samples are used to esti-
mate the characteristics of the posterior distribution, such as the mean or variance.
MCMC methods are known for their flexibility and ability to handle intricate and
high-dimensional models. However, they can be computationally expensive and
require careful tuning to ensure convergence and accurate results [101]. Due to
the limitations ofMCMCmethods, the inference techniques employed throughout
this thesis belong to the second category of inference techniques, the determinis-
tic approaches, which formulates the problem as an optimization task rather than
sampling.

Themostwidely-used deterministicmethod is variational inference (VI). VImeth-
ods seek to approximate the true posterior distribution with a simpler, parame-
terized distribution chosen from a predefined family, known as the "variational
family" [10]. This process is guided by the principle of minimizing a divergence
measure between the approximate distribution and the true posterior. VI methods
are generally easier to implement and offer faster approximations with scalability
advantages than MCMC, but they introduce approximation errors due to simpli-
fying assumptions, as they truncate the model or the variational distribution to a
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maximum model complexity. Figure 2.12 shows the intuition behind MCMC and
variational inference methods.

3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y 
D

en
si

ty

Desired posterior distribution
Variational distribution
MCMC samples

Figure 2.12: Illustration and comparison of MCMC and variational inference algorithms. While
MCMC methods estimate the desired posterior distribution by generating samples, VI
methods optimize a simpler, parameterized distribution, known as the variational distri-
bution, to approximate the target distribution.

In a general problem of Bayesian inference in which all observed variables are
denoted by X , and all hidden variables are indicated by Z, which includes the
model parameters θ and latent variables, the goal of VI methods is to firstly,
propose a family of distributionsQ over the latent random variables, and secondly,
find the family member q∗(Z) ∈ Q that is closer to the true but intractable
posterior distribution p(Z|X), where closeness is measured using the Kullback-
Leibler (KL) divergence:
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q∗(Z) = argmin
q∈Q

KL(q(Z)||p(Z|X)), (2.5)

The KL divergence is defined as:

KL(q(Z)||p(Z|X)) =

∫
q(Z) log

q(Z)

p(Z|X)
dZ (2.6)

Directly minimizing the KL divergence to find the best-fitting approximation
q∗(Z) requires computing the intractable true posterior, p(Z|X). However, by
leveraging the fact that log p(Z|X) does not depend on q(Z) and using the
definition of conditional probability, the terms can be rearranged as:

KL(q(Z)||p(Z|X)) = −L(q) + log p(X) (2.7)

where L(q) is the quantity known as the Evidence Lower Bound (ELBO), defined
as:

L(q) =
∫
q(Z) log

p(X,Z)

q(Z)
dZ = Eq[log p(X,Z)− log q(Z)] (2.8)

Hence, maximizing the ELBO with respect to q(Z) is equivalent to minimizing
the KL divergence between the variational distribution and the true posterior.
This decomposition is illustrated in Figure 2.13.

To complete the specification of the optimization problem of variational inference
methods, it is necessary to indicate the family of distributionsQ used to derive the
best approximation of the posterior distribution. One of the most popular families
of probability distributions is called mean-field variational family, which assumes
that the latent variables are mutually independent and can be factorized into
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Figure 2.13: Illustration of the decomposition given by Equation 2.7, which holds for any choice of
distribution q(Z). Because the KL divergence satisfies KL(q(Z)||p(Z|X)) ⩾ 0, the
quantity L(q) is a lower bound on the log likelihood function log p(X). Adapted from
[10].

independent components [101]. A generic member of the mean-field variational
family is given by

q(Z) =

M∏
i=1

qi(Zi). (2.9)

Among all distributions q(Z) having the mean-field form, the one for which the
lower bound L is the largest must satisfy the following condition for each factor j
[10]:

log q∗j (Zj) = Ei ̸=j [log p(X,Z)] + const, (2.10)

where the notation Ei ̸=j [...] denotes an expectation with respect to the q distribu-
tions over all variables zi for i ̸= j so that:

Ei̸=j [log p(X,Z)] =

∫
log p(X,Z)

∏
i ̸=j

qi(Zi)dZi. (2.11)
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Equivalently, taking the exponential of both sides in 2.10, it results that:

q∗j (Zj) ∝ expEi̸=j [log p(X,Z)]. (2.12)

Equation 2.10 indicates that the logarithm of the optimal solution for factor qj is
obtained by considering the log of the joint distribution over all hidden and visible
variables, and then taking the expectation with respect to the other factors qi for
i ̸= j. It is therefore possible to find the optimal solution by first initializing all
factors qi(Zi) appropriately, and then cycle through them, replacing each in turn
with a revised estimate given by the right-hand side of Equation 2.10, evaluated
using the current estimates for all of the other factors. This iterative updating
algorithm used to refine the variational parameters when the variational family is
mean-field is known as Coordinate Ascent Variational Inference (CAVI), which
is presented in Algorithm 1 [101].

The CAVI algorithm provides a powerful and flexible framework for performing
approximate Bayesian inference [102]. Figure 2.14 illustrates the intuition behind
CAVI, showing several iterations of CAVI for fitting five Gaussian components to
two-dimensional data. At the beginning of the CAVI algorithm, the variational
density of the mixture components is initialized to be a Gaussian distribution
that is nearly centered and has a wide variance. As the algorithm progresses,
the variational density is updated iteratively to better fit the observed data. With
each iteration, the variational density "moves" to better align with the data, as
the algorithm adjusts the parameters of the mixture components to better capture
the underlying structure of the data. This process continues until convergence, at
which point the variational density provides an approximation to the true posterior
distribution over the model parameters and latent variables.

In Bayesian nonparametric models, such as the Dirichlet process mixture model
presented in Section 2.3.1.2, the optimal approximation of the posterior distri-
bution is obtained by iteratively usign the coordinate ascent update equations for
the model parameters and latent variables defined in Equations 2.13 and 2.14,
respectively. The expectations are taken with respect to the variational density
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Figure 2.14: Example of the application of the CAVI algorithm on a two-dimensional Gaussian mix-
ture model. The ellipses represent the 2-sigma contours of the variational approximating
factors. The sub-plots illustrate the progression if the variational density of the mixture
components as the CAVI algorithm iteratively refines the variational parameters.
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Algorithm 1: Coordinate Ascent Variational Inference (CAVI)
Input: A model p(X,Z), a data set X
Output: A variational density q(Z) =

∏M
i=1 qi(Zi)

Initialize: Variational factors qi(Zi)
1 while ELBO has not converged do
2 for i ∈ {1, ...,M} do
3 Set qj(Zj) ∝ exp{Ei ̸=j [log p(X,Z)]};
4 end
5 Compute ELBO(q) = E[log p(Z,X)]− E[log q(Z)] ;
6 end
Return: q(Z)

q(·) for all of the other variables, i.e., q(Z,Θ
�k
) for 2.13 and q(Z

�n
,Θ) for 2.14,

which permits the iterative calculation.

log q∗(θk) = log p(θk) +

N∑
n=1

E[log p(xn|θk)] + const (2.13)

log q∗(zn) = log p(zn|Z
�n
) + E[log p(xn|θzn)] + const (2.14)

Appendix C provides a more comprehensive and detailed mathematical derivation
of these equations, as they are crucial for the inference of the user behavioralmodel
presented in this work.
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3 Derivation of a Self-Learning
Comfort System

3.1 Methodology

The methodology utilized to derivate a self-learning comfort system is inspired
by the principles of DevOps ([103]) and agile frameworks ([104]), which empha-
size iterative development and continuous refinement. The agile methodology
focuses on collaboration, rapid software releases and customer feedback, whereas
DevOps is a collaborative approach that integrates software development (Dev)
with operations (Ops) to improve the efficiency, quality and speed of software
delivery. A typical DevOps lifecycle is illustrated in Figure 3.1.

Figure 3.1: A typical DevOps lifecycle [105]. It represents a continuous and iterative process en-
compassing planning, coding, building, testing, deployment, operation, monitoring, and
optimization stages.

The methodology followed in this dissertation focuses on the iterative execution
of planning, coding, deployment, evaluation and optimization activities. In total,
two iterative cycles are performed for the derivation a self-learnig comfort system.
The first iteration focuses on the developing a flexible user behavioral model and a
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truncation-free variational inference algorithm to infer themodel’s parameters. As
presented in Section 3.3, the user behavioralmodel is the fundamental element of a
self-learning system and the main contribution of this work. The user behavioral
model and the inference algorithm are subsequently evaluated by means of a
feasibility prototype (see Chapter 5).

Based on the feedback and results obtained during the prototype evaluation, the
inference algorithm is refined and optimized by means of a heuristic threshold-
ing mechanism, introduced in Section 5.4. Ultimately, this second approach is
analyzed and evaluated in Chapter 6 and Chapter 7, respectively.

3.2 Requirements

The requirements on a self-learning comfort system are derived after a compre-
hensive literature review of the background information outlined in the preceding
chapters and expert evaluation.

REQ1 Continuous Learning.

A self-learning comfort system should be able to identify user frequently
performed actions with vehicle comfort systems. Since the users’ prefer-
ences are likely to change over time, it should be capable of adapting its
knowledge quickly, letting new information refine what has already been
learned [106]. A self-learning comfort system should improve its per-
formance over time by taking into account the user’s direct and indirect
feedback [13].

REQ2 Context-Awareness.

A self-learning comfort system should possess the ability to understand and
utilize contextual information [107]. It should consider user preferences,
past interactions, location, time and other relevant factors to provide per-
sonalized and appropriate assistance. Data should be retrieved from vehicle
sensors, cameras, displays and any other source of information available.
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REQ3 Decision-Making.

A self-learning comfort system should be capable of logical reasoning and
decision-making. It should be able to handle the inherent uncertainty in
real-word scenarios due to incomplete or noisy data, varying conditions
and unpredictable events. Wrong decisions and unexpected actions might
not only negatively influence the user’s trust and acceptance of the system,
but also cause driver distraction. Therefore, the system should decide to
automatically control a vehicle functionality only in situations where it has
very high confidence on its predictions. Moreover, techniques that facilitate
interpreting the rationale for decision should be preferred, in order to be
capable of identifying potential safety issues.

REQ4 Control and Actuation.

A self-learning system should have precise control mechanisms to actuate
vehicle comfort systems. It needs to ensure smooth and pertinent control
while adhering to safety requirements. Additionally, it should be subject to
user scrutiny and aligned with user preferences [24]. Its actions should be
understandable to the user [25].

REQ5 Safe Interaction.

The interaction between a self-learning comfort system and the driver must
be performed safely, by avoiding distractions while driving [108]. Hence, a
self-learning comfort system should behave unobtrusively, requiring neither
explicit setting of preferences nor rating of the system’s performance [76].
Since the usermust not be constrained to perform additional work to provide
explicit feedback to the system, the system should be able to handle data
instances that are not provided with a ground truth value indicating the
user’s true preferences.

REQ6 Privacy and Security.

A self-learning comfort system shall ensure that user’s information remains
private and secure by fulfilling the data protection and privacy guidelines.
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It should request customer’s consent before collecting, processing and using
the in-vehicle data. Any personal information stored in the vehicles shall
be encrypted.

REQ7 Integration and Extensibility.

The system should be designed to seamlessly integrate with various plat-
forms, applications and services [107]. It should be extensible and should
have mechanisms for over-the-air updates to incorporate new features, bug
fixes, and security patches.

3.3 Architecture

The main components of a self-learning comfort system are presented in Figure
3.2. These components work together to meet the system requirements for a
self-learning vehicle comfort system presented in the previous section.

I/O Handler Decision Handler

User Behavioral Model 

Vehicle User

Pre-processed input data Behavioral patterns

User actions

User feedback

Context data

Actuator requests

Pre-processed 

context
Interaction 

Handler
Decisions

Decisions

Interaction requests

Self-learning Comfort System

Figure 3.2: High-level overview of the components of a self-learning comfort system.
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Input/Output Handler

The Input/Output handler (I/O handler) is responsible for managing the flow of
data between the self-learning comfort system and its external environment, the
rest of the vehicle. By separating how vehicle data is acquired from how it is used,
the self-learning comfort system is extendable and flexible ([REQ7]).

The I/O handler has two main tasks. Firstly, it receives and processes the context
information, the actions performed by the user and the user’s direct and indirect
feedback from the vehicle ([REQ2]). This involves data validation and transfor-
mation, to ensure compatibility with the user behavioral model and the decision
handler. If necessary, it must perform data anonymization techniques to remove
or modify personally identifiable information ([REQ6]). Secondly, it manages
the delivery of requests generated by the decision handler towards the appropriate
vehicle’s actuators to control the comfort features ([REQ4]). This can involve
formatting, encoding, or packaging the output signals to match the expectations
of the receiving vehicle actuators.

User Behavioral Model

The user behavioral model is the central element of a self-learning comfort system.
It is responsible for learning the user’s individual behavioral patterns, including her
preferences with vehicle comfort features based on historical data and contextual
information ([REQ1], [REQ2]). The model learns by continuously “observing”
the actions performed by the user, taking into account her reactions to the responses
of the self-learning comfort system (the direct and indirect user feedback).

In addition to learning from user behavior, the model can also predict upcoming
user actions, allowing the self-learning comfort system to anticipate the user’s
needs and react accordingly. The model also provides an indication of the level
of uncertainty in the behavioral patterns it has identified, which can be useful for
system optimization and performance evaluation.
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Moreover, it shall enable over-the-air updates ([REQ7]). The update process
depends on the specific model structure and algorithms utilized, but typically
involves updating the model’s weights or parameters while preserving the existing
knowledge. Lastly, if historical user personal data is stored, it shall be protected
using data encryption or data anonymization techniques ([REQ6]).

A user behavioral model for self-learning comfort systems in vehicles is presented
in Chapter 4.

Decision Handler

The function of the decision handler is to determine the appropriate response of
the self-learning comfort system based on the current contextual information and
the set of behavioral patterns inferred by the user behavioral model ([REQ3]).

Every time the current context information changes, the decision handler evaluates
if it matches with any of the behavioral patterns already learned by the user
behavioral model. If so, it examines the level of uncertainty reported by the user
behavioral model and decides what to do accordingly. Once a decision is made, it
initiates the corresponding operations to accomplish it. Decisions are forwarded
to I/O handler if an actuator must be requested, and to the interaction handler, in
case the system must interact with the user.

The decision handler implements decision logic or algorithms that guide the
decision-making process. Transparent and interpretable techniques that facilitate
identifying potential safety issues shall be preferred ([REQ5]).

Interaction Handler

The interaction handler is the component of a self-learning comfort system that
interacts with the user, providing information and controls. The interaction can
happen via visual, acoustic and/or haptic channels, and must not interfere with
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the driving task ([REQ5]). The space where the interactions between the user and
the self-learning comfort system occurs is called user interface (UI).

The user’s implicit and explicit feedback gathered by the UI (e.g. abortion of
an automation suggestion) is collected by the I/O handler and directed to the
user behavioral model, which updates and improves the user behavioral patterns
accordingly.
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4 A Novel Bayesian User Behavior
Model

As mentioned in Section 3.3, the user behavioral model is a fundamental compo-
nent of a self-learning comfort system. Probabilistic user modeling approaches are
more appropriate than non-probabilistic ones in applications where uncertainty
plays a fundamental role andwhere user-specificmodels are required, as discussed
in Section 2.1.3. Hence, this section introduces a probabilistic nonparametric user
model that addresses the system requirements outlined in Section 3.2.

Additional information about the probability distributions presented in this chapter
can be found in the Appendix D.

4.1 Model Description

The behavior of a user u with a vehicle functionality f , is represented as a
set of context-action pairs Bu,f = {(x1, a1), (x2, a2), . . . } , where an is a
variable that represents the actions performed with the vehicle functionality f
(e.g. activate, deactivate), xn represents the context information retrieved from
the vehicle when the action was performed, such as location, time, vehicle speed
or outside temperature. The length of the dataset Bu,f may increment as the user
performs new actions.

