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ABSTRACT
E-bikes are recognized for their sustainable transportation benefits.
However, the higher speeds associated with e-bikes pose an in-
creased risk of potential accidents and hinder fluid riding in swarms
with conventional bicycles. In this paper, we analyze the accuracy
of maintaining an unknown speed, assess the associated workload,
and investigate the self-reported speeds of e-bike cyclists in order
to adapt the electric assistance to dynamic speed limits based on
the surrounding traffic conditions. Our results from a pilot study
with 15 participants show that the accuracy of maintaining a speed
limit through active motor control and the associated workload
are influenced by factors such as the level of electrical assistance
and the perception of motor disengagement. E-bike cyclists using
higher levels of electrical assistance demonstrated more accurate
target speed maintenance. On average, participants consistently
underestimated adapted speed limits, which were also influenced
by the level of electrical support.
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1 INTRODUCTION
Bicycles and electric-assisted bicycles (e-bikes) are often considered
one of the most sustainable modes of transportation. Their minimal
environmental footprint [38], promotion of health through involved
physical activity [10], and efficient use of road space [24, 53], along
with reduced infrastructure maintenance costs [27], collectively
position bicycles and e-bikes at the forefront of sustainable trans-
portation alternatives [64]. A significant number of short car trips
could be replaced by walking or cycling, reducing CO2 emissions
from car travel by about 5 % [58].

Currently, governments worldwide are investing in new bicycle
infrastructure for improved cycling comfort and safety [11, 31, 40].
However, research suggests a nuanced perspective, as early stud-
ies from 2013 argue that transitioning to bicycle commuting may
not necessarily lead to a reduction in fatalities and could poten-
tially result in an increase in the incidence of serious road injuries
[67]. Between 2021 and 2022, the incidence of injuries related to
micromobility vehicles and e-bikes surged by 21%. Additionally,
since 2017, the frequency of these injuries has shown an average
annual increase of 23% in the United States [16]. German statis-
tics bring attention to a rise in fatal accidents involving e-bikes,
a trend linked to their higher speeds compared to conventional
bicycles [20]. The active promotion of bicycle helmets can coun-
teract fatal accidents by an increased prevalence of helmet usage
among cyclists, as demonstrated in Denmark’s traffic [62]. Recent
European crash statistics reveal a diminished occurrence of severe
head injuries among e-bike cyclists, a trend that may be linked to
their increased and widespread use of helmets [59]. Additionally,
statistics from the United States also indicate a greater likelihood
of helmet usage among e-bike cyclists. Nevertheless, the data on
injury patterns and hospital admission rates indicate that e-bikes
are associated with a higher level of injury severity compared to
conventional bicycles [21, 84]. It has been found that e-bike cyclists
regularly travel at higher speeds, thereby posing an elevated risk
of serious accidents [68]. To mitigate the safety concerns posed
by high-speed e-bikes, the Amsterdam government is currently
deliberating measures such as imposing a speed limit of 20km/h
for e-bikes or relocating them to car lanes [75, 76].
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To further enhance cyclist safety and riding experience, there is
a growing interest in research and industry to connect cyclists with
the surrounding traffic and infrastructure [3, 61]. The core concept
revolves around the sharing of position and speed measurements
through the cyclist’s smartphone, or via external cameras in the
environment. The cyclist’s phone or another smart cycling solu-
tion, such as augmented helmets [51, 80, 82], or haptic feedback
on the handlebars [60], subsequently alerts cyclists to potential
collisions or provide riding recommendations. For example, it is
estimated that e-bike battery consumption can be significantly
reduced by recommending speeds on smartphones to avoid energy-
intensive start-and-stop scenarios at traffic lights [73]. By 2027, it’s
expected that all new smartphones will be equipped with vehicle-
to-everything (V2X) communication capabilities for improved road
safety [5].

This paper investigates the impact of dynamic motor control
on e-bike cyclists, a technology similar to cruise control (CC) for
vehicles like cars and trucks. Within the cycling domain, CC has
the potential to optimize the overall traffic flow through dynamic
adjustments of the assisted speed, e.g., in accordance with traffic
light phases using V2X communication. Since CC eliminates the
need for cyclists to constantly monitor their speed and can provide
incentives for slower speeds [4], it has the potential to enhance
traffic safety. However, to the best of our knowledge, it has been
unclear how cyclists perceive and adapt their speeds to such a tech-
nology. In our pilot study with 15 participants, we show that cyclists
can accurately maintain different unknown adjusted speed limits
using CC while simultaneously underestimating the self-reported
speed. Our findings reveal that e-bike motor power influences speed
perceptions. Moreover, we provide insights into the workload as-
sociated with cycling while using adaptive electrical support and
give an outlook and implications on future research in the area of
swarm cycling.

2 RELATEDWORK
Over the past decades, researchers have dedicated significant ef-
forts to advancing mobility safety. This focus has recently led to a
growing interest in understanding and addressing the safety con-
cerns and user experiences of vulnerable road users [30, 41, 49]. For
example, the quality of a road surface has been found to influence
not only ride comfort [8, 23], but also safety [42] and cycling speeds
[14].

There is a current research interest in integrating driver assis-
tance functions and levels of automation that were developed for
cars and trucks into bicycles [47, 50]. For instance, Cruise Control,
originally invented by Teetor in the mid-1940s, allows vehicles
to automatically maintain a constant speed [70]. Adaptive Cruise
Control (ACC) enhances this technology by also ensuring a safe
following distance from the vehicle ahead [87]. Cooperative ACC
refers to a Platoon or convoy of vehicles, often autonomous or semi-
autonomous, that travel closely together in a coordinated manner
to improve fuel efficiency, traffic flow, and overall transportation
system effectiveness [77]. Forming bicycle platoons [12] or swarms
[54] is envisioned to optimize visibility in traffic, promote a feeling
of being together [66] and optimize traffic flow [86]. These systems
utilize haptic, acoustic, or visual cues to synchronize cycling speeds

within a group. However, feedback methods, such as vibrations on
the handlebars [60] or augmented vision [50, 81] might be utilized
for warnings or turn indications in the future. Active motor control
holds the potential to reduce cognitive workload in maintaining a
desired speed, but, to the best of our knowledge, there has not been
a systematic assessment of how accurately cyclists can maintain
a specific speed using this approach [22]. Optimized traffic signal
control could leverage adjusted e-bike speed limits to enhance over-
all traffic flow [46] and reduce battery power consumption [73].
Although design guidelines for speed control and involved user
experience have been investigated [4], accuracy of maintaining
different speeds, e-bike power modes and involved workload were
not investigated.

The potential beyond recreational cycling has sparked ideas
of assisted exercising [6]. When cycling over the pleasant pedal-
ing rate of about 60 revolutions per minute (rpm), physiological
effects become noticeable [15]. By controlling the transmission
of a bicycle, e.g. pedaling frequency [19] and pedaling resistance
[1, 55], the heart rate [17] and maximum speed can be influenced.
To strategically control cyclists’ speeds, research found that impre-
cise split-time feedback does not significantly impact racing cyclists
[85], whereas competing against a more powerful trial can result in
improved performances [72]. Manipulating a clock has been shown
to enhance time to exhaustion on a cycle ergometer [57]. Results on
altering pedestrian walking speed by augmented acoustic footstep
feedback [69] inspired researchers to investigate similar effects on
bicycles [52]. Also in virtual reality, researchers are investigating
speed deception [45].

Perceiving speed accurately while cycling can be challenging, as
cyclists tend to underestimate their speeds, potentially contributing
to increased risks of injuries [74]. Moreover, self-reported and the
external-rated road behavior greatly differs between cyclists and
other road users [78]. Interestingly, the use of safety reflective vests
by cyclists has been associated with an overestimation of their
speeds by other road users [71].

To summarize, the existing body of related work shows a mul-
tifaceted exploration into mobility safety, technology integration,
and the broader aspects of cycling, including speed control, health
implications, and the perception as well as user experiences of cy-
clists in various contexts. There is a lack of systematic assessments
regarding the accuracy and workload of cyclists in maintaining
desired speeds through active motor control using different levels
of motor support. Additionally, it is unclear how accurately cyclists
can estimate their speed while being controlled by the e-bike sys-
tem. These parameters are crucial for a seamless integration of CC
applications into daily traffic. For example, traffic light systems
require cyclists’ speed fluctuations to provide accurate instructions
[4], while automated swarm formation depends on speed accuracy
for effective coordination and cooperation among cyclists [12]. Both
potential CC applications require that cyclists remain constantly
aware of the surrounding traffic and be conscious of whether they
are going too fast or too slow.

