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ABSTRACT
We are used to the conventional model of linearizable access con-
trol (LAC), implemented by a trusted central entity or by a set of
distributed entities that coordinate to mimic a central entity. The
strength of LAC is rooted in the dependencies among entities, at
the cost of reduced availability, scalability, and resilience under
faults. Systems that cannot afford dependencies among entities,
like the ones based on conflict-free replicated data types (CRDTs),
must break with the LAC convention, but gain fundamental advan-
tages in availability, scalability, and resilience. In this paper, we
formalize eventually consistent access control (ECAC) that replaces
up-front coordination with subsequent reconciliation, and study its
theoretical guarantees in Byzantine environment at the practical
example of Matrix, a CRDT-based group communication system.
Our core finding is that ECAC implies authorization to the best of
knowledge and belief: an entity stores an action only if the action
is authorized by immutable knowledge derived from its final set of
preceding actions, and executes an action only if it is also authorized
by the entity’s mutable beliefs derived from the grow-only set of
concurrent actions.

CCS CONCEPTS
• Security and privacy → Access control; Distributed sys-
tems security; • Software and its engineering→ Consistency;
Publish-subscribe / event-based architectures; • Information sys-
tems→ Distributed storage; • Computer systems organiza-
tion→ Distributed architectures; Availability; Dependable and
fault-tolerant systems and networks; Reliability.

KEYWORDS
Access Control, Autonomous Decentralized Systems, Eventual Con-
sistency, Conflict-Free Replicated Data Types, Byzantine Fault Tol-
erance, Logical Clocks, Logical Monotonicity, Matrix
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1 INTRODUCTION
Coordination takes time and results in dependencies to other enti-
ties. Therefore, system designers often strive to make time-critical
actions independent of the latency to other entities. While there is
yet no unified terminology for this class of systems, the movement
behind autonomous decentralized systems [24], local-first [18],
coordination-avoiding [5], or wait-free [10] systems follow this
design principle, which could be called ‘act now, reconcile later’ in
accordance with a famous quote. In the realm of data consistency,
this principle restricts achievable consistency models to eventual
consistency and causal consistency [1]. However, what does this
principle mean for access control?

In the security community, we are used to what we call lineariz-
able access control (LAC): the access control architecture acts as
a single, logically centralized entity that stores, orders, decides
on, and enforces all access control policies. Of course, the logi-
cally centralized approach can be implemented as a distributed
system, which leads to coordination-based linearizable access con-
trol (CLAC): a set of distributed system entities needs to coordinate
on policy information, decisions, and enforcement to keep up the
LAC model, and, again, is fundamentally prone to processor and
network faults and latencies.

In this paper, we study an approach, which we call eventually
consistent access control (ECAC), that breaks with the convention
of (coordination-based) logical centralization. In ECAC, the set of
system entities implements a logically decentralized access control
architecture: Every system entity autonomously stores, decides
on, and enforces access control policies to its best of knowledge
and belief on the overall current system state. To ensure that the
access control policies and decisions between entities eventually
converge, up-front coordination among system entities is replaced
with subsequent reconciliation:

CLAC:
(1) Coordination
(2) Decision
(3) Access

ECAC:
(1) Decision
(2) Access
(3) Reconciliation

At first glance, giving up on CLAC semantics by replacing co-
ordinated decisions with accountable best-effort decisions seems
like a prohibitive trade-off to make. We argue, however, that ECAC
variants are found in many deployed systems that prioritize avail-
ability, scalability, or fault tolerance: for example, offline payments
in planes or offline withdrawals at ATMs prioritize availability over
coordination, and reconciliation allows to audit for overdraft later.
Electronic door locks also typically provide best-effort service if the
network is partitioned, as the risk of unauthorized people getting in
due to a stale policy is much more acceptable to business operation
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than the risk of authorized people not getting in due to network
outage, also potentially stopping them from fixing the network
outage in the first place [8]. Furthermore, current practice of PKI
certificate validation in web browsers does a local decision and
updates trusted (root) certificates only from time to time.

The challenge of ECAC is to deal with concurrent policy updates,
in particular for revocations. Even more challenging, one needs to
be able to deal with Byzantine entities. In this paper, we identify the
invariants of access control under Byzantine eventual consistency.
The goal is to understand and characterize ECAC, it is not the goal
to claim ‘superiority’ over classical approaches.

Our approach of investigation starts with Matrix, a deployed de-
centralized system for group communication and data storage [30]
that has implemented decentralized access control. Matrix shows
wide adoption: nation states like France, Sweden, and Germany op-
erate private federations for their public sectors [11, 19], the United
Nations International Computing Center has switched to Matrix as
communication platform provided to UN organizations [20], and
more than 100 000 000 users on more than 100 000 servers are found
in the public federation. The underlying data structure of Matrix has
been shown to represent a conflict-free replicate data type (CRDT)
even in Byzantine setups [13]. Figure 1 shows the paper’s line of
reasoning: we combine the practical approach of Matrix with the
theory of Byzantine-tolerant CRDTs and logical monotonicity, and
abstract it to reach our main result, a conceptual model of ECAC.

We, therefore, provide three main contributions:

• The ECAC model is our propositional answer to what kind
of access control is achievable in decentralized systems. The
model consists of a set of properties that are both provided
guarantees to applications as well as necessary conditions
on its implementing algorithms.

• An assessment of the consequences shown by partitioning,
equivocation, and backdating in the ECAC model.

• Matrix and other practical systems already represent proofs
by example of ECAC’s implementability. For a comprehensi-
ble demonstration open to scrutiny, we provide an abstract
algorithm based on the Matrix specification, and verify that
it fulfills ECAC’s necessary conditions.

In particular, we show that the audit log of ECAC, in which
every entity records all actions that it decided as authorized and
that is reconciled during favorable network conditions, provides a
partial (causal) order of policy updates and decisions. This causal
order with its corresponding concurrency allows us to separate
authorizations based on definitive knowledge, i.e., knowledge that is
final, from those based onmutable ‘beliefs’, i.e., the set of concurrent,
potentially applicable policy updates is grow-only and never final
due to missing consensus on the audit log.

We first present an overview of the Matrix approach in Section 2
together with fundamentals on conflict-free replicated data types.
The problem statement of ECAC is presented in Section 3. We
formalize the security guarantees that the ECAC model can provide
in Section 4. We assess the ECAC model using a set of scenarios in
Section 5, and demonstrate its implementability through an abstract
algorithm based on the Matrix system. Finally, we conclude in
Section 6. We include related work in-place where relevant.

DSN Research Group
KASTEL Institute

Paper Structure

ACSAC 2024

abstract &
derive

ECAC
Model

Byzantine 
CRDTs

CALM 
Theorem

Matrix 
Practice

MethodFoundations Contribution

Structure of the paper. We take the practical approach of the Matrix system to a decentralized reference 
monitor, combine it with the theory of hash-linked Byzantine fault-tolerant Conflict-Free Replicated 
Data Types (CRDTs) and the Consistency as Logical Monotonicity (CALM) theorem, and abstract to a 
property-based model of Eventually-Consistent Access Control (ECAC).

Figure 1: We take the consensus-free approach of Matrix to
a decentralized access control architecture, combine it with
the theory of Byzantine fault-tolerant Conflict-Free Repli-
cated Data Types (CRDTs) and the Consistency as Logical
Monotonicity (CALM) theorem, and derive a property-based
model of Eventually-Consistent Access Control (ECAC).
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entity a

add →

add →

entity b

add →

add → { , } add → { , }

How are you?Hi!

Hello! How are you? I‘m fine, and you?

Figure 2: Matrix-based chat example for replicating a chroni-
cle, i.e., a causally-ordered set of events. An event 𝑥𝑛 is created
by entity 𝑥 , and points to its direct predecessors. The unique
event without predecessors 𝑥⊥ is called the genesis event, an
event 𝑥𝑛 has a longest path of length 𝑛 to 𝑥⊥. Both entities
𝑎, 𝑏 concurrently add new events to the chronicle. Correct en-
tities independently verify authorization of an event before
creation and before adding it to their local state.

2 MATRIX FUNDAMENTALS
Matrix is a decentralized system1 that provides group communi-
cation and data storage [30]. Matrix stands out from other decen-
tralized systems due to targeting open networks with Byzantine
participants, and its emphasis on decentralized access control. The
state of a Matrix communication group (called “room” in Matrix)
consists mainly of its communication history, but also includes
group metadata like membership, attributes of group members and
the group itself, as well as access control policies and permissions.
Instead of storing mutable group state directly, Matrix stores a
grow-only, partially-ordered set of immutable group state change
events, which are executed to derive the current group state. The
core of Matrix is the CRDT-based replication of event sets, exempli-
fied in Fig. 2, among all entities participating in a communication
1This work speaks of decentralized systems as the subclass of distributed systems that
does not employ consensus or any other form of coordination, like CRDTs.
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group [14]. Events encapsulate the creating subject’s action on an
optional object. For example, we say a chat message is an event with
an action of type cht with content "Hi!" and its sender as subject.
Events include hash links to their direct predecessor events, chosen
at the discretion of the event’s creator. As the ordered event set
describes a causality relation among events, integrity-protected by
hash links, we refer to hash-linked event sets as hash chronicles [15]
(called “event graphs” in Matrix). Similar to an organization’s or in-
dividual’s email server, Matrix servers act as trusted representative
for their users. In this work, we assume that a server has only one
user, and treat server and user as single entity. The required trust
among servers is limited by performing decentralized access con-
trol, i.e., every entity performs its own, independent authorization
decision before adding an event to its chronicle.