The proposed behavioral model is represented in Figure 4.1, and the variables
and parameters of the model are described in Table 4.1. The model assumes that
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each context-action pair (xn, an) can be explained by a latent variable, zn, which
represents the behavioral pattern responsible for that behavior.

πk

zn

xn

N

∑k

𝜇k

∞

𝜇0

𝜅

𝛹

𝜈

𝛼

an
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𝜌k

𝛼0

∞

∞

Figure 4.1: Graphical representation of the user behavioral model. Shaded nodes represent observed
variables, unshaded nodes represent latent variables, arrows denote dependence, and
rectangles denote the number of copies of the outlined structure.

A behavioral pattern represents the common cause or confounder between user
actions an and context circumstances xn. This kind of relationship is called a
fork and can be represented graphically with the Bayesian network [109]:

xn ← zn → an

Behavioral patterns make user actions and context circumstances statistically
correlated even though there is no direct causal link between them. For example,
in the following association:

Open Window←
confounder

pick-up order → Being at 20:00 at McDonald’s
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Symbol Description

xn n-th context data point
an n-th action data point
zn Behavioral pattern assignment of the n-th context-action pair
N Number of behavioral patterns
α DP weight concentration hyperparameter
πk Weight of the k-th behavioral pattern
µk Mean of the k-th context distribution
Σk Covariance matrix of the k-th context distribution
ρk Probability of success of the k-th action distribution
µ0, κ,Ψ, ν Normal-inverse-Wishart prior hyperparameters
α0, β0 Beta prior hyperparameters

Table 4.1: Variables and hyperparameters of the user behavioral model.

People who are at 20:00 at McDonald’s tend to open their car’s window, but
the relationship is not one of cause and effect. Making a person being at 20:00
at McDonald’s will not make her open the window of her car. Instead, both
variables are explained by a third, the confounder, which is picking-up the order
in the drive-thru (the behavioral pattern). This correlation can be eliminated by
conditioning on the confounder: if only the actions performed by people who go
to the McDonald’s drive-thru is analyzed, no relationship between the time and
location where vehicles’ windows are opened is expected.

Since the number of behavioral patterns responsible for the behavior of a user is
unknown, the user behavioral model places of nonparametric prior based on the
Dirichlet process over zn. This way, the model is able to automatically discover
the number of behavioral patterns based on the previously observed action-context
pairs. Each behavioral pattern zn is explained by two distributions: the context
distribution and the action distribution, described in sections 4.1.1 and 4.1.2,
respectively.
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4.1.1 Context Distribution

The context distribution associated with a behavioral pattern describes the region
in the context space of similar circumstances that govern the user’s actions. In
the following, the terms “context distribution” and “context region” are used
interchangeably, because context distributions describe regions in the context
space. Each behavioral pattern assignment, zn, denotes the unique context region
associated with each context data point xn.

Since user actions are affected by the sum of many independent random context
variables, such as the weather, mood or location, a context region is represented
by a multivariate Normal distribution (MVN). Accordingly, the context region of
a behavioral pattern zn is defined by N (µk,Σk), which is the distribution likely
to have generated the context data points xn. Context vectors that are associated
with the same context distribution are considered similar. Intuitively, one can
think of it as measuring similarity by distance: each component defines a region
in a multidimensional space in the same way one might think of a region in a
physical location.

Throughout this work, context regions are represented graphically by the con-
fidence regions of the associated MVN distribution. A confidence region is a
multi-dimensional generalization of a confidence interval. It is defined as a set of
points in an n-dimensional space, often represented as an ellipsoid around a point
which is an estimated solution to a problem. For instance, a 3-sigma confidence
region of a MVN distribution represents a region in the multivariate space around
the mean vector of the distribution that contains approximately 99.73% of the data
points. This region is defined by an ellipsoid, and it widens or narrows depending
on the covariance structure of the multivariate normal distribution. The 1-sigma,
2-sigma, and 3-sigma confidence regions of a bivariate Normal distribution are
shown in Figure 4.2.

The user behavioral model assumes that context data points are generated by a
mixture of such multidimensional Normal distributions, where the number of
mixture components, represented by the behavioral patterns, is unknown. Such
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Figure 4.2: Illustration of a bivariate Normal distribution with meanµ = [0, 0] and covariance matrix
Σ = [ 1 0

0 2 ], shown along its two marginal distributions, p(X) and p(Y ), and the 1-sigma
(red), 2-sigma (blue), and 3-sigma (green) confidence regions, represented by ellipses in
the corresponding colors.

nonparametric generalization of a Gaussian mixture model is called Dirichlet
process Gaussian mixture model (DPGMM). The parameters of each context
distribution are drawn from the DP so that xn ∼ N (θzn), where θzn ≜ (µk,Σk).

The generative process of context data points is described as follows:
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π ∼ GEM(α)

zn ∼ Categorical(π)
θk ∼ DP(α,NIW(µk,Σk))

xn ∼ N (θzn),

(4.1)

whereGEM represents the Griffiths-Engen-McCloskey distribution andNIW rep-
resents the Normal-inverse-Wishart distribution. The choice for the NIW distri-
bution as the prior for the mean and covariance matrix of the Normal distributed
context components is guided by mathematical and practical convenience. In this
case, the natural choice of priors for the mean of a multivariate Normal is a Nor-
mal distribution, and an inverse-Wishart distribution for the covariance matrix,
forming the joint distribution ofµ andΣ the Normal-inverse-Wishart distribution
[110].

The multidimensional Normal distribution provides an adaptive and flexible rep-
resentation for each individual region of similar context circumstances, while the
Dirichlet process prior allows representing an unknown number of behavioral
patterns. Both automatically adjust the complexity of the user behavioral model
based on the available data. This is a key property of the user behavioral model.

4.1.2 Action Distribution

The action distribution associated with a behavioral pattern defines the probability
of a future user action, given the set of actions that have been performed following
that behavioral pattern and any form of user feedback.

In interactive scenarios, feedback can be direct or indirect. Direct feedback, also
known as explicit feedback, is given to the model when users perform an action
actively to indicate their acceptance or disapproval with the decisions made by the
system. For instance, when users press the Like button to show their agreement
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with the recommendations made by an intelligent system. Indirect or implicit
feedback, on the other hand, is the one provided without an explicit user action.
For example, a user, who every Saturday evening orders food, but one Saturday
skips it, is indirectly informing the model about a change in her routines. Hence,
the model’s probability of her ordering food any particular Saturday must be
lower than if she had not missed it. Indirect feedback is specially important when
modeling user behavior in vehicular environments, because users are not always
able to interact with an intelligent system directly, since they must pay attention
to the road.

For simplicity and without loss of generality, it is considered that vehicle comfort
functionalities have two different configurations, such as open and close (default)
in the case of the power windows, or active and inactive (default) in the case
of the seat heater. Hence, a user action is modelled using a binary variable
a ∈ {0, 1}, where a = 1 means success (activation or positive feedback), and
a = 0 means miss (inaction or negative feedback). The user behavioral model
assumes that user actions made under similar circumstances, i.e., according to a
behavioral pattern, are Bernoulli distributed: a ∼ Bernoulli(ρ). Accordingly, the
probability function of any activity a given ρ ∈ [0, 1] can be written as:

p(a|ρ) = ρa(1− ρ)1−a (4.2)

In other words, user actions take the value 1 with probability ρ, and the value 0
with probability 1 − ρ. For example, ρ = 0.5 indicates that the user is equally
likely to activate or miss activating a comfort system, given a behavioral pattern.
Therefore, to define the probability of a future user action it is essential to know
the value of the parameter ρ.

The value of the probability of success, ρ, is initially unknown and is determined
by the behavioral pattern governing the user actions. As the model gains evidence
of user’s routines, it becomes capable of inferring the value of ρ. Formathematical
convenience, it is assumed that the prior distribution for the probability parameter
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ρ is the Beta distribution, as it is conjugate to the distribution that generates the
data, the Bernoulli distribution.

The Beta distribution is a distribution on probabilities, and it is governed by two
parameters: α, representing the number of successes, andβ, the number ofmisses.
The probability density function of a Beta distribution with shape parameters α
and β is represented in Equation 4.3, where B(α, β) is the Beta function. The
Beta function can be viewed as the normalizing constant of the distribution, and
it is defined in Equation 4.4, where Γ(·) represents the Gamma function.

p(ρ|α, β) = Beta(ρ|α, β) = 1

B(α, β)
ρα−1(1− ρ)β−1 (4.3)

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(4.4)

Figure 4.3 shows the probability density function of the Beta distribution for sev-
eral parameter values. It can be observed that theBeta distributionwith parameters
α = β = 10 represents a strong initial assumption that the user is equally likely to
activate or miss activating a comfort system (ρ = 0.5). Conversely, the Beta(2, 2)
distribution reflects greater uncertainty on the assumption ρ = 0.5 compared to
Beta(10, 10) due to its higher variance. In contrast, Beta(1, 1) corresponds to
a uniform (flat) prior, indicating complete uncertainty with no prior knowledge
about the probability of success. In this case, it assigns equal probability to all
values in the [0, 1] range.

Considering a dataset of N user activity data points {a1, a2, ..., aN} made under
similar contextual circumstances, all assigned to the same behavioral pattern zk,
and an initial belief of the user behavior under such circumstances, represented
by a prior probability distribution Beta(α0, β0), the posterior distribution can be
expressed as indicated in Equation 4.5, where

∑
n an represents the number of

times the user activated the comfort function or provided positive feedback, and∑
n(1 − an) indicates the number of times the user missed activating or gave

negative feedback.
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Figure 4.3: Probability density function of the Beta distribution with different parameters.

p(ρk|a1:N , α0, β0) ∝ ρ
α0+

∑
n an−1

k (1− ρk)β0+
∑

n(1−an)−1

∝ Beta(α0 +
∑
n

an, β0 +
∑
n

(1− an))
(4.5)

Hence, Equation 4.5 can be expressed as follows, where # represents “count of”:

p(ρk|a1:N , α0, β0) ∝ Beta(α0 +#activations, β0 +#misses) (4.6)

Thus, the posterior distribution is a Beta distribution with parameters α′ =

α0+#activations and β′ = β0+#misses. Essentially, the Beta distribution acts
as a counter, where α and β represent the counts of activating or miss activating a
comfort function. Every newly observed activation is added to the existing prior
belief to compute the posterior, which can become a prior for the next activity.
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4 A Novel Bayesian User Behavior Model

This framework can be extended to use different weights to control the rate at
which α′ and β′ change in response to new evidence. For example, if the user
provides direct feedback, a higher weight can be assigned to α′ than when the user
gives indirect feedback, since direct feedback provides more accurate information
than indirect feedback. If the weight for direct positive feedback information
is represented as wposd , the weight for indirect positive feedback as wposi , the
weight for direct negative feedback as wnegd , and the weight for indirect negative
feedback as wnegi , the updated parameters α′ and β′ can be calculated as:

α′ = α0 +wposd ·#positive direct actions+
wposi ·#positive indirect actions

(4.7)

β′ = β0 +wnegd ·#negative direct actions+
wnegi ·#negative indirect actions

(4.8)

The extended action distribution for a behavioral pattern zn can thus be calculated
as:

p(ρk|zn, Bu,f ) ∝ Beta(α′, β′) (4.9)

where α′ and β′ are defined in Equation 4.7 and 4.8, correspondingly.

For instance, if the weights are set to wposi = 1 and wnegi = 0.5 and a user
activates a comfort system 7 times (positive indirect feedback) and misses activat-
ing it 3 times (negative indirect feedback) at nearly the same circumstances, the
likelihood function of this observed data can be calculated using the Bernoulli
distribution as follows:

P (data|ρ) = ρ7·wposi (1− ρ)3·wnegi = ρ7(1− ρ)1.5
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4.1 Model Description

Assuming that all 10 actions are made at nearly the same contextual circumstances
(i.e., follow the same behavioral pattern), and that initially there is complete
uncertainty about the user actions, so that α0 = β0 = 1, the posterior distribution
can be calculated as per Equation 4.9 as:

p(ρk|zn, Bu,f ) ∝ Beta(α0 + 7, β0 + 1.5) ∝ Beta(8, 2.5)

Figure 4.4 shows how, initially, the model is completely uncertain about the value
of ρk (prior distribution). After the user has performed 10 actions (activations
and misses), the model’s uncertainty diminishes, as it has gained understanding
on the user’s likely behavior. This improved understanding is captured by the
posterior probability distribution over ρk.

Finally, there are several methods to estimate the value of ρk from the posterior
distribution. One common method is to calculate the expected value of ρk,
indicated by themean of the posterior distribution. Themean of aBeta distribution
is defined in Equation 4.10.

E[Beta(α, β)] = α

α+ β
(4.10)

Accordingly, the estimated value of ρk in the previous example would be equal
to ρk ≈ E[Beta(α, β)] = 8/10.5 = 0.762. This means, that the probability
of the user activating the comfort system in the future under such contextual
circumstances, defined as the probability of success, would be 76.2%.

Similarly, other Bayesian point estimates can also be calculated. In especial,
the mean and variance of the posterior distribution provide valuable information
for decision-making, by quantifying central tendencies and variability. To make
decisions, these statistics can be compared to predefined thresholds.
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Figure 4.4: Prior (Beta(1, 1)) and posterior (Beta(8, 2.5)) distributions for ρ, indicating the probability
of success (activation). The black dotted line denotes themean of the posterior distribution
at 0.762.

4.1.3 Model Hyperparameters

In Bayesian settings, a hyperparameter is a parameter of a prior distribution. The
interpretation of the hyperparameters of the user behavioral model are discussed
in the following:

• Mean hyperpriors of the context distribution (µ0 and κ). The mean of
each context distribution is estimated from κ > 0 observations with sample
mean µ0. Intuitively, µ0 is a vector that controls the position of context
regions in the feature space. Larger values of κ concentrate the context
regions around µ0.

• Covariance hyperpriors of the context distribution (Ψ and ν). The natural
conjugate prior distribution of the covariance matrix of a multivariate Nor-
mal distribution is the Inverse-Wishart distribution IWp(Ψ, ν), because it
has support over real-valued positive-definite matrices. It is parametrized
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by a positive-definite scale matrix Ψ ∈ Rp×p and degrees of freedom
ν > p − 1. Ψ is used to position the IW distribution in parameter space,
and ν set the certainty about the prior information in the scale matrix. The
larger the ν, the higher the certainty about the information in Ψ, and the
more informative is the distribution. The least informative specification
then results when ν = p, which is the lowest possible number of ν. Intu-
itively, ν is used to control the strength/informativeness of the prior. High
values ν ≫ p indicate a strong prior, while ν = p+1 is the least informative
setting. The size of the variance is partly determined byΨ: the smaller the
elements of Ψ, the smaller the variance of the IW distribution, and hence
the more informative the prior will be. That is, the smaller values in the
scale matrixΨ, the more confidence is deposited on the covariance prior.

• Weight concentration prior (α) of the Dirichlet process. Specifying a low
value for the concentration prior makes the model put most of the weight on
few behavioral patterns and set the weights of the remaining components
very close to zero. In other words, unnecessary behavioral patterns are
easily pruned from the model, but new patterns are less likely to be added
during inference. High values of the concentration prior, on the other hand,
allow a larger number of components to be active in the mixture. The value
of the α must be greater than 0.