3 PROTOTYPE
To address the gap in maintaining a desired speed through active
motor control, we developed a prototype that allows the electrical
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assistance to be turned off in relation to a target speed limit. Our
technology is similar to established tuning and motor chipping/hot-
rodding methods, though it comes with the necessary constraint
of not enabling the bypassing of speed limits. Hence, our e-bike
is compliant with German traffic regulations, specifically §63a(2)
of StVZO, ensuring its secure operation in regular traffic while
providing dynamic motor assistance up to 25 km/h. To ensure traffic
regulation compliance, e-bikes typically measure speed using a
magnet attached to the wheel spoke. As the magnet passes a sensor
mounted on the frame, the current speed is computed using the
known wheel circumference and the time elapsed since the last
trigger. Once the e-bike reaches the speed limit, the motor turns off.
Similarly, adding a magnet on the pedal allows for the measurement
of cadence in rpm by tracking the time of each rotation.

Our prototype, shown in Figure 1 on the right, utilizes this prin-
ciple for motor assistance control. An Arduino with Bluetooth
Low Energy (BLE) monitors the current speed and cadence, and it
records these measurements, along with the motor assistance state
(on or off), adjusted speed limit and current geographic position
as well as timestamp, onto an SD memory card. Upon reaching the
desired speed limit, our prototype injects additional triggers into
the e-bike’s embedded speed control unit, simulating cycling above
the speed limit. Consequently, the e-bike motor can be deactivated
according to a modified speed limit. Trigger injection refers to the
insertion of an electrical signal into the sensor data wire, simulating
the effect of a magnet passing by the sensor. To manually adjust
the speed limit, we developed an experimental BLE application for
Android. To rebuild our prototype, we have provided a detailed
description, including a tutorial, example schematics, and Arduino
code, on our GitHub 1.

We integrated our prototype onto a size M and L HNF Nicolai
UD4 All-Terrain 27.5" e-bike utilizing the 4th Generation Bosch Smart
System Performance Line CX motor, as used in [41] for cycling expe-
rience assessment, equipped with a maximum torque of 85 Nm. The
e-bikes provide different assistance modes to control the torque. For
example “Eco” mode optimizes energy usage for an extended range
of up to 100 km on a fully charged battery, emphasizing energy
efficiency at the cost of motor power. In contrast “Turbo” mode
delivers maximum motor power, at the cost of increased energy
consumption, limiting the cycling distance to 60 km. According to
the manufacturer Bosch, the manual pedal force is increased by
60% in Eco mode and up to 340% in Turbo mode 2.

4 STUDY
Our primary goal was to assess how accurate cyclists maintain a
target speed limit through active motor control. The independent
variable of motor power was added to better estimate how cyclists
would adapt to other e-bike systems. Secondarily, the objective
was to evaluate the self-perception of cycling speed and associ-
ated workload among e-bike cyclists using CC. To eliminate any
confounding variables related to visual speed and motor power
feedback, the display on the e-bike was removed, and all LEDs
indicating motor support power levels were covered.

1https://github.com/M-Schrapel/E-bike-Cruise-Control
2https://www.bosch-ebike.com/en/help-center/performance-line-sx-for-the-smart-
system/asset-asf-01045

©MapTiler ©Openstreetmap contributors

Start

Round Track

GPS Module

Motor control

Arduino

Battery

Figure 1: Study route (left) and prototype (right). On the blue
trackwe set themotor assistance to 25km/h. On the round red
track we varied the assistance limit from 16 to 22 km/h. The
prototype is powered by an external battery and additional
sensors and magnets were mounted on the frame, rear wheel
and pedals to measure speed and cadence.

4.1 Participants
We invited 15 participants (13 male, 2 female) aged from 23 to 40
years (𝑀 = 27.7𝑦𝑒𝑎𝑟𝑠, 𝑆𝐷 = 4.7𝑦𝑒𝑎𝑟𝑠). Participants were recruited
through university mailing lists and WhatsApp groups. Studies
were only conducted during daytime. On average, the participants
had a height of 1.80 meters (𝑆𝐷 = 0.11𝑚) and a weight of 80 kilo-
grams (𝑆𝐷 = 18.5𝑘𝑔). We gathered height and weight data for a
better reproducibility of our study due to potential impacts on e-
bike acceleration patterns, with height being a factor affecting wind
resistance. Seven of our participants were familiar with cycling on e-
bikes, the other eight participants have never used an e-bike before
or tried it only once. All participants used conventional bicycles
in their daily mobility and reported an average cycling speed of
17.9km/h. The participants who were familiar with cycling on e-
bikes agreed on a five-point scale (𝑀 = 4.25, 𝑆𝐷 = 0.66) to feel safe
when riding an e-bike.

4.2 Study Design
The study took place near the city center of Karlsruhe, Germany in a
nearby park on a circular track, as illustrated in Figure 1 (left), on flat
terrain.We initially handed out an introduction questionnaire in our
lab, covering general questions about participants’ bicycle usage,
their experience with e-bikes, and encountered traffic situations.
After a brief introduction to e-bike usage and putting on safety
equipment, participants were taken outside the building to test
the e-bike and its behavior in a courtyard. As we had two bikes of
different sizes (M and L), participants were assigned the bike that
best matched their height.

Once participants were familiar with the e-bike, we instructed
them to maintain the maximum electrically assisted speed and then
estimate their speed. They were able to freely adjust the gearshift
throughout the experiment and were reminded to pay attention
to the surrounding traffic. The experimenter set the participant’s
e-bike either in Eco mode or in Turbo mode in a counterbalanced
order for each participant, with a speed limit of 25 km/h. On the
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way to the park, the experimenter cycled in front of the partici-
pant with his e-bike in Turbo mode, aiming to manually maintain
a speed over the limit at around 30 km/h. Because participants
were instructed to maintain the maximum supported speed, the
experimenter riding ahead was able to monitor the preceding traffic,
guide the participant to the round track, and avoid the effects of
synchronized speeds resulting from riding side-by-side. The blue
route, as illustrated in Figure 1, encompassed straight bicycle roads
with low traffic. The experimenter waited at each intersection until
the participant arrived before continuing the ride. After arriving at
the round track, marked in red, the experimenter inquired about the
maximum assisted speed perceived by the participants and assessed
their workload using the NASA-Task Load Index (TLX) question-
naire [28]. Additionally, we requested participants to describe the
e-bike riding behavior using a single word, with a list of illustrative
examples provided: dynamic, lively, quiet, rough, sporty, elegant,
comfortable, strenuous, stressful. Furthermore, we surveyed the par-
ticipants whether they noticed when the motor assistance turned
off and whether they actively counteracted motor disengagements,
using a 5-point scale.

At the round track, the experimenter adjusted the speed limit to
16, 19, or 22 km/h using our experimental BLE app and configured
the motor support either in Eco or Turbo mode in a counterbal-
anced order for each participant. We selected the speeds based
on related works and within a common range of cyclist speeds.
A speed of 16 km/h corresponds to the median speed of cyclists
on shared paths [9] and 19 km/h to the average speed of e-bike
cyclists in urban areas [68]. In [4], a static speed limit of 22 km/h
was used to investigate how cyclists experience cooperation with
traffic lights and modified e-bikes, providing us with a broad range
of reasonable speeds for cyclists in daily traffic. The motor modes
Eco and Turbo correspond to the minimal and maximal electrical
support provided by the selected e-bikes. In addition, we included
a mode of no support None to assess the participants’ behavior
without any electrical motor assistance. This baseline condition is
valuable for understanding how participants adapt their cycling
strategy when devoid of electrical support and provides insights
into their reliance on motor assistance at different power levels.
Our within-subject study design required all participants to per-
form each combination of motor support mode and target speed
in counterbalanced order to eliminate potential learning effects. In
None mode without electrical assistance, we decided not to provide
further instructions for measuring the preferred cycling speed, as
mentioning target speeds could potentially bias cyclists in their
subsequent self-reported speeds. Participants were instructed to cy-
cle half of the round track, resulting in a route length of 300 meters
for each trial and a total length of 2.1km for the included 7 trials.
The experimenter followed the participant in a short distance and
watched the traffic all the time. After each trial, the experimenter
reiterated the previous mentioned questions, including the NASA-
TLX questionnaire, and documented participants’ comments. In
case of any unforeseen traffic circumstances, such as a participant
having to brake, the trial was repeated immediately afterward. On
the return journey to the lab, the experimenter again configured
the participant’s e-bike in either Eco mode or Turbo mode, in a
counterbalanced order, with a speed limit of 25 km/h. The experi-
menter cycled in front of the participant again and then repeated

the questionnaire one last time. Back in the lab, the experimenter
handed out a final questionnaire to assess participants’ affinity for
technology interaction (ATI) [25], the System Usability Scale (SUS)
[34], and general questions attached in the Appendix together with
a free-text field for any additional comments. The SUS was only
assessed once to avoid overloading the participants with questions
after each trial. The study lasted approximately 90 minutes and
involved a total cycling distance of 4.5 km. Participants were pro-
vided with a bar of chocolate, a bottle of water, a coffee, and 15
Euros as compensation for their participation.

