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Abstract: A consistent, structure-preserving space-time discretization for coupled nonlinear
electro-thermo-elastodynamical problems is presented. The underlying polyconvexity-inspired
mixed framework is facilitated by the properties of the tensor cross product. The elastodynamic
problem is then extended by the energy balance as well as Gauss’s and Faraday’s law to integrate
the thermodynamic and electrostatic contribution, respectively. A suitable polyconvexity-
inspired internal energy function is chosen to complete the nonlinear, fully coupled electro-
thermo-elastodynamical formulation. Additionally, we present a structure-preserving, second-
order accurate time integration scheme, utilizing discrete derivatives in the sense of Gonzalez
(1996), ensuring a stable and robust simulation even for large time steps. Finally, we assess the
numerical performance of our newly developed method through representative examples also
showing the possibilities of the framework in the field of boundary control.
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1. INTRODUCTION

Dielectric elastomers (DEs) are classified as smart materi-
als within the group of electroactive polymers, showcasing
great potential in the field of control owing to their elec-
trically induced actuation properties. In their basic con-
figuration, DEs comprise an elastomer layer sandwiched
between two electrodes. The application of a voltage re-
sults in a Coulomb force, leading to a compression of the
elastomer layer. DEs can undergo large deformations, with
area expansions of up to 1600% (Keplinger et al. (2012)),
albeit exhibiting sensitivity to temperature variations (see
e.g. Mehnert et al. (2021)). Thus, this paper provides a
fully coupled nonlinear thermo-electro-mechanical frame-
work to simulate DEs.

For long-term time-dependent finite element simulations of
DEs, employing a stable and robust spatial and temporal
discretization is crucial. Energy-momentum (EM) time
integration schemes offer superior stability and robustness
compared to other classical time integration methods
(Simo and Tarnow (1992)). This superiority arises from
their inherent ability to preserve the conservation of the
total energy, total linear momentum, and total angular
momentum of the system.

Betsch et al. (2018) leveraged the tensor cross product,
originally introduced by de Boer (1982) and reintroduced
to the field of nonlinear continuum mechanics by Bonet
et al. (2016). They subsequently adapted an EM scheme
based on discrete gradients in the sense of Gonzalez (1996),
to suit a mixed polyconvexity inspired elastodynamic

framework. To achieve the desired multiphysics frame-
work, we incorporate the mixed polyconvexity-inspired
elastodynamics formulation by Betsch et al. (2018). This
formulation is then extended by introducing additional
fields from thermodynamics and electrostatics.

The paper is therefore organized as follows: In Section 2,
fundamental concepts are presented, including the basics
of the tensor cross products, a mixed Hu-Washizu-like
variational potential for elastodynamics, balance equations
derived from thermodynamics and electrostatics, and a
suitable coupling energy density function. These elements
collectively give rise to the mixed polyconvexity-inspired
thermo-electro-mechanical framework. The temporal and
spatial discretization is then discussed in Section 3. Using
two examples, the structure-preserving properties of the
formulation are investigated in Section 4, before brief
conclusions are drawn in Section 5.

2. FRAMEWORK

In this section we give an overview of the balance equa-
tions of elastodynamics, thermodynamics and electrostat-
ics along with a suitable material model yielding the fully
coupled, mixed, polyconvexity-inspired framework we use.

2.1 Elastodynamics

We start with the elastodynamic part of the framework.
The deformation gradient F defined as

dx = F dX (1)
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maps infinitesimal line elements dX ∈ B0 to their spatial
counterparts dx ∈ Bt, where B0 and Bt represent a body
B in its reference and current configuration, respectively.