• Success prior (α0, β0) of the action distribution. Higher values of α0 > β0
indicate that, a priori, it is more likely to observe positive user feedback
than negative feedback (activations vs. deactivations or absence of actions).
The success prior controls the initial belief on the “amount” of positive
and negative user feedback on the vehicle functionality. For simplicity,
throughout this work it is assumed that initially, there is no strong prior
beliefs about the probability of success. This is achieved by setting the
initial values of the success prior as α0 = β0 = 1, which corresponds to a
uniform prior, Beta(1, 1).

Hyperparameters are not learned from the data, but rather set prior to model
training. They can greatly impact the performance of the model. Hence, finding
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the values that lead to best model performance is challenging. Throughout this
work, the values of the hyperparameters of the user behavioral model are defined
based on expert knowledge. Nevertheless, other strategies shall be explored in
future work, such as learning their optimal value based on fleet data (see Section
8.2).

4.1.4 Generative Process

The generative story for any action-context pair (an, xn) in the user behavioral
model is as follows. A behavioral pattern assignment zn is sampled from the set
of all possible behavioral patterns, which are distributed according to the weights
in π. Given the behavioral pattern assignment: firstly, a context data point xn
is drawn from the context distribution with parameters θzn ≜ (µzn ,Σzn), which
are distributed according to a Normal-inverse-Wishar distribution. Secondly, an
action data point an is drawn from the action distribution with parameter ρzn ,
which is Bernoulli distributed.

The generative process can therefore be summarized as follows:

1. Draw πk|α ∼ GEM(α) for k = 1, 2, ...

2. Draw (µk,Σk) ∼ NIW(µ,Σ|µ0, κ,Ψ, ν) for k = 1, 2, ...

3. Draw ρk ∼ Beta(ρ|α0, β0) for k = 1, 2, ...

4. For each data point n = 1, 2, ..., N do the following:

a) Sample a behavioral pattern zn|(π1, π2, ...) ∼ Categorical(π).

b) Sample a context xn|(zn, µ1,Σ1, µ2,Σ2, ...) ∼ N (xn|µzn ,Σzn).

c) Sample an action an|(zn, ρ1, ρ2, ...) ∼ Bernoulli(an|ρzn).
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4.1 Model Description

4.1.5 Predictive Probability

A fundamental characteristic of the user behavioral model of a self-learning
comfort system is that it can be used to predict future user actions given a new
vector of contextual information. The predictive distribution of the behavioral
model represents the probability that the user performs an action at a new context,
conditioned on the user’s behavior in the past. The predictive distribution is given
in Equation 4.11, where x∗ represents a future new context vector,Bu,f represents
the previously observed action-context pairs (i.e., the past user behavior) and
Θ ≜ {µ,Σ, ρ, π} represents the latent variables of the behavioral model.

p(a| x = x∗, Bu,f , Z,Θ) (4.11)

As already mentioned in Section 4.1, the variables a and x are conditionally
independent given the confounding behavioral pattern z. Therefore, one can
equivalently write the predictive probability as follows:

p(a| z = z∗, Bu,f ,Θ) (4.12)

where z∗ represents the behavioral pattern to which x∗ most likely belongs to.

The behavioral pattern z∗ to which x∗ is assigned to, is the one whose associated
context distribution most likely generated the data point x∗:

z∗ = argmax p(x∗|z) = argmaxN (x∗|µz,Σz), (4.13)

where the probability density function of a multivariate Normal distribution is
given by Equation 4.14.

N (x|µ,Σ) ≜
1

(2π)D/2|Σ|1/2
exp[−1

2
(x− µ)TΣ−1(x− µ)] (4.14)
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The quantity dM (x;µ,Σ) =
√
(x− µ)TΣ−1(x− µ) is known as the Maha-

lanobis distance, and it represents how many standard deviations away the point x
is from the center of the probability distribution parametrized as (µ,Σ). Thereby,
making use of the Mahalanobis distance, the value of z∗ can be equivalently
determined by Equation 4.15.

z∗ = argmin dM (x∗;µz,Σz) (4.15)

Identifying the behavioral pattern z∗ that is most likely responsible for generating
the data point x∗ from among all the model’s behavioral patterns does not neces-
sarily imply that z∗ is a suitable match. It is essential to assess whether there is
sufficient evidence to support that the context distribution associated with z∗ in-
deed generated the data point x∗. To consider z∗ a good match, the Mahalanobis
distance between x∗ and N z∗(µ,Σ) is examined. This Mahalanobis distance
must be less than a predefined threshold, denoted as δ, measured in terms of stan-
dard deviations. In simpler terms, x∗ is assigned to z∗ only when x∗ falls within
the δ-sigma confidence region. Mathematically, this is represented by extending
Equation 4.15 as:

z∗ = argmin
dM (x∗;µz,Σz)<δ

dM (x∗;µz,Σz) (4.16)

Finally, once the behavioral pattern z∗ is identified, the calculation of the proba-
bility of a future user activation is determined by the action distribution associated
to it, given in Equation 4.17.

p(ρ| z = z∗, Bu,f ,Θ) ∝ Beta(α′, β′) ∀an ∈ z∗ (4.17)

where α′ and β′ are defined by Equation 4.7 and 4.8, respectively.
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4.2 First Truncation-free VI Algorithm

Section 2.3.2 briefly reviewed the coordinate ascent variational inference algo-
rithm for posterior inference over the latent variables of a DPM model. However,
the CAVI algorithm, like all variational inference methods, imposes a restrictive
fixed truncation in the number of componentsK, which is hard to set a priori on
user-based applications. K is often either too small and inexpressive, or too large
and computationally inefficient [111]. Moreover, the computation of the evidence
lower bound as criteria to increase the number of components induces excessive
computational burden ([112], [113]). Therefore, this work proposes a different
strategy to circumvent truncation with lightweight computational cost.

This dissertation introduces a truncation-free inference algorithm that automati-
cally estimates the value of K during the inference process. This is achieved by
leveraging the information provided by the responsibilities rnk, which are calcu-
lated in each iteration of the inference algorithm. The responsibilities rnk of a
behavioral pattern zk can be seen as the responsibility that the behavioral pattern
zk takes for “explaining” the observed context data point xn. Mathematically, the
responsibilities rnk are defined as:

rnk = p(zn = k|xn,θ) (4.18)

Behavioral patterns that take essentially no responsibility for explaining the data
points have rnk ≈ 0. In consequence, the effective number of points assigned to
such behavioral pattern k, Nk, will be Nk =

∑N
n=1 rnk ≈ 0.

The proposed inference algorithm starts with a relatively small value of K (typi-
callyK = 1) and allows expressive behavioral patterns to be created based on the
data. The algorithm computes q∗(zn) via Equation 2.14 for K + 1 components.
The firstK components are “true” components, because they are actually realized
by the data. The remaining component is an unrealized component. If at the end
of an iteration the effective number of points assigned to the unrealized component
NK+1 is greater than 0, it means that there are data points that do not fit into one
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of the K realized components. In such a case, the number of components K is
incremented by one. At the next iteration, the parameters of the new component
are estimated via Equation 2.13.

To ensure that the model can effectively represent the new component and adapt
to any shifts or variations that may have occurred in the data distribution, q(Θ)

is initialized via the k-means algorithm every time that K increases. k-means
iteratively assigns data points to clusters and updates the cluster centroids to min-
imize the sum of squared distances within each cluster. The algorithm converges
when the centroids no longer change significantly. A detailed description of the
k-means algorithm is provided by [114].

The inference algorithm also checks if there are components that provide insuffi-
cient contribution in explaining the data. If there are empty components,Nk = 0

for any k = 1, ...,K, the empty ones are effectively removed from the model and
K is accordingly decremented by the number of empty components. These steps
are repeated until convergence.

Similar to k-means, convergence is determined by proving that the means of the
posterior distribution have stopped moving within some small tolerance ϵ > 0

[10]. Monitoring changes in the means of the inferred components is a proxy
to monitoring the ELBO of the full data and sidesteps its heavy computation
[115]. Since components’ means are computed at every iteration, no additional
calculation is needed. The convergence check for the inference algorithm is given
in Equation 4.19, where i represents the i-th iteration and µi

k represents the value
of the mean of the k-th context region at the i-th iteration.

K∑
k=1

||µi
k − µi−1

k ||2 < ϵ (4.19)

Ultimately, once the behavioral pattern assignments, zn, and the parameters of
the context distributions, (µk,Σk), have been identified, the inference algorithm
determines the value of the parameter of the action distributions, ρk. For that, the
algorithm determines the context-action pairs assigned to each behavioral pattern
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according to the responsibilities, rnk, calculated during inference of the context
distributions. Context-action pairs are assigned to the behavioral pattern with the
higher responsibility. Finally, the activation probability, p(ρn), is calculated via
Equation 4.9.

Since users’ preferences and behavior are continuously changing, recent user
actions are more informative than older ones. In other words, the importance or
informativeness of a sample can be defined by its age. Hence, the user behavioral
model must be able to adapt and update its learned patterns based on more recent
data while gradually disregarding older data that may have become less relevant
or accurate over time. This capacity to “forget” can be implemented by removing
older data points from the dataset of context-action pairs, Bu,f .

One method to ensure that the dataset remains current and relevant is to impose a
temporal constraint on the age of the data entries included in the dataset ([116],
[117]). This technique is known as time-based sliding window, and it is widely
used for concept drift detection [118]. The length of the sliding window, W ,
defines the upper limit on the age of the data entries, and it is a tuneable model
parameter.

Mathematically, if the time-based sliding window technique is applied to the
dataset Bu,f = {(at, xt)}, t = {1, 2, ...} to retain only recent data points, the
resulting truncated dataset is defined by:

Bu,f
recent = {(xt, at) | tcurrent − t < W} (4.20)

where tcurrent denotes the current time.

The larger the window length, the more impact older samples have on the learned
behavioral patterns. By employing this time-based truncation strategy on the
dataset, themodel maintains a focus on themost up-to-date observations, allowing
for the consideration of evolving trends and patterns, while discarding older
information that might have become less pertinent over time.
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The pseudocode describing the proposed algorithm for the inference of the be-
havioral patterns and context regions is described in Appendix A.

4.3 Demonstration of the User Behavioral
Model

This section demonstrates with a realistic example that the user behavioral model
presented in Section 4.1 is useful to discover user behavioral patterns. This
demonstration is not intended to be a thorough study of the user behavioral
model, since a much deeper analysis is provided in Chapter 6.

Alice is the user in this example. Every Saturday morning she goes shopping, and
parks her car in the parking garage of the supermarket, for what she opens the
window of her car to get the ticket. Additionally, Alice opens the window once or
twice a month when she goes to the drive-thru of a restaurant close to her house,
to remove the ice that covers the window when she parks outside, or when she
enters other underground parking garages in the city center and the surrounding
area.

Figure 4.5 represents the data points where Alice has opened the window in the
past month. In total, she has opened the window 21 times: 8 times at the parking
garage of the supermarket, 3 times at the drive-thru, and 10 times at different,
random places. For the sake of the example, it is assumed that the supermarket is
located at coordinates (10, 10) and the drive-thru is at (12, 12), so that both places
are distant enough from each other, to prevent the data points to overlap. Moreover,
for the purpose of illustration, only two context dimensions are represented in the
example: latitude and longitude.

The novel truncation-free variational inference algorithm is applied on the data set
to discover the behavioral patterns that represent Alice’s behavior. An example
of the learned context regions is depicted in Figure 4.6.
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Figure 4.5: Data set representing the context circumstances where Alice has opened her car’s window
in the last month. It is assumed that the supermarket is located at coordinates (10, 10)
and the drive-thru is at (12, 12)

The context distribution of a behavioral pattern k is represented by the 3-sigma
confidence ellipse of themultivariateNormal distributionN (µk,Σk) representing
the context region of the behavioral pattern. The use of 3-sigma confidence
ellipses for representing the context distributions graphically helps to understand
the range of possible values associated with the inferred behavioral pattern k,
since it indicates the region in which data points are likely to fall with a high
probability (approximately 99.7% of the data).

The training process is repeated for 100 Monte Carlo iterations, each presenting
the data points in a random order. At each training time step t a new data point is
presented. The maximum number of behavioral patterns,K, at each training time
step averaged over the 100 iterations is illustrated in Figure 4.7. The figure shows
how the value of K changes as new data arrives. Unlike the traditional CAVI
algorithm, which relies on a predetermined value of K, the novel VI algorithm
can adjustK based on the data, resulting in a more flexible and adaptive model.

71



4 A Novel Bayesian User Behavior Model

10 12 14 16 18
x

6

8

10

12

14

16

y

Figure 4.6: Context components and context components inferred by the truncation-free VI algorithm.
The truncation-free algorithm determines automatically the value of K, the number of
components based on the data.

Building on this example, insights on the predictive capabilities of the user be-
havioral model can be gained by inspecting the action distribution of the learned
behavioral patterns. As introduced in Chapter 4.1.2, each instance of Alice open-
ing her car’s window is a valuable source of indirect positive feedback to the
model, because it contributes to understanding her unique behavior. Hence, every
time Alice opens the window, the user behavioral model is positively rewarded
(wposi = 1), encouraging it to learn such behavior.

To be able to calculate how probable is that Alice opens the window in the
future at some location, it is first necessary to determine if there is any behavioral
pattern associated with that context, as per Equation 4.16. For instance, to
calculate the probability of a future window opening action at the parking garage
of the supermarket, located at (10, 10), it is first necessary to calculate the
behavioral pattern it belongs to. The data point x∗ = (10, 10) is associated
with the behavioral pattern closest to that point, where closeness is measured
in standard deviations, calculated using the Mahalanobis distance between the
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Figure 4.7: Number of behavioral patternsK inferred at every training step, averaged over 100Monte
Carlo iterations.

context distribution and the data point. As showed in Figure 4.6, the behavioral
pattern assigned to x∗ = (10, 10) is the one colored in blue. Even though
Alice had opened the window around the parking garage 8 times, the model has
assigned 7 of them to the behavioral pattern (blue-marked points). Accordingly,
the probability that Alice wants to open the window in the future at the parking
garage can be calculated via Equation 4.9 as:

p(a = opening|zn, Bu,f ) ∝ Beta(α0 + 7, β0)

Assuming an uninformative prior distribution, for which α0 = β0 = 1, the poste-
rior distribution would be calculated as p(a = opening|zn, Bu,f ) ∝ Beta(8, 1),
with mean E[Beta(8, 1)] = 0.889 and variance Var[Beta(8, 1)] = 0.01. The
resulting action distribution is depicted in Figure 4.8.

The probability that Alice opens the window at location x∗ = (16, 14) in the
future can be calculated in a similar manner. In this case, the context region
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Figure 4.8: Action distribution representing the probability of Alice opening the window at the
parking garage of the supermarket in the future. The action distribution follows a Beta
distribution. The black dotted line indicates the mean.

associated with x∗ is the one colored in orange. Since 6 data points belong to it,
the probability of a future open window action is calculated as follows:

p(a = opening|zn, Bu,f ) ∝ Beta(α0 + 6, β0)
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5 Feasibility Prototype of a
Self-Learning Comfort System

Prototyping is an integral part of the design and development process of any system
because it allows bringing conceptual or theoretical ideas to life and exploring
their real-world impact before finally executing them [119]. By prototyping,
assumptions, biases, and uncover insights about the users are revealed, which can
be used to improve the system or create new solutions.

In the pursuit of validating the technical possibility of a self-learning comfort
system, a feasibility prototype is built. The main objective of this preliminary
study is to validate the conceptual design of a self-learning comfort system,
examine the performance of the user behavioral model with real vehicle data,
explore the design of the user interface, and asses the overall system acceptance.

The prototype is designed to automatically control the driver’s window according
to the driver’s individual preferences. Hence, it is a prototypical implementation
of a self-learning window system. The power window system is chosen for the
prototype implementation due to its universal applicability and widespread use
in modern vehicles. The choice allows participants to easily relate to routine
scenarios, such as opening the window at a parking lot entrance or clearing the
window from the frost and ice on cold winter days.
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5.1 Functional Requirements

The following requirements for the prototype extend the general system require-
ments presented in Section 3.2 to encompass the specific goals and constraints of
the prototypical implementation.

