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Abstract: This contribution proposes a nonlinear and dissipative infinite-dimensional port-
Hamiltonian (PH) model for the dynamics of geometrically exact strings. The mechanical
model provides a description of large deformations including finite elastic and inelastic strains
in a generalized Maxwell model. It is shown that the overall system results from a power-
preserving interconnection of PH subsystems. By using a structure-preserving mixed finite
element approach, a finite-dimensional PH model is derived. Eventually, midpoint discrete
derivatives are employed to deduce an energy-consistent time-stepping method, which inherits
discrete-time dissipativity for the irreversible system. An example simulation illustrates the
numerical properties of the present approach.
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1. INTRODUCTION

The class of port-Hamiltonian (PH) systems has become
increasingly important across multiple research fields deal-
ing with modeling and control of complex dynamical sys-
tems, see e.g. Duindam et al. (2009). A major benefit of
the PH representation is the explicit formulation of power
interfaces, so-called ports, which allows for an intrinsi-
cally energy-consistent interconnection, thus facilitating
the modular composition of subsystems. Since many tech-
nical systems are modeled by partial differential equations,
the theory of infinite-dimensional PH systems has been
extended in recent years, see Rashad et al. (2020) for a re-
view. Among various physical disciplines, PH formulations
have also been proposed for mechanics.

The structural elements of strings are particularly inter-
esting and are widely used in control and modeling of
multibody systems (cf. Ströhle and Betsch (2022); Kinon
et al. (2023a)). Strings can be found in a large variety of
systems such as cranes, cable robots or satellite systems.
Accordingly, they are interconnected with their environ-
ment, which can be described beneficially in the PH frame-
work. So far, works on geometrically exact strings have
been restricted to purely elastic materials: linear elasticity
in Thoma and Kotyczka (2022) and nonlinear elasticity
in Kinon et al. (2023a). However, modeling inelastic pro-
cesses plays a crucial role for the realistic simulation of
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mechanical systems, see Simo and Hughes (2006). Many
works from structural and multibody dynamics deal with
the Kelvin-Voigt model (e.g. Linn et al. (2013)), which is
not able to reproduce the relaxation test. Recently, more
advanced models (such as the generalized Maxwell model)
are investigated, see e.g. Bauchau and Nemani (2021).

In this contribution we make use of an infinite-dimensional,
nonlinear and dissipative PH model related to Mehrmann
and Morandin (2019); Mehrmann and Zwart (2024). We
thus extend the existing description of geometrically exact
strings to viscoelasticity, introduce the (distributed) gen-
eralized Maxwell model to the PH context and explore the
model’s advantages concerning PH interconnection. With
respect to the numerical discretization, the mixed finite
element method has been employed to establish an ap-
proximate model under preservation of the PH structure,
see Cardoso-Ribeiro et al. (2021), retaining the ports with
their causality on the discrete level. Lastly, we propose an
energy-consistent time discretization extending the one in
Kinon et al. (2023b). It is based on the midpoint discrete
gradient due to Gonzalez (1996) and can be related to the
discrete-gradient pairs by Schulze (2023). The resulting
scheme inherits the dissipativity property of the underly-
ing continuous model.

2. INFINITE-DIMENSIONAL MODEL

In this section, we derive a model for geometrically exact
strings, with a new extension to viscoelastic material using
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a generalized Maxwell model. After briefly recalling the
purely hyperelastic model from Kinon et al. (2023a), we
present a PH formulation of the parallel connection of
distributed visco-elastic branches according to the gen-
eralized Maxwell model. Eventually, a power-preserving
interconnection of both systems yields the final model.

