KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep learning-based tumor resectability prediction model in patients with Ovarian Cancer: a preliminary evaluation

Fati, Francesca; Rosanu, Marina; De Vitis, Luigi; Schivardi, Gabriella; Aletti, Giovanni Damiano; Multinu, Francesco; Veraldi, Roberto; Zaffino, Paolo; Cosentino, Carlo; Spadea, Maria Francesca 1; De Momi, Elena
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, characterized by aggressive behavior, high relapse rate, and rapid progression. The cornerstone of OC treatment is cytoreductive surgery, targeting the removal of all detectable tumor lesions wherever feasible. In instances of widespread disease or significant perioperative morbidity risk, patients may initially receive neoadjuvant chemotherapy aimed at reducing the tumor’s volume prior to surgical intervention. The pivotal decision between surgery and chemotherapy poses a significant therapeutic challenge in OC management. Our contribution is to develop an artificial intelligence-based model to support this critical decision by predicting Tumor Resectability (TR) from preoperative Computed Tomography (CT) images at the time of diagnosis. Our study aims to develop a 3D Convolutional Neural Network capable of predicting TR in a cohort of 650 with advanced stage epithelial patients with OC who underwent surgery at the European Institute of Oncology (IEO, Milan, Italy). The model processes preoperative CT scans of the Thorax, Abdomen, and Pelvis to deliver a binary prediction: TR=0 indicates a tumor completely resected, while TR=1 indicates the presence of residual tumor after cytoreductive surgery. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176488
Veröffentlicht am 21.11.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 21.09.2024
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000176488
Erschienen in Proceedings of the Ital-IA Intelligenza Artificiale - Thematic Workshops co-located with the 4th CINI National Lab AIIS Conference on Artificial Intelligence (Ital-IA 2024), Ed.: S. Di Martino
Veranstaltung Ital-IA Intelligenza Artificiale - Thematic Workshops (2024), Neapel, Italien, 29.05.2024 – 30.05.2024
Verlag CEUR-WS
Seiten 378-383
Serie CEUR Workshop Proceedings ; 3762
Schlagwörter Artificial Intelligence (AI), Ovarian Cancer (OC), Precision Medicine, Tumor Resecability (TR) prediction
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page