REQ-I The system shall learn user behavior within the limited evaluation dura-
tion.

In order to let participants experience the self-learning capabilities of the
system during the evaluation period, it is crucial that the system quickly
learns the user’s preferred configurations.

REQ-II The system shall learn the driver’s individual behavioral patterns involv-
ing the driver’s power window.

The prototype self-learning window system shall be able to learn the par-
ticipant’s individual behavioral patterns involving opening and closing the
window. During the prototype evaluation, the self-learning system shall
assume that the only user is the driver. Consequently, the system shall
focus solely on the information related to the driver’s window for learning
and automation.

REQ-III Location information shall be used to identify user behavioral patterns.

To facilitate ease of implementation, the prototype shall rely solely on lo-
cation information for learning and identifying individual user routines.
Specifically, it shall utilize the latitude and longitude coordinates obtained
from the vehicle’sGPS system. Collecting and processing location data sim-
plifies the learning process, making it resource-efficient. Also, many real-
world scenarios and user behaviors with the window system are location-
dependent. Therefore, prioritizing location data allows the prototype to
address common use cases effectively.

REQ-IV The system shall be eager to automate.
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In the prototype setting, the primary goal is to demonstrate the core func-
tionality of the self-learning system and allow users to understand how it
works. Therefore, the prototype shall be encouraged to perform automated
actions, even if the uncertainty level is higher than what would typically be
encountered in real-life applications. Higher-uncertainty actions can still
provide valuable feedback for system improvement. Users’ reactions and
responses to these actions can inform further refinements in the system’s
algorithms and decision-making processes.

REQ-V The system shall have full automation capabilities.

The goal of the prototype includes testing the hypothesis that in routine
situations, highly automated systems are more useful than those with less
automation capabilities. Hence, the prototype shall demonstrate full au-
tomation capabilities, meaning it shall control the window automatically
without requiring user approval. By not requiring user approval for routine
actions, the prototype shall also test how users adapt to and accept full au-
tomated systems. This information is crucial to align the final design of the
user interface of a self-learning comfort system with the user expectations
and preferences.

REQ-VI The system must not perform quick opposite automated actions.

The prototype must avoid opening and closing the window in quick suc-
cession because continuous and rapid window movements can pose safety
risks and can lead to a poor user experience.

REQ-VII The user shall be informed about the system automated actions unob-
trusively.

The design of the prototype’s user interface shall allow the user to be aware
of the system’s capabilities and intentions. Transparency is a fundamen-
tal characteristic to improve trust and acceptance and to meet the safety
standards. Therefore, the prototype shall inform the user in advance before
performing automated actions, in order to allow the user to be aware of the
system’s capabilities and intentions.
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REQ-VIII The system shall require the user’s consent to initiate the learning
process.

The prototype must guarantee privacy by ensuring that users are aware of
and agree to the collection and analysis of their behavioral data. This not
only aligns with data protection regulations but also promotes transparency
and trust between users and the system.

5.2 Prototype Description

The functional architecture of the prototype follows the conceptual design pre-
sented in Chapter 3. The prototype of the self-learning power window system is
designed to operate on a vehicle. The system’s software is written in Python. It
runs on a laptop connected with the car via an Ethernet-CAN interface, enabling
the system to read from and write on the vehicle’s main CAN buses. A class
diagram of the software used for the self-learning window prototype is presented
in Figure 5.1.

Participants directly interact with the self-learning system only once, at the be-
ginning of the experiment ([REQ-V]). At vehicle initialization, the self-learning
system asks users for permission to automatically control the windows based
on their behavior, displaying for that a pop-up message on the laptop’s screen
([REQ-VIII]). Figure 5.2 shows a snapshot of the prototype user interface when
the system first asks the user for permission to start learning. Such interaction
requests, and the user’s answer, are sent out and processed in the interaction han-
dler module, which in responsible for controlling the prototype’s user interface.
Moreover, users are notified about any upcoming automated action while driving
via a similar unobtrusive, brief text notification displayed on the screen, which
expires automatically after few seconds ([REQ-VII]).

The vehicle’s current position is used as contextual information to infer user be-
havioral patterns. For this purpose, the I/O handler gathers the GPS longitude and
latitude coordinates of the vehicle from the car’sGPS systemvia theEthernet-CAN
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1..n

Self-Learning Window 

+ isWindowOpened(status)

+ isWindowClosed(status)

1 11

I/O Handler

+ getContext()
+ getWindowStatus()
+ closeWindow()
+ openWindow()

Decision Handler

+ decide(behaviorPattern)

Interaction Handler

+ notify(message)
+ askPermission(message)

User Behavioral Model

+ train(context, action)
+ predict(context)

Opening Window Model

+ train(context, action)

+ predict(context)

Closing Window Model

+ train(context, action)

+ predict(context)

Figure 5.1: Class diagram of the self-learning window system implemented for the feasibility proto-
type.

interface ([REQ-III]). Furthermore, the I/O handler filters out any implausible or
invalid CAN message, before sending the information further towards the user
behavioral model or decision handler, by calling the function preprocess(context).

A truncation-free version of the user behavioral model is implemented in the
prototype self-learning window system to learn the user’s individual behavioral
patterns involving opening and closing the driver’s window. The values of the
model hyperparameters are listed in Table 5.1.

Two instances of the user behavioral model run in parallel on the prototype: the
opening window-model and the closing window-model, because the prototype is
required to learn the user’s routines involving opening and closing the window
([REQ-II]). Hence, the opening-model is designed to continuously learn the user
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Figure 5.2: Snapshot of the system’s initial UI design. The self-learning system requests user permis-
sion to start learning and automating comfort features.

behavioral patterns concerning opening actions, whereas the closing-model iden-
tifies the behavioral patterns related with closing activities. For this purpose,
every time the driver’s window is opened, the opening-model is positively re-
warded (wposi = 1), encouraging the model to learn such behavior. Similarly,
the closing-model is rewarded when the driver’s window is closed. Figure 5.3
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5.2 Prototype Description

Hyperparameter Initial value

α 1
µ0 0

κ 10−6

Ψ diag(10−9, 10−9)

ν d+ 1

β0 1
α0 1

Table 5.1: Parameters and hyperparameters of the user behavioral model for the prototype evaluation
(feature dimension d = 2). A vector of d zeros is denoted by 0.

shows the sequence diagram of how the prototype’s components interact when
learning the user’s behavioral patterns by observing the user’s behavior. The
system continuously gathers the vehicle and user data, by calling the getContext()
and getWindowStatus()methods of the I/O handler. Every time the user performs
an action, the user behavioral model is re-trained by calling train(context, action).

Having two different models to learn two opposite actions can originate conflicts.
Due to the fact that the feature space is two-dimensional (latitude and longitude),
both models can have very similar input data, so that the learned behavioral
patterns may overlap. For example, if a user opens and closes the window several
times within a small area, such as the entrance of a parking lot, the opening model
may identify a behavioral pattern for opening the window, and the closing model
may also find a behavioral pattern to close the window. Hence, next time the user
is in that area again, the action of the system – opening or closing the window
– is not straightforward, as both models may show high confidence levels. For
example, the situation in Figure 5.4 represents how both models might show high
confidence levels for opening and closing the window if the car is located at the
black cross, leading to ambiguity in deciding the appropriate action.

To avoid such conflicts, every time the window is opened, besides rewarding
the opening model, the closing model is slightly punished (wnegi = 0.5). Such
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I/O Handler Opening
Window Model

Closing
Window Model

Self-Learning
Window

loop getContext()
return

getWindowStatus()
return

isWindowOpened(status)

train(context, opened)

return

[If yes]

train(context, opened)

return

Figure 5.3: Sequence diagram of the process followed by the prototype self-learningwindow system to
learn behavioral patterns involving opening the window. The self-learning window system
continuously checks the vehicle’s position and the window status using the functions
getContext() and getWindowStatus(). When the window is opened, both the opening
and closing models are updated to incorporate the new evidence of the user behavior
(via train(context, action=opened)). The opening model is rewarded and the closing
model is slightly punished to prevent the prototype from opening and closing the window
immediately one after the other ([REQ-VI]).

negative feedback on the closingmodel ensures that bothmodels agree on opening,
and not closing, the window under similar circumstances. Similarly, when the
window is closed, the opening model is also slightly punished. Furthermore, this
mechanism aims to prevent the prototype from opening and closing the window
immediately one after the other ([REQ-VI]), as it encodes the assumption that
opening and closing are opposite, mutually exclusive actions.

Once both models infer the user behavioral patterns, the decision handler checks
whether the current context information belongs to any behavioral pattern, from
any of the two models via Equation 4.17. The sequence diagram representing
the interaction of the system’s components during the decision-making process is
illustrated in Figure 5.5. If the current context information belongs to a context
region, the decision handler decides which action to take based on the action
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1 0 1 2 3 4
x
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Figure 5.4: Example of overlapping behavioral patterns on a 2-dimensional context space. Blue
(orange) points denote data instances where the user has opened (closed) the window.
The blue (orange) ellipse denotes the context region of the opening (closing) window
behavioral model. At the black cross, the action probability of the opening model would
be Beta(7, 1) (mean = 0.88), and the action probability of the closing model would be
Beta (6, 1) (mean 0.86), assuming a non-informative prior.

distribution of the corresponding behavioral pattern. The decision is based on the
confidence value of the action distribution. If the mean of the action distribution
of an opening window-model is equal to or greater than a threshold τact, the
system automatically opens the window. Similarly, if the mean of the action
distribution of an closing window-model is smaller than a threshold τdeact, the
system automatically closes the window.

The thresholds are chosen to make the decision handler eager to automate, in
order to showcase the self-learning capabilities of the system within the limited
evaluation duration ([REQ-I], [REQ-IV]). Therefore, the value of the thresholds
is set to τact = 0.8 and τdeact = 0.2, so that the prototype aims to open (or close)
the window automatically when the same action is repeated at least three times
under similar circumstances.
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5.3 Results and Discussion

5.3 Results and Discussion

In total, ten employees of Mercedes-Benz AG participated in the experimental
evaluation of the self-learning window prototype. Participants were informed
about the general goal of the investigation and were requested to drive the vehicle
around theMercedes-Benz Technology Center (MTC) in Sindelfingen. They were
instructed to simulate a routine behavior with the power window, by driving the
same route at least ten times, and opening or closing the window at least three
times at almost the same location. The self-learning comfort system was reset
before a new participant entered inside the car.

After the experiment, participants were asked to describe their experience with
the self-learning window system. All participants agreed that the automated
actions performed by the self-learning window system followed the routines they
simulated during the experiment. Also, each participant could share at least one
daily life routine where they believed a self-learning window system would be
beneficial to them.

However, participants that simulated their behavior at a parking garage reported
unexpected behavior of the prototype self-learning window in such conditions.
To replicate their behavior at a parking garage, these participants opened and
closed the window at nearly the same location, as if they were entering into
a parking’s garage and briefly opening the window to obtain an entry ticket.
These seemingly opposite actions occurred under almost identical conditions,
resulting in both behavioral patterns being equally rewarded and punished within
practically identical contextual circumstances. This scenario led to uncertainty
about the participant’s preferences, as the two models suggested distinct actions.

This result indicates that having two different models to identify user’s routines
might not be the best conflict-solving strategy for a self-learning comfort system.
Such configuration is based on the assumption that opening and closing are two
mutually exclusive actions, so that when users open the window, they do not want
to close it (and hence the closing model is punished), and vice versa. It was seen
that such assumption does not hold in all circumstances. Hence, the next concept
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5 Feasibility Prototype of a Self-Learning Comfort System

of a self-learning comfort system may be based on the idea that “the contrary of
opening is the absence of action”, for which both opening and closing models
should not be related, and the conflict-solving strategy shall be made based on the
uncertainty level of the corresponding behavioral patterns. Furthermore, taking
into account other context features, such as the time information, or the driving
direction of the vehicle might also be beneficial.

Furthermore, four participants mentioned that they sometimes did not expect the
automated actions performed by the self-learning window system, as theywere not
at exactly the same location where they had previously performed the actions, but
rather some distance apart from there. A careful review of the behavioral patterns
inferred by the self-learning comfort system after the experiments revealed that
the user behavioral model tended to increase the covariance of an existing context
component rather than create a new one, which occasioned underfitting. As
already introduced in section 5.4, this model’s reaction is due to the “rich-get-
richer” property of Dirichlet processes. For this reason, the user behavioral
model was not detailed enough and therefore, generalized user’s behavior to
circumstances users did not expect. A solution to this phenomenon is presented
in Section 5.4.

5.4 Optimized Truncation-free VI Algorithm

Despite all the favorable properties of the nonparametric methods based on the
Dirichlet distribution, the Dirichlet process places prior assumptions on the struc-
ture of the context components: partitions will typically be dominated by a few
very large components, with overall “rich-get-richer” usage. A new observation
belongs to a context region with a probability proportional to the number of
observations already present in the component, as described in Section 2.3.1.2.
Therefore, larger regions have a greater chance to get associated with new obser-
vations.
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5.4 Optimized Truncation-free VI Algorithm

Since the inference algorithm presented in Section 4.2 is initialized with one single
component (typicallyK = 1), the “rich-get-richer” effect of the DP can dominate
over the geometry of the context regions, causing the DP to become trapped in the
undesirable configuration where no new components can be generated [120]. IfK
is too small, the algorithm may increase the covariance of an existing component
rather than creating a new one, and the model complexity would be less than the
apparent optimum. This event is known as underfitting. The more underfitted
a model is, the less accurately it captures the relationship between the input and
output variables and consequently, the more it deviates from the observed data.
The opposite of underfitting is overfitting. When a model is overfitted, it fits too
closely against the observed data, rendering it unable to generalize well to new
data points.

For modeling geographical data, the “rich-get-richer” effect of the DP and the
resulting underfitting may cause behavioral patterns that take part in a tiny context
region (i.e., at the level of parking lots) go unnoticed if there are data points
widespread at larger scales (at the level of cities or countries, for instance), because
the model may assign all data points to the same component. This phenomenon
is illustrated in Figure 5.6.

If the model deviates too much from the observed data, it may predict future user
actions at potentially incorrect locations. Based on such inaccurate predictions, a
self-learning window system can, for instance, automatically control the window
unexpectedly, whichwill probably surprise and confuse the user, andwill therefore
compromise the trust and acceptance of the system [32]. Therefore, for safety
relevant comfort systems such as the power windows, it can be necessary to
weaken the “rich-get-richer” assumption to favor the accuracy of the model over
its generalizing and predicting capabilities, resulting in more detailed context
regions. On the other hand, such strategy may not be advisable for other comfort
systems whose user acceptance constraints are not so strict, such as the seat heater.

Hence, this dissertation proposes to use a heuristic criterion to adjust the level of
detail of the model, that is, the model complexity, in an understandable manner
based on the specific requirements of each comfort system. The heuristic criterion
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defines the conditions under which the model may have converged to a suboptimal
representation of the user behavior, where no new context components can be
generated.

Intuitively, the heuristic criterion defines how to detect context component that are
“too large” or “too dispersed” with regard to the observed data. If during inference
the algorithm identifies a region that is too large, then the model complexity is
increased by incrementing the number of components that can be realized, i.e., the
value of K. If at the next iteration the newly created component is not assigned
to any data point, it will be removed from the model and the value of K will be
decreased accordingly. To avoid components to be created in one iteration and
removed in the next one whenK is increased, q(Θ) is initialized via the k-means
algorithm. The heuristic criterion can be understood as a plug-in criterion to
encourage the algorithm to detect more detailed context regions.