5 RESULTS
From our questionnaire we obtained an average ATI score of𝑀 =

3.87 (𝑆𝐷 = 0.81, Cronbach’s alpha = 0.89), indicating a medium
affinity for technology interaction among our participants. The
average SUS score (𝑀 = 73.33, 𝑆𝐷 = 12.88) suggests a good usability
in maintaining a target speed with our adapted motor assistance
without speed feedback.

5.1 Data Analysis
To analyze our recorded data, we initially excluded acceleration
and braking phases from the samples. These phases could have po-
tentially affected the analysis of how accurately cyclists maintain
specific target speeds. Subsequently, we evaluated the normality of
dependent variables for each factor level using the Shapiro-Wilk
test and assessed homogeneity of variance using Levene’s test. For
the analysis of the two independent variables (motor mode and
target speed), we applied an aligned rank transformation (ART)
to the data to perform a nonparametric two-way repeated mea-
sures ANOVA when ANOVA assumptions were violated. This was
followed by pairwise post-hoc tests on the transformed data with
Holm correction. In cases where only one independent variable, e.g.
motor mode, was considered, we selected Friedman’s test followed
by a Nemenyi post-hoc test. A significance level (𝛼 = .05) was
chosen for all statistical tests. The data were prepared using Python
3 and analyzed in R [65] using the packages ARTool [36], emmeans
[44], dplyr [83], pwr [13], and stats. Our dataset is available on our
GitHub 3.

5.2 Measured Speeds
Figure 2A shows the measured speeds, where “None” represents
the trials in the absence of motor assistance, E stands for the “Eco”
mode, and T for “Turbo” mode with the accompanying number
indicating the target speed limit. Figure 2B illustrates the measured
cycling speeds normalized to specific target speeds, depending on
the motor mode.

In order to test for significant differences in the measured speeds
across the independent variables (target speed and motor mode),
samples from the None mode were excluded since measurements
were not taken at different target speeds. The non-parametric
ANOVA type II results indicated significant effects of motor mode
(𝐹 (1, 56618) = 62.073), Speed Limit (𝐹 (3, 56618) = 54522.132,
𝑝 < .001), and their interaction (𝐹 (3, 56618) = 502.490, 𝑝 < .001)
on measured speed. The post-hoc analysis identified significant dif-
ferences between each pair of target speeds (𝑝 < .001) and between
3https://github.com/M-Schrapel/E-bike-Cruise-Control
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Mode

Cycled Speed Difference vs. Motor Modes

*********
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*** *** *** ***
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None E16 T16 E19 T19 E22 T22 E25 T2510
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22
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28

31
A

***
***

**

*** = p < .001 
** = p < .01

Figure 2: Actual cycled speed comparison. A shows the cycled speeds in each trial and B the normalized cycled speed distribution
for each motor mode. The violin plots marked with asterisks but without lines show significant differences to all possible
combinations.

both motor modes (𝑝 < .001). To further explore the significant
interaction, pairwise comparisons were conducted. The results re-
vealed significant differences between most pairs, except for E16
vs. E19 (𝑝 = .173), E16 vs. E25 (𝑝 = .068), and E22 vs. E25 (𝑝 = .070).
A power analysis was conducted to ensure that the study had at
least an 80% chance of correctly identifying true effects. The sam-
ple size per motor mode (𝑁 = 28230) was sufficient to detect the
small effect (𝑓 = 0.035), which required 𝑛 = 3253 samples per
group. Similarly, for target speed (𝑓 = 0.985, 𝑛 = 4 samples per
group) and the interaction between motor mode and target speed
(𝑓 = 0.169, 𝑛 = 64 samples per group), the study was adequately
powered. To justify the small effect of motor more, the average
cycled speed in Eco mode over all collected raw measurements
(𝑀 = 18.52𝑘𝑚/ℎ, 𝑆𝐷 = 4.14𝑘𝑚/ℎ) is close to the average speed in
Turbo mode (𝑀 = 18.92𝑘𝑚/ℎ, 𝑆𝐷 = 3.95𝑘𝑚/ℎ). Especially at lower
target speeds, we observe distinct speed fluctuation patterns, as
illustrated in Figure 2A.

For the analysis including the None mode, all samples from
the Turbo and Eco modes were normalized by subtracting the
target speed. In None mode, the corresponding average cycled
speed was subtracted from each participant’s samples. This ap-
proach enabled us to capture and compare the fluctuations around
all target speeds in relation to the individual preferred speeds, as
shown in Figure 2B. A Friedman’s test indicated significant differ-
ences between the motor modes (𝑄 (2) = 200.69, 𝑝 < .001). The
Kendall’s W value of𝑊 = 0.406 suggests that there is a moderate
effect in how the motor modes affect the cycled speed. A subse-
quent post-hoc test showed that all modes differ from each other
(𝑝 < .001). Therefore, a significant difference was observed in main-
taining a speed around a desired target speed among the three
motor support modes: Turbo (𝑀 = 0.29𝑘𝑚/ℎ, 𝑆𝐷 = 1.69𝑘𝑚/ℎ), Eco
(𝑀 = 0.26𝑘𝑚/ℎ, 𝑆𝐷 = 2.31𝑘𝑚/ℎ), and None (𝑀 = 0.0𝑘𝑚/ℎ, 𝑆𝐷 =

1.15𝑘𝑚/ℎ). In None mode, the preferred average cycling speed
(𝑀 = 18.95𝑘𝑚/ℎ, 𝑆𝐷 = 3.49𝑘𝑚/ℎ) ranged from 15.43𝑘𝑚/ℎ to
27.28𝑘𝑚/ℎ.

To get further insights into the relation with preferred speeds in
the None mode, we analyzed the cadence among the different motor
modes. We performed a Friedman’s test that indicated a significant
difference among the three motor modes (𝑄 (2) = 492.63, 𝑝 < .001).
The Kendall’s W value of 𝑊 = 0.729 suggest that there is a
strong effect in how the motor modes affect the pedaling fre-
quency. The post-hoc test showed that the cadence significantly
differs between Turbo mode and Eco mode as well as Turbo mode
and None mode (𝑝 < .001). However, no significant difference
was observed between None and Eco mode (𝑝 = .35). Although
Turbo and Eco mode exhibited a significant difference, the over-
all averages for Turbo mode (𝑀 = 58.58𝑟𝑝𝑚, 𝑆𝐷 = 13.76𝑟𝑝𝑚),
Eco mode (𝑀 = 63.21𝑟𝑝𝑚, 𝑆𝐷 = 13.8𝑟𝑝𝑚), and None mode
(𝑀 = 62.78𝑟𝑝𝑚, 𝑆𝐷 = 17.17𝑟𝑝𝑚) were in a comparable range with
minimal physiological demand [2, 15].

5.3 Self-reported Speeds
We followed the methodology outlined in 5.2 for analyzing self-
reported speeds and the results are shown in Figure 3. The non-
parametric ANOVA type II revealed significant main effects of
motor modes (Eco, Turbo) on reported speeds (𝐹 (1, 98) = 20.198,
𝑝 < .001) and target speeds on reported speeds (𝐹 (3, 98) = 11.899,
𝑝 < .001). However, there was no significant main effect for the in-
teraction between motor mode and target speeds (𝐹 (3, 98) = 1.135,
𝑝 = .34). The post-hoc analysis identified significant differences
between both motor modes (𝑝 < .001) and significant differences
between pairs of target speeds: 16 km/h vs. 22 km/h (𝑝 < .001), 16
km/h vs. 25 km/h (𝑝 < .001), 19 km/h vs. 22 km/h (𝑝 = .012), and
19 km/h vs. 25 km/h (𝑝 = .009). The power analysis for the main
effect of motor mode showed that a sample size of 𝑛 = 13 samples
per mode is required to detect an effect size of 𝑓 = 0.595. For the
target speeds, 𝑛 = 6 samples per speed are required (𝑓 = 0.762). For
the interaction between motor mode and target speed, our study
was underpowered, since 𝑛 = 29 samples per group were required
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Figure 3: Perceived speed comparison. A shows the reported speeds after each trial and B the normalized reported speed
distribution for each motor mode.

to detect an effect size of 𝑓 = 0.254. Figure 3A illustrates the rela-
tionship between the reported speed and the target speed and the
motor mode. The speed responses in Turbo mode tend to be higher
than those in Eco mode at the target speeds.