Decentralized authorizations in Matrix are expressed using the
Level- and Attribute-based Access Control (LeABAC) model [12], as
shown in Fig. 3. Authorizations revolve around a function lvl that
maps entities and types of event actions to permission levels. Events
that change the level function must define lvl for all entities and
action types, both to allow multiple atomic changes at once and to
prevent undesired results on executing concurrent changes. For an
event 𝑒 to be authorized, its creator subject 𝑒.sbj must be authorized
for a level greater or equal than its type of action 𝑒.act. Sending
an event also requires a subject’s group membership attribute to
be mbr :IN . Administrative actions that change authorizations face
additional restrictions: For an administrative event to be authorized,
it must either grant authorization to its object for a level less or
equal than the subject’s level, or revoke authorization for a level
that is less than the subject’s level. Also, subjects can only perform
actions on objects that have a lower level than themselves. As an
exception, initial permissions and policies are at the group creator’s
discretion. Authorization is checked both before storing and before
executing an event, on different bases: An event is only stored if it is
authorized by the state derived from executing the immutable set of
its predecessors, i.e., immutable knowledge of the entity. Hash linking
enables receiving entities to detect and re-request missed events in
a process called backfilling, and to verify that they received the com-
plete predecessor set before deciding on authorization. An event
is only executed, i.e., its encapsulated state change is only applied,
if the event is authorized by the state derived from executing its
immutable set of predecessors combined with the grow-only set of
concurrent events currently known to the entity, i.e., its mutable
beliefs. The process of finding an execution order and executing a
partially-ordered set of events is called “state resolution” in Matrix.
It extends the causal order of events stored in the chronicle to a
total order via topological sorting, using a priority relation among
events to break ties. Events are executed in topological order.

Matrix stores hash chronicles as hash-linked directed acyclic
graphs [30], as shown in Fig. 4. A hash chronicle is based on
recursive hashing of the causal history of its events [15]. The
causal history of an event 𝑒 in chronicle 𝐶 is its downward clo-
sure 𝑒≤𝐶 = {𝑥 ∈ 𝐶 | 𝑥 ≤𝐶 𝑒}. Using a collision-resistant hash
function ℎ that concatenates its arguments, the recursive history
hash ℎ𝑟 (𝑒) of an event 𝑒 is the hash of the event and the recursive
history hashes of its immediate causal predecessors 𝑒 ∈ max(𝑒<𝐶 ),
formally hr (𝑒) = h(𝑒, {ℎ𝑟 (𝑒) | 𝑒 ∈ max(𝑒<𝐶 )}). Together with digi-
tal signatures, recursive history hashing ensures authenticity and

DSN Research Group
KASTEL Institute

Event Authorization

ACSAC 2024

ea
rl

ie
r

la
te

r

ch
ro

n
ic

le
 𝑪

𝑎1: 𝑚𝑏𝑟: 𝐼𝑁 𝑎

𝑠𝑏𝑗𝑖: 𝑎𝑐𝑡: 𝑐𝑛𝑡 𝑜𝑏𝑗

𝑎⊥: 𝑔𝑒𝑛: 𝐶

𝑎3: 𝑚𝑏𝑟: 𝐼𝑁 𝑏

𝑏4: 𝑙𝑣𝑙: 𝑎 ↦ 200 𝐶
𝑏 ↦ 100
𝑐 ↦ 50
S ↦ 0

𝑙𝑣𝑙 ↦ 100
𝑚𝑏𝑟 ↦ 50

𝔼 ↦ 0

𝑎4: 𝑐ℎ𝑡: "𝐻𝑖! "

Anatomy of an Event

subject 
entity

of action

content of
action 

type of
action

object of
action 

(optional)

distance
to 𝑒⊥

𝑐6: 𝑐ℎ𝑡: "𝐻𝑒𝑙𝑙𝑜! "

𝑎2: 𝑙𝑣𝑙: 𝑎 ↦ 200 𝐶
𝑏 ↦ 100
S ↦ 0

𝑙𝑣𝑙 ↦ 100
𝑚𝑏𝑟 ↦ 50

𝔼 ↦ 0

𝑏5: 𝑚𝑏𝑟: 𝐼𝑁 𝑐

Figure 3: Example of Level- and Attribute-based Access Con-
trol in Matrix, in which attenuated authorizations flow from
group creator 𝑎 over 𝑏 to 𝑐. Genesis event 𝑎⊥ grants autho-
rization to its creator 𝑎 to send a first membership event
𝑎1, declaring 𝑎 to be IN the group, as well as a first permis-
sion level assignment 𝑎2, assigning 𝑎 ↦→ 200 and 𝑏 ↦→ 100,
so that while 𝑏 is authorized both for membership changes
(mbr ↦→ 50) and level assignments (lvl ↦→ 100), it cannot act
against 𝑎. In 𝑎3, 𝑎 adds 𝑏 to the group. Using its granted au-
thorizations, 𝑏 assigns 𝑐 ↦→ 50 in 𝑏4, otherwise repeating the
previous lvl, and adds 𝑐 in𝑏5. The chatmessage 𝑐6 : cht:”Hello!”
of 𝑐 is indirectly authorized by 𝑎 granting authorization to 𝑏.
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𝑒⊥

𝑒𝑛−1

𝑒𝑛 𝑒𝑛−1 is direct predecessor 
of 𝑒𝑛, explicit hash link

𝑒𝑛−2

𝑒𝑛 𝑒𝑛−2 is indirect predecessor 
of 𝑒𝑛, transitive hash link

𝑒1
′𝑒1

𝑒2
′

𝑒2

𝑒2
<𝐶

max(𝑒2
<𝐶)

hash chronicle 𝐶

ℎ𝑟(𝑒2) = ℎ(𝑒2, ℎ𝑟(𝑒1))

event 𝑒2 is hash-linked to 𝑒1 and 𝑒⊥
via recursive history hash:

Figure 4: Example hash chronicle 𝐶. The causal order on
events is divided into explicit hash links to direct predeces-
sors and implicit, transitive links to other predecessors. The
recursive history hash ℎ𝑟 for event 𝑒2 is derived from 𝑒2 and
the recursive history hashes of its direct predecessors.

integrity of chronicle replication: for a given history hash, an entity
can independently verify that it received the corresponding events
completely and unaltered, regardless of the sender’s correctness. In
contrast to logical clocks in the crash-fault setting, recursive history
hashing allows entities to create causally concurrent events where
neither is the predecessor of the other. However, a Byzantine entity
cannot create two different events with the same recursive history
hash, due to collision resistance. Assuming a connected component
of correct entities, replication based on recursive history hashing
thereby ensures that every correct entity will eventually have the
same chronicle state, i.e., will know about both concurrent events.
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Hash chronicles and their derived data structures in Matrix are
examples of Byzantine fault-tolerant conflict-free replicated data
types (CRDTs, [13, 27]). CRDTs are a class of coordination-free repli-
cation algorithms that work on the premise that concurrent updates
can be joined to a common state that is an advancement on previous
states, without needing user interaction to resolve conflicts. Recent
work has established that some CRDTs not only work in crash-fault
environments, but also tolerate Byzantine faults [6, 15, 16]. Due
to the autonomy of entities, CRDT-based decentralized systems
may tolerate an arbitrary fraction of faulty entities, both in the
crash-/omission fault model as well as in the Byzantine fault model,
making them immune to Sybil attacks [17]. This is in contrast to
Byzantine fault-tolerant systems that employ coordination, which
typically require a form of majority of correct system entities. We
say that chronicles store events in causal order, but detecting the
typical notion of causality in the presence of Byzantine faults is
impossible [23]. The typical notion of causality implies a total order
on any set of events created by a single entity. In a similar vein
to fork-join-causal consistency [21], Matrix only requires a partial
order on the events created by one entity, as the predecessor set
of an event is at the creator’s discretion — it can only be ensured
that the creator knew at least the predecessors, but not that they
only knew the predecessors and did nothing concurrently. With
this weakened causality definition, causality can be efficiently de-
tected in the presence of Byzantine faults, under the assumption of
collision-resistant hash functions [15].

3 ECAC PROBLEM STATEMENT
In this section, we make the key challenge of ECAC explicit and
provide a problem statement for which we present a solution in
Section 4. We proceed by generalizing the decentralized access
control approach of Matrix, contrasting it with conventional LAC.