(a) (b)

Figure 5.6: Effect of the “rich-get-richer” property of the DP on geographical data. Context dis-
tributions are represented using 3-sigma confidence ellipses. On the left, the inferred
context region is more “spread out”, indicating greater variability among the data points
assigned to them, or equivalently, a larger covariance matrix. On the right, the context
regions have smaller covariance matrices, so that the data points assigned to them are
more concentrated and have less variation. Hence, these regions are considered more
“detailed” because they exhibit more consistent characteristics.

There aremany options to describe how to detect a suboptimal convergence during
the inference of the behavioral model. In this dissertation, a context component
is considered to be suboptimal, that is, too dispersed, if its generalized variance
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(GV) is greater than a threshold ξ (Equation 5.2). The GV is a scalar value which
generalizes variance for multivariate random variables, and it is defined as the
determinant of the covariance matrix, as indicated in Equation 5.1.

GV(N (µ,Σ)) = det(Σ) (5.1)

The generalized variance is related to the multidimensional scatter of points
around their mean, as demonstrated in [121]. As the GV increases, the data points
exhibit greater dispersion around the mean. For instance, in a 2-dimensional (or
3-dimensional) space, when GV = 0, the data points lie on a line (or plane).
Consequently, the GV serves as a measure that quantifies the area (or volume)
occupied by the data points, as noted by [122]. Similar heuristic threshold tests
have been applied in other researchworks to determine cluster creation and pruning
([123], [124]).

GV(N (µ,Σ)) > ξ (5.2)

The pseudocode describing the algorithm for the inference of the behavioral
patterns and context regions with the heuristic criterion is described in Appendix
B.

5.4.1 Algorithm Demonstration

This demonstration of the user behavioral model is built on the realistic example
presented in Section 4.3. However, this section employs the truncation-free VI
algorithm with heuristic thresholding presented in the previous section to analyze
Alice’s behavior with the window, rather than applying the baseline truncation-
free VI presented in Section 4.2. An example of the learned context regions using
the heuristic-based inference algorithm (ξ = 0.1) is shown in Figure 5.7, in which
the context distributions are represented by the 3-sigma confidence ellipses.
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Figure 5.7: Toy data set and context components inferred with the heuristic-based algorithm (ξ =
0.1). The heuristic criterion allows to control the desired level of detailed of the learned
context regions. The smaller the value of ξ, the less variability in the assigned data.

The optimized heuristic-based VI inference algorithm is trained 100 times, each
iteration presenting the data points of the data set in a random order. To show
the impact of the heuristic threshold ξ on the inferred context regions, Figure 5.8
shows the value of the maximum number of behavioral patterns at each training
time step,K, for different values of the heuristic threshold ξ = {0.01, 0.1, 1, 10},
averaged over the 100 iterations. Furthermore, the results obtained with the
truncation-free VI without heuristic thresholding are also illustrated in Figure 5.8,
indicated as ξ = None.

When ξ → ∞, the value of the truncated number of components K at every
training time step estimated by the heuristic-based inference algorithm is very
similar to the value estimated by the first non-heuristic algorithm. As expected,
the greater the value of ξ, the less likely it is that the suboptimal convergence
test defined in Equation 5.2 is applied. Therefore, the value of the maximum
number of context regions, K, is not increased. On the other hand, if ξ → 0, the
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suboptimal test always applies, which results in an increase of the value of K at
almost every training time step.

0 5 10 15 20
# training time steps

2.5

5.0

7.5

10.0

12.5

K

= 10
= 1
= 0.1
= 0.01
= None

Figure 5.8: Number of components inferred at every training step for different values of ξ. LowerK
means simpler models. ξ = None indicates the results obtained from the first truncation-
free VI algorithm.

Results reveal some other interesting properties of the optmized truncation-free
VI algorithm for the user behavioral model. Firstly, it can be observed that the
context regions learned with the baseline truncation-free VI algorithm (Figure
4.6) do not fit the data points so precisely as the heuristic-based VI algorithm
(Figure 5.7). The reason for this behavior is the “rich get richer” property of
the DP, by which new data points have greater chance to get associated with
an already existing large component than to start a new one. The heuristic
check of the heuristic-based inference algorithm overcomes the “rich-get-richer”
assumption and therefore, smaller context regions are identified. Secondly, the
model complexity, represented by the value of K, depends on the value of the
heuristic threshold ξ. The greater the value of ξ, the less the model complexity
(i.e., smaller value ofK). Consequently, the smaller the value of ξ, the more level
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of detail the model has. This property can be observed comparising the resulting
context regions obtained for ξ = 0.01 and ξ = 10 in Figures 5.9a (more detailed)
and 5.9b (more spread out), respectively.
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(b)

Figure 5.9: Context regions inferred using the truncation-free VI algorithm with heuristic threshold-
ing, with ξ = 0.01 (top) and ξ = 10 (bottom).
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6 Analysis of the User Behavioral
Model

The synthetically generated datasets presented in this section aim to illustrate
the properties of the user behavioral model. Since the user behavioral model
is composed by the context and the action distributions, this problem has been
decomposed into two smaller and independent sub-problems. Firstly, in Section
6.1, the properties of the context distribution are examined. Secondly, Section
6.2 analyzes the action distribution.

6.1 Analysis of the Context Distribution

Four datasets have been generated to examine the model’s ability to cope with ran-
domly changing context circumstances that govern user actions: orbital, noisy,
overlapping and vanishing, described in sections 6.1.2.1, 6.1.2.2, 6.1.2.3 and
6.1.2.4, respectively. Each dataset has been designed to represent a single chal-
lenging task, isolated from the others.

Data points in the datasets represent the context circumstances recorded when an
action on a vehicle comfort system is performed. The context distributions of the
synthetically generated behavioral patterns are normally distributed, and samples
of the same Normal distribution are assumed to belong to the same behavioral
pattern.

For straightforward performance evaluation, it is assumed that the action per-
formed is always an activation of a comfort system (an = 1). Moreover, the
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means of the synthetically generated context distributions are not permitted to
overlap in feature space, helping to ensure that the underlying model is recover-
able, thus providing a fair comparison of model outputs to ground truth distribu-
tions. Furthermore, to ease the visualization of the model’s solution, datasets are
2-dimensional.

6.1.1 Methodology and Evaluation Metrics

Five configurations of the user behavioral model are evaluated for each problem.
To illustrate the effects of the heuristic threshold in the model’s performance, four
of the configurations utilize the optimized heuristic truncation-free variational
inference method, each of which employs a different value of the threshold pa-
rameter ξ = {0.01, 0.1, 1, 10}. The fifth model configuration employs the first
truncation-free VI approach, without heuristic criterion (ξ = None).

Moreover, since the heuristic criterion depends on the model’s covariance matrix
(Equation 5.2), which is regulated by the scale matrix Ψ, the five model config-
urations are evaluated considering three distinct values of the hyperparameter Ψ,
namely Ψ = {0.1I, I, 10I}. The value of the other prior hyperparameters of the
user behavioral model presented in Section 4.1.3 are listed in Table 6.1.

Hyperparameter Value

α 1
µ0 0

κ 10−6

Ψ {0.1I, I, 10I}
ν d+ 1

β0 1
α0 1

Table 6.1: Hyperparameters for the analysis of the context distribution on synthetic data (feature
dimension d = 2). A vector of d zeros is denoted by 0.
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6.1 Analysis of the Context Distribution

The user behavioral model is evaluated for label agreement with ground truth
behavioral patterns via Normalized Mutual Information (NMI) [125]. NMI is
computed for two data partitions U and V from the following equation:

NMI(U, V ) ≜
I(U ;V )

(H(U) +H(V ))/2
, (6.1)

where I(U ;V ) is the mutual information between U and V , andH(U),H(V ) are
the entropies of U and V , respectively.

The NMI score lies between 0 and 1. NMI has a maximum value of 1 when the
solutionsU and V are identical. Conversely, when the value of NMI is 0,U and V
are mutually independent. Thus, the larger the NMI, the better the performance.

Furthermore, the purity of the model’s solution is also evaluated. The purity
score, also known as homogeneity, evaluates the extent to which a group of
records shares the same class. To compute the purity score, each context region
is assigned to the most frequent ground truth label of the data points assigned to
it. Then, the accuracy of this assignment is measured by counting the number
of correctly assigned data points, divided by the number of total data points.
Formally, purity is defined as follows:

purity(U, V ) ≜
1

N

∑
u∈U

max
v∈V
|u ∩ v|, (6.2)

whereU is the set of context regions, V refers to ground truth labels of the dataset,
and N is the total number of data points.

The purity score ranges between 0 (bad) and 1 (good). It does not penalize for
the number of components, so one can trivially achieve a purity of 1 by putting
each data point into its own component. Therefore, the error in the number of
components is also analyzed. It is measured by the signed deviation from the true
number of components ∆K = K̂ −K, where K̂ and K are the estimated and
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true number of components, respectively. When ∆K > 0 (∆K < 0), the model
estimated too many (few) components.

Finally, the total training time in logarithmic scale is also provided, so that the
different tuning schemes can be compared in terms of computational complexity.

6.1.2 Evaluation of the Synthetic Datasets

6.1.2.1 Orbital Dataset

An orbital dataset represents the context circumstances of many, non overlapping,
behavioral patterns. This problem is specially interesting because users frequently
have several behavioral patterns, and the user behavioral model must be capable
of recognizing all of them. For example, a user may open the window at many
different locations, such as her garage, her office’s parking or at a shopping
mall. Orbital datasets lay the foundation for the generation of the other datasets
presented in the following sections.

Data points in an orbital dataset are represented as samples from C = 5 normally
distributed components, whose means are evenly spaced on a circle of radius
R = 5 around the origin and covariancematrixΣ(x) = 0.1I , so that components’
means and data points do not overlap.

At each time step t, a new data point is generated by sampling one of the normal
components. Once P = 10 samples have been taken from one component, the
next component is sampled, chosen at random. This is repeated until P data
points from each of the C components have been taken. Figure 6.1 shows an
example of an orbital dataset.

This type of dataset stresses the model, and specially the context distribution, in
the following ways:
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(a) t = 10 (b) t = 20

(c) t = 30 (d) t = 40

(e) t = 50

Figure 6.1: Example data from an orbital dataset at different time steps t, for C = 5 and P = 10.
Once P points have been drawn from one component, the next component is sampled.
Components are colored to facilitate their identification.

• Themodelmust be able to compute and update the parameters of the context
distribution of the behavioral patterns that are changing as a function of
time.
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6 Analysis of the User Behavioral Model

• The model must be able to add behavioral patterns according to the data.

• The model must be able to identify behavioral patterns with changing sizes.

Models are evaluated averaging 100Monte-Carlo experiments. Results indicating
the model’s performance for Ψ = {0.01I, 0.1I, I} are shown in Figure 6.2.

0.01 [I] 0.1 [I] [I]
0.0

0.2

0.4

0.6

0.8

N
M

I

(a) NMI

0.01 [I] 0.1 [I] [I]
0.00

0.25

0.50

0.75

1.00

Pu
rit

y

(b) Purity

0.01 [I] 0.1 [I] [I]

0.0

2.5

5.0

7.5

 K

(c)∆K

0.01 [I] 0.1 [I] [I]
10

1

10
2

10
3

lo
g 

(T
im

e 
(m

s)
)

(d) Execution time[I] 0.1 [I] 0.01 [I]
10

1

10
2

10
3

lo
g(

Ti
m

e 
(m

s)
)

None 10 1 0.1 0.01

Figure 6.2: Performance metrics for each of the model configurations when tested on the orbital
dataset. Metrics were computed for each time step t and then averaged across all Monte-
Carlo experiments.

An interesting result is that the average NMI and purity scores obtained by the
inference approach without heuristic criterion (ξ = None), are lower than the
ones obtained by the other four model configurations with the optimized heuristic
inference, regardless of Ψ. This result suggests that models inferred using the
heuristic criterion are more similar to the ground truth behavioral model than the
baseline approach. Moreover, it can also be seen that the baseline model generally
underestimates the number of context components (i.e.,∆K < 0). This behavior
is expected from standard DP implementations, due to the “rich-get-richer” effect
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presented in section 5.4. The model configurations that leverage the heuristic
inference algorithm perform better by detecting large context components in the
data stream and re-fitting the model with a better value ofK.

Figure 6.2 also reveals that smaller values of the heuristic threshold ξ lead to a
higher overestimation of the number of context components (∆K > 0) and to
more homogeneous components (higher purity). This is due to the fact that, when
suboptimal components are detected by the heuristic criterion, themodel’s number
of components K is increased, increasing the model’s complexity and hence
allowing the model to find more, but smaller, context components. However, very
small values of ξ occasion an unnecessary increment of the model’s complexity,
which is explained by the reduction of the NMI score in models with ξ = 0.01,
as compared with models with ξ = 0.1.

Furthermore, the heuristic detection induces an increase in the average execution
time. If the value of the heuristic threshold ξ is smaller than the variance of
the data, the execution time is increased more than 10 times, as suboptimal
components are constantly detected, leading to frequent model re-fitting.
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6 Analysis of the User Behavioral Model

(a) ξ = None (b) ξ = 10

(c) ξ = 1 (d) ξ = 0.1

(e) ξ = 0.01

Figure 6.3: Context components inferred by the different model configurations on an orbital dataset
at t = 40 with Ψ = I .

6.1.2.2 Noisy Dataset

A noisy dataset is an orbital dataset that hasN = 10 additional data points, which
seem not to belong to any context region. The N data points pretend to imitate
accidental or not frequently performed user actions. For the model, these N points
represent noise. An example of a noisy dataset is illustrated in Figure 6.4.
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(a) t = 10 (b) t = 20

(c) t = 30 (d) t = 40

(e) t = 50 (f) t = 60

Figure 6.4: Example data from a noisy dataset at different time steps t, for C = 5, P = 10 and
N = 10. The N points (blue) pretend to imitate accidental or not frequently performed
user actions.

The noise data points are generated by sampling N times a Normal distribution
with mean µ = (0, 0) and covariance matrixΣ = 10I , which is 100 times larger
than the data generating distributions. At each time step t, a sample from any of
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6 Analysis of the User Behavioral Model

the Normal components is taken, chosen at random. In this example, the data
points of the N noise components may lie over the data points of any of the K
Normal components.

This type of dataset stresses the model, and specially the context distribution, in
the following ways:

• The model must be able to identify behavioral patterns in the presence of
noise.

Models are evaluated averaging 100Monte-Carlo experiments. Results are shown
in Figure 6.5. The results obtained by the model in this experiment are, in general,
very similar to the results obtained in the previous section. However, it can be
observed that the purity scores are lower in this experiment. This is due to the fact
that, in noisy datasets the data points of the N components may overlap the data
points generated by the other K Normal components, which makes inevitable
that models find less homogeneous context components. Moreover, models are
more likely to overestimate the number of context components (∆K > 0) in this
second experiment, because models tend to group the noise data points N either
together or in many smaller components, as illustrated in Figure 6.6.
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Figure 6.5: Performancemetrics for each of themodel configurationswhen tested on the noisy dataset.
Metrics were computed for each time step t and then averaged across all Monte-Carlo
experiments.
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(a) ξ = None (b) ξ = 10

(c) ξ = 1 (d) ξ = 0.1

(e) ξ = 0.01

Figure 6.6: Context components inferred by the different model configurations on a noisy dataset at
t = 50 with Ψ = I .
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6.1.2.3 Overlapping Dataset

An overlapping dataset is an orbital dataset inwhich the samples of theC normally
distributed components overlap, as illustrated in Figure 6.7. This is accomplished
by placing the means of the components over a circle of radius R = 1, instead of
R = 5. The purpose of this problem is to analyze the performance of the user
behavioral model when samples are close to each other in the context space.