For the comparison with None mode, we subtracted the target
speeds from the reported speeds in Eco and Turbo mode. In None
mode, we adopted a speed limit of 0 km/h and subtracted the re-
ported speeds to account for the absence of electrical assistance.
A Friedman’s test showed significant differences of the three mo-
tor modes on the reported speeds (𝑄 (2) = 43.93, 𝑝 < .001). The
Kendall’s W value of𝑊 = 0.366 suggest that there is a moderate
effect in how the motor modes affect the speed report. The sub-
sequent post-hoc test identified significant differences between
all comparisons: Turbo and None (𝑝 < .001), Turbo and Eco
(𝑝 = .003), and Eco and None (𝑝 = .003). The noticeable discrep-
ancy can be readily observed in Figure 3B. On average, partici-
pants consistently underestimated speed limits across all modes
(𝑀 = −4.61𝑘𝑚/ℎ, 𝑆𝐷 = 2.4𝑘𝑚/ℎ). Notably, Turbo mode exhibited
more accurate speed reports (𝑀 = −2.7𝑘𝑚/ℎ, 𝑆𝐷 = 1.45𝑘𝑚/ℎ)
compared to Eco mode (𝑀 = −6.52𝑘𝑚/ℎ, 𝑆𝐷 = 1.47𝑘𝑚/ℎ). Six par-
ticipants correctly identified that no assistance was provided when
cycling in None mode and reported a speed of 0 km/h. Four partici-
pants reported in None mode a brief initial assistance, resulting in
reported values of 5 km/h.

5.4 Workload Assessment
To analyze the workload, we grouped all raw calculated TLX scores
into the modes None, Eco and Turbo. A Friedman’s test indicated
significant differences among the three groups (𝑄 (2) = 18.14, 𝑝 <

.001). The Kendall’s W value of𝑊 = 0.151 suggest that the agree-
ment in the rankings of TLX scores across the motor modes is weak
and the consistency of these differences is not very strong. The
post-hoc test revealed no significant differences between Turbo
and Eco mode (𝑝 = .569), while each was found to be significantly
different when compared to None (𝑝 < .001). The raw TLX score
was lowest in Turbo mode (𝑀 = 34.67, 𝑆𝐷 = 15.14), followed by Eco

(𝑀 = 38.22, 𝑆𝐷 = 15.4) and None (𝑀 = 46.89, 𝑆𝐷 = 11.88). From
the evaluation it can be stated that the workload was significantly
lower whenmotor support was present. The results and correspond-
ing TLX constitutes with the corresponding variability whiskers
among our participants are shown in Figure 4A. Specifically, phys-
ical demand (PD), performance (P), effort (E), and frustration (F)
contributed to the higher TLX scores in None mode.

We further analyzed whether our participants tried to cycle more
intensely when the motor assistance was switched off. This was
assessed by repeatedly asking them after each trial to respond on a
5-point scale from totally disagree to totally agree. A Friedman’s
test on the different support modes Eco, Turbo and None indicated
significant differences among the groups (𝑄 (2) = 11.32, 𝑝 = .003).
The very low Kendall’s W value of𝑊 = .094 suggest no or weak
agreement between the motor modes. The post-hoc test revealed
a significant difference between Turbo and None (𝑝 = .013), while
Turbo and Eco (𝑝 = .726) as well as Eco and None (𝑝 = .089) were
not significant. The results are shown in Figure 4B in question A.
We also repeatedly asked the question if they noticed when the
assistance switched off. The Friedman’s test indicated significant
difference between the three support modes (𝑄 (2) = 75.82, 𝑝 <

.001). The high Kendall’sW value of𝑊 = 0.63 suggest a strong trend
between the motor modes. The post-hoc test showed a significant
difference between all pairs (𝑝 < .001). The results are shown in
Figure 4B in question B.

5.5 Questionnaire
To enhance our comprehension of cruise control for e-bikes and to
investigate prospective future applications, we incorporated supple-
mentary inquiries into the concluding questionnaire, as depicted in
Figure 5. Feedback from our respondents indicated that the motor
disengagement had minimal impact on their cycling stability and
control over the e-bike. Furthermore, the majority did not report a
feeling of being controlled by the e-bike. Opinions on familiarity
with e-bike riding and the accuracy of reported speed limits varied
among respondents. When the motor switched off, 13 respondents
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Figure 4: Raw NASA-TLX scores (left) and reported behavior and perception of the motor disengagement (right). The Turbo
mode achieves the lowest workload and can be easily noticed. Questions A and B in the right figure are mentioned above the
corresponding responses.

agreed that further manual accelerations became challenging. Nine
participants reported that they could envision using such technol-
ogy on their daily trips, while only one strongly disagreed with the
idea of having dynamic support for e-bikes. Dynamic speed limits
for optimized traffic signal phases and motor disengagements for
warnings, such as overtaking vehicles, emerged as the most ap-
pealing use cases. However, motor disengagements during phone
calls and headphone use were considered less appealing by the
majority of our participants. For swarm scenarios, we gathered
diverse opinions on our technology. When cycling in swarms with
acquaintances and friends, our respondents more likely expressed

Number of Responses

Questionnaire Responses

Willingsness to share bicycle data
15 1510 105 50

Dynamic support affected e-bike stability

Accurate perceived speed reports
Feeling of being controlled by e-bike

Familiar e-bike riding behavior
Difficult to accelerate after shutdown

Dynamic support in daily use
Dynamic support for traffic signals

Dynamic support for warnings
Dynamic support for overtaking vehicles

Dynamic support during phone calls

Dynamic support affected e-bike control

Dynamic support during headphone use
Dynamic support for swarms

Doubts dynamic support improve traffic safety
Group cycling with strangers

Group cycling with acquaintances and friends

Strongly disagree Disagree Rather neutral Agree Strongly agree

Figure 5: Questionnaire responses. On a five-point scale, we
evaluated different questions regarding future use cases and
the e-bike cycling behavior. The questions were simplified
for a better readability. The complete set of questions can be
found in the Appendix.

positivity, whereas cycling in groups with strangers was rather dis-
liked. Overall, participants agreed that dynamic speed control could
enhance traffic safety, with only one individual expressing disagree-
ment. Sharing bicycle data raised privacy concerns for half of our
respondents. In the free comment field, one respondent mentioned
experiencing varying speed limits during individual trials. Another
participant expressed frustration with sudden motor disengage-
ments, and one person expressed interest in testing the application
in everyday traffic.

6 DISCUSSION
Our study demonstrated the ability of motor disengagements to
control the speed of e-bike cyclists while perceived speed limits
were on average rated lower than the actual cycled speed. The
workload was most affected by the presence or absence of electrical
support.

6.1 Challenges in Maintaining Cycling Speed
Limits

Maintaining a desired cycling speed limit without visual speed feed-
back can be challenging. Our obtained average SUS score of 73.33
may have been influenced by the absence of a speed monitoring dis-
play and the repeated question of the perceived cycled speed limit.
Participants often commented that they were unsure of the speed
up to which they were being supported, which can also be inferred
from the responses of Figure 5 under ’Accurate perceived speed
reports’. Visual speed feedback [73] requires continuous monitor-
ing which increases cognitive load. Without electrical support, we
found that our participants showed a high variability of preferred
cycling speeds, but were able to maintain their own preferred speed
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most accurately. With active electrical support, we were able to
control the speed of the cyclists. In Turbo mode, our participants
were slightly more accurate in maintaining a desired speed than
in Eco mode. This observation can be attributed to the more con-
spicuous motor disengagement feedback with higher engine power.
From the final questionnaire in Figure 5, we infer from the first
two questions that the motor disengagements have a minor impact
on the stability and control of the e-bike. One participant party
exceeded our set speed limit and remarked a preference for higher
speeds. On average, all cyclists mostly undervalued speed limits.
The evaluation of speed reports indicated that a larger sample size
is needed to accurately analyze interaction effects of motor modes
and target speeds on reported speeds. However, we found that cy-
clists’ speed perceptions were influenced by higher levels of motor
support. A more powerful engine can result in higher estimated
speeds. In addition, motor disengagement was more noticeable at
higher power levels. This may explain the interaction effect of mo-
tor mode and target speed on the measured speeds, together with
the participants’ willingness to follow the instructions given by the
e-bike. This also raises the future research question of whether this
form of haptic feedback can be embedded into e-bikes for further
notifications.