2.1 Purely hyperelastic model

We consider a one-dimensional undeformed (material)
string configuration Ω ⊂ Rd of length L ∈ R>0 and its
current (spatial) configuration Ωt ⊂ Rd, where d ∈
{1, 2, 3} is the spatial dimension. Correspondingly, the
position vector r : S × T → Ωt is introduced, depending
on the material arc-length coordinate s ∈ S = [0, L] and
on time t ∈ T ⊂ R≥0, see Fig. 1 for an illustration. The
balance of linear momentum

ρAr̈(s, t) = ∂sn(s, t) + b+ f(s, t) (1)

includes the constant mass density ρ ∈ R≥0, cross-section
area A ∈ R≥0, constant body forces per unit length b ∈ Rd,
and distributed input forces per unit length f ∈ Rd. The
temporal partial derivative of a any function □ is denoted
□̇ := ∂t□. Moreover, the contact force n(s, t) : S×T → Rd

has tangential direction, i.e.,

n(s, t) = S(s, t)∂sr(s, t), (2)

where the stress-type quantity S : S × T → R has been
introduced. 1 In similarity to (2), we assume that the
distributed input forces are restricted to purely tangential
contributions

f = 2∂s(
1

2
Su∂sr) (3)

with Su(s, t) the stress-type input. For the kinematic
description we consider the scalar strain measure

C = ∂sr · ∂sr, (4)

where C = 1 corresponds to a state without elongation.
For the nonlinear elastic constitutive modeling with finite
strains, a non-quadratic strain energy density function

W (C) =
EA

4
(C − ln(C)− 1), (5)

with E ∈ R>0 the constant axial stiffness parameter, is
considered and is bounded from below by W (1) = 0. See
Kinon et al. (2023a) for a model with linear stress-strain
relation due to St.-Venant-Kirchhoff. The axial stress is
derived via differentiation as

S := 2
dW

dC
= 2W ′(C). (6)

The total energy of a geometrically exact string is de-
scribed in terms of the state vector

x1 = (r,v, C) ∈ R2d+1 (7)

by its Hamiltonian

H1[x1] =

 L

0


ρA

2
v · v +W (C)− r · b


ds, (8)

which is the sum of kinetic energy and potential energy.
Correspondingly, the variational derivatives yield

δx1H1[x1] = (−b, ρAv,W ′(C)) ∈ R2d+1. (9)

Taking the balance of linear momentum (1), the kine-
matic relation ṙ = v, and the strain rate derived from
1 We now drop both spatial and temporal arguments for the sake of
brevity and only use them where the explicit mention is helpful.

{ei}

∂sr(s, t)
r(s, t)

s = 0

s = L

Fig. 1. Spatial string configuration.

(4), the state differential equations represent an infinite-
dimensional version of the formulation by Mehrmann and
Morandin (2019)

E1ẋ1 = J1(x1)z1 + B(x1)u1 , where ET
1 z1 = δx1

H1 ,

y1 = B∗(x1)z1 , (10)

see also Mehrmann and Zwart (2024) for a recent linear
operator-theoretic approach. Note that (10) is specified by
E1 = diag{I, ρAI, 1}, z1 = (−b,v, 1

2S), the formally skew-
adjoint (J1 = −J ∗

1 ) matrix differential operator

J1(x1) =




0 I 0
−I 0 2∂s(□ ∂sr)
0T 2∂sr · ∂s□ 0


 , (11)

which has a similar state-dependent structure as the one
in Brugnoli et al. (2021) for von Kármán beams, and

B(x1) =


0

2∂s(□ ∂sr)
0


, B∗(x1) =


0T −2∂sr · ∂s□ 0


.

(12)
See Kinon et al. (2023a) for details without the distributed
port, and the Appendices for two related formulations.
In App. A the description of inextensible strings yielding
partial DAEs is covered and App. B proposes a repre-
sentation in an extended state space, with a “standard”
canonical differential operator, known from systems of two
conservation laws.