Models are evaluated by averaging 100 Monte-Carlo experiments. Results in
Figure 6.8 show that model configurations with smaller values of ξ = {0.1, 0.01}
obtain better NMI and purity scores. However, they also tend to overestimate
the number of behavioral patterns, leading to longer execution times. These
results are particularly noticeable in the model configuration with ξ = 0.01, as
exemplified in Figure 6.9e. Since the threshold value for detecting suboptimal
context regions (i.e., regions that are too large and dispersed) is significantly
smaller that the underlying variance of the components (Σ = 0.1I), the model
increases its complexity by incrementing the upper limit of context components
K at each iteration. The heuristic criterion is likely to be met repeatedly, leading
to the model assigning a single data point to a different component.

On the other hand, model configurations with ξ = {None, 10, 1} tend to under-
estimate the number of components (∆K < 0), which indicates that data points
of different components are grouped together, as can be seen in the example
showed in Figure 6.9a, 6.9b, and 6.9c, respectively. These results are motivated
by the “rich-get-richer” property of the DP, by which the DP tends to assign data
points to components that already have many data points. In general, the results
obtained from the analysis of the overlapping datasets suggest that, if overlapping
behavioral patterns are expected, the value of ξ shall be equal to or smaller than
the variance of the expected context components.
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(a) t = 10 (b) t = 20

(c) t = 30 (d) t = 40

(e) t = 50

Figure 6.7: Example data from an overlapping dataset at different time steps t, forC = 5 andP = 10.
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Figure 6.8: Performance metrics for each of the model configurations when tested on the overlapping
dataset. Metrics were computed for each time step t and then averaged across all Monte-
Carlo experiments.
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(a) ξ = None (b) ξ = 10

(c) ξ = 1 (d) ξ = 0.1

(e) ξ = 0.01

Figure 6.9: Context components inferred by the different model configurations on an overlapping
dataset at t = 50 with Ψ = I .
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6.1.2.4 Vanishing Dataset

A vanishing dataset is an orbital dataset. However, in this problem, the window
length of the model’s sliding window mechanism is set to W = 10. Hence,
the user behavioral model is forced to forget data points older than t = 10 time
steps. This problem is specially interesting to analyze the performance of the
“forgetting mechanism” of the user behavioral model. In particular, it analyzes
how the context distributions are affected when users modify their routines. For
example, a user may activate the seat heater in winter, but as soon as it becomes
warmer in summer, the user may not want to heat up the seat anymore. Hence,
the user behavioral model must adapt the learned behavioral patterns accordingly:
the associated context distribution may slowly disappear, and the action distribu-
tion may reveal an increased uncertainty on the user’s behavior and ultimately,
discourage any automated activation of the seat heater.

This type of dataset stresses the model, and specially the context distribution, in
the following ways:

• Themodel must be able to compute and update the parameters of behavioral
patterns that are changing as a function of time.

• The model must be able to remove behavioral patterns according to the
data.

• The model must be able to identify behavioral patterns with changing sizes.

Results in Figure 6.11 show that the values of the NMI and purity metrics are
very similar to the outcomes obtained for the orbital dataset in Section 6.1.2.1.
However, in this vanishing problem the model’s execution time is considerably
reduced. This is because in the vanishing example, models identify less context
components compared to the orbital dataset, which is due to the fact that the
window length has been reduced to 10.

An example of the inferred components by a user behavioral model with ξ = 0.1

and Ψ = I is shown in Figure 6.10.
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(a) t = 10 (b) t = 20

(c) t = 30 (d) t = 40

(e) t = 50

Figure 6.10: Context components inferred by the user behavioral model with ξ = 0.1 andΨ = I on
a vanishing dataset with C = 5, P = 10 and W = 10.
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Figure 6.11: Performance metrics for each of the model configurations when tested on the vanishing
dataset. Metrics were computed for each time step t and then averaged across all Monte-
Carlo experiments.
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6.2 Analysis of the Action Distribution

This section analyzes the influence of the number of user actions and the weigh
of the positive and negative indirect user feedback on the action distribution, and
specially on the model’s uncertainty of future user actions, measured by its mean
and standard deviation.

The synthetically generated datasets aim to represent different kinds of user be-
havior: either constant and invariable or irregular and changing. The samples in
the datasets represent the actions performed by a hypothetical user. In particular,
each sample describes whether the user activated (an = 1) or missed activating
(an = 0) the comfort functionality. These two kinds of user interactions with the
comfort functionality represent a positive indirect and a negative indirect feed-
back, respectively, and are specially interesting because they can be recorded in
an offline experimental setting, as the one described in Chapter 7.

The focus of this analysis is to gain understanding of the action distribution of the
user behavioral model, as the performance of the context distribution has been
already analyzed in the previous chapter. Therefore, the datasets presented in this
section contain information regarding the user actions only, and do not describe
the context in which the actions are performed. It is assumed that all data points
in the datasets belong to the same behavioral pattern.

6.2.1 Methodology and Evaluation Method

Data points are generated by drawing C samples from a uniform distribution. If
the value of the sample is equal to or smaller than a threshold T ∈ [0, 1], the
value of the data point is set to 1 (activation). Otherwise, the data point is set to
0 (missed activation). Hence, the greater the value of the threshold T , the more
often activation samples are generated. That is, datasets generated with T close
to 1 symbolize the behavior of a user, who regularly follows the same routine. On
the other hand, datasets generated with T close to 0 represent the behavior of a
user with an irregular conduct, who seems not to follow any particular routine.
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For each dataset generated with C samples and threshold T , three values of the
positive and negative feedback weights are evaluated. The higher the value of
the positive indirect feedback weight wposi , the greater the model’s inclination
to believe that every user action follows a routine. In other words, higher values
of wposi encourage the model to believe that the user’s behavior is constant and
stable. On the other hand, the higher the value of the negative indirect feedback
weight wnegi , the more the model’s confidence on future user actions is reduced
when an expected action is not observed. That is, the higher the value of wnegi ,
the more cautious and conservative the learned user behavioral patterns will be.

For all problems represented in the datasets, the user behavioral model is con-
figured with the parameter values listed in Table 6.2. Behavioral patterns are
inferred using the truncation-free variational inference method without heuristic
(ξ = None). The value of the hyperparameters α0 and β0 of the action dis-
tribution at start are chosen to represent no strong prior beliefs about the user’s
preferences, so that any value between 0 and 1 is equally likely before observing
any data. Hence, their values are set to α0 = β0 = 1, which is known as a
non-informative prior distirbution.

Hyperparameter Value

α 1
µ0 0

κ 10−6

Ψ I

ν d+ 1

β0 1
α0 1

Table 6.2: Hyperparameters for the analysis of the action distribution on synthetic data (feature
dimension d = 1). A vector of d zeros is denoted by 0.
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The model’s uncertainty of future user actions is evaluated by analyzing the value
of the mean and standard deviation (σ2) of the resulting action distribution after
training. The higher the value of the mean, the higher the probability of a future
user action. Model uncertainty is measured by the standard deviation of the
action distribution. The smaller the standard deviation, the less uncertainty and,
accordingly, the more accentuate the prediction would be.

6.2.2 Results and Discussion

The action distribution is evaluated by averaging 100 Monte-Carlo experiments
for datasets generated with C = [5, 10, 15], T = [0.2, 0.5, 0.8] and different
values of the positive and negative indirect feedback weights. An overview of
the various configuration options evaluated and the resulting mean and standard
deviations of the trained action distribution is presented in Table 6.3.

Based on the results, it appears that increasing the number of samples (represented
by a higher value of C) leads to a decrease in the standard deviation of the
action distribution. This suggests that as more evidence is gathered, uncertainty
regarding future user actions is reduced. Furthermore, it can be observed that
the more consistent the user behavior is (higher T ), the more probable is that
the user performs the same action in the future, denoted by a higher mean and
a smaller standard deviation. Finally, results indicate that the feedback weights
influence the model’s learning rate. Independently of the number of samples C,
it holds that the higher the positive indirect feedback weight (wposi ), the higher
the model’s probability on a future user action (greater mean). Also, the higher
the negative indirect feedback weight (wnegi ), the less the model’s probability on
a future user action (smaller mean). Hence, the higher the value of the positive
indirect feedback weight of a model, the less evidence (samples) it will need to
believe that the user has a routine behavior and will tend to perform an action in
the future.
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wposi = 1 wposi = 2 wposi = 1

wnegi = 1 wnegi = 1 wnegi = 2

T C mean σ2 mean σ2 mean σ2

0.2 5 0.29 0.16 0.38 0.16 0.18 0.11
10 0.25 0.12 0.38 0.12 0.15 0.08
20 0.23 0.09 0.33 0.09 0.13 0.05

0.5 5 0.49 0.18 0.65 0.15 0.37 0.15
10 0.52 0.14 0.63 0.11 0.34 0.11
20 0.52 0.10 0.66 0.08 0.34 0.08

0.8 5 0.72 0.16 0.83 0.11 0.60 0.16
10 0.74 0.12 0.85 0.08 0.66 0.12
20 0.78 0.09 0.87 0.05 0.66 0.09

Table 6.3: Results of the analysis of the action distribution on synthetic data. The mean and variance
values of the action distributions inferred by the user behavioral model in each experiment
are averaged for the 100 Monte-Carlo simulations.
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(b) T = 0.5
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(c) T = 0.8

Figure 6.12: Probability density function of the action distribution inferred by the user behavioral
model for T = {0.2, 0.5, 0.8} and wposi = wnegi = 1.
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Contrary to the evaluation performed in Chapter 6, which focused on comparing
the results of the user behavioral model to a ground truth and allowed quantitative
comparisons between algorithm configurations using synthetic data, this section
presents an exploratory demonstration of the user behavioral model. The user
behavioralmodel is used to extract behavioral patterns from four different datasets,
each containing data of a different user. In this section, the user behavioral model
acts as a lens through which the user behavior is examined, since the number and
nature of the behavioral patterns of users are unknown in such real-world settings.

This experiment aims to evaluate the user behavior with two vehicle comfort func-
tions: the power windows and the seat heater. In particular, the user behavioral
model is employed to reveal the situations in which users frequently opened the
power window and turned on the seat heater at its highest intensity level.

7.1 Dataset Description

The user behavioral model relies on personal data, such as location and time, to
be able to find patterns in the behavior of a user. Unfortunately, datasets with
user personal data in the vehicular domain are very difficult to find. Even if some
companies and institutions may collect personal user data, they do not publish
them for privacy and confidentially reasons. Therefore, a major achievement in
this dissertation is to collect user personal data in the vehicle comfort domain in
order to be able to evaluate the proposed user behavioral model.
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Nevertheless, to ensure the privacy and confidentiality of the individuals involved
in this study, certain personal information, particularly geographic locations, have
been deliberately blurred or obscured in the figures presented in this chapter.

7.1.1 Data Collection

Activities to collect user data were carried out from October 2020 to May 2021.
In total, four users participated in the experiment. They were informed about the
nature of the collected data, and were asked to act normally during the whole data
collection process. Participants were able to stop the data collection process at
any time, and they were encouraged to stop recording if they were not driving the
vehicle. At the time of the experiment, there were coronavirus-related restrictions
to slow down the spread of the COVID-19 disease, which might have had an
impact on the users’ behavior and routines.

Participants’ data were extracted from the vehicles using data loggers, which
sampled the information of controller area network (CAN) buses at 10 Hz. The
selection process of the features of the dataset followed the instructions provided
in [53], which suggests that, if domain knowledge is at hand, it should be utilized.
After a careful review with experts in the vehicle comfort domain at Mercedes-
Benz, the features that were expected to have the greatest influence on users’
behavior with the seat heater and power window functions were selected. Table
7.1 provides the list of the features analyzed for this experiment, which includes
five context features, representing the information about the current state of the
environment and the vehicle, and two action features, which describe the users’
interactions with the selected comfort systems.

7.1.2 Data Pre-Processing

Before using the data to extract user behavior, the four datasets (one per user) are
analyzed and sanitized to avoid misleading results. This pre-processing procedure
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7.1 Dataset Description

Feature description Feature type

GPS latitude Context
GPS longitude Context
Date and time information Context
Vehicle speed Context
Outside temperature Context
Window request (driver side) Action
Seat heater intensity level request (driver seat) Action

Table 7.1: Overview of the features recorded for the experimental evaluation of the user behavioral
model. Information was recorded from the participant’s vehicles using a data logger.

consists of two steps: data cleansing and data transformation, which can be applied
in both offline and online settings.

7.1.2.1 Data Cleansing

A careful inspection of the data shows that some records contain undetermined or
impossible data combinations (e.g. gps_long = 180), especially during vehicle
start-up. Such problems are very common in real data gathered through sensors,
as instrumental failure or problems of linking to other systems cause anomalies
and measuring errors [126]. Therefore, records with invalid data are removed
from the dataset.

Data inspection also shows that datasets contain many duplicated records, which
are records with the same values in all features, excluding the time information.
For example, in situations where the vehicle is parked, the values of all features
(except the time) would typically remain constant. To reduce the size of the
datasets, the duplicated records are eliminated as well.
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7.1.2.2 Data Transformation

A fundamental characteristic of behavioral patterns is their temporal and period-
ical nature: only actions frequently repeated under similar circumstances become
routines. Therefore, it is fundamental to extract the cyclical properties of the time.
Following [127] and [128], the time information of the date-time feature (with
format year-month-day hour:minute:second), is transformed into two variables
by Equation 7.1. Other cyclical temporal information, such as days of the week
and seasons, can be extracted from data as well. However, they are not considered
in this first experiment because they are correlated with the time information, and
hence the information would be redundant.

tsin = sin(
2πt

24
)

tcos = cos(
2πt

24
)

(7.1)

An intuitive way to explain this data transformation scheme is to plot the two-
feature transformation as a 24-hour clock, as shown in Figure 7.1. Whereas
the points 23:55 and 00:05 are only 10 minutes apart, the distance between the
two data points is very large in the one-feature space (Figure 7.1a). However,
once the time information is transformed into two features using the sine and
cosine transformation, the two data points are very close (Figure 7.1b). This
representation of the time information facilitates the modeling process.

7.1.3 Dataset Overview

An overview of the four datasets and the features analyzed after the pre-processing
steps is provided in Table 7.2 and Table 7.3, respectively.
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(b) Time two-feature space, after transformation via Equation 7.1.

Figure 7.1: A scatter plot of the sine/cosine transformation for encoding the cyclical nature of time.

User U1 U2 U3 U4

Length (experiment duration in days) 102 132 174 189
#of request to open window completely 121 53 135 82
#of request to set seat heater at highest intensity level 149 44 83 95

Table 7.2: Overview of the four datasets used in the experimental evaluation.
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Feature Description Type Categories

gps_long GPS latitude Numerical
gps_lat GPS longitude Numerical
t_sin Time information (sin) Numerical
t_cos Time information (cos) Numerical
v_speed Vehicle speed Numerical
o_temp Outside temperature Numerical
win_drv_req Window request

(driver)
Categorical completely open,

intermediate,
completely closed

sh_drv_lvl Seat heater level request
(driver)

Categorical off, low, intermediate,
high

Table 7.3: Features extracted from the datasets.

7.2 Analysis of the User Behavior with the
Power Windows

The user behavioral model is employed to analyze the user behavior with the
power windows. More specifically, the user behavioral model is used to find out
the situations in which each user frequently opens the window andwould probably
open it in the future.