To describe the elastodynamic behaviour of the material
under consideration we assume an energy density function
of the form

Ŵ (C) = W̃ (C, cof(C), det(C)) (2)

with the right Cauchy Green tensor

C = FTF . (3)

We then utilize the tensor cross product 1 between two
second-order tensors A,B ∈ R3 defined in index notation
as

(A B)ij = ϵiαβ ϵjab Aαa Bβb, (4)

where ϵijk denotes the third-order permutation tensor.
This operation allows us to rewrite the cofactor and the
determinant of C as

cof(C) = 1
2 (C C), (5)

det(C) = 1
6 (C C) : C, (6)

respectively. 2

Note that the energy density function (2) can be viewed
as objective version of the underlying polyconvex energy
density function W (F , cof(F ), det(F )).

We introduce the set of independent variables Σ =
(C,G, C) for the right Cauchy Green tensor, its cofactor
and its determinant along with the cascade like kinematic
set

C = (∇φ)T ∇φ,

G = 1
2 C C,

C = 1
3 G : C.

(7)

With a re-expressed energy density function

Ŵ (C) = W̄ (C,G, C) (8)

we can extend the classic variational potential for the pure
displacement formulation by enforcing the kinematic set
(7) via Lagrange multipliers Λ = (ΛC,ΛG,ΛC) yielding
the 7-field Hu-Washizu type formulation

Πm(φ,Σ,Λ) =

∫

B0

W̄ (C,G, C)

+ΛC :
(
(∇φ)T ∇φ−C

)

+ΛG :
(
1
2 C C −G

)

+ ΛC :
(
1
3 G : C − C

)
dV +Πm,ext(φ),

(9)

where φ is the displacement field. A variation of (9) yields
the seven stationary conditions

1 The tensor cross product was described in de Boer (1982) and later
introduced to the field of nonlinear continuum mechanics by Bonet
et al. (2016).
2 For an overview on helpful properties and calculation rules for the
tensor cross product cf. Betsch et al. (2018).

δφΠ̃
m=

∫

B0

ΛC :
(
(∇δφ)T ∇φ+ (∇φ)T ∇δφ

)
dV

+Πm,ext(δφ) = 0,

δCΠ̃
m=

∫

B0

δC :
(
∂CW̄ −ΛC

+ΛG C + 1
3 Λ

C G
)

dV = 0,

δGΠ̃m=

∫

B0

δG :
(
∂GW̄ −ΛG + 1

3 Λ
C C

)
dV = 0,

δCΠ̃
m=

∫

B0

δC
(
∂CW̄ − ΛC

)
dV = 0,

δΛCΠ̃m=

∫

B0

δΛC :
(
(∇φ)T ∇φ−C

)
dV = 0,

δΛGΠ̃m=

∫

B0

δΛG :
(
1
2C C −G

)
dV = 0,

δΛC Π̃m=

∫

B0

δΛC
(
1
3 G :C − C

)
dV = 0.

(10)

Due to the arbitrariness of the variations we afterwards
transform these equations into a set of differential equa-
tions to be able to augment our framework with the bal-
ance equations of the non-potential thermodynamic and
the electrostatic field. We want to emphasize that the
method shown here allows to augment the elastodynamic
field with arbitrary not necessarily potential-based fields.

2.2 Thermodynamics and Electrostatics

For the thermodynamic extension we use the local energy
balance

θ η̇ = R̄−DivQ (11)

with the absolute temperature θ, the entropy density η, a
prescribed heat source R̄ and the Piola heat flux vector
Q. The formulation is completed by suitable thermal
boundary and initial values.

For the electrostatic extension we take Maxwell’s equa-
tions and neglect all transient and magnetic effects yielding
Gauss’s and Faraday’s law

DivD0 = ρ̄e0,

E0 = −∇Φ
(12)

with the electric potential Φ, the electric field E0, the
electric displacement fieldD0 and a prescribed electric vol-
ume charge ρ̄e0. The formulation is completed by suitable
boundary values for the electric potential and the electric
surface charge. The present electrostatic formulation will
later on result in a mixed finite element method in terms of
Φ and D0, first presented by Ghandi and Hagood (1997).