6.2 Factors Affecting Workload
The workload was influenced by the presence and power of elec-
trical support, attributed to the additional effort required, and the
potential frustration experienced in the absence of support. Be-
tween Eco and Turbo mode, we identified no significant difference
in the workload. However, given the overall scores differed among
the support modes, there is a possibility that with a larger sample
size or different bike types, a significant difference could be ob-
served. The obtained raw TLX scores ranging between 34 to 47 are
comparable with related works on sporting activities ranging in
between 40 to 50 [26, 33, 37] as well as lab studies analyzing input
technologies in VR simulators ranging between 31 to 55 [29, 39, 48].
As our experiment was conducted outdoors, additional variables
such as traffic, day time, and weather could influence our measured
scores. Hence, our study design aligns with a more realistic use
case. Additionally, our average measured speed of cyclists with-
out electrical support (𝑀 = 18.96𝑘𝑚/ℎ) is similar to findings in
related works (𝑀 = 18.4𝑘𝑚/ℎ) [9]. The measured cadence of ap-
proximately 60 rpm is known to be a pleasant pedaling rate with
minimal physiological demand, as indicated by previous studies
[2, 15].

6.3 Cyclists’ Impressions of E-bike Modes
Upon reviewing the adjusted speed limits, we observed that cyclists
maintain the speed limit of 16km/h less accurately, as depicted
in Figure 2A. This may be related to riding below the usual and
comfortable speed [9]. Two participants independently described
cycling at 16km/h in Eco mode as “Granny mode”, and four re-
spondents associated the word “quiet” with the e-bike behavior.
Maintaining a speed of 22 km/h, as previously used in a study [4],
demonstrated the highest accuracy in Turbo mode. This speed limit
was described by eleven participants as “dynamic”, “lively”, and
“sporty”. At 19km/h in Eco mode, ten participants remarked cycling

as “comfortable” and “balanced”. Without electrical support, nine
participants associated cycling with “stressful” and “strenuous”.

6.4 Factors Influencing the Accuracy of
Dynamic Speed Control in Future
Applications

For future applications that integrate traffic light signal phases into
dynamic speed control, we derive that the accuracy of speed main-
tenance is influenced by both the target speed limit and the level
of torque provided by the electric motor. However, the fluctuation
effects around a certain target speed between different motors can
be small. The distinct perceptibility of the motor disengagements
and the cyclist’s willingness to follow instructions are more crucial
factors for CC. We observed that participants who overlooked the
subtle feedback in Eco mode or ignored the instructions tended to
ride at their preferred speed. Especially at lower speeds and with
less engine power, higher speed fluctuations must be taken into
account to ensure a seamless green wave for cyclists. This may be
due to the frustration involved when the motor disengages below a
cyclist’s preferred speed. Moreover, it’s essential to note that addi-
tional factors, such as varying traffic conditions [9], road surfaces
[23], road inclination [63], weather conditions and different rider
types [41] may additionally affect a cyclist’s ability to maintain a
consistent speed in daily traffic. In the context of swarm cycling,
further research is required to ascertain whether groups of cyclists
can maintain speed more accurately using CC compared to con-
ventional cycling. The absolute fluctuations around a target speed
remained within a comparable range when using CC. This may
enable mixed groups of regular bicycles and e-bikes to maintain a
cohesive formation when the speed of the regular cyclist is used
to control the e-bike’s target speed. Our questionnaire revealed
distinct differences in participants’ preferences regarding the for-
mation of swarms with other cyclists. Our participants expressed
a preference for cycling with friends, whereas cycling in groups
with strangers was generally disliked. This suggests that swarm
applications in urban areas [54] may need to facilitate connections
between cyclists or form ad-hoc groups based on shared interests
or riding styles. Integrating social networking features could help
cyclists connect with others who have similar preferences or skills.
Additionally, features that promote cooperation, communication
and coordination among cyclists within a swarm, e.g. urban gamifi-
cation [43], could help alleviate discomfort or reluctance associated
with riding in groups with strangers. Moreover, it is crucial to
consider how conventional cyclists can synchronize with swarms
consisting of dynamically speed controlled e-bikes. One solution
could involve virtual swarm centroids traveling along a predefined
route [66]. However, leveraging smartphone GPS data to measure
speeds and then share measurements with surrounding bicycles,
could raise privacy concerns. Our respondents exhibited diverse
opinions regarding the sharing of data, as depicted in Figure 5 in
the last question. Furthermore, it remains of research how visual
speed feedback influence the workload and speed accuracy for the
proposed scenarios. A conventional speed display mounted on the
bike or an AR head-up display embedded in a helmet [51, 80, 82]
could be used for further research.
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6.5 Limitations
This pilot study has a few limitations. First of all, the number of
15 participants was too small e.g. for detecting main effects of the
interaction between the two motor modes (Eco, Turbo) and target
speeds on the reported speeds. By comparing all reports grouped
by each mode, including the None mode without assistance, we
were able to identify significant differences in speed perception.
However, to conduct a more detailed analysis of different target
speeds and associated speed perceptions as a function of motor
mode, the number of participants needs to be increased. Secondly,
the number of female cyclists, as well as the number of experienced
and inexperienced e-bike cyclists preclude a more detailed statisti-
cal comparison. Variations in cycling behavior [7, 41, 79], cycling
regularity and average route length [56], and cultural acceptance of
new technologies [35] further complicate establishing generalizable
results across all potential user groups [18, 32]. Furthermore, our
study was conducted in low traffic situations on flat terrain. Ex-
ternal factors such as road inclination [63] would have potentially
influenced the data collection.

7 CONCLUSION
This paper investigated the accuracy of maintaining a designated
speed limit with e-bikes through active motor control for applica-
tion scenarios such as swarm cycling and optimized traffic signal
phase control. A pilot study involving 15 participantswas conducted
to evaluate workload, perceived speeds, and speed measurements
across target speeds ranging from 16 to 25 km/h, under varying
levels of electrical assistance.

We observed that cyclists can accurately maintain a specific
speed through active motor control, even without explicit knowl-
edge of the current speed. Concurrently, cyclists tend to underes-
timate their speeds, which is also influenced by the power of the
engine. Furthermore, we found that the accuracy of maintaining
a dynamic set speed limit is higher with increased motor power,
while the workload is lowest, which is related to the conspicuous-
ness of engine disengagements. The use case of optimized traffic
signal phases was preferred over swarm cycling applications in our
questionnaire. Our participants reported a preference for cycling
together in groups of people they know. Further research is needed
to investigate the impact of visual speed feedback on cyclists’ speed
accuracy and the viability of dynamic speed adjustments based
on traffic and swarm cycling. Additional urban pilot studies with
varying traffic signals and cyclist swarms will provide insights into
the effectiveness of cruise control for cyclists.

REFERENCES
[1] José A Afonso, Filipe J Rodrigues, Delfim Duarte Rolo Pedrosa, and João L Afonso.

2015. Automatic control of cycling effort using electric bicycles and mobile
devices. (2015). https://api.semanticscholar.org/CorpusID:16349230

[2] Pedro MD Agrícola, Daniel G da Silva Machado, Luiz F de Farias Junior, Luiz I
do Nascimento Neto, Andre I Fonteles, Samara KA da Silva, Cheng HN Chao,
Eduardo B Fontes, Hassan M Elsangedy, and Alexandre H Okano. 2017. Slow
down and enjoy: the effects of cycling cadence on pleasure. Perceptual and Motor
Skills 124, 1 (2017), 233–247.

[3] Anas Al-Rahamneh, José Javier Astrain, Jesús Villadangos, Hicham Klaina,
Imanol Picallo Guembe, Peio Lopez-Iturri, and Francisco Falcone. 2022. Bi2Bi
Communication: Toward Encouragement of Sustainable Smart Mobility. IEEE
Access 10 (2022), 9380–9394.

[4] Josh Andres, Tuomas Kari, Juerg von Kaenel, and Florian ’Floyd’ Mueller. 2019.
"Co-Riding With My EBike to Get Green Lights". In Proceedings of the 2019

on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19).
Association for Computing Machinery, New York, NY, USA, 1251–1263. https:
//doi.org/10.1145/3322276.3322307

[5] 5G Automotive Association et al. 2020. A visionary roadmap for ad-
vanced driving use cases, connectivity technologies, and radio spectrum
needs. https://5gaa.org/content/uploads/2020/09/A-Visionary-Roadmap-
for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-
Spectrum-Needs.pdf

[6] Eli Gabriel Avina-Bravo, Johan Cassirame, Christophe Escriba, Pascal Acco, Jean-
Yves Fourniols, and Georges Soto-Romero. 2022. Smart electrically assisted
bicycles as health monitoring systems: a review. Sensors 22, 2 (2022), 468.