Lastly, the power balance is shown as

Ḣ1 =

 L

0

δx1H1 · ẋ1 ds =

 L

0

z1 · E1ẋ1 ds

=

 L

0

z1 · J1z1 ds+

 L

0

z1 · Bu1 ds,

= u∂ · y∂ +

 L

0

u1 · y1 ds

(13)

in order to complete the PH system representation. 2

Therein, the boundary port (u∂ ,y∂) has been defined due
to pure Neumann boundary conditions (BCs) with

u∂(t) =


−ntot(0, t)
ntot(L, t)


, y∂(t) =


v(0, t)
v(L, t)


, (14)

where ntot = Stot∂sr, with Stot := S + Su, is the total
contact force. The collocated distributed input-output pair
in (13) is (u1, y1) = ( 12Su,−Ċ), which have the dimension
of a stress and strain-rate, respectively.

2 Here, integration by parts along with (10) and (12) have been used.



	 P.L. Kinon  et al. / IFAC PapersOnLine 58-6 (2024) 101–106	 103

a generalized Maxwell model. After briefly recalling the
purely hyperelastic model from Kinon et al. (2023a), we
present a PH formulation of the parallel connection of
distributed visco-elastic branches according to the gen-
eralized Maxwell model. Eventually, a power-preserving
interconnection of both systems yields the final model.
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f = 2∂s(
1

2
Su∂sr) (3)
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C = ∂sr · ∂sr, (4)

where C = 1 corresponds to a state without elongation.
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W (C) =
EA

4
(C − ln(C)− 1), (5)
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dW

dC
= 2W ′(C). (6)
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0
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ρA

2
v · v +W (C)− r · b


ds, (8)
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Taking the balance of linear momentum (1), the kine-
matic relation ṙ = v, and the strain rate derived from
1 We now drop both spatial and temporal arguments for the sake of
brevity and only use them where the explicit mention is helpful.
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E1ẋ1 = J1(x1)z1 + B(x1)u1 , where ET
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y1 = B∗(x1)z1 , (10)

see also Mehrmann and Zwart (2024) for a recent linear
operator-theoretic approach. Note that (10) is specified by
E1 = diag{I, ρAI, 1}, z1 = (−b,v, 1

2S), the formally skew-
adjoint (J1 = −J ∗

1 ) matrix differential operator

J1(x1) =
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0 I 0
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which has a similar state-dependent structure as the one
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port, and the Appendices for two related formulations.
In App. A the description of inextensible strings yielding
partial DAEs is covered and App. B proposes a repre-
sentation in an extended state space, with a “standard”
canonical differential operator, known from systems of two
conservation laws.

Lastly, the power balance is shown as
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= u∂ · y∂ +
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in order to complete the PH system representation. 2

Therein, the boundary port (u∂ ,y∂) has been defined due
to pure Neumann boundary conditions (BCs) with

u∂(t) =
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−ntot(0, t)
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, y∂(t) =
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where ntot = Stot∂sr, with Stot := S + Su, is the total
contact force. The collocated distributed input-output pair
in (13) is (u1, y1) = ( 12Su,−Ċ), which have the dimension
of a stress and strain-rate, respectively.

2 Here, integration by parts along with (10) and (12) have been used.

2.2 Distributed generalized Maxwell viscoelasticity

We now introduce viscoelastic material behavior. Particu-
larly, we assume an internal variable model : the general-
ized Maxwell model with the rheological model from Fig. 2,
which consists of an elastic element andm viscous Maxwell
elements in parallel. It is also referred to as generalized
relaxation model, see (Simo and Hughes, 2006, Ch. 10). In
this context, each additional branch introduces new ma-
terial parameters, allowing for a more precise modeling of
the time-dependent material behavior. Due to the model’s
structure, the total strain in each branch is equal to the
overall total strain Ctot. Correspondingly, Ctot is also the
strain in the purely elastic branch, which corresponds to
the undamped string model with strain C from (4).