2.3 Constitutive Equations

We extend the energy density function (8) to obtain a
fully coupled thermo-electro-mechanical material model.
For the numerical examples below we used the energy
density function

W (C,G, C,D0, θ) =fθ(θ)Wem(C,G, C,D0)

+Wtm(C, θ) +Wt(θ),
(13)

where Wem(C,G, C,D0) is a compressible Mooney-Rivlin
model with an ideal dielectric elastomer model. The full
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with the right Cauchy Green tensor

C = FTF . (3)

We then utilize the tensor cross product 1 between two
second-order tensors A,B ∈ R3 defined in index notation
as

(A B)ij = ϵiαβ ϵjab Aαa Bβb, (4)

where ϵijk denotes the third-order permutation tensor.
This operation allows us to rewrite the cofactor and the
determinant of C as

cof(C) = 1
2 (C C), (5)

det(C) = 1
6 (C C) : C, (6)

respectively. 2

Note that the energy density function (2) can be viewed
as objective version of the underlying polyconvex energy
density function W (F , cof(F ), det(F )).

We introduce the set of independent variables Σ =
(C,G, C) for the right Cauchy Green tensor, its cofactor
and its determinant along with the cascade like kinematic
set

C = (∇φ)T ∇φ,

G = 1
2 C C,

C = 1
3 G : C.

(7)

With a re-expressed energy density function

Ŵ (C) = W̄ (C,G, C) (8)

we can extend the classic variational potential for the pure
displacement formulation by enforcing the kinematic set
(7) via Lagrange multipliers Λ = (ΛC,ΛG,ΛC) yielding
the 7-field Hu-Washizu type formulation

Πm(φ,Σ,Λ) =

∫

B0

W̄ (C,G, C)

+ΛC :
(
(∇φ)T ∇φ−C

)

+ΛG :
(
1
2 C C −G

)

+ ΛC :
(
1
3 G : C − C

)
dV +Πm,ext(φ),

(9)

where φ is the displacement field. A variation of (9) yields
the seven stationary conditions

1 The tensor cross product was described in de Boer (1982) and later
introduced to the field of nonlinear continuum mechanics by Bonet
et al. (2016).
2 For an overview on helpful properties and calculation rules for the
tensor cross product cf. Betsch et al. (2018).

δφΠ̃
m=

∫

B0

ΛC :
(
(∇δφ)T ∇φ+ (∇φ)T ∇δφ

)
dV

+Πm,ext(δφ) = 0,

δCΠ̃
m=

∫

B0

δC :
(
∂CW̄ −ΛC

+ΛG C + 1
3 Λ

C G
)

dV = 0,

δGΠ̃m=

∫

B0

δG :
(
∂GW̄ −ΛG + 1

3 Λ
C C

)
dV = 0,

δCΠ̃
m=

∫

B0

δC
(
∂CW̄ − ΛC

)
dV = 0,

δΛCΠ̃m=

∫

B0

δΛC :
(
(∇φ)T ∇φ−C

)
dV = 0,

δΛGΠ̃m=

∫

B0

δΛG :
(
1
2C C −G

)
dV = 0,

δΛC Π̃m=

∫

B0

δΛC
(
1
3 G :C − C

)
dV = 0.

(10)

Due to the arbitrariness of the variations we afterwards
transform these equations into a set of differential equa-
tions to be able to augment our framework with the bal-
ance equations of the non-potential thermodynamic and
the electrostatic field. We want to emphasize that the
method shown here allows to augment the elastodynamic
field with arbitrary not necessarily potential-based fields.

2.2 Thermodynamics and Electrostatics

For the thermodynamic extension we use the local energy
balance

θ η̇ = R̄−DivQ (11)

with the absolute temperature θ, the entropy density η, a
prescribed heat source R̄ and the Piola heat flux vector
Q. The formulation is completed by suitable thermal
boundary and initial values.

For the electrostatic extension we take Maxwell’s equa-
tions and neglect all transient and magnetic effects yielding
Gauss’s and Faraday’s law

DivD0 = ρ̄e0,

E0 = −∇Φ
(12)

with the electric potential Φ, the electric field E0, the
electric displacement fieldD0 and a prescribed electric vol-
ume charge ρ̄e0. The formulation is completed by suitable
boundary values for the electric potential and the electric
surface charge. The present electrostatic formulation will
later on result in a mixed finite element method in terms of
Φ and D0, first presented by Ghandi and Hagood (1997).