Access control architectures are characterized by the placement
of their crucial components [4]: the Policy Enforcement Points
(PEPs) that intercept actions, Policy Decision Points (PDPs) that
issue the authorization decision, and the components that provide
the basis for decision-making in terms of policies (Policy Retrieval
Point, PRP) and attributes of subjects, actions, objects, or the envi-
ronment (Policy Information Point, PIP) [28]. We use the following
terminology. System entities create events by taking the conjunction
of subject, i.e., themselves, action, and object. In general, we focus
on actions that change state, in particular administrative actions
that change access control state. Entities hand events to their access
control enforcement mechanism, which implement an access con-
trol architecture via the execution monitoring method [26]: based
on all previous events, the execution monitor decides whether the
new event is authorized, and interrupts event processing if not.
Authorized events are appended to the audit log, an ordered set of
authorized events. The order of events in the audit log acts as logical
timestamp of events. The execution of the audit log’s events leads
to the system’s app state, which includes both the access control
state as well as the state of non-administrative objects managed by
the system. Events and their set of predecessors in the audit log
are immutable, i.e., they cannot be changed after creation. Finality
means that something cannot change after a given point in time.
Immutability means finality after creation. A set is grow-only if its
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PEP

PDP

PRP
PIP

1
2 3

subject

is input for

action
audit log 
/ object

(a) In LAC, actions of subjects are intercepted (1) by the Policy En-
forcement Point (PEP), which implements a centralized execution
monitor together with the Policy Information / Retrieval / Decision
Point (PDP / PRP / PIP). Based on input by PRP & PIP, the PDP de-
cides on the authorization of the action (2). Finally, to take effect on
its object, the action is forwarded to the audit log (3).
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PEP

PDP

PRP
PIP

PEP

PDP

PRP
PIP

1
3

2

coordination

4

(b) In CLAC, the PEP, PDP, and PRP/PIP are distributed, but still im-
plement a centralized execution monitor via coordination. To decide
authorization of an intercepted action (1), the PRP/PIPs coordinate
to determine current policies and policy information (2), and the
PDPs coordinate to reach consensus on the central order of events
and access decision (3), before the action is forwarded (4).
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(c) In ECAC, decisions are uncoordinated and autonomous, but imple-
ment a decentralized execution monitor via an eventually consistent
audit log. To decide on the authorization of an intercepted action
(1), PRP/PIP derive policies resp. policy information from the audit
log for the PDP to decide to its best of knowledge and belief (2). The
decision and basis for decision-making is recorded in the audit log,
and the action is applied on the object (3). Audit logs are reconciled
after the action took effect (4).

Figure 5: Comparison between Linearizable Access Con-
trol (LAC), Coordination-based Linearizable Access Control
(CLAC), and Eventually Consistent Access Control (ECAC).

elements are immutable and cannot be removed, but new elements
can be added. A partially-ordered set is append-only if it is grow-
only and new elements can only be appended, i.e., a new element is
either larger or concurrent to any other set element, but not smaller.
Audit logs are append-only.
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While audit logs are fundamental to ECAC, we also describe
LAC and CLAC based on audit logs to highlight the differences in
the conceptual models. The LAC, CLAC, and ECAC approaches
differ in their access control architecture, as contrasted in Fig. 5,
and especially in the way events are ordered in their audit log.

In LAC (Fig. 5a), there is only one instance of every access control
architecture component, which represents both the centralized
execution monitor ideal as well as its practical implementation
based on a single, central entity. The LAC model is based on an
audit log that totally orders its included events. We call this total
order the central order, i.e., the order in which events become
visible for the central entity. Events are executed in central order to
eliminates concurrency, which indirectly resolves conflicts due to
concurrent policy updates. The authorization decision for an event
is based on the app state from executing all its predecessors. As
the audit log is append-only, predecessor sets are immutable, and
thereby, authorization decisions are immutable as well.

The CLAC approach is the usual way of distributing an access
control architecture (Fig. 5b): The components of the central en-
tity in LAC are instantiated once on every distributed entity, and
coordination is required to ensure that all entities issue the same
decisions based on the same policy information. Thus, coordination
actually requires consensus on which event comes next, to replicate
LAC’s centrally-ordered audit log and to be able to deal with policy
conflicts that can arise due to concurrent updates.
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Figure 6: ECAC is based on three different orders of events:
The causal storage order, which servers as input for topolog-
ical sorting using the lexicographic prioritization order, to
get the topological execution order as output. In the append-
only causal order, the past of any included event is final, but
events may be concurrent. The total lexicographic order, de-
fined as part of the ECAC algorithm, reflects prioritization
among events. Topological sorting resolves causal concur-
rency using the lexicographic order, leading to the topolog-
ical order, a total, grow-only order. While the causal order
is straightforward, the challenge of ECAC implementations
is to define a lexicographic order and topological sorting so
that concurrency conflicts are resolved in a way that neither
compromises security nor application invariants.

While the placement of ECAC components (Fig. 5c) is the same
as in CLAC, the challenge in terms of defining a conceptual model
is the different communication pattern of components. Instead of
coordinatingwith all other entities up-front to find consensus on the
global knowledge, the ECAC approach is based on coordination-free
access control decisions that are correct to the best of knowledge
and belief locally available to the deciding entity. Thereby, the LAC
conceptual model of execution monitoring that behaves as-if it was
performed by a single, centralized entity is not applicable. Based on
previous work on access control for weakly consistent databases
like CRDTs [25, 33, 34], the problem at hand is to find a conceptual
model in line with the properties of Byzantine CRDTs, like the
Matrix approach described in Section 2.

In the ECAC model, the audit log is stored as a chronicle, as
described in Section 2. In contrast to LAC, entities can create con-
current events that have the same set of causal predecessors, i.e., the
audit log is only partially ordered. However, unlike LAC’s central
order, the partial causal order does not naturally resolve conflicts
among concurrent events that affect each other, like authorization
revocations. The idea of the Matrix approach that we generalize
here (c.f. Fig. 6) is to have two orders instead of one central order:
an append-only partial order for storage as the audit log, and a
grow-only total order for execution. The order for execution is de-
rived using the lexicographic order that defines execution priority
among events as a refining sequence of comparison criteria, i.e.,
their lexicographic product. For example, authorization revocations
can be prioritized before other events, or subjects with more per-
missions get to act before subjects with less permissions. Using
the lexicographic order to resolve concurrency, entities extend the
causal order via topological sorting, resulting in the topological
order. While the topological order is a grow-only total order, it is
not append-only: A new event can appear at any point in the order,
as long as it does not violate causality. Causal and topological event
orders result in two notions of authorization in ECAC: We call an
event causally authorized if it is authorized by its causal predeces-
sors, and topologically authorized if it is authorized by its topological
predecessors. An event authorized by its causal predecessors may
not be authorized by its topological predecessors: For example, if
event 𝑏1 is entity 𝑏 adding entity 𝑐 as member, but event 𝑎1 is 𝑎
concurrently revoking the authorization of 𝑏, then both events are
causally authorized, but if 𝑎1 comes first in topological order, 𝑏1
becomes topologically unauthorized, and 𝑐 is not a member.

We perform decentralized access control to protect the integrity
of a replicated data structure in Byzantine environment. We look
for a model of ECAC that characterizes its properties, both as set of
guarantees weaker than LAC for applications to opt in, as well as
necessary requirements for implementing algorithms. We are given
an abstraction of Matrix, made up of three CRDT components [14]:

(1) the hash chronicle that stores a causally-ordered event set
secured by recursive history hashing

(2) the topological event order derived by topological sorting
(3) the app state derived from topological event execution

To find are covering safety and liveness properties that make up
a conceptual model for decentralized access control, but that do
not weaken the availability, scalability, or resilience qualities of the
CRDT components. Specifically, the model must allow to tolerate
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an arbitrary fraction of Byzantine faulty entities under an asynchro-
nous timing assumption and provide availability under partition,
from which it follows that the model must be implementable by
coordination-free, autonomous decisions of correct entities. The
ECAC model as a solution to decentralized access control based
on the given components and constraints was found by consulting
the eventual consistency properties of CRDTs [1], the theory of
invariant confluence [5], and the CALM monotonicity theorem [9],
and applying them to decentralized access control.

4 ECAC MODEL
We now present our model of eventually consistent access control,
consisting of a set of safety and liveness properties that act as both
guarantees to the application as well as necessary conditions on
ECAC algorithms. We present our ECAC conceptual model in two
parts: First, we cover the properties of the underlying eventually
consistent data type, and then the properties of the eventually
consistent authorizations based on the data type. The resulting
eventually consistent access control is both rooted in the data type
as well as encompasses the data type. While the properties of the
data type are not concerned with access control directly, the data
type ensures local availability of policies and policy information,
and thereby is necessary for a coordination-free access decision.
We introduce symbols and notations in-place, but list all in Table 1.