In each viscous branch, the elastic strain Cel
i and the

inelastic strain αi must add to the total strain Ctot(s),

Cel
i (s) + αi(s) = Ctot(s), i = 1, . . . ,m, (15)

or, in terms of the strain rates,

Ċel
i (s) + α̇i(s) = Ċtot(s), i = 1, . . . ,m. (16)

The parallel interconnection implies the addition of the
stresses of each viscoelastic branch as

Sv(s) =

m
i=1

Si(s), (17)

which adds with the stress in the purely elastic branch to
Stot(s) = Sv(s) + S(s). Moreover, at each (distributed)
dashpot element, inelastic strains and stresses are related
by the constitutive relation

α̇i(s) =
1

ηiA
Si(s), (18)

where ηi ∈ R>0 is the dynamic viscosity assigned to this
branch. The stresses (which are equal in a branch), are
obtained similar to (6) from a constitutive relation defined

by Si := 2W̃ ′
i (C

el
i ). Choosing a suitable hyperelastic en-

ergy density W̃i(C
el
i ) as in (5), a stiffness parameter Ei is

assigned to every elastic element. 3 The dissipation func-
tional (see Simo and Hughes (2006)) for the generalized
Maxwell model is defined here as

D :=

 L

0

m
i=1

1

2ηiA
S2
i (s) ds. (19)

With the total energy

H2[x2] =

 L

0

m
i=1

W̃i(C
el
i ) ds, x2 = (Cel

1 , . . . , C
el
m) ∈ Rm,

(20)
and the variational derivatives

δx2
H2 = (W̃ ′

1(C
el
1 ), . . . , W̃

′
m(Cel

m)) (21)

the above equations can be combined to obtain the dy-
namics of the m viscoelastic Maxwell branches in purely
dissipative PH form 4

ẋ2 = −R2z2 + 1Ċtot, where z2 = δx2H2

1

2
Sv = 1Tz2,

(22)

3 To obtain consistency with a purely elastic string model with axial
stiffness EA, it is required that EA+

m

i
EiA = EA.

4 A more standard approach in computational viscoelasticity defines
the state via the inelastic strains αi and would yield a slightly
different PH model.

Stot(s)
Ctot(s)

C(s)

Stot(s)
Ctot(s)α1(s)Cel

1 (s)

αm(s)Cel
m(s)

Fig. 2. Generalized Maxwell model.

with z2 = ( 12S1, . . . ,
1
2Sm), R2 = diag{ 2

η1A
, . . . , 2

ηmA},
1T = [1, . . . , 1] and the distributed input-output pair

(u2, y2) = (Ċtot,
1
2Sv). Eventually, the dissipation inequal-

ity

Ḣ2 = −D +

 L

0

u2 · y2 ds ≤
 L

0

u2 · y2 ds (23)

is induced, using (19) as well as D[z2] =
 L

0
z2 ·R2z2 ds.

5

2.3 Interconnection and viscoelastic string model

According to the aforementioned model (see Fig. 2), we in-
terconnect the purely elastic model and the m viscoelastic
Maxwell branches via the conditions Su = Sv, Ċ = Ċtot,
i.e., the total stress of the visco-elastic elements acts as
distributed stress input to the purely elastic string, while
kinematic continuity of the strains is given. In terms of the
above-defined (u1, y1) and (u2, y2), this reads

u1

u2


=


0 1
−1 0

 
y1
y2


, (24)

i.e., a standard power-preserving (gyrator) interconnection
of two passive systems.

Theorem 1. By combining the PH models (10), (22) with
(24), the boundary controlled PH model of the geometri-
cally exact string with generalized Maxwell visco-elasticity
and imposed Neumann BCs is given by

Eẋ = (J (x)−R)z , ETz = δxH , (25)

with E = diag{E1, I}, states x1 = (x1,x2) ∈ R2d+1+m,
vector z = (z1, z2) and boundary port (u∂ ,y∂) accord-
ing to (14), as well as consistent initial conditions. The
formally skew-adjoint system operator and the dissipation
matrix are

J (x) =




0 I 0 0
−I 0 2∂s(□ ∂sr) · · · 2∂s(□ ∂sr)
0 2∂sr · ∂s□ 0 0

...
0 2∂sr · ∂s□ 0 0



.