2.3 Constitutive Equations

We extend the energy density function (8) to obtain a
fully coupled thermo-electro-mechanical material model.
For the numerical examples below we used the energy
density function

W (C,G, C,D0, θ) =fθ(θ)Wem(C,G, C,D0)

+Wtm(C, θ) +Wt(θ),
(13)

where Wem(C,G, C,D0) is a compressible Mooney-Rivlin
model with an ideal dielectric elastomer model. The full

coupling of the model comes from the temperature de-
pendent prefactor fθ(θ) =

θ
θR

. The thermomechanical and
purely thermal contributions are given by

Wtm(C, θ) = −3β e (C − 1) (θ − θR), (14)

Wt(θ) = κ
(
θ − θR − θ log

(
θ
θR

))
(15)

with the thermodynamical parameters β and e along
with the reference temperature θR and the specific heat
capacity κ. The given material model is convex with
respect to {C,G, C,D0} and concave with respect to θ.
Note that while the energy density function’s convexity is
not mandatory, its presence not only enhances the stability
of the formulation but also results in simpler equations
when combined with the tensor cross product.

The description of the material model is completed by the
constitutive equations of the three fields. The second Piola
Kirchhoff stress tensor 3 denotes

S = 2
(
∂CW + ∂GW C + ∂CWG

)
(16)

and the constitutive equations for the electrostatic and the
thermodynamic fields are

E0 = ∂D0
W , η = −∂θW . (17)

Finally, we use Fourier’s law for thermal isotropy

Q = −K∇θ , K = k0C
−1G (18)

with the thermal conductivity coeffitient k0 to conclude
the material model.

2.4 Mixed Thermo-Electro-Mechanical Strong Form

We combine the mixed mechanical equations in strong
form from Section 2.1 with the differential equations
of thermodynamics (11) and elastostatics (12) which
leads to the mixed strong formluation for thermo-electro-
mechanics 4

ρ0 (φ̇− v) = 0

Div(2F ΛC) + B̄ = ρ0 v̇

θ η̇ +DivQ− R̄ = 0

DivD0 − ρ̄e0 = 0

∂D0W +∇Φ = 0

∂CW −ΛC +ΛG C + 1
3 Λ

C G = 0

∂GW −ΛG + 1
3 Λ

C C = 0

∂CW − ΛC = 0

(∇φ)T ∇φ−C = 0
1
2 C C −G = 0
1
3 G : C − C = 0.

(19)

In order to arrive at the corresponding weak formulation,
we multiply the equations from (19) with admissible test
functions w(•), integrate over the entire body and apply
integration by parts as usual.

3 It is important to remark, that on a continuum level, (16) does not
deviate from the well-known classical stress formula. However, the
algorithmic form of the second Piola-Kirchhoff stress tensor will play
a crucial role in preserving the energy conservation of the discrete
system. The partial derivatives included are considerably simpler to
calculate, due to the incorporation of both the polyconvex framework
and the tensor cross product.
4 The Lagrange multiplier ΛC can be understood as half of the
second Piola-Kirchhoff stress tensor, i.e. S = 2ΛC.

3. DISCRETIZATION

In this section, we conduct the temporal and spatial
discretization of the weak form outlined in Section 2.4
starting with the temporal one.