4.1 Eventually Consistent Data Type
Intuitively, eventual consistency is a consistency model that guaran-
tees that over time, the state of correct system entities converges, to
eventually reach a common, consistent state. Eventual consistency
was originally defined in [29], consisting of the two properties that
a) each update is eventually propagated to all system entities, and
b) that non-commutative updates are executed in the same order
by all system entities [1]. We assume that all functions executed by
entities terminate, e.g., by using the total functional programming
model [31] that achieves guaranteed termination by restriction to
total functions and well-founded recursion. Because the execution

𝑆 set of correct system entities
𝑆+ set of all system entities
E set of all events
E𝑧 set of authorization events
e.act type of action of event 𝑒 ∈ E
e.obj optional object of event 𝑒 ∈ E
vis𝑠 set of events visible to 𝑠 ∈ 𝑆
𝐶𝑠 local chronicle, causal order of events stored by 𝑠 ∈ 𝑆
𝐶∪ global chronicle, the union of all local chronicles
𝑇𝑠 topological order derived from 𝐶𝑠 of 𝑠 ∈ 𝑆
𝐿 lexicographic priority order of events, defined by the

algorithm implementing ECAC
𝑥 (𝑇 ) app state set as set of events resulting from executing

totally-ordered event set 𝑇
𝑥<𝑒 (𝐸) app state set resulting from executing the topological

order of event set 𝐸 up to, but not including event 𝑒
𝑧 (𝑋, 𝑒) Boolean, ⊤ if event 𝑒 ∈ E is authorized by app state 𝑋

Table 1: All symbols and notations used in the ECAC model.

order of commutative updates does not affect the resulting state by
definition, those properties guarantee that eventually, every system
entity will be in the same state. A weaker notion of eventual consis-
tency, “if no new updates are made [. . . ], eventually all accesses will
return the last updated value”, was later popularized by Vogels [32],
but a variation of the original definition gained traction under the
name of strong eventual consistency as the consistency model for
Conflict-Free Replicated Data Types (CRDTs) [1, 27]. Later, it was
proven that the same definition originally conceived for crash fault
environments also works in Byzantine environments, while need-
ing different mechanisms to ensure its properties [16]. As recently
suggested [1], we use the original definition of eventual consistency
applied to CRDTs, consisting of the properties eventual visibility
and strong convergence as follows:

Eventual Visibility (Liveness) An update visible for any cor-
rect entity is eventually visible for all correct entities.

Strong Convergence (Safety) Entities that see the same set
of updates have equivalent state.

Note that strong convergence is based on the set of updates, i.e.,
applies regardless of differences in update visibility order between
entities. In our context of ordered set of events, the properties that
comprise eventual consistency become part of the ECAC model as
eventual event visibility and strong event set convergence. We define
E as set of all valid events, 𝑆 as the set of correct system entities,
and vis𝑠 as the set of all events visible to entity 𝑠 . We write 𝐶𝑠 for
the chronicle state of entity 𝑠 , i.e., the causally ordered event set of
𝑠 , and 𝑇𝑠 for the topologically ordered event set of 𝑠 . To execute a
totally-ordered set of events 𝑇 , we write 𝑥 (𝑇 ) ⊆ 𝑇𝑠 , which returns
an event set that describes the resulting app state.

Eventual Event Visibility An event visible for any correct
entity is eventually visible for all correct entities.

∀𝑎, 𝑏 ∈ 𝑆 : 𝑒 ∈ vis𝑎 =⇒ ^𝑒 ∈ vis𝑏 (1)

Strong Event Set Convergence Correct entities that see the
same events have the same chronicle, topological order, and
app state.

∀𝑎, 𝑏 ∈ 𝑆 : vis𝑎 = vis𝑏 =⇒ (2)
𝐶𝑎 = 𝐶𝑏 ∧𝑇𝑎 = 𝑇𝑏 ∧ 𝑥 (𝑇𝑎) = 𝑥 (𝑇𝑏 ) (3)

We now define invariants that characterize the causally- and
topologically-ordered event sets of correct entities at any given
time. The causal event storage 𝐶𝑠 of a correct entity 𝑠 ∈ 𝑆 needs
to satisfy chronicality, i.e., it must be downward-closed, partially-
ordered set directed at 𝑒⊥. The topological order𝑇𝑠 derived from𝐶𝑠
of a correct entity 𝑠 ∈ 𝑆 must fulfill topological totality, i.e., be a total
order. In addition,𝑇𝑠 must fulfill causal consistency and lexicographic
consistency, i.e., follow the causal order given by the chronicle 𝐶𝑠 ,
and when ambiguous, fall back to the lexicographic order 𝐿, as
defined by the ECAC algorithm implementing the model. If an
event 𝑒1 is a causal predecessor of event 𝑒2 in a partially-ordered
event set 𝐸, we write 𝑒1 ≤𝐸 𝑒2. If two events 𝑒1 and 𝑒′1 are unordered
in 𝐸, e.g., because they are causally concurrent, we write 𝑒1 ∥𝐸 𝑒′1.
A partially ordered event set 𝐸 is a subset of 𝐸′ if both the set and
the order are subsets of each other, 𝐸 ⊆ 𝐸′ ⇐⇒ ∀𝑒 ∈ 𝐸, 𝑒′ ∈
𝐸′ : 𝑒 ∈ 𝐸′ ∧ (𝑒 ≤𝐸 𝑒′ =⇒ 𝑒 ≤′

𝐸
𝑒′). We write 𝐶∪ =

⋃
𝑠∈𝑆 𝐶𝑠 for

the global chronicle, i.e., the union of all local chronicles.
6
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Chronicality The local set 𝐶𝑠 is always a chronicle, i.e., a
partially-ordered event set, Eq. (4), that is downward-closed,
Eq. (5), and directed at the global minimum 𝑒⊥, Eq. (6).

∀𝑠 ∈ 𝑆,∀𝑎, 𝑏 ∈ 𝐶𝑠 : 𝑎 ≤𝐶𝑠
𝑏 ∨ 𝑏 ≤𝐶𝑠

𝑎 ∨ 𝑎 ∥𝐶𝑠
𝑏 (4)

∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐶𝑠 ,∀𝑐 ∈ 𝐶∪ : 𝑐 ≤𝐶∪ 𝑎 =⇒ 𝑐 ∈ 𝐶𝑠 (5)
∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐶𝑠 : ∃𝑒⊥ ∈ 𝐶𝑠 : 𝑒⊥ ≤𝐶∪ 𝑎 (6)

Topological Totality The topological order 𝑇𝑠 is total.

∀𝑠 ∈ 𝑆,∀𝑎, 𝑏 ∈ 𝑇𝑠 : 𝑎 ≤𝑇𝑠 𝑏 ∨ 𝑏 ≤𝑇𝑠 𝑎 (7)

Causal Consistency The topological order𝑇𝑠 preserves causal-
ity and contains the same events as 𝐶𝑠 .

∀𝑠 ∈ 𝑆,∀𝑒 ∈ E : 𝐶𝑠 ⊆ 𝑇𝑠 ∧ 𝑒 ∈ 𝐶𝑠 ⇐⇒ 𝑒 ∈ 𝑇𝑠 (8)

Lexicographic Consistency The topological order𝑇𝑠 orders
causally concurrent events in accordance with the lexico-
graphic order 𝐿.

∀𝑠 ∈ 𝑆 : ∀𝑎, 𝑏 ∈ 𝐶𝑠 : 𝑎 ∥𝐶𝑠
𝑏 ∧ 𝑎 ≤𝑇𝑠 𝑏 =⇒ 𝑎 ≤𝐿 𝑏 (9)

We now define properties that characterize the evolution of the
causally- and topologically-ordered events sets of correct entities
over time. We are especially interested in monotonicity and im-
mutability properties, as they hold independently of differences in
event visibility orders [9]. We prime variables to denote a future
state of the unprimed variable, e.g., local chronicle 𝐶𝑠 evolves into
𝐶′𝑠 . Monotonicity properties are safety properties that demand that
if a future set of visible events vis′𝑠 is greater or equal than the cur-
rent set vis𝑠 , then a derived value, like the chronicle, is also greater
or equal than the current value. Immutability properties are the
specialization where the derived value stays equal. As vis is grow-
only, monotonically derived values represents certain knowledge
that is not fallible in light of new information. For chronicles, we
demand that the set of causal predecessors of any event must be im-
mutable, which we formalize as causal predecessor immutability. In
addition, we demand that the next chronicle state must include all
previous events, which we formalize as chronicle monotonicity. We
also require topological monotonicity, i.e., observing and ordering
new events must not remove or change the order of old events.

Causal Predecessor Immutability

∀𝑠 ∈ 𝑆,∀𝑒 ∈ 𝐶𝑠 : vis𝑠 ⊆ vis′𝑠 =⇒ 𝑒≤𝐶𝑠 = 𝑒
≤𝐶′𝑠 (10)

Chronicle Monotonicity The chronicle of a correct entity
evolve monotonically, i.e., after observing new events, a
correct entity inflates its local chronicle 𝐶𝑠 to 𝐶′𝑠 only by
adding new events and their causal relations, while preserv-
ing old events and their causal predecessors.

∀𝑠 ∈ 𝑆 : vis𝑠 ⊆ 𝑣𝑖𝑠′𝑠 =⇒ 𝐶𝑠 ⊆ 𝐶′𝑠 (11)

Topological Monotonicity The topological order of a cor-
rect entity evolves monotonically, i.e., after observing new
events, a correct entity inflates its topological order 𝑇𝑠 to
𝑇 ′𝑠 only by adding new events and new relations.

∀𝑠 ∈ 𝑆 : 𝑣𝑖𝑠𝑠 ⊆ 𝑣𝑖𝑠′𝑠 =⇒ 𝑇𝑠 ⊆ 𝑇 ′𝑠 (12)

Note that topological monotonicity implies topological predeces-
sor monotonicity, 𝑒≤𝑇𝑠 ⊆ 𝑒

≤𝑇 ′𝑠 , but not immutability – in contrast
to LAC’s central order, new topological predecessors can always
become visible.