(26)

and R = diag{0,R2}. The Hamiltonian is the sum of (8)
and (20),

H[x] = H1[x1] +H2[x2], (27)

and satisfies the power balance

Ḣ = u∂ · y∂ −D[z] ≤ u∂ · y∂ , (28)

5 With initial conditions x2(0) and the distributed input Ċtot(s)
acting on the complete domain S, no additional BCs need to be
specified. This is in accordance with (23), which comes without
boundary terms. This is clear from the R2 being constant.
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with the non-negative dissipation functional, being identi-
cal with (19) taking part in (23), such that

D[z] =

 L

0

z · Rz ds ≥ 0. (29)

Proof. The form of the operators follows from direct sub-
stitution. The PH structure, with formal skew-adjointness
of J , is a direct consequence of the power-conserving
interconnection, just as the power balance, which follows
from adding (13) and (23).

3. STRUCTURE-PRESERVING DISCRETIZATION

3.1 Spatial discretization

A mixed finite element approach yields a semi-discrete
state space model that fits again into the PH framework.
To this end, the weak form pertaining to (25) is deduced
using standard procedures as 6

(δb, ṙ − v)Ω = 0, (30a)

(δv, ρAv̇ − b)Ω + (∂s(δv), Stot∂sr)Ω

− [ntot · δv]L0 = 0, (30b)
δS, Ċ − 2∂sr · ∂sv


Ω
= 0, (30c)


δSi, Ċ

el
i − 2∂sr · ∂sv +

1

ηiA
Si



Ω

= 0, (30d)

for arbitrary test functions δb, δv, δS and δSi from ap-
propriate spaces and i = 1, . . . ,m. Note that constitutive
weak forms corresponding to ETz = δxH given by

(δC, S − 2W ′(C))Ω = 0, (30e)
δCel

i , Si − 2W̃ ′
i (C

el
i )


Ω
= 0, (30f)

for i = 1, . . . ,m with appropriate δC, δCel
i , are appended

to close the set of equations.

Now, the string domain is divided into nel finite elements
and we approximate r,v,b via C0-continuous, linear La-
grangian shape functions and C, S, Cel

i , Si via elementwise
constant, discontinuous ansatz functions. Considering a
Bubnov Galerkin approach, the corresponding test func-
tions are restricted to the same ansatz spaces. This yields

˙̂r = v̂, (31a)

Mρ
˙̂v = Mb̂−K(r̂)Ŝ −

m
i=1

K(r̂)Ŝi +B∂û∂ , (31b)

MS
˙̂
C = 2K(r̂)Tv̂, (31c)

MS
˙̂
Cel

i = 2K(r̂)Tv̂ − 1

ηiA
MSŜi, (31d)

MSŜ = ∇Ŵi(Ĉ), (31e)

MSŜi = ∇ ˆ̃Wi(Ĉ
el
i ), (31f)

for i = 1, . . . ,m, as semi-discrete equations of motion
where □̂ indicates nodal values. 7 The discrete version of
the Hamiltonian

Ĥ(x̂) =
1

2
v̂TMρv̂ − r̂TMb̂+ Ŵ (Ĉ) +

m
i=1

ˆ̃Wi(Ĉ
el
i ) (32)

6 We use the notation (a, b)Ω for a generalized inner product.
7 See Kinon et al. (2023a) for formal expressions of the correspond-
ing matrices and vectors.

with the states of the finite-dimensional model

x̂ = (r̂, v̂, Ĉ, Ĉel
1 , . . . , Ĉ

el
m) (33)

results from approximating (20) using the above ansatz

functions. The discrete Hamiltonian Ĥ gives rise to the
partial derivatives

∂Ĥ

∂r̂
= −Mb̂,

∂Ĥ

∂Ĉ
= ∇Ŵi(Ĉ),

∂Ĥ

∂v̂
= Mρv̂,

∂Ĥ

∂Ĉel
i

= ∇ ˆ̃Wi(Ĉ
el
i ).