3.1 Structure Preserving Time Integration

For the temporal discretization we adopt the notion of dis-
crete gradient introduced in Gonzalez (1996). Within this
scheme the midpoint evaluations of the partial derivatives
ofW are substituted with discrete derivatives DVW , which
can be understood as algorithmic or time-discrete counter-
parts of ∂VW with V ∈ {C,G, C,D0, θ}. These discrete
derivatives fulfill the so called directionality condition

W (Vn+1)−W (Vn) = DCW : ∆C

+DGW : ∆G+DCW ∆C

+DD0
W ·∆D0 +DθW ∆θ

(20)

with ∆(•) = (•)n+1 − (•)n thereby achieving the desired
property of energy conservation - an aspect lacking in the
classical midpoint evaluation. 5

If we apply the time discretization including the discrete
derivatives to the weak form, we obtain the semi-discrete
set of equations∫

B0

wv ·
(

1

∆t
(φn+1 −φn)− vn+ 1

2

)
ρ0 dV = 0,

∫

B0

wφ · ρ0
∆t

(vn+1 − vn)

+ΛC
n+1 :

(
(∇wφ)

T ∇φn+ 1
2
+
(
∇φn+ 1

2

)T

∇wφ

)
dV

+Πm,ext

n+ 1
2

(wφ) = 0,
∫

B0

wθ

(
1

∆t
(θn+1ηn+1 + θnηn)

− 1

∆t
(θn+1 − θn)DθW

)
dV

−
∫

B0

∇wθ ·Qn+ 1
2
dV +Πt,ext

n+ 1
2

(wθ) = 0,

∫

B0

∇wΦ ·D0n+ 1
2
dV +Πe,ext

n+ 1
2

(wΦ) = 0, (21)

∫

B0

wD0 ·
(
DD0W +∇Φn+ 1

2

)
dV = 0

∫

B0

wC :
(
DCW −ΛC

n+1 +ΛG
n+1 Cn+ 1

2

+ 1
3Λ

C
n+1Gn+ 1

2

)
dV = 0,

∫

B0

wG :
(
DGW −ΛG

n+1 +
1
3Λ

C
n+1Cn+ 1

2

)
dV = 0,

∫

B0

wC

(
DCW − ΛC

n+1

)
dV = 0

∫

B0

wΛC :
((

∇φn+1

)T ∇φn+1 −Cn+1

)
dV = 0,

∫

B0

wΛG :
(
1
2Cn+1 Cn+1 −Gn+1

)
dV = 0,

5 For the detailed construction rules of the discrete derivatives we
refer to Franke et al. (2023).
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B0

wΛC

�
1
3Gn+1 : Cn+1 − Cn+1


dV = 0.

where f(•) denotes the evaluation of a variable f at time

t(•) along with fn+ 1
2
= 1

2 (fn + fn+1).

3.2 Finite Element Method

For the spatial discretization we employ the classic
Bubnov-Galerkin finite element method along with the
isoparametric concept. The continuous variables - namely,
the displacement φ, the temperature θ and the electric
potential Φ - are approximated using 20-node serendipity
shape functions. Regarding the mixed variables, which
include the electric displacement vector D0 and the three
mixed mechanical variables C, G and C along with their
corresponding Lagrange multipliers ΛC, ΛG and ΛC , we
employ discontinuous trilinear Lagrange shape functions
on eight-node cube elements. This enables the implemen-
tation of a static condensation, thereby reducing the nu-
merical costs to approximately the level of a three-field
thermo-electro-mechanical formulation.

4. NUMERICAL EXAMPLES

In this section we present two numerical examples showing
the structure preserving properties of the formulation
along with the possibilities in the field of boundary control.

4.1 Flying L-Shape

The first example is a technical one, where an L-shaped
specimen can freely fly through space. Figure 1 shows the
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y, Y
10m
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3m
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3m

Fig. 1. Flying L-shape: reference configuration with bound-
ary and initial conditions

specimens reference configuration along with its initial
and boundary conditions. For the spatial discretization
a total of 288 elements is used. The colored surfaces
indicate initial temperatures of θ1 = 250K and θ2 = 300K,
whereas the remainder of the body starts with an initial
temperature of θ0 = 293.15K. For the first 5 seconds of
the simulation, we apply mechanical Neumann boundary
conditions in the form of two stresses

σ1(t) = −σ2(t) = f(t)