[7] Inger Marie Bernhoft and Gitte Carstensen. 2008. Preferences and behaviour
of pedestrians and cyclists by age and gender. Transportation Research Part F:
Traffic Psychology and Behaviour 11, 2 (2008), 83–95.

[8] Michal Bíl, Richard Andrášik, and Jan Kubeček. 2015. How comfortable are
your cycling tracks? A new method for objective bicycle vibration measurement.
Transportation Research Part C: Emerging Technologies 56 (2015), 415–425.

[9] Soufiane Boufous, Julie Hatfield, and Raphael Grzebieta. 2018. The impact of
environmental factors on cycling speed on shared paths. Accident Analysis &
Prevention 110 (2018), 171–176.

[10] Jessica E Bourne, Sarah Sauchelli, Rachel Perry, Angie Page, Sam Leary, Clare
England, and Ashley R Cooper. 2018. Health benefits of electrically-assisted
cycling: a systematic review. International journal of behavioral nutrition and
physical activity 15 (2018), 1–15.

[11] Ralph Buehler and John Pucher. 2022. Cycling through the COVID-19 pandemic
to a more sustainable transport future: Evidence from case studies of 14 large
bicycle-friendly cities in Europe and North America. Sustainability 14, 12 (2022),
7293.

[12] Sandra Céspedes, Juan Salamanca, Alexis Yáñez, and Daniel Vinasco. 2018. Group
cycling meets technology: A cooperative cycling cyber-physical system. IEEE
Transactions on Intelligent Transportation Systems 20, 8 (2018), 3178–3188.

[13] Stephane Champely. 2020. pwr: Basic Functions for Power Analysis. https://CRAN.
R-project.org/package=pwr R package version 1.3-0.

[14] Andrew Clarry, Ahmadreza Faghih Imani, and Eric J Miller. 2019. Where we ride
faster? Examining cycling speed using smartphone GPS data. Sustainable cities
and society 49 (2019), 101594.

[15] J RICHARD Coast, Ronald H Cox, and HUGH G Welch. 1986. Optimal pedalling
rate in prolonged bouts of cycle ergometry. Medicine and Science in Sports and
Exercise 18, 2 (1986), 225–230.

[16] U.S. Consumer Product Safety Commission. 2023. E-Scooter and
E-Bike Injuries Soar: 2022 Injuries Increased Nearly 21%. https:
//www.cpsc.gov/Newsroom/News-Releases/2024/E-Scooter-and-E-Bike-
Injuries-Soar-2022-Injuries-Increased-Nearly-21. Online; accessed 2 January
2024.

[17] Matteo Corno, Paolo Giani, Mara Tanelli, and Sergio Matteo Savaresi. 2014.
Human-in-the-loop bicycle control via active heart rate regulation. IEEE Trans-
actions on Control Systems Technology 23, 3 (2014), 1029–1040.

[18] Mathijs de Haas, Maarten Kroesen, Caspar Chorus, Sascha Hoogendoorn-Lanser,
and Serge Hoogendoorn. 2022. E-bike user groups and substitution effects:
evidence from longitudinal travel data in the Netherlands. Transportation 49, 3
(2022), 815–840.

[19] Daniel H De La Iglesia, Juan F De Paz, Gabriel Villarrubia González, Alberto L
Barriuso, Javier Bajo, and Juan M Corchado. 2018. Increasing the intensity over
time of an electric-assist bike based on the user and route: The bike becomes the
gym. Sensors 18, 1 (2018), 220.

[20] deStatis. 2021. Pedelec-Unfälle: Immer mehr jüngere Verunglückte. https://www.
destatis.de/DE/Presse/Pressemitteilungen/2022/07/PD22_N043_46241.html. On-
line; accessed 2 January 2024.

[21] Charles J DiMaggio, Marko Bukur, Stephen P Wall, Spiros G Frangos, and Andy Y
Wen. 2020. Injuries associated with electric-powered bikes and scooters: analysis
of US consumer product data. Injury prevention 26, 6 (2020), 524–528.

[22] Marc Efken, Nils Kohn, Dietmar Greven, and Berno JE Misgeld. 2021. Cooperative
control of electrical bicycles. IFAC Journal of Systems and Control 16 (2021),
100153.

[23] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, and
Hari Balakrishnan. 2008. The pothole patrol: using a mobile sensor network
for road surface monitoring. In Proceedings of the 6th International Conference
on Mobile Systems, Applications, and Services (Breckenridge, CO, USA) (MobiSys
’08). Association for Computing Machinery, New York, NY, USA, 29–39. https:
//doi.org/10.1145/1378600.1378605

[24] Zhufeng Fan and Corey D Harper. 2022. Congestion and environmental impacts
of short car trip replacement with micromobility modes. Transportation Research
Part D: Transport and Environment 103 (2022), 103173.

[25] Thomas Franke, Christiane Attig, and Daniel Wessel. 2019. A personal resource
for technology interaction: development and validation of the affinity for technol-
ogy interaction (ATI) scale. International Journal of Human–Computer Interaction
35, 6 (2019), 456–467.

280

https://api.semanticscholar.org/CorpusID:16349230
https://doi.org/10.1145/3322276.3322307
https://doi.org/10.1145/3322276.3322307
https://5gaa.org/content/uploads/2020/09/A-Visionary-Roadmap-for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf
https://5gaa.org/content/uploads/2020/09/A-Visionary-Roadmap-for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf
https://5gaa.org/content/uploads/2020/09/A-Visionary-Roadmap-for-Advanced-Driving-Use-Cases-Connectivity-Technologies-and-Radio-Spectrum-Needs.pdf
https://CRAN.R-project.org/package=pwr
https://CRAN.R-project.org/package=pwr
https://www.cpsc.gov/Newsroom/News-Releases/2024/E-Scooter-and-E-Bike-Injuries-Soar-2022-Injuries-Increased-Nearly-21
https://www.cpsc.gov/Newsroom/News-Releases/2024/E-Scooter-and-E-Bike-Injuries-Soar-2022-Injuries-Increased-Nearly-21
https://www.cpsc.gov/Newsroom/News-Releases/2024/E-Scooter-and-E-Bike-Injuries-Soar-2022-Injuries-Increased-Nearly-21
https://www.destatis.de/DE/Presse/Pressemitteilungen/2022/07/PD22_N043_46241.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/2022/07/PD22_N043_46241.html
https://doi.org/10.1145/1378600.1378605
https://doi.org/10.1145/1378600.1378605


AutomotiveUI ’24, September 22–25, 2024, Stanford, CA, USA Schrapel et al.

[26] Atef M Ghaleb, Tamer M Khalaf, Mohamed Z Ramadan, Adham E Ragab, and
Ahmed Badwelan. 2020. Effect of cycling on a stationary bike while performing
assembly tasks on human physiology and performance parameters. International
journal of environmental research and public health 17, 5 (2020), 1761.

[27] Stefan Gössling and Andy S Choi. 2015. Transport transitions in Copenhagen:
Comparing the cost of cars and bicycles. Ecological economics 113 (2015), 106–113.

[28] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. InHumanMentalWork-
load, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychology,
Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9

[29] Wolfgang Hochleitner, David Sellitsch, Daniel Rammer, Andrea Aschauer, Elke
Mattheiss, Georg Regal, and Manfred Tscheligi. 2017. No need to stop: exploring
smartphone interaction paradigms while cycling. In Proceedings of the 16th Inter-
national Conference on Mobile and Ubiquitous Multimedia (Stuttgart, Germany)
(MUM ’17). Association for Computing Machinery, New York, NY, USA, 177–187.
https://doi.org/10.1145/3152832.3152871

[30] Kai Holländer, Mark Colley, Enrico Rukzio, and Andreas Butz. 2021. A Taxonomy
of Vulnerable Road Users for HCI Based On A Systematic Literature Review. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 158, 13 pages. https://doi.org/10.1145/3411764.3445480

[31] JinhyunHong, David PhilipMcArthur, andMark Livingston. 2020. The evaluation
of large cycling infrastructure investments in Glasgow using crowdsourced cycle
data. Transportation 47 (2020), 2859–2872.

[32] Bingyuan Amelia Huang, Hans Wüst, and Mathijs de Haas. 2024. Assessing the
E-bike trends and impact on sustainable mobility: A national-level study in the
Netherlands. Journal of Cycling and Micromobility Research 2 (2024), 100027.

[33] Dominic Irvine, Simon A Jobson, and John P Wilson. 2022. Evaluating Changes
in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling. Sports 10, 5
(2022), 67.

[34] Patrick W Jordan, Bruce Thomas, Ian Lyall McClelland, and Bernard Weerd-
meester. 1996. Usability evaluation in industry. CRC Press.