(34)

We are now able to rewrite equations (31) as finite-
dimensional PH system. Similar to (25), we obtain

E d
dt x̂ = (J(x̂)−R) ẑ +Bû,
ŷ = BTẑ,

and ETẑ = ∇Ĥ(x̂),

(35)
in which JT = −J and R = RT ≥ 0. In detail, for the
present problem we have

J(x̂) =




0 I 0 0
−I 0 −2K(x̂) · · · −2K(x̂)
0 2K(x̂)T 0 0

...
0 2K(x̂)T 0 0




(36)

ẑ = (−Mb̂, v̂,
1

2
Ŝ,

1

2
Ŝ1, . . . ,

1

2
Ŝm), (37)

R = diag{0,0,0, 2

η1A
MS , . . . ,

2

ηmA
MS}, (38)

E = diag{I,Mρ,MS ,MS , . . . ,MS}, (39)

Bû = B∂û∂ . (40)

Note that ET = E. In analogy to (19) and (29), the non-
negative dissipated power is

D̂(ẑ) = ẑ ·Rẑ =

m
i=1

1

2ηiA
ŜT
i MSŜi ≥ 0. (41)

Correspondingly, the discrete power balance

d

dt
Ĥ(x̂) = ∇Ĥ(x̂) · d

dt
x̂ = ẑ ·E d

dt
x̂

= −ẑ ·Rẑ + û · ŷ ≤ û · ŷ
(42)

expresses the passivity and dissipativity of the finite-
dimensional model, which includes energy conservation for
vanishing inputs and R = 0.

3.2 Temporal discretization

Now, a suitable time discretization is applied to obtain
a structure-preserving scheme, which extends the one in
Kinon et al. (2023b). Consider a PH system of the general
form (35) and let x̂n ≈ x̂(tn) at time tn = nh with
constant time step sizes h = tn+1 − tn. We propose an
implicit one-step scheme given by

E
�
x̂n+1 − x̂n


= h(J̄ −R)z̄ + hBū,

ȳ = BTz̄,
(43)

and
ETz̄ = ∇Ĥ(x̂n, x̂n+1), (44)

where the solution via Newton’s method is required in each
time step. ∇Ĥ(x̂n, x̂n+1) is a midpoint discrete derivative
in the sense of Gonzalez (1996). It is a second order
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with the non-negative dissipation functional, being identi-
cal with (19) taking part in (23), such that
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z · Rz ds ≥ 0. (29)

Proof. The form of the operators follows from direct sub-
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of J , is a direct consequence of the power-conserving
interconnection, just as the power balance, which follows
from adding (13) and (23).
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for i = 1, . . . ,m with appropriate δC, δCel
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to close the set of equations.

Now, the string domain is divided into nel finite elements
and we approximate r,v,b via C0-continuous, linear La-
grangian shape functions and C, S, Cel

i , Si via elementwise
constant, discontinuous ansatz functions. Considering a
Bubnov Galerkin approach, the corresponding test func-
tions are restricted to the same ansatz spaces. This yields

˙̂r = v̂, (31a)

Mρ
˙̂v = Mb̂−K(r̂)Ŝ −

m
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K(r̂)Ŝi +B∂û∂ , (31b)
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MSŜ = ∇Ŵi(Ĉ), (31e)

MSŜi = ∇ ˆ̃Wi(Ĉ
el
i ), (31f)

for i = 1, . . . ,m, as semi-discrete equations of motion
where □̂ indicates nodal values. 7 The discrete version of
the Hamiltonian

Ĥ(x̂) =
1
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el
i ) (32)

6 We use the notation (a, b)Ω for a generalized inner product.
7 See Kinon et al. (2023a) for formal expressions of the correspond-
ing matrices and vectors.
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Ĥ(x̂) = ∇Ĥ(x̂) · d

dt
x̂ = ẑ ·E d
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expresses the passivity and dissipativity of the finite-
dimensional model, which includes energy conservation for
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a structure-preserving scheme, which extends the one in
Kinon et al. (2023b). Consider a PH system of the general
form (35) and let x̂n ≈ x̂(tn) at time tn = nh with
constant time step sizes h = tn+1 − tn. We propose an
implicit one-step scheme given by