1
2
3


N

m2
(22)

with

f(t) =




256
9 t for t ≤ 2.5s

256
9 (5− t) for 2.5 ≤ t ≤ 5s

0 for t > 5s

(23)

onto the two colored surfaces. Simultaneously, electrical
Dirichlet boundary conditions corresponding to two elec-
tric potentials Φ1(X,Y = 0, Z) = 0V and Φ2(X,Y =
−1.5, Z) = 6·106 sin(π5 t)V are applied on the back surface
of the specimen and the surface indicated by the yellow
dotted line (see Figure 1). The system is simulated over
a total time T = 40s with a time step size ∆t = 0.8s.
After the initial 5 seconds, as no additional energy is
introduced into the system, the discrete gradient is able
to preserve both the total energy E and the total angular
momentum ||J || as illustrated in Figures 2 and 3. Unlike
the discrete gradient, the classic midpoint rule fails to
preserve the total energy, resulting in an energy blow-
up after a few seconds. Since the midpoint rule and the
EM-scheme produce exactly the same results for the total
angular momentum, only the EM-scheme is depicted in
the bottom plots of Figures 2 and 3.
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Fig. 2. Flying L-shape: total energy (top) and angular
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Fig. 3. Flying L-shape: difference of total energy (top) and
angular momentum (bottom)
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1
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dV = 0.

where f(•) denotes the evaluation of a variable f at time

t(•) along with fn+ 1
2
= 1

2 (fn + fn+1).

3.2 Finite Element Method

For the spatial discretization we employ the classic
Bubnov-Galerkin finite element method along with the
isoparametric concept. The continuous variables - namely,
the displacement φ, the temperature θ and the electric
potential Φ - are approximated using 20-node serendipity
shape functions. Regarding the mixed variables, which
include the electric displacement vector D0 and the three
mixed mechanical variables C, G and C along with their
corresponding Lagrange multipliers ΛC, ΛG and ΛC , we
employ discontinuous trilinear Lagrange shape functions
on eight-node cube elements. This enables the implemen-
tation of a static condensation, thereby reducing the nu-
merical costs to approximately the level of a three-field
thermo-electro-mechanical formulation.

4. NUMERICAL EXAMPLES

In this section we present two numerical examples showing
the structure preserving properties of the formulation
along with the possibilities in the field of boundary control.

4.1 Flying L-Shape

The first example is a technical one, where an L-shaped
specimen can freely fly through space. Figure 1 shows the
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ary and initial conditions

specimens reference configuration along with its initial
and boundary conditions. For the spatial discretization
a total of 288 elements is used. The colored surfaces
indicate initial temperatures of θ1 = 250K and θ2 = 300K,
whereas the remainder of the body starts with an initial
temperature of θ0 = 293.15K. For the first 5 seconds of
the simulation, we apply mechanical Neumann boundary
conditions in the form of two stresses

σ1(t) = −σ2(t) = f(t)
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(22)

with

f(t) =




256
9 t for t ≤ 2.5s

256
9 (5− t) for 2.5 ≤ t ≤ 5s

0 for t > 5s

(23)

onto the two colored surfaces. Simultaneously, electrical
Dirichlet boundary conditions corresponding to two elec-
tric potentials Φ1(X,Y = 0, Z) = 0V and Φ2(X,Y =
−1.5, Z) = 6·106 sin(π5 t)V are applied on the back surface
of the specimen and the surface indicated by the yellow
dotted line (see Figure 1). The system is simulated over
a total time T = 40s with a time step size ∆t = 0.8s.
After the initial 5 seconds, as no additional energy is
introduced into the system, the discrete gradient is able
to preserve both the total energy E and the total angular
momentum ||J || as illustrated in Figures 2 and 3. Unlike
the discrete gradient, the classic midpoint rule fails to
preserve the total energy, resulting in an energy blow-
up after a few seconds. Since the midpoint rule and the
EM-scheme produce exactly the same results for the total
angular momentum, only the EM-scheme is depicted in
the bottom plots of Figures 2 and 3.
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4.2 Microfluid Pumping Devise