4.2 Eventually Consistent Authorization
To complete the ECAC model, we now define properties regarding
authorizations derived from and applied to the different event sets
of the data type. Authorizations determine the actions that a subject
is allowed to execute on which objects. Policies define the relation
between policy information, like attributes of subjects and objects,
and the subjects’ authorizations. Authorizations therefore depend
on both the specification of policies as well as the required policy
information. We assume that both policies and policy information
are encoded as attributes of subjects and objects. We speak of au-
thorization events E𝑧 ⊆ E as the subset of events that potentially
changes the set of authorizations, i.e., policy or policy information
update events. Authorization events can grant an authorization for
causally succeeding events, or revoke an authorization in causally
succeeding as well as causally concurrent events.

The base requirement for eventually consistent access control is
that authorizations are independent of the order in which autho-
rization events become visible, whereby entities will not end up
in a split-brain situation where convergence is impossible due to
conflicting events by Byzantine entities. We formalize these require-
ments as follows: eventual authorization visibility means that an
authorization event visible for one correct entity is eventually visi-
ble for all correct entities. Strong authorization convergence means
that two entities that see the same authorization events conclude the
same authorizations, and thereby perform the same authorization
decisions. As the data type does not distinguish between authoriza-
tion events and other events, those properties directly follow from
eventual event visibility and strong event set convergence.

We now define invariants that characterize the role of causal
and topological authorization in ECAC. An event is causally autho-
rized if it is authorized by the app state resulting from executing its
causal predecessors. From causal predecessor immutability follows
causal authorization immutability: vis𝑠 ⊆ vis′𝑠 =⇒ 𝑥<𝑒 (𝐶𝑠 ) =
𝑥<𝑒 (𝐶′𝑠 ) =⇒ 𝑧 (𝑥<𝑒 ,𝐶𝑠 )) = 𝑧 (𝑥<𝑒 ,𝐶′𝑠 ). As soon as an event’s
predecessor set is known, the entity can issue an immutable causal
authorization decision that is independent of the order in which
events became visible, which is why we say that causal authoriza-
tion is eventually consistent access control to the entity’s best of
knowledge. Correct entities only send causally authorized events,
as they would not use an authorization they do not possess. While
faulty entities can send causally unauthorized events, those events
will never pass causal authorization at correct entities. We thereby
demand that chronicle replication verifies causal authorization:
correct entities must only store events in their chronicle that are
causally authorized, which we formalize as storage authorization.

An event is topologically authorized if it is authorized by the
app state resulting from executing its topological predecessors. Due
to topological predecessor monotonicity, topological authorization
decisions are mutable and never final, which is why we say that
topological authorization is eventually consistent access control to
the entity’s best of beliefs. Specifically, authorization revocations
are the cause of non-monotonicity of topological authorization
decisions: a correct entity cannot state anything about the future
topological authorization of an event currently deemed as topo-
logically authorized or unauthorized, as learning about causally
concurrent but topologically earlier authorization revocation events

7
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can always lead to changes in the topological authorization decision.
On event execution, topologically unauthorized events must be ig-
nored, but kept in case the become (re-)authorized later. Without
revocations, we would end up with a monotonic protection sys-
tem [7], for which a decentralized implementation could provide
a strong, unconditional “topological authorization monotonicity”
guarantee, akin to causal authorization immutability. However, in
Byzantine environments, we need the possibility to revoke autho-
rizations from Byzantine entities, e.g., if a member of a group chat
posts spam messages and ought to get its group membership and
messaging authorizations revoked. While correct entities only send
events that are topologically authorized to the best of their belief,
i.e., their topological order 𝑇𝑠 , due to causally concurrent revoca-
tion events, we cannot demand that every event in any 𝑇𝑠 must be
topologically authorized. Instead, execution authorization prescribes
that only topologically authorized events can have an effect on the
app state set 𝑥 (𝑇 ) resulting from executing𝑇 . In addition, app state
authorization prescribes that all events in the app state set 𝑥 (𝑇 )
must be topologically authorized.

We write 𝑧 (𝑋, 𝑒) for the function that determines whether the
event 𝑒 is authorized based on the state set 𝑋 , returning a truth
value from the Boolean lattice B = {⊥,⊤}. Whether 𝑧 (𝑋, 𝑒) veri-
fies causal authorization or topological authorization depends on
whether 𝑋 is the result of executing causal or topological predeces-
sors. The genesis event is the only event authorized by the empty
set, 𝑧 (∅, 𝑒⊥) = ⊤. To speak about different state sets for authoriza-
tion, we define the shorthand notation for executing all events in
the topological order of the partially-ordered set 𝐸 ⊆ 𝑇𝑠 up to, but
not including event 𝑒 , 𝑥<𝑒 (𝐸) = 𝑥 (𝑇𝑠 ∩ 𝑒<𝐸 ).

Storage Authorization Every event 𝑒 stored in a correct
replica’s state 𝐶𝑠 is causally authorized.

∀𝑠 ∈ 𝑆 : 𝑒 ∈ 𝐶𝑠 =⇒ 𝑧 (𝑥<𝑒 (𝐶𝑠 ), 𝑒) (13)

Execution Authorization Executed events are authorized
by their topological past, i.e., removing topologically unau-
thorized events from 𝑇𝑠 leads to the same app state set.

∀𝑠 ∈ 𝑆 : 𝑥 (𝑇𝑠 ) = 𝑥 ({𝑒 ∈ 𝑇𝑠 | 𝑧 (𝑥<𝑒 (𝑇𝑠 ))}) (14)

App State Authorization Every event 𝑒 included in the app
state 𝑥 (𝑇𝑠 ) is topologically authorized.

∀𝑠 ∈ 𝑆 : 𝑒 ∈ 𝑥 (𝑇𝑠 ) =⇒ 𝑧 (𝑥<𝑒 (𝑇𝑠 ), 𝑒) (15)

Up until now, all discussed properties only indirectly influence
the exposed app state of the system. We established that app state
must be topologically authorized, but that topological authorization
is mutable due to concurrent authorization revocations. Now, we
combine the eventually consistent data type and eventually con-
sistent authorization to characterize the evolution of the exposed
app state itself, namely the app state set 𝑥 (𝑇𝑠 ) of correct entities
over time. We require that app state must evolve monotonically if
there are no revocations, and that revocations are the only source
of non-monotonicity, which we formalize as app state confluence.
Specifically, an authorization revocation event concurrent with an
event that uses the revoked authorizations are in conflict, and lead
to an order dependency where entities decide differently depend-
ing on the order in which they see the events. An entity which
first sees the revocation event and then the usage event exposes

monotonically-evolving app state, as the usage event is not exe-
cuted. However, an entity which first sees the usage and then the
revocation must roll back its execution result to an earlier event,
which is not monotonic, but allowed under app state confluence.
Still, due to eventual event visibility and event set convergence,
entities eventually decide “as if they had known” of concurrent
events, and the app state eventually converges.

An event describes the execution of an action of type e.act on an
object e.obj. For example, an event could describe that a group chat
administrator subject performs the action of changing the name
of the group chat object. The events in the app state set resulting
from the execution 𝑥 (𝑇 ) of a totally ordered set of events 𝑇 either
describe the attributes of objects, i.e., have distinct (e.act, e.obj)
combinations, or have no object defined, i.e., the events that make
up the communication history.

App State Confluence If an event 𝑒 of the app state set is
replaced by successor event 𝑒′ with the same action and
object in a later state set, the successor is either equal to or
topologically larger than the predecessor, or the predecessor
lost its topological authorization.

∀𝑠 ∈ 𝑆,∀𝑒 ∈ 𝑥 (𝑇𝑠 ),∀𝑒′ ∈ 𝑥 (𝑇 ′𝑠 ), (16)
e.act = e′ .act, e.obj = e′ .obj : (17)

viss ⊆ vis′s =⇒ 𝑒 ≤𝑇 ′𝑠 𝑒′∨¬𝑧 (𝑥<𝑒 (𝑇 ′𝑠 ), 𝑒) (18)

4.3 Classification of ECAC Model Properties
Eventual event visibility is the liveness property of ECAC, other
properties are safety properties. We now characterize the ECAC
safety properties regarding invariant confluence and monotonic-
ity. In essence, all properties characterize ECAC’s independence of
event visibility ordering. Monotonicity- and immutability-related
properties describe entity state evolution while events become visi-
ble in arbitrary order, while the others describe entity state after
arbitrary-order visibility.

Decentralized systems, in the sense of coordination-free dis-
tributed systems, cannot provide arbitrary services. They are lim-
ited to the concept of invariant confluence [5]: An invariant is
confluent if when every entity ensures it locally based on its partial
knowledge of events, the invariant also holds globally based on
complete knowledge of all events. For example, an invariant that
a set is grow-only is confluent, while an invariant that limits the
maximum size of the set is not. As part of eventual consistency,
strong convergence is an invariant-confluent property – otherwise,
CRDTs would require coordination to ensure it. Strong convergence
is ensured by every correct entity applying the same total func-
tion [31] on the set of updates that they see, and thereby, strong
convergence holds globally. The same line of reasoning also applies
to all ECAC properties: they do not rely on coordination, but only
on total functions that derive entity state, like the current chronicle,
from the unordered set of visible events.