[35] Georgios Kapousizis, Rumana Sarker, M Baran Ulak, and Karst Geurs. 2024. User
acceptance of smart e-bikes: What are the influential factors? A cross-country
comparison of five European countries. Transportation Research Part A: Policy
and Practice 185 (2024), 104106.

[36] Matthew Kay, Lisa A. Elkin, James J. Higgins, and Jacob O. Wobbrock. 2021.
ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. https:
//doi.org/10.5281/zenodo.594511 R package version 0.11.1.

[37] Antonis Kesisoglou, Andrea Nicolò, and Louis Passfield. 2020. Cycling perfor-
mance and training load: effects of intensity and duration. International Journal
of Sports Physiology and Performance 16, 4 (2020), 535–543.

[38] Wissam Kontar, Soyoung Ahn, and Andrea Hicks. 2022. Electric bicycles sharing:
opportunities and environmental impacts. Environmental Research: Infrastructure
and Sustainability 2, 3 (2022), 035006.

[39] Thomas Kosch, Andrii Matviienko, Florian Müller, Jessica Bersch, Christopher
Katins, Dominik Schön, and Max Mühlhäuser. 2022. Notibike: Assessing target
selection techniques for cyclist notifications in augmented reality. Proceedings of
the ACM on Human-Computer Interaction 6, MHCI (2022), 1–24.

[40] Martin Lanzendorf andAnnika Busch-Geertsema. 2014. The cycling boom in large
German cities—Empirical evidence for successful cycling campaigns. Transport
Policy 36 (2014), 26–33. https://doi.org/10.1016/j.tranpol.2014.07.003

[41] Annika Laqua, Jan Schnee, Jo Pletinckx, and Martin Meywerk. 2023. Exploring
User Experience in Sustainable Transport with Explainable AI Methods Applied
to E-Bikes. Applied Sciences 13, 20 (2023), 11277.

[42] Anneka R Lawson, Vikram Pakrashi, Bidisha Ghosh, and WY Szeto. 2013. Per-
ception of safety of cyclists in Dublin City. Accident Analysis & Prevention 50
(2013), 499–511.

[43] Jung Eun Lee, Nan Zeng, Yoonsin Oh, Daehyoung Lee, and Zan Gao. 2021. Effects
of Pokémon GO on physical activity and psychological and social outcomes: a
systematic review. Journal of Clinical Medicine 10, 9 (2021), 1860.

[44] Russell V. Lenth. 2024. emmeans: Estimated Marginal Means, aka Least-Squares
Means. https://CRAN.R-project.org/package=emmeans R package version 1.10.2.

[45] Markus Löchtefeld, Antonio Krüger, and Hans Gellersen. 2016. DeceptiBike:
Assessing the Perception of Speed Deception in a Virtual Reality Training Bike
System. In Proceedings of the 9th Nordic Conference on Human-Computer Interac-
tion (Gothenburg, Sweden) (NordiCHI ’16). Association for Computing Machinery,
NewYork, NY, USA, Article 40, 10 pages. https://doi.org/10.1145/2971485.2971513

[46] Meng Lu, Robbin Blokpoel, and Mahtab Joueiai. 2018. Enhancement
of safety and comfort of cyclists at intersections. IET Intelligent
Transport Systems 12, 6 (2018), 527–532. https://doi.org/10.1049/iet-its.
2017.0250 arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
its.2017.0250

[47] Devina Manoeva, Sigrid Salzer, and Stephan Schmidt. 2022. Designing a Novel
Urban Mobility Solution: UX Approach to Shared Autonomous Micro Vehicles.
In International Conference on Human-Computer Interaction. Springer, 231–238.

[48] Andrii Matviienko, Jean-Baptiste Durand-Pierre, Jona Cvancar, and Max
Mühlhäuser. 2023. Text Me if You Can: Investigating Text Input Methods

for Cyclists. In Extended Abstracts of the 2023 CHI Conference on Human Fac-
tors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, Article 270, 7 pages. https:
//doi.org/10.1145/3544549.3585734

[49] Andrii Matviienko, Florian Heller, and Bastian Pfleging. 2021. Quantified Cycling
Safety: Towards a Mobile Sensing Platform to Understand Perceived Safety of
Cyclists. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI EA ’21). Association for Computing
Machinery, New York, NY, USA, Article 262, 6 pages. https://doi.org/10.1145/
3411763.3451678

[50] Andrii Matviienko, Damir Mehmedovic, Florian Müller, and Max Mühlhäuser.
2022. " Baby, You can Ride my Bike" Exploring Maneuver Indications of Self-
Driving Bicycles using a Tandem Simulator. Proceedings of the ACM on Human-
Computer Interaction 6, MHCI (2022), 1–21.

[51] Andrii Matviienko, Florian Müller, Dominik Schön, Paul Seesemann, Sebastian
Günther, and Max Mühlhäuser. 2022. BikeAR: Understanding Cyclists’ Crossing
Decision-Making at Uncontrolled Intersections using Augmented Reality. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 366, 15 pages. https://doi.org/10.1145/3491102.3517560

[52] Schrapel Maximilian, Weiser Annika, and Vinel Alexey. 2023. Enhancing Safety
and User Experience in Micromobility with V2X-Enabled ANC Headphones.
Mensch und Computer 2023 - Workshopband. https://doi.org/10.18420/muc2023-
mci-ws03-267

[53] Li Meng. 2022. Political economy and cycling infrastructure investment. Trans-
portation research interdisciplinary perspectives 14 (2022), 100618.

[54] Linglong Meng, Stefan Schaffer, and Vincent Wappenschmitt. 2022. A Connected
Swarm Cycling System. In 2022 IEEE International Smart Cities Conference (ISC2).
1–5. https://doi.org/10.1109/ISC255366.2022.9922268

[55] Daniel Meyer, Moritz Körber, Veit Senner, and Masayoshi Tomizuka. 2018. Reg-
ulating the heart rate of human–electric hybrid vehicle riders under energy
consumption constraints using an optimal control approach. IEEE Transactions
on Control Systems Technology 27, 5 (2018), 2125–2138.

[56] Aditi Misra and Kari Watkins. 2018. Modeling cyclist route choice using revealed
preference data: an age and gender perspective. Transportation research record
2672, 3 (2018), 145–154.

[57] R HughMorton. 2009. Deception by manipulating the clock calibration influences
cycle ergometer endurance time in males. Journal of Science and Medicine in
Sport 12, 2 (2009), 332–337.

[58] Andre Neves and Christian Brand. 2019. Assessing the potential for carbon
emissions savings from replacing short car trips with walking and cycling using
a mixed GPS-travel diary approach. Transportation Research Part A: Policy and
Practice 123 (2019), 130–146. https://doi.org/10.1016/j.tra.2018.08.022 Walking
and Cycling for better Transport, Health and the Environment.

[59] European Road Safety Observatory. 2023. Road Safety Thematic Report: Personal
mobility devices. https://road-safety.transport.ec.europa.eu/system/files/2023-
03/Road_Safety_Thematic_Report_Consequences_of_crashes_2023.pdf. Online;
accessed 2 January 2024.

[60] Marie-Christin H Oczko, Lukas Stratmann, Mario Franke, Julian Heinovski, Do-
minik S Buse, Florian Klingler, and Falko Dressler. 2020. Integrating haptic
signals with V2X-based safety systems for vulnerable road users. In 2020 Interna-
tional Conference on Computing, Networking and Communications (ICNC). IEEE,
692–697.

[61] Franklin Oliveira, Dilan Nery, Daniel G Costa, Ivanovitch Silva, and Luciana
Lima. 2021. A survey of technologies and recent developments for sustainable
smart cycling. Sustainability 13, 6 (2021), 3422.

[62] Bjørn Olsson. 2021. Hjelmrapport: Brug af cykelhjelm 2020.
[63] P Padmagirisan, R Sowmya, and V Sankaranarayanan. 2019. Power-assist control

of a human–electric hybrid bicycle with energy regeneration and cruise control.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering 233, 2 (2019), 179–191.

[64] John Pucher and Ralph Buehler. 2017. Cycling towards a more sustainable
transport future. Transport Reviews 37, 6 (2017), 689–694. https://doi.org/10.
1080/01441647.2017.1340234

[65] R Core Team. 2024. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[66] Juan Salamanca. 2023. Urban Attractors for Uncoordinated Micromobility Riders.
Mensch und Computer 2023 - Workshopband. https://doi.org/10.18420/muc2023-
mci-ws03-468

[67] J.P. Schepers and E. Heinen. 2013. How does a modal shift from short car trips to
cycling affect road safety? Accident Analysis & Prevention 50 (2013), 1118–1127.
https://doi.org/10.1016/j.aap.2012.09.004

[68] Katja Schleinitz, Tibor Petzoldt, Luise Franke-Bartholdt, Josef Krems, and Tina
Gehlert. 2017. The German Naturalistic Cycling Study–Comparing cycling speed
of riders of different e-bikes and conventional bicycles. Safety science 92 (2017),
290–297.