E
�
x̂n+1 − x̂n


= h(J̄ −R)z̄ + hBū,

ȳ = BTz̄,
(43)

and
ETz̄ = ∇Ĥ(x̂n, x̂n+1), (44)

where the solution via Newton’s method is required in each
time step. ∇Ĥ(x̂n, x̂n+1) is a midpoint discrete derivative
in the sense of Gonzalez (1996). It is a second order

perturbation to the midpoint evaluation of the analytical
gradient and satisfies directionality and consistency, i.e.,

∇Ĥ(x̂n, x̂n+1)T
(
x̂n+1 − x̂n

)
= Ĥ(x̂n+1)− Ĥ(x̂n), (45)

∇Ĥ(x̂n, x̂n) = ∇Ĥ(x̂n), (46)

for arbitrary x̂n, x̂n+1. For the system at hand, the discrete
gradient can be designed analogously to Kinon et al.
(2023a). Using (45) and performing similar manipulations
as in (42) we obtain the discrete-time power balance

Ĥn+1 − Ĥn = h ū · ȳ − hD̄ ≤ h ū · ȳ, (47)

with the non-negative discrete-time dissipation function

D̄ = z̄TRz̄ ≥ 0, (48)

showing that the proposed integrator exhibits discrete-
time passivity and dissipativity (including energy-conser-
vation for ū = 0, R = 0). Discrete gradient methods are
known for desirable robustness and stability properties.

Remark 2. These properties hold regardless of the specific
choices for the matrix- and vector-evaluations. As in Kinon
et al. (2023b), we choose J̄ = J(x̂n+1/2) based on
x̂n+1/2 = 1

2 (x̂
n+1 + x̂n), as well as ū = û(tn+1/2) such

that ȳ ≈ ŷ(tn+1/2), to obtain a symmetric method.

Remark 3. Our method falls into the definition of a
discrete-gradient pair (Schulze, 2023, Sec. 4) with

Ē = E, z̄(x̂n, x̂n+1) = E−T∇Ĥ(x̂n, x̂n+1), (49)

satisfying the three conditions in Schulze (2023). This
follows directly from the definition as well as (45) and (46).
Despite using the midpoint discrete gradient, the proposed
method differs from the midpoint discrete-gradient pair in
Schulze (2023).

4. NUMERICAL EXAMPLE

We investigate the planar motion of a string made of
rubber-like material (E = 18400N/m2, ρ = 920 kg/m3)
with circular cross section (radius r = 0.0186m). Without
loss of generality, we consider the common Zener model
(the one-dimensional standard solid, see Simo and Hughes
(2006)), which is the generalized Maxwell model with
m = 1. For further parameters see Table 1.

It is discretized in space with nel = 10 finite elements
and numerical quadrature of the integrals considered two
Gauss points per element. Further parameters are shown
in Table 1. Specifying the reference configuration Ω by

r0(s) = s

[
0
−1

]
, v0(s) = 0, C0(s) = 1, (50)

we compute the static equilibrium in this vertical position
determined by gravity b = −9.81ρAe2. To this end,
the creeping process is simulated for a period of 10 s,
where inertial forces are neglected. From this approximate
steady state (marked as black in Fig. 3), we perform the
dynamics simulation, where Newton’s method was used
with a residual tolerance of ε = 10−10. The finite element
code moofeKIT has been used, see Franke et al. (2023).
Considering mixed BCs 8

r2(s = 0, t) = 0, v2(s = 0, t) = 0, ∀t

FN = ρA

[
1
0

]
sin

(
π
t

2

)
, t ∈ [0, 4] ,

(51)

8 Here, homogeneous Dirichlet BCs are enforced directly into the
ansatz functions. In general, enforcing non-homogeneous mixed BCs
for PHS requires further approaches, see Brugnoli et al. (2022).