7.2.1 Model Configuration

In this example, model hyperparameters are chosen to initially favor behavioral
patterns with small context regions in the location space. In other words, at the
beginning of the learning process, the user behavioral model is encouraged to find
out behavioral patters that involve opening the window at nearly the same place,
such as at the entrance of a shopping center or a garage.
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For this purpose, the value of the model hyperparameters used for the analysis
of each data set is defined as listed in Table 7.4. The relatively small value of
the heuristic threshold on the location feature space, ξloc, aims to favor small
context regions on the latitude and longitude space, whereas the other features
are not limited in any way. The selection of ξloc follows the criterion by which,
on average, data points belonging to the same context region must not deviate
from the mean by more than 10 meters. This criterion corresponds to setting
the maximum standard deviation of the location variable, denoted as σmax, to
10 meters. Because 1 meter is approximately 10−5 latitude/longitude degrees,
this is equivalent to σlat,max = σlon,max = 10−4 degrees. Since ξloc defines the
maximum desired generalized variance of a context region (see Equation 5.2), in
order to satisfy the previously mentioned constraint, the value of ξ in the location
dimension is set as follows:

ξloc ≜ GVmax(N (µ,Σ)) ≈ (σloc,max)
2 = (10−4)2 = 10−8

Hyperparameter Initial value

α 1
µ0 0

κ 10−6

Ψ diag(10−9, 10−9, 10−4, 10−4, 102, 10−2)

ν d+ 1

β0 1
α0 1
ξloc 10−8

wposi 1
wnegi 2

Table 7.4: Parameters and hyperparameters of the user behavioral model to evaluate the user behavior
with the power window system (feature dimension d = 6). A vector of d zeros is denoted
by 0.
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7 Experimental Evaluation of the User Behavioral Model

An important aspect of the user behavioral model is its ability to predict future user
actions, given by the action distribution. In order to obtain behavioral patterns
where users would very probably open the window next time when the same
conditions are met, a higher negative indirect feedback weight (wnegi ) than a
positive feedback weight (wposi ) is chosen. Thus, the model is penalized more
strongly when the user misses an action than rewarded when the user opens the
window. Moreover, the model is rewarded every time users open the window
completely, and punished when users do not open the window in situations where
the model would have thought, that is, when users miss opening the window in a
context region. Finally, it is assumed that instances of user behavior older than
2 months are no longer relevant for learning user behavioral patterns. Hence, the
length of the time-based window is set toW = 60 days.

7.2.2 Results and Discussion

The data of each user is analyzed by the user behavioral model, one at a time.
The behavioral patterns learned by the model are presented for its evaluation on
an interactive map, as the one shown in Figure 7.2. The interactive map helps
to understand the spatio-temporal character of the behavioral patterns learned by
the user behavioral model from the user’s past actions. The resulting behavioral
patterns are represented on the interactive map at one-minute intervals, providing
a dynamic view of how these patterns evolve over time. This spatio-temporal
visualization is achieved through the use of a time slider, located at the bottom
corner of the map, which enables to scroll through the timeline of the experiment.

On the interactive map, the geospatial information of the context regions of the
learned behavioral patterns is represented taking advantage of the Gaussian nature
of the context distribution. Therefore, context regions of the inferred behavioral
patterns are graphically illustrated using the 3-sigma confidence ellipse of the
corresponding multivariate Normal distribution N (µk,Σk) in the latitude and
longitude space. The description of the behavioral patterns concerning the other
context features, such as time and temperature, cannot be shown graphically on
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7.2 Analysis of the User Behavior with the Power Windows

Figure 7.2: Image from an interactive map used to understand the spatio-temporal character of the
behavioral patterns. The time slider in the bottom-left corner allows to select the time
interactively.

the two-dimensional map. Therefore, the range in which each feature is likely to
fall, based on the mean and variance, is represented in text form. For each context
distribution k, the expected range of a context feature i is calculated as follows:

[µk,i − 3σk,i, µk,i + 3σk,i]

An example of the graphical representation of a learned behavioral pattern on the
interactive map is shown in Figure 7.3.

Similarly, the action distribution of the learned behavioral patterns is presented
both graphically and in text form on the interactive map. The probability of a
future action is determined based on threshold values. The probability of a user
action is considered to be high if the mean of the corresponding action distribution
is greater than τact = 0.8 and the variance is less than 0.2. For this purpose, the
confidence ellipses representing the context regions are colored either in green
or blue according to the action probability. Green ellipses represent behavioral
patterns where the model predicts a high probability of future user action. Hence,
green-colored context regions indicate the circumstances in which a self-learning
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7 Experimental Evaluation of the User Behavioral Model

Figure 7.3: Example of a behavioral pattern inferred by the user behavioral model, represented graph-
ically and in text form.

comfort system would automatically control the comfort system on the user’s
behalf. On the other hand, blue colored context regions represent behavioral
patterns with a lower probability of a future user actions. Moreover, the value of
the mean and variance of the action distribution of the behavioral patterns is also
included in text form in the pop-up window in which the context information is
presented.

The user behavioral model was trained for each dataset, corresponding a different
user. The resulting behavioral patterns of each user, represented on interactive
maps, were submitted for evaluation. A thorough inspection revealed that the
identified behavioral patterns are not only reasonable, but also match the routines
of the users.

As an illustration, the evolution of a behavioral pattern of user U1 learned by
the user behavioral model is presented in Figure 7.4. Over a span of 10 days,
user’s U1 window-opening activities lead to the refinement and adaptation of the
model, incorporating new evidence of the user’s frequently performed actions. As
a result, the behavioral pattern after those 10 days (bottom) aligns more precisely
with the user’s past actions.
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7.2 Analysis of the User Behavior with the Power Windows

(a)

(b)

Figure 7.4: Example of a behavioral pattern of userU1with the powerwindow system. The behavioral
pattern changes with time, adapting to changes in the user behavior.
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7.3 Analysis of the User Behavior with the
Seat Heater

The user behavioral model is employed to analyze the user behavior with the seat
heater system. In particular, the user behavioral model is employed to find out
the situations in which each user frequently starts the seat heater at the highest
intensity level and would perform the same action again in the future.

7.3.1 Model Configuration

The initial values of the model hyperparameters used for the analysis of the
user behavior with the seat heater are shown in Table 7.5. For this analysis, a
larger initial value of the heuristic threshold ξloc is selected than in the evalu-
ation with the power window (Section 7.2), which allows context distributions
to cover larger areas on the location space. This choice is based on expert
consultations, which have indicated that users generally activate the seat heater
based on temperature considerations, with the vehicle’s location being a less
significant factor. Therefore, the value of ξloc is selected to ensure that the max-
imum generalized variance within the data points assigned to the same context
regions is not greater than 1000 meters. Given that 1000 meters are approxi-
mately 10−2 degrees in the latitude/longitude space, the value of ξloc is set to
ξloc ≜ GVmax(N (µ,Σ)) ≈ (σloc,max)

2 = (10−2)2 = 10−4.

In this second experiment, the user behavioral model receives rewards (i.e., pos-
itive feedback) every time users select the highest seat heater intensity level.
Conversely, it is punished when users do not activate the seat heater in situations
where the model would have expected them to do so. When the user’s current sit-
uation aligns with context region of a learned behavioral pattern, as per Equation
4.17, but the user misses activating the seat heater, it is considered as a negative
indirect feedback.
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Hyperparameter Initial value

α 1
µ0 0

κ 10−6

Ψ diag(10−9, 10−9, 10−4, 10−4, 102, 10−2)

ν d+ 1

β0 1
α0 1
ξloc 10−4

wposi 1
wnegi 2

Table 7.5: Parameters and hyperparameters of the user behavioral model to evaluate the user behavior
with the seat heater system (feature dimension d = 6). A vector of d zeros is denoted by
0.

Finally, the forgetting mechanism of the user behavioral model is implemented
by considering instances older than 2 months no longer relevant for learning user
behavioral patterns. As a result, the length of the time-based sliding window is
set toW = 60 days.

7.3.2 Results and Discussion

The user behavioral model is employed to analyze the behavior of each user
with the seat heater system. The resulting behavioral patterns are represented on
interactive maps. The behavioral patterns inferred by the user behavioral model
were carefully inspected, affirming their alignment with the routines reported by
the participants.

An example of a behavioral pattern of one of the participants learned by the user
behavioralmodel is shown in Figure 7.5. As in the previous example, the evolution
of a behavioral pattern becomes evident as the the user performsmore actions over
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7 Experimental Evaluation of the User Behavioral Model

time. Not only have the context circumstances describing the behavioral pattern
change, but also the model becomes more certain about the user’s future actions.
This is evident as the color of the context region changes from blue, indicating
higher uncertainty, to green, indicating lower uncertainty. This result suggests
that if the user U4 was in a situation similar to the one described by the behavioral
pattern in Figure 7.5b, a self-learning seat heater system would have had enough
confidence to autonomously activate the seat heater on the user’s behalf.
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(a)

(b)

Figure 7.5: Example of a behavioral pattern of user U4 with the seat heater system. The behavioral
pattern changes with time, adapting to changes in the user behavior. Also, the uncertainty
decreases with time.
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8 Conclusion and Outlook

8.1 Conclusion

The growing popularity of personalized services has pushed the automotive in-
dustry to rethink the interior space in vehicles to meet customer demands for more
individual and intelligent comfort systems. This dissertation presents the frame-
work to develop personalized, self-learning comfort systems, which are capable of
learning the individual preferences of each user, continuously adapting to changes
in the user’s behavior.

Three research questions are addressed in this work:

RQ 1 What are the requirements for a self-learning comfort system?

RQ 2 How can the architecture and the components of a self-learning comfort
system be designed to satisfy the specified requirements?

RQ 3 How can individual user behavioral patterns with vehicle comfort func-
tionalities be learned and predicted using machine learning algorithms?

The first research question is addressed in Chapter 3.2, for which the current
foundations and state of the art in intelligent systems, the vehicle environment and
Bayesian learning is acknowledged.

Once the requirements are described, a generic functional architecture is further
presented in Chapter 3.3, answering the second research question. As a result,
four fundamental components for a self-learning comfort system are identified:
the input/output handler, the decision handler, the interaction handler, and the
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user behavioral model, being the last one the most essential one, as it provides the
system with learning and adaptive capabilities.

For the realization of the user behavioral model and hence, to answer the third re-
search question, a novel Bayesian nonparametric algorithm is presented in Chapter
4. The proposed user behavioral model allows the identification of the recurrent
user actions and the context circumstances at which they happen, thereby facil-
itating the identification and prediction of user behavioral patterns. The model
continuously refines its knowledge based on the user’s direct and indirect feed-
back, and is designed to handle the uncertainty inherent in the environment an
intuitive manner.

To infer the parameters of the user behavioral model, a novel truncation-free
variational inference algorithm is presented. This contribution is fundamental, as
it allows the model to dynamically adapt its complexity to each individual user,
preventing over- and underfitting.

In Chapter 5, a preliminary prototype of a self-learningwindow system in a vehicle
is presented. This prototype serves as an initial evaluation of the feasibility of a
self-learning comfort system and the truncation-free implementation of the user
behavioral model, offering valuable insights. Based on the knowledge gained with
the prototype, an optimized heuristic-based inference algorithm is introduced,
which enables to incorporate expert knowledge into the learning procedure by
adjusting the desired level of detail of the learned contextual information.

The performance of the user behavioral model is evaluated using synthetically
generated datasets in Chapter 6. The analysis presented firstly investigates the
model’s ability to learn the context circumstances describing behavioral patterns,
followed by a comprehensive examination of how themodel handles user feedback.

Finally, real-word user data is employed to assess the performance of the user
behavioral model in Chapter 7. To this goal, a dedicated six-month experiment
with four participants was conducted to collect user behavioral data with vehicle
comfort functionalities. Each dataset is employed to train an individual user
behavioral model, as a self-learning comfort system would do.
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8.2 Outlook

While the overall research on self-learning vehicle systems introduced in this
thesis shows very promising results, there are some challenges to be addressed in
future work.

Even though the proposed nonparametric Bayesian model has very few model
hyperparameters in comparison to other methods, it is still necessary to manually
define them before its implementation. In future work, it should be explored how
to simplify this process. The development of connected cars offers a promising
opportunity to define the model hyperparameters based on the data collected from
many different users, which can provide insights about common user behaviors.
Hence, future work shall investigate the techniques to represent the initial as-
sumptions about user behavior using fleet data instead of expert knowledge, while
complying with the data privacy and protection norms for vehicle applications.
For this purpose, differential privacy ([129]) and federated learning ([130]) tech-
niques are promising, as they ensure that individual data points remain private
while contributing to the overall learning process.

Other aspect of the user behavioral model that could be revised in the future is
its forgetting mechanism, which is based on the time-based sliding window tech-
nique. Although it is simple and effective, other methods that offermore flexibility
and adaptability should be investigated. Some of these techniques include expo-
nential weighting and decay functions. Exponential weighting methods assign
exponentially decreasing weights to older data points. This approach gives more
weight to recent data while gradually reducing the impact of older data. Decay
functions, on the other hand, utilize specific decay functions that define the rate
at which the importance of older data diminishes over time.

Furthermore, the proposed model is designed to work only with vehicle func-
tionalities with binary activation states (action vs. inaction). In future versions,
the presented model can be enhanced to handle functionalities with more activa-
tion states (e.g. activation levels) by using a Categorical distribution instead of a
Bernoulli distribution for the implementation of the action distribution.
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To provide customers with a consistent and seamless user experience among
multiple vehicles, especially within car-sharing applications, the portability and
transferability of the learned user preferences and behavioral patterns is vital.
Even though the presented components of a self-learning system enable it and
meet the current legal and data privacy regulations, it should be validated on a
new prototype experiment.

While the validation of the user behavioral model with real data marked a signif-
icant milestone, the pursuit of broader and more diverse real-world data remains
a crucial step. Collecting more real-world data will allow to validate the model
against a wider spectrum of user behaviors, which will contribute to a more robust
understanding of the model’s performance and its adaptability. Furthermore, fu-
ture work shall investigate additional context features that help to represent user’s
behavior and indirect feedback, which can improve the precision and accuracy of
the user behavioral model. Special attention should be paid to including informa-
tion about user emotions (happiness, disgust, surprise) and cognitive processes
(stress) into the user behavioral model, for which data about the heart rate or
skin temperature have shown to be valuable [78]. Nevertheless, cross-validation
techniques ([131], [132]) and exploratory analysis shall be employed to discover
other relevant context features.