281

https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/3152832.3152871
https://doi.org/10.1145/3411764.3445480
https://doi.org/10.5281/zenodo.594511
https://doi.org/10.5281/zenodo.594511
https://doi.org/10.1016/j.tranpol.2014.07.003
https://CRAN.R-project.org/package=emmeans
https://doi.org/10.1145/2971485.2971513
https://doi.org/10.1049/iet-its.2017.0250
https://doi.org/10.1049/iet-its.2017.0250
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-its.2017.0250
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-its.2017.0250
https://doi.org/10.1145/3544549.3585734
https://doi.org/10.1145/3544549.3585734
https://doi.org/10.1145/3411763.3451678
https://doi.org/10.1145/3411763.3451678
https://doi.org/10.1145/3491102.3517560
https://doi.org/10.18420/muc2023-mci-ws03-267
https://doi.org/10.18420/muc2023-mci-ws03-267
https://doi.org/10.1109/ISC255366.2022.9922268
https://doi.org/10.1016/j.tra.2018.08.022
https://road-safety.transport.ec.europa.eu/system/files/2023-03/Road_Safety_Thematic_Report_Consequences_of_crashes_2023.pdf
https://road-safety.transport.ec.europa.eu/system/files/2023-03/Road_Safety_Thematic_Report_Consequences_of_crashes_2023.pdf
https://doi.org/10.1080/01441647.2017.1340234
https://doi.org/10.1080/01441647.2017.1340234
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.18420/muc2023-mci-ws03-468
https://doi.org/10.18420/muc2023-mci-ws03-468
https://doi.org/10.1016/j.aap.2012.09.004


When the E-bike Takes Over AutomotiveUI ’24, September 22–25, 2024, Stanford, CA, USA

[69] Maximilian Schrapel, Janko Happe, and Michael Rohs. 2022. EnvironZen: Im-
mersive Soundscapes via Augmented Footstep Sounds in Urban Areas. i-com 21,
2 (2022), 219–237.

[70] A Shaout and Mohammad Ameen Jarrah. 1997. Cruise control technology review.
Computers & electrical engineering 23, 4 (1997), 259–271.

[71] Sreten Simović, Tijana Ivanišević, Aleksandar Trifunović, Svetlana Čičević, and
Dragan Taranović. 2021. What affects the e-bicycle speed perception in the era
of eco-sustainable mobility: A driving simulator study. Sustainability 13, 9 (2021),
5252.

[72] Mark Stone, Kevin Thomas, Michael Wilkinson, Andrew Jones, Alan St Clair Gib-
son, and Kevin Thompson. 2012. Effects of deception on exercise performance:
implications for determinants of fatigue in humans. Medicine & Science in Sports
& Exercise 44, 3 (2012), 534–541.

[73] Irina Tal and Gabriel-Miro Muntean. 2013. V2X communication-based power sav-
ing strategy for electric bicycles. In 2013 IEEE Globecom Workshops (GC Wkshps).
1338–1343. https://doi.org/10.1109/GLOCOMW.2013.6825180

[74] Diane C Thompson, Viviana Rebolledo, Robert S Thompson, A Kaufman, and
Frederick P Rivara. 1997. Bike speed measurements in a recreational population:
validity of self reported speed. Injury Prevention 3, 1 (1997), 43.

[75] NL Times. 2024. Amsterdam to test moving fast bike riders off cycling paths and
onto car lanes. https://nltimes.nl/2024/04/06/amsterdam-test-moving-fast-bike-
riders-cycling-paths-onto-car-lanes

[76] Micah Toll. 2023. Amsterdam wants to reduce electric bike speed limits to just
20 km/h (12 mph). https://electrek.co/2023/03/24/amsterdam-wants-to-reduce-
electric-bike-speed-limits/

[77] Sadayuki Tsugawa, Sabina Jeschke, and Steven E Shladover. 2016. A review of
truck platooning projects for energy savings. IEEE Transactions on Intelligent
Vehicles 1, 1 (2016), 68–77.

[78] Sergio A Useche, Javier Gene-Morales, Felix W Siebert, Francisco Alonso, and
Luis Montoro. 2021. “Not as Safe as I Believed”: Differences in Perceived and
Self-Reported Cycling Behavior between Riders and Non-Riders. Sustainability
13, 4 (2021), 1614.

[79] Willem P Vlakveld, Divera Twisk, Michiel Christoph, Marjolein Boele, Rommert
Sikkema, Roos Remy, and Arend L Schwab. 2015. Speed choice and mental
workload of elderly cyclists on e-bikes in simple and complex traffic situations:
A field experiment. Accident Analysis & Prevention 74 (2015), 97–106.

[80] Tamara von Sawitzky, Thomas Grauschopf, and Andreas Riener. 2022. Hazard No-
tifications for Cyclists: Comparison of Awareness Message Modalities in a Mixed
Reality Study. In Proceedings of the 27th International Conference on Intelligent
User Interfaces (Helsinki, Finland) (IUI ’22). Association for ComputingMachinery,
New York, NY, USA, 310–322. https://doi.org/10.1145/3490099.3511127

[81] Tamara von Sawitzky, Chantal Himmels, Andreas Löcken, Thomas Grauschopf,
and Andreas Riener. 2023. Investigating Hazard Notifications for Cyclists in
Mixed Reality: A Comparative Analysis with a Test Track Study. In Proceedings
of the 15th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications (Ingolstadt, Germany) (AutomotiveUI ’23). Association for
Computing Machinery, New York, NY, USA, 202–212. https://doi.org/10.1145/
3580585.3606282

[82] Tamara von Sawitzky, Philipp Wintersberger, Andreas Löcken, Anna-Katharina
Frison, and Andreas Riener. 2020. Augmentation Concepts with HUDs for Cyclists
to Improve Road Safety in Shared Spaces. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3334480.3383022

[83] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller. 2021. dplyr:
A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr
R package version 1.0.6.

[84] Lauren C. Williams, Samipya Kafle, and Yan H. Lee. 2024. Trends in Head and
Neck Injuries Related to Electric Versus Pedal Bicycle Use in the United States.
The Laryngoscope 134, 6 (2024), 2734–2740. https://doi.org/10.1002/lary.31213
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/lary.31213

[85] Mathew G Wilson, Andy M Lane, Chris J Beedie, and Abdulaziz Farooq. 2012.
Influence of accurate and inaccurate ‘split-time’feedback upon 10-mile time
trial cycling performance. European journal of applied physiology 112, 1 (2012),
231–236.

[86] Oliver Yang and Wynita M Griggs. 2021. Connected e-Bicycle Platoons at
Unsignalised Intersections. In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). IEEE, 1875–1882.

[87] Liangyao Yu and Ruyue Wang. 2022. Researches on Adaptive Cruise Control
system: A state of the art review. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering 236, 2-3 (2022), 211–240.

A CLOSING QUESTIONNAIRE

282

https://doi.org/10.1109/GLOCOMW.2013.6825180
https://nltimes.nl/2024/04/06/amsterdam-test-moving-fast-bike-riders-cycling-paths-onto-car-lanes
https://nltimes.nl/2024/04/06/amsterdam-test-moving-fast-bike-riders-cycling-paths-onto-car-lanes
https://electrek.co/2023/03/24/amsterdam-wants-to-reduce-electric-bike-speed-limits/
https://electrek.co/2023/03/24/amsterdam-wants-to-reduce-electric-bike-speed-limits/
https://doi.org/10.1145/3490099.3511127
https://doi.org/10.1145/3580585.3606282
https://doi.org/10.1145/3580585.3606282
https://doi.org/10.1145/3334480.3383022
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1002/lary.31213
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/lary.31213

	Abstract
	1 Introduction
	2 Related Work
	3 Prototype
	4 Study
	4.1 Participants
	4.2 Study Design

	5 Results
	5.1 Data Analysis
	5.2 Measured Speeds
	5.3 Self-reported Speeds
	5.4 Workload Assessment
	5.5 Questionnaire

	6 Discussion
	6.1 Challenges in Maintaining Cycling Speed Limits
	6.2 Factors Affecting Workload
	6.3 Cyclists' Impressions of E-bike Modes
	6.4 Factors Influencing the Accuracy of Dynamic Speed Control in Future Applications
	6.5 Limitations

	7 Conclusion
	References
	A Closing Questionnaire