Table 1. Simulation parameters

L [m] EA, E1A [N] ρA [kg/m] η1A [Ns] h [s] T [s]

1 10 1 0.4 5 · 10−2 [0, 6]

the homogeneous Dirichlet BCs are given by fixing the
vertical component of the upper end of the string, and
the non-homogeneous Neumann BC acts at the upper
end (s = 0) of the string during a loading phase in
horizontal direction. Due to a free lower end, we consider
homogeneous Neumann conditions at s = L. After t = 4,
the system is closed. Snapshots of the motion are displayed
in Fig. 3 for t ∈ {0, 0.4, . . . 3.6, 4} s.
The dissipated work in each time step can be seen in Fig. 4
and verifies (48). During the loading phase, the power-
transmission through the boundaries can be observed in
Fig. 5. After the loading phase, our discrete gradient
method (labeled “DG”) captures the dissipativity down to
a level of machine precision. Using the well-known implicit
midpoint rule (labeled “MP”) is not as accurate due to the
nonlinear material (5). The difference between MP and
DG is even more distinct for examples, which induce more
elongation, see Kinon et al. (2023a).

t = 0 t = 4 s

Fig. 3. Initial configuration and snapshots

5. CONCLUSION & OUTLOOK

In this work, we have proposed a new approach for the
simulation of hyperelastic and viscously damped strings,
which additionally enjoys a port-Hamiltonian structure.

0 2 4 6
0

2

4

·10−5

t in s

h
D̄

in
J

Fig. 4. Discrete dissipated work hD̄

0 2 4 6

10−1

10−4

10−8

10−12

10−16

t in s

∆
Ê

in
J

DG
MP

Fig. 5. Discrete increments ∆Ê := |Ĥn+1 − Ĥn + hD̄|
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The infinite-dimensional model is nonlinear and dissipa-
tive and features boundary input/output ports. It could
be shown that dissipation in the sense of a generalized
Maxwell model can be provided via power-preserving
PH connection of two subsystems. Subsequently, we have
demonstrated advantageous properties of both spatial and
temporal discretization techniques, which are structure-
preserving: a mixed finite element approach in space,
yielding a finite-dimensional PH state space model, and
a discrete-gradient based integrator in time, inheriting the
passivity of the original system. Eventually, the behavior
of the model could be showcased in an example simula-
tion, demonstrating also the advantages with respect to
a standard time discretization. Future research directions
may investigate the usage of this model for control design
as well as model order reduction.
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Appendix A. PH-PDAE CASE

By demanding the inextensibility constraint C = 1 for
rigid strings or by time-differentiation ∂sr · ∂sv = 0, one
obtains similarly the PH differential-algebraic equations
(25) with Lagrange multipliers ξ ∈ R. They represent
the reaction stress enforcing inextensibility and take part
in z = (−b,v, 1/2ξ). Moreover, E = diag{I, ρAI, 0} is
singular, R = 0 and δCH = 0. This model is equivalent to
the one presented in Thoma and Kotyczka (2022).

Appendix B. CANONICAL CASE

An alternative PH representation for hyperelastic, geomet-
rically exact strings can be obtained by choosing the states
x = (p, q, r) := (ρAṙ, ∂sr, r) defining the Hamiltonian

H[x] =

∫

Ω

(
U(q)− r · b+ 1

2ρA
p · p

)
ds (B.1)

with the stored energy density U(q) = W (C). The efforts
are obtained as

δpH = (ρA)−1p, δqH = ∇U(q) =: nel(q), δrH = −b.
(B.2)

The second relation can be verified by chain rule

∇U(q) = ∂qW (C) = W ′(C)∇C(q) = S∂sr. (B.3)

Eventually, the state differential equations 9 are given by
ẋ = J δxH with the formally skew-adjoint operator

J =

[
0 ∂s□ −I

∂s□ 0 0
I 0 0

]
. (B.4)

9 This model should also be deducible using an approach extending
the work by Ponce et al. (2023) to nonquadratic Hamiltonians.