In general, decentralized systems cannot hide the inherent non-
determinism of distributed systems in form of concurrency and
reordering. The CALM theorem [9] (“Consistency as Logical Mono-
tonicity”) characterizes the subclass of invariant-confluent prob-
lems and algorithms whose outputs are also invariant to reordering
of inputs as exactly the class ofmonotonic problems and algorithms.
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A problem or algorithm is monotonic if when their input is greater
or equal than another input, the output is also be greater or equal.
Monotonicity alleviates nondeterminism induced by the system’s
distributed nature, whereby this subclass is especially suited for
decentralized systems. Monotonicity is stronger than invariant con-
fluence, and thereby, the monotonicity properties of ECAC are also
invariant confluent. App state confluence is positioned between
monotonicity and invariant confluence: It describes the condition
under which app state is either monotonic, or only invariant conflu-
ent, i.e., can expose some form of ‘time travel anomaly’ depending
on the order in which events become visible. We conclude that all
ECAC safety properties are invariant confluent.

5 ASSESSMENT
5.1 ECAC Model Enforceability
We now discuss the enforceability of the ECAC model by a de-
centralized execution monitor. We said that entities that form the
decentralized execution monitor intuitively do so by performing
policy decisions to the best of knowledge and belief, i.e., in the
conviction of their correctness but under the condition of fallibility
due to incomplete knowledge on previous and concurrent events
in the system. We substantiated that notion by decomposing it into
a set of properties, i.e., the ECAC conceptual model of Section 4.
In this set, eventual event visibility is the only liveness property,
while all other properties are safety properties.

In his seminal work on the enforceability of security policies [26],
Schneider states that security policies enforceable by execution
monitors must be safety properties, and must be enforceable by
terminating the subject to prevent the violation. As liveness prop-
erties are not enforceable by termination, they are out of scope for
execution monitors and have to be ensured independently of the
well-behavior of potentially Byzantine entities. For ECAC, eventual
event visibility is ensured by backfilling, but only under the assump-
tion of a connected component of correct entities. For a correct
entity performing an ECAC algorithm, locally created events fulfill
all safety properties by definition. For remote events from other,
possibly incorrect entities, all safety properties are enforceable by
terminating further processing of offending events, i.e., by denying
them causal or topological authorization. While Schneider’s work
is concerned with centralized execution monitors, he already notes
the idea of decentralized execution monitors: “the security policy
for a distributed system might be specified by giving a separate
security automaton for each system host. Then, each host would
itself implement the [. . . ] mechanisms for only the security au-
tomata concerning that host”. For enforcement by a decentralized
execution monitor, we need to combine the work of Schneider and
the work of Bailis et al. on invariant confluence [5]: To be enforce-
able by a decentralized execution monitor, a safety property must
also be invariant confluent. As all ECAC safety properties are also
invariant confluent, we conclude that ECAC safety properties are
enforceable by decentralized execution monitors.

5.2 Partition, Equivocation, and Backdating
We now show the behavior of ECAC in critical scenarios, namely
partition, equivocation, and backdating, where eventually consis-
tent access control behaves differently compared to centralized

access control. We assume a system 𝑆+ = {𝑎, 𝑏, 𝑐} of three entities,
entity 𝑏 may exhibit Byzantine behavior. While coordination-based
approaches are still viable with two correct and one faulty entity,
this simplification is for illustration purposes: due to 𝑎’s and 𝑏’s
autonomous decisions to their best of knowledge and belief, the as-
sessment would be unchanged by any number of additional Byzan-
tine entities. The key point of these scenarios depicted in Fig. 7 is
to show how the causal order of events with its immutable pre-
decessors enables immutable causal authorization under partition
and Byzantine misbehavior, while the topological order enables
non-monotonic revocation of authorizations to still be strongly con-
vergent. As practical example, we take an electronic health record
(EHR) stored as chronicle, featuring a patient 𝑎, their health insurer
𝑏, and their general practitioner 𝑐 as entities. The EHR is repli-
cated among all entities, to ensure availability of reads and writes
without internet access. The EHR consists of medical findings and
therapeutic schedules by practitioners, associated cost coverage
declarations of insurers, the patient’s master data, as well as the
EHR authorizations, all described as events.

For the partition scenario displayed in Fig. 7a, there is a tempo-
rary partition between 𝑐 and {𝑎, 𝑏}, leading to events {𝑎2, 𝑐2, 𝑐3} not
reaching every entity. In the LAC model, entities would be unable
to verify the authorization of affected events and reject them, i.e.,
be unavailable under partition. In the ECAC model, entities that
received the events accept the events as causally authorized, and
store them. After the partition is over, all entities eventually notice
the lost events due to the references to unknown predecessors in
newly-incoming events. To decide causal authorization, entities
try to gather lost events by backfilling, and eventually succeed if a
correct entity has seen them. For the EHR access control example,
we say that event 𝑐2 is a master data update of the patient by their
general practitioner, and 𝑐3 is a new medical finding. Event 𝑎2 re-
vokes the authorization of practitioner 𝑐 to update master data, but
still allows to add new findings. As 𝑎2 and 𝑐2 are sent concurrently
during the partition, entity 𝑐 uses its authorization to create 𝑐2, as it
has not yet heard of the revocation. Due to causal authorization im-
mutability and eventual event visibility, entity 𝑎 eventually decides
𝑐2 as causally authorized. We assume that the lexicographic order 𝐿
prioritizes authorization events, i.e., 𝑎2 ≤𝐿 𝑐2. Then the revocation
𝑎2 is topologically earlier, and revokes topological authorization of
𝑐2. Thereby, the EHR at 𝑐 exhibits non-monotonic behavior: while
𝑐 executed 𝑐2 during the partition and updated the master data, it
will ignore 𝑐2 and restore the old master data as soon as it learned
about 𝑎2, i.e., 𝑎2 ∈ 𝑇𝑐 ⇒ ¬𝑧 (𝑥<𝑐2 (𝑇𝑐 ), 𝑐2) ⇒ 𝑐2 ∉ 𝑥 (𝑇𝑐 ). This
scenario shows the effects of app state confluence, which allows
non-monotonicity only if an event loses topological authorization.

For the equivocation scenario in Fig. 7b, we assume that Byzan-
tine entity 𝑏 tries to create an inconsistency between 𝑎 and 𝑐 by
sending them different but concurrent events, i.e., 𝑏 performs equiv-
ocation using events 𝑏2, 𝑏′2. In the LAC model, this scenario does
not exist: all events are totally ordered in the order in which they
become visible for the (logical) central entity, whereby there are no
concurrent events. While 𝑎 and 𝑐 temporarily only know of one of
the equivocation events, due to the same mechanics that came into
play during the network partition scenario of Fig. 7a, both 𝑎 and 𝑐
will eventually see both𝑏2, 𝑏′2. Thereby, they eventually end up with
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(a) Due to a network partition, entity 𝑎 misses event 𝑐2, 𝑏 misses
{𝑐2, 𝑐3}, and 𝑐 misses 𝑎2. When 𝑎 sees 𝑐3, 𝑎 cannot verify causal autho-
rization due to the missing 𝑐2. Entity 𝑎 starts backfilling, eventually
receives {𝑐2, 𝑐3}, verifies causal authorization, and adds them to𝐶𝑎 .
After 𝑏 and 𝑐 backfilled missing events, they are consistent with 𝑎.

DSN Research Group
KASTEL Institute

Chronicle Replication: Equivocation Tolerance

ACSAC 2024

entity a

entity c

add →

backfill

⁉️

❗️❓

add →

add →

⁉️
backfill

❓ ❗️ add → { }

👿

entity b
😈

(b) Byzantine entity 𝑏 performs equivocation: It creates concurrent
events 𝑏1, 𝑏′1 and sends 𝑏1 to 𝑎 and 𝑏′1 to 𝑐 . As both 𝑏1, 𝑏′1 are causally
authorized, 𝑏 managed to create an inconsistency between 𝑎, 𝑐 . Even-
tually, 𝑎, 𝑐 exchange new events that refer to 𝑏1, 𝑏′1. They backfill, see
both 𝑏1, 𝑏

′
1 and reach consistency, which 𝑏 cannot prevent.
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(c) Byzantine entity 𝑏 sends event 𝑏1 that 𝑎 finds offensive, creating
𝑎2 that revokes the authorization of 𝑏 to send further events. To
evade revocation, 𝑏 manipulates its local execution monitor to act as
if it still had the necessary authorization for 𝑏3, which fails causal
authorization at 𝑎’s local execution monitor. Then, 𝑏 pretends to
have not seen 𝑎2, and sends a backdated event 𝑏′1 concurrent to 𝑎2,
passing causal authorization. Entities𝑎, 𝑐 cannot distinguishwhether
𝑏′1 was created before or after𝑏 saw 𝑎2. However, revocations may act
against causally concurrent events on execution: assuming 𝑎2 ≤𝐿 𝑏′1,
event 𝑏′1 does not pass topological authorization, and is not executed.