As a second example, we illustrate a more practical ap-
plication: a microfluid pump employed, for instance, to
deliver drugs through the bloodstream. This example is
intended to demonstrate both the long-term stability of
the formulation and the possible applications in the area
of boundary control. The microfluidic pumping device
under consideration closely resembles the one discussed
in e.g. Mehnert et al. (2017) and was also presented in
Franke et al. (2023). Similarly, it does not account for
fluid-structure interaction. Both the complete shape of
the cylindrical pumping device and its dimensioning are
depicted in Figures 4 and 5, where all lengths are provided
in micrometers (µm). Due to the three symmetry axes, it
is sufficient to simulate only one-eighth of the pumping
corpus comprised of 320 finite elements, along with suit-
able symmetric mechanical Dirichlet boundary conditions.
The simulation is conducted with a total simulation time
of T = 100s and a time step size of ∆t = 0.1s. The heating

Fig. 4. Microfluid pump: initial configuration
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Fig. 5. Microfluid pump: top view (top) and side view
(bottom) of one eighth of the pumping corpus

of the pumped liquid is simulated by a thermal Neumann
boundary condition

Q̄ = 0.8




t for t ≤ 2 s

4− t for 2 s < t ≤ 4 s

0 for t > 4 s


W

m2


, (24)

applied to the interior of the pump for the initial 4 seconds
of the simulation (illustrated in orange in Figure 5). For
the pumping purpose two elastomer layers are sandwiched
between two compliant electrodes on the top and bottom
walls of the corpus, respectively. Specifically, mimicking

the pumping movement involves applying Dirichlet bound-
ary conditions in the form of electrical potentials Φ̄1 to
Φ̄3, where Φ̄1 = 0V at all times, while Φ̄2 and Φ̄3 follow a
periodic pattern, as depicted in Figure 6. After the heating
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Fig. 6. Microfluid pump: periodically applied electric
Dirichlet boundary conditions Φ̄2 and Φ̄3

phase and during constant phases of the applied electric
potential fields the proposed EM integration scheme is able
to correctly reproduce the conservation of the total energy
of the system. Figure 7 shows the total energy and the
energy difference 6 of the simulation with the proposed EM
scheme. Finally, in Figure 8 snapshots of the simulation are
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Fig. 7. Microfluid pump: total energy E (top) and total
energy difference ∆E (bottom)

shown, where in column one to three the electric potential,
the temperature and the von Mises stress are depicted. The
top snapshot of each column takes place at time t = 0s,
the middle one at time t = 6s and the bottom one shows
each quantity at time t = 22s. The snapshots show that
the formulation can accurately reproduce both the heating
of the pump induced by the thermal Neumann boundary
condition and the movement of the pump induced by the
electrical Dirichlet boundary conditions.

5. CONCLUSIONS

This paper introduces a structure-preserving space-time
discretization method for coupled nonlinear thermo-electro-
elastodynamics. This approach is built upon the polycon-
vex mixed framework developed by Betsch et al. (2018),
which has been further extended to accommodate multi-
physics. To achieve this, the mixed Hu-Washizu-like seven-
field variational potential was transformed into its cor-
responding strong form. Subsequently, it was augmented
6 Note that the discrete energy difference is only plotted during time
intervals when constant electric potential fields are applied.
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Fig. 8. Microfluid pump: snapshots of the electric potential field Φ [V] (left), the absolute temperature field θ [K] (center)
and the von Mises stress σvM [Pa] (right) at times t = 0s (top), t = 6s (middle) and t = 22s (bottom).

with the requisite multiphysic fields, specifically incorpo-
rating thermodynamics and electrostatics in our case. In
this augmentation, the selection of coupled fields is not
confined solely to potential fields. The elastodynamic for-
mulation’s polyconvex structure derives advantages from
the utilization of both the tensor cross product in con-
junction with the cascade-like formulation of kinematic
constraints and a polyconvex material model. The latter
reflects the behavior of dielectric elastomers and is pivotal
for the coupling within the formulation.