In the feasibility prototype for a self-learning window system presented in Section
5, the design of the user interface utilized was not fully functional, because it
is not the main focus of this dissertation. Hence, the concept, development and
validation of a functional user interface for a self-learning comfort system is an
open research topic. User interfaces play an important role for the acceptance
of interactive systems [25]. They are fundamental to build trust in the system,
which is a key factor for acceptance. For this purpose, enhancing the user
understanding on the learned behavioral patterns and the decisions made by
the self-learning system can be beneficial to build trust and confidence on the
system, as it would increase the system predictability and comprehensibility. In
this context, recent advancement in the field of explainable artificial intelligence
methods are promising and should be explored ([133], [134]).
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Finally, the transferability of the results need to be verified. Even though, it was
possible to evaluate a self-learningwindow system and get significant results about
its feasibility, the prototypewas conducted in an early stagewithin the development
process. In future work, self-learning comfort systems should be evaluated in a
context of real usage, for which a long-term user study with more participants
must be conducted. A long-term user study would reveal the effectiveness and
evolutional behavior of a self-learning comfort system. This leads to the question
of which method can be used to measure driver acceptance and distraction.
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A First Truncation-free VI
Algorithm

Algorithm 2: First Truncation-free CAVI
Data: Data set Bu,f

recent = {(at, xt)}, t = {1, 2, ...,W} via (4.20)
Input: Normal-inverse-Wishart hyperparameters µ0, κ0, Ψ0, ν0,

Beta hyperparameters α0, β0,
DP concentration hyperparameter α,
initial number of behavioral patternsK0,
length of the time-based sliding windowW

Output: Set ofK behavioral patterns assignments zk,
each associated with a context distribution N (µk,Σk) and an
action distribution Ber(ρk)

1 K ← K0;
2 for t = 1, 2, ... do
3 if t = 1 or new component added then
4 Initialize qt(Z) via k-means withK = K0;
5 end
6 else
7 Initialize qt(Z) using qt−1(Θ);
8 end
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9

10 repeat
11 Update qt(Θ) via (2.13);
12 Update qt(Z) via (2.14);
13 Compute component counts Nk, for k = 1, 2, ...,K + 1;
14 if NK+1 > 0 then
15 Add a new component;
16 K ← K + 1;
17 end
18 if any Nk = 0 for k = 1, ...,K then
19 K ← K − |{Nk = 0, k = 1, ...,K}|;
20 Remove components k with Nk = 0;
21 end
22 until convergence via (4.19);
23 end
24 for each assignment zn do
25 Get set of actions from Bu,f

recent assigned to zn;
26 Calculate ρn via (4.9) ;
27 end
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B Optimized Truncation-free VI
Algorithm

Algorithm3:OptimizedTruncation-freeCAVIwithHeuristic Thresh-
olding
Data: Data set Bu,f

recent = {(at, xt)}, t = {1, 2, ...,W} via (4.20)
Input: Normal-inverse-Wishart hyperparameters µ0, κ0, Ψ0, ν0

Beta hyperparameters α0, β0
DP concentration hyperparameter α,
initial number of behavioral patternsK0,
length of the time-based sliding windowW ,
heuristic threshold ξ

Output: Set ofK behavioral patterns assignments zk,
each associated with a context distribution N (µk,Σk) and an
action distribution Ber(ρk)

1 K ← K0;
2 for t = 1, 2, ... do
3 if t = 1 or new component added then
4 Initialize qt(Z) via k-means withK = K0;
5 end
6 else
7 Initialize qt(Z) using qt−1(Θ) ;
8 end

143



B Optimized Truncation-free VI Algorithm

9

10 repeat
11 Update qt(Θ) via (2.13);
12 Update qt(Z) via (2.14);
13 Compute component counts Nk, k = 1, 2, ...,K + 1;
14 Sort Nk in descending order;
15 Perform suboptimal convergence test via (5.2);
16 if NK+1 > 0 or suboptimal components identified then
17 Add a new component;
18 K ← K + 1;
19 end
20 if any Nk = 0 for k = 1, ...,K then
21 Remove components k with Nk = 0;
22 K ← K − |{Nk = 0, k = 1, ...,K}|;
23 end
24 until convergence via (4.19);
25 end
26 for each assignment zn do
27 Get set of actions from Bu,f

recent assigned to zn ;
28 Calculate ρn via (4.9) ;
29 end
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Data: Data set Bu,f
recent = {(at, xt)}, t = {1, 2, ...,W} via (4.20)

Input: Normal-inverse-Wishart hyperparameters µ0, κ0, Ψ0, ν0
Beta hyperparameters α0, β0
DP concentration hyperparameter α,
length of the time-based sliding windowW ,
initial number of behavioral patternsK0,
heuristic threshold ξ

Output: Set ofK behavioral patterns assignments zk,
each associated with a context distribution N (µk,Σk) and an
action distribution Ber(ρk)

1 K ← K0;
2 for t = 1, 2, ... do
3 if t = 1 or new component added then
4 Initialize qt(Z) via k-means withK = K0;
5 end
6 else
7 Initialize qt(Z) using qt−1(Θ) ;
8 end
9 begin
10 repeat
11 Update qt(Θ) via (2.13);
12 Update qt(Z) via (2.14);
13 Compute component counts Nk, k = 1, 2, ...,K + 1;
14 Sort Nk in descending order;
15 Perform suboptimal convergence test via

GV(N (µ,Σ)) > ξ;
16 if NK+1 > 0 or suboptimal components identified then
17 Add a new component;
18 K ← K + 1;
19 end
20 if any Nk = 0 for k = 1, ...,K then
21 Remove components k with Nk = 0;
22 K ← K − |{Nk = 0, k = 1, ...,K}|;
23 end
24 until convergence via

∑K
k=1 ||µi

k − µi−1
k ||2 < ϵ;

25 end
26 for each assignment zn do
27 Get set of actions from Bu,f

recent assigned to zn ;
28 Calculate ρn via (4.9) ; 145





C VI for Bayesian Nonparametric
Mixture Models

Given a collection of observed data X = {x1, x2, . . . , xN}, latent variables
Z = {z1, z2, . . . , zN}, and model parameters Θ = {θ1, θ2, . . . , θN}, a Bayesian
nonparametric (BNP) model can be defined as follows:

p(X,Z,Θ) = p(X|Z,Θ)p(Z)p(Θ)

= [

N∏
n=1

p(xn|zn, θn)]p(Z)[
∞∏
k=1

p(θk)]
(C.1)

The posterior distribution of a BNP is defined as:

p(Z|X,Θ) = exp{log p(X,Z|Θ)− log p(X|Θ)} (C.2)

where the second term, the logmarginal probability of the observations, is defined
as:

log p(X|Θ) = log

∫
p(Z,X|Θ) dZ (C.3)

The log marginal probability of the observations is typically difficult to compute
given that the latent variables become dependent when conditioning on observed
data. Hence, the goal of the variational inference algorithm is to find an approx-
imate posterior distribution q(Z,Θ) that minimizes the Kullback-Leibler (KL)
divergence from the true posterior p(Z|X,Θ).
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Under the mean-field variational approximation, the variational distribution
q(Z,Θ) factorizes as:

q(Z,Θ) = q(Z)q(Θ) =

N∏
n=1

q(zn)

∞∏
k=1

q(θk). (C.4)

The updates for the variational distribution involve optimizing the parameters to
minimize the KL divergence. Using the mean-field variational approximation,
the terms of the ELBO can be decomposed as [101]:

L(q) = E[log p(X,Z,Θ)− E[log q(Z,Θ)]]

=

∞∑
k=1

E[log p(θk)] +
N∑

n=1

(E[log p(zn)] + E[log p(xn|zn, θzn)])

−
N∑

n=1

E[log q(zn)]−
∞∑
k=1

E[log q(θk)],

(C.5)

where the expectations are taken with respect to q(Z,Θ).

Applying Equation 2.10, the coordinate ascent update equations for the model
parameters and latent variables are defined in Equation C.6 and C.7, respectively.

log q∗(θk) = log p(θk) +

N∑
n=1

E[log p(xn|θk)] + const (C.6)

log q∗(zn) = log p(zn|Z
�n
) + E[log p(xn|θzn)] + const, (C.7)

The expectations are taken with respect to the variational density q(·) for all of
the other variables, i.e., q(Z,Θ

�k
) for C.6 and q(Z

�n
,Θ) for C.7.

The implementation of the updates C.6 and C.7 is simplified when the model
p(X|Z,Θ) is in the conjugate exponential family. For example, if the components
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in a mixture of a multivariate Normal distributions with unknown mean and
unknown covariance have a Normal Wishart prior, the coordinate ascent update
equations for the cluster parameters and cluster assignments can be calculated in
close form.
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D Probability Distributions

In this appendix, the main properties of the probabilities distributions mentioned
throughout this dissertation are summarized. For each distribution, the key statis-
tics are listed, such as the expectation E[x], the variance (or covariance), the
mode, and the entropy H[x].

Bernoulli

The Bernoulli distribution characterizes the probability distribution of a single
binary variable, often denoted as x ∈ {0, 1}. This distribution is frequently
used to model outcomes like coin flips, where x may represent "success" (1) or
"failure" (0). Governed by a single parameterµ ∈ [0, 1], the Bernoulli distribution
quantifies the probability of achieving a "success" (x = 1).

Ber(x|µ) = µx(1− µ)1−x (D.1)
E[x] = µ (D.2)

var[x] = µ(1− µ) (D.3)

mode[x] =

{
1 if µ ≥ 0.5,

0 otherwise
(D.4)

H[x] = −µ lnµ− (1− µ) ln(1− µ) (D.5)
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D Probability Distributions

The Bernoulli is a special case of the binomial distribution for the case of a single
observation. Its conjugate prior for µ is the beta distribution.

Beta

The Beta distribution is defined over a continuous variable µ ∈ [0, 1] and is
commonly utilized to represent the probability for some binary event. It is
governed by two parameters a and b that are constrained by a > 0 and b > 0 to
ensure that the distribution can be normalized.

Beta(µ|a, b) = Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1 (D.6)

E[µ] =
a

a+ b
(D.7)

var[µ] = ab

(a+ b)2(a+ b+ 1)
(D.8)

mode[µ] = a− 1

a+ b− 2
(D.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ≥ 1 and b ≥ 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The
beta distribution is a special case of theK-state Dirichlet distribution forK = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of
x = 1 in a set of N samples from a Bernoulli distribution, where the probability
of observing x = 1 is µ ∈ [0, 1].
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D Probability Distributions

Bin(m|N,µ) =
(
N

m

)
µm(1− µ)N−m (D.10)

E[m] = Nµ (D.11)
var[m] = Nµ(1− µ) (D.12)

mode[m] = ⌊(N + 1)µ⌋ (D.13)

where ⌊(N+1)µ⌋ denotes the largest integer that is less than or equal to (N+1)µ,
and the quantity

(
N

m

)
=

N !

m!(N −m)!
(D.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. The particular case ofN = 1 is known as the Bernoulli distribution, and
for large N the binomial distribution is approximately Gaussian. The conjugate
prior for µ is the beta distribution.

Dirichlet

The Dirichlet is a multivariate distribution overK random variables 0 ≤ µk ≤ 1,
where k = 1, ...,K, subject to constraints

0 ≤ µk ≤ 1,

K∑
k=1

µk = 1. (D.15)

Denoting µ = (µ1, ..., µK)T and α = (α1, ..., αK)T, the key statistics are:
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Dir(µ|α) = C(α)

K∏
k=1

µαk−1
k (D.16)

E[µk] =
αk

α̂
(D.17)

var[µk] =
αk(α̂− αk)

α̂2(α̂+ 1)
(D.18)

cov[µjµk] = −
αjαk

α̂2(α̂+ 1)
(D.19)

mode[µk] = −
αk − 1

α̂−K
(D.20)

E[lnµk] = ψ(αk)− ψ(α̂) (D.21)

where
C(α) =

Γ(α̂)

Γ(α1) · · · Γ(αK)
(D.22)

and

α̂ =
K∑

k=1

αk. (D.23)

D.24 is known as the digamma function. The parameters αk are subject to the
constraint αk > 0 in order to ensure that the distribution can be normalized.

ψ(a) ≡ d

da
ln Γ(a) (D.24)

The Dirichlet forms the conjugate prior for the multinomial distribution and
represents a generalization of the beta distribution. In this case, the parameters
αk can be interpreted as effective numbers of observations of the corresponding
values of the K-dimensional binary observation vector x. As with the beta
distribution, the Dirichlet has finite density everywhere provided αk ≥ 1 for all
k.
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Gamma

The Gamma is a probability distribution over a positive random variable τ > 0

governed by parameters a and b that are subject to the constraints a > 0 and b > 0

to ensure that the distribution can be normalized.

Gam(τ |a, b) = 1

Γ(a)
baτa−1e−bτ (D.25)

E[τ ] =
a

b
(D.26)

var[τ ] = a

b2
(D.27)

mode[τ ] = a− 1

b
for a ≥ 1 (D.28)

The gamma distribution is the conjugate prior for the precision (inverse variance)
of a univariate Gaussian. For a ≥ 1 the density is everywhere finite, and the
special case of a = 1 is known as the exponential distribution.

Gaussian

The Gaussian is the most widely used distribution for continuous variables. It
is also known as the normal distribution. In the case of a single variable x ∈
(−∞,∞) it is governed by two parameters, the mean µ ∈ (−∞,∞) and the
variance σ2 > 0.
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N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}
(D.29)

E[x] = µ (D.30)
var[x] = σ2 (D.31)

mode[x] = µ (D.32)

H[x] =
1

2

(
1 + ln(2πσ2)

)
(D.33)

The inverse of the variance τ = 1/σ2 is called the precision, and the square root
of the variance σ is called the standard deviation. The conjugate prior for µ is the
Gaussian, and the conjugate prior for τ is the gamma distribution. If both µ and
τ are unknown, their joint conjugate prior is the Gaussian-gamma distribution.

For a D-dimensional vector x, the Gaussian is governed by a D-dimensional
mean vector µ and a D × D covariance matrix Σ that must be symmetric and
positive definite.

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(D.34)

E[x] = µ (D.35)
cov[x] = Σ (D.36)

mode[x] = µ (D.37)

H[x] =
1

2
(D ln(2πe) + ln |Σ|) (D.38)

The inverse of the covariance matrix Λ = Σ−1 is the precision matrix, which
is also symmetric and positive definite. Averages of random variables tend to a
Gaussian, by the central limit theorem, and the sum of two Gaussian variables is
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again Gaussian. The conjugate prior for µ is the Gaussian, the conjugate prior for
Λ is the Wishart, and the conjugate prior for (µ,Λ) is the Gaussian-Wishart.

Gaussian-Wishart

The Gaussian-Wishart is the conjugate prior distribution for a multivariate Gaus-
sian N (x|µ,Λ) in which both the mean µ and the precision Λ are unknown.
It is also called the normal-Wishart distribution. It comprises the product of a
Gaussian distribution for µ, whose precision is proportional to Λ, and a Wishart
distribution over Λ.

p(µ,Λ|µ0, β,W , ν) = N
(
µ|µ0, (βΛ)

−1
)
W(Λ|W , ν) (D.39)

Multinomial

The multinomial distribution is a multivariate generalization of the binomial and
gives distribution over counts mk for a K-state discrete variable to be in state k
given a total number of observations N .

Mult(m1,m2, . . . ,mK |µ, N) =

(
N

m1m2 . . .mK

) K∏
k=1

µmk

k (D.40)

E[mk] = Nµk (D.41)
var[mk] = Nµk(1−mk) (D.42)

cov[mjmk] = −Nµjµk , j ̸= k (D.43)

where µ = (µ1, . . . , µK)T and the quantity
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(
N

m1m2 . . .mK

)
=

N !

m1!m2! . . .mK !
(D.44)

gives the number of ways of takingN identical objects and assigningmk of them
to bin k for k = 1, . . . ,K. The value of µk gives the probability of the random
variable taking state k, and so these parameters are subject to the constraints
0 ≤ µk ≤ 1 and

∑
k µk = 1. The conjugate prior distribution for the parameters

µk is the Dirichlet.

Uniform

The uniform distribution is a probability distribution for a continuous variable x
defined over a finite interval x ∈ [a, b] where b > a.

U(x|a, b) = 1

b− a
, a ≤ x ≤ b (D.45)

E[x] =
a+ b

2
(D.46)

var[x] = (b− a)2

12
(D.47)

H[x] = ln(b− a) (D.48)

Wishart

The Wishart distribution is the conjugate prior for the precision matrix of a
multivariate Gaussian.
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Wish(Λ|W , ν) =
|Λ| ν−D−1

2 exp
(
− 1

2Tr(W
−1Λ)

)
2

νD
2 |W | ν2 ΓD

(
ν
2

) (D.49)

E[Λ] = νW (D.50)

whereW is aD×D symmetric, positive definite matrix, andψ(·) is the digamma
function defined by D.24. The parameter ν is called the number of degrees of
freedom of the distribution and is restricted to ν > D − 1 to ensure that the
Gamma function in the normalization factor is well-defined. In one dimension,
the Wishart reduces to the gamma distribution Gam(λ|a, b) given by given by
D.25 with parameters a = ν/2 and b = 1/2W .
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