Figure 7: Partition, Equivocation, and Backdating Scenarios

a consistent chronicle, topological order, and state set, and even-
tual event visibility and strong event set convergence are fulfilled.
For the EHR access control example, assume that events 𝑏2, 𝑏′2 are
conflicting cost coverage declarations: 𝑏2 declares cost coverage for
treatment schedule 𝑐1 to the patient 𝑎 and grants 𝑎 with the autho-
rization to accept the treatment, while 𝑏′2 declares that the cost of
treatment schedule 𝑐1 are not covered, and treatment access of 𝑎 is
revoked. At first, 𝑎 and 𝑐 will report a different cost coverage status,
and the practitioner would deny treatment to the patient. Based on
the cost coverage 𝑏2, 𝑎 accepts the treatment in 𝑎3. The eventual
event visibility and strong event set convergence properties of the
system ensure that eventually, 𝑎 and 𝑐 have causal authorization
and certain knowledge and proof that insurer 𝑏 concurrently sent
both 𝑏2 and 𝑏′2, and can hold 𝑏 accountable for its equivocation.
The concurrent changes will be executed in accordance with the
lexicographic order, i.e., the resulting cost coverage depends on the
lexicographically larger event of 𝑏2, 𝑏′2 for both {𝑎, 𝑐}. Assuming
𝑏′2 ≤𝐿 𝑏2, the cost coverage grant is executed before the revocation,
and practitioner 𝑐 records treatment execution and results in 𝑐4.

For the backdating scenario in Fig. 7c, we assume that Byzantine
entity 𝑏 tries to evade an authorization revocation done by 𝑎 in 𝑎3
by manipulating its local execution monitor. In the LAC model, this
scenario does not exist: as all events are executed in the central or-
der, anything sent by 𝑏 after the central entity executed 𝑎3 is subject
to the revocation described by 𝑎3. For the EHR access control ex-
ample, we assume that 𝑏2 is a positive cost coverage declaration for
treatment schedule 𝑎⊥, but includes a patient’s contribution. Patient
𝑎 is discontent with the contribution and revokes further EHR write
access of insurer 𝑏, intending to switch to another insurer. Insurer
𝑏 wants to send a negative cost coverage declaration now, trying to
evade the revocation. Insurer 𝑏 first manipulates its local execution
monitor to ignore the revocation in 𝑎3 to send the negative cost
coverage 𝑏3 anyway, which fails at the execution monitor of 𝑎 as
causally unauthorized. In a second attempt, 𝑏 dates back negative
cost coverage 𝑏′2, listing only 𝑐1 as predecessor, thereby stating
𝑏′2 ∥ 𝑏2. As 𝑏

′
2 is causally authorized, correct entities {𝑎, 𝑐} cannot

differentiate whether 𝑏′2 was created after 𝑏 already knew about 𝑎3,
or whether 𝑏′2 just happened to be in transit for a very long time,
and must accept both as causally authorized. This exemplifies that
entities can claim any causal predecessors with impunity, as long
as the event is causally authorized — akin to the fork-join model of
causality [22]. Assuming that negative cost coverage declarations
are executed before positive declarations, i.e., 𝑏′2 ≤𝐿 𝑏2, practitioner
𝑐 would perform treatment under the positive declaration despite
knowing both concurrent declarations. Backdating underlines the
importance of the prioritization rules of causally concurrent events
through their lexicographic order: assuming that 𝑎3 ≤𝐿 𝑏′2, event
𝑏′2 is never executed by {𝑎, 𝑏}, as they have seen 𝑎3 first.

Overall, the scenarios show the effect of replacing up-front co-
ordination with subsequent reconciliation: The overall system ex-
hibits high resilience, i.e., continues to provide availability under
detrimental circumstances, and can tolerate Byzantine behavior.
In essence, the price to pay for the beneficial properties of eventu-
ally consistent access control is the mutability of the topological
order, i.e., the execution of events to the entity’s best of beliefs on
the overall set of events, that takes effect on executing inherently
non-monotonic actions like authorization revocations.
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5.3 ECAC Implementation Simplicity
For a comprehensible ECAC implementability demonstration open
to scrutiny, we now describe a simple ECAC algorithm that makes
an abstraction from the complex ECAC implementation of Matrix
(c.f. Section 2). The algorithm is based on previous work on ab-
stracting Matrix [14] as a composition of CRDTs, but adapted to
match the terms of the ECAC model. While walking through the al-
gorithm, we show how it fulfills all ECAC model properties defined
in Section 4.

In Algorithm 1, the data type foundation of Matrix is described
as a CRDT for hash chronicles. We assume an unlimited number
of Byzantine entities that participate in the CRDT, but also assume
that correct entities form a connected component, i.e., cannot be
stopped from communicating by Byzantine entities. CRDTs can be
categorized as state-based and operation-based CRDTs [27]. The
hash chronicle CRDT falls into the class of delta-state CRDTs [2, 3],
whose state is a join-semilattice that converges by exchanging
deltas. Deltas are also elements of the join-semilattice, and ap-
plied by joining them with an entity’s current state. Here, the join-
semilattice is defined as the set of all sets of valid events with set
union as join operation, (P(E),∪). Specifically, the local state of a
hash chronicle is the entity’s set of visible events vis. The local state
is initialized with the pre-shared genesis event 𝑒⊥, as an anchor for
access control that authorizes the chronicle creator to create the
first membership and level assignment events. The query function
<𝐶 determines whether an event 𝑒1 is causally earlier than another
event 𝑒2 by looking for a chain of recursive hash links from 𝑒2 to 𝑒1,
based on the set of recursive hashes 𝑒.pre of the direct causal prede-
cessors an event 𝑒 . The query function 𝐶 (vis) derives the entity’s
current chronicle 𝐶 from vis by traversing the set of recursive pre-
decessor hashes 𝑒.pre in reverse order, i.e., going up from 𝑒⊥. The
result is the largest downward-closed subset directed at 𝑒⊥, which
fulfills the chronicality property. The query also verifies the causal
authorization of any event before adding it to the resulting chroni-
cle, whereby storage authorization is fulfilled as well. The mutate
function add (𝑒) creates a 𝛿-update from new event 𝑒 by assigning
𝑒’s set of direct predecessor hashes 𝑒.pre with the set of maximal
elements of the entity’s current chronicle as timestamp. On calling
the add (𝑒) function, the entity joins vis with 𝛿 to apply the update,
and gossips 𝛿 to all other entities. On receiving a 𝛿 , entities verify
that only the genesis event has no predecessors, and add it to their
visible event set. As events are immutable and only added to vis, vis
is grow-only. The recursive hash links in 𝑒.pre that unambiguously
define the causal history of any event 𝑒 ensure causal predecessor
immutability. As vis is grow-only and𝐶 (vis) query result is a subset
vis, chronicle monotonicity is ensured. Periodically, entities gossip
their maximal chronicle events, and backfill by requesting events
for which they have the recursive hash, but not the event itself.
Gossiping and backfilling ensures eventual event visibility under
the assumption of a connected component of correct entities. As
𝐶 (vis) as well as 𝑇 (𝐸) and 𝑥 (𝑇 ) in Algorithm 2 are total functions
that, by definition, terminate and deterministically return the same
output when given the same input, strong event set convergence
is fulfilled. Due to eventual event visibility and strong event set
convergence in Byzantine environment, the algorithms represent

a Byzantine-tolerant CRDT, which was already shown in prior
work [13, 14].

Let us now discuss the functions of Algorithm 2 that build on
the hash chronicle CRDT of Algorithm 1. The topological ordering
function 𝑇 (𝐸) performs topological sorting on the chronicle subset
𝐸 ⊆ 𝐶 . It takes the set of causally earliest, yet unsorted events first,
fulfilling causal consistency, to then take the lexicographically earli-
est event, fulfilling lexicographic consistency. The resulting event is
used as next event in the topological order, which ensures topologi-
cal totality. Due to chronicle monotonicity and as𝑇 (𝐸) operates on
chronicle subsets and only extends them with additional relations
to form a total order, topological monotonicity is ensured. The event
execution function 𝑥 (𝑇 ) takes totally-ordered chronicle subset of
events, i.e., a result of function 𝑇 (𝐸). The function walks through
the total order and executes events in order. It ignores topologically
unauthorized events, which ensures execution authorization. Topo-
logically authorized events are added to the resulting app state 𝑋 ,
which ensures app state authorization. If a topologically later event
assigns an attribute to an object, it replaces the previous event for
that attribute. Due to topological order execution, the only way
that a topologically later event is replaced by a topologically earlier
event when𝑇 ⊆ 𝑇 ′ is that the later event is ignored as topologically
unauthorized, which ensures app state confluence.