The result is a fully coupled mixed thermo-electro-
elastodynamic framework, which was discretized in a next
step using the finite element method and a structure-
preserving time integration via discrete gradient in the
sense of Gonzalez (1996) in space and time, respectively.
Finally, two numerical examples were presented to demon-
strate that the formulation exhibits numerical stability
even in long-term simulations. Furthermore, the proposed
method is capable to accurately preserve both the total
energy and the total angular momentum of the system.

We see potential in transcribing the present formulation
into the GENERIC formalism (see Öttinger (2005) and
Schiebl and Betsch (2021)). GENERIC (General Equation
for the Non-Equilibrium Reversible Irreversible Coupling)
offers a thermodynamically consistent framework that
splits the underlying evolution equations additively into
reversible and irreversible parts. This aligns seamlessly
with a possible extension of the formulation to incorporate
viscoelastic material behavior, providing an even more ac-
curate description of the behavior of dielectric elastomers.

REFERENCES

Betsch, P., Janz, A., and Hesch, C. (2018). A mixed vari-
ational framework for the design of energy-momentum
schemes inspired by the structure of polyconvex stored
energy functions. Comput. Methods Appl. Mech. Eng.,
335, 660–696. doi:10.1016/j.cma.2018.01.013.

Bonet, J., Gil, A.J., and Ortigosa, R. (2016). On a tensor
cross product based formulation of large strain solid
mechanics. Int. J. Solids Structures, 84, 49–63.

de Boer, R. (1982). Vektor- und Tensorrechnung für
Ingenieure. Springer-Verlag Berlin Heidelberg.

Franke, M., Zähringer, F., Hille, M., Ortigosa, R., Betsch,
P., and Gil, A. (2023). A novel mixed and energy-
momentum consistent framework for coupled nonlinear
thermo-electro-elastodynamics. Int. J. Numer. Meth.
Engng, 124, 2135–2170. doi:10.1002/nme.7209.

Ghandi, K. and Hagood, N.W. (1997). Hybrid Finite
Element Model for Phase Transitions in Nonlinear Elec-
tromechanically Coupled Material. In V.V. Varadan
and J. Chandra (eds.), Smart Structures and Materials
1997: Mathematics and Control in Smart Structures,
volume 3039, 97–112. International Society for Optics
and Photonics, SPIE. doi:10.1117/12.276529.

Gonzalez, O. (1996). Time integration and discrete hamil-
tonian systems. Journal of Nonlinear Science, 6(5), 449–
467. doi:10.1007/BF02440162.

Keplinger, C., Li, T., Baumgartner, R., Suo, Z., and Bauer,
S. (2012). Harnessing snap-through instability in soft di-
electrics to achieve giant voltage-triggered deformation.
Soft Matter, 8, 285–288. doi:10.1039/C1SM06736B.

Mehnert, M., Hossain, M., and Steinmann, P. (2021).
A complete thermo–electro–ciscoelastic characterization
of dielectric elastomers, part i: Experimental inves-
tigations. J Mech Phys Solids, 157, 104603. doi:
10.1016/j.jmps.2021.104603.

Mehnert, M., Pelteret, J.P., and Steinmann, P. (2017). Nu-
merical modelling of nonlinear thermo-electro-elasticity.
Mathematics and Mechanics of Solids, 22(11), 2196–
2213. doi:10.1177/1081286517729867.

Öttinger, H. (2005). Beyond Equilibrium Thermodynam-
ics. John Wiley & Sons.

Schiebl, M. and Betsch, P. (2021). Structure-
preserving space-time discretization of large-strain
thermo-viscoelasticity in the framework of GENERIC.
Int. J. Numer. Meth. Engng, 122(14), 3448–3488. doi:
10.1002/nme.6670.

Simo, J. and Tarnow, N. (1992). The discrete energy-
momentum method. conserving algorithms for non-
linear elastodynamics. Zeitschrift für angewandte
Mathematik und Physik ZAMP, 43, 757–792. doi:
10.1007/BF00913408.