We finally discuss the lexicographic order <𝐿 (𝑋 ) and the au-
thorization function 𝑧 (𝑋 ) of this algorithm. The lexicographic or-
der 𝐿(𝑋 ) defined by <𝐿 (𝑋 ) orders two events 𝑒1, 𝑒2 based on an
app state set 𝑋 as returned by 𝑥 (𝑇 ). As first criterion, the lexico-
graphic order prioritizes authorization events, i.e., 𝑒1 is before 𝑒2
if 𝑒1 is an authorization event but 𝑒2 is not. This criterion ensures
that authorization revocations are executed before concurrent non-
authorization events, in order to prevent revocation evasion. If both
events are either authorization events or non-authorization events,
the next criterion look at the permission level of the subjects of 𝑒1
and 𝑒2. Events of higher-level subjects are executed first, to ensure
that events, especially authorization revocations, by higher-level
subjects are executed before any events of lower-level subjects. The
final criterion is based on the recursive hash value of the events,
the event with the lower hash value is topologically earlier. The
hash comparison ensures that the lexicographic order is total even
in the presence of Byzantine entities: the hash function’s collision
resistance ensures that this criterion always orders any two events.
However, it is only the last criterion, as a Byzantine entity can easily
create an event with a smaller recursive hash than the recursive
hash of any given event. On every bit flip in the Byzantine event,
there is a 50% chance for the Byzantine entity that the hash is
smaller than the average other event, i.e., a random sequence of
{0, 1}. The authorization function 𝑧 (𝑋, 𝑒) decides whether event
𝑒 is authorized given the app state set 𝑋 , based on the Level- and
Attribute-based Access Control model [12] employed by Matrix.
Event authorization is decided by four criteria: authorization for the
group, the action, the object, and level, which all must be fulfilled
to be authorized. The event is authorized for the communication
group if there was a previous action of type mbr that declared the
subject 𝑒.sbj to be IN the communication group. The event is autho-
rized for its action if the action type 𝑒.act is assigned with a level
less or equal than the event’s subject 𝑒.sbj. The event is authorized
for its object if either has no object, or the object is the subject, or
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Algorithm 1 Delta-state hash chronicle (run by each entity 𝑠 ∈ 𝑆).
Given are the universe of events E, the genesis event 𝑒⊥, and the
recursive history hash function hrh.

state visible event set vis ⊆ E
initial vis← {𝑒⊥}
query <𝐶 (𝑒1, 𝑒2 ∈ 𝐶) : 𝑝 ∈ {⊥,⊤}

𝑝 ← ∃𝑒 ∈ 𝐶 : ℎ𝑟ℎ (𝑒) ∈ 𝑒2 .pre ∧ 𝑒1 <𝐶 𝑒

query 𝐶 (vis) : 𝐶 ⊆ vis
𝐶 ← {𝑒⊥} ⊲ largest downward-closed subset directed at 𝑒⊥
repeat

𝐶† ← {𝑒 ∈ vis \𝐶 | 𝑒.pre ⊆ {hrh (𝑒) | 𝑒 ∈ 𝐶}}
𝐶† ← {𝑒 ∈ 𝐶† | 𝑧 (𝑥<𝑒 (𝐶 ∪ {𝑒})}
𝐶 ← 𝐶 ∪𝐶†

until 𝐶† = ∅
mutate 𝑎𝑑𝑑 (𝑒 ∈ E) : 𝛿 ⊆ E

𝑒.pre← {hrh (𝑒) | 𝑒 ∈ max𝐶 (𝐶 (vis))}
𝛿 ← {𝑒}

on operation(add (𝑒))
𝛿 = add (𝑒)
vis′ ← vis ∪ 𝛿
gossip(𝛿)

on receive(𝛿 ⊆ E)
if ∀𝑒 ∈ 𝛿 : 𝑒.pre ≠ ∅ ∨ 𝑒 = 𝑒⊥ then

vis′ ← vis ∪ 𝛿
periodically

gossip(max𝐶 (𝐶 (vis)))
request (⋃{𝑒.pre | 𝑒 ∈ vis} \ {hrh (𝑒) | 𝑒 ∈ vis})

the object is assigned with a strictly lesser permission level than the
subject. Thereby, equally-leveled subjects cannot remove each other
from the communication group, which avoids revocation cycles.
Finally, if the event assigns levels, it is only authorized if it does
not raise the level of any entity or action type 𝑜 above the level of
the event subject 𝑒.sbj, and does not lower the level of something
above the subject’s level.

6 CONCLUSION
In this paper, we defined the ECAC model for eventually consis-
tent access control. Leveraging the concepts of monotonicity and
invariant confluence from the field of replicated database systems,
we defined a set of security properties for access control based on
a form of partially-ordered event “logbook” conflict-free replicated
data types. While permission revocations show non-monotonicity
in general, our analysis shows that revocations can be invariant
confluent. The explication of the properties show that applications
have to cope with some form of “time travel anomaly”, which we
describe as providing access control to the best of knowledge and
belief. Thereby, this paper provides the necessary foundation to
formal security verification of the access control aspects of the Ma-
trix specification for decentralized group communication systems.
The semantics and security notions of eventually consistent access
control are highly relevant for practical, geo-distributed, resilient
systems that can cope with arbitrary network and process faults. In
contrast to centralized models, an ECAC access decision is immedi-
ate and optimally fault tolerant even in a Byzantine environment.

Algorithm 2 Topological Order𝑇 , lexicographic order 𝐿, execution
function 𝑥 (𝑇 ), Level- and Attribute-based Authorization Function
𝑧 (𝑋, 𝑒)

function 𝑇 (𝐸 ⊆ 𝐶) : 𝑇 ⊇ 𝐸

𝑇 ← ∅ ⊲ topological ordering of chronicle subset 𝐸
for 𝑛 = 0 to |𝐸 | do

𝐸min ← min𝐶 (𝐸) ⊲ set of causally smallest events
𝑋𝑛 ← 𝑥 (𝑇 )
𝑒𝑛 ← min𝐿 (𝑋𝑛 ) (𝐸min) ⊲ lexicograpically smallest event
𝑇𝑛 ← 𝑒𝑛 ⊲ assign next event in topological order
𝐸 ← 𝐸 \ {𝑒}

function x (𝑇 ) : 𝑋 ⊆ 𝑇
𝑋 ← ∅ ⊲ app state set of executing totally-ordered 𝑇
for 𝑛 = 0 to |𝑇 | do

𝑒 ← 𝑇𝑛 ⊲ next event to execute in topological order
if 𝑧 (𝑋, 𝑒) then ⊲ ignore if topologically unauthorized

if 𝑒.obj ≠ ⊥ then ⊲ replace previous event
𝑒𝑥 ← 𝑒𝑥 ∈ 𝑋 | 𝑒𝑥 .act = 𝑒.act ∧ 𝑒𝑥 .obj = 𝑒.obj
𝑋 ← (𝑋 \ {𝑒𝑥 }) ∪ {𝑒}

else
𝑋 ← 𝑋 ∪ {𝑒}

function <𝐿 (𝑋 ) (𝑒1, 𝑒2 ∈ E) : 𝑝 ∈ {⊥,⊤}
⊲ whether 𝑒1 <𝐿 (𝑋 ) 𝑒2 in lexicographic order 𝐿(𝑋 )

lvl ← 𝑥 .𝑐𝑛𝑡 | 𝑥 ∈ 𝑋 : 𝑥 .act = lvl
𝑝 ← 𝑒1 ∈ E𝑧 ∧ ¬𝑒2 ∉ E𝑧 ⊲ prioritize authorization events
if 𝑒1 ∈ E𝑧 ∧ 𝑒2 ∈ E𝑧 then

𝑝 ← lvl(𝑒1 .sbj) < lvl(𝑒2 .sbj))
⊲ if both / neither is authorization, order by level

if lvl(𝑒1 .sbj) = lvl(𝑒2 .sbj) then
𝑝 ← ℎ𝑟ℎ (𝑒1) > ℎ𝑟ℎ (𝑒2)

⊲ if equal subject level, order by recursive hash
function 𝑧 (𝑋 ∈ P(E), 𝑒 ∈ E) : 𝑧 ∈ {⊥,⊤}

⊲ whether 𝑒 is authorized by app state set 𝑋
lvl ← 𝑥 .cnt | 𝑥 ∈ 𝑋 : 𝑥 .act = lvl
𝑚sbj ← 𝑥 .cnt | 𝑥 ∈ 𝑋 : 𝑥 .act = mbr ∧ 𝑥 .obj = 𝑒.sbj
group𝑧 ←𝑚sbj = IN
action𝑧 ← lvl(𝑒.act) ≤ lvl(𝑒.sbj)
object𝑧 ← 𝑒.obj = ⊥ ∨ 𝑒.obj = 𝑒.sbj ∨ lvl(𝑒.obj) < lvl(𝑒.sbj)
level_z = ⊤
if 𝑒.act = lvl then ⊲ cap new levels by subject level

lvl′ ← 𝑒.cnt
level_z ← ∀𝑜 ∈ lvl′ :

lvl′ (𝑜) ≥ lvl(𝑜) ⇒ lvl′ (𝑜) ≤ lvl(𝑒.sbj)
lvl′ (𝑜) ≤ lvl(𝑜) ⇒ lvl(𝑜) < lvl(𝑒.sbj)

𝑧 ← group𝑧 ∧ action𝑧 ∧ object𝑧 ∧ levelz

However, their systemic difference outlined in this paper needs to
be taken into account.